WO2016045257A1 - 彩色滤光片及其制作方法、显示面板、显示装置及其驱动方法 - Google Patents

彩色滤光片及其制作方法、显示面板、显示装置及其驱动方法 Download PDF

Info

Publication number
WO2016045257A1
WO2016045257A1 PCT/CN2015/070532 CN2015070532W WO2016045257A1 WO 2016045257 A1 WO2016045257 A1 WO 2016045257A1 CN 2015070532 W CN2015070532 W CN 2015070532W WO 2016045257 A1 WO2016045257 A1 WO 2016045257A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
pixel
pixels
color
red
Prior art date
Application number
PCT/CN2015/070532
Other languages
English (en)
French (fr)
Inventor
王欢
辛武根
涂志中
尹傛俊
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/787,121 priority Critical patent/US10134320B2/en
Priority to EP15778592.4A priority patent/EP3199988B1/en
Publication of WO2016045257A1 publication Critical patent/WO2016045257A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2003Display of colours
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/23Photochromic filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • G09G3/003Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to produce spatial visual effects
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2074Display of intermediate tones using sub-pixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/14Display of multiple viewports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/31Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/324Colour aspects
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0443Pixel structures with several sub-pixels for the same colour in a pixel, not specifically used to display gradations
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components

Definitions

  • At least one embodiment of the present invention is directed to a color filter and a method of fabricating the same, a display panel, a display device, and a method of driving the same.
  • the grating type 3D (ie, stereo) display device mainly comprises: a display screen and a grating superimposed on the front or the back of the display screen, the display screen comprises a plurality of sub-pixels arranged in a matrix, and the grating comprises alternating light shielding strips and light blocking strips.
  • a left eye image signal is applied to one half of the sub-pixels of the display screen, and a right eye image signal is applied to the other half of the sub-pixels, and the sub-pixel to which the left-eye image signal is applied and the sub-pixel to which the right-eye image signal is applied are applied Arrange alternately in the row direction.
  • the left and right eyes When the person is in the proper position to observe the display screen, there is a certain distance between the left and right eyes, that is, the observation angles of the left eye and the right eye are different, and the light shielding strip of the grating has a certain occlusion effect on the sub-pixels, so that the left The eye can only receive the light passing through the sub-pixel to which the left-eye image signal is applied, and the right eye can only receive the light passing through the sub-pixel to which the right-eye image signal is applied, thereby realizing the left-eye image light and the right-eye image.
  • the separation of light in space Since the left eye image and the right eye image are pictures taken from different angles, the left eye image and the right eye image are superimposed in the human brain, and the effect of 3D display is produced.
  • At least one embodiment of the present invention provides a color filter, a method of fabricating the same, a display panel, a display device, and a driving method thereof, to reduce the difficulty in fabricating a color filter without reducing the resolution.
  • At least one embodiment of the present invention provides a color filter including a black matrix, a plurality of color resists, and a plurality of pixel regions arranged in a matrix;
  • the black matrix includes a plurality of first lines along the row direction a black matrix strip and a plurality of second black matrix strips along the column direction, the plurality of first black matrix strips and the plurality of second black matrix strips interlaced to form a plurality of grid regions arranged in a matrix;
  • a plurality of color resists are located in the plurality of grid regions, the plurality of color shades including red color resist, green color resist, and a blue color resist;
  • each of the pixel regions includes a red sub-pixel region, a green sub-pixel region, and a blue sub-pixel region, the red sub-pixel region including an even number of red sub-pixel regions, each of the red One of the red color resists is disposed in the sub-sub-pixel region, the green sub-pixel region includes an even number of green sub-sub-pixel regions, and each
  • At least one embodiment of the present invention also provides a method of fabricating a color filter for the color filter described above, the method comprising: forming a black matrix on a substrate, the black matrix including a plurality of first black matrix strips along the row direction and a plurality of second black matrix strips along the column direction, the plurality of first black matrix strips and the plurality of second black matrix strips being interlaced to form a matrix arrangement a plurality of mesh regions; and a plurality of color resists formed in the plurality of mesh regions formed by the black matrix, wherein the plurality of color resists include a red color resist, a green color resist, and a blue color resist.
  • the color filter includes a plurality of pixel regions arranged in a matrix, each of the pixel regions including a red sub-pixel region, a green sub-pixel region, and a blue sub-pixel region, wherein the red sub-pixel region includes An even number of red sub-sub-pixel regions, each of the red sub-sub-pixel regions is provided with one of the red color resists, and the green sub-pixel region includes an even number of green sub-sub-pixel regions, each of the green sub-sub-pixels Regional setting
  • the barrier has a green color, a blue sub-pixel regions comprise an even number of the blue sub-pixel sub-areas, each sub-pixel of the blue sub-region is provided with one of the blue color resist.
  • At least one embodiment of the present invention also provides a display panel comprising: the color filter described above.
  • At least one embodiment of the present invention also provides a display device comprising: the display panel described above; a slit grating superimposed with the display panel.
  • At least one embodiment of the present invention also provides a driving method of a display device.
  • the display device includes a display panel including a plurality of pixels arranged in a matrix, each of the pixels including a red sub-pixel, a green sub-pixel and a blue sub-pixel, the red sub-pixel including an even number of red Sub-subpixels, the green sub-pixels comprising an even number of green sub-pixels, the blue sub-pixels comprising an even number of blue sub-sub-pixels.
  • the driving method includes: one half of a red sub-subpixel of each of the red sub-pixels, one half of a green sub-subpixel of each of the green sub-pixels, and each of the blue sub-pixels within a frame time
  • Half of the blue sub-subpixels apply a left eye image signal while the other half of the red sub-pixels of each of the red sub-pixels, and the other half of each of the green sub-pixels
  • the sub-pixel and the other half of the blue sub-subpixel of each of the blue sub-pixels apply a right-eye image signal; and simultaneously drive the slit grating to form alternating light-shielding strips and light-transmissive strips to observe at a predetermined viewing position
  • the light passing through the sub-subpixel to which the right-eye image signal is applied is blocked by the light-shielding strip and cannot enter the left eye, and the light passing through the sub-subpixel to which the left-eye image signal is applied is described.
  • the light-transmissive strip passes through to enter the left eye; the light passing through the sub-subpixel to which the left-eye image signal is applied is blocked by the light-shielding strip and cannot enter the right eye, and passes through the sub-subpixel to which the right-eye image signal is applied The light is transmitted through the light strip and into the right eye.
  • FIG. 1 is a cross-sectional view of a color filter according to an embodiment of the present invention.
  • FIG. 2 is a plan view of a color filter according to an embodiment of the present invention.
  • 3 is a light path diagram of a display device according to an embodiment of the present invention when performing 3D display
  • FIG. 4 is a schematic diagram of driving of a display device according to an embodiment of the present invention.
  • 5 is a schematic diagram of driving of a 3D display device
  • 6 to 9 are diagrams showing steps of a method for fabricating a color filter according to an embodiment of the present invention.
  • FIG. 10 is a cross-sectional structural diagram of a display panel according to an embodiment of the present invention.
  • the inventor of the present application noticed that the color of the sub-pixel of the display screen is usually arranged in the order of red (R), green (G), and blue (B), one red sub-pixel and one green sub-pixel. And a blue sub-pixel constitutes one pixel, and each sub-pixel includes a color color resistance corresponding to the color filter disposed on the color filter.
  • R red
  • G green
  • B blue
  • each sub-pixel includes a color color resistance corresponding to the color filter disposed on the color filter.
  • At least one embodiment of the present invention provides a color filter, as shown in FIGS. 1 and 2, the color filter includes a substrate 1, a black matrix 2 on the substrate 1, and a plurality of color resists;
  • the black matrix 2 includes a plurality of first black matrix strips 21 in a row direction and a plurality of second black matrix strips 22 in a column direction, and the plurality of first black matrix strips 21 and the plurality of second black matrix strips 22 are alternately formed.
  • a plurality of grid regions arranged in a matrix; the plurality of color shades are located in a plurality of grid regions, the plurality of color shades including red (R) color resist, green (G) color resist, and blue ( B) Color resistance.
  • the arrangement of the color resists on the color filter is: a plurality of pixel regions A including a matrix arrangement, each of the pixel regions A including an R sub-pixel region A1, a G sub-pixel region A2, and a B sub-pixel.
  • the region A3, the R sub-pixel region A1 includes an even number of R sub-pixel regions, and each R sub-sub-pixel region is provided with an R color resist (see R1 or R2 in FIGS. 1 and 2), and the G sub-pixel region A2 Including an even number of G sub-sub-pixel regions, each G sub-sub-pixel region is provided with a G color resistance (see G1 or G2 in FIG. 1 and FIG. 2), and the B sub-pixel region A3 includes an even number of B sub-sub-pixel regions.
  • a B color resistance is set in each B sub-sub-pixel region (see B1 or B2 in FIGS. 1 and 2).
  • the substrate 1 may be, for example, a glass substrate, a quartz substrate, a plastic substrate, or the like.
  • the black matrix 2 can be, for example, a black light-shielding resin material.
  • the embodiments of the present invention are not limited.
  • At least one embodiment of the present invention provides a method of fabricating the above color filter, the method comprising the following steps S1 and S2.
  • Step S1 forming a black matrix 2 on the substrate 1, the black matrix 2 including a plurality of first black matrix strips 21 in the row direction and a plurality of second black matrix strips 22 in the column direction, and a plurality of first black matrix strips 21 and a plurality of second black matrix strips 22 are interleaved to form a plurality of grid regions arranged in a matrix.
  • Step S2 forming a plurality of color color resists in the plurality of mesh regions formed by the black matrix 2, the plurality of color color resists including red color resist, green color resist and blue color resist, and color on the color filter
  • the plurality of color color resists including red color resist, green color resist and blue color resist, and color on the color filter
  • At least one embodiment of the present invention also provides a display panel comprising the color filter described above.
  • the display panel may be a liquid crystal panel or an OLED panel or the like.
  • the embodiments of the present invention are not limited.
  • the display panel can include an array substrate 20 and a counter substrate 30 disposed opposite the array substrate 20, as shown in FIG.
  • the array substrate 20 and the counter substrate 30 may be sealed together by a sealant 40 to form a liquid crystal cell filled with a liquid crystal material.
  • the color filter can be disposed opposite the array substrate; or the color filter can be disposed on the array substrate.
  • FIG. 10 shows a schematic structural view of a display panel disposed opposite to an array substrate.
  • the display panel may include an array substrate 20 and a counter substrate 30 disposed opposite to each other.
  • the color filter is disposed on the counter substrate 30.
  • the substrate 1 included in the color filter may serve as the counter substrate 30.
  • the base substrate, the black matrix 2 is disposed on the substrate 1 and faces the array substrate 20.
  • the pair of substrate substrates disposed opposite to the array substrate in the display panel may be a transparent substrate.
  • the embodiments of the present invention are not limited.
  • the present invention further provides a 3D display device.
  • the 3D display device includes the display panel 3 described above, and a narrow layer superimposed with the display panel 3. Seam grating 4.
  • the slit grating 4 is disposed on the light-emitting surface of the display panel 3 in the embodiment of the present invention.
  • the display panel 3 includes a plurality of pixels arranged in a matrix, each pixel including an R sub-pixel, a G sub-pixel, and a B sub-pixel, the R sub-pixel includes an even number of R sub-pixels, and the G sub-pixel includes an even number of G Sub-subpixels, B sub-pixels include an even number of B sub-pixels.
  • the display panel 3 shown in FIG. 3 is simplified as the arrangement of pixels in the display surface, and
  • the slot grating 4 and the display surface of the display panel 3 have a certain distance D.
  • the slit grating 4 and the display panel 3 are attached together, and the distance D between the slit grating 4 and the display surface of the display panel 3 It depends on the thickness of the substrate of the display panel 3 on the side close to the slit grating 4.
  • the present invention further provides a driving method of the above display device, as shown in FIG. 3 and FIG. 4, the driving method includes: half of each R sub-pixel in one frame time
  • the R sub-subpixel, the half G sub-subpixel of each G sub-pixel, and the half B sub-subpixel of each B sub-pixel apply a left-eye image signal while simultaneously to the other half of each R sub-pixel, sub-sub-pixels,
  • the other half of the G sub-pixels of the G sub-pixels and the other half of the sub-sub-pixels of each of the B sub-pixels apply a right-eye image signal; while driving the slit grating 4 to form alternating light-shielding strips 41 and light-transmissive strips 42 Pre-observation position when observing the display device, passing through sub-pixels of the image signal to which the right eye image is applied The light is blocked by the light-shielding strip 41 and cannot enter the left eye, and the light passing through the sub-subpixel to which the
  • the light entering the left eye is only the light passing through the sub-sub-pixel to which the left-eye image signal is applied.
  • the light entering the right eye is only the light passing through the sub-subpixel to which the right eye image signal is applied, and the left eye image and the right eye image are superimposed and combined in the human brain to produce a 3D stereoscopic image effect.
  • a color filter of a 3D display device is cyclically arranged in the order of R sub-pixels, B sub-pixels, and G sub-pixels.
  • the color filter in the embodiment of the present invention is also cyclically arranged in the order of R sub-pixels, B sub-pixels, and G sub-pixels, except that each sub-pixel is subdivided into even-numbered sub-pixels of the same color.
  • the size of each sub-subpixel may be set to be the same as the size of one sub-pixel in FIG. 5, and an even number of sub-pixels included in each sub-pixel are equally divided into two parts, one part is applied with a left-eye image signal, and the other part is applied.
  • the right eye image signal achieves the 3D display function.
  • the size of the sub-subpixel in the embodiment of the present invention can be set to be the same as the size of one sub-pixel in FIG. 5, so that the resolution of the 3D display device in the embodiment of the present invention is as shown in FIG.
  • the resolution of the 3D display device is the same, and since the sub-subpixels included in each sub-pixel are the same color and adjacent in position in the embodiment of the present invention, all sub-sub-pixels included in one sub-pixel can be formed in the same step. That is, one step can complete the fabrication of the sub-pixel of one color, and because the size of the sub-subpixel included in one sub-pixel is the same as the size of one sub-pixel in FIG.
  • the size of the sub-pixel is large, so that the requirement for the fineness of the mask used for fabricating the sub-pixel is lowered, and the alignment of the mask is easier, which reduces the difficulty in manufacturing the color filter.
  • the number of red sub-sub-pixel regions included in the red sub-pixel region A1 ie, the number of R color resists set
  • the green sub-pixel included in the green sub-pixel region A2 ie, the number of R color resists set
  • the number of pixel regions (ie, the number of G color resists set) and the number of blue sub-pixel regions included in the blue sub-pixel region A3 may be Set to the same.
  • the color filter includes two sub-sub-pixel regions of the same color (ie, two color shades of the same color are set).
  • the R sub-pixel area A1 includes two R sub-sub-pixel areas (ie, two R color resists R1 and R2 are disposed)
  • the G sub-pixel area A2 includes two G sub-sub-pixel areas (ie, two G color resists G1 are disposed).
  • the B sub-pixel area A3 includes two B sub-sub-pixel areas (ie, two B color resists B1 and B2 are provided).
  • embodiments of the invention are not limited thereto.
  • a left eye image signal is applied to one sub-pixel of each sub-pixel, and another sub-subpixel applies a right eye image signal, and among the sub-sub-pixels, a left-eye image signal is applied.
  • the sub-subpixels are alternately arranged with the sub-subpixels to which the right-eye image signal is applied, that is, the sub-subpixels to which the left-eye image signal is applied are R1, G1, and B1, and the sub-subpixels to which the right-eye image signal is applied are R2, G2, and B2.
  • the odd-numbered column sub-pixels are composed of R1, G1, and B1
  • the even-numbered column sub-pixels are composed of R2, G2, and B2, and therefore, when driven, the odd-numbered sub-sub-pixels R1, G1, and B1 are applied in one frame time.
  • the left-eye image signal simultaneously applies a right-eye image signal to the even-numbered sub-sub-pixels R2, G2, and B2; and simultaneously drives the slit grating 4 to form alternating light-shielding strips 41 and light-transmitting strips 42 to observe the display device at a preset viewing position
  • the light passing through the even-numbered sub-sub-pixels R2, G2, and B2 is blocked by the light-shielding strip 41 and cannot enter the left eye, and the light rays R1, G1, and B1 passing through the odd-numbered sub-sub-pixels are transmitted by the light-transmitting strip 42 to enter the left eye.
  • the odd-numbered sub-pixels R1, G1, and B1 can be seen in the left eye; the light passing through the odd-numbered sub-sub-pixels R1, G1, and B1 is blocked by the light-shielding strip 41 and cannot enter the right eye, and the even-numbered sub-sub-pixel R2
  • the light of G2 and B2 is transmitted by the light-transmitting strip 42 to enter the right eye, that is, the right eye can only see the even-numbered sub-sub-pixels R2, G2, and B2, thereby realizing the spatial separation of the light of the left and right eye images.
  • the light of G2 and B2 is transmitted by the light-transmissive strip 42 into the left eye, that is, the left eye can only see the even-numbered sub-sub-pixels R2, G2, and B2; the light passing through the even-numbered sub-sub-pixels R2, G2, and B2 is blocked.
  • the strip 41 is occluded and cannot enter the right eye, passing through the odd-numbered sub-subpixel R1.
  • the light rays of G1 and B1 are transmitted by the light-transmissive strips 42 into the right eye, that is, only the odd-numbered sub-pixels R1, G1, and B1 can be seen in the right eye, thereby spatially separating the light rays of the left and right eye images.
  • each sub-pixel includes two sub-pixels of the same color, that is, two color-color resistors of the same color are disposed in each sub-pixel region on the color filter.
  • the process of fabricating the color filter may include the following steps. S01 to S04, these steps are described one by one below.
  • Step S01 As shown in FIG. 6, a pattern including the black matrix 2 is formed on the substrate 1.
  • Step S02 As shown in FIG. 7, R color resists R1 and R2 are formed in the R sub-pixel area A1 by a patterning process.
  • the R color resist material is exposed and developed by using a mask having a sub-pixel width twice the sub-pixel width of the color filter of FIG. 5 to remove part of the R color resist material.
  • the R color resist material to be formed in the R sub-pixel area A1 is reserved, and the R color resists R1 and R2 are completed.
  • the formed R color resists R1 and R2 are located in two adjacent grid regions formed by the black matrix 2.
  • Step S03 As shown in FIG. 8, G color resists G1 and G2 are formed in the G sub-pixel region A2 by a patterning process.
  • the G color resist material is spin-coated on the substrate, the G color resist material is exposed and developed by using a mask having a sub-pixel width twice the sub-pixel width of the color filter of FIG. 5, and a part of the G color resist material is removed.
  • the G color resist material to be formed in the G sub-pixel region A2 is reserved, and the fabrication of the G color resists G1 and G2 is completed.
  • the formed G color resists G1 and G2 are located in two adjacent grid regions formed by the black matrix 2.
  • Step S04 As shown in FIG. 9, B color resists B1 and B2 are formed in the B sub-pixel area A3 by a patterning process.
  • the B color resist material is spin-coated on the substrate, the B color resist material is exposed and developed by using a mask having a sub-pixel width twice the sub-pixel width of the color filter of FIG. 5, and the partial B color resist material is removed.
  • the B color resist material to be formed in the B sub-pixel area A3 is reserved, and the B color resists B1 and B2 are completed.
  • the formed B color resists B1 and B2 are located in two adjacent grid regions formed by the black matrix 2.
  • the order of forming the R sub-pixel, the G sub-pixel, and the B sub-pixel is not limited in the embodiment of the present invention.
  • the method used in the above manufacturing process is a pigment dispersion method, based on the embodiment of the present invention.
  • the structure of the provided color filter can also be produced by a method such as a printing method, a slurry spraying method, or an organic material plating method by those skilled in the art.
  • the arrangement shown in FIG. 4 is only the arrangement of a row of sub-subpixels in the display device.
  • the display device includes a plurality of sub-pixels arranged in accordance with FIG.
  • the width Ww of the slit of the grating 4 the width Ws of the grating unit (that is, the sum of the widths of one light-shielding strip and one light-transmitting strip), and the distance D between the display surface of the grating 4 and the display panel 3 are assumed.
  • the width Wp of a single sub-pixel in the display panel 3 that is, the sum of the widths of the even sub-sub-pixels belonging to the same sub-pixel, FIG.
  • the distance Q between the display panel 3 and the display panel 3 and the human eye is calculated from the distance L between the human eye (i.e., the aforementioned "observation position").
  • the distance Q between the left eye and the right eye of the person and the distance L between the display surface of the display panel 3 and the human eye are constant, and Ww, Ws, and D are determined by the width Wp of the pixel, Wp
  • the value is the sum of the widths of the sub-subpixels included in a single sub-pixel.
  • the width of a single sub-subpixel is the same as the width of a single sub-pixel in FIG. 5, and the values of Wp are substituted into the formula: (where K is a constant coefficient) and Among them, the values of Ww, Ws, and D can be calculated separately.
  • the display panel 3 (including the color filter) and the grating 4 are set according to the calculated size, and when the person observes the picture at each viewpoint (such as the viewpoint 1 and the viewpoint 2) on the front side of the display device, the light shielding strip 41 of the grating 4 is
  • the sub-subpixels seen by the left eye through the light transmissive strip 42 of the grating 4 are only R1, G1, and B1, and the sub-subpixels seen by the right eye through the light transmissive strip 42 of the grating 4 are only sub-subpixels. R2, G2 and B2.
  • the images obtained by different angles are captured, so that the left eye image received by the two eyes and the right eye image are superimposed to obtain a stereoscopic image.
  • the display device may be a liquid crystal panel, an electronic paper or an OLED (Organic Light-Emitting Diode) panel, and is suitable for mobile phones, tablet computers, televisions, displays, and notebooks. Any product or component that has a display function, such as a computer, digital photo frame, and navigator.
  • OLED Organic Light-Emitting Diode
  • an even number of color color resists having the same color are disposed in each sub-pixel region of the color filter, and each The color resist corresponds to one sub-subpixel region, and the left eye image signal is applied to one half of the sub-pixels of each sub-pixel while the right-eye image signal is applied to the other half of the sub-pixels to realize 3D display.
  • the size of the sub-subpixel in the embodiment of the present invention can be the same as the size of the sub-pixel in the color filter shown in FIG. 5 , that is, the resolution of the color filter in the embodiment of the present invention is different from that in FIG. 5 .
  • the resolution of the color filter is the same, but the size of the sub-pixel can be made at least twice the sub-pixel size of the color filter in FIG. 5, and the color of each sub-pixel in the sub-pixel of one color is the same
  • the mask can be formed in the same step, so that the mask and the alignment precision required for the color filter of the embodiment of the present invention are low, and the color filter is less difficult to manufacture.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Liquid Crystal (AREA)

Abstract

一种彩色滤光片及制作方法、显示面板、显示装置及驱动方法,其中彩色滤光片包括多个彩色色阻,多个彩色色阻包括红色色阻(R)、绿色色阻(G)和蓝色色阻(B);彩色滤光片包括矩阵式排布的多个像素区域,每个像素区域包括一红色子像素区域、一绿色子像素区域和一蓝色子像素区域,红色子像素区域包括偶数个红色亚子像素区域,每个红色亚子像素区域内设置有一个红色色阻,绿色子像素区域包括偶数个绿色亚子像素区域,每个绿色亚子像素区域内设置有一个绿色色阻,蓝色子像素区域包括偶数个蓝色亚子像素区域,每个蓝色亚子像素区域内设置有一个蓝色色阻。这种彩色滤光片所需要的掩膜版的制作精度和对位精度较现有技术降低,从而降低了制作难度。

Description

彩色滤光片及其制作方法、显示面板、显示装置及其驱动方法 技术领域
本发明的至少一个实施例涉及一种彩色滤光片及其制作方法、显示面板、显示装置及其驱动方法。
背景技术
光栅式3D(即立体)显示装置主要包括:显示屏及叠加在显示屏正面或背面的光栅,显示屏包括矩阵式排布的多个子像素,光栅包括交替排列的遮光条和挡光条。进行3D显示时,向显示屏的一半子像素施加左眼图像信号,向另一半子像素施加右眼图像信号,并使被施加左眼图像信号的子像素与被施加右眼图像信号的子像素沿行方向交替排列。
当人位于适当的位置观察显示画面时,由于左右眼之间具有一定的距离,即左眼与右眼的观察角度存在差异,加上光栅的遮光条对子像素产生一定的遮挡作用,使得左眼仅能接收到透过被施加左眼图像信号的子像素的光线,右眼仅能接收到透过被施加右眼图像信号的子像素的光线,从而实现了左眼图像光线与右眼图像光线在空间上的分离。由于左眼图像与右眼图像为从不同角度拍摄的画面,因此左眼图像与右眼图像在人脑中叠加,就产生了3D显示的效果。
发明内容
本发明的至少一个实施例提供一种彩色滤光片及其制作方法、显示面板、显示装置及其驱动方法,以在不降低分辨率的前提下,降低彩色滤光片的制作难度。
本发明的至少一个实施例提供了一种彩色滤光片,其包括黑矩阵、多个彩色色阻以及矩阵式排布的多个像素区域;所述黑矩阵包括沿行方向的多条第一黑矩阵条和沿列方向的多条第二黑矩阵条,所述多条第一黑矩阵条和所述多条第二黑矩阵条交错构成矩阵式排布的多个网格区域;所述多个彩色色阻位于所述多个网格区域内,所述多个彩色色阻包括红色色阻、绿色色阻和 蓝色色阻;每个所述像素区域包括一红色子像素区域、一绿色子像素区域和一蓝色子像素区域,所述红色子像素区域包括偶数个红色亚子像素区域,每个所述红色亚子像素区域内设置有一个所述红色色阻,所述绿色子像素区域包括偶数个绿色亚子像素区域,每个所述绿色亚子像素区域内设置有一个所述绿色色阻,所述蓝色子像素区域包括偶数个蓝色亚子像素区域,每个所述蓝色亚子像素区域内设置有一个所述蓝色色阻。
本发明的至少一个实施例还提供了一种彩色滤光片的制作方法,用于以上所述的彩色滤光片,所述制作方法包括:在基板上形成黑矩阵,使所述黑矩阵包括沿行方向的多条第一黑矩阵条和沿列方向的多条第二黑矩阵条,所述多条第一黑矩阵条和所述多条第二黑矩阵条交错构成矩阵式排布的多个网格区域;以及,在所述黑矩阵所构成的多个网格区域内形成多个彩色色阻,使所述多个彩色色阻包括红色色阻、绿色色阻和蓝色色阻,所述彩色滤光片包括矩阵式排布的多个像素区域,每个所述像素区域包括一红色子像素区域、一绿色子像素区域和一蓝色子像素区域,所述红色子像素区域包括偶数个红色亚子像素区域,每个所述红色亚子像素区域内设置有一个所述红色色阻,所述绿色子像素区域包括偶数个绿色亚子像素区域,每个所述绿色亚子像素区域内设置有一个所述绿色色阻,所述蓝色子像素区域包括偶数个蓝色亚子像素区域,每个所述蓝色亚子像素区域内设置有一个所述蓝色色阻。
本发明的至少一个实施例还提供了一种显示面板,其包括:以上所述的彩色滤光片。
本发明的至少一个实施例还提供了一种显示装置,其包括:以上所述的显示面板;与所述显示面板叠加在一起的狭缝光栅。
本发明的至少一个实施例还提供了一种显示装置的驱动方法。所述显示装置所包括的显示面板包括矩阵式排布的多个像素,每个所述像素包括一红色子像素、一绿色子像素和一蓝色子像素,所述红色子像素包括偶数个红色亚子像素,所述绿色子像素包括偶数个绿色亚子像素,所述蓝色子像素包括偶数个蓝色亚子像素。所述驱动方法包括:在一帧的时间内,向每个所述红色子像素的一半红色亚子像素、每个所述绿色子像素的一半绿色亚子像素和每个所述蓝色子像素的一半蓝色亚子像素施加左眼图像信号,同时向每个所述红色子像素的另一半红色亚子像素、每个所述绿色子像素的另一半绿色亚 子像素和每个所述蓝色子像素的另一半蓝色亚子像素施加右眼图像信号;同时驱动所述狭缝光栅形成交替的遮光条和透光条,使在预设观察位置观察所述显示装置时,经过被施加所述右眼图像信号的亚子像素的光线被所述遮光条遮挡而无法进入左眼,经过被施加所述左眼图像信号的亚子像素的光线被所述透光条透过而进入左眼;经过被施加所述左眼图像信号的亚子像素的光线被所述遮光条遮挡而无法进入右眼,经过被施加所述右眼图像信号的亚子像素的光线被所述透光条透过而进入右眼。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为本发明实施例所提供的彩色滤光片的截面图;
图2为本发明实施例所提供的彩色滤光片的平面图;
图3为本发明实施例所提供的显示装置在进行3D显示时的光路图;
图4为本发明实施例所提供的显示装置的驱动示意图;
图5为一种3D显示装置的驱动示意图;
图6~9为本发明实施例所提供的彩色滤光片的制作方法的各步骤图;
图10为本发明实施例提供的显示面板的剖面结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其它实施例,都属于本发明保护的范围。
在研究中,本申请的发明人注意到,显示屏的子像素的颜色通常按照红(R)、绿(G)、蓝(B)的次序循环排布,一个红色子像素、一个绿色子像素和一个蓝色子像素组成一个像素,每个子像素均包括对应设置在彩色滤光片上一个彩色色阻。出于对高分辨率的追求,子像素的尺寸越来越小,对 制作彩色光阻的掩膜版的制作精度和对位精度要求越来越高,造成制作彩色滤光片的难度加大。
本发明的至少一个实施例提供了一种彩色滤光片,如图1和图2所示,该彩色滤光片包括基板1,位于基板1上的黑矩阵2,以及多个彩色色阻;该黑矩阵2包括沿行方向的多条第一黑矩阵条21和沿列方向的多条第二黑矩阵条22,多条第一黑矩阵条21和多条第二黑矩阵条22交错形成矩阵式排布的多个网格区域;所述多个彩色色阻位于多个网格区域内,该多个彩色色阻包括红色(R)色阻、绿色(G)色阻和蓝色(B)色阻。
上述彩色滤光片上彩色色阻的排布为:包括矩阵式排布的多个像素区域A,每个像素区域A包括一R子像素区域A1、一G子像素区域A2和一B子像素区域A3,R子像素区域A1包括偶数个R亚子像素区域,每个R亚子像素区域内设置有一个R色阻(参见图1和图2中的R1或R2),G子像素区域A2包括偶数个G亚子像素区域,每个G亚子像素区域内设置有一个G色阻(参见图1和图2中的G1或G2),B子像素区域A3包括偶数个B亚子像素区域,每个B亚子像素区域内设置有一个B色阻(参见图1和图2中的B1或B2)。
在本发明实施例中,基板1例如可以为玻璃基板、石英基板或塑料基板等。黑矩阵2例如可以采用黑色遮光树脂材料。本发明实施例不做限定。
相应的,本发明的至少一个实施例提供了上述彩色滤光片的制作方法,该方法包括以下步骤S1和步骤S2。
步骤S1:在基板1上形成黑矩阵2,该黑矩阵2包括沿行方向的多条第一黑矩阵条21和沿列方向的多条第二黑矩阵条22,多条第一黑矩阵条21和多条第二黑矩阵条22交错形成矩阵式排布的多个网格区域。
步骤S2:在黑矩阵2所形成的多个网格区域内形成多个彩色色阻,该多个彩色色阻包括红色色阻、绿色色阻和蓝色色阻,该彩色滤光片上的彩色色阻的排布可参考以上对彩色滤光片上彩色色阻的排布的描述,在此不再重复描述。
相对应的,本发明的至少一个实施例还提供了一种显示面板,其包括以上所述的彩色滤光片。该显示面板可以为液晶面板或OLED面板等。本发明实施例不做限定。
在至少一个实施例中,该显示面板可以包括阵列基板20和与阵列基板20相对设置的对盒基板30,如图10所示。例如,阵列基板20与对盒基板30可以通过封框胶40密封在一起以形成液晶盒,在液晶盒中填充有液晶材料。
在至少一个实施例中,彩色滤光片可以与阵列基板相对设置;或者彩色滤光片可以设置在阵列基板上。例如,图10示出了一种彩色滤光片与阵列基板相对设置的显示面板的结构示意图。如图10所示,显示面板可以包括相对设置的阵列基板20和对盒基板30,彩色滤光片设置于对盒基板30上,彩色滤光片包括的上述基板1可以作为对盒基板30的衬底基板,黑矩阵2设置于基板1上且面向阵列基板20。例如,当彩色滤光片设置在阵列基板上时,显示面板中与阵列基板相对设置的对盒基板可以为透明基板。本发明实施例不做限定。
相对应的,本发明的至少一个实施例还提供了一种3D显示装置,如图3所示,该3D显示装置包括以上所述的显示面板3,及与该显示面板3叠加在一起的狭缝光栅4。本发明实施例中所述狭缝光栅4设置在显示面板3的出光面上。显示面板3包括矩阵式排布的多个像素,每个像素包括一R子像素、一G子像素和一B子像素,R子像素包括偶数个R亚子像素,G子像素包括偶数个G亚子像素,B子像素包括偶数个B亚子像素。
需要说明的是,为了突出3D显示时狭缝光栅4对显示面板3显示面中像素的遮挡和透过作用,图3所示出的显示面板3被简化为显示面中像素的排布,且狭缝光栅4与显示面板3显示面之间具有一定的距离D,实际上狭缝光栅4与显示面板3是贴覆在一起的,狭缝光栅4与显示面板3显示面之间的距离D取决于显示面板3靠近狭缝光栅4一侧的基板的厚度。
相对应的,本发明的至少一个实施例还提供了上述显示装置的驱动方法,如图3和图4所示,该驱动方法包括:在一帧的时间内,向每个R子像素的一半R亚子像素、每个G子像素的一半G亚子像素和每个B子像素的一半B亚子像素施加左眼图像信号,同时向每个R子像素的另一半R亚子像素、每个G子像素的另一半G亚子像素和每个B子像素的另一半B亚子像素施加右眼图像信号;同时驱动狭缝光栅4形成交替的遮光条41和透光条42,使在预设观察位置观察显示装置时,经过被施加右眼图像信号的亚子像素的 光线被遮光条41遮挡而无法进入左眼,经过被施加左眼图像信号的亚子像素的光线被透光条42透过而进入左眼,经过被施加左眼图像信号的亚子像素的光线被遮光条41遮挡而无法进入右眼,经过被施加右眼图像信号的亚子像素的光线被透光条42透过而进入右眼。
利用上述像素排布结构与驱动方法,当人在特定位置观察显示装置时,由于左右眼之间存在视差,因此进入左眼的光线仅为经过被施加左眼图像信号的亚子像素的光线,进入右眼的光线仅为经过被施加右眼图像信号的亚子像素的光线,左眼图像与右眼图像在人脑中交叠合成,产生3D立体的图像效果。
如图5所示,一种3D显示装置的彩色滤光片按照R子像素、B子像素和G子像素的顺序循环排列,进行3D显示时,相邻的两个子像素一个被施加左眼图像信号、一个被施加右眼图像信号,进而可实现3D显示。本发明实施例中的彩色滤光片也是按照R子像素、B子像素和G子像素的顺序循环排列的,不同的是,每个子像素又被细分为颜色相同的偶数个亚子像素,各亚子像素的尺寸可设置为与图5中一个子像素的尺寸相同,每个子像素所包括的偶数个亚子像素被平均分为两部分,一部分被施加左眼图像信号,另一部分被施加右眼图像信号,进而实现了3D显示功能。
在实现3D显示的基础上,本发明实施例中亚子像素的尺寸能够设置为与图5中一个子像素的尺寸相同,使得本发明实施例中的3D显示装置的分辨率与图5所示的3D显示装置的分辨率相同,同时由于本发明实施例中每个子像素所包括的亚子像素颜色相同且位置相邻,因此一个子像素所包括的全部亚子像素能够在同一步骤中形成,即一个步骤能够完成一种颜色的子像素的制作,又因为本发明实施例中一个子像素所包括的亚子像素的尺寸与图5中一个子像素的尺寸相同,因此本发明实施例中单个子像素的尺寸较大,使得对制作子像素所用的掩膜版的精细程度的要求降低,且掩膜版的对位更容易,降低了彩色滤光片的制作难度。
本发明实施例中的彩色滤光片中,红色子像素区域A1所包括的红色亚子像素区域的数目(即所设置的R色阻的数目)、绿色子像素区域A2所包括的绿色亚子像素区域的数目(即所设置的G色阻的数目)和蓝色子像素区域A3所包括的蓝色亚子像素区域的数目(即所设置的B色阻的数目)可以 设置为相同。
在不明显影响显示品质的前提下,在本发明的至少一个实施例中,彩色滤光片每个子像素区域包括两个颜色相同的亚子像素区域(即设置两个颜色相同的彩色色阻)。例如,R子像素区域A1包括两个R亚子像素区域(即设置两个R色阻R1和R2),G子像素区域A2包括两个G亚子像素区域(即设置两个G色阻G1和G2),B子像素区域A3包括两个B亚子像素区域(即设置两个B色阻B1和B2)。当然,本发明实施例不限于此。
此时,驱动显示装置时,需向各子像素中的一个亚子像素施加左眼图像信号,另一个亚子像素施加右眼图像信号,且一行亚子像素中,被施加左眼图像信号的亚子像素与被施加右眼图像信号的亚子像素交替排列,即被施加左眼图像信号的亚子像素为R1、G1和B1,被施加右眼图像信号的亚子像素为R2、G2和B2。
换个角度讲,由于奇数列子像素由R1、G1和B1组成,偶数列子像素由R2、G2和B2组成,因此驱动时,在一帧的时间内,向奇数列亚子像素R1、G1和B1施加左眼图像信号,同时向偶数列亚子像素R2、G2和B2施加右眼图像信号;同时驱动狭缝光栅4形成交替的遮光条41和透光条42,使在预设观察位置观察显示装置时,经过偶数列亚子像素R2、G2和B2的光线被遮光条41遮挡而无法进入左眼,经过奇数列亚子像素的光线R1、G1和B1被透光条42透过而进入左眼,即左眼仅能看到奇数列亚子像素R1、G1和B1;经过奇数列亚子像素R1、G1和B1的光线被遮光条41遮挡而无法进入右眼,经过偶数列亚子像素R2、G2和B2的光线被透光条42透过而进入右眼,即右眼仅能看到偶数列亚子像素R2、G2和B2,从而实现左右眼图像的光线在空间上的分离。
当然,也可以向奇数列亚子像素R1、G1和B1施加右眼图像信号,同时向偶数列亚子像素R2、G2和B2施加左眼图像信号;同时驱动狭缝光栅4形成交替的遮光条41和透光条42,使在预设观察位置观察显示装置时,经过奇数列亚子像素R1、G1和B1的光线被遮光条41遮挡而无法进入左眼,经过偶数列亚子像素R2、G2和B2的光线被透光条42透过而进入左眼,即左眼仅能看到偶数列亚子像素R2、G2和B2;经过偶数列亚子像素R2、G2和B2的光线被遮光条41遮挡而无法进入右眼,经过奇数列亚子像素R1、 G1和B1的光线被透光条42透过而进入右眼,即右眼仅能看到奇数列亚子像素R1、G1和B1,从而实现左右眼图像的光线在空间上的分离。
以每个子像素包括两个颜色相同的亚子像素,即彩色滤光片上每个子像素区域内设置两个颜色相同的彩色色阻为例,制作该彩色滤光片的过程例如可包括以下步骤S01至S04,下面逐一介绍这些步骤。
步骤S01:如图6所示,在基板1上形成包括黑矩阵2的图形。
步骤S02:如图7所示,通过构图工艺在R子像素区域A1内形成R色阻R1和R2。
例如,在基板旋涂R色阻材料,之后采用子像素宽度两倍于图5中彩色滤光片的子像素宽度的掩膜版对R色阻材料进行曝光和显影,去除部分R色阻材料,保留待形成R子像素区域A1内的R色阻材料,完成R色阻R1和R2的制作。所形成的R色阻R1和R2位于黑矩阵2所构成的相邻的两个网格区域内。
步骤S03:如图8所示,通过构图工艺在G子像素区域A2内形成G色阻G1和G2。
例如,在基板旋涂G色阻材料,之后采用子像素宽度两倍于图5中彩色滤光片的子像素宽度的掩膜版对G色阻材料进行曝光和显影,去除部分G色阻材料,保留待形成G子像素区域A2内的G色阻材料,完成G色阻G1和G2的制作。所形成的G色阻G1和G2位于黑矩阵2所构成的相邻的两个网格区域内。
步骤S04:如图9所示,通过构图工艺在B子像素区域A3内形成B色阻B1和B2。
例如,在基板旋涂B色阻材料,之后采用子像素宽度两倍于图5中彩色滤光片的子像素宽度的掩膜版对B色阻材料进行曝光和显影,去除部分B色阻材料,保留待形成B子像素区域A3内的B色阻材料,完成B色阻B1和B2的制作。所形成的B色阻B1和B2位于黑矩阵2所构成的相邻的两个网格区域内。
需要说明的是,本发明实施例对R子像素、G子像素和B子像素的形成顺序并不限定。
另外,上述制作过程所采用的方法为颜料分散法,基于本发明实施例所 提供的彩色滤光片的结构,本领域的技术人员还能够采用印刷法、浆料喷射法、有机材料电镀法等方法进行制作。
需要注意的是,图4中所示出的仅为显示装置中一行亚子像素的排布情况,实际上显示装置是包括多行按照图4所示进行排布的亚子像素的。
本发明实施例中,假设光栅4的狭缝的宽度Ww、光栅单元的宽度Ws(即一个遮光条与一个透光条的宽度之和)和光栅4与显示面板3显示面之间的距离D可根据显示面板3中单个子像素的宽度Wp(即属于同一子像素的偶数个亚子像素的宽度之和,图3以两个亚子像素为例进行说明)、人左眼与右眼之间的距离Q和显示面板3显示面与人眼之间的距离L(即前述的“观察位置”)计算得到。
通常情况下,可以认为人左眼与右眼之间的距离Q和显示面板3显示面与人眼之间的距离L是不变的,则Ww、Ws和D由像素的宽度Wp决定,Wp的值为单个子像素所包括的亚子像素的宽度之和,单个亚子像素的宽度与图5中单个子像素的宽度相同,将Wp的值分别代入公式:
Figure PCTCN2015070532-appb-000001
Figure PCTCN2015070532-appb-000002
(其中K为常系数)和
Figure PCTCN2015070532-appb-000003
中,能够分别计算得到Ww、Ws和D的值。
将显示面板3(包括彩色滤光片)和光栅4按照计算得到的尺寸设置,人在显示装置正面的各个视点(如:视点1和视点2)观察画面时,由于光栅4的遮光条41的遮挡作用,左眼透过光栅4的透光条42看到的亚子像素仅为R1、G1和B1,右眼透过光栅4的透光条42看到的亚子像素仅为亚子像素R2、G2和B2。驱动亚子像素R1、G1和B1显示左眼图像(或右眼图像),驱动亚子像素R2、G2和B2显示右眼图像(或左眼图像),由于左眼图像与右眼图像为从不同角度拍摄得到的图像,因此人双眼所接收的左眼图像与右眼图像叠加后能够得到立体的图像。
需要说明的是,本发明实施例所提供的显示装置可以为液晶面板、电子纸或OLED(Organic Light-Emitting Diode,有机发光二极管)面板等,适用于手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
本发明实施例所提供的彩色滤光片及其制作方法、显示面板、显示装置及其驱动方法中,彩色滤光片的每个子像素区域内设置有偶数个颜色相同的彩色色阻,每个彩色色阻对应一个亚子像素区域,通过向每个子像素的一半亚子像素施加左眼图像信号,同时向另一半亚子像素施加右眼图像信号,实现3D显示。可见,本发明实施例中亚子像素的尺寸能够与图5所示的彩色滤光片中子像素的尺寸相同,也就是说,本发明实施例中彩色滤光片的分辨率与图5中彩色滤光片的分辨率相同,但是子像素的尺寸能够制作为图5中彩色滤光片的子像素尺寸的至少两倍,并且一种颜色的子像素中的各亚子像素的颜色均相同,能够在同一步骤下形成,因此制作本发明实施例中的彩色滤光片所需要的掩膜版的制作精度和对位精度较低,从而彩色滤光片制作难度较低。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。
本申请要求于2014年9月28日递交的中国专利申请第201410509950.7号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (11)

  1. 一种彩色滤光片,包括:
    黑矩阵,其中,所述黑矩阵包括沿行方向的多条第一黑矩阵条和沿列方向的多条第二黑矩阵条,所述多条第一黑矩阵条和所述多条第二黑矩阵条交错形成矩阵式排布的多个网格区域;
    位于所述多个网格区域内的多个彩色色阻,所述多个彩色色阻包括红色色阻、绿色色阻和蓝色色阻;以及
    矩阵式排布的多个像素区域,其中,每个所述像素区域包括一红色子像素区域、一绿色子像素区域和一蓝色子像素区域,所述红色子像素区域包括偶数个红色亚子像素区域,每个所述红色亚子像素区域内设置有一个所述红色色阻,所述绿色子像素区域包括偶数个绿色亚子像素区域,每个所述绿色亚子像素区域内设置有一个所述绿色色阻,所述蓝色子像素区域包括偶数个蓝色亚子像素区域,每个所述蓝色亚子像素区域内设置有一个所述蓝色色阻。
  2. 根据权利要求1所述的彩色滤光片,其中,所述红色子像素区域所包括的红色亚子像素区域的数目、所述绿色子像素区域所包括的绿色亚子像素区域的数目和所述蓝色子像素区域所包括的蓝色亚子像素区域的数目相同。
  3. 根据权利要求1所述的彩色滤光片,其中,所述红色子像素区域所包括的红色亚子像素区域的数目、所述绿色子像素区域所包括的绿色亚子像素区域的数目和所述蓝色子像素区域所包括的蓝色亚子像素区域的数目均为两个。
  4. 一种彩色滤光片的制作方法,用于制作权利要求1~3任一项所述的彩色滤光片,所述制作方法包括:
    在基板上形成黑矩阵,其中,所述黑矩阵包括沿行方向的多条第一黑矩阵条和沿列方向的多条第二黑矩阵条,所述多条第一黑矩阵条和所述多条第二黑矩阵条交错形成矩阵式排布的多个网格区域;以及
    在所述黑矩阵所形成的多个网格区域内形成多个彩色色阻,其中,所述多个彩色色阻包括红色色阻、绿色色阻和蓝色色阻;所述彩色滤光片包括矩阵式排布的多个像素区域,每个所述像素区域包括一红色子像素区域、一绿色子像素区域和一蓝色子像素区域,所述红色子像素区域包括偶数个红色亚 子像素区域,每个所述红色亚子像素区域内设置有一个所述红色色阻,所述绿色子像素区域包括偶数个绿色亚子像素区域,每个所述绿色亚子像素区域内设置有一个所述绿色色阻,所述蓝色子像素区域包括偶数个蓝色亚子像素区域,每个所述蓝色亚子像素区域内设置有一个所述蓝色色阻。
  5. 根据权利要求4所述的彩色滤光片的制作方法,其中,所述形成多个彩色色阻包括:
    通过构图工艺在所述红色亚子像素区域内形成所述红色色阻;
    通过构图工艺在所述绿色亚子像素区域内形成所述绿色色阻;
    通过构图工艺在所述蓝色亚子像素区域内形成所述蓝色色阻。
  6. 一种显示面板,包括:
    权利要求1~3任一项所述的彩色滤光片。
  7. 如权利要求6所述的显示面板,其中,所述显示面板包括阵列基板和与所述阵列基板相对设置的对盒基板。
  8. 如权利要求7所述的显示面板,其中,所述彩色滤光片与所述阵列基板相对设置;或者所述彩色滤光片位于所述阵列基板上。
  9. 一种显示装置,包括:
    权利要求6-8任一项所述的显示面板;以及
    与所述显示面板叠加在一起的狭缝光栅。
  10. 一种用于权利要求9所述的显示装置的驱动方法,其中,
    所述显示装置所包括的显示面板包括矩阵式排布的多个像素,每个所述像素包括一红色子像素、一绿色子像素和一蓝色子像素,所述红色子像素包括偶数个红色亚子像素,所述绿色子像素包括偶数个绿色亚子像素,所述蓝色子像素包括偶数个蓝色亚子像素,所述驱动方法包括:
    在一帧的时间内,向每个所述红色子像素的一半红色亚子像素、每个所述绿色子像素的一半绿色亚子像素和每个所述蓝色子像素的一半蓝色亚子像素施加左眼图像信号,同时向每个所述红色子像素的另一半红色亚子像素、每个所述绿色子像素的另一半绿色亚子像素和每个所述蓝色子像素的另一半蓝色亚子像素施加右眼图像信号;以及
    同时所述狭缝光栅形成交替的遮光条和透光条,使在预设观察位置观察所述显示装置时,经过被施加所述右眼图像信号的亚子像素的光线被所述遮 光条遮挡而无法进入左眼,经过被施加所述左眼图像信号的亚子像素的光线被所述透光条透过而进入左眼,经过被施加所述左眼图像信号的亚子像素的光线被所述遮光条遮挡而无法进入右眼,经过被施加所述右眼图像信号的亚子像素的光线被所述透光条透过而进入右眼。
  11. 根据权利要求10所述的显示装置的驱动方法,其中,
    所述红色子像素包括两个红色亚子像素,所述绿色子像素包括两个绿色亚子像素,所述蓝色子像素包括两个蓝色亚子像素,所述驱动方法包括:
    在一帧的时间内,向奇数列亚子像素施加左眼图像信号,同时向偶数列亚子像素施加右眼图像信号;同时所述狭缝光栅形成交替的遮光条和透光条,使在预设观察位置观察所述显示装置时,经过所述偶数列亚子像素的光线被所述遮光条遮挡而无法进入左眼,经过所述奇数列亚子像素的光线被所述透光条透过而进入左眼,经过所述奇数列亚子像素的光线被所述遮光条遮挡而无法进入右眼,经过所述偶数列亚子像素的光线被所述透光条透过而进入右眼;或者,
    向奇数列亚子像素施加右眼图像信号,同时向偶数列亚子像素施加左眼图像信号;同时所述狭缝光栅形成交替的遮光条和透光条,使在预设观察位置观察所述显示装置时,经过所述奇数列亚子像素的光线被所述遮光条遮挡而无法进入左眼,经过所述偶数列亚子像素的光线被所述透光条透过而进入左眼,经过所述偶数列亚子像素的光线被所述遮光条遮挡而无法进入右眼,经过所述奇数列亚子像素的光线被所述透光条透过而进入右眼。
PCT/CN2015/070532 2014-09-28 2015-01-12 彩色滤光片及其制作方法、显示面板、显示装置及其驱动方法 WO2016045257A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/787,121 US10134320B2 (en) 2014-09-28 2015-01-12 Color filter and manufacturing method thereof, display panel, display device and driving method thereof
EP15778592.4A EP3199988B1 (en) 2014-09-28 2015-01-12 Color filter and manufacturing method thereof, display panel, display device and drive method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410509950.7 2014-09-28
CN201410509950.7A CN104297832B (zh) 2014-09-28 2014-09-28 彩色滤光片及制作方法、显示面板、显示装置及驱动方法

Publications (1)

Publication Number Publication Date
WO2016045257A1 true WO2016045257A1 (zh) 2016-03-31

Family

ID=52317633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/070532 WO2016045257A1 (zh) 2014-09-28 2015-01-12 彩色滤光片及其制作方法、显示面板、显示装置及其驱动方法

Country Status (4)

Country Link
US (1) US10134320B2 (zh)
EP (1) EP3199988B1 (zh)
CN (1) CN104297832B (zh)
WO (1) WO2016045257A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104680966B (zh) 2015-03-19 2017-11-14 京东方科技集团股份有限公司 一种显示装置的驱动方法及其驱动装置
CN105511184B (zh) * 2016-01-13 2019-04-02 深圳市华星光电技术有限公司 液晶显示面板及其驱动方法
CN106097899B (zh) * 2016-06-14 2019-04-23 上海中航光电子有限公司 一种显示器及头戴式显示装置
CN106791796B (zh) * 2017-01-11 2019-02-01 京东方科技集团股份有限公司 显示面板及其驱动方法和制作方法、显示装置
CN107221553A (zh) * 2017-06-01 2017-09-29 深圳市华星光电技术有限公司 改善大视角色偏的方法及显示面板
CN108572489B (zh) * 2018-04-28 2021-05-11 京东方科技集团股份有限公司 液晶光栅和液晶光栅驱动方法及3d显示器
CN111856773B (zh) * 2019-04-26 2023-08-22 天马日本株式会社 显示装置
CN110082923A (zh) * 2019-06-11 2019-08-02 深圳奇屏科技有限公司 一种3d显示器模块
CN110471190B (zh) * 2019-09-11 2022-09-09 京东方科技集团股份有限公司 一种显示装置
US20210191191A1 (en) * 2019-12-18 2021-06-24 Innolux Corporation Electronic device
CN114360367B (zh) * 2020-10-13 2023-04-11 京东方科技集团股份有限公司 可穿戴显示设备
CN112951894A (zh) * 2021-03-09 2021-06-11 昆山龙腾光电股份有限公司 Oled显示面板及其制作方法
CN112802950A (zh) * 2021-03-30 2021-05-14 北京芯海视界三维科技有限公司 发光模组、显示模组、显示屏和显示器
CN116047787B (zh) * 2023-03-30 2023-07-07 深圳臻像科技有限公司 一种高清彩色静态三维显示系统及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6392690B1 (en) * 1997-08-29 2002-05-21 Sharp Kabushiki Kaisha Three-dimensional image display device
CN1466011A (zh) * 2002-07-05 2004-01-07 Nec液晶技术株式会社 制造液晶显示器件的方法
CN102636895A (zh) * 2011-02-08 2012-08-15 Nlt科技股份有限公司 液晶显示设备
CN103261946A (zh) * 2010-12-17 2013-08-21 Jvc建伍株式会社 裸眼立体显示装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5973831A (en) * 1996-01-22 1999-10-26 Kleinberger; Paul Systems for three-dimensional viewing using light polarizing layers
US7965365B2 (en) * 2004-09-03 2011-06-21 Nec Lcd Technologies, Ltd Image display device, portable terminal, display panel, and lens
US20070086090A1 (en) * 2005-10-13 2007-04-19 Wintek Corporation Image display device and optical element for forming stereoscopic image used in the same
KR20070071293A (ko) * 2005-12-29 2007-07-04 엘지.필립스 엘시디 주식회사 액정표시소자 및 그 제조방법
JP4835350B2 (ja) * 2006-09-25 2011-12-14 凸版印刷株式会社 カラーフィルタ及びその製造方法
JP4540074B2 (ja) 2007-04-24 2010-09-08 東芝モバイルディスプレイ株式会社 液晶表示装置
KR101290013B1 (ko) * 2008-10-07 2013-07-30 엘지디스플레이 주식회사 다중 뷰 영상표시장치
KR20120070254A (ko) 2010-12-21 2012-06-29 삼성전자주식회사 표시 기판, 이의 제조 방법 및 이를 구비하는 표시 패널
JP6053278B2 (ja) * 2011-12-14 2016-12-27 三菱電機株式会社 2画面表示装置
KR101937710B1 (ko) * 2011-12-14 2019-04-11 엘지디스플레이 주식회사 입체영상 디스플레이장치 및 그 구동 방법
JP5779124B2 (ja) * 2012-03-13 2015-09-16 株式会社ジャパンディスプレイ 表示装置および電子機器
CN103376592A (zh) * 2012-04-27 2013-10-30 京东方科技集团股份有限公司 一种显示装置、彩色滤光片及其制作方法
JP5962229B2 (ja) * 2012-06-05 2016-08-03 三菱電機株式会社 表示装置
CN103149730A (zh) * 2013-03-04 2013-06-12 京东方科技集团股份有限公司 彩膜基板及其制作方法、液晶显示屏
CN103838035A (zh) * 2014-03-13 2014-06-04 深圳市华星光电技术有限公司 液晶显示器及其驱动方法
CN103995374B (zh) * 2014-05-22 2016-08-24 深圳市华星光电技术有限公司 一种显示面板及显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6392690B1 (en) * 1997-08-29 2002-05-21 Sharp Kabushiki Kaisha Three-dimensional image display device
CN1466011A (zh) * 2002-07-05 2004-01-07 Nec液晶技术株式会社 制造液晶显示器件的方法
CN103261946A (zh) * 2010-12-17 2013-08-21 Jvc建伍株式会社 裸眼立体显示装置
CN102636895A (zh) * 2011-02-08 2012-08-15 Nlt科技股份有限公司 液晶显示设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3199988A4 *

Also Published As

Publication number Publication date
EP3199988A1 (en) 2017-08-02
US20160260371A1 (en) 2016-09-08
US10134320B2 (en) 2018-11-20
EP3199988B1 (en) 2021-05-05
CN104297832B (zh) 2017-02-15
CN104297832A (zh) 2015-01-21
EP3199988A4 (en) 2018-06-13

Similar Documents

Publication Publication Date Title
WO2016045257A1 (zh) 彩色滤光片及其制作方法、显示面板、显示装置及其驱动方法
WO2016123910A1 (zh) 一种立体显示装置及其制作方法
JP5161742B2 (ja) 3次元映像表示装置の駆動方法
CN108776388B (zh) 基于渐变狭缝光栅的双视3d显示装置及方法
TWI432841B (zh) 顯示面板及其顯示器
WO2016197499A1 (zh) 显示面板及显示装置
JP2006189844A (ja) マイクロレンズ基板アレイ、それを含む立体映像ディスプレー装置、及びその製造方法
WO2017020473A1 (zh) 三维显示装置及其显示方法
CN103941469B (zh) 显示面板及其制作方法、显示装置
WO2016004685A1 (zh) 液晶面板及双视液晶显示装置
US9778556B2 (en) Imaging system having a polarization element
US20160139418A1 (en) Liquid crystal grating and display device
CN104166177A (zh) 光栅及其制作方法、显示基板和显示装置
JP2013127561A (ja) 3次元画像表示装置の製造方法
JP3788974B2 (ja) 三次元画像表示装置及び画像表示方法
JP2004264762A (ja) 立体映像表示装置
CN106200130A (zh) 3d显示装置及3d显示系统
JP2011197508A (ja) 表示装置及び電子機器
KR20150047359A (ko) 표시 장치
JP2007003941A (ja) 立体表示装置
TWI542905B (zh) 透明立體顯示器及其操作方法
KR20090047149A (ko) 영상 디스플레이장치
CN102540546B (zh) 显示面板及应用该显示面板的显示器
CN104020597B (zh) 立体图像显示设备及其制造方法
TWI493229B (zh) A Method of Three - Dimensional Image Pairing

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2015778592

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015778592

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14787121

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15778592

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE