WO2016045617A1 - 自移动机器人移动界限划定方法 - Google Patents
自移动机器人移动界限划定方法 Download PDFInfo
- Publication number
- WO2016045617A1 WO2016045617A1 PCT/CN2015/090736 CN2015090736W WO2016045617A1 WO 2016045617 A1 WO2016045617 A1 WO 2016045617A1 CN 2015090736 W CN2015090736 W CN 2015090736W WO 2016045617 A1 WO2016045617 A1 WO 2016045617A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mobile robot
- coordinate system
- moving
- limit
- coordinates
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 73
- 230000033001 locomotion Effects 0.000 title claims abstract description 64
- 238000005070 sampling Methods 0.000 claims description 18
- 238000013507 mapping Methods 0.000 claims description 16
- 238000004364 calculation method Methods 0.000 claims description 8
- 230000008054 signal transmission Effects 0.000 claims description 7
- 230000003993 interaction Effects 0.000 claims description 6
- 239000007787 solid Substances 0.000 claims description 2
- 238000005259 measurement Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 15
- 230000005540 biological transmission Effects 0.000 description 6
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000009394 selective breeding Methods 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/20—Control system inputs
- G05D1/24—Arrangements for determining position or orientation
- G05D1/247—Arrangements for determining position or orientation using signals provided by artificial sources external to the vehicle, e.g. navigation beacons
- G05D1/249—Arrangements for determining position or orientation using signals provided by artificial sources external to the vehicle, e.g. navigation beacons from positioning sensors located off-board the vehicle, e.g. from cameras
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0276—Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
- G05D1/028—Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using a RF signal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1656—Programme controls characterised by programming, planning systems for manipulators
- B25J9/1664—Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0221—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving a learning process
Definitions
- the invention relates to a mobile robot moving limit delineation method, and belongs to the technical field of self-mobile robot motion control manufacturing.
- Self-mobile robots are a common type of robot, including: sweeping robots, mowing robots, home service robots, and monitoring robots. Many different types, such as the ability to walk freely, have been widely favored by users. How to effectively control the movement of a mobile robot in a certain working space is a key issue.
- the self-moving robot needs to solve the problem of limiting the range of movement of the mobile robot, and needs to divide the motion area into blocks.
- the existing area division methods include satellite positioning method, setting marker method, spatial infrared signal guiding method, and the like.
- the above existing regional demarcation methods have problems such as low precision and cumbersome label arrangement, and the application needs to be specifically set according to the specific requirements of the actual environment, and has no universality.
- the invention application disclosed in CN 101109809A discloses a positioning device, system and method based on a steering-sensing array, which are three infrared signal transmitting devices fixed on the same plane and a signal receiving device disposed on the robot.
- the sine theorem calculation is used to realize the real-time positioning of moving targets in indoor or small areas.
- this method can only realize real-time positioning of the robot, and the calculation accuracy is not high, and the function of moving limit demarcation cannot be realized.
- the technical problem to be solved by the present invention is to provide a method for demarcation of a moving boundary of a mobile robot according to the deficiencies of the prior art, which is based on a fixed base station ranging positioning to realize the demarcation of a moving limit, which is related to the prior art. Compared with precision and convenience, it has obvious advantages.
- a method for demarcating a moving boundary of a mobile robot includes the following steps:
- Step 100 setting three or more base stations in a motion area of the mobile robot and establishing a coordinate system
- Step 200 Artificially plan a moving path in a motion area of the mobile robot, collect sample points on the path, and determine coordinates of the sample points in the coordinate system;
- Step 300 Delimit the coordinates according to the collected sample point coordinates, and set the self-mobile robot to work within or outside the limit.
- a coordinate system is established with one of the base stations as an origin, and the distance between the base stations is calculated by measuring the signal transmission time between the base stations, thereby determining the coordinates of each base station in the coordinate system.
- Determining the coordinates of the sample points in the step 200 specifically includes calculating coordinates of the sample points in the coordinate system by measuring a signal transmission time between the mobile machine and the base station; the calculation method includes: geometric positioning method, least square method Or arrive at the time difference method.
- the person planning the movement path in the step 200 can be implemented in various manners, including: the user controls the path formed by the movement of the mobile robot through the interaction device; or the user takes the positioning device set on the self-mobile robot Lower and move the resulting path within the motion area.
- the sampling point in the step 200 is collected by the mobile robot, and the interval is collected automatically from the mobile robot according to the set time interval, or manually collected.
- the invention establishes a coordinate system by setting a base station, and the coordinate system can be either a plane coordinate system or a stereo coordinate system.
- the defined boundary shapes are also different, specifically:
- the coordinate system described in the step 100 is a plane coordinate system established by three base stations, and the plane of the plane coordinate system is coplanar with the motion region of the mobile robot.
- the limit in the step 300 is an open or closed line formed by sample points.
- the coordinate system described in the step 100 is a stereo coordinate system established by four base stations.
- the step 300 specifically includes: forming a set of sample points collected by using a projection method to form a mapping point vertically or non-perpendicularly to a plane, and the projection plane is a plane where the motion region of the mobile robot is located; the boundary is the mapping point The open or closed lines formed by the connections.
- the limit in the step 300 is a plane determined by 3 sampling points, or a plane fitted by more than 3 sampling points.
- the limit in the step 300 is to interpolate or fit the surface of the solid space constructed by the sampling point by using a combination of a standard shape or the standard shape through a plurality of sampling points.
- the standard shape is a cube, a cuboid, a sphere or a triangular pyramid.
- the present invention is based on fixed base station ranging positioning to achieve the definition of the movement limit, compared with the prior art, both precision and convenience have obvious advantages.
- FIG. 1 is a schematic diagram of establishing a plane coordinate system according to the present invention
- Embodiment 1 of the present invention is a schematic diagram of Embodiment 1 of the present invention.
- Embodiment 3 of the present invention is a schematic diagram of Embodiment 3 of the present invention.
- FIG. 5 is a schematic diagram of Embodiment 4 of the present invention.
- FIG. 6 is a schematic diagram of Embodiment 5 of the present invention.
- Figure 7 is a schematic view of Embodiment 6 of the present invention.
- FIG. 8 is a schematic diagram of Embodiment 7 of the present invention.
- the invention provides a mobile robot moving limit demarcation method, which is based on fixed base station ranging positioning to realize the delimitation of the movement limit.
- the automatic robot positioning system includes a mobile robot MR (Mobile Robot) And three or more base stations BS (Base Station), the self-mobile robot and each base station are provided with wireless signal transmitting and receiving devices.
- the transmitted wireless signals may be infrared, ultrasonic, laser, electromagnetic waves, etc.
- the transmission speed k of the wireless signal is known.
- the mobile robot and the base station both transmit the wireless signals, and receive signals from each other, and measure the transmission time t of the signals, and calculate the distance L between the base stations and the self-mobile robot by k ⁇ t The distance S from each base station.
- FIG. 1 is a schematic diagram of establishing a plane coordinate system according to the present invention.
- the process of establishing a plane coordinate system is as follows: First, according to the principle of determining a plane by three points, a plane is determined by three base stations BS1, BS2, and BS3, and a coordinate system is established in the plane, A base station BS1 is the origin (0, 0) of the coordinate system, and the line where the first base station BS1 and the second base station BS2 are located may be the X axis, and the line perpendicular to the straight line is the Y axis.
- the relative distance L between the base stations is calculated, thereby obtaining their respective coordinates in the plane coordinate system.
- the method for establishing a coordinate system is relatively simple. In practical applications, it is not necessary to use one of the base stations as an origin to determine the X axis by the first and second base stations, for example:
- the coordinates of the second base station are: (X 1 + L 1 ⁇ cos A, Y 1 + L 1 ⁇ sin A),
- L1 is the distance between the first and second base stations, and A can be set as the angle between the first and second base station connections and the X axis, and X1, Y1, and A can be arbitrarily selected to determine the coordinate system, and the coordinate system. After the establishment, the coordinates corresponding to each base station can be determined.
- a plane coordinate system can be established through three base stations, and a stereo coordinate system can also be established through four base stations.
- plane coordinates are established through three base stations, it must be ensured that the three base stations are not on the same straight line.
- the calculation accuracy can be improved by increasing the number of settings of the base station.
- the distance S from the mobile station to each base station is obtained by calculation, and is established by three points.
- S1 is calculated according to the known transmission speed, and the same calculation is performed to obtain S2, S3, as shown in FIG.
- the coordinates of a base station BS1 are (0, 0)
- the distance between the first base station BS1 and the second base station BS2 is L1
- the coordinates of the second base station BS2 are (L1, 0), which can be calculated by S1, S2, and L1.
- the angle A, and then according to S3, can calculate the coordinates of the MR.
- the calculation method used above can be called geometric positioning method.
- the coordinates of the first base station BS1 are (x1, y1)
- the coordinates of the self-mobile robot are (x, y)
- t1 is the transmission time of the signal from the mobile robot to the first base station
- r1 is the self-mobile robot to the first The distance of the base station.
- the equations corresponding to the other two base stations are listed.
- time difference method can also be used to determine the coordinates of the MR, namely: TIME DIFFERENCE OF ARRIVAL, referred to as TDOA.
- the coordinates of the first base station are (x1, y1)
- the coordinates of the second base station are (x2, y2)
- the coordinates of the self-mobile robot are (x, y)
- t1 and t2 are signals from the mobile robot to the first The transmission time of a base station and a second base station.
- the above three methods can locate the movement of the robot.
- the specific movement mode is that the user walks with the MR, or removes the positioning device provided with the signal transmitting and receiving device from the MR and moves the handheld device, or controls the MR movement through the interaction device, and the interval is required during the movement.
- the sample points are collected, and the user can set the time interval for collecting the sample points through the interaction device so that the MR automatically collects according to the time interval, or manually controls the corresponding function keys to collect.
- the sample points may be connected by a boundary demarcation mode preset on the interaction device, where the boundary delineation mode refers to a connection manner of the sample points, for example, sequentially connecting the sample points to form a limit, or Use the sample points to fit the curve-type bounds, or connect the two points at the beginning and the end to form a closed boundary, or use the sample points to determine the linear bounds that can extend infinitely at both ends.
- the boundary demarcation pattern can be artificially designed and embedded in the MR by program. It is convenient for users to select.
- the interaction device includes a selection button disposed on the MR surface, selection The indication screen, or a remote controller equipped for the MR, or a mobile terminal such as a mobile phone or a tablet that communicates with the MR via Bluetooth or wifi.
- the MR is prohibited from entering or exiting from the limit by program setting, and the operation is performed within and outside the defined limit.
- FIG. 2 is a schematic diagram of Embodiment 1 of the present invention.
- the method for demarcating the movement limit of the mobile robot mainly includes the following steps:
- a plane coordinate system is determined: three base stations BS are placed in the MR motion area A of the mobile robot, and the three BSs are guaranteed not to be on the same straight line, and a plane coordinate system is determined by the three BSs, and the plane coordinate system is determined.
- the location is the motion area A of the mobile robot.
- the sample points are obtained: the sample points P are obtained by MR automatic acquisition or artificial random acquisition, and the coordinates of each sample point are calculated by geometric positioning method, least square method or time difference method (TIME DIFFERENCE OF ARRIVAL, referred to as TDOA method).
- the boundary demarcation draw a linear or curved boundary based on the sample points collected.
- the division of the area is then achieved by setting the way the MR is prohibited from crossing the boundary.
- the curve X is determined by the four sample points P1 to P4 acquired, and after the MR is prohibited from crossing the curve X, the actual moving position of the MR is as shown by a plurality of straight lines Y with arrows in FIG. As shown, it moves only on one side of the curve X and no longer moves across the curve X to the other side.
- FIG. 3 is a schematic diagram of Embodiment 2 of the present invention.
- the method for demarcating the movement limit of the mobile robot mainly includes the following steps:
- a plane coordinate system is determined: three base stations BS are placed in the MR motion area A from the mobile robot, and it is ensured that the three BSs are not on the same straight line, and one plane is determined by the three BSs. BS placement completed Then, a plane coordinate system can be determined by the foregoing method, and the position of the plane coordinate system is the motion area A of the mobile robot.
- the sample points are obtained: the sample points P are obtained by MR automatic acquisition or artificial random acquisition, and the coordinates of each sample point are calculated by geometric positioning method, least square method or arrival time difference method.
- a closed figure is drawn, and the drawing method includes interpolation or fitting of a line or a curve, and after determining a closed figure, the motion area is divided into a graphic and a graphic, thereby realizing The division of the moving area of the mobile robot.
- a closed pattern M is determined by the four sample points P1 to P4 acquired, and after the MR is prohibited from crossing the closed pattern M, the actual moving position of the MR is as shown in FIG.
- the straight lines N1 and N2 are respectively moved on the inner and outer sides of the closed figure M, and the closed figure M is no longer cross-domain.
- the program can be set on the self-mobile robot, so that the self-mobile robot can complete the work for a certain time or a certain distance within the defined limit, and then can leave the demarcation limit and continue other work.
- the method for demarcating the movement limit of the mobile robot mainly includes the following steps:
- a stereo coordinate system is determined: four base stations BS are placed in the motion area of the mobile robot MR, and the spatial dimension of the BS is three-dimensional. After the BS is placed, the stereo coordinate system is determined. When the MR is located in the stereo coordinate system, the coordinates of the MR can be calculated according to the signal transmission time.
- the sample points are obtained: the sample points P are obtained by automatic MR acquisition or artificial random acquisition, and the coordinates of each sample point are calculated by geometric positioning method, least square method or arrival time difference method.
- the boundary demarcation is completed: the collected sample point set P is vertically or non-perpendicularly projected to the XY plane or other plane by the projection method, and the projection plane is the plane where the motion area A of the mobile robot is located. .
- the mapping points P1' to P4' determine a boundary, which may be composed of a plurality of lines connecting the mapping points, or may be An envelope curve.
- the limit in this embodiment is the curve Q, and then the division of the area is realized by setting the manner in which the MR is prohibited from crossing the curve Q.
- the actual moving position of the MR is as shown by a plurality of arrowed straight lines Z in FIG. 3, moving only on one side of the curve Q without crossing the curve Q to the other side thereof. motion. Similar to the first embodiment, if there are other obstacles such as walls in the motion area A, it is also possible to combine with the curve Q to realize completely divided area division.
- the self-mobile robot is a sample point collected during the space movement, and then will be taken.
- the set of spatial sample points is projected into the motion area A of the self-moving robot to form a mapping point, and then a straight line or a curve is determined by the mapping point, and the division of the motion area is realized by prohibiting the crossing.
- FIG. 5 is a schematic diagram of Embodiment 4 of the present invention.
- the method for demarcating the movement limit of the mobile robot in this embodiment is basically the same as that of the third embodiment, and the sample points are collected by the self-moving robot during the space movement, and then the spatial sample points to be collected are collected. Projected into the motion area A of the self-moving robot, forming a mapping point, and then determining a straight line or a curve by mapping points, and dividing the motion area by prohibiting the crossing.
- the only difference between the two is that the pattern formed by the mapping points is different, the non-closed curve Q is formed in the third embodiment, and the closed pattern H is formed in the embodiment.
- FIG. 6 is a schematic diagram of Embodiment 4 of the present invention.
- the method for demarcating the movement limit of the self-moving robot in this embodiment is basically the same as that of the fourth embodiment, and the sample points are collected by the self-moving robot during the space movement, and then the spatial sample points to be collected are collected. Projected into the motion area A of the self-moving robot, forming a mapping point, and then determining a straight line or a curve by mapping points, and dividing the motion area by prohibiting the crossing. The only difference between the two is that the projection directions of the two are different.
- the fourth embodiment is a vertical projection, and the embodiment is a non-vertical projection. This requires pre-setting the projection angle and the projection direction in the processor program, and then calculating the final result. The coordinates projected on the plane.
- a closed figure H' is formed by mapping dots.
- FIG. 7 is a schematic diagram of Embodiment 6 of the present invention.
- the method for demarcating the movement limit of the mobile robot mainly includes the following steps:
- a stereo coordinate system is determined: four BSs are placed in the motion region of the mobile robot MR, and the spatial dimension composed of the BS is three-dimensional. After the BS is placed, the stereo coordinate system is determined. When the MR is located in the stereo coordinate system, the coordinates of the MR can be calculated according to the signal transmission time.
- the sample points are obtained: the sample points P are obtained by automatic MR acquisition or artificial random acquisition, and the coordinates of each sample point are calculated by geometric positioning method, least square method or arrival time difference method.
- the boundary is defined: in the stereo space, it is assumed that there are 4 sampling points P1 to P4, A plane U can be determined by three sampling points P1, P2 and P3, or a plane U can be fitted through more than three sampling points to limit MR traversal and realize area division.
- the MR can only move below the plane U and cannot move across the plane U to move above it. It is worth noting that when this method is used for a ground motion robot, the plane U is limited to the intersection of the plane U and the ground.
- the method provided in this embodiment is applicable to both a ground self-mobile robot and a flying self-mobile robot.
- FIG. 8 is a schematic diagram of Embodiment 7 of the present invention. As shown in FIG. 8, in the embodiment, the method for demarcating the movement limit of the mobile robot mainly includes the following steps:
- a stereo coordinate system is determined: four BSs are placed in the moving region of the mobile robot, and the spatial dimension composed of the BS is three-dimensional. After the BS is placed, the stereo coordinate system is determined. When the MR is located in the stereo coordinate system, the coordinates of the MR can be calculated according to the signal transmission time.
- the sample points are obtained: the sample points P are obtained by automatic MR acquisition or artificial random acquisition, and the coordinates of each sample point are calculated by geometric positioning method, least square method or arrival time difference method.
- the boundary demarcation is completed: in the three-dimensional space, the three-dimensional space is constructed by interpolating or fitting the sampling points by using a plurality of sampling points P1 to P9 using a standard rectangular body C and a triangular pyramid D, and limiting the self.
- the mobile robot moves beyond the range of the stereoscopic space to achieve area division.
- the MR can only move inside or outside the three-dimensional space and cannot cross the surface of the three-dimensional space.
- the method provided in this embodiment is mainly applicable to a flightable self-mobile robot.
- the present invention places a plurality of base stations in the motion area of the mobile robot, determines the coordinates of the self-moving robot by the base station, and delimits the boundary, and the area divided by the boundary can be set to work. Or non-working area.
- the setting method can also adopt the area defined by the default from the mobile robot as the working area, or can be selected by means of artificial selection.
- Embodiments 1 and 2 are based on the plane motion trajectory and sampling and demarcating the plane; the third, fourth and fifth embodiments are based on spatial motion trajectory sampling, and the projection is formed on the plane in a vertical or non-vertical manner. Points, and then use the mapping points to define the boundaries; while Examples 6 and 7 are sampled by their spatial motion trajectories and demarcated within the space.
- the present invention provides a method for demarcation of a moving boundary of a mobile robot, which is based on a fixed base station ranging positioning to achieve division of a region. Compared with the prior art, both the accuracy and the convenience have obvious advantages.
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Manipulator (AREA)
Abstract
一种自移动机器人移动界限划定方法,包括步骤100:在自移动机器人的运动区域内设置三个以上基站并建立坐标系;步骤200:在自移动机器人的运动区域内人为规划移动路径,采集该路径上的样本点,确定样本点在坐标系中的坐标;步骤300:根据采集到的样本点坐标划定界限,并设定自移动机器人在界限内或外进行作业。该方法基于固定基站测距定位从而实现对移动界限的划定,与现有技术相比,提高了精度和便捷性。
Description
本发明涉及一种自移动机器人移动界限划定方法,属于自移动机器人运动控制制造技术领域。
自移动机器人是一种常用的机器人,包括:扫地机器人、割草机器人、家庭服务机器人和监控机器人等等很多不同类型,以其能够自由行走的特点得到了使用者的广泛青睐。如何有效控制自移动机器人在某一作业空间内的运动,是关键的问题。所述的自移动机器人要解决限定自移动机器人移动范围的问题,需要对运动区域进行区块划分,现有的区域划分方法包括卫星定位法、设置标记物法、空间红外信号引导法等等,但上述现有的区域划定方法均存在精度不高,标记物布置繁琐等问题,且应用场合需要根据实际环境的特定要求进行特定设置,不具备普适性。公开号为CN 101109809A的发明申请,公开了一种基于向控感光阵列的定位装置、系统和方法,是通过固定在同一平面上的三个红外信号发射装置和设置在机器人上的信号接收装置,利用正弦定理计算来实现对室内或小区域内的移动目标的实时定位,但该方法仅能实现对机器人的实时定位,且计算精度不高,更无法实现移动界限划定的功能。
发明内容
本发明所要解决的技术问题在于针对现有技术的不足,提供一种自移动机器人移动界限划定方法,是一种基于固定基站测距定位从而实现对移动界限的划定,与现有技术相比,无论是精度还是便捷性,都具备明显优势。
本发明所要解决的技术问题是通过如下技术方案实现的:
一种自移动机器人移动界限划定方法,包括如下步骤:
步骤100:在自移动机器人的运动区域内设置三个以上基站并建立坐标系;
步骤200:在自移动机器人的运动区域内人为规划移动路径,采集该路径上的样本点,确定样本点在所述坐标系中的坐标;
步骤300:根据采集到的样本点坐标划定界限,并设定自移动机器人在所述界限内或外进行作业。
所述步骤100中以其中一个基站为原点建立坐标系,通过测量各基站之间的信号传输时间计算出各基站之间的距离,从而确定各基站在该坐标系中的坐标。
所述步骤200中确定样本点的坐标具体包括,通过测量自移动机器和基站之间的信号传输时间计算出样本点在所述坐标系内的坐标;计算方法包括:几何定位法、最小二乘法或到达时间差法。所述步骤200中的人为规划移动路径可以采用多种方式实现,具体包括:使用者通过交互装置控制自移动机器人移动所形成的路径;或者,使用者将设置在自移动机器人上的定位装置取下,并使其在运动区域内移动所形成的路径。
更具体地,所述步骤200中样本点的采集方式为通过移动自移动机器人进行间隔采集,所述间隔采集为自移动机器人自动按照设定的时间间隔进行采集,或者人为随机采集。
本发明通过设置基站来建立坐标系,所述坐标系既可以是平面坐标系,又可以是立体坐标系,在不同的坐标系中,所划定的界限形状也有所不同,具体来说:
所述步骤100中所述的坐标系为通过三个基站建立的平面坐标系,且该平面坐标系所在平面与自移动机器人的运动区域共面。
所述步骤300中的界限为由样本点形成的开放或封闭的线条。
所述步骤100中所述的坐标系为通过四个基站建立的立体坐标系。
所述步骤300具体包括:将采集的样本点集合采用投影方法垂直或者非垂直投影到平面形成映射点,且该投影平面为自移动机器人的运动区域所在的平面;所述界限为所述映射点连接形成的开放或封闭的线条。
所述步骤300中所述界限为3个采样点确定的一个平面,或者通过3个以上采样点拟合出的一个平面。
所述步骤300中所述界限为通过多个采样点采用标准形体或所述标准形体的组合来插值或者拟合采样点构建的立体空间的表面。
所述标准形体为正方体、长方体、球体或三棱锥。
综上所述,本发明基于固定基站测距定位从而实现对移动界限的划定,与现有技术相比,无论是精度还是便捷性,都具备明显优势。
下面结合附图和具体实施例,对本发明的技术方案进行详细地说明。
图1为本发明建立平面坐标系的示意图;
图2为本发明实施例一的示意图;
图3为本发明实施例二的示意图;
图4为本发明实施例三的示意图;
图5为本发明实施例四的示意图;
图6为本发明实施例五的示意图;
图7为本发明实施例六的示意图;
图8为本发明实施例七的示意图。
本发明提供了一种自移动机器人移动界限划定方法,该方法基于固定基站测距定位从而实现对移动界限的划定,具体来说,该自动机器人定位系统包括自移动机器人MR(Mobile Robot)和三个以上基站BS(Base Station),所述自移动机器人和各基站上均设置无线信号发射和接收装置,为保证测量可靠性,所发射的无线信号可以为红外线、超声波、激光、电磁波等,且该无线信号的传输速度k已知。正常工作时,自移动机器人与基站均发射该无线信号,且彼此之间相互接收信号,并测量该信号的传输时间t,通过k×t可计算出各基站之间的距离L以及自移动机器人相对各基站的距离S。
图1为本发明建立平面坐标系的示意图。如图1所示,建立平面坐标系的过程是这样的:首先,根据三点确定一个平面的原理,以三个基站BS1、BS2和BS3确定一个平面并在该平面内建立坐标系,以第一基站BS1为坐标系的原点(0,0),可以设第一基站BS1、第二基站BS2所在直线为X轴,与该直线相垂直的为Y轴。通过上述k×t的公式,计算得到各基站之间的相对距离L,从而获得其各自在该平面坐标系中的坐标。
上述建立坐标系的方法较为简单,实际应用中,并非一定要以其中一个基站作为原点,以第一、第二基站确定X轴,例如:
假设第一基站的坐标为:(X1,Y1),
第二个基站的坐标即为:(X1+L1×cos A,Y1+L1×sin A),
其中,L1为第一、第二基站之间的距离,A可以设为第一、第二基站连线与X轴的夹角,X1,Y1,A可以任意取值以确定坐标系,坐标系建立后即可确定各基站对应的坐标。
当然,可以通过三个基站建立平面坐标系,也可以通过四个基站建立立体坐标系。另外,需要说明的是,如果是通过三个基站建立平面坐标,须保证三个基站不在同一条直线上。另外,可以通过增加基站的设置个数,来提高计算精度。
结合图1所示,通过计算得到自移动机器人相对各基站的距离S,以三个点建立
一个平面坐标系为例,通过测得信号从自移动机器人MR到第一基站的传输时间t1,根据已知的传输速度计算出S1,同理计算得到S2,S3,如图1所示,第一基站BS1的坐标为(0,0),第一基站BS1与第二基站BS2之间的距离为L1,则第二基站BS2的坐标为(L1,0),通过S1,S2,L1可计算夹角A,再根据S3,就能计算出MR的坐标。以上所采用的计算方法可以被称为几何定位法。
除此之外,也可通过最小二乘法计算,根据公式:
(x-x1)2+(y-y1)2=r1
2,r1=t1×k,
其中,第一基站BS1的坐标为(x1,y1),自移动机器人的坐标为(x,y),t1为信号从自移动机器人到第一基站的传输时间,r1为自移动机器人到第一基站的距离。同理列出对应其它两个基站的方程,通过测得t1,t2,t3,可以求解x,y值,即为MR的坐标。
另外,还可以到达时间差法来确定MR的坐标,即:TIME DIFFERENCE OF ARRIVAL,简称TDOA。
假设相对于MR,第一基站较第二基站距离更远,可列出方程:
其中,第一基站的坐标为(x1,y1)、第二基站的坐标为(x2、y2)、自移动机器人的坐标为(x,y),t1和t2分别为信号从自移动机器人到第一基站和第二基站的传输时间。
同理列出其余两个方程,通过测得t1,t2,t3,可以求解x,y值,即MR的坐标。
上述三种方法可以对机器人的移动进行定位,为了得到一个用户想要的界限,需要预先人为操控MR进行移动,并采集该移动路径上的样本点P。具体移动方式为,用户手持MR行走,或者将设有信号发射和接收装置的定位装置从MR上取下并手持该定位装置移动,或者通过交互装置控制MR移动,在该移动过程中,需间隔采集样本点,用户可以通过交互装置设置采集样本点的时间间隔使MR按照该时间间隔自动进行采集,或者手动操控相应功能键进行采集。
获得样本点P后,可通过预设在交互装置上的界限划定模式连接样本点,所述界限划定模式是指样本点的连接方式,例如依次直线或曲线连接各样本点形成界限,或者利用样本点拟合出曲线型界限,或者连接首尾两个点形成封闭界限,或者利用样本点确定两端可无限延伸的直线型界限,所述界限划定模式可人为设计并通过程序嵌入MR内,方便用户进行选取。所述交互装置包括,设置在MR表面的选择按钮、选择
指示屏幕,或者为MR配备的遥控器,或者通过蓝牙,wifi与MR进行通讯的移动终端如手机、平板等。
通过样本点划定界限后,通过程序设定禁止MR进入该界限或者从该界限离开,实现其在所述划定界限内、外作业。
实施例一
图2为本发明实施例一的示意图。如图2所示,在本实施例中,自移动机器人移动界限划定方法主要包括以下几个步骤:
首先,确定平面坐标系:在自移动机器人MR运动区域A内放置3个基站BS,并且保证该三个BS不在同一条直线上,通过该三个BS确定一平面坐标系,且该平面坐标系所在位置为自移动机器人的运动区域A。
其次,是获得样本点:通过MR自动采集或人为随机采集获得样本点P,通过几何定位法、最小二乘法或到达时间差法(TIME DIFFERENCE OF ARRIVAL,简称:TDOA法)计算出各样本点坐标。
最后,完成界限划定:根据采集到的样本点,绘制出直线型或曲线型界限。然后通过设置禁止MR跨越该界限的方式,实现对区域的划分。在图2所示的实施例中,通过采集的四个样本点P1至P4确定了曲线X,设置禁止MR跨越该曲线X之后,MR的实际运动位置如图1中多个带箭头的直线Y所示,仅在曲线X的一侧运动而不再跨域该曲线X到其另一侧运动。
当然,如果在运动区域A内还存在墙面等其他障碍物,也可以与该曲线X结合起来,实现完全分隔的区域划分。由于曲线X的两端与运动区域A的边界非封闭,为了防止MR在曲线X的外端绕过,从一侧运动到另一侧,可以优选将曲线X与障碍物连接或者添加其他设计功能,以使区域划分更加明确。如果是通过若干样本点来确定的直线,那么系统可以认为其端点是可以无限延长的,直至与运动区域A的边界相交,形成封闭的划分区域。
实施例二
图3为本发明实施例二的示意图。如图3所示,在本实施例中,自移动机器人移动界限划定方法主要包括以下几个步骤:
首先,确定平面坐标系:在自移动机器人MR运动区域A内放置3个基站BS,并且保证该三个BS不在同一条直线上,通过该三个BS确定一个平面。BS放置完成
后,通过前述的方法可确定一平面坐标系,且该平面坐标系所在位置为自移动机器人的运动区域A。
其次,是获得样本点:通过MR自动采集或人为随机采集获得样本点P,通过几何定位法、最小二乘法或到达时间差法计算出各样本点坐标。
最后,完成界限划定:根据采集的样本点集合P,绘制封闭图形,绘制方法包括直线或者曲线的插值或者拟合,确定一个封闭图形后,将运动区域划分为图形内以及图形外,从而实现对自移动机器人运动区域的划分。在图3所示的实施例中,通过采集的四个样本点P1至P4确定了一个封闭图形M,设置禁止MR跨越该封闭图形M之后,MR的实际运动位置如图3中多个带箭头的直线N1和N2所示,分别在封闭图形M的内、外两侧运动,不再跨域该封闭图形M。
另外,可以在自移动机器人上进行程序设定,使自移动机器人在划定界限内完成一定时间或一定距离的作业,然后即可再行离开划定界限,继续其他作业。
实施例三
图4为本发明实施例三的示意图。如图4所示,在本实施例中,自移动机器人移动界限划定方法主要包括以下几个步骤:
首先,确定立体坐标系:在自移动机器人MR的运动区域内放置4个基站BS,并且BS组成的空间维度为三维。BS放置完后,确定立体坐标系,当MR位于该立体坐标系内时,根据信号传输时间可计算MR的坐标。
其次,获得样本点:通过MR自动采集或人为随机采集获得样本点P,通过几何定位法、最小二乘法或到达时间差法计算出各样本点坐标。
如图4所示,最后,完成界限划定:将采集的样本点集合P采用投影方法垂直或者非垂直投影到XY平面或者其他平面,且该投影平面为自移动机器人的运动区域A所在的平面。将在空间采集的样本点P1至P4映射到平面坐标系XOY之后,映射点P1’至P4’确定一界限,该界限可以是由多条连接在映射点之间的直线组成的,也可以为一条包络曲线。如图3所示,本实施例中的界限即为曲线Q,然后通过设置禁止MR跨越该曲线Q的方式,实现对区域的划分。当设置禁止MR跨越该曲线Q之后,MR的实际运动位置如图3中多个带箭头的直线Z所示,仅在曲线Q的一侧运动而不再跨域该曲线Q到其另一侧运动。与实施例一类似,如果在运动区域A内还存在墙面等其他障碍物,也可以与该曲线Q结合起来,实现完全分隔的区域划分。
因此,在本实施例中,自移动机器人是在空间运动时采集到的样本点,随后将采
集的空间样本点投影到自移动机器人的运动区域A中,形成映射点,再通过映射点确定直线或曲线,通过禁止跨越的方式,实现对运动区域的划分。
实施例四
图5为本发明实施例四的示意图。如图5并对照图4所示,本实施例中自移动机器人移动界限划定方法与实施例三基本相同,都是通过自移动机器人在空间运动时采集样本点,随后将采集的空间样本点投影到自移动机器人的运动区域A中,形成映射点,再通过映射点确定直线或曲线,通过禁止跨越的方式,实现对运动区域的划分。两者唯一的差别在于,通过映射点形成的图形不同,实施例三中形成的是非封闭的曲线Q,而在本实施例中形成的则是封闭图形H。
本实施例中的其他技术内容与实施例三相同,在此不再赘述。
实施例五
图6为本发明实施例四的示意图。如图6并对照图5所示,本实施例中自移动机器人移动界限划定方法与实施例四基本相同,都是通过自移动机器人在空间运动时采集样本点,随后将采集的空间样本点投影到自移动机器人的运动区域A中,形成映射点,再通过映射点确定直线或曲线,通过禁止跨越的方式,实现对运动区域的划分。两者唯一的差别在于,两者的投影方向不同,实施例四为垂直投影,而本实施例则为非垂直投影,这需要在处理器程序内预先设置投影角度和投影方向,再计算得到最终投影在平面上的坐标。通过映射点形成封闭图形H’。
本实施例中的其他技术内容与实施例四相同,在此不再赘述。
实施例六
图7为本发明实施例六的示意图。如图7所示,在本实施例中,自移动机器人移动界限划定方法主要包括以下几个步骤:
首先,确定立体坐标系:在自移动机器人MR的运动区域内放置4个BS,并且BS组成的空间维度为三维。放置完BS后,确定立体坐标系,当MR位于该立体坐标系内时,根据信号传输时间可计算MR的坐标。
其次,获得样本点:通过MR自动采集或人为随机采集获得样本点P,通过几何定位法、最小二乘法或到达时间差法计算出各样本点坐标。
如图7所示,最后,完成界限划定:在立体空间中,假设有4个采样点P1至P4,
可以通过其中3个采样点P1、P2和P3确定一个平面U,或者通过3个以上采样点拟合出平面U,限制MR穿越,实现区域划分。界限划定后如图7所示,MR只能在平面U的下方运动而不能穿越过该平面U到其上方来运动。值得说明的是,当该方式用于地面运动机器人时,平面U对该机器人的限制为平面U与地面的相交线。
本实施例中所提供的方法,既适用于地面自移动机器人,也适用于飞行的自移动机器人。
实施例七
图8为本发明实施例七的示意图。如图8所示,在本实施例中,自移动机器人移动界限划定方法主要包括以下几个步骤:
首先,确定立体坐标系:在自移动机器人运动区域内放置4个BS,并且BS组成的空间维度为三维。放置完BS后,确定立体坐标系,当MR位于该立体坐标系内时,根据信号传输时间可计算MR的坐标。
其次,获得样本点:通过MR自动采集或人为随机采集获得样本点P,通过几何定位法、最小二乘法或到达时间差法计算出各样本点坐标。
如图8所示,最后,完成界限划定:在三维空间中,通过多个采样点P1至P9采用标准形体的组合长方体C和三棱锥D插值或拟合采样点,构建立体空间,限制自移动机器人超出该立体空间范围内的运动,从而实现区域划分。界限划定后如图8所示,MR只能在立体空间的内部或者外部运动而不能穿越过该立体空间的表面。也可以仅采用一个标准形体如长方体、正方体、球体、三棱锥等,或任意两个以上所述标准形体的组合差值或拟合采样点来构建立体空间。
本实施例中所提供的方法主要适用于可飞行的自移动机器人。
综合上述七个实施例可知,本发明在自移动机器人的运动区域放置多个基站,通过基站对自移动机器人测距来确定其坐标,从而划定界限,通过该界线划分的区域可设置为工作或非工作区域。设置方式也可以采用自移动机器人默认划定的区域为作业区域,或者通过人为选择的方式进行选取。其中,实施例一和二是依据平面运动轨迹并在该平面上取样、划定界限;实施例三、四和五是依据空间运动轨迹取样,采用垂直或非垂直的方式投影在平面上形成映射点,再利用映射点划定界限;而实施例六和七则是以其空间运动轨迹取样,并在空间内划定界限。
综上,本发明提供一种自移动机器人移动界限划定方法,基于固定基站测距定位从而实现对区域的划分,与现有技术相比,无论是精度还是便捷性,都具备明显优势。
Claims (12)
- 一种自移动机器人移动界限划定方法,其特征在于,该方法包括如下步骤:步骤100:在自移动机器人的运动区域内设置三个以上基站并建立坐标系;步骤200:在自移动机器人的运动区域内人为规划移动路径,采集该路径上的样本点,确定样本点在所述坐标系中的坐标;步骤300:根据采集到的样本点坐标划定界限,并设定自移动机器人在所述界限内或外进行作业。
- 如权利要求1所述的自移动机器人移动界限划定方法,其特征在于,所述步骤100中以其中一个基站为原点建立坐标系,通过测量各基站之间的信号传输时间计算出各基站之间的距离,从而确定各基站在该坐标系中的坐标。
- 如权利要求1所述的自移动机器人移动界限划定方法,其特征在于,所述步骤200中确定样本点的坐标具体包括,通过测量自移动机器人和基站之间的信号传输时间计算出样本点在所述坐标系内的坐标;计算方法包括:几何定位法、最小二乘法或到达时间差法。
- 如权利要求1所述的自移动机器人移动界限划定方法,其特征在于,所述步骤200中的人为规划移动路径,具体包括:使用者通过交互装置控制自移动机器人移动所形成的路径;或者,使用者将设置在自移动机器人上的定位装置取下,并使其在运动区域内移动所形成的路径。
- 如权利要求1所述的自移动机器人移动界限划定方法,其特征在于,所述步骤200中样本点的采集方式为通过移动自移动机器人进行间隔采集,所述间隔采集为自移动机器人自动按照设定的时间间隔进行采集,或者人为随机采集。
- 如权利要求1-5任一项所述的自移动机器人移动界限划定方法,其特征在于,所述步骤100中所述的坐标系为通过三个基站建立的平面坐标系,且该平面坐标系所在平面与自移动机器人的运动区域共面。
- 如权利要求6所述的自移动机器人移动界限划定方法,其特征在于,所述步骤300中的界限为由样本点形成的开放或封闭的线条。
- 如权利要求1-5任一项所述的自移动机器人移动界限划定方法,其特征在于,所述步骤100中所述的坐标系为通过四个基站建立的立体坐标系。
- 如权利要求8所述的自移动机器人移动界限划定方法,其特征在于,所述步骤300具体包括:将采集的样本点集合采用投影方法垂直或者非垂直投影到平面形成映射点,且该投影平面为自移动机器人的运动区域所在的平面;所述界限为所述映射点连接形成的开放或封闭的线条。
- 如权利要求8所述的自移动机器人移动界限划定方法,其特征在于,所述步骤300中所述界限为3个采样点确定的一个平面,或者通过3个以上采样点拟合出的一个平面。
- 如权利要求8所述的自移动机器人移动界限划定方法,其特征在于,所述步骤300中所述界限为通过多个采样点采用标准形体或所述标准形体的组合来插值或者拟合采样点构建的立体空间的表面。
- 如权利要求11所述的自移动机器人移动界限划定方法,其特征在于,所述标准形体为正方体、长方体、球体或三棱锥。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP23209957.2A EP4345564A1 (en) | 2014-09-26 | 2015-09-25 | Self-moving robot movement boundary determining method |
EP21174387.7A EP3889725B1 (en) | 2014-09-26 | 2015-09-25 | Self-moving robot movement boundary determining method |
EP15844459.6A EP3200040B1 (en) | 2014-09-26 | 2015-09-25 | Drawing method of the movement boundary for a self-moving robot |
US15/514,207 US10520950B2 (en) | 2014-09-26 | 2015-09-25 | Self-moving robot movement boundary delimiting method |
US16/691,419 US20200089235A1 (en) | 2014-09-26 | 2019-11-21 | Self-moving robot movement boundary determining method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410504400.6 | 2014-09-26 | ||
CN201410504400.6A CN105446350B (zh) | 2014-09-26 | 2014-09-26 | 自移动机器人移动界限划定方法 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/514,207 A-371-Of-International US10520950B2 (en) | 2014-09-26 | 2015-09-25 | Self-moving robot movement boundary delimiting method |
US16/691,419 Continuation US20200089235A1 (en) | 2014-09-26 | 2019-11-21 | Self-moving robot movement boundary determining method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016045617A1 true WO2016045617A1 (zh) | 2016-03-31 |
Family
ID=55556670
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/090736 WO2016045617A1 (zh) | 2014-09-26 | 2015-09-25 | 自移动机器人移动界限划定方法 |
Country Status (4)
Country | Link |
---|---|
US (2) | US10520950B2 (zh) |
EP (3) | EP3889725B1 (zh) |
CN (1) | CN105446350B (zh) |
WO (1) | WO2016045617A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113556679A (zh) * | 2020-04-24 | 2021-10-26 | 苏州科瓴精密机械科技有限公司 | 自移动机器人工作区域虚拟边界的生成方法、系统、自移动机器人及可读存储介质 |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105446350B (zh) * | 2014-09-26 | 2018-05-29 | 科沃斯机器人股份有限公司 | 自移动机器人移动界限划定方法 |
CN105527961A (zh) * | 2014-09-30 | 2016-04-27 | 科沃斯机器人有限公司 | 一种自移动表面行走机器人系统及回归主充电座的方法 |
CN104333498B (zh) * | 2014-11-28 | 2018-10-02 | 小米科技有限责任公司 | 控制智能家居设备的方法及装置 |
US11309753B2 (en) | 2015-10-08 | 2022-04-19 | Hyperbolic Engines Incorporated | Combined propellant-less propulsion and reaction wheel device |
CN108267752B (zh) * | 2016-12-15 | 2022-01-18 | 苏州宝时得电动工具有限公司 | 自移动设备的工作区域的分区方法、装置和电子设备 |
CN109392086A (zh) * | 2017-08-08 | 2019-02-26 | 深圳市润安科技发展有限公司 | 一种多区域多基站定位的方法及系统 |
CN109591008A (zh) * | 2017-11-18 | 2019-04-09 | 广州科语机器人有限公司 | 移动机器人的安全工作区域确定方法 |
CN108335302B (zh) * | 2018-01-26 | 2021-10-08 | 上海思岚科技有限公司 | 一种区域分割方法及装置 |
CN109077667B (zh) * | 2018-07-16 | 2020-12-01 | 广州俊德信息科技有限公司 | 清洁电器的调整方法、系统、可存储介质和清洁电器 |
KR102242714B1 (ko) | 2018-08-03 | 2021-04-22 | 엘지전자 주식회사 | 이동 로봇 및 그 제어방법, 이동 로봇 시스템 |
KR102242713B1 (ko) | 2018-08-03 | 2021-04-22 | 엘지전자 주식회사 | 이동 로봇 및 그 제어방법, 및 단말기 |
KR102266713B1 (ko) * | 2018-08-03 | 2021-06-21 | 엘지전자 주식회사 | 이동 로봇, 이동 로봇 시스템 및 이동 로봇 시스템의 제어 방법 |
KR102291884B1 (ko) | 2018-08-03 | 2021-08-20 | 엘지전자 주식회사 | 이동 로봇 및 그 제어방법 |
KR102238352B1 (ko) | 2018-08-05 | 2021-04-09 | 엘지전자 주식회사 | 스테이션 장치 및 이동 로봇 시스템 |
WO2020032413A1 (en) | 2018-08-05 | 2020-02-13 | Lg Electronics Inc. | Moving robot and controlling method thereof |
CN109186463B (zh) * | 2018-09-04 | 2021-12-07 | 浙江梧斯源通信科技股份有限公司 | 应用于可移动机器人的防跌落方法 |
CN109084779A (zh) * | 2018-09-29 | 2018-12-25 | 上海思依暄机器人科技股份有限公司 | 一种机器人导航方法及系统 |
CN109765885A (zh) * | 2018-11-21 | 2019-05-17 | 深圳市迈康信医用机器人有限公司 | 轮椅室内自动驾驶的方法及其系统 |
CN109782225B (zh) * | 2019-01-18 | 2021-04-16 | 杭州微萤科技有限公司 | 一种基站坐标的定位方法 |
CN109672979B (zh) * | 2019-02-14 | 2020-12-08 | 中国联合网络通信集团有限公司 | 双卡通信方法和设备 |
CN111836185B (zh) * | 2019-04-22 | 2023-10-10 | 苏州科瓴精密机械科技有限公司 | 一种基站位置坐标的确定方法、装置、设备及存储介质 |
CN110226373A (zh) * | 2019-06-03 | 2019-09-13 | 中国农业大学 | 蔬菜株行间除草机构 |
CN110132270B (zh) * | 2019-06-13 | 2021-08-31 | 深圳汉阳科技有限公司 | 自动扫雪装置定位方法 |
CN113093716B (zh) * | 2019-12-19 | 2024-04-30 | 广州极飞科技股份有限公司 | 一种运动轨迹规划方法、装置、设备及存储介质 |
CN111067432B (zh) * | 2020-01-02 | 2021-09-17 | 小狗电器互联网科技(北京)股份有限公司 | 扫地机充电桩的充电工作区域的确定方法及扫地机 |
CN111168679B (zh) * | 2020-01-09 | 2023-08-22 | 上海山科机器人有限公司 | 行走机器人、控制行走机器人的方法和行走机器人系统 |
CN111638487B (zh) * | 2020-05-07 | 2022-07-22 | 中国第一汽车股份有限公司 | 一种自动泊车测试设备及方法 |
CN112057883B (zh) * | 2020-09-08 | 2021-11-02 | 北京北特圣迪科技发展有限公司 | 一种四吊点柔索表演悬挂平台的姿态控制方法 |
CN112304212B (zh) * | 2020-10-18 | 2022-04-08 | 南京朗禾数据有限公司 | 一种农机作业面积计算系统的控制方法 |
US20220197295A1 (en) * | 2020-12-22 | 2022-06-23 | Globe (jiangsu) Co., Ltd. | Robotic mower, and control method thereof |
EP4293625A1 (en) * | 2021-02-10 | 2023-12-20 | Beijing Roborock Innovation Technology Co., Ltd. | Map display method and apparatus, medium, and electronic device |
CN112959327B (zh) * | 2021-03-31 | 2022-07-29 | 上海电气集团股份有限公司 | 机器人运动控制方法、系统、电子设备及存储介质 |
CN113155023B (zh) * | 2021-04-02 | 2023-02-07 | 甘肃旭盛显示科技有限公司 | 液晶基板玻璃翘曲度测量方法及系统 |
CN116188480B (zh) * | 2023-04-23 | 2023-07-18 | 安徽同湃特机器人科技有限公司 | 喷涂机器人天花板作业时agv行进路径点的计算方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20060106915A (ko) * | 2006-09-11 | 2006-10-12 | 주식회사 마이크로로보트 | 절대좌표 버츄얼 맵핑방법 |
US20120150350A1 (en) * | 2010-12-14 | 2012-06-14 | Honda Motor Co., Ltd. | Mobile apparatus and robot, and control system thereof |
CN202795052U (zh) * | 2012-08-29 | 2013-03-13 | 科沃斯机器人科技(苏州)有限公司 | 自移动机器人行走范围限制系统 |
CN103076802A (zh) * | 2012-10-09 | 2013-05-01 | 江苏大学 | 机器人虚拟边界建立与识别方法及系统 |
CN103823464A (zh) * | 2012-11-16 | 2014-05-28 | 苏州宝时得电动工具有限公司 | 自驱动移动装置 |
Family Cites Families (109)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6074003A (ja) * | 1983-09-30 | 1985-04-26 | Ryozo Setoguchi | 形状創成装置 |
GB2254508A (en) * | 1991-04-02 | 1992-10-07 | James Collier Mitchinson | Vehicle location determining system |
US5365516A (en) * | 1991-08-16 | 1994-11-15 | Pinpoint Communications, Inc. | Communication system and method for determining the location of a transponder unit |
JP2895672B2 (ja) * | 1992-01-28 | 1999-05-24 | ファナック株式会社 | 複数ロボット制御方法 |
JP3521973B2 (ja) * | 1994-11-01 | 2004-04-26 | 積水ハウス株式会社 | 作業台ユニットを用いた建築工法 |
US5788851A (en) * | 1995-02-13 | 1998-08-04 | Aksys, Ltd. | User interface and method for control of medical instruments, such as dialysis machines |
US5951610A (en) * | 1995-10-31 | 1999-09-14 | Honda Giken Kogyo Kabushiki Kaisha | Method of calculating positional relationship of motor vehicle with respect to running path |
US5974348A (en) * | 1996-12-13 | 1999-10-26 | Rocks; James K. | System and method for performing mobile robotic work operations |
US6112143A (en) * | 1998-08-06 | 2000-08-29 | Caterpillar Inc. | Method and apparatus for establishing a perimeter defining an area to be traversed by a mobile machine |
US6611738B2 (en) * | 1999-07-12 | 2003-08-26 | Bryan J. Ruffner | Multifunctional mobile appliance |
US7233795B1 (en) * | 2001-03-19 | 2007-06-19 | Ryden Michael V | Location based communications system |
EP1401546A4 (en) * | 2001-06-15 | 2006-11-02 | Walker Digital Llc | METHOD AND APPARATUS FOR PLANNING AND CUSTOMIZING A GAMING EXPERIENCE |
US6594576B2 (en) * | 2001-07-03 | 2003-07-15 | At Road, Inc. | Using location data to determine traffic information |
GB2386971B (en) | 2002-03-26 | 2005-11-30 | Mcmurtry Ltd | Method of operating an automated land maintenance vehicle |
KR20030080436A (ko) * | 2002-04-08 | 2003-10-17 | 삼성전자주식회사 | 이동로봇의 위치측정 장치 및 방법 |
EP1587725B1 (en) * | 2002-08-30 | 2013-12-25 | Aethon, Inc. | Robotic cart pulling vehicle |
SE526913C2 (sv) * | 2003-01-02 | 2005-11-15 | Arnex Navigation Systems Ab | Förfarande i form av intelligenta funktioner för fordon och automatiska lastmaskiner gällande kartläggning av terräng och materialvolymer, hinderdetektering och styrning av fordon och arbetsredskap |
KR100520079B1 (ko) * | 2003-08-01 | 2005-10-12 | 삼성전자주식회사 | 로봇시스템 및 그 제어방법 |
US20060020370A1 (en) * | 2004-07-22 | 2006-01-26 | Shai Abramson | System and method for confining a robot |
US7026992B1 (en) * | 2005-03-31 | 2006-04-11 | Deere & Company | Method for configuring a local positioning system |
US7456596B2 (en) * | 2005-08-19 | 2008-11-25 | Cisco Technology, Inc. | Automatic radio site survey using a robot |
US7953526B2 (en) * | 2006-01-18 | 2011-05-31 | I-Guide Robotics, Inc. | Robotic vehicle controller |
KR100791382B1 (ko) * | 2006-06-01 | 2008-01-07 | 삼성전자주식회사 | 로봇의 이동 경로에 따라 소정 영역의 특성에 관한 정보를수집하고 분류하는 방법 및 상기 영역 특성에 따라제어되는 로봇, 상기 영역 특성을 이용한 ui 구성 방법및 장치 |
US8180486B2 (en) * | 2006-10-02 | 2012-05-15 | Honda Motor Co., Ltd. | Mobile robot and controller for same |
US20090282710A1 (en) * | 2007-08-08 | 2009-11-19 | Johnson Rick D | Multi-Function Material Moving Assembly and Method |
CN101109809A (zh) | 2007-08-17 | 2008-01-23 | 张铁军 | 一种基于向控感光阵列的定位装置、系统和方法 |
US8229618B2 (en) * | 2008-09-11 | 2012-07-24 | Deere & Company | Leader-follower fully autonomous vehicle with operator on side |
US20100076599A1 (en) * | 2008-09-20 | 2010-03-25 | Steven Jacobs | Manually driven determination of a region of interest (roi) or a path of interest (poi) for a robotic device |
US8966693B2 (en) * | 2009-08-05 | 2015-03-03 | Karcher N. America, Inc. | Method and apparatus for extended use of cleaning fluid in a floor cleaning machine |
KR101641237B1 (ko) * | 2009-11-20 | 2016-07-21 | 엘지전자 주식회사 | 로봇 청소기 및 이의 제어 방법 |
US9280902B2 (en) * | 2010-04-09 | 2016-03-08 | DSG TAG Systems, Inc. | Facilities management |
US8726458B1 (en) * | 2011-05-26 | 2014-05-20 | Scott Reinhold Mahr | Solar collector washing device |
KR101334961B1 (ko) * | 2011-08-03 | 2013-11-29 | 엘지전자 주식회사 | 잔디 깎기용 이동로봇 시스템 및 이의 제어방법 |
US9471063B2 (en) * | 2011-08-11 | 2016-10-18 | Chien Ouyang | Robotic lawn mower with network sensors |
WO2013071150A1 (en) * | 2011-11-11 | 2013-05-16 | Bar Code Specialties, Inc. (Dba Bcs Solutions) | Robotic inventory systems |
JP2013228821A (ja) * | 2012-04-24 | 2013-11-07 | Mamiya-Op Nequos Co Ltd | 作業機械及びその構成装置、コンピュータプログラム |
DE102012208094A1 (de) * | 2012-05-15 | 2013-11-21 | Kuka Laboratories Gmbh | Verfahren zum Ermitteln möglicher Positionen eines Roboterarms |
GB2505287B (en) * | 2012-06-25 | 2014-09-17 | Lear Corp | Vehicle remote function system and method |
WO2014003644A2 (en) * | 2012-06-26 | 2014-01-03 | Husqvarna Ab | Detachable user interface for a robotic vehicle |
WO2014027946A1 (en) * | 2012-08-14 | 2014-02-20 | Husqvarna Ab | Boundary definition system for a robotic vehicle |
US9233472B2 (en) * | 2013-01-18 | 2016-01-12 | Irobot Corporation | Mobile robot providing environmental mapping for household environmental control |
EP3126921B1 (en) * | 2014-03-31 | 2021-02-24 | iRobot Corporation | Autonomous mobile robot |
US9375842B2 (en) * | 2014-05-15 | 2016-06-28 | Irobot Corporation | Autonomous mobile robot confinement system |
CN105446350B (zh) * | 2014-09-26 | 2018-05-29 | 科沃斯机器人股份有限公司 | 自移动机器人移动界限划定方法 |
US9516806B2 (en) * | 2014-10-10 | 2016-12-13 | Irobot Corporation | Robotic lawn mowing boundary determination |
GB201419883D0 (en) * | 2014-11-07 | 2014-12-24 | F Robotics Acquisitions Ltd | Domestic robotic system and method |
US9420741B2 (en) * | 2014-12-15 | 2016-08-23 | Irobot Corporation | Robot lawnmower mapping |
US9538702B2 (en) * | 2014-12-22 | 2017-01-10 | Irobot Corporation | Robotic mowing of separated lawn areas |
US10518407B2 (en) * | 2015-01-06 | 2019-12-31 | Discovery Robotics | Apparatus and methods for providing a reconfigurable robotic platform |
US20180361581A1 (en) * | 2015-01-06 | 2018-12-20 | Discovery Robotics | Robotic platform with following mode |
US10328573B2 (en) * | 2015-01-06 | 2019-06-25 | Discovery Robotics | Robotic platform with teach-repeat mode |
EP3048502B1 (en) * | 2015-01-20 | 2020-12-23 | LG Electronics Inc. | Robot cleaner and method for controlling robot cleaner |
US9643314B2 (en) * | 2015-03-04 | 2017-05-09 | The Johns Hopkins University | Robot control, training and collaboration in an immersive virtual reality environment |
NL2015532B1 (en) * | 2015-09-30 | 2017-04-20 | Stertil Bv | Lifting system with indoor positioning system and method there for. |
EP3392729B1 (en) * | 2015-12-17 | 2021-10-27 | Positec Power Tools (Suzhou) Co., Ltd | Auto-movement robot system |
WO2017177978A1 (zh) * | 2016-04-15 | 2017-10-19 | 苏州宝时得电动工具有限公司 | 自动工作系统、移动设备及其控制方法 |
US20210096579A1 (en) * | 2016-08-05 | 2021-04-01 | RobArt GmbH | Method For Controlling An Autonomous Mobile Robot |
KR20180070062A (ko) * | 2016-12-16 | 2018-06-26 | 삼성전자주식회사 | 이동체 및 이동체의 제어 방법 |
KR20180070932A (ko) * | 2016-12-19 | 2018-06-27 | 삼성전자주식회사 | 이동체 및 이동체의 제어 방법 |
KR20180074403A (ko) * | 2016-12-23 | 2018-07-03 | 엘지전자 주식회사 | 공항용 로봇 및 그의 동작 방법 |
US10377040B2 (en) * | 2017-02-02 | 2019-08-13 | Brain Corporation | Systems and methods for assisting a robotic apparatus |
US10634794B2 (en) * | 2017-02-28 | 2020-04-28 | Stmicroelectronics, Inc. | Vehicle dynamic obstacle compensation system |
JP6603255B2 (ja) * | 2017-03-13 | 2019-11-06 | ファナック株式会社 | ロボットシステムおよびロボット制御方法 |
KR20180120665A (ko) * | 2017-03-31 | 2018-11-06 | 가부시키가이샤 고마쓰 세이사쿠쇼 | 작업 차량 |
EP3413155B1 (de) * | 2017-06-09 | 2020-02-26 | Andreas Stihl AG & Co. KG | Verfahren zum erfassen mindestens eines abschnitts eines begrenzungsrands einer zu bearbeitenden fläche, verfahren zum betreiben eines autonomen mobilen grünflächenbearbeitungsroboters, erfassungssystem und grünflächenbearbeitungssystem |
KR102391322B1 (ko) * | 2017-06-30 | 2022-04-26 | 엘지전자 주식회사 | 이동 로봇 |
US20200174490A1 (en) * | 2017-07-27 | 2020-06-04 | Waymo Llc | Neural networks for vehicle trajectory planning |
DE102017117148A1 (de) * | 2017-07-28 | 2019-01-31 | RobArt GmbH | Magnetometer für die roboternavigation |
US11072071B2 (en) * | 2017-09-19 | 2021-07-27 | Autodesk, Inc. | Modifying robot dynamics in response to human presence |
KR102060715B1 (ko) * | 2017-11-30 | 2019-12-30 | 엘지전자 주식회사 | 이동 로봇 및 그 제어방법 |
KR102070068B1 (ko) * | 2017-11-30 | 2020-03-23 | 엘지전자 주식회사 | 이동 로봇 및 그 제어방법 |
US11771283B2 (en) * | 2017-12-06 | 2023-10-03 | BISSELL , Inc. | Method and system for manual control of autonomous floor cleaner |
KR102489806B1 (ko) * | 2018-01-03 | 2023-01-19 | 삼성전자주식회사 | 청소용 이동장치, 협업청소 시스템 및 그 제어방법 |
US10575699B2 (en) * | 2018-01-05 | 2020-03-03 | Irobot Corporation | System for spot cleaning by a mobile robot |
US10586118B2 (en) * | 2018-01-13 | 2020-03-10 | Toyota Jidosha Kabushiki Kaisha | Localizing traffic situation using multi-vehicle collaboration |
KR102528737B1 (ko) * | 2018-04-27 | 2023-05-08 | 삼성전자주식회사 | 외부 전자 장치를 제어하는 전자 장치 및 방법 |
US20190353483A1 (en) * | 2018-05-15 | 2019-11-21 | Deere & Company | Coverage-based system and method of planning a turn path for a vehicle |
CN116578068A (zh) * | 2018-06-15 | 2023-08-11 | 科沃斯机器人股份有限公司 | 机器人定位方法、机器人及存储介质 |
JPWO2020012609A1 (ja) * | 2018-07-12 | 2020-10-22 | 日立建機株式会社 | 作業機械 |
JP7023813B2 (ja) * | 2018-08-27 | 2022-02-22 | 日立建機株式会社 | 作業機械 |
US10698408B2 (en) * | 2018-08-30 | 2020-06-30 | Pony Ai Inc. | Distributed sensing for vehicle navigation |
US10768637B2 (en) * | 2018-08-30 | 2020-09-08 | Pony Ai Inc. | Prioritizing vehicle navigation |
US11597084B2 (en) * | 2018-09-13 | 2023-03-07 | The Charles Stark Draper Laboratory, Inc. | Controlling robot torque and velocity based on context |
JP7196507B2 (ja) * | 2018-09-27 | 2022-12-27 | 株式会社リコー | 立体データ生成装置、プログラムおよび立体データ生成方法 |
US11618162B2 (en) * | 2019-01-03 | 2023-04-04 | Lucomm Technologies, Inc. | Flux sensing system |
US11602849B2 (en) * | 2019-01-03 | 2023-03-14 | Lucomm Technologies, Inc. | Robotic gate |
US11472029B2 (en) * | 2019-01-03 | 2022-10-18 | Lucomm Technologies, Inc. | Robotic post system |
US11594090B2 (en) * | 2019-01-03 | 2023-02-28 | Lucomm Technologies, Inc. | Robotic post |
US11648668B2 (en) * | 2019-03-20 | 2023-05-16 | Lucomm Technologies, Inc. | Robotic post system |
US11731273B2 (en) * | 2019-03-20 | 2023-08-22 | Lucomm Technologies, Inc. | Flux system |
KR20190086631A (ko) * | 2019-07-02 | 2019-07-23 | 엘지전자 주식회사 | 사용자의 동작을 고려하여 청소하는 인공 지능 장치 및 그 방법 |
KR102298582B1 (ko) * | 2019-07-12 | 2021-09-08 | 엘지전자 주식회사 | 센서 데이터를 이용하여 청소 동선을 결정하는 인공 지능 로봇 및 그 방법 |
US20210362335A1 (en) * | 2019-07-12 | 2021-11-25 | Lg Electronics Inc. | Robot and method for manage item using same |
US11209832B2 (en) * | 2019-08-18 | 2021-12-28 | Cobalt Robotics Inc. | Elevator interactions by mobile robot |
CN110538455B (zh) * | 2019-09-05 | 2021-03-19 | 腾讯科技(深圳)有限公司 | 虚拟对象的移动控制方法、装置、终端及存储介质 |
KR20210051014A (ko) * | 2019-10-29 | 2021-05-10 | 엘지전자 주식회사 | 로봇 청소기 및 그의 동작 방법 |
KR20210085094A (ko) * | 2019-12-30 | 2021-07-08 | 엘지전자 주식회사 | 복수의 로봇들을 제어하는 장치 및 제어 방법 |
US11438886B2 (en) * | 2020-02-27 | 2022-09-06 | Psj International Ltd. | System for establishing positioning map data and method for the same |
JP7483420B2 (ja) * | 2020-03-12 | 2024-05-15 | キヤノン株式会社 | ロボットシステム、制御装置、情報処理装置、制御方法、情報処理方法、物品の製造方法、プログラム、および記録媒体 |
US11847618B2 (en) * | 2020-03-27 | 2023-12-19 | Aristocrat Technologies, Inc. | Gaming service automation machine with kiosk services |
US20210336971A1 (en) * | 2020-04-23 | 2021-10-28 | Specter Ops, Inc. | System and method for continuous collection, analysis and reporting of attack paths in a directory services environment |
US11768504B2 (en) * | 2020-06-10 | 2023-09-26 | AI Incorporated | Light weight and real time slam for robots |
US11966232B2 (en) * | 2020-10-03 | 2024-04-23 | Viabot Inc. | Systems for setting and programming zoning for use by autonomous modular robots |
KR20220046210A (ko) * | 2020-10-07 | 2022-04-14 | 엘지전자 주식회사 | 이동 로봇 및 그 제어방법 |
CN112612278A (zh) * | 2020-12-24 | 2021-04-06 | 格力博(江苏)股份有限公司 | 一种采集位置信息的方法、位置采集装置以及割草机 |
CN213518002U (zh) * | 2020-12-24 | 2021-06-22 | 格力博(江苏)股份有限公司 | 一种位置采集装置以及割草机 |
US20220197295A1 (en) * | 2020-12-22 | 2022-06-23 | Globe (jiangsu) Co., Ltd. | Robotic mower, and control method thereof |
KR20230087231A (ko) * | 2021-12-09 | 2023-06-16 | (주)네오와인 | 인공지능 기반 이동 객체의 위치 측정 시스템 및 방법 |
CN217429887U (zh) * | 2021-12-24 | 2022-09-16 | 华为技术有限公司 | 一种清洁机器人 |
-
2014
- 2014-09-26 CN CN201410504400.6A patent/CN105446350B/zh active Active
-
2015
- 2015-09-25 WO PCT/CN2015/090736 patent/WO2016045617A1/zh active Application Filing
- 2015-09-25 EP EP21174387.7A patent/EP3889725B1/en active Active
- 2015-09-25 EP EP23209957.2A patent/EP4345564A1/en active Pending
- 2015-09-25 EP EP15844459.6A patent/EP3200040B1/en active Active
- 2015-09-25 US US15/514,207 patent/US10520950B2/en active Active
-
2019
- 2019-11-21 US US16/691,419 patent/US20200089235A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20060106915A (ko) * | 2006-09-11 | 2006-10-12 | 주식회사 마이크로로보트 | 절대좌표 버츄얼 맵핑방법 |
US20120150350A1 (en) * | 2010-12-14 | 2012-06-14 | Honda Motor Co., Ltd. | Mobile apparatus and robot, and control system thereof |
CN202795052U (zh) * | 2012-08-29 | 2013-03-13 | 科沃斯机器人科技(苏州)有限公司 | 自移动机器人行走范围限制系统 |
CN103076802A (zh) * | 2012-10-09 | 2013-05-01 | 江苏大学 | 机器人虚拟边界建立与识别方法及系统 |
CN103823464A (zh) * | 2012-11-16 | 2014-05-28 | 苏州宝时得电动工具有限公司 | 自驱动移动装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113556679A (zh) * | 2020-04-24 | 2021-10-26 | 苏州科瓴精密机械科技有限公司 | 自移动机器人工作区域虚拟边界的生成方法、系统、自移动机器人及可读存储介质 |
Also Published As
Publication number | Publication date |
---|---|
EP3200040A1 (en) | 2017-08-02 |
CN105446350A (zh) | 2016-03-30 |
EP3889725A1 (en) | 2021-10-06 |
EP3889725B1 (en) | 2024-01-03 |
EP4345564A1 (en) | 2024-04-03 |
CN105446350B (zh) | 2018-05-29 |
US10520950B2 (en) | 2019-12-31 |
EP3200040B1 (en) | 2021-08-04 |
US20170248956A1 (en) | 2017-08-31 |
EP3200040A4 (en) | 2018-06-20 |
US20200089235A1 (en) | 2020-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016045617A1 (zh) | 自移动机器人移动界限划定方法 | |
KR102320370B1 (ko) | 격자 지도에 기반한 로봇의 애완동물 감시 방법 및 칩 | |
CN108931983B (zh) | 地图构建方法及其机器人 | |
CN105526934B (zh) | 一种室内外一体化高精度定位导航系统及其定位方法 | |
KR102412685B1 (ko) | 로봇에 의한 애완동물의 지능적 감시 방법 | |
TWI489126B (zh) | 一種動態無線訊號強度修正系統與方法 | |
CN110446159A (zh) | 一种室内无人机精确定位与自主导航的系统及方法 | |
CN109426248A (zh) | 自移动机器人及其行走方法、显示障碍物分布的方法 | |
CN105843228A (zh) | 一种清洁机器人的地图共享方法及系统 | |
CN112788533B (zh) | 一种融合5g通信和uwb的室内定位方法、装置和系统 | |
CN103889055A (zh) | 基于移动锚节点的无线传感器网络节点定位方法及装置 | |
CN106370160A (zh) | 一种机器人室内定位系统和方法 | |
CN108957476A (zh) | 一种基于无人机的树径测量装置及树径测算方法 | |
CN109341688A (zh) | 一种基于构造顺序的地图调用定位算法 | |
KR100944684B1 (ko) | 위치 인식 시스템에 사용되는 비컨의 선택 방법 | |
CN108344970B (zh) | 一种使用移动机器人的无线定位自动校准方法 | |
CN103095341A (zh) | 数据传输控制方法及电子设备 | |
CN107144277B (zh) | 一种室内定位方法 | |
CN110118555A (zh) | 无人机导航系统及方法 | |
CN106767762B (zh) | 非可见激光定标室内定位导航方法 | |
CN111694006A (zh) | 一种用于室内无人系统的导航传感系统 | |
CN104238582B (zh) | 一种利用手机进行辅助云台远程控制的方法 | |
CN115598660A (zh) | 一种空间立体易构式网格阵列蓝牙位置服务装置及方法 | |
CN109991969A (zh) | 一种基于深度传感器的机器人自动返航的控制方法及装置 | |
Masiero et al. | Indoor navigation and mapping: Performance analysis of UWB-based platform positioning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15844459 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15514207 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015844459 Country of ref document: EP |