WO2016044991A1 - 终端、基站、基站控制器及毫米波蜂窝通信方法 - Google Patents

终端、基站、基站控制器及毫米波蜂窝通信方法 Download PDF

Info

Publication number
WO2016044991A1
WO2016044991A1 PCT/CN2014/087171 CN2014087171W WO2016044991A1 WO 2016044991 A1 WO2016044991 A1 WO 2016044991A1 CN 2014087171 W CN2014087171 W CN 2014087171W WO 2016044991 A1 WO2016044991 A1 WO 2016044991A1
Authority
WO
WIPO (PCT)
Prior art keywords
index information
base station
terminal
beam index
millimeter wave
Prior art date
Application number
PCT/CN2014/087171
Other languages
English (en)
French (fr)
Inventor
张健
曾清海
梁永明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2014/087171 priority Critical patent/WO2016044991A1/zh
Priority to EP14902509.0A priority patent/EP3188548A4/en
Priority to CN201480038158.6A priority patent/CN105637939B/zh
Priority to JP2017534863A priority patent/JP2017535211A/ja
Priority to CN202010124602.3A priority patent/CN111417136A/zh
Publication of WO2016044991A1 publication Critical patent/WO2016044991A1/zh
Priority to US15/467,209 priority patent/US20170195033A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the embodiment of the present invention provides a terminal, Base station, base station controller, and millimeter wave cellular communication method.
  • the technical solution is as follows:
  • each of the beam index information corresponds to a sector or a cell coverage area, Or each of the beam index information corresponds to a sector or a part of a cell coverage;
  • the processor is further configured to:
  • Performing RRM measurement according to the beam corresponding to the second beam index information obtaining a first measurement result, where the first measurement result includes a reference signal received power RSRP and/or a reference signal received quality RSRQ;
  • a first measurement report to the primary base station or the millimeter wave base station according to the first measurement result, where the first measurement report includes at least one of the following information: RSRP and/or RSRQ
  • the serving cell information or the neighbor cell information is represented by a physical cell identifier PCI and/or a cell global identifier CGI.
  • the processor is further configured to: when the RSRP and/or RSRQ included in the first measurement result is lower than a pre-configured threshold, control the transmitter and the receiver to start according to the third beam index information.
  • the corresponding beam is used for RRM measurement.
  • the beam index information further includes fourth beam index information for performing intra-frequency measurement
  • the processor is further configured to:
  • the processor is further configured to control the transmitter and the receiver, the highest in RSRP and/or RSRQ
  • the beam corresponding to the beam index information communicates with the millimeter wave base station.
  • the processor is further configured to:
  • Random access is performed according to a beam corresponding to the fifth beam index information.
  • the processor is further configured to select one beam index information from the beam index information as the fifth beam index information;
  • the processor is further configured to determine, in the beam index information, that the primary base station or the millimeter wave base station specifies beam index information for a physical random access channel resource as the fifth beam index information.
  • Controlling by the transmitter, sending a random access preamble in a beam corresponding to the fifth beam index information
  • the random access response message includes sixth beam index information
  • the processor is further configured to:
  • the transmitter controlling, according to the sounding reference signal configuration information, the transmitter to send a sounding reference signal on a beam corresponding to the beam index information.
  • a terminal in a second aspect, includes:
  • a communication module configured to communicate, by using a beam corresponding to the beam index information, with a millimeter wave base station corresponding to the millimeter wave band.
  • the communication module is further configured to negotiate with the primary base station or the millimeter wave base station to stipulate the beam index information
  • the serving cell information or the neighbor cell information is represented by a physical cell identifier PCI and/or a cell global identifier CGI.
  • the processor is configured to configure, for the terminal, beam index information corresponding to the millimeter wave frequency band, where the beam index information is used to indicate that the terminal corresponds to a millimeter wave corresponding to the millimeter wave frequency band by a beam corresponding to the beam index information.
  • the base station communicates.
  • the method further includes:
  • a receiving module configured to receive a measurement report sent by the terminal, where the measurement report is measured by the RRM according to the RRM measurement performed by the terminal according to the beam corresponding to the first beam index information included in the beam index information. a report sent by the measurement result;
  • the processor is further configured to:
  • the identifier of the terminal is a cell-radio network temporary identifier C-RNTI or a system architecture evolved temporary mobile station identifier S-TMSI of the terminal.
  • a configuration module configured to configure, for the terminal, beam index information corresponding to the millimeter wave band; the beam index information is used to indicate that the terminal performs, by using the beam corresponding to the beam index information, the millimeter wave base station corresponding to the millimeter wave band Communication.
  • the base station further includes: a negotiation module, configured to negotiate with the terminal to determine the beam index information.
  • the sending module is further configured to send the sounding reference signal configuration information of the cell in the millimeter wave frequency band to the terminal, where the sounding reference signal configuration information is used to indicate that the terminal is on the beam corresponding to the beam index information. Send a probe reference signal.
  • the base station further includes:
  • the receiving module is further configured to receive a random access preamble sent by the terminal on a beam corresponding to the second beam index information used for the physical random access channel resource;
  • the sending module is further configured to send a random access response message on a beam corresponding to the second beam index information.
  • the receiving module is further configured to receive a random access message in a beam corresponding to the third beam index information, where the random access message includes an identifier of the terminal;
  • the sending module is further configured to send a contention resolution message in a beam corresponding to the third beam index; the contention resolution message includes an identifier of the terminal;
  • the receiving module is further configured to receive uplink measurement configuration information that is sent by the primary base station or the base station controller, where the uplink measurement configuration information includes fourth beam index information;
  • the base station further includes: a measurement module, configured to: use, at a beam corresponding to the fourth beam index information Measuring the power of the sounding reference signal sent by the terminal;
  • a base station controller comprising: a bus, and a processor, a memory, a transmitter, and a receiver coupled to the bus.
  • the memory is for storing a plurality of instructions, the instructions being configured to be executed by the processor;
  • the processor is configured to:
  • the terminal communicates with each millimeter wave base station corresponding to the millimeter wave frequency band by using beam index information corresponding to the millimeter wave frequency band.
  • the processor is further configured to:
  • a millimeter wave base station that transmits data to the terminal and beam index information used to transmit data to the terminal is determined according to the measurement report.
  • a base station controller includes:
  • a sending module configured to send uplink measurement configuration information to the millimeter wave base station, where the uplink measurement configuration information includes beam index information, where the uplink measurement configuration information is used to indicate that the millimeter wave base station corresponds to the beam index information Measuring the power of the sounding reference signal transmitted by the terminal on the beam;
  • a receiving module configured to receive, by the millimeter wave base station, a measurement result that includes the power of the sounding reference signal obtained by the measurement;
  • the indication module is configured to indicate that the millimeter wave base station is ready to communicate with the terminal when the power of the sounding reference signal is greater than a preset power threshold;
  • the terminal communicates with each millimeter wave base station corresponding to the millimeter wave frequency band by using beam index information corresponding to the millimeter wave frequency band.
  • the receiving module is further configured to receive a measurement report sent by the millimeter wave base station, where the measurement report is a measurement report that is sent by the terminal according to the measurement result of the RRM measurement after performing the RRM measurement by the terminal;
  • the apparatus further includes: a determining module, configured to determine, according to the measurement report, a millimeter wave base station that transmits data to the terminal, and beam index information used to transmit data to the terminal.
  • a determining module configured to determine, according to the measurement report, a millimeter wave base station that transmits data to the terminal, and beam index information used to transmit data to the terminal.
  • a millimeter wave cellular communication method comprising:
  • the terminal acquires beam index information corresponding to the millimeter wave band
  • the terminal communicates with the millimeter wave base station corresponding to the millimeter wave frequency band by using a beam corresponding to the beam index information.
  • the primary base station and the millimeter wave base station are the same base station or different base stations.
  • the terminal performs, by using a beam corresponding to the beam index information, a millimeter wave base station corresponding to the millimeter wave frequency band Communication, including:
  • each of the beam index information corresponds to one precoding codebook information or a group of antenna weight information, or each of the beam indexes corresponds to multiple precoding codebook information or a plurality of sets of antenna weight information; wherein each of said precoding codebooks or each set of said antenna weight information uniquely determines a beam.
  • each of the beam index information corresponds to a sector or a cell coverage area, Or each of the beam index information corresponds to a sector or a part of a cell coverage;
  • the beam index information is primary index information or N-level index information, where N is an integer and N ⁇ 2;
  • an i-th index information of the beam index information is associated with the (i+1)th index information; wherein, the i+1st index information corresponds to beam coverage.
  • the range is not greater than the coverage of the beam corresponding to the i-th index information, i is an integer, and 2 ⁇ i ⁇ N.
  • the beam index information includes second beam index information for radio resource management RRM measurement, where The method also includes:
  • the terminal performs RRM measurement according to the beam corresponding to the second beam index information, and obtains a first measurement result, where the first measurement result includes a reference signal received power RSRP and/or a reference signal received quality RSRQ;
  • the terminal sends a first measurement report to the primary base station or the millimeter wave base station according to the first measurement result, where the first measurement report includes at least one of the following information: a beam with the highest RSRP and/or RSRQ Index information, RSRP and/or RSRQ measurement results on the beam corresponding to the highest beam index information of the RSRP and/or RSRQ, frequency information of the beam index information with the highest RSRP and/or RSRQ, and the RSRP And neighbor cell information associated with the serving cell information associated with the highest beam index information of the RSRQ, the RSRP and/or the highest beam index information of the RSRQ;
  • the serving cell information or the neighbor cell information is represented by a physical cell identifier PCI and/or a cell global identifier CGI.
  • the beam index information further includes third beam index information for the candidate RRM measurement
  • the method further includes:
  • the terminal When the RSRP and/or RSRQ included in the first measurement result is lower than the pre-configured threshold, the terminal starts to perform RRM measurement according to the beam corresponding to the third beam index information.
  • the beam index information further includes fourth beam index information for performing intra-frequency measurement
  • the method further includes:
  • the terminal acquires measurement gap period information associated with the fourth beam index information
  • the terminal performs the intra-frequency measurement of the millimeter wave frequency band according to the beam corresponding to the fourth beam index information in the measurement gap indicated by the measurement gap period information.
  • the terminal communicates with the millimeter wave base station corresponding to the millimeter wave frequency band by using a beam corresponding to the beam index information ,include:
  • the terminal communicates with the millimeter wave base station on a beam corresponding to the highest beam index information of RSRP and/or RSRQ.
  • the method further includes:
  • the terminal performs random access according to the beam corresponding to the fifth beam index information.
  • the terminal determines, from the beam index information, fifth beam index information for a physical random access channel resource ,include:
  • the beam index information specified by the primary base station or the millimeter wave base station for the physical random access channel resource is determined as the fifth beam index information.
  • the terminal performs random access according to the beam corresponding to the fifth beam index information, including:
  • the random access response message includes a sixth beam guiding information, where the method further includes:
  • the contention resolution message includes an identifier of the terminal ;
  • the identifier of the terminal is a cell-radio network temporary identifier C-RNTI or a system architecture evolved temporary mobile station identifier S-TMSI of the terminal.
  • the method further includes:
  • the terminal sends a sounding reference signal on a beam corresponding to the beam index information according to the sounding reference signal configuration information.
  • a millimeter wave cellular communication method comprising:
  • the primary base station configures the beam index information corresponding to the millimeter wave frequency band for the terminal; the beam index information is used to indicate that the terminal communicates with the millimeter wave base station corresponding to the millimeter wave frequency band by using a beam corresponding to the beam index information.
  • the primary base station configures beam index information corresponding to the millimeter wave band for the terminal, including:
  • the method further includes:
  • the primary base station receives the measurement report sent by the terminal, and the measurement report is measured by the RRM according to the beam corresponding to the first beam index information included in the beam index information. a measurement report sent by the measurement result;
  • the primary base station determines, according to the measurement report, a millimeter wave base station that transmits data to the terminal, and beam index information used to transmit data to the terminal.
  • the method further includes:
  • the primary base station sends the sounding reference signal configuration information of the cell in the millimeter wave frequency band to the terminal, where the sounding reference signal configuration information is used to indicate that the terminal sends a probe on the beam corresponding to the beam index information. Reference signal.
  • the method further includes:
  • the primary base station sends uplink measurement configuration information to the millimeter wave base station, where the uplink measurement configuration information includes second beam index information, where the uplink measurement configuration information is used to indicate that the millimeter wave base station is in the second
  • the power of the sounding reference signal sent by the terminal is measured on a beam corresponding to the beam index information.
  • a millimeter wave cellular communication method comprising:
  • the millimeter wave base station configures the beam index information corresponding to the millimeter wave frequency band for the terminal; the beam index information is used to indicate that the terminal communicates with the millimeter wave base station corresponding to the millimeter wave frequency band by using a beam corresponding to the beam index information.
  • the millimeter wave base station configures beam index information corresponding to the millimeter wave band for the terminal, including:
  • the method further includes:
  • the millimeter wave base station receives the measurement report sent by the terminal, and the measurement report is that the terminal performs RRM measurement according to the beam corresponding to the first beam index information included in the beam index information, and is measured according to the RRM. a measurement report sent by the measurement result;
  • the measurement report is used to instruct the base station controller to determine a millimeter wave base station that transmits data to the terminal, and use the data to send the data to the terminal Beam index information.
  • the method further includes:
  • the millimeter wave base station sends the sounding reference signal configuration information of the cell in the millimeter wave frequency band to the terminal, where the sounding reference signal configuration information is used to indicate that the terminal sends the sounding reference on the beam corresponding to the beam index information. signal.
  • the method further includes:
  • the millimeter wave base station sends a random access response message on a beam corresponding to the two beam index information.
  • the random access response message includes third beam steering information, where the method further includes:
  • the millimeter wave base station receives a random access message in a beam corresponding to the third beam index information, where the random access message includes an identifier of the terminal;
  • the millimeter wave base station Transmitting, by the millimeter wave base station, a contention resolution message in a beam corresponding to the third beam index; the contention resolution message includes an identifier of the terminal;
  • the identifier of the terminal is a cell-radio network temporary identifier C-RNTI or a system architecture evolved temporary mobile station identifier S-TMSI of the terminal.
  • the method further includes:
  • the millimeter wave base station receives uplink measurement configuration information sent by the primary base station or the base station controller, where the uplink measurement configuration information includes fourth beam index information;
  • the millimeter wave base station measures the power of the sounding reference signal sent by the terminal on the beam corresponding to the fourth beam index information
  • the power threshold indicates that the millimeter wave base station is ready to communicate with the terminal.
  • a millimeter wave cellular communication method comprising:
  • the base station controller sends the uplink measurement configuration information to the millimeter wave base station, where the uplink measurement configuration information includes beam index information, where the uplink measurement configuration information is used to indicate the beam corresponding to the beam index information of the millimeter wave base station. Measuring the power of the sounding reference signal sent by the terminal;
  • the base station controller Receiving, by the base station controller, the probe parameter sent by the millimeter wave base station, including the measurement The measurement result of the power of the test signal;
  • the base station controller When the power of the sounding reference signal is greater than a preset power threshold, the base station controller indicates that the millimeter wave base station is ready to communicate with the terminal;
  • the terminal communicates with each millimeter wave base station corresponding to the millimeter wave frequency band by using beam index information corresponding to the millimeter wave frequency band.
  • the method further includes:
  • a measurement report sent by the millimeter wave base station where the measurement report is a measurement report sent by the terminal according to the measurement result of the RRM measurement after performing the RRM measurement by the terminal;
  • the base station controller determines, according to the measurement report, a millimeter wave base station that transmits data to the terminal, and beam index information used to transmit data to the terminal.
  • the at least one beam index information corresponding to the at least one millimeter wave band is obtained, and the beam corresponding to the at least one beam index information is communicated with the millimeter wave base station corresponding to the at least one millimeter wave band, thereby solving the problem that the terminal performs cellular in the prior art.
  • the problem of small bandwidth can be utilized to extend the frequency range of terminal communication, increase the data transmission rate of the terminal, and reduce the fading and distortion of the signal when the terminal performs millimeter wave communication with the millimeter wave base station, and reduce the co-channel. The effect of interference between users.
  • FIG. 1 is a block diagram of a terminal according to an embodiment of the present invention.
  • FIG. 2 is a block diagram of a terminal according to an embodiment of the present invention.
  • FIG. 3 is a block diagram of a base station according to an embodiment of the present invention.
  • FIG. 5 is a block diagram of a base station according to an embodiment of the present invention.
  • FIG. 6 is a block diagram of a base station according to an embodiment of the present invention.
  • FIG. 8 is a block diagram of a base station controller according to an embodiment of the present invention.
  • the millimeter wave base station or the base station controller sends a notification message to all millimeter wave base stations in the cluster (cluster), so that all millimeter wave base stations in the cluster are ready to measure the SRS of the UE, and prepare resources according to the own measurement or the notification message of the base station controller. Serve the UE.
  • One or more millimeter wave base stations allocate resources for the UE and perform data communication with the UE, including downlink and/or uplink communication.
  • the millimeter wave base station measures the SRS of the UE, and determines whether to continue to serve the UE.
  • the terminal may perform random access, RRM measurement, and transmission of the sounding reference signal SRS by using at least one beam index information corresponding to the at least one millimeter wave frequency band. For details, see the following steps.
  • the first measurement result includes a reference signal received power RSRP and/or a reference signal received quality RSRQ.
  • the processor 101 is further configured to: control the transmitter 103, and send a first measurement report to the primary base station or the millimeter wave base station according to the first measurement result, where the first measurement report includes the following information At least one of: at least one beam index information of the highest RSRP and/or RSRQ, RSRP and/or RSRQ measurement results on a beam corresponding to at least one beam index information of the highest RSRP and/or RSRQ, At least one beam index information with the highest RSRP and/or RSRQ, frequency information of the at least one beam index information with the highest RSRP and/or RSRQ, and at least one beam with the highest RSRP and/or RSRQ Neighbor cell information associated with the index information;
  • the serving cell information or the neighbor cell information is represented by a physical cell identifier PCI and/or a cell global identifier CGI.
  • the UE may also adaptively select and perform measurement from multiple beams, and select an RSRP/RSRQ information report on one or more beams with the best signal quality, and report the beam index information selected by the UE, for example, multiple Information on antenna weights.
  • the processor 101 is further configured to: when the RSRP and/or RSRQ included in the first measurement result is lower than a pre-configured threshold, control the transmitter 103 and the receiver 104 to start according to the third The beam corresponding to the beam index information is subjected to RRM measurement.
  • the at least one beam index information further includes fourth beam index information used for performing intra-frequency measurement,
  • the trigger condition may be set for the event that sends the first measurement report, for example, when the RSRP on the beam corresponding to the beam index information is lower than the preset value, and the RSRP on the beam corresponding to the other beam index information is still If the value is higher than the preset value, the first measurement report is triggered.
  • the processor 101 is further configured to select one beam index information from the at least one beam index information as the fifth beam index information;
  • the receiver 104 is configured to receive a random access response message in a beam corresponding to the fifth beam index information, or receive a random access response message in a beam corresponding to the at least one beam index information.
  • the UE further determines whether the information about itself is included in the msg2 according to whether the preamble included in the msg2 is consistent with the preamble used when the msg1 is sent by itself.
  • the calculation formula of the RA-RNTI may adopt the calculation method in the prior art LTE, as follows:
  • the t_id refers to a subframe in which a physical random access channel (PRACH) resource is used when the UE sends the msg1, and the f_id refers to an index of the PRACH resource in the subframe, for example,
  • PRACH physical random access channel
  • the time division duplex (English: time division duplex, abbreviated as TDD) may be configured with multiple PRACH channel resources in different frequency ranges in one subframe, and the frequency range of each PRACH channel corresponds to index information of one frequency domain.
  • the identifier of the terminal is a cell-radio network temporary identifier C-RNTI or a system architecture evolved temporary mobile station identifier S-TMSI of the terminal.
  • the msg4 including the terminal is sent on the same beam, and after receiving the msg4, the terminal detects that the msg4 includes its own identifier, and then confirms The access was successful.
  • the method for determining whether the information is included in the msg2 is the same as the present embodiment, and the present invention is not described again.
  • the UE may select the random access preamble and the random access time-frequency domain resource, and the primary base station or the millimeter-wave base station may not allocate the beam index information for access to the terminal, meaning that the The fifth beam index information may be any beam index information.
  • the packet information is configured to the UE, and the UE selects the random access preamble corresponding to the beam index information currently used by the UE to transmit, and after receiving the random access preamble, the millimeter wave base station may according to the random access preamble and the beam index information.
  • the mapping relationship learns the beam index information used by the UE, and sends msg2 to the UE on the beam corresponding to the beam index information.
  • the primary base station or the millimeter wave base station may pre-group the random access time-frequency domain resources of the millimeter-wave cell according to different beam index information and configure the packet information to the UE, and the UE corresponds to the beam index information currently used by the UE.
  • the UE may perform the measurement result of the RRM measurement according to step 106 above.
  • the msg1 is transmitted according to the beam corresponding to the best beam index information of the signal in the previous reported RRM measurement result.
  • the millimeter wave base station detects the random access preamble in msg1 in an omnidirectional manner.
  • the UE can also transmit msg1 using multiple beams simultaneously.
  • the probability that the primary base station detects the msg1 can be increased.
  • the processor 101 is further configured to:
  • the transmitter 103 And transmitting, according to the sounding reference signal configuration information, the transmitter 103 to transmit a sounding reference signal on a beam corresponding to the at least one beam index information.
  • the primary base station or the millimeter wave base station controller indicates which millimeter wave base stations measure which SRSs of the UEs.
  • the UE transmits the SRS according to the beam corresponding to the plurality of pre-configured beam index information.
  • the millimeter wave base station measures the SRS of the designated UE and determines whether it is suitable for serving the UE. If so, the millimeter wave base station informs the base station controller or other millimeter wave base station that it will allocate time-frequency spatial domain resource information to the UE to avoid interference.
  • the millimeter wave base station sends the measurement result of the sounding reference signal to the base station controller after measuring the power of the sounding reference signal sent by the terminal.
  • the base station controller determines whether to serve the terminal according to the power of the sounding reference signal sent by the terminal; or, during the communication between the millimeter wave base station and the terminal, the base station controller Determining whether to continue to serve the terminal according to the power of the sounding reference signal sent by the terminal. For example, if the power of the sounding reference signal sent by the terminal is less than a certain threshold, the terminal is no longer suitable for communicating with the millimeter wave base station.
  • the base station controller may send a detection report to the primary base station, requesting the primary base station to update the set of millimeter wave base stations served by the terminal. If the power of the sounding reference signal sent by the terminal is not less than the threshold The value does not send a test report.
  • the terminal provided by the embodiment of the present invention acquires at least one beam index information corresponding to at least one millimeter wave band, and the millimeter wave base station corresponding to the at least one millimeter wave band by the beam corresponding to the at least one beam index information
  • the communication solves the problem that the bandwidth of the terminal can be utilized when the terminal performs cellular communication in the prior art, and the frequency range of the terminal communication is extended, and the data transmission rate of the terminal is improved.
  • the terminal provided by the embodiment of the present invention performs communication, RRM measurement, and random access on the beam corresponding to the specified beam index information, so as to reduce the fading and distortion of the signal when the terminal and the millimeter wave base station perform millimeter wave communication, and reduce The effect of interference between co-channel users.
  • the terminal may include:
  • the communication module 202 is configured to communicate, by using a beam corresponding to the at least one beam index information, with a millimeter wave base station corresponding to the at least one millimeter wave band.
  • the receiving module 201 is further configured to:
  • the communication module 202 is further configured to negotiate with the primary base station or the millimeter wave base station to stipulate the at least one beam index information;
  • each of the beam index information corresponds to one precoding codebook information or a group of antenna weight information, or each of the beam indexes corresponds to multiple precoding codebook information or multiple sets of antenna weights. Information; wherein each of the precoding codebooks or each set of the antenna weight information uniquely determines one beam.
  • an i-th index information of the beam index information is associated with at least one (i+1)th index information; wherein the (i+1)th index information corresponding beam
  • the coverage of the beam is not greater than the coverage of the beam corresponding to the i-th index information, i is an integer, and 2 ⁇ i ⁇ N.
  • the at least one beam index information includes second beam index information used for radio resource management RRM measurement
  • the terminal further includes:
  • the measurement module 203 is configured to perform RRM measurement according to the beam corresponding to the second beam index information, to obtain a first measurement result, where the first measurement result includes a reference signal received power RSRP and/or a reference signal received quality RSRQ;
  • the serving cell information or the neighbor cell information is represented by a physical cell identifier PCI and/or a cell global identifier CGI.
  • the at least one beam index information further includes third beam index information for candidate RRM measurement, and the measuring module 203 is further configured to:
  • the RRM measurement is started according to the beam corresponding to the third beam index information.
  • the at least one beam index information further includes fourth beam index information used for performing intra-frequency measurement,
  • the receiving module 201 is further configured to acquire measurement gap period information associated with the fourth beam index information
  • the measurement module 203 is further configured to perform intra-frequency measurement of the at least one millimeter wave frequency band according to a beam corresponding to the fourth beam index information in a measurement gap indicated by the measurement gap period information.
  • the communication module 202 is further configured to, by the terminal, communicate with the millimeter wave base station on a beam corresponding to at least one beam index information with the highest RSRP and/or RSRQ.
  • the terminal further includes:
  • a determining module 205 configured to determine, from the at least one beam index information, fifth beam index information for a physical random access channel resource;
  • the access module 206 is configured to perform random access according to the beam corresponding to the fifth beam index information.
  • the determining module 205 is specifically configured to:
  • the beam index information specified by the primary base station or the millimeter wave base station for the physical random access channel resource is determined as the fifth beam index information.
  • the sending module 204 is further configured to send a random access preamble in a beam corresponding to the fifth beam index information.
  • the receiving module 201 is further configured to:
  • the random access response message includes sixth beam guiding information, where
  • the sending module 204 is further configured to send a random access message in a beam corresponding to the sixth beam index information, where the random access message includes an identifier of the terminal;
  • the receiving module 201 is further configured to:
  • the contention resolution message includes an identifier of the terminal
  • the identifier of the terminal is a cell-radio network temporary identifier C-RNTI or a system architecture evolved temporary mobile station identifier S-TMSI of the terminal.
  • the receiving module 201 is further configured to receive the sounding reference signal configuration information of the at least one cell in the at least one millimeter wave band sent by the primary base station or the millimeter wave base station;
  • the sending module 204 is further configured to send, according to the sounding reference signal configuration information, a sounding reference signal on a beam corresponding to the at least one beam index information.
  • the terminal provided by the embodiment of the present invention acquires at least one beam index information corresponding to at least one millimeter wave band, and the millimeter wave base station corresponding to the at least one millimeter wave band by the beam corresponding to the at least one beam index information
  • the communication solves the problem that the bandwidth of the terminal can be utilized when the terminal performs cellular communication in the prior art, and the frequency range of the terminal communication is extended, and the data transmission rate of the terminal is improved.
  • the terminal provided by the embodiment of the present invention performs communication, RRM measurement, and random access on the beam corresponding to the specified beam index information, so as to reduce the fading and distortion of the signal when the terminal and the millimeter wave base station perform millimeter wave communication, and reduce The effect of interference between co-channel users.
  • FIG. 3 is a block diagram of a base station according to an embodiment of the present invention.
  • the base station may be a primary base station, such as an LTE-A base station, in the embodiment shown in FIG. 1.
  • the base station 300 includes a bus 305, and a processor 301, a memory 302, a transmitter 303, and a receiver 304 connected to the bus.
  • the memory 302 is configured to store a plurality of instructions, the instructions being configured to be executed by the processor 301;
  • the processor 301 is configured to configure, for the terminal, at least one beam index information corresponding to the at least one millimeter wave band; the at least one beam index information is used to indicate that the terminal passes the beam corresponding to the at least one beam index information
  • the millimeter wave base station corresponding to the at least one millimeter wave band communicates.
  • the processor 301 is further configured to control, by the transmitter 303, to send, to the terminal, a radio resource reconfiguration message or a broadcast message that includes the at least one beam index information;
  • the processor 301 is further configured to determine, by the terminal, the at least one beam index information.
  • the primary base station may send a radio resource reconfiguration message including the at least one beam index information to the terminal; or the primary base station may negotiate with the terminal to determine the at least one beam index information.
  • the processor 301 is further configured to:
  • a millimeter wave base station that transmits data to the terminal and beam index information used to transmit data to the terminal is determined according to the measurement report.
  • the measurement report is a report sent by the terminal according to the measurement result of the RRM measurement after the RRM measurement is performed by the terminal according to the beam corresponding to the first beam index information included in the at least one beam index information.
  • the first beam index information in this embodiment is equivalent to The second beam index information in the embodiment shown in FIG.
  • the primary base station can determine a millimeter wave base station that transmits data to the terminal according to the measurement report, and beam index information used to transmit data to the terminal.
  • the processor 301 is further configured to control, by the transmitter 303, the sounding reference signal configuration information of the at least one cell in the at least one millimeter wave frequency band to be sent to the terminal, where the sounding reference signal configuration information is used. Instructing the terminal to send a sounding reference signal on a beam corresponding to the at least one beam index information.
  • the processor 301 is further configured to control the transmitter 303 to send uplink measurement configuration information to the millimeter wave base station, where the uplink measurement configuration information includes second beam index information, where the uplink measurement configuration information is used. Instructing the millimeter wave base station to correspond to the wave corresponding to the second beam index information The power of the sounding reference signal transmitted by the terminal is measured on the beam.
  • the primary base station or the base station controller may specify which millimeter wave base stations measure the power of the sounding reference signals of the terminals. Specifically, the primary base station or the base station controller instructs the terminal to send the SRS on the beam corresponding to the at least one beam index information, and indicates the millimeter.
  • the wave base station measures the sounding reference signal of the terminal on a beam corresponding to the specific beam index information (second beam index information).
  • the second beam index information in the embodiment of the present invention has the same function as the seventh beam index information in the embodiment shown in FIG. 1 .
  • the millimeter wave base station can also determine the second beam index information by itself, and measure the power of the sounding reference signal of the terminal accordingly.
  • the millimeter wave base station sends the measurement result of the sounding reference signal to the base station controller after measuring the power of the sounding reference signal sent by the terminal.
  • the base station controller determines whether to serve the terminal according to the power of the sounding reference signal sent by the terminal; or, during the communication between the millimeter wave base station and the terminal, the base station controller Determining whether to continue to serve the terminal according to the power of the sounding reference signal sent by the terminal. For example, if the power of the sounding reference signal sent by the terminal is less than a certain threshold, the terminal is no longer suitable for communicating with the millimeter wave base station.
  • the base station controller may send a detection report to the primary base station, requesting the primary base station to update the set of millimeter wave base stations served by the terminal. If the power of the sounding reference signal sent by the terminal is not less than the threshold, the detection report is not sent.
  • the base station configureds at least one beam index information corresponding to the at least one millimeter wave band for the terminal, so that the terminal corresponds to the at least one millimeter wave band by using the beam corresponding to the at least one beam index information.
  • the millimeter wave base station communicates to solve the problem that the bandwidth of the terminal can be utilized when the terminal performs cellular communication in the prior art, and the frequency range of the terminal communication is expanded, the data transmission rate of the terminal is improved, and the terminal and the millimeter are reduced.
  • the wave base station performs fading and distortion of signals during millimeter wave communication, and reduces the effect of interference between co-channel users.
  • FIG. 4 shows a block diagram of a base station according to an embodiment of the present invention.
  • the base station may be a primary base station in an embodiment as shown in FIG. 1, such as an LTE-A base station.
  • the base station may include:
  • the configuration module 401 is configured to configure, for the terminal, at least one beam index information corresponding to the at least one millimeter wave band; the at least one beam index information is used to indicate that the terminal passes the beam corresponding to the at least one beam index information and the The millimeter wave base station corresponding to at least one millimeter wave band communicates.
  • the base station further includes: a sending module 402, configured to send, to the terminal, a radio resource reconfiguration message or a broadcast message that includes the at least one beam index information;
  • the base station further includes: a negotiation module 403, configured to negotiate with the terminal to determine the at least one beam index information.
  • the base station further includes:
  • the receiving module 404 is configured to receive a measurement report sent by the terminal, where the measurement report is that the terminal performs RRM measurement according to a beam corresponding to the first bundle index information included in the at least one beam index information, according to the a report of the measurement results sent by the RRM measurement;
  • the determining module 405 is configured to determine, according to the measurement report, a millimeter wave base station that transmits data to the terminal, and beam index information used to send data to the terminal.
  • the sending module 402 is further configured to send the sounding reference signal configuration information of the at least one cell in the at least one millimeter wave frequency band to the terminal, where the sounding reference signal configuration information is used to indicate that the terminal is in the at least one beam
  • the sounding reference signal is transmitted on the beam corresponding to the index information.
  • the base station configureds at least one beam index information corresponding to the at least one millimeter wave band for the terminal, so that the terminal corresponds to the at least one millimeter wave band by using the beam corresponding to the at least one beam index information.
  • the millimeter wave base station communicates to solve the problem that the bandwidth of the terminal can be utilized when the terminal performs cellular communication in the prior art, and the frequency range of the terminal communication is extended, the data transmission rate of the terminal is improved, and the terminal and the millimeter are reduced.
  • the wave base station performs fading and distortion of signals during millimeter wave communication, and reduces the effect of interference between co-channel users.
  • FIG. 5 shows a block diagram of a base station according to an embodiment of the present invention.
  • the base station may be a millimeter wave base station (English: Millimeter Wave Base, abbreviation: mmB) in the embodiment shown in FIG.
  • the base station 500 includes a bus 505, and a processor 501, a memory 502, a transmitter 503, and a receiver 504 connected to the bus.
  • the memory 502 is used to store a plurality of An instruction, the plurality of instructions being configured to be executed by the processor 501;
  • the processor 501 is configured to configure, for the terminal, at least one beam index information corresponding to the at least one millimeter wave band; the at least one beam index information is used to indicate that the terminal passes the beam corresponding to the at least one beam index information
  • the millimeter wave base station corresponding to the at least one millimeter wave band communicates.
  • the processor 501 is further configured to control the transmitter 503 to send, to the terminal, a radio resource reconfiguration message or a broadcast message that includes the at least one beam index information;
  • the processor 501 is further configured to negotiate with the terminal to determine the at least one beam index information.
  • processor 501 is further configured to:
  • the measurement report is used to instruct the base station controller to determine a millimeter wave base station that transmits data to the terminal, and use the data to send to the terminal Beam index information.
  • the process of transmitting the measurement report according to the measurement result of the RRM measurement may be as shown in FIG.
  • the embodiment is shown here, and details are not described herein again.
  • the first beam index information in the embodiment of the present invention has the same function as the second beam index information in the embodiment shown in FIG. 1 .
  • the processor 501 is further configured to control, by the transmitter 503, the sounding reference signal configuration information of the at least one cell in the at least one millimeter wave frequency band to be sent to the terminal, where the sounding reference signal configuration information is used. Instructing the terminal to send a sounding reference signal on a beam corresponding to the at least one beam index information.
  • processor 501 is further configured to:
  • the transmitter 503 is controlled to send a random access response message on a beam corresponding to the two beam index information.
  • the second beam index information in the embodiment of the present invention is the fifth in the embodiment shown in FIG.
  • the beam index information has the same effect.
  • the random access response message includes third beam steering information, where
  • the processor 501 is further configured to:
  • the receiver 504 receives a random access message in a beam corresponding to the third beam index information, where the random access message includes an identifier of the terminal;
  • the transmitter 503 Controlling, by the transmitter 503, a contention resolution message in a beam corresponding to the third beam index; the contention resolution message includes an identifier of the terminal;
  • the identifier of the terminal is a cell-radio network temporary identifier C-RNTI or a system architecture evolved temporary mobile station identifier S-TMSI of the terminal.
  • the third beam index information in the embodiment of the present invention has the same function as the sixth beam index information in the embodiment shown in FIG. 1 .
  • the terminal may perform random access with the millimeter wave base station according to the second beam index information in the at least one beam index information, where the random access may be a non-contention based random access procedure, or may be a contention based randomization.
  • the specific random access method may be referred to the description in the corresponding embodiment of FIG. 1, and details are not described herein again.
  • processor 501 is further configured to:
  • the receiver 504 Controlling, by the receiver 504, the uplink measurement configuration information that is sent by the primary base station or the base station controller, where the uplink measurement configuration information includes fourth beam index information;
  • the millimeter wave base station is instructed to be in communication with the terminal.
  • the primary base station or the base station controller may specify which millimeter wave base stations measure the power of the sounding reference signals of the terminals. Specifically, the primary base station or the base station controller instructs the terminal to send the SRS on the beam corresponding to the at least one beam index information, and indicates the millimeter.
  • the wave base station measures the sounding reference signal of the terminal on a beam corresponding to the specific beam index information (fourth beam index information).
  • the fourth beam index information in the embodiment of the present invention has the same function as the seventh beam index information in the embodiment shown in FIG. 1.
  • the millimeter wave base station After detecting the power of the sounding reference signal sent by the terminal, the millimeter wave base station detects the power of the sounding reference signal The measurement result of the reference signal is sent to the base station controller. Before the millimeter wave base station communicates with the terminal, the base station controller determines whether to serve the terminal according to the power of the sounding reference signal sent by the terminal; or, during the communication between the millimeter wave base station and the terminal, the base station controller Determining whether to continue to serve the terminal according to the power of the sounding reference signal sent by the terminal. For example, if the power of the sounding reference signal sent by the terminal is less than a certain threshold, the terminal is no longer suitable for communicating with the millimeter wave base station.
  • the base station controller may send a detection report to the primary base station, requesting the primary base station to update the set of millimeter wave base stations served by the terminal. If the power of the sounding reference signal sent by the terminal is not less than the threshold, the detection report is not sent.
  • the base station provided by the embodiment of the present invention communicates with the terminal through a beam corresponding to at least one beam index information corresponding to at least one millimeter wave frequency band, which solves the problem that the terminal performs cellular communication in the prior art.
  • the frequency range of terminal communication is extended, the data transmission rate of the terminal is improved, and the fading and distortion of the signal when the terminal and the millimeter wave base station perform millimeter wave communication are reduced, and the interference between the co-channel users is reduced. Effect.
  • FIG. 6 is a block diagram of a base station according to an embodiment of the present invention.
  • the base station may be a millimeter wave base station in the embodiment shown in FIG. 1 , and the base station may include:
  • the configuration module 601 is configured to configure, for the terminal, at least one beam index information corresponding to the at least one millimeter wave frequency band, where the at least one beam index information is used to indicate that the terminal passes the beam corresponding to the at least one beam index information and the The millimeter wave base station corresponding to at least one millimeter wave band communicates.
  • the base station further includes: a sending module 602, configured to send, to the terminal, a radio resource reconfiguration message or a broadcast message that includes the at least one beam index information;
  • the base station further includes: a negotiation module 603, configured to negotiate with the terminal to determine the at least one beam index information.
  • the base station further includes:
  • the receiving module 604 is configured to receive a measurement report sent by the terminal, where the measurement report is that the terminal performs RRM measurement according to a beam corresponding to the first beam index information included in the at least one beam index information, according to the a measurement report sent by the measurement result of the RRM measurement;
  • the sending module 602 is configured to send the measurement report to a base station controller, where the measurement report is used to instruct the base station controller to determine a millimeter wave base station that sends data to the terminal, and The beam index information used by the terminal to transmit data.
  • the sending module 602 is further configured to send the sounding reference signal configuration information of the at least one cell in the at least one millimeter wave frequency band to the terminal, where the sounding reference signal configuration information is used to indicate that the terminal is in the Transmitting a sounding reference signal on a beam corresponding to the at least one beam index information.
  • the receiving module 604 is further configured to receive a random access preamble sent by the terminal on a beam corresponding to the second beam index information used for the physical random access channel resource;
  • the sending module 602 is further configured to send a random access response message on a beam corresponding to the two beam index information.
  • the random access response message includes third beam steering information, where
  • the receiving module 604 is further configured to receive a random access message in a beam corresponding to the third beam index information, where the random access message includes an identifier of the terminal;
  • the identifier of the terminal is a cell-radio network temporary identifier C-RNTI or a system architecture evolved temporary mobile station identifier S-TMSI of the terminal.
  • the receiving module 604 is further configured to receive uplink measurement configuration information that is sent by the primary base station or the base station controller, where the uplink measurement configuration information includes fourth beam index information.
  • the base station further includes: a measurement module 605, configured to measure, according to a beam corresponding to the fourth beam index information, a power of the sounding reference signal sent by the terminal;
  • the sending module 602 is further configured to send a measurement result that includes the power of the sounding reference signal obtained by the measurement, where the measurement result is used to indicate that the power of the sounding reference signal is greater than a preset power of the base station controller. At the threshold, the millimeter wave base station is instructed to communicate with the terminal.
  • the base station provided by the embodiment of the present invention communicates with the terminal through a beam corresponding to at least one beam index information corresponding to at least one millimeter wave frequency band, which solves the problem that the terminal performs cellular communication in the prior art.
  • the frequency range of terminal communication is extended, the data transmission rate of the terminal is improved, and the fading and distortion of the signal when the terminal and the millimeter wave base station perform millimeter wave communication are reduced, and the interference between the co-channel users is reduced. Effect.
  • FIG. 7 shows a block diagram of a base station controller provided by an embodiment of the present invention, which can be used to control at least one millimeter wave base station.
  • the base station controller 700 includes: A bus 705, and a processor 701, a memory 702, a transmitter 703, and a receiver 704 connected to the bus.
  • the memory 702 is configured to store a plurality of instructions, where the instructions are configured to be executed by the processor 701;
  • the processor 701 is configured to:
  • the transmitter 703 is configured to send uplink measurement configuration information to the millimeter wave base station, where the uplink measurement configuration information includes beam index information, where the uplink measurement configuration information is used to indicate that the millimeter wave base station is in the beam index information. Measuring, according to a corresponding beam, a power of the sounding reference signal sent by the terminal;
  • the terminal communicates with each millimeter wave base station corresponding to the at least one millimeter wave frequency band by using at least one beam index information corresponding to at least one millimeter wave frequency band.
  • the primary base station or the base station controller may specify which millimeter wave base stations measure the power of the sounding reference signals of the terminals. Specifically, the primary base station or the base station controller instructs the terminal to send the SRS on the beam corresponding to the at least one beam index information, and indicates the millimeter.
  • the wave base station measures the sounding reference signal of the terminal on a beam corresponding to the specific beam index information.
  • the beam index information in the embodiment of the present invention has the same function as the seventh beam index information in the embodiment shown in FIG. 1.
  • the millimeter wave base station sends the measurement result of the sounding reference signal to the base station controller after measuring the power of the sounding reference signal sent by the terminal.
  • the base station controller determines whether to serve the terminal according to the power of the sounding reference signal sent by the terminal; or, during the communication between the millimeter wave base station and the terminal, the base station controller Determining whether to continue to serve the terminal according to the power of the sounding reference signal sent by the terminal. For example, if the power of the sounding reference signal sent by the terminal is less than a certain threshold, the terminal is no longer suitable for communicating with the millimeter wave base station.
  • the base station controller may send a detection report to the primary base station, requesting the primary base station to update the set of millimeter wave base stations served by the terminal. If the power of the sounding reference signal sent by the terminal is not less than the threshold, the detection report is not sent.
  • processor 701 is further configured to:
  • a millimeter wave base station that transmits data to the terminal and beam index information used to transmit data to the terminal is determined according to the measurement report.
  • the base station controller indicates that the millimeter wave base station measures the sounding reference signal of the terminal on the beam corresponding to the specific beam index information, so that the terminal corresponds to at least one millimeter wave frequency band.
  • the communication on the beam corresponding to the beam index information solves the problem that the bandwidth of the terminal can be utilized when the terminal performs cellular communication in the prior art, and the frequency range of the terminal communication is extended, and the data transmission rate of the terminal is improved, and The fading and distortion of the signal when the terminal and the millimeter wave base station perform millimeter wave communication are reduced, and the interference between the co-channel users is reduced.
  • FIG. 8 is a block diagram of a base station controller according to an embodiment of the present invention.
  • the base station controller may be a base station controller in the embodiment shown in FIG. 1.
  • the base station controller may include:
  • the sending module 801 is configured to send uplink measurement configuration information to the millimeter wave base station, where the uplink measurement configuration information includes beam index information, where the uplink measurement configuration information is used to indicate that the millimeter wave base station is in the beam index information Measuring, according to a corresponding beam, a power of the sounding reference signal sent by the terminal;
  • the receiving module 802 is configured to receive, by the millimeter wave base station, a measurement result that includes the power of the sounding reference signal obtained by the measurement;
  • the indicating module 803 is configured to: when the power of the sounding reference signal is greater than a preset power threshold, instruct the millimeter wave base station to prepare to communicate with the terminal;
  • the terminal communicates with each millimeter wave base station corresponding to the at least one millimeter wave frequency band by using at least one beam index information corresponding to at least one millimeter wave frequency band.
  • the receiving module 802 is further configured to receive a measurement report sent by the millimeter wave base station, where the measurement report is a measurement report that is sent by the terminal according to the measurement result of the RRM measurement after performing the RRM measurement by the terminal;
  • the base station controller further includes:
  • the determining module 804 is configured to determine, according to the measurement report, a millimeter wave base station that transmits data to the terminal, and beam index information used to send data to the terminal.
  • the base station controller provided by the embodiment of the present invention indicates that the millimeter wave base station measures the sounding reference signal of the terminal on the beam corresponding to the specific beam index information, so that the terminal is at The communication is performed on a beam corresponding to at least one beam index information corresponding to one millimeter wave band, which solves the problem that the bandwidth of the terminal can be utilized when the terminal performs cellular communication in the prior art, thereby expanding the frequency range of the terminal communication and improving The data transmission rate of the terminal is reduced, and the fading and distortion of the signal when the terminal performs millimeter wave communication with the millimeter wave base station is reduced, and the effect of interference between co-channel users is reduced.
  • the base station controller may be independently disposed outside the primary base station and the millimeter wave base station, or the base station controller may also be The specific configuration mode of the base station controller is not limited in the embodiment of the present invention.
  • FIG. 9 is a flowchart of a millimeter wave cellular communication method according to an embodiment of the present invention.
  • the terminal corresponding to the millimeter wave cellular communication method may be the terminal in the embodiment shown in FIG. 1 , and the method The following steps can be performed using the terminal in the embodiment shown in FIG. 1:
  • the terminal acquires beam index information corresponding to a millimeter wave band.
  • the terminal communicates with the millimeter wave base station corresponding to the millimeter wave frequency band according to the beam index information.
  • the terminal Before receiving the beam index information corresponding to the millimeter wave band, the terminal may receive the radio resource reconfiguration message or the broadcast message sent by the primary base station or the millimeter wave base station, and obtain the millimeter wave frequency band corresponding to the radio resource reconfiguration message or the broadcast message. Beam index information.
  • the terminal may also negotiate with the primary base station or the millimeter wave base station to agree the beam index information; wherein the primary base station and the millimeter wave base station are the same base station or different base stations.
  • Each of the beam index information corresponds to one precoding codebook information or a set of antenna weight information, or each of the beam indexes corresponds to a plurality of precoding codebook information or sets of antenna weight information; wherein each The precoding codebook or each set of the antenna weight information uniquely determines a beam.
  • the beam index information is also associated with the feature information of the beam, and the primary base station transmits the beam-specific feature information on different beams, so that the UE identifies different beams according to different feature information.
  • the primary base station uses different reference signal sequences in different beams or broadcasts beam index information of the beam in different beams, and the UE can uniquely determine a specific beam according to the beam index information and the characteristic information of the beam.
  • the beam index information may also be used as a virtual cell identifier, that is, the same cell is further divided into different sectors or sub-sectors according to a plurality of wider beams. Beam indexing letter in the following embodiments of the present invention The function and usage of the information are the same as those of the embodiment, and will not be described below.
  • each of the beam index information corresponds to a sector or a coverage of a cell, or each of the beam index information corresponds to a sector or a part of a cell coverage; the beam index information is a primary index information.
  • N-level index information where N is an integer and N ⁇ 2; when the beam index information is N-level index information, an i-th index information in the beam index information is associated with the i+1-th index information; wherein The coverage of the corresponding beam of the i+1th index information is not greater than the coverage of the corresponding beam of the i-th index information, i is an integer, and 2 ⁇ i ⁇ N.
  • the UE may communicate with the millimeter wave base station by using the beam represented by the i-th level index information, or by using the (i+1)th index information.
  • the corresponding beam communicates with the millimeter wave base station.
  • the millimeter wave frequency band is configured as a service frequency band to the terminal, and the terminal communicates with the millimeter wave base station in the configured millimeter wave frequency band, which expands the frequency range of the terminal communication and improves the data transmission rate of the terminal.
  • the primary base station configures the cell corresponding to the millimeter wave band to the terminal, and the step of the terminal communicating with the millimeter wave base station may be as follows:
  • the user equipment performs downlink radio resource management measurement on the millimeter wave band to measure the received signal power of the cell reference signal or the channel quality indication reference signal of the millimeter wave band, and performs a first measurement report to the primary base station or the millimeter wave base station.
  • the primary base station determines that the UE has entered the coverage of the millimeter wave base station according to the first measurement report of the UE, and may configure one or more cells corresponding to the millimeter wave frequency as one or more secondary cells to the UE.
  • RRM measurement refers to the measurement used for mobility management, which is a measurement method filtered by the radio resource control layer.
  • F n is the latest measurement results of the filter, for evaluating the measurement report triggering criteria
  • F n-1 is the measurement result of the previous calculation of the filter
  • M n is the latest measurement results of the physical layer, a is based on different The coefficient determined by the demand is measured.
  • the primary base station or the millimeter wave base station configures the UE to measure one or more millimeter wave bands, and the configuration information includes at least a frequency range of the millimeter wave band, a CSI-RS port number, a subframe, and a scrambling code. So that the UE can measure and report according to the configuration information.
  • the primary base station or the millimeter wave base station may also determine that the UE enters the coverage of the millimeter wave base station according to the first measurement report and/or location information of the UE in the existing lower frequency band, such as the LTE frequency band.
  • the existing lower frequency band is provided by the primary base station or the millimeter wave base station, and the latter case requires the millimeter wave base station to simultaneously support the existing lower frequency band and the millimeter wave band.
  • the primary base station sends a request message to the millimeter wave base station or the base station controller, requesting to configure the millimeter wave base station as the SCell to the UE.
  • the primary base station carries at least the cell-radio network temporary identifier of the UE, the radio bearer configuration information, the radio resource configuration information of the primary base station, the identifier information of one or more millimeter wave base stations, and the like in the request message.
  • One or more of the millimeter wave base stations may be in the same frequency range, and the frequencies provided by the plurality of millimeter wave base stations may constitute the same SCell, in which case the frequency provided by the plurality of millimeter wave base stations has its physical cell identity and the evolved cell global The logo is the same.
  • the primary synchronization signal and the secondary synchronization reference signal transmitted by the plurality of millimeter wave base stations are the same, or the PSS and the SSS may be different to distinguish different millimeter wave base stations.
  • the CSI-RS port configuration of the frequency provided by the plurality of millimeter wave base stations may be different, so that different millimeter wave base stations may be distinguished according to the same; or, the CSI-RS port configurations of the frequencies provided by the plurality of millimeter wave base stations are the same, and the millimeter wave base station is not Make a distinction.
  • the one or more millimeter wave base stations may be in different frequency ranges, and the frequencies provided by the plurality of millimeter wave base stations are respectively different SCells, and the physical cell identifier and the evolved cell global identifier are different, and different PSS and SSS are transmitted.
  • the millimeter wave base station or the base station controller performs admission control, and agrees to configure the cell corresponding to the at least one millimeter wave band as the SCell to the UE, and sends a response message to the primary base station.
  • the response message may carry the following information: the UE's sounding reference signal configuration information, which is a C-RNTI allocated by the UE; on the other hand, the SRS configuration information may also be uniformly configured by the primary base station, so that the millimeter wave base station does not provide the SRS configuration information.
  • the millimeter wave base station may also not provide C-RNTI configuration information, so that the UE uses one C-RNTI uniformly allocated by the PCell in both the PCell and the SCell.
  • the response message further carries at least the following information: a frequency range of the millimeter wave, public radio resource configuration information, and dedicated radio resource configuration information.
  • the millimeter wave base station or the base station controller sends a notification message to all millimeter wave base stations in the cluster, so that all millimeter wave base stations in the cluster are ready to measure the SRS of the UE, and prepare resources for the UE according to their own measurements or notification messages of the base station controller.
  • the primary base station or the millimeter wave base station sends a radio resource reconfiguration message to the UE, and configures the SCell for the UE.
  • the radio resource reconfiguration message carries at least the radio resource configuration information related to the millimeter wave base station, and may also carry the radio resource configuration information of the primary base station.
  • the UE performs radio resource configuration, and sends a radio resource reconfiguration complete message to the primary base station.
  • the UE and one or more millimeter wave base stations perform a random access procedure to acquire uplink synchronization with one or more millimeter wave base stations.
  • the millimeter wave base station or the base station controller determines one or more millimeter wave base stations that communicate with the UE within a certain time according to the measurement of the SRS of the UE.
  • the millimeter wave base station or the base station controller may further notify the primary base station of the identifier information of the millimeter wave base station.
  • One or more millimeter wave base stations allocate resources for the UE and perform data communication with the UE, including downlink and/or uplink communication.
  • the millimeter wave base station measures the SRS of the UE, and determines whether to continue to serve the UE.
  • one or more millimeter wave base stations may no longer be suitable for data communication with the UE. For example, when it is measured that the SRS signal strength of the UE is below a certain threshold, it is determined that the UE needs to be logged out to serve.
  • the millimeter wave base station or the base station controller determines the millimeter wave base station that continues to serve the UE, the message is not sent to the primary base station. Steps 10-13 are not required.
  • the primary base station decides to update the set of millimeter wave base stations served by the UE.
  • the primary base station transmits identification information of the millimeter wave base station that needs to serve the UE to the millimeter wave base station or the base station controller.
  • the millimeter wave base station or the base station controller dynamically determines, according to the measurement result of the SRS of the UE, that one or more millimeter wave base stations allocate resources for the UE for downlink and/or uplink communication.
  • specific beam index information is set for the terminal, and the terminal communicates on the beam corresponding to the specific beam index information, thereby reducing the wireless signal in the propagation process when the terminal performs millimeter wave communication with the millimeter wave base station.
  • the terminal can perform random access, RRM measurement, and transmission of the sounding reference signal SRS by using beam index information corresponding to the specified millimeter wave band. For details, see the following steps.
  • the terminal selects a beam corresponding to part or all of the beam index information in the beam index information to communicate with the millimeter wave base station.
  • the terminal may also determine, in the beam index information, the first beam index information specified by the primary base station or the millimeter wave base station; the beam corresponding to the first beam index information and the millimeter wave base station Communicate.
  • the beam index information may be one or more, and the terminal may select some or all of the corresponding beams in the beam index information to receive and transmit data; or the primary base station or the millimeter wave base station in the beam index information.
  • One or more beam index information is specified, and the terminal performs data reception and transmission according to beam index information specified by the primary base station or the millimeter wave base station.
  • the terminal performs downlink radio resource management measurement according to the beam index information.
  • the beam index information may include second beam index information for RRM measurement, and the terminal performs RRM measurement according to the beam corresponding to the second beam index information to obtain a first measurement result, where the first measurement result includes a reference.
  • the UE may move between different beams faster. Therefore, the RRM measurement requirement for beam management may be more strict than in the existing LTE system, for example, every tens of milliseconds is evaluated to determine whether Further, the RRM measurement for millimeter-wave cell beam management may also refer to measurement by beam training in a broad sense, for example, the primary base station and the UE respectively transmit multiple beams in a cell range. And receiving the measurement signal to find the best matching beam pair. When communicating between such a pair of transmitting beams and receiving beams, the receiving efficiency is the highest and the transmitted data is also the most reliable. In this case, the measurement can be filtered through the RRC layer but measured.
  • the demand is more strict, or does not need to pass the RRC layer filtering, but directly uses the current measurement result, so that the host base station and the UE can achieve better transmission effect with smaller transmission power.
  • the meanings of the RRM measurement for the millimeter wave cell beam management in the following embodiments of the present invention are the same as those of the present embodiment, and will not be described below.
  • the terminal sends a first measurement report to the primary base station according to the first measurement result, where the first measurement report includes at least one of the following information: at least one beam index information with the highest RSRP and/or RSRQ, at the RSRP and/or Or the RSRP and/or RSRQ measurement result on the beam corresponding to the at least one beam index information of the highest RSRQ, the frequency information of the at least one beam index information of the highest RSRP and/or RSRQ, the highest of the RSRP and/or the RSRQ.
  • the serving cell information or the neighbor cell information is represented by a physical cell identifier PCI and/or a cell global identifier CGI.
  • the RRM measurement is performed by using a plurality of pre-configured fixed beam directions/widths, and the UE reports the RSRP/RSRQ measured on one or more beams with the best signal quality, and the corresponding beam is included in the report.
  • the information is indexed so that the primary base station performs scheduling according to the first measurement report.
  • the UE may also adaptively select and perform measurement from multiple beams, and select an RSRP/RSRQ information report on one or more beams with the best signal quality, and report the beam index information selected by the UE, for example, multiple Information on antenna weights.
  • the beam index information further includes third beam index information for candidate RRM measurement, and the terminal starts to use the third beam when the RSRP and/or RSRQ included in the first measurement result is lower than a pre-configured threshold.
  • the beam corresponding to the index information performs RRM measurement.
  • the UE may not measure the signals on the other beams. Or to measure signals on other beams in a larger period to select a better wider beam range in the same cell as the range of data communication.
  • the UE may also select a plurality of wider beam ranges with better signal quality and better spatial isolation, and the measurement periods may be the same or different to support multi-beam parallel operation.
  • the beam index information further includes fourth beam index information for performing intra-frequency measurement, and the terminal acquires measurement gap period information associated with the fourth beam index information; and the measurement indicated by the terminal in the measurement gap period information In the gap, the same frequency measurement of the millimeter wave band is performed according to the beam corresponding to the fourth beam index information.
  • the primary base station or the base station controller may preset measurement gap period information for the terminal, and associate the measurement interval period information with beam index information for performing intra-frequency measurement, only indicated by the measurement interval period information. The same frequency measurement is performed within the measurement gap.
  • the trigger condition may be set for the event that sends the first measurement report, for example, when the RSRP on the beam corresponding to the beam index information is lower than the preset value, and the RSRP on the beam corresponding to the other beam index information is still If the value is higher than the preset value, the first measurement report is triggered.
  • the terminal when the terminal communicates with the millimeter wave base station, it can communicate on the beam corresponding to the highest beam index information of RSRP and/or RSRQ.
  • the terminal performs random access according to the beam index information.
  • the terminal determines the fifth beam index information for the physical random access channel resource from the beam index information, and performs random access according to the beam corresponding to the fifth beam index information.
  • the terminal may select one beam index information from the beam index information as the fifth beam index information; or the terminal may index the beam, the primary base station or the millimeter wave
  • the beam index information designated by the base station for the physical random access channel resource is determined as the fifth beam index information.
  • the random access procedure may be contention based random access or non-contention based random access.
  • the primary base station or the base station controller allocates the accessed millimeter wave base station and the beam index information for access, that is, the fifth beam index information, and the terminal is in the fifth
  • the beam corresponding to the beam index information is sent by a preamble (mesh1); after the millimeter wave base station in the beam direction corresponding to the fifth beam index information receives the msg1, if the millimeter wave base station is the primary base station or
  • the base station controller allocates a base station for random access to the terminal, and the millimeter wave base station sends a random access response message (msg2) on the beam corresponding to the five beam index information, where the terminal is in the fifth beam index information.
  • msg2 random access response message
  • the corresponding beam receives a random access response message, where the random access response message may include information for at least one UE, where the UE sends msg1 using the same time-frequency domain resource; the UE according to the identifier on the physical downlink control channel, for example Random access - the temporary identifier of the wireless network to determine whether msg2 contains information for itself, when the RA-RNTI sends random access with itself
  • the UE determines that msg2 may include information for itself.
  • the UE further determines whether msg2 is included according to whether the preamble included in msg2 is consistent with the preamble used when transmitting msg1. Have information for yourself.
  • the calculation formula of the RA-RNTI may adopt the calculation method in the prior art LTE, as follows:
  • RA-RNTI 1+t_id+10*f_id;
  • t_id refers to a subframe in which the physical random access channel resource used by the UE to send msg1 is located
  • f_id refers to an index of the PRACH resource in the subframe
  • the time division duplex mode can be in different frequency ranges in one subframe.
  • a plurality of PRACH channel resources are configured, and a frequency range of each PRACH channel corresponds to index information of one frequency domain.
  • the terminal may also receive the random access response message msg2 in the beam corresponding to the beam index information; at this time, the msg2 may include the information of the UE transmitting the msg1 on the beam corresponding to the different beam index, and the calculation formula of the RA-RNTI may be
  • the beam index information is included to indicate that the UE corresponds to the beam corresponding to the beam index to send the msg1 message, so that the UE can more accurately determine whether the information of the UE is included in the msg2; the calculation formula of the RA-RNTI is as follows:
  • RA-RNTI 1+t_id+10*f_id+beam_idx;
  • beam_idx refers to the beam index information used by the UE when sending msg1.
  • the random access response message includes a sixth beam steering information
  • the terminal sends a random access message in a beam corresponding to the sixth beam index information, where the random access message includes an identifier of the terminal;
  • the contention resolution message includes an identifier of the terminal;
  • the identifier of the terminal is the terminal Cell-Radio Network Temporary Identity C-RNTI or System Architecture Evolution Temporary Mobile Station Identity S-TMSI.
  • the primary base station or the base station controller only allocates beam index information for access, that is, the fifth beam index information, for the terminal, instead of specifying the accessed millimeter wave base station for the terminal,
  • the terminal sends a random access preamble (msg1) to the beam corresponding to the fifth beam index information; after the millimeter wave base station in the beam direction corresponding to the fifth beam index information receives the msg1, the fifth beam index information
  • the sixth beam guiding information is included in the msg2, and the terminal sends a random access message (msg3) according to the sixth beam index information, where the msg3 includes the identifier of the terminal, and the terminal is in the sixth beam
  • the msg3 is received on the beam corresponding to the information. If the terminal is allowed to access, the msg4 including the terminal is sent on the same beam.
  • the terminal After receiving the msg4, the terminal detects that the msg4 includes its own identifier, and confirms that the access is successful. .
  • the method for determining whether the information is included in the msg2 is the same as the present embodiment, and the present invention is not described again.
  • the primary base station or the base station controller specifies beam index information for each random access preamble, and the UE may select to send msg1 to millimeters in a certain beam direction according to the measurement result of the RRM measurement in step 906.
  • Wave base station For example, the msg1 is transmitted according to the beam corresponding to the best beam index information of the signal in the previous reported RRM measurement result.
  • the millimeter wave base station detects the random access preamble in msg1 in an omnidirectional manner.
  • the millimeter wave base station transmits msg2 in the direction in which msg1 is received, where msg2 contains information of a plurality of UEs in the direction. Since the transmit beams generated by different UEs in the direction may be different, the millimeter wave base station adapts the beams of the multiple UEs to generate a new downlink beam, thereby using the same time-frequency domain.
  • the UE of the resource is able to receive msg2.
  • the UE may also move to other directions, so msg2 needs to be sent from multiple different directions, and the content of msg2 is also different, for example, the random access preambles included due to different UEs are different.
  • the UE receives msg2 only in the direction in which msg1 is transmitted.
  • the UE can also transmit msg1 using multiple beams simultaneously.
  • the probability that the primary base station detects the msg1 can be increased.
  • the terminal sends the sounding reference signal according to the beam index information.
  • the terminal receives the sounding reference signal configuration information sent by the primary base station; the terminal sends the sounding reference signal on the beam corresponding to the beam index information according to the sounding reference signal configuration information.
  • the primary base station or the millimeter wave base station controller indicates which millimeter wave base stations measure which SRSs of the UEs.
  • the UE transmits the SRS according to the beam corresponding to the plurality of pre-configured beam index information.
  • the millimeter wave base station measures the SRS of the designated UE and determines whether it is suitable for serving the UE. If so, the millimeter wave base station informs the base station controller or other millimeter wave base station that it will allocate time-frequency spatial domain resource information to the UE to avoid interference.
  • the base station controller may send a detection report to the primary base station, requesting the primary base station to update the set of millimeter wave base stations served by the terminal. If the power of the sounding reference signal sent by the terminal is not less than the threshold, the detection report is not sent.
  • the newly added millimeter wave base station notifies the mmB currently serving the terminal of the configuration information of the corresponding cell, such as the broadcast control channel, SSH, CRS, CSI-
  • the millimeter wave base station currently serving the terminal sends the configuration information to the UE, so that the UE can quickly access the target millimeter wave base station.
  • the terminal acquires beam index information corresponding to the millimeter wave band, and the beam corresponding to the beam index information communicates with the millimeter wave base station corresponding to the millimeter wave band, thereby solving the existing In the technology, when the terminal performs cellular communication, the problem of small bandwidth can be utilized, the frequency range of the terminal communication is expanded, and the effect of the data transmission rate of the terminal is improved.
  • the terminal performs communication, RRM measurement, and random access on the beam corresponding to the specified beam index information, so as to reduce the fading and distortion of the signal when the terminal and the millimeter wave base station perform millimeter wave communication. Reduce the effect of interference between co-channel users.
  • FIG. 10 is a flowchart of a method for a millimeter wave cellular communication method according to an embodiment of the present invention.
  • the primary base station corresponding to the millimeter wave communication method may be the base station in the embodiment shown in FIG.
  • the base station in the embodiment shown in FIG. 3 can be used to perform the following steps:
  • Step 1002 The primary base station configures, for the terminal, beam index information corresponding to the millimeter wave band, and the beam index information is used to indicate that the terminal communicates with the millimeter wave base station corresponding to the millimeter wave band by using a beam corresponding to the beam index information.
  • the primary base station may send a radio resource reconfiguration message including the beam index information to the terminal; or the primary base station may negotiate with the terminal to determine the beam index information.
  • the primary base station receives the measurement report sent by the terminal.
  • the measurement report is a report sent by the terminal according to the measurement result of the RRM measurement after the RRM measurement is performed by the terminal according to the beam corresponding to the first beam index information included in the beam index information.
  • the first beam index information in the embodiment of the present invention has the same function as the second beam index information in the corresponding embodiment of FIG. 9.
  • the primary base station performs data scheduling according to the measurement report.
  • the primary base station may determine, according to the measurement report, a millimeter wave base station that transmits data to the terminal, and beam index information used to send data to the terminal.
  • the primary base station sends the sounding reference signal configuration information of the cell in the millimeter wave frequency band to the terminal, and sends the uplink measurement configuration information to the millimeter wave base station.
  • the primary base station sends the sounding reference signal configuration information to the terminal, and the sounding reference signal configuration information is used to indicate that the terminal sends the sounding reference signal on the beam corresponding to the beam index information.
  • the primary base station sends uplink measurement configuration information to the millimeter wave base station, where the uplink measurement configuration information includes second beam index information, where the uplink measurement configuration information is used to indicate that the millimeter wave base station is in the second beam index information.
  • the power of the sounding reference signal transmitted by the terminal is measured on the corresponding beam.
  • the primary base station or the base station controller may specify which millimeter wave base stations measure the power of the sounding reference signals of the terminals. Specifically, the primary base station or the base station controller indicates the terminal is in the beam index information pair.
  • the SRS is transmitted on the corresponding beam, and the millimeter wave base station is instructed to measure the sounding reference signal of the terminal on the beam corresponding to the specific beam index information (second beam index information).
  • the second beam index information in the embodiment of the present invention has the same function as the seventh beam index information in the embodiment corresponding to FIG. 9.
  • the millimeter wave base station sends the measurement result of the sounding reference signal to the base station controller after measuring the power of the sounding reference signal sent by the terminal.
  • the base station controller determines whether to serve the terminal according to the power of the sounding reference signal sent by the terminal; or, during the communication between the millimeter wave base station and the terminal, the base station controller Determining whether to continue to serve the terminal according to the power of the sounding reference signal sent by the terminal. For example, if the power of the sounding reference signal sent by the terminal is less than a certain threshold, the terminal is no longer suitable for communicating with the millimeter wave base station.
  • the base station controller may send a detection report to the primary base station, requesting the primary base station to update the set of millimeter wave base stations served by the terminal. If the power of the sounding reference signal sent by the terminal is not less than the threshold, the detection report is not sent.
  • the primary base station configures the beam index information corresponding to the millimeter wave band for the terminal, so that the terminal communicates with the millimeter wave base station corresponding to the millimeter wave band through the beam corresponding to the beam index information.
  • the invention solves the problem that the bandwidth of the terminal can be utilized when the terminal performs cellular communication in the prior art, expands the frequency range of the terminal communication, improves the data transmission rate of the terminal, and reduces the millimeter wave communication between the terminal and the millimeter wave base station.
  • the fading and distortion of the signal reduces the interference between co-channel users.
  • FIG. 11 is a flowchart of a millimeter wave cellular communication method according to an embodiment of the present invention.
  • the millimeter wave base station corresponding to the millimeter wave communication method may be a base station in the embodiment shown in FIG. 5 , The method can perform the following steps by using the base station in the embodiment shown in FIG. 5:
  • Step 1102 The millimeter wave base station configures, for the terminal, beam index information corresponding to the millimeter wave band, and the beam index information is used to indicate that the terminal communicates with the millimeter wave base station corresponding to the millimeter wave band by using a beam corresponding to the beam index information.
  • the millimeter wave base station may send, to the terminal, a radio resource reconfiguration message or a broadcast message including beam index information;
  • the millimeter wave base station can negotiate with the terminal to determine beam index information.
  • the millimeter wave base station may further receive a measurement report sent by the terminal, where the measurement report is that the terminal performs RRM according to a beam corresponding to the first beam index information included in the beam index information.
  • the measurement report sent according to the measurement result of the RRM measurement the millimeter wave base station sends the measurement report to the base station controller, where the measurement report is used to instruct the base station controller to determine a millimeter wave base station that transmits data to the terminal, And beam index information used to transmit data to the terminal.
  • the first beam index information in the embodiment of the present invention has the same function as the second beam index information in the embodiment corresponding to FIG. 9 described above.
  • the millimeter wave base station may further send the sounding reference signal configuration information of the cell in the millimeter wave frequency band to the terminal, where the sounding reference signal configuration information is used to indicate that the terminal sends the sounding reference signal on the beam corresponding to the beam index information.
  • the millimeter wave base station receives a random access preamble sent by the terminal on a beam corresponding to the second beam index information used for the physical random access channel resource.
  • the millimeter wave base station sends a random access response message on the beam corresponding to the two beam index information.
  • the random access response message includes third beam steering information.
  • the millimeter wave base station receives the random access message in the beam corresponding to the third beam index information, where the random access message includes the identifier of the terminal.
  • the millimeter wave base station sends a contention resolution message in a beam corresponding to the third beam index; the contention resolution message includes an identifier of the terminal.
  • the identifier of the terminal is a cell-radio network temporary identifier C-RNTI or a system architecture evolved temporary mobile station identifier S-TMSI of the terminal.
  • the terminal may perform random access with the millimeter wave base station according to the second beam index information in the beam index information, where the random access may be a non-contention based random access procedure or a contention based random access.
  • the random access may be a non-contention based random access procedure or a contention based random access.
  • the second beam index information in the embodiment of the present invention has the same function as the fifth beam index information in the embodiment corresponding to FIG. 9 described above.
  • the third beam index information in the embodiment of the present invention has the same function as the sixth beam index information in the embodiment corresponding to FIG. 9 described above.
  • the millimeter wave base station receives uplink measurement configuration information sent by the primary base station or the base station controller, where the uplink measurement configuration information includes fourth beam index information.
  • the millimeter wave base station measures the power of the sounding reference signal sent by the terminal on the beam corresponding to the fourth beam index information.
  • the millimeter wave base station sends, to the base station controller, a measurement result that includes the power of the sounding reference signal obtained by the measurement, where the measurement result is used to indicate the work of the base station controller in the sounding reference signal
  • the millimeter wave base station is instructed to communicate with the terminal.
  • the fourth beam index information in the embodiment of the present invention has the same function as the seventh beam index information in the embodiment corresponding to FIG. 9 described above.
  • the primary base station or the base station controller may specify which millimeter wave base stations measure the power of the sounding reference signals of the terminals. Specifically, the primary base station or the base station controller instructs the terminal to transmit the SRS on the beam corresponding to the beam index information, and indicates the millimeter wave base station. The sounding reference signal of the terminal is measured on a beam corresponding to the specific beam index information (fourth beam index information).
  • the millimeter wave base station sends the measurement result of the sounding reference signal to the base station controller after measuring the power of the sounding reference signal sent by the terminal.
  • the base station controller determines whether to serve the terminal according to the power of the sounding reference signal sent by the terminal; or, during the communication between the millimeter wave base station and the terminal, the base station controller Determining whether to continue to serve the terminal according to the power of the sounding reference signal sent by the terminal. For example, if the power of the sounding reference signal sent by the terminal is less than a certain threshold, the terminal is no longer suitable for communicating with the millimeter wave base station.
  • the base station controller may send a detection report to the primary base station, requesting the primary base station to update the set of millimeter wave base stations served by the terminal. If the power of the sounding reference signal sent by the terminal is not less than the threshold, the detection report is not sent.
  • the millimeter wave base station communicates with the terminal through the beam corresponding to the beam index information corresponding to the millimeter wave band, thereby solving the problem that the terminal performs cellular communication in the prior art.
  • the problem of small bandwidth is utilized, the frequency range of the terminal communication is extended, the data transmission rate of the terminal is improved, and the fading and distortion of the signal when the terminal and the millimeter wave base station perform millimeter wave communication are reduced, and the co-channel user is reduced.
  • FIG. 12 is a flowchart of a method for millimeter wave cellular communication provided by an embodiment of the present invention.
  • the corresponding base station controller may be controlled by a base station in the embodiment shown in FIG. 7.
  • the method can perform the following steps by using the base station controller in the embodiment shown in FIG. 7:
  • Step 1202 The base station controller sends uplink measurement configuration information to the millimeter wave base station, where the uplink measurement configuration information includes beam index information, where the uplink measurement configuration information is used to indicate that the millimeter wave base station is on the beam corresponding to the beam index information.
  • the power of the sounding reference signal transmitted by the terminal is measured.
  • Step 1204 The base station controller receives, by the millimeter wave base station, a measurement result that includes the power of the sounding reference signal obtained by the measurement.
  • Step 1206 When the power of the sounding reference signal is greater than a preset power threshold, the base station controller indicates that the millimeter wave base station is ready to communicate with the terminal.
  • the terminal communicates with each millimeter wave base station corresponding to the millimeter wave frequency band by using beam index information corresponding to the millimeter wave frequency band.
  • the primary base station or the base station controller may specify which millimeter wave base stations measure the power of the sounding reference signals of the terminals. Specifically, the primary base station or the base station controller instructs the terminal to transmit the SRS on the beam corresponding to the beam index information, and indicates that the millimeter wave base station is The sounding reference signal of the terminal is measured on a beam corresponding to the specific beam index information.
  • the beam index information in the embodiment of the present invention has the same function as the seventh beam index information in the embodiment corresponding to FIG. 9 described above.
  • the millimeter wave base station sends the measurement result of the sounding reference signal to the base station controller after measuring the power of the sounding reference signal sent by the terminal.
  • the base station controller determines whether to serve the terminal according to the power of the sounding reference signal sent by the terminal; or, during the communication between the millimeter wave base station and the terminal, the base station controller Determining whether to continue to serve the terminal according to the power of the sounding reference signal sent by the terminal. For example, if the power of the sounding reference signal sent by the terminal is less than a certain threshold, the terminal is no longer suitable for communicating with the millimeter wave base station.
  • the base station controller may further receive a measurement report sent by the millimeter wave base station, where the measurement report is a measurement report sent by the terminal according to the measurement result of the RRM measurement after performing the RRM measurement;
  • the base station controller determines, based on the measurement report, a millimeter wave base station that transmits data to the terminal, and beam index information used to transmit data to the terminal.
  • the base station controller instructs the millimeter wave base station to measure the sounding reference signal of the terminal on the beam corresponding to the specific beam index information, so that the terminal is in the millimeter wave frequency band.
  • the communication is performed on the beam corresponding to the corresponding beam index information, which solves the problem that the bandwidth of the terminal can be utilized when the terminal performs cellular communication in the prior art, and the frequency range of the terminal communication is extended, and the data transmission rate of the terminal is improved.
  • the fading and distortion of the signal when the terminal and the millimeter wave base station perform millimeter wave communication are reduced, and the effect of interference between co-channel users is reduced.
  • the completion of the hardware may also be performed by a program to instruct related hardware.
  • the program may be stored in a computer readable storage medium.
  • the storage medium mentioned above may be a read only memory, a magnetic disk or an optical disk.

Abstract

本发明公开了一种终端、基站、基站控制器及毫米波蜂窝通信方法,属于无线通信技术领域。所述终端包括:总线,以及连接到所述总线的处理器、存储器、发射器和接收器。所述处理器,用于控制所述接收器获取至少一个毫米波频段对应的至少一个波束索引信息;通过所述至少一个波束索引信息所对应的波束与所述至少一个毫米波频段对应的毫米波基站进行通信。本发明解决了现有技术中终端进行蜂窝通信时,可利用带宽较小的问题,达到扩展了终端通信的频率范围,提高了终端的数据传输速率,且减小终端与毫米波基站进行毫米波通信时信号的衰落与失真,降低同信道用户间的干扰的效果。

Description

终端、基站、基站控制器及毫米波蜂窝通信方法 技术领域
本发明涉及无线通信技术领域,特别涉及一种终端、基站、基站控制器及毫米波蜂窝通信方法。
背景技术
随着分组业务和智能终端的迅速发展,为了给用户提供更好的网络体验,越来越多的大数据量业务正不断出现,相应的,这些大数据量的业务对于无线网络的传输速率和频谱的需求也在不断增加。
高级长期演进技术(英文:Long Term Evolution-Advanced,缩写:LTE-A)是LTE长期演进技术(英文:Long Term Evolution,缩写:LTE)的进一步演进。LTE-A提供的下行峰值速率和上行峰值速率分别可以达到了1Gbps和500Mbps。然而,现有技术中LTE-A所支持的最大带宽仅为100MHz,且可利用频谱范围有限,难以满足未来业务对容量和峰值数据速率的需求。
发明内容
为了解决现有技术中LTE-A所支持的最大带宽仅为100MHz,且可利用频谱范围有限,难以满足未来业务对容量和峰值数据速率的需求的问题,本发明实施例提供了一种终端、基站、基站控制器及毫米波蜂窝通信方法。所述技术方案如下:
第一方面,提供了一种终端,所述终端包括:总线,以及连接到所述总线的处理器、存储器、发射器和接收器。其中,所述存储器用于存储若干个指令,所述若干个指令被配置成由所述处理器执行;
所述处理器,用于:
控制所述接收器获取毫米波频段对应的波束索引信息;
通过所述波束索引信息所对应的波束与所述毫米波频段对应的毫米波基站进行通信。
在第一方面的第一种可能实现方式中,
所述处理器,还用于控制所述接收器接收主基站或所述毫米波基站发送的无线资源重配置消息或广播消息,获取所述无线资源重配置消息或广播消息中包含的所述波束索引信息;
或者,
所述处理器,还用于与主基站或者所述毫米波基站进行协商,以约定所述波束索引信息;
其中,所述主基站和所述毫米波基站为同一基站或者不同基站。
结合第一方面的第一种可能实现方式,在第一方面的第二种可能实现方式中,
所述处理器,还用于选择所述波束索引信息中的部分或者全部波束索引信息所对应的波束与所述毫米波基站进行通信;
或者,
所述处理器,还用于确定所述波束索引信息中,所述主基站或所述毫米波基站指定的第一波束索引信息,根据所述第一波束索引信息所对应的波束与所述毫米波基站进行通信。
结合第一方面或者第一方面的第一或者第二种可能实现方式,在第一方面的第三种可能实现方式中,每个所述波束索引信息对应于一个预编码码本信息或者一组天线权值信息,或者,每个所述波束索引对应于多个预编码码本信息或者多组天线权值信息;其中,每个所述预编码码本或每组所述天线权值信息唯一确定一个波束。
结合第一方面或者第一方面的第一或者第二种可能实现方式,在第一方面的第四种可能实现方式中,每个所述波束索引信息对应一个扇区或者一个小区的覆盖范围,或者,每个所述波束索引信息对应一个扇区或者一个小区的覆盖范围内的一部分;
所述波束索引信息为一级索引信息或者N级索引信息,N为整数且N≥2;
当所述波束索引信息为N级索引信息时,所述波束索引信息中的一个第i级索引信息关联第i+1级索引信息;其中,所述第i+1级索引信息对应波束的覆盖范围不大于所述第i级索引信息对应波束的覆盖范围,i为整数,且2≤i≤N。
结合第一方面或者第一方面的第一种可能实现方式,在第一方面的第五种可能实现方式中,所述波束索引信息包括用于无线资源管理RRM测量的第二 波束索引信息;
所述处理器,还用于:
根据所述第二波束索引信息所对应的波束进行RRM测量,获得第一测量结果,所述第一测量结果中包含参考信号接收功率RSRP和/或参考信号接收质量RSRQ;
控制所述发射器,根据所述第一测量结果向所述主基站或所述毫米波基站发送第一测量报告,所述第一测量报告包括以下信息中的至少一种:RSRP和/或RSRQ最高的波束索引信息、在所述RSRP和/或RSRQ最高的波束索引信息所对应的波束上的RSRP和/或RSRQ测量结果、所述RSRP和/或RSRQ最高的波束索引信息所在的频率信息、所述RSRP和/或RSRQ最高的波束索引信息所关联的服务小区信息、所述RSRP和/或RSRQ最高的波束索引信息所关联的邻居小区信息;
其中,所述服务小区信息或者所述邻居小区信息通过物理小区标识PCI和/或小区全局标识CGI表示。
结合第一方面的第五种可能实现方式,在第一方面的第六种可能实现中,所述波束索引信息还包括用于候选RRM测量的第三波束索引信息,
所述处理器,还用于在所述第一测量结果中包含的RSRP和/或RSRQ低于预配置门限时,控制所述发射器和所述接收器开始根据所述第三波束索引信息所对应的波束进行RRM测量。
结合第一方面的第五种可能实现方式,在第一方面的第七种可能实现中,所述波束索引信息还包括用于进行同频测量的第四波束索引信息,
所述处理器,还用于:
控制所述接收器获取所述第四波束索引信息关联的测量间隙周期信息;
在所述测量间隙周期信息所指示的测量间隙内,根据所述第四波束索引信息所对应的波束进行所述毫米波频段的同频测量。
结合第一方面的第五种可能实现方式,在第一方面的第八种可能实现中,所述处理器,还用于控制所述发射器和所述接收器,在RSRP和/或RSRQ最高的波束索引信息所对应的波束上与所述毫米波基站进行通信。
结合第一方面或者第一方面的第一种可能实现方式,在第一方面的第九种可能实现方式中,所述处理器,还用于:
从所述波束索引信息中确定用于物理随机接入信道资源的第五波束索引 信息;
根据所述第五波束索引信息所对应的波束进行随机接入。
结合第一方面的第九种可能实现方式,在第一方面的第十种可能实现方式中,
所述处理器,还用于从所述波束索引信息中选择一个波束索引信息作为所述第五波束索引信息;
或者,
所述处理器,还用于将所述波束索引信息中,所述主基站或者所述毫米波基站指定用于物理随机接入信道资源的波束索引信息确定为所述第五波束索引信息。
结合第一方面的第九种可能实现方式,在第一方面的第十一种可能实现方式中,
所述处理器,还用于:
控制所述发射器,在所述第五波束索引信息所对应的波束发送随机接入前导;
控制所述接收器,在所述第五波束索引信息所对应的波束接收随机接入响应消息,或者,在所述波束索引信息所对应的波束接收随机接入响应消息。
结合第一方面的第十种可能实现方式,在第一方面的第十二种可能实现方式中,所述随机接入响应消息中包含第六波束索引信息,
所述处理器,还用于:
控制所述发射器,在所述第六波束索引信息所对应的波束发送随机接入消息,所述随机接入消息中包含所述终端的标识;
控制所述接收器,在所述第六波束索引所对应的波束接收竞争解决消息,或者,在所述波束索引信息所对应的波束接收竞争解决消息;所述竞争解决消息包含所述终端的标识;
所述终端的标识为所述终端的小区-无线网络临时标识C-RNTI或系统架构演进临时移动站标识S-TMSI。
在第一方面的第十三种可能实现方式中,
所述处理器,还用于:
控制所述接收器,接收所述主基站或毫米波基站发送的所述毫米波频段上的小区的探测参考信号配置信息;
根据所述探测参考信号配置信息,控制所述发射器在所述波束索引信息所对应的波束上发送探测参考信号。
第二方面,提供了一种终端,所述终端包括:
接收模块,用于获取毫米波频段对应的波束索引信息;
通信模块,用于通过所述波束索引信息所对应的波束与所述毫米波频段对应的毫米波基站进行通信。
在第二方面的第一种可能实现方式中,
所述接收模块,还用于:
接收主基站或所述毫米波基站发送的无线资源重配置消息或广播消息;
获取所述无线资源重配置消息或所述广播消息中包含的所述波束索引信息;
所述通信模块,还用于与主基站或者所述毫米波基站进行协商,以约定所述波束索引信息;
其中,所述主基站和所述毫米波基站为同一基站或者不同基站。
结合第二方面的第一种可能实现方式,在第二方面的第二种可能实现方式中,
所述通信模块,还用于:
选择所述波束索引信息中的部分或者全部波束索引信息所对应的波束与所述毫米波基站进行通信;
或者,
确定所述波束索引信息中,所述主基站或所述毫米波基站指定的第一波束索引信息;根据所述第一波束索引信息所对应的波束与所述毫米波基站进行通信。
结合第二方面或者第二方面的第一或者第二种可能实现方式,在第二方面的第三种可能实现方式中,每个所述波束索引信息对应于一个预编码码本信息或者一组天线权值信息,或者,每个所述波束索引对应于多个预编码码本信息或者多组天线权值信息;其中,每个所述预编码码本或每组所述天线权值信息唯一确定一个波束。
结合第二方面或者第二方面的第一或者第二种可能实现方式,在第二方面的第四种可能实现方式中,每个所述波束索引信息对应一个扇区或者一个小区的覆盖范围,或者,每个所述波束索引信息对应一个扇区或者一个小区的覆盖 范围内的一部分;
所述波束索引信息为一级索引信息或者N级索引信息,N为整数且N≥2;
当所述波束索引信息为N级索引信息时,所述波束索引信息中的一个第i级索引信息关联第i+1级索引信息;其中,所述第i+1级索引信息对应波束的覆盖范围不大于所述第i级索引信息对应波束的覆盖范围,i为整数,且2≤i≤N。
结合第二方面或者第二方面的第一种可能实现方式,在第二方面的第五种可能实现方式中,所述波束索引信息包括用于无线资源管理RRM测量的第二波束索引信息,所述终端还包括:
测量模块,用于根据所述第二波束索引信息所对应的波束进行RRM测量,获得第一测量结果,所述第一测量结果中包含参考信号接收功率RSRP和/或参考信号接收质量RSRQ;
发送模块,用于根据所述第一测量结果向所述主基站或所述毫米波基站发送第一测量报告,所述第一测量报告包括以下信息中的至少一种:RSRP和/或RSRQ最高的波束索引信息、在所述RSRP和/或RSRQ最高的波束索引信息所对应的波束上的RSRP和/或RSRQ测量结果、所述RSRP和/或RSRQ最高的波束索引信息所在的频率信息、所述RSRP和/或RSRQ最高的波束索引信息所关联的服务小区信息、所述RSRP和/或RSRQ最高的波束索引信息所关联的邻居小区信息;
其中,所述服务小区信息或者所述邻居小区信息通过物理小区标识PCI和/或小区全局标识CGI表示。
结合第二方面的第五种可能实现方式,在第二方面的第六种可能实现中,所述波束索引信息还包括用于候选RRM测量的第三波束索引信息,所述测量模块,还用于:
在所述第一测量结果中包含的RSRP和/或RSRQ低于预配置门限时,开始根据所述第三波束索引信息所对应的波束进行RRM测量。
结合第二方面的第五种可能实现方式,在第二方面的第七种可能实现中,所述波束索引信息还包括用于进行同频测量的第四波束索引信息,
所述接收模块,还用于获取所述第四波束索引信息关联的测量间隙周期信息;
所述测量模块,还用于在所述测量间隙周期信息所指示的测量间隙内,根 据所述第四波束索引信息所对应的波束进行所述毫米波频段的同频测量。
结合第二方面的第五种可能实现方式,在第二方面的第八种可能实现中,所述通信模块,还用于所述终端在RSRP和/或RSRQ最高的波束索引信息所对应的波束上与所述毫米波基站进行通信。
结合第二方面或者第二方面的第一种可能实现方式,在第二方面的第九种可能实现方式中,所述终端还包括:
确定模块,用于从所述波束索引信息中确定用于物理随机接入信道资源的第五波束索引信息;
接入模块,用于根据所述第五波束索引信息所对应的波束进行随机接入。
结合第二方面的第九种可能实现方式,在第二方面的第十种可能实现方式中,所述确定模块,具体用于:
从所述波束索引信息中选择一个波束索引信息作为所述第五波束索引信息;
或者,
将所述波束索引信息中,所述主基站或者所述毫米波基站指定用于物理随机接入信道资源的波束索引信息确定为所述第五波束索引信息。
结合第二方面的第九种可能实现方式,在第二方面的第十一种可能实现方式中,
所述发送模块,还用于在所述第五波束索引信息所对应的波束发送随机接入前导;
所述接收模块,还用于:
在所述第五波束索引信息所对应的波束接收随机接入响应消息;
或者,
在所述波束索引信息所对应的波束接收随机接入响应消息。
结合第二方面的第十种可能实现方式,在第二方面的第十二种可能实现方式中,所述随机接入响应消息中包含第六波束指引信息,
所述发送模块,还用于在所述第六波束索引信息所对应的波束发送随机接入消息,所述随机接入消息中包含所述终端的标识;
所述接收模块,还用于:
在所述第六波束索引所对应的波束接收竞争解决消息;
或者,
在所述波束索引信息所对应的波束接收竞争解决消息;所述竞争解决消息包含所述终端的标识;
所述终端的标识为所述终端的小区-无线网络临时标识C-RNTI或系统架构演进临时移动站标识S-TMSI。
在第二方面的第十三种可能实现方式中,
所述接收模块,还用于接收所述主基站或所述毫米波基站发送的所述毫米波频段上的小区的探测参考信号配置信息;
所述发送模块,还用于根据所述探测参考信号配置信息,在所述波束索引信息所对应的波束上发送探测参考信号。
第三方面,提供了一种基站,所述基站包括:总线,以及连接到所述总线的处理器、存储器、发射器和接收器。其中,所述存储器用于存储若干个指令,所述若干个指令被配置成由所述处理器执行;
所述处理器,用于为终端配置毫米波频段对应的波束索引信息;所述波束索引信息用于指示所述终端通过所述波束索引信息所对应的波束与所述毫米波频段对应的毫米波基站进行通信。
在第三方面的第一种可能实现方式中,
所述处理器,还用于控制所述发射器向所述终端发送包含有所述波束索引信息的无线资源重配置消息或广播消息;
或者,
所述处理器,还用于与所述终端协商确定所述波束索引信息。
结合第三方面或者第三方面的第一种可能实现方式,在第三方面的第二种可能实现方式中,
所述处理器,还用于:
控制所述接收器接收所述终端发送的测量报告,所述测量报告为所述终端根据所述波束索引信息中包含的第一波束索引信息所对应的波束进行RRM测量后,根据所述RRM测量的测量结果发送的报告;
根据所述测量报告确定向所述终端发送数据的毫米波基站,以及向所述终端发送数据所使用的波束索引信息。
结合第三方面或者第三方面的第一种可能实现方式,在第三方面的第三种可能实现方式中,
所述处理器,还用于控制所述发射器向所述终端发送所述毫米波频段上的 小区的探测参考信号配置信息,所述探测参考信号配置信息用于指示所述终端在所述波束索引信息所对应的波束上发送探测参考信号。
结合第三方面或者第三方面的第一种可能实现方式,在第三方面的第四种可能实现方式中,
所述处理器,还用于控制所述发射器向所述毫米波基站发送上行测量配置信息,所述上行测量配置信息中包含有第二波束索引信息,所述上行测量配置信息用于指示所述毫米波基站在所述第二波束索引信息所对应的波束上测量所述终端发送的探测参考信号的功率。
第四方面,提供了一种基站,所述基站包括:
配置模块,用于为终端配置毫米波频段对应的波束索引信息;所述波束索引信息用于指示所述终端通过所述波束索引信息所对应的波束与所述毫米波频段对应的毫米波基站进行通信。
在第四方面的第一种可能实现方式中,还包括:
发送模块,用于向所述终端发送包含有所述波束索引信息的无线资源重配置消息或广播消息;
或者,
所述基站还包括:协商模块,用于与所述终端协商确定所述波束索引信息。
结合第四方面或者第四方面的第一种可能实现方式,在第四方面的第二种可能实现方式中,所述基站还包括:
接收模块,用于接收所述终端发送的测量报告,所述测量报告为所述终端根据所述波束索引信息中包含的第一波束索引信息所对应的波束进行RRM测量后,根据所RRM测量的测量结果发送的报告;
确定模块,用于根据所述测量报告确定向所述终端发送数据的毫米波基站,以及向所述终端发送数据所使用的波束索引信息。
结合第四方面或者第四方面的第一种可能实现方式,在第四方面的第三种可能实现方式中,
所述发送模块,还用于向所述终端发送所述毫米波频段上的小区的探测参考信号配置信息,所述探测参考信号配置信息用于指示所述终端在所述波束索引信息所对应的波束上发送探测参考信号。
结合第四方面或者第四方面的第一种可能实现方式,在第四方面的第四种可能实现方式中,
所述发送模块,还用于向所述毫米波基站发送上行测量配置信息,所述上行测量配置信息中包含有第二波束索引信息,所述上行测量配置信息用于指示所述毫米波基站在所述第二波束索引信息所对应的波束上测量所述终端发送的探测参考信号的功率。
第五方面,提供了一种基站,所述基站包括:总线,以及连接到所述总线的处理器、存储器、发射器和接收器。其中,所述存储器用于存储若干个指令,所述若干个指令被配置成由所述处理器执行;
所述处理器,用于为终端配置毫米波频段对应的波束索引信息;所述波束索引信息用于指示所述终端通过所述波束索引信息所对应的波束与所述毫米波频段对应的毫米波基站进行通信。
在第五方面的第一种可能实现方式中,所述处理器,还用于控制所述发射器向所述终端发送包含有所述波束索引信息的无线资源重配置消息或广播消息;
或者,
所述处理器,还用于与所述终端协商确定所述波束索引信息。
结合第五方面或者第五方面的第一种可能实现方式,在第五方面的第二种可能实现方式中,所述处理器,还用于:
控制所述接收器接收所述终端发送的测量报告,所述测量报告为所述终端根据所述波束索引信息中包含的第一波束索引信息所对应的波束进行RRM测量后,根据所述RRM测量的测量结果发送的测量报告;
控制所述发射器将所述测量报告发送给基站控制器,所述测量报告用于指示所述基站控制器确定向所述终端发送数据的毫米波基站,以及向所述终端发送数据所使用的波束索引信息。
结合第五方面或者第五方面的第一种可能实现方式,在第五方面的第三种可能实现方式中,所述处理器,还用于控制所述发射器向所述终端发送毫米波频段上的小区的探测参考信号配置信息,所述探测参考信号配置信息用于指示所述终端在所述波束索引信息所对应的波束上发送探测参考信号。
在第五方面的第四种可能实现方式中,
所述处理器,还用于:
控制所述接收器接收所述终端在用于物理随机接入信道资源的第二波束索引信息所对应的波束上发送的随机接入前导;
控制所述发射器在所述第二波束索引信息所对应的波束上发送随机接入响应消息。
结合第五方面的第四种可能实现方式,
所述随机接入响应消息中包含第三波束指引信息,
所述处理器,还用于:
控制所述接收器在所述第三波束索引信息所对应的波束接收随机接入消息,所述随机接入消息中包含所述终端的标识;
控制所述发射器在所述第三波束索引所对应的波束发送竞争解决消息;所述竞争解决消息包含所述终端的标识;
所述终端的标识为所述终端的小区-无线网络临时标识C-RNTI或系统架构演进临时移动站标识S-TMSI。
结合第五方面或者第五方面第一至第五种可能实现方式中的任一种可能实现方式,在第五方面的第六种可能实现方式中,
所述处理器,还用于:
控制所述接收器接收主基站或者基站控制器发送的上行测量配置信息,所述上行测量配置信息中包含有第四波束索引信息;
在所述第四波束索引信息所对应的波束上测量所述终端发送的探测参考信号的功率;
控制所述发射器向所述基站控制器发送包含测量获得的所述探测参考信号的功率的测量结果,所述测量结果用于指示所述基站控制器在所述探测参考信号的功率大于预设的功率阈值时,指示所述毫米波基站准备与所述终端进行通信。
第六方面,提供了一种基站,所述基站包括:
配置模块,用于为终端配置毫米波频段对应的波束索引信息;所述波束索引信息用于指示所述终端通过所述波束索引信息所对应的波束与所述毫米波频段对应的毫米波基站进行通信。
在第六方面的第一种可能实现方式中,
,还包括:发送模块,用于向所述终端发送包含有所述波束索引信息的无线资源重配置消息或广播消息;
或者,
所述基站还包括:协商模块,用于与所述终端协商确定所述波束索引信息。
结合第六方面或者第六方面的第一种可能实现方式,在第六方面的第二种可能实现方式中,所述基站还包括:
接收模块,用于接收所述终端发送的测量报告,所述测量报告为所述终端根据所述波束索引信息中包含的第一波束索引信息所对应的波束进行RRM测量后,根据所述RRM测量的测量结果发送的测量报告;
所述发送模块,还用于将所述测量报告发送给基站控制器,所述测量报告用于指示所述基站控制器确定向所述终端发送数据的毫米波基站,以及向所述终端发送数据所使用的波束索引信息。
结合第六方面或者第六方面的第一种可能实现方式,在第六方面的第三种可能实现方式中,所述基站还包括:
所述发送模块,还用于向所述终端发送毫米波频段上的小区的探测参考信号配置信息,所述探测参考信号配置信息用于指示所述终端在所述波束索引信息所对应的波束上发送探测参考信号。
在第六方面的第四种可能实现方式中,所述基站还包括:
所述接收模块,还用于接收所述终端在用于物理随机接入信道资源的第二波束索引信息所对应的波束上发送的随机接入前导;
所述发送模块,还用于在所述第二波束索引信息所对应的波束上发送随机接入响应消息。
结合第六方面的第四种可能实现方式,在第六方面的第五种可能实现方式中,所述随机接入响应消息中包含第三波束指引信息:
所述接收模块,还用于在所述第三波束索引信息所对应的波束接收随机接入消息,所述随机接入消息中包含所述终端的标识;
所述发送模块,还用于在所述第三波束索引所对应的波束发送竞争解决消息;所述竞争解决消息包含所述终端的标识;
所述终端的标识为所述终端的小区-无线网络临时标识C-RNTI或系统架构演进临时移动站标识S-TMSI。
结合第六方面或者第六方面第一至第五种可能实现方式中的任一种可能实现方式,在第六方面的第六种可能实现方式中,
所述接收模块,还用于接收主基站或者基站控制器发送的上行测量配置信息,所述上行测量配置信息中包含有第四波束索引信息;
所述基站还包括:测量模块,用于在所述第四波束索引信息所对应的波束 上测量所述终端发送的探测参考信号的功率;
所述发送模块,还用于发送包含测量获得的所述探测参考信号的功率的测量结果,所述测量结果用于指示所述基站控制器在所述探测参考信号的功率大于预设的功率阈值时,指示所述毫米波基站准备与所述终端进行通信。
第七方面,提供了一种基站控制器,所述基站控制器包括:总线,以及连接到所述总线的处理器、存储器、发射器和接收器。其中,所述存储器用于存储若干个指令,所述若干个指令被配置成由所述处理器执行;
所述处理器,用于:
控制所述发射器向毫米波基站发送上行测量配置信息,所述上行测量配置信息中包含有波束索引信息,所述上行测量配置信息用于指示所述毫米波基站在所述波束索引信息所对应的波束上测量所述终端发送的探测参考信号的功率;
控制所述接收器接收所述毫米波基站发送的,包含测量获得的所述探测参考信号的功率的测量结果;
在所述探测参考信号的功率大于预设的功率阈值时,指示所述毫米波基站准备与所述终端进行通信;
其中,所述终端通过毫米波频段对应的波束索引信息与所述毫米波频段对应的各个毫米波基站进行通信。
在第七方面的第一种可能实现方式中,所述处理器,还用于:
控制所述接收器接收所述毫米波基站发送的测量报告,所述测量报告为所述终端根据进行RRM测量后,根据所述RRM测量的测量结果发送的测量报告;
根据所述测量报告确定向所述终端发送数据的毫米波基站,以及向所述终端发送数据所使用的波束索引信息。
第八方面,提供了一种基站控制器,所述基站控制器包括:
发送模块,用于向毫米波基站发送上行测量配置信息,所述上行测量配置信息中包含有波束索引信息,所述上行测量配置信息用于指示所述毫米波基站在所述波束索引信息所对应的波束上测量所述终端发送的探测参考信号的功率;
接收模块,用于接收所述毫米波基站发送的,包含测量获得的所述探测参考信号的功率的测量结果;
指示模块,用于在所述探测参考信号的功率大于预设的功率阈值时,指示所述毫米波基站准备与所述终端进行通信;
其中,所述终端通过毫米波频段对应的波束索引信息与所述毫米波频段对应的各个毫米波基站进行通信。
在第八方面的第一种可能实现方式中,
所述接收模块,还用于接收所述毫米波基站发送的测量报告,所述测量报告为所述终端根据进行RRM测量后,根据所述RRM测量的测量结果发送的测量报告;
所述装置还包括:确定模块,用于根据所述测量报告确定向所述终端发送数据的毫米波基站,以及向所述终端发送数据所使用的波束索引信息。
第九方面,提供了一种毫米波蜂窝通信方法,所述方法包括:
终端获取毫米波频段对应的波束索引信息;
所述终端通过所述波束索引信息所对应的波束与所述毫米波频段对应的毫米波基站进行通信。
在第九方面的第一种可能实现方式中,所述终端获取毫米波频段对应的波束索引信息,包括:
接收主基站或所述毫米波基站发送的无线资源重配置消息或广播消息,获取所述无线资源重配置消息或所述广播消息中包含的所述波束索引信息;
或者,
与主基站或者所述毫米波基站进行协商,以约定所述波束索引信息;
其中,所述主基站和所述毫米波基站为同一基站或者不同基站。
结合第九方面的第一种可能实现方式,在第九方面的第二种可能实现方式中,所述终端通过所述波束索引信息所对应的波束与所述毫米波频段对应的毫米波基站进行通信,包括:
选择所述波束索引信息中的部分或者全部波束索引信息所对应的波束与所述毫米波基站进行通信;
或者,
确定所述波束索引信息中,所述主基站或所述毫米波基站指定的第一波束索引信息;根据所述第一波束索引信息所对应的波束与所述毫米波基站进行通信。
结合第九方面或者第九方面的第一或者第二种可能实现方式,在第九方面 的第三种可能实现方式中,每个所述波束索引信息对应于一个预编码码本信息或者一组天线权值信息,或者,每个所述波束索引对应于多个预编码码本信息或者多组天线权值信息;其中,每个所述预编码码本或每组所述天线权值信息唯一确定一个波束。
结合第九方面或者第九方面的第一或者第二种可能实现方式,在第九方面的第四种可能实现方式中,每个所述波束索引信息对应一个扇区或者一个小区的覆盖范围,或者,每个所述波束索引信息对应一个扇区或者一个小区的覆盖范围内的一部分;
所述波束索引信息为一级索引信息或者N级索引信息,N为整数且N≥2;
当所述波束索引信息为N级索引信息时,所述波束索引信息中的一个第i级索引信息关联第i+1级索引信息;其中,所述第i+1级索引信息对应波束的覆盖范围不大于所述第i级索引信息对应波束的覆盖范围,i为整数,且2≤i≤N。
结合第九方面或者第九方面的第一种可能实现方式,在第九方面的第五种可能实现方式中,所述波束索引信息包括用于无线资源管理RRM测量的第二波束索引信息,所述方法还包括:
所述终端根据所述第二波束索引信息所对应的波束进行RRM测量,获得第一测量结果,所述第一测量结果中包含参考信号接收功率RSRP和/或参考信号接收质量RSRQ;
所述终端根据所述第一测量结果向所述主基站或所述毫米波基站发送第一测量报告,所述第一测量报告包括以下信息中的至少一种:RSRP和/或RSRQ最高的波束索引信息、在所述RSRP和/或RSRQ最高的波束索引信息所对应的波束上的RSRP和/或RSRQ测量结果、所述RSRP和/或RSRQ最高的波束索引信息所在的频率信息、所述RSRP和/或RSRQ最高的波束索引信息所关联的服务小区信息、所述RSRP和/或RSRQ最高的波束索引信息所关联的邻居小区信息;
其中,所述服务小区信息或者所述邻居小区信息通过物理小区标识PCI和/或小区全局标识CGI表示。
结合第九方面的第五种可能实现方式,在第九方面的第六种可能实现中,所述波束索引信息还包括用于候选RRM测量的第三波束索引信息,所述方法还包括:
所述终端在所述第一测量结果中包含的RSRP和/或RSRQ低于预配置门限时,开始根据所述第三波束索引信息所对应的波束进行RRM测量。
结合第九方面的第五种可能实现方式,在第九方面的第七种可能实现中,所述波束索引信息还包括用于进行同频测量的第四波束索引信息,所述方法还包括:
所述终端获取所述第四波束索引信息关联的测量间隙周期信息;
所述终端在所述测量间隙周期信息所指示的测量间隙内,根据所述第四波束索引信息所对应的波束进行所述毫米波频段的同频测量。
结合第九方面的第五种可能实现方式,在第九方面的第八种可能实现中,所述终端通过所述波束索引信息所对应的波束与所述毫米波频段对应的毫米波基站进行通信,包括:
所述终端在RSRP和/或RSRQ最高的波束索引信息所对应的波束上与所述毫米波基站进行通信。
结合第九方面或者第九方面的第一种可能实现方式,在第九方面的第九种可能实现方式中,所述方法还包括:
所述终端从所述波束索引信息中确定用于物理随机接入信道资源的第五波束索引信息;
所述终端根据所述第五波束索引信息所对应的波束进行随机接入。
结合第九方面的第九种可能实现方式,在第九方面的第十种可能实现方式中,所述终端从所述波束索引信息中确定用于物理随机接入信道资源的第五波束索引信息,包括:
从所述波束索引信息中选择一个波束索引信息作为所述第五波束索引信息;
或者,
将所述波束索引信息中,所述主基站或者所述毫米波基站指定用于物理随机接入信道资源的波束索引信息确定为所述第五波束索引信息。
结合第九方面的第九种可能实现方式,在第九方面的第十一种可能实现方式中,所述终端根据所述第五波束索引信息所对应的波束进行随机接入,包括:
在所述第五波束索引信息所对应的波束发送随机接入前导;
在所述第五波束索引信息所对应的波束接收随机接入响应消息;或者,在所述波束索引信息所对应的波束接收随机接入响应消息。
结合第九方面的第十种可能实现方式,在第九方面的第十二种可能实现方式中,所述随机接入响应消息中包含第六波束指引信息,所述方法还包括:
所述终端在所述第六波束索引信息所对应的波束发送随机接入消息,所述随机接入消息中包含所述终端的标识;
所述终端在所述第六波束索引所对应的波束接收竞争解决消息,或者,所述终端在所述波束索引信息所对应的波束接收竞争解决消息;所述竞争解决消息包含所述终端的标识;
所述终端的标识为所述终端的小区-无线网络临时标识C-RNTI或系统架构演进临时移动站标识S-TMSI。
在第九方面的第十三种可能实现方式中,所述方法还包括:
所述终端接收主基站或所述毫米波基站发送的所述毫米波频段上的小区的探测参考信号配置信息;
所述终端根据所述探测参考信号配置信息,在所述波束索引信息所对应的波束上发送探测参考信号。
第十方面,提供了一种毫米波蜂窝通信方法,所述方法包括:
主基站为终端配置毫米波频段对应的波束索引信息;所述波束索引信息用于指示所述终端通过所述波束索引信息所对应的波束与所述毫米波频段对应的毫米波基站进行通信。
在第十方面的第一种可能实现方式中,所述主基站为终端配置毫米波频段对应的波束索引信息,包括:
向所述终端发送包含有所述波束索引信息的无线资源重配置消息或广播消息;
或者,
与所述终端协商确定所述波束索引信息。
结合第十方面或者第十方面的第一种可能实现方式,在第十方面的第二种可能实现方式中,所述方法还包括:
所述主基站接收所述终端发送的测量报告,所述测量报告为所述终端根据所述波束索引信息中包含的第一波束索引信息所对应的波束进行RRM测量后,根据所述RRM测量的测量结果发送的测量报告;
所述主基站根据所述测量报告确定向所述终端发送数据的毫米波基站,以及向所述终端发送数据所使用的波束索引信息。
结合第十方面或者第十方面的第一种可能实现方式,在第十方面的第三种可能实现方式中,所述方法还包括:
所述主基站向所述终端发送所述毫米波频段上的小区的探测参考信号配置信息,所述探测参考信号配置信息用于指示所述终端在所述波束索引信息所对应的波束上发送探测参考信号。
结合第十方面或者第十方面的第一种可能实现方式,在第十方面的第四种可能实现方式中,所述方法还包括:
所述主基站向所述毫米波基站发送上行测量配置信息,所述上行测量配置信息中包含有第二波束索引信息,所述上行测量配置信息用于指示所述毫米波基站在所述第二波束索引信息所对应的波束上测量所述终端发送的探测参考信号的功率。
第十一方面,提供了一种毫米波蜂窝通信方法,所述方法包括:
毫米波基站为终端配置毫米波频段对应的波束索引信息;所述波束索引信息用于指示所述终端通过所述波束索引信息所对应的波束与所述毫米波频段对应的毫米波基站进行通信。
在第十一方面的第一种可能实现方式中,所述毫米波基站为终端配置毫米波频段对应的波束索引信息,包括:
向所述终端发送包含有所述波束索引信息的无线资源重配置消息或广播消息;
或者,
与所述终端协商确定所述波束索引信息。
结合第十一方面或者第十一方面的第一种可能实现方式,在第十一方面的第二种可能实现方式中,所述方法还包括:
所述毫米波基站接收所述终端发送的测量报告,所述测量报告为所述终端根据所述波束索引信息中包含的第一波束索引信息所对应的波束进行RRM测量后,根据所述RRM测量的测量结果发送的测量报告;
所述毫米波基站将所述测量报告发送给基站控制器,所述测量报告用于指示所述基站控制器确定向所述终端发送数据的毫米波基站,以及向所述终端发送数据所使用的波束索引信息。
结合第十一方面或者第十一方面的第一种可能实现方式,在第十一方面的第三种可能实现方式中,所述方法还包括:
所述毫米波基站向所述终端发送毫米波频段上的小区的探测参考信号配置信息,所述探测参考信号配置信息用于指示所述终端在所述波束索引信息所对应的波束上发送探测参考信号。
在第十一方面的第四种可能实现方式中,所述方法还包括:
所述毫米波基站接收所述终端在用于物理随机接入信道资源的第二波束索引信息所对应的波束上发送的随机接入前导;
所述毫米波基站在所述二波束索引信息所对应的波束上发送随机接入响应消息。
结合第十一方面的第四种可能实现方式,在第十一方面的第五种可能实现方式中,所述随机接入响应消息中包含第三波束指引信息,所述方法还包括:
所述毫米波基站在所述第三波束索引信息所对应的波束接收随机接入消息,所述随机接入消息中包含所述终端的标识;
所述毫米波基站在所述第三波束索引所对应的波束发送竞争解决消息;所述竞争解决消息包含所述终端的标识;
所述终端的标识为所述终端的小区-无线网络临时标识C-RNTI或系统架构演进临时移动站标识S-TMSI。
结合第十一方面或者第十一方面的第一至五种可能实现方式中的任一种可能实现方式,在第十一方面的第六种可能实现方式中,所述方法还包括:
所述毫米波基站接收主基站或者基站控制器发送的上行测量配置信息,所述上行测量配置信息中包含有第四波束索引信息;
所述毫米波基站在所述第四波束索引信息所对应的波束上测量所述终端发送的探测参考信号的功率;
所述毫米波基站向所述基站控制器发送包含测量获得的所述探测参考信号的功率的测量结果,所述测量结果用于指示所述基站控制器在所述探测参考信号的功率大于预设的功率阈值时,指示所述毫米波基站准备与所述终端进行通信。
第十二方面,提供了一种毫米波蜂窝通信方法,所述方法包括:
基站控制器向毫米波基站发送上行测量配置信息,所述上行测量配置信息中包含有波束索引信息,所述上行测量配置信息用于指示所述毫米波基站在所述波束索引信息所对应的波束上测量所述终端发送的探测参考信号的功率;
所述基站控制器接收所述毫米波基站发送的,包含测量获得的所述探测参 考信号的功率的测量结果;
所述基站控制器在所述探测参考信号的功率大于预设的功率阈值时,指示所述毫米波基站准备与所述终端进行通信;
其中,所述终端通过毫米波频段对应的波束索引信息与所述毫米波频段对应的各个毫米波基站进行通信。
在第十二方面的第一种可能实现方式中,所述方法还包括:
所述基站控制器接收所述毫米波基站发送的测量报告,所述测量报告为所述终端根据进行RRM测量后,根据所述RRM测量的测量结果发送的测量报告;
所述基站控制器根据所述测量报告确定向所述终端发送数据的毫米波基站,以及向所述终端发送数据所使用的波束索引信息。
本发明实施例提供的技术方案带来的有益效果是:
通过获取至少一个毫米波频段对应的至少一个波束索引信息,通过该至少一个波束索引信息所对应的波束与该至少一个毫米波频段对应的毫米波基站进行通信,解决了现有技术中终端进行蜂窝通信时,可利用带宽较小的问题,达到扩展了终端通信的频率范围,提高了终端的数据传输速率,且减小终端与毫米波基站进行毫米波通信时信号的衰落与失真,降低同信道用户间的干扰的效果。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一个实施例提供的终端的框图;
图2是本发明一个实施例提供的终端的框图;
图3是本发明一个实施例提供的基站的框图;
图4是本发明一个实施例提供的基站的框图;
图5是本发明一个实施例提供的基站的框图;
图6是本发明一个实施例提供的基站的框图;
图7是本发明一个实施例提供的基站控制器的框图;
图8是本发明一个实施例提供的基站控制器的框图;
图9是本发明一个实施例提供的毫米波蜂窝通信方法的方法流程图;
图10是本发明一个实施例提供的毫米波蜂窝通信方法的方法流程图;
图11是本发明一个实施例提供的毫米波蜂窝通信方法的方法流程图;
图12是本发明一个实施例提供的毫米波蜂窝通信方法的方法流程图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
请参考图1,其示出了本发明一个实施例提供的终端的框图,所述终端100包括:总线105,以及连接到所述总线的处理器101、存储器102、发射器103和接收器104。其中,所述存储器102用于存储若干个指令,所述若干个指令被配置成由所述处理器101执行;
所述处理器101,用于控制所述接收器104获取至少一个毫米波频段对应的至少一个波束索引信息;
通过所述至少一个波束索引信息所对应的波束与所述至少一个毫米波频段对应的毫米波基站进行通信。
可选的,所述处理器101,还用于控制所述接收器104接收主基站或所述毫米波基站发送的无线资源重配置消息或广播消息,获取所述无线资源重配置消息或广播消息中包含的所述至少一个波束索引信息;
或者,
所述处理器101,还用于控制所述发射器103和所述接收器104与主基站或者所述毫米波基站进行协商,以约定所述至少一个波束索引信息;
其中,所述主基站和所述毫米波基站为同一基站或者不同基站,不同频段的毫米波可以对应于同一个毫米波基站或者不同的毫米波基站。
所述处理器101,还用于选择所述至少一个波束索引信息中的部分或者全部波束索引信息所对应的波束与所述毫米波基站进行通信;
或者,
所述处理器101,还用于确定所述至少一个波束索引信息中,所述主基站或所述毫米波基站指定的第一波束索引信息,控制所述发射器和所述接收器根 据所述第一波束索引信息所对应的波束与所述毫米波基站进行通信。
每个所述波束索引信息对应于一个预编码码本信息或者一组天线权值信息,或者,每个所述波束索引对应于多个预编码码本信息或者多组天线权值信息;其中,每个所述预编码码本或每组所述天线权值信息唯一确定一个波束。
该波束索引信息还关联波束的特征信息,主基站在不同的波束上发送该波束特定的特征信息,以便UE根据不同的特征信息识别不同的波束。主基站在不同的波束使用不同的参考信号序列或者在不同的波束广播该波束的波束索引信息,UE可以根据波束索引信息和该波束的特征信息唯一确定一个特定的波束。波束索引信息也可以作为虚拟小区标识,即把同一个小区进一步按照多个较宽的波束划分为不同的扇区或子扇区。本发明下文各实施例中波束索引信息的作用和使用方法同本实施例的说明,下文不再赘述。
每个所述波束索引信息对应一个扇区或者一个小区的覆盖范围,或者,每个所述波束索引信息对应一个扇区或者一个小区的覆盖范围内的一部分;所述波束索引信息为一级索引信息或者N级索引信息,N为整数且N≥2;当所述波束索引信息为N级索引信息时,所述波束索引信息中的一个第i级索引信息关联至少一个第i+1级索引信息;其中,所述第i+1级索引信息对应波束的覆盖范围不大于所述第i级索引信息对应波束的覆盖范围,i为整数,且2≤i≤N。
当所述处理器101所选择或所确定的至少一个波束索引信息为第i级索引信息时,所述发射器103和所述接收器104可以通过所述第i级索引信息所代表的波束与毫米波基站进行通信,或者通过至少一个第i+1级索引信息所对应的波束与毫米波基站进行通信。
在本发明实施例中,将毫米波频段作为服务频段配置给终端,由终端在配置的毫米波频段上与毫米波基站进行通信,扩展了终端通信的频率范围,提高了终端的数据传输速率。主基站将毫米波频段对应的小区配置给终端,由终端与毫米波基站进行通信的步骤可以如下:
1)用户设备(英文:User Equipment,缩写:UE)对毫米波频段进行下行无线资源管理(英文:Radio Resource Management,缩写:RRM)测量,以测量毫米波频段的小区参考信号(英文:cell reference signal,缩写CRS)或信道质量指示参考信号(英文:Channel State Indicator Reference Signal,缩写:CSI-RS)的接收信号功率,并向主基站或者毫米波基站发送第一测量报告。主基站根据UE的第一测量报告,判断UE进入了毫米波基站的覆盖范围,可以 把一个或多个毫米波频率对应的小区作为一个或多个辅小区(英文:Secondary Cell,缩写:SCell)配置给UE。
这里RRM测量指用于移动性管理的测量,是经过无线资源控制(英文:Radio Resource Control;简称:RRC)层过滤的(filtered)测量方法。例如在LTE系统中所使用的一种过滤方法:Fn=(1-a)·Fn-1+a·Mn。其中:Fn为最新过滤后的测量结果,用于评估触发测量报告的准则;Fn-1是前一次计算的过滤后的测量结果;Mn是物理层最新的测量结果,a是根据不同测量需求确定的系数。
在此之前,主基站或毫米波基站为UE配置对一个或多个毫米波频段的测量,配置信息中至少包括毫米波频段的频率范围、CSI-RS端口号、子帧、扰码等配置信息,以便UE根据配置信息进行测量和报告。
主基站或毫米波基站还可以根据UE在现有的频率较低的频段,比如长期演进(英文:Long Term Evolution,缩写:LTE)频段的第一测量报告和/或位置信息判断UE进入了毫米波基站的覆盖范围。其中现有的频率较低的频段由主基站提供或者毫米波基站提供,后者的情况需要毫米波基站同时支持现有的频率较低的频段和毫米波频段。
2)主基站向毫米波基站或者基站控制器发送请求消息,请求把毫米波基站作为SCell配置给UE。
主基站在请求消息中至少携带UE的小区-无线网络临时标识(英文:Cell Radio Network Temporary Identifier,缩写:C-RNTI)、无线承载(英文:Radio Bearer,缩写:RB)配置信息、主基站的无线资源配置信息、一个或多个毫米波基站的标识信息等。
其中一个或多个毫米波基站可以为相同的频率范围,多个毫米波基站提供的频率可以组成同一个SCell,这种情况下多个毫米波基站提供的频率其物理小区标识(英文:Physical Cell Identification,缩写:PCI)和演进的小区全局标识(英文:Evolved Cell Global Identification,缩写:ECGI)相同。多个毫米波基站发送的主同步信号(英文:Primary Synchronization Signal,缩写:PSS)和辅同步参考信号(英文:Secondary Synchronization Signal,缩写:SSS)相同,或者,PSS和SSS也可以不同,以区分不同的毫米波基站。多个毫米波基站提供的频率的CSI-RS端口配置可以不同,从而也可以据此区分不同毫米波基站;或者,多个毫米波基站提供的频率的CSI-RS端口配置相同,不对毫米波基站进行区分。
其中一个或多个毫米波基站可以为不同的频率范围,多个毫米波基站提供的频率分别作为不同的SCell,其物理小区标识和演进的小区全局标识不同,发送不同的PSS和SSS。
3)毫米波基站或基站控制器执行接纳控制,同意将至少一个毫米波频段对应的小区作为SCell配置给UE,向主基站发送响应消息。
其中,响应消息中可以携带以下信息,UE的探测参考信号(英文:Sounding Reference Signal,缩写:SRS)配置信息,为UE分配的C-RNTI;另一方面,SRS配置信息也可以由主基站统一配置,从而毫米波基站不提供SRS配置信息,毫米波基站也可以不提供C-RNTI配置信息,从而UE在PCell和SCell均使用由PCell统一分配的一个C-RNTI。
响应消息中还至少携带以下信息:毫米波的频率范围、公共无线资源配置信息、专用无线资源配置信息。
毫米波基站或基站控制器向簇(英文:cluster)内所有毫米波基站发送通知消息,以便簇内所有毫米波基站准备测量UE的SRS,以及根据自己的测量或者基站控制器的通知消息准备资源为UE服务。
4)主基站或毫米波基站向UE发送无线资源重配置消息,为UE配置SCell。
其中,无线资源重配置消息中至少携带毫米波基站相关的无线资源配置信息,还可以携带主基站的无线资源配置信息。
5)UE执行无线资源配置,向主基站发送无线资源重配置完成消息。
6)UE和一个或多个毫米波基站进行随机接入过程,以和一个或多个毫米波基站获取上行同步。
7)毫米波基站或者基站控制器根据对UE的SRS的测量判断一定时间内和UE通信的一个或多个毫米波基站。
可选的,毫米波基站或者基站控制器还可以通知主基站该毫米波基站的标识信息。
8)一个或多个毫米波基站为UE分配资源,和UE进行数据通信,包括下行和/或上行通信。
9)毫米波基站测量UE的SRS,判断是否继续为UE服务。
由于UE的移动,可能导致一个或多个毫米波基站不再适合与UE进行数据通信,例如当测量到UE的SRS信号强度低于一定门限时,判断需要退出为UE服务。
10)毫米波基站或者基站控制器向主基站发送第一测量报告和/或是否继续为UE服务的决定的消息。
其中,如果由毫米波基站或者基站控制器决定继续为UE服务的毫米波基站,则不用向主基站发送该消息。不需要步骤10~13。
11)主基站决定更新为UE服务的毫米波基站的集合。
12)主基站向毫米波基站或者基站控制器发送需要为UE服务的毫米波基站的标识信息。
13)毫米波基站或者基站控制器根据对UE的SRS的测量结果,动态决定由一个或多个毫米波基站为UE分配资源进行下行和/或上行通信。
由于毫米波频段信号存在较大的自由空间衰减,且空气吸收、雨、雾、建筑物或其他物体的吸收和散射等因素也会对毫米波频段信号产生较大的影响,因此,在本发明实施例中,为终端设置特定的波束索引信息,由终端在该特定的波束索引信息对应的波束上进行通信,从而减小终端与毫米波基站进行毫米波通信时,无线信号在传播过程中由空间损耗、多径效应等因素引起的信号衰落与失真,并降低同信道用户间的干扰。
其中,终端可以通过该至少一个毫米波频段对应的至少一个波束索引信息进行随机接入、RRM测量以及探测参考信号SRS的发送等。具体可以参见如下步骤。
其中,终端选择该至少一个波束索引信息中的部分或者全部波束索引信息所对应的波束与该毫米波基站进行通信。或者,终端也可以确定该至少一个波束索引信息中,该主基站或该毫米波基站指定的第一波束索引信息;根据该第一波束索引信息所对应的波束与该毫米波基站进行通信。
终端可以自行选择该至少一个波束索引信息中的部分或者全部对应的波束进行数据的接收和发送;或者,主基站或毫米波基站在该至少一个波束索引信息中指定一个或者多个波束索引信息,终端根据主基站或毫米波基站指定的波束索引信息进行数据的接收和发送。
此外,终端还可以通过该至少一个毫米波频段对应的至少一个波束索引信息进行随机接入、RRM测量以及探测参考信号SRS的发送等。具体如下:
可选的,所述至少一个波束索引信息包括用于无线资源管理RRM测量的第二波束索引信息;
所述处理器101,还用于:
根据所述第二波束索引信息所对应的波束进行RRM测量,获得第一测量结果,所述第一测量结果中包含参考信号接收功率RSRP和/或参考信号接收质量RSRQ。
在毫米波小区中,UE可能较快的在不同的波束间移动,因此,用于波束管理的RRM测量需求可能比现有LTE系统中更为严格,例如每数十毫秒进行一次评估以判断是否满足测量报告的准则;进一步的,用于毫米波小区波束管理的RRM测量在广义上也可以指通过波束训练的方式进行的测量,例如主基站和UE各自在小区范围内的多个波束分别发送和接收测量信号,以找到最佳匹配波束对,在这样一对发送波束和接收波束间进行通信时,接收效率最高,传输数据也最可靠,这种情况下的测量可以经过RRC层过滤但测量需求更严格,或者不需要经过RRC层过滤,而是直接使用当前测量结果,这样主基站和UE之间可以以更小的发射功率来达到更佳的传输效果。本发明下文各实施例中针对毫米波小区波束管理的RRM测量的含义同本实施例的说明,下文不再赘述。
所述处理器101,还用于:控制所述发射器103,根据所述第一测量结果向所述主基站或所述毫米波基站发送第一测量报告,所述第一测量报告包括以下信息中的至少一种:RSRP和/或RSRQ最高的至少一个波束索引信息、在所述RSRP和/或RSRQ最高的至少一个波束索引信息所对应的波束上的RSRP和/或RSRQ测量结果、所述RSRP和/或RSRQ最高的至少一个波束索引信息所在的频率信息、所述RSRP和/或RSRQ最高的至少一个波束索引信息所关联的服务小区信息、所述RSRP和/或RSRQ最高的至少一个波束索引信息所关联的邻居小区信息;
其中,所述服务小区信息或者所述邻居小区信息通过物理小区标识PCI和/或小区全局标识CGI表示。
其中,RRM测量以多个预配置的固定波束方向/宽度进行,UE报告信号质量最好的一个或多个波束上测量到的RSRP/RSRQ,报告时包含对应的波束索引信息,以便主基站根据第一测量报告进行调度。
或者,UE也可以自适应选择从多个波束上进行测量,并选择信号质量最好的一个或多个波束上的RSRP/RSRQ信息报告,报告时包含UE所选择的波束索引信息,例如多个天线权值的信息。
可选的,所述至少一个波束索引信息还包括用于候选RRM测量的第三波 束索引信息,
所述处理器101,还用于在所述第一测量结果中包含的RSRP和/或RSRQ低于预配置门限时,控制所述发射器103和所述接收器104器开始根据所述第三波束索引信息所对应的波束进行RRM测量。
若UE在某一个波束索引信息对应的波束上的测量获得的RSRP/RSRQ大于预设门限,则UE可以不去测量其它波束上的信号。或者以更大的周期去测量其它波束上的信号,以在同一个小区内选择更好的较宽波束范围作为数据通信的范围。
或者,UE也可以选择多个信号质量较好,同时空间隔离度也较好的较宽波束范围进行测量,测量周期可以相同,也可以不同,以支持多波束并行工作。
可选的,所述至少一个波束索引信息还包括用于进行同频测量的第四波束索引信息,
所述处理器101,还用于
控制所述发射器103和所述接收器104器获取所述第四波束索引信息关联的测量间隙周期信息;
在所述测量间隙周期信息所指示的测量间隙内,根据所述第四波束索引信息所对应的波束进行所述至少一个毫米波频段的同频测量。
当UE需要调整到其它的波束对应的方向角去测量邻区的同步信道信号(英文:Synchronization Channel,缩写:SCH)、公共参考信号(英文:Common Reference String,缩写:CRS)或者CSI-RS等时,即使是同频测量,服务小区也不能在多个波束的方向上调度UE,除非UE有更多的天线和射频(英文:RadioFrequency,缩写:RF)链。对此,主基站或者基站控制器可以为终端预先设置测量间隙周期信息,并将该测量间隔周期信息与用于进行同频测量的波束索引信息相关联,仅在该测量间隔周期信息所指示的测量间隙内进行同频测量。
在本实施例中,还可以对发送第一测量报告的事件设置触发条件,例如当某波束索引信息对应的波束上的的RSRP低于预设值,其它波束索引信息对应的波束上的RSRP仍然有高于预设值,则触发第一测量报告。
可选的,所述处理器101,还用于在RSRP和/或RSRQ最高的至少一个波束索引信息所对应的波束上与所述毫米波基站进行通信。
结合本步骤所示的RRM测量的方法,终端与毫米波基站进行通信时,可 以在RSRP和/或RSRQ最高的至少一个波束索引信息所对应的波束上进行通信。
可选的,所述处理器101,还用于:
从所述至少一个波束索引信息中确定用于物理随机接入信道资源的第五波束索引信息;根据所述第五波束索引信息所对应的波束进行随机接入。
所述处理器101,还用于从所述至少一个波束索引信息中选择一个波束索引信息作为所述第五波束索引信息;
或者,
所述处理器101,还用于将所述至少一个波束索引信息中,所述主基站或者所述毫米波基站指定用于物理随机接入信道资源的波束索引信息确定为所述第五波束索引信息。
可选的,所述处理器101,还用于:
控制所述发射器103,在所述第五波束索引信息所对应的波束发送随机接入前导;
控制所述接收器104,在所述第五波束索引信息所对应的波束接收随机接入响应消息,或者,在所述至少一个波束索引信息所对应的波束接收随机接入响应消息。
该随机接入过程可以是基于竞争的随机接入,也可以是基于非竞争的随机接入。在基于非竞争的随机接入过程中,主基站或者基站控制器为终端分配接入的毫米波基站以及用于接入的波束索引信息,即该第五波束索引信息,该终端在该第五波束索引信息所对应的波束发送随机接入前导(preamble,即msg1);该第五波束索引信息所对应的波束方向上的毫米波基站接收到该msg1之后,若该毫米波基站是主基站或者基站控制器为该终端分配用于随机接入的基站,则该毫米波基站在该五波束索引信息所对应的波束上发送随机接入响应消息(msg2),终端在该第五波束索引信息所对应的波束接收随机接入响应消息,该随机接入响应消息可以包含有针对至少一个UE的信息,这些UE使用相同的时频域资源发送了msg1;UE根据物理下行控制信道(英文:Physical Downlink Control Channel,缩写:PDCCH)上的标识,比如随机接入-无线网络临时标识(英文:random access-radio network temperoary identifier,缩写:RA-RNTI),来判断msg2中是否包含有针对自己的信息,当RA-RNTI与自己发送随机接入前导时所使用的时频资源一致时,UE判断msg2中可能包含有针 对自己的信息,UE进一步根据msg2中所包含的preamble是否与自己发送msg1时所使用的preamble一致来最终判断msg2中是否包含有针对自己的信息。当终端仅在该第五波束索引信息所对应的波束接收msg2时,RA-RNTI的计算公式可以采用现有技术LTE中的计算方法,如下:
RA-RNTI=1+t_id+10*f_id;
其中,t_id指UE发送msg1时所使用的的物理随机接入信道(英文:physical random access channel,简称PRACH)资源所在的子帧(subframe),f_id指该子帧内PRACH资源的索引,例如对于时分双工模式(英文:time division duplex,缩写:TDD)在一个子帧可以在不同的频率范围配置有多个PRACH信道资源,每个PRACH信道的频率范围对应一个频域的索引信息。
或者,终端也可以在该至少一个波束索引信息所对应的波束接收随机接入响应消息msg2;此时,msg2可以包含在不同波束索引对应的波束上发送msg1的UE的信息,RA-RNTI的计算公式可以包含波束索引信息,以指示该UE是在哪一个波束索引所对应的波束发送msg1消息的,从而UE可以更准确地判断msg2中是否包含有该UE的信息;RA-RNTI的计算公式如下:
RA-RNTI=1+t_id+10*f_id+beam_idx;
其中beam_idx指该UE发送msg1时所使用的波束索引信息。
至此,基于非竞争的随机接入完成。
进一步的,所述随机接入响应消息中包含第六波束指引信息,
可选的,所述处理器101,还用于:
控制所述发射器103,在所述第六波束索引信息所对应的波束发送随机接入消息,所述随机接入消息中包含所述终端的标识;
控制所述接收器104,在所述第六波束索引所对应的波束接收竞争解决消息,或者,在所述至少一个波束索引信息所对应的波束接收竞争解决消息;所述竞争解决消息包含所述终端的标识;
所述终端的标识为所述终端的小区-无线网络临时标识C-RNTI或系统架构演进临时移动站标识S-TMSI。
在基于竞争的随机接入过程中,主基站或者基站控制器仅为终端分配用于接入的波束索引信息,即该第五波束索引信息,而不为该终端指定接入的毫米波基站,该终端在该第五波束索引信息所对应的波束发送随机接入前导(msg1);该第五波束索引信息所对应的波束方向上的毫米波基站接收到该 msg1之后,在该五波束索引信息所对应的波束上发送随机接入响应消息(msg2),终端在该第五波束索引信息所对应的波束接收msg2,UE使用公式RA-RNTI=1+t_id+10*f_id判断msg2中是否包含有针对自己的信息;或者,终端也可以在该至少一个波束索引信息所对应的波束接收msg2,UE使用公式RA-RNTI=1+t_id+10*f_id+beam_idx判断msg2中是否包含有针对自己的信息;该msg2中包含第六波束指引信息,终端根据该第六波束索引信息发送随机接入消息(msg3),该msg3中包含该终端的标识,终端在该第六波束索引信息对应的波束上接收该msg3,若允许该终端接入,则在同样的波束上发送包含该终端的msg4,终端接收到该msg4后,检测出msg4中包含自身的标识,则确认接入成功。对于后续各实施例中的随机接入过程,UE判断msg2中是否包含有针对自己的信息的方法同本实施例,本发明不再赘述。在基于竞争的随机接入过程中,UE可以自己选择随机接入前导和随机接入时频域资源,主基站或者毫米波基站可以不为终端分配用于接入的波束索引信息,意味着该第五波束索引信息可以为任意波束索引信息。UE在自己当前使用的波束索引信息所对应的波束发送msg1,毫米波基站需要知道UE使用的波束索引信息,从而能够针对该UE发送随机接入响应消息(msg2),否则,毫米波基站就需要在多个波束索引信息所对应的波束上发送msg2。为了避免毫米波基站在多个波束索引信息所对应的波束发送msg2,以降低开销和延迟,主基站或者毫米波基站可以预先将毫米波小区的随机接入前导按照不同的波束索引信息进行分组并把分组信息配置给UE,UE选择自己当前使用的波束索引信息所对应的随机接入前导进行发送,毫米波基站在接收到该随机接入前导后,可以根据随机接入前导和波束索引信息的映射关系获知UE使用的波束索引信息,并在该波束索引信息所对应的波束上向UE发送msg2。或者,主基站或毫米波基站可以预先将毫米波小区的随机接入时频域资源按照不同的波束索引信息进行分组并把分组信息配置给UE,UE在自己当前使用的波束索引信息所对应的随机接入时频域资源发送msg1,毫米波基站接收到msg1后,可以根据随机接入时频域资源和波束索引信息的映射关系获知UE使用的波束索引信息,在该波束索引信息所对应的波束向UE发送msg2。对于后续各实施例基于竞争的随机接入过程,主基站或毫米波基站不为终端分配用于接入的波束索引信息的方法同本实施例,本发明不再赘述。
在另一种接入方法中,UE可以根据上述步骤106的RRM测量的测量结果, 选择在某一个波束方向上发送msg1给毫米波基站。例如根据前一次报告的RRM测量结果中信号最好的波束索引信息对应的波束发送msg1。毫米波基站以全方向接收的方式检测msg1中的随机接入前导。
毫米波基站在接收到msg1的方向发送msg2,其中,msg2中包含该方向上的多个UE的信息。由于该方向上不同的UE产生的发送波束可能有所不同,因此毫米波基站适配多个UE的波束生成新的下行波束,从而使用相同时频域资源的UE都能够接收到msg2。此外,UE也可能移动至其它方向,因此msg2需要从多个不同的方向上发送,msg2的内容也因此有所不同,例如由于UE的不同而包含的随机接入前导不同。UE仅在发送msg1的方向接收msg2。
此外,在基于竞争的随机接入过程中,UE也可以同时使用多个波束发送msg1。可以提高主基站检测到该msg1的概率。
可选的,所述处理器101,还用于:
控制所述接收器104,接收所述主基站或毫米波基站发送的所述至少一个毫米波频段上的至少一个小区的探测参考信号配置信息;
根据所述探测参考信号配置信息,控制所述发射器103在所述至少一个波束索引信息所对应的波束上发送探测参考信号。
主基站或者毫米波基站控制器指示哪些毫米波基站测量哪些UE的SRS。UE按照预配的多个波束索引信息对应的波束发送SRS。毫米波基站测量指定UE的SRS,判断是否适合为UE服务。若是,则毫米波基站通知基站控制器或其它毫米波基站它将要分配给UE的时频空域资源信息以避免干扰。
主基站可以为毫米波基站指定第七波束索引信息,毫米波基站根据该第七波束索引信息测量终端的探测参考信号的功率,或者,毫米波基站也可以自行确定第七波束索引信息,并据以测量终端的探测参考信号的功率。
其中,毫米波基站测量该终端发送的探测参考信号的功率之后,将该探测参考信号的测量结果发送给基站控制器。在该毫米波基站与终端进行通信之前,基站控制器根据该终端发送的探测参考信号的功率确定是否要为该终端服务;或者,在该毫米波基站与终端进行通信的过程中,基站控制器根据该终端发送的探测参考信号的功率确定是否继续为该终端服务,比如,若该终端发送的探测参考信号的功率小于某个阈值,则说明该终端不再适合与该毫米波基站进行通信,则基站控制器可以向主基站发送检测报告,请求主基站更新为该终端服务的毫米波基站的集合。若该终端发送的探测参考信号的功率不小于该阈 值,则不发送检测报告。
当基站更新为UE服务的毫米波基站的集合时,新加入的毫米波基站(目标mmB)向当前为终端服务的mmB通知其对应小区的配置信息,比如广播控制信道(英文:broadcast control channel,缩写:BCH)、SSH、CRS、CSI-RS、解调参考信号(英文:Demodulation Reference Signal,缩写:DMRS)、物理随机接入信道以及测量配置所包含的波束配置信息等,当前为终端服务的毫米波基站将该配置信息发送给UE,以便UE快速接入目标毫米波基站。
综上所述,本发明实施例提供的终端,获取至少一个毫米波频段对应的至少一个波束索引信息,通过该至少一个波束索引信息所对应的波束与该至少一个毫米波频段对应的毫米波基站进行通信,解决了现有技术中终端进行蜂窝通信时,可利用带宽较小的问题,达到扩展了终端通信的频率范围,提高了终端的数据传输速率的效果。
同时,本发明实施例提供的终端,在指定的波束索引信息对应的波束上进行通信、RRM测量以及随机接入,达到减小终端与毫米波基站进行毫米波通信时信号的衰落与失真,降低同信道用户间的干扰的效果。
请参考图2,其示出了本发明一个实施例提供的终端的框图,所述终端可以包括:
接收模块201,用于获取至少一个毫米波频段对应的至少一个波束索引信息;
通信模块202,用于通过所述至少一个波束索引信息所对应的波束与所述至少一个毫米波频段对应的毫米波基站进行通信。
可选的,所述接收模块201,还用于:
接收主基站或所述毫米波基站发送的无线资源重配置消息或广播消息;
获取所述无线资源重配置消息或广播消息中包含的所述至少一个波束索引信息;
所述通信模块202,还用于与主基站或者所述毫米波基站进行协商,以约定所述至少一个波束索引信息;
其中,所述主基站和所述毫米波基站为同一基站或者不同基站。
可选的,所述通信模块202,还用于:
选择所述至少一个波束索引信息中的部分或者全部波束索引信息所对应 的波束与所述毫米波基站进行通信;
或者,
确定所述至少一个波束索引信息中,所述主基站或所述毫米波基站指定的第一波束索引信息;根据所述第一波束索引信息所对应的波束与所述毫米波基站进行通信。
可选的,每个所述波束索引信息对应于一个预编码码本信息或者一组天线权值信息,或者,每个所述波束索引对应于多个预编码码本信息或者多组天线权值信息;其中,每个所述预编码码本或每组所述天线权值信息唯一确定一个波束。
可选的,每个所述波束索引信息对应一个扇区或者一个小区的覆盖范围,或者,每个所述波束索引信息对应一个扇区或者一个小区的覆盖范围内的一部分;
所述波束索引信息为一级索引信息或者N级索引信息,N为整数且N≥2;
当所述波束索引信息为N级索引信息时,所述波束索引信息中的一个第i级索引信息关联至少一个第i+1级索引信息;其中,所述第i+1级索引信息对应波束的覆盖范围不大于所述第i级索引信息对应波束的覆盖范围,i为整数,且2≤i≤N。
可选的,所述至少一个波束索引信息包括用于无线资源管理RRM测量的第二波束索引信息,所述终端还包括:
测量模块203,用于根据所述第二波束索引信息所对应的波束进行RRM测量,获得第一测量结果,所述第一测量结果中包含参考信号接收功率RSRP和/或参考信号接收质量RSRQ;
发送模块204,用于根据所述第一测量结果向所述主基站发送第一测量报告,所述第一测量报告包括以下信息中的至少一种:RSRP和/或RSRQ最高的至少一个波束索引信息、在所述RSRP和/或RSRQ最高的至少一个波束索引信息所对应的波束上的RSRP和/或RSRQ测量结果、所述RSRP和/或RSRQ最高的至少一个波束索引信息所在的频率信息、所述RSRP和/或RSRQ最高的至少一个波束索引信息所关联的服务小区信息、所述RSRP和/或RSRQ最高的至少一个波束索引信息所关联的邻居小区信息;
其中,所述服务小区信息或者所述邻居小区信息通过物理小区标识PCI和/或小区全局标识CGI表示。
可选的,所述至少一个波束索引信息还包括用于候选RRM测量的第三波束索引信息,所述测量模块203,还用于:
在所述第一测量结果中包含的RSRP和/或RSRQ低于预配置门限时,开始根据所述第三波束索引信息所对应的波束进行RRM测量。
可选的,所述至少一个波束索引信息还包括用于进行同频测量的第四波束索引信息,
所述接收模块201,还用于获取所述第四波束索引信息关联的测量间隙周期信息;
所述测量模块203,还用于在所述测量间隙周期信息所指示的测量间隙内,根据所述第四波束索引信息所对应的波束进行所述至少一个毫米波频段的同频测量。
可选的,所述通信模块202,还用于所述终端在RSRP和/或RSRQ最高的至少一个波束索引信息所对应的波束上与所述毫米波基站进行通信。
可选的,所述终端还包括:
确定模块205,用于从所述至少一个波束索引信息中确定用于物理随机接入信道资源的第五波束索引信息;
接入模块206,用于根据所述第五波束索引信息所对应的波束进行随机接入。
可选的,所述确定模块205,具体用于:
从所述至少一个波束索引信息中选择一个波束索引信息作为所述第五波束索引信息;
或者,
将所述至少一个波束索引信息中,所述主基站或者所述毫米波基站指定用于物理随机接入信道资源的波束索引信息确定为所述第五波束索引信息。
可选的,所述发送模块204,还用于在所述第五波束索引信息所对应的波束发送随机接入前导;
所述接收模块201,还用于:
在所述第五波束索引信息所对应的波束接收随机接入响应消息;
或者,
在所述至少一个波束索引信息所对应的波束接收随机接入响应消息。
可选的,所述随机接入响应消息中包含第六波束指引信息,
所述发送模块204,还用于在所述第六波束索引信息所对应的波束发送随机接入消息,所述随机接入消息中包含所述终端的标识;
所述接收模块201,还用于:
在所述第六波束索引所对应的波束接收竞争解决消息;
或者,
在所述至少一个波束索引信息所对应的波束接收竞争解决消息;所述竞争解决消息包含所述终端的标识;
所述终端的标识为所述终端的小区-无线网络临时标识C-RNTI或系统架构演进临时移动站标识S-TMSI。
可选的,所述接收模块201,还用于接收所述主基站或所述毫米波基站发送的所述至少一个毫米波频段上的至少一个小区的探测参考信号配置信息;
所述发送模块204,还用于根据所述探测参考信号配置信息,在所述至少一个波束索引信息所对应的波束上发送探测参考信号。
综上所述,本发明实施例提供的终端,获取至少一个毫米波频段对应的至少一个波束索引信息,通过该至少一个波束索引信息所对应的波束与该至少一个毫米波频段对应的毫米波基站进行通信,解决了现有技术中终端进行蜂窝通信时,可利用带宽较小的问题,达到扩展了终端通信的频率范围,提高了终端的数据传输速率的效果。
同时,本发明实施例提供的终端,在指定的波束索引信息对应的波束上进行通信、RRM测量以及随机接入,达到减小终端与毫米波基站进行毫米波通信时信号的衰落与失真,降低同信道用户间的干扰的效果。
请参考图3,其示出了本发明一个实施例提供的一种基站的框图,所述基站可以是如图1所示的实施例中的主基站,比如LTE-A基站。所述基站300包括:总线305,以及连接到所述总线的处理器301、存储器302、发射器303和接收器304。其中,所述存储器302用于存储若干个指令,所述若干个指令被配置成由所述处理器301执行;
所述处理器301,用于为终端配置至少一个毫米波频段对应的至少一个波束索引信息;所述至少一个波束索引信息用于指示所述终端通过所述至少一个波束索引信息所对应的波束与所述至少一个毫米波频段对应的毫米波基站进行通信。
其中,该终端根据该至少一个波束索引信息进行通信、随机接入、RRM测量以及SRS信号发送的步骤请参考图1对应的实施例中的描述,此处不再赘述。
可选的,所述处理器301,还用于控制所述发射器303向所述终端发送包含有所述至少一个波束索引信息的无线资源重配置消息或广播消息;
或者,
所述处理器301,还用于与所述终端协商确定所述至少一个波束索引信息。
具体的,主基站可以向该终端发送包含有该至少一个波束索引信息的无线资源重配置消息;或者,主基站也可以与该终端协商确定该至少一个波束索引信息。
可选的,所述处理器301,还用于:
控制所述接收器304接收所述终端发送的测量报告,所述测量报告为所述终端根据所述至少一个波束索引信息中包含的第一波束索引信息所对应的波束进行RRM测量后,根据所述RRM测量的测量结果发送的报告;
根据所述测量报告确定向所述终端发送数据的毫米波基站,以及向所述终端发送数据所使用的波束索引信息。
其中,该测量报告为该终端根据该至少一个波束索引信息中包含的第一波束索引信息所对应的波束进行RRM测量后,根据该RRM测量的测量结果发送的报告。
其中,终端根据第一波束索引信息所对应的波束进行RRM测量的具体过程请参见图1对应实施例中的描述,此处不再赘述,此外,本实施例中的第一波束索引信息相当于图1所示的实施例中的第二波束索引信息。
主基站可以根据该测量报告确定向该终端发送数据的毫米波基站,以及向该终端发送数据所使用的波束索引信息。
可选的,所述处理器301,还用于控制所述发射器303向所述终端发送至少一个毫米波频段上的至少一个小区的探测参考信号配置信息,所述探测参考信号配置信息用于指示所述终端在所述至少一个波束索引信息所对应的波束上发送探测参考信号。
所述处理器301,还用于控制所述发射器303向所述毫米波基站发送上行测量配置信息,所述上行测量配置信息中包含有第二波束索引信息,所述上行测量配置信息用于指示所述毫米波基站在所述第二波束索引信息所对应的波 束上测量所述终端发送的探测参考信号的功率。
主基站或者基站控制器可以指定哪些毫米波基站测量哪些终端的探测参考信号的功率,具体的,主基站或者基站控制器指示终端在该至少一个波束索引信息对应的波束上发送SRS,并指示毫米波基站在特定的波束索引信息(第二波束索引信息)对应的波束上测量该终端的探测参考信号。其中,本发明实施例中的第二波束索引信息与图1所示的实施例中的第七波束索引信息的功能相同。
此外,毫米波基站也可以自行确定第二波束索引信息,并据以测量终端的探测参考信号的功率。
其中,毫米波基站测量该终端发送的探测参考信号的功率之后,将该探测参考信号的测量结果发送给基站控制器。在该毫米波基站与终端进行通信之前,基站控制器根据该终端发送的探测参考信号的功率确定是否要为该终端服务;或者,在该毫米波基站与终端进行通信的过程中,基站控制器根据该终端发送的探测参考信号的功率确定是否继续为该终端服务,比如,若该终端发送的探测参考信号的功率小于某个阈值,则说明该终端不再适合与该毫米波基站进行通信,则基站控制器可以向主基站发送检测报告,请求主基站更新为该终端服务的毫米波基站的集合。若该终端发送的探测参考信号的功率不小于该阈值,则不发送检测报告。
综上所述,本发明实施例提供的基站,为终端配置至少一个毫米波频段对应的至少一个波束索引信息,使终端通过该至少一个波束索引信息所对应的波束与该至少一个毫米波频段对应的毫米波基站进行通信,解决了现有技术中终端进行蜂窝通信时,可利用带宽较小的问题,达到扩展了终端通信的频率范围,提高了终端的数据传输速率,且减小终端与毫米波基站进行毫米波通信时信号的衰落与失真,降低同信道用户间的干扰的效果。
请参考图4,其示出了本发明一个实施例提供的基站的框图。所述基站可以是如图1所示的实施例中的主基站,比如LTE-A基站。所述基站可以包括:
配置模块401,用于为终端配置至少一个毫米波频段对应的至少一个波束索引信息;所述至少一个波束索引信息用于指示所述终端通过所述至少一个波束索引信息所对应的波束与所述至少一个毫米波频段对应的毫米波基站进行通信。
可选的,所述基站还包括:发送模块402,用于向所述终端发送包含有所述至少一个波束索引信息的无线资源重配置消息或广播消息;
或者,
所述基站还包括:协商模块403,用于与所述终端协商确定所述至少一个波束索引信息。
可选的,所述基站还包括:
接收模块404,用于接收所述终端发送的测量报告,所述测量报告为所述终端根据所述至少一个波束索引信息中包含的第一束索引信息所对应的波束进行RRM测量后,根据所述RRM测量的测量结果发送的报告;
确定模块405,用于根据所述测量报告确定向所述终端发送数据的毫米波基站,以及向所述终端发送数据所使用的波束索引信息。
可选的,
所述发送模块402,还用于向所述终端发送至少一个毫米波频段上的至少一个小区的探测参考信号配置信息,所述探测参考信号配置信息用于指示所述终端在所述至少一个波束索引信息所对应的波束上发送探测参考信号。
可选的,
所述发送模块402,还用于向所述毫米波基站发送上行测量配置信息,所述上行测量配置信息中包含有第二波束索引信息,所述上行测量配置信息用于指示所述毫米波基站在所述第二波束索引信息所对应的波束上测量所述终端发送的探测参考信号的功率。
综上所述,本发明实施例提供的基站,为终端配置至少一个毫米波频段对应的至少一个波束索引信息,使终端通过该至少一个波束索引信息所对应的波束与该至少一个毫米波频段对应的毫米波基站进行通信,解决了现有技术中终端进行蜂窝通信时,可利用带宽较小的问题,达到扩展了终端通信的频率范围,提高了终端的数据传输速率,且减小终端与毫米波基站进行毫米波通信时信号的衰落与失真,降低同信道用户间的干扰的效果。
请参考图5,其示出了本发明一个实施例提供的基站的框图。所述基站可以是如图1所示的实施例中的毫米波基站(英文:Millimeter wave Base,缩写:mmB)。所述基站500包括:总线505,以及连接到所述总线的处理器501、存储器502、发射器503和接收器504。其中,所述存储器502用于存储若干个 指令,所述若干个指令被配置成由所述处理器501执行;
所述处理器501,用于为终端配置至少一个毫米波频段对应的至少一个波束索引信息;所述至少一个波束索引信息用于指示所述终端通过所述至少一个波束索引信息所对应的波束与所述至少一个毫米波频段对应的毫米波基站进行通信。
可选的,所述处理器501,还用于控制所述发射器503向所述终端发送包含有所述至少一个波束索引信息的无线资源重配置消息或广播消息;
或者,
所述处理器501,还用于与所述终端协商确定所述至少一个波束索引信息。
可选的,所述处理器501,还用于:
控制所述接收器504接收所述终端发送的测量报告,所述测量报告为所述终端根据所述至少一个波束索引信息中包含的第一波束索引信息所对应的波束进行RRM测量后,根据所述RRM测量的测量结果发送的测量报告;
控制所述发射器503将所述测量报告发送给基站控制器,所述测量报告用于指示所述基站控制器确定向所述终端发送数据的毫米波基站,以及向所述终端发送数据所使用的波束索引信息。
需要说明的是,终端根据所述至少一个波束索引信息中包含的第一波束索引信息所对应的波束进行RRM测量后,根据所述RRM测量的测量结果发送测量报告的过程可以如图1所示的实施例所示,此处不再赘述。其中,本发明实施例中的第一波束索引信息与图1所示的实施例中的第二波束索引信息的作用相同。
可选的,所述处理器501,还用于控制所述发射器503向所述终端发送至少一个毫米波频段上的至少一个小区的探测参考信号配置信息,所述探测参考信号配置信息用于指示所述终端在所述至少一个波束索引信息所对应的波束上发送探测参考信号。
可选的,所述处理器501,还用于:
控制所述接收器504接收所述终端在用于物理随机接入信道资源的第二波束索引信息所对应的波束上发送的随机接入前导;
控制所述发射器503在所述二波束索引信息所对应的波束上发送随机接入响应消息。
其中,本发明实施例中的第二波束索引信息与图1所示的实施例中的第五 波束索引信息的作用相同。
可选的,所述随机接入响应消息中包含第三波束指引信息,
所述处理器501,还用于:
控制所述接收器504在所述第三波束索引信息所对应的波束接收随机接入消息,所述随机接入消息中包含所述终端的标识;
控制所述发射器503在所述第三波束索引所对应的波束发送竞争解决消息;所述竞争解决消息包含所述终端的标识;
所述终端的标识为所述终端的小区-无线网络临时标识C-RNTI或系统架构演进临时移动站标识S-TMSI。
其中,本发明实施例中的第三波束索引信息与图1所示的实施例中的第六波束索引信息的作用相同。
其中,终端可以根据该至少一个波束索引信息中的第二波束索引信息与该毫米波基站进行随机接入,该随机接入可以是基于非竞争的随机接入过程,也可以是基于竞争的随机接入过程,具体的随机接入方法可以参考图1对应的实施例中的描述,此处不再赘述。
可选的,所述处理器501,还用于:
控制所述接收器504接收主基站或者基站控制器发送的上行测量配置信息,所述上行测量配置信息中包含有第四波束索引信息;
在所述第四波束索引信息所对应的波束上测量所述终端发送的探测参考信号的功率;
控制所述发射器503向所述基站控制器发送包含测量获得的所述探测参考信号的功率的测量结果,所述测量结果用于指示所述基站控制器在所述探测参考信号的功率大于预设的功率阈值时,指示所述毫米波基站准备与所述终端进行通信。
主基站或者基站控制器可以指定哪些毫米波基站测量哪些终端的探测参考信号的功率,具体的,主基站或者基站控制器指示终端在该至少一个波束索引信息对应的波束上发送SRS,并指示毫米波基站在特定的波束索引信息(第四波束索引信息)对应的波束上测量该终端的探测参考信号。
其中,本发明实施例中的第四波束索引信息与图1所示的实施例中的第七波束索引信息的作用相同。
其中,毫米波基站测量该终端发送的探测参考信号的功率之后,将该探测 参考信号的测量结果发送给基站控制器。在该毫米波基站与终端进行通信之前,基站控制器根据该终端发送的探测参考信号的功率确定是否要为该终端服务;或者,在该毫米波基站与终端进行通信的过程中,基站控制器根据该终端发送的探测参考信号的功率确定是否继续为该终端服务,比如,若该终端发送的探测参考信号的功率小于某个阈值,则说明该终端不再适合与该毫米波基站进行通信,则基站控制器可以向主基站发送检测报告,请求主基站更新为该终端服务的毫米波基站的集合。若该终端发送的探测参考信号的功率不小于该阈值,则不发送检测报告。
综上所述,本发明实施例提供的基站,与终端之间通过至少一个毫米波频段对应的至少一个波束索引信息所对应的波束进行通信,解决了现有技术中终端进行蜂窝通信时,可利用带宽较小的问题,达到扩展了终端通信的频率范围,提高了终端的数据传输速率,且减小终端与毫米波基站进行毫米波通信时信号的衰落与失真,降低同信道用户间的干扰的效果。
请参考图6,其示出了本发明一个实施例提供的基站的框图,所述基站可以是如图1所示的实施例中的毫米波基站,所述基站可以包括:
配置模块601,用于为终端配置至少一个毫米波频段对应的至少一个波束索引信息;所述至少一个波束索引信息用于指示所述终端通过所述至少一个波束索引信息所对应的波束与所述至少一个毫米波频段对应的毫米波基站进行通信。
可选的,所述基站还包括:发送模块602,用于向所述终端发送包含有所述至少一个波束索引信息的无线资源重配置消息或广播消息;
或者,
所述基站还包括:协商模块603,用于与所述终端协商确定所述至少一个波束索引信息。
可选的,所述基站还包括:
接收模块604,用于接收所述终端发送的测量报告,所述测量报告为所述终端根据所述至少一个波束索引信息中包含的第一波束索引信息所对应的波束进行RRM测量后,根据所述RRM测量的测量结果发送的测量报告;
所述发送模块602,用于将所述测量报告发送给基站控制器,所述测量报告用于指示所述基站控制器确定向所述终端发送数据的毫米波基站,以及向所 述终端发送数据所使用的波束索引信息。
可选的,所述发送模块602,还用于向所述终端发送至少一个毫米波频段上的至少一个小区的探测参考信号配置信息,所述探测参考信号配置信息用于指示所述终端在所述至少一个波束索引信息所对应的波束上发送探测参考信号。
可选的,所述接收模块604,还用于接收所述终端在用于物理随机接入信道资源的第二波束索引信息所对应的波束上发送的随机接入前导;
所述发送模块602,还用于在所述二波束索引信息所对应的波束上发送随机接入响应消息。
可选的,所述随机接入响应消息中包含第三波束指引信息,
所述接收模块604,还用于在所述第三波束索引信息所对应的波束接收随机接入消息,所述随机接入消息中包含所述终端的标识;
所述发送模块602,还用于在所述第三波束索引所对应的波束发送竞争解决消息;所述竞争解决消息包含所述终端的标识;
所述终端的标识为所述终端的小区-无线网络临时标识C-RNTI或系统架构演进临时移动站标识S-TMSI。
可选的,所述接收模块604,还用于接收主基站或者基站控制器发送的上行测量配置信息,所述上行测量配置信息中包含有第四波束索引信息;
所述基站还包括:测量模块605,用于在所述第四波束索引信息所对应的波束上测量所述终端发送的探测参考信号的功率;
所述发送模块602,还用于发送包含测量获得的所述探测参考信号的功率的测量结果,所述测量结果用于指示所述基站控制器在所述探测参考信号的功率大于预设的功率阈值时,指示所述毫米波基站准备与所述终端进行通信。
综上所述,本发明实施例提供的基站,与终端之间通过至少一个毫米波频段对应的至少一个波束索引信息所对应的波束进行通信,解决了现有技术中终端进行蜂窝通信时,可利用带宽较小的问题,达到扩展了终端通信的频率范围,提高了终端的数据传输速率,且减小终端与毫米波基站进行毫米波通信时信号的衰落与失真,降低同信道用户间的干扰的效果。
请参考图7,其示出了本发明一个实施例提供的基站控制器的框图,所述基站控制器可以用于控制至少一个毫米波基站。所述基站控制器700包括: 总线705,以及连接到所述总线的处理器701、存储器702、发射器703和接收器704。其中,所述存储器702用于存储若干个指令,所述若干个指令被配置成由所述处理器701执行;
所述处理器701,用于:
控制所述发射器703向毫米波基站发送上行测量配置信息,所述上行测量配置信息中包含有波束索引信息,所述上行测量配置信息用于指示所述毫米波基站在所述波束索引信息所对应的波束上测量所述终端发送的探测参考信号的功率;
控制所述接收器704接收所述毫米波基站发送的,包含测量获得的所述探测参考信号的功率的测量结果;
在所述探测参考信号的功率大于预设的功率阈值时,指示所述毫米波基站准备与所述终端进行通信;
其中,所述终端通过至少一个毫米波频段对应的至少一个波束索引信息与所述至少一个毫米波频段对应的各个毫米波基站进行通信。
主基站或者基站控制器可以指定哪些毫米波基站测量哪些终端的探测参考信号的功率,具体的,主基站或者基站控制器指示终端在该至少一个波束索引信息对应的波束上发送SRS,并指示毫米波基站在特定的波束索引信息对应的波束上测量该终端的探测参考信号。其中,本发明实施例中的波束索引信息与图1所示的实施例中的第七波束索引信息的作用相同。
其中,毫米波基站测量该终端发送的探测参考信号的功率之后,将该探测参考信号的测量结果发送给基站控制器。在该毫米波基站与终端进行通信之前,基站控制器根据该终端发送的探测参考信号的功率确定是否要为该终端服务;或者,在该毫米波基站与终端进行通信的过程中,基站控制器根据该终端发送的探测参考信号的功率确定是否继续为该终端服务,比如,若该终端发送的探测参考信号的功率小于某个阈值,则说明该终端不再适合与该毫米波基站进行通信,则基站控制器可以向主基站发送检测报告,请求主基站更新为该终端服务的毫米波基站的集合。若该终端发送的探测参考信号的功率不小于该阈值,则不发送检测报告。
可选的,所述处理器701,还用于:
控制所述接收器704接收所述毫米波基站发送的测量报告,所述测量报告为所述终端根据进行RRM测量后,根据所述RRM测量的测量结果发送的测 量报告;
根据所述测量报告确定向所述终端发送数据的毫米波基站,以及向所述终端发送数据所使用的波束索引信息。
综上所述,本发明实施例提供的基站控制器,通过指示指示毫米波基站在特定的波束索引信息对应的波束上测量该终端的探测参考信号,以便终端在至少一个毫米波频段对应的至少一个波束索引信息所对应的波束上进行通信,解决了现有技术中终端进行蜂窝通信时,可利用带宽较小的问题,达到扩展了终端通信的频率范围,提高了终端的数据传输速率,且减小终端与毫米波基站进行毫米波通信时信号的衰落与失真,降低同信道用户间的干扰的效果。
请参考图8,其示出了本发明一个实施例提供的基站控制器的框图,所述基站控制器可以是如图1所示的实施例中的基站控制器。所述基站控制器可以包括:
发送模块801,用于向毫米波基站发送上行测量配置信息,所述上行测量配置信息中包含有波束索引信息,所述上行测量配置信息用于指示所述毫米波基站在所述波束索引信息所对应的波束上测量所述终端发送的探测参考信号的功率;
接收模块802,用于接收所述毫米波基站发送的,包含测量获得的所述探测参考信号的功率的测量结果;
指示模块803,用于在所述探测参考信号的功率大于预设的功率阈值时,指示所述毫米波基站准备与所述终端进行通信;
其中,所述终端通过至少一个毫米波频段对应的至少一个波束索引信息与所述至少一个毫米波频段对应的各个毫米波基站进行通信。
所述接收模块802,还用于接收所述毫米波基站发送的测量报告,所述测量报告为所述终端根据进行RRM测量后,根据所述RRM测量的测量结果发送的测量报告;
所述基站控制器还包括:
确定模块804,用于根据所述测量报告确定向所述终端发送数据的毫米波基站,以及向所述终端发送数据所使用的波束索引信息。
综上所述,本发明实施例提供的基站控制器,通过指示指示毫米波基站在特定的波束索引信息对应的波束上测量该终端的探测参考信号,以便终端在至 少一个毫米波频段对应的至少一个波束索引信息所对应的波束上进行通信,解决了现有技术中终端进行蜂窝通信时,可利用带宽较小的问题,达到扩展了终端通信的频率范围,提高了终端的数据传输速率,且减小终端与毫米波基站进行毫米波通信时信号的衰落与失真,降低同信道用户间的干扰的效果。
需要说明的是,本发明上述各个实施例中所示的主基站、毫米波基站以及基站控制器中,基站控制器可以独立设置在主基站和毫米波基站之外,或者,基站控制器也可以设置在某一个主基站或者某一个毫米波基站中,对于基站控制器的具体设置方式,本发明实施例不作具体限定。
请参考图9,其示出了本发明一个实施例提供的毫米波蜂窝通信方法的方法流程图,该毫米波蜂窝通信方法对应的终端可以是图1所示的实施例中的终端,本方法可以利用图1所示的实施例中的终端执行下述步骤:
902,终端获取毫米波频段对应的波束索引信息;
904,终端根据该波束索引信息与该毫米波频段对应的毫米波基站进行通信。
其中,终端获取毫米波频段对应的波束索引信息之前,可以接收主基站或毫米波基站发送的无线资源重配置消息或广播消息,获取该无线资源重配置消息或广播消息中包含的毫米波频段对应的波束索引信息。
或者,终端获取毫米波频段对应的波束索引信息之前,还可以与主基站或者毫米波基站进行协商,以约定该波束索引信息;其中,该主基站和该毫米波基站为同一基站或者不同基站。
每个该波束索引信息对应于一个预编码码本信息或者一组天线权值信息,或者,每个该波束索引对应于多个预编码码本信息或者多组天线权值信息;其中,每个该预编码码本或每组该天线权值信息唯一确定一个波束。
该波束索引信息还关联波束的特征信息,主基站在不同的波束上发送该波束特定的特征信息,以便UE根据不同的特征信息识别不同的波束。主基站在不同的波束使用不同的参考信号序列或者在不同的波束广播该波束的波束索引信息,UE可以根据波束索引信息和该波束的特征信息唯一确定一个特定的波束。波束索引信息也可以作为虚拟小区标识,即把同一个小区进一步按照多个较宽的波束划分为不同的扇区或子扇区。本发明下文各实施例中波束索引信 息的作用和使用方法同本实施例的说明,下文不再赘述。
此外,每个该波束索引信息对应一个扇区或者一个小区的覆盖范围,或者,每个该波束索引信息对应一个扇区或者一个小区的覆盖范围内的一部分;该波束索引信息为一级索引信息或者N级索引信息,N为整数且N≥2;当该波束索引信息为N级索引信息时,该波束索引信息中的一个第i级索引信息关联第i+1级索引信息;其中,该第i+1级索引信息对应波束的覆盖范围不大于该第i级索引信息对应波束的覆盖范围,i为整数,且2≤i≤N。
当UE所选择或所确定的波束索引信息为第i级索引信息时,UE可以通过所述第i级索引信息所代表的波束与毫米波基站进行通信,或者通过第i+1级索引信息所对应的波束与毫米波基站进行通信。
在本发明实施例中,将毫米波频段作为服务频段配置给终端,由终端在配置的毫米波频段上与毫米波基站进行通信,扩展了终端通信的频率范围,提高了终端的数据传输速率。主基站将毫米波频段对应的小区配置给终端,由终端与毫米波基站进行通信的步骤可以如下:
1)用户设备对毫米波频段进行下行无线资源管理测量,以测量毫米波频段的小区参考信号或信道质量指示参考信号的接收信号功率,并向主基站或毫米波基站进行第一测量报告。主基站根据UE的第一测量报告,判断UE进入了毫米波基站的覆盖范围,可以把一个或多个毫米波频率对应的小区作为一个或多个辅小区配置给UE。
这里RRM测量指用于移动性管理的测量,是经过无线资源控制层过滤的测量方法。例如在LTE系统中所使用的一种过滤方法:Fn=(1-a)·Fn-1+a·Mn。其中:Fn为最新过滤后的测量结果,用于评估触发测量报告的准则;Fn-1是前一次计算的过滤后的测量结果;Mn是物理层最新的测量结果,a是根据不同测量需求确定的系数。
在此之前,主基站或毫米波基站为UE配置对一个或多个毫米波频段的测量,配置信息中至少包括毫米波频段的频率范围、CSI-RS端口号、子帧、扰码等配置信息,以便UE根据配置信息进行测量和报告。
主基站或毫米波基站还可以根据UE在现有的频率较低的频段,比如LTE频段的第一测量报告和/或位置信息判断UE进入了毫米波基站的覆盖范围。其中现有的频率较低的频段由主基站提供或者毫米波基站提供,后者的情况需要毫米波基站同时支持现有的频率较低的频段和毫米波频段。
2)主基站向毫米波基站或者基站控制器发送请求消息,请求把毫米波基站作为SCell配置给UE。
主基站在请求消息中至少携带UE的小区-无线网络临时标识、无线承载配置信息、主基站的无线资源配置信息、一个或多个毫米波基站的标识信息等。
其中一个或多个毫米波基站可以为相同的频率范围,多个毫米波基站提供的频率可以组成同一个SCell,这种情况下多个毫米波基站提供的频率其物理小区标识和演进的小区全局标识相同。多个毫米波基站发送的主同步信号和辅同步参考信号相同,或者,PSS和SSS也可以不同,以区分不同的毫米波基站。多个毫米波基站提供的频率的CSI-RS端口配置可以不同,从而也可以据此区分不同毫米波基站;或者,多个毫米波基站提供的频率的CSI-RS端口配置相同,不对毫米波基站进行区分。
其中一个或多个毫米波基站可以为不同的频率范围,多个毫米波基站提供的频率分别作为不同的SCell,其物理小区标识和演进的小区全局标识不同,发送不同的PSS和SSS。
3)毫米波基站或基站控制器执行接纳控制,同意将至少一个毫米波频段对应的小区作为SCell配置给UE,向主基站发送响应消息。
其中,响应消息中可以携带以下信息,UE的探测参考信号配置信息,为UE分配的C-RNTI;另一方面,SRS配置信息也可以由主基站统一配置,从而毫米波基站不提供SRS配置信息,毫米波基站也可以不提供C-RNTI配置信息,从而UE在PCell和SCell均使用由PCell统一分配的一个C-RNTI。
响应消息中还至少携带以下信息:毫米波的频率范围、公共无线资源配置信息、专用无线资源配置信息。
毫米波基站或基站控制器向簇内所有毫米波基站发送通知消息,以便簇内所有毫米波基站准备测量UE的SRS,以及根据自己的测量或者基站控制器的通知消息准备资源为UE服务。
4)主基站或毫米波基站向UE发送无线资源重配置消息,为UE配置SCell。
其中,无线资源重配置消息中至少携带毫米波基站相关的无线资源配置信息,还可以携带主基站的无线资源配置信息。
5)UE执行无线资源配置,向主基站发送无线资源重配置完成消息。
6)UE和一个或多个毫米波基站进行随机接入过程,以和一个或多个毫米波基站获取上行同步。
7)毫米波基站或者基站控制器根据对UE的SRS的测量判断一定时间内和UE通信的一个或多个毫米波基站。
可选的,毫米波基站或者基站控制器还可以通知主基站该毫米波基站的标识信息。
8)一个或多个毫米波基站为UE分配资源,和UE进行数据通信,包括下行和/或上行通信。
9)毫米波基站测量UE的SRS,判断是否继续为UE服务。
由于UE的移动,可能导致一个或多个毫米波基站不再适合与UE进行数据通信,例如当测量到UE的SRS信号强度低于一定门限时,判断需要退出为UE服务。
10)毫米波基站或者基站控制器向主基站发送第一测量报告和/或是否继续为UE服务的决定的消息。
其中,如果由毫米波基站或者基站控制器决定继续为UE服务的毫米波基站,则不用向主基站发送该消息。不需要步骤10~13。
11)主基站决定更新为UE服务的毫米波基站的集合。
12)主基站向毫米波基站或者基站控制器发送需要为UE服务的毫米波基站的标识信息。
13)毫米波基站或者基站控制器根据对UE的SRS的测量结果,动态决定由一个或多个毫米波基站为UE分配资源进行下行和/或上行通信。
由于毫米波频段信号存在较大的自由空间衰减,且空气吸收、雨、雾、建筑物或其他物体的吸收和散射等因素也会对毫米波频段信号产生较大的影响,因此,在本发明实施例中,为终端设置特定的波束索引信息,由终端在该特定的波束索引信息对应的波束上进行通信,从而减小终端与毫米波基站进行毫米波通信时,无线信号在传播过程中由空间损耗、多径效应等因素引起的信号衰落与失真,并降低同信道用户间的干扰。
其中,终端可以通过指定的毫米波频段对应的波束索引信息进行随机接入、RRM测量以及探测参考信号SRS的发送等。具体可以参见如下步骤。
其中,终端选择该波束索引信息中的部分或者全部波束索引信息所对应的波束与该毫米波基站进行通信。
或者,终端也可以确定该波束索引信息中,该主基站或该毫米波基站指定的第一波束索引信息;根据该第一波束索引信息所对应的波束与该毫米波基站 进行通信。
该波束索引信息可以是一个,也可以是多个,终端可以选择该波束索引信息中的部分或者全部对应的波束进行数据的接收和发送;或者,主基站或毫米波基站在该波束索引信息中指定一个或者多个波束索引信息,终端根据主基站或毫米波基站指定的波束索引信息进行数据的接收和发送。
可选的,终端根据该波束索引信息进行下行无线资源管理测量。
其中,该波束索引信息可以包括用于RRM测量的第二波束索引信息,该终端根据该第二波束索引信息所对应的波束进行RRM测量,获得第一测量结果,该第一测量结果中包含参考信号接收功率RSRP和/或参考信号接收质量RSRQ。
在毫米波小区中,UE可能较快的在不同的波束间移动,因此,用于波束管理的RRM测量需求可能比现有LTE系统中更为严格,例如每数十毫秒进行一次评估以判断是否满足测量报告的准则;进一步的,用于毫米波小区波束管理的RRM测量在广义上也可以指通过波束训练的方式进行的测量,例如主基站和UE各自在小区范围内的多个波束分别发送和接收测量信号,以找到最佳匹配波束对,在这样一对发送波束和接收波束间进行通信时,接收效率最高,传输数据也最可靠,这种情况下的测量可以经过RRC层过滤但测量需求更严格,或者不需要经过RRC层过滤,而是直接使用当前测量结果,这样主基站和UE之间可以以更小的发射功率来达到更佳的传输效果。本发明下文各实施例中针对毫米波小区波束管理的RRM测量的含义同本实施例的说明,下文不再赘述。
该终端根据该第一测量结果向该主基站发送第一测量报告,该第一测量报告包括以下信息中的至少一种:RSRP和/或RSRQ最高的至少一个波束索引信息、在该RSRP和/或RSRQ最高的至少一个波束索引信息所对应的波束上的RSRP和/或RSRQ测量结果、该RSRP和/或RSRQ最高的至少一个波束索引信息所在的频率信息、该RSRP和/或RSRQ最高的至少一个波束索引信息所关联的服务小区信息、该RSRP和/或RSRQ最高的至少一个波束索引信息所关联的邻居小区信息。其中,该服务小区信息或者该邻居小区信息通过物理小区标识PCI和/或小区全局标识CGI表示。
其中,RRM测量以多个预配置的固定波束方向/宽度进行,UE报告信号质量最好的一个或多个波束上测量到的RSRP/RSRQ,报告时包含对应的波束 索引信息,以便主基站根据第一测量报告进行调度。
或者,UE也可以自适应选择从多个波束上进行测量,并选择信号质量最好的一个或多个波束上的RSRP/RSRQ信息报告,报告时包含UE所选择的波束索引信息,例如多个天线权值的信息。
进一步的,该波束索引信息还包括用于候选RRM测量的第三波束索引信息,该终端在该第一测量结果中包含的RSRP和/或RSRQ低于预配置门限时,开始根据该第三波束索引信息所对应的波束进行RRM测量。
若UE在某一个波束索引信息对应的波束上的测量获得的RSRP/RSRQ大于预设门限,则UE可以不去测量其它波束上的信号。或者以更大的周期去测量其它波束上的信号,以在同一个小区内选择更好的较宽波束范围作为数据通信的范围。
或者,UE也可以选择多个信号质量较好,同时空间隔离度也较好的较宽波束范围进行测量,测量周期可以相同,也可以不同,以支持多波束并行工作。
进一步的,该波束索引信息还包括用于进行同频测量的第四波束索引信息,该终端获取该第四波束索引信息关联的测量间隙周期信息;该终端在该测量间隙周期信息所指示的测量间隙内,根据该第四波束索引信息所对应的波束进行该毫米波频段的同频测量。
当UE需要调整到其它的波束对应的方向角去测量邻区的SCH、CRS或者CSI-RS等时,即使是同频测量,服务小区也不能在多个波束的方向上调度UE,除非UE有更多的天线和射频链。对此,主基站或者基站控制器可以为终端预先设置测量间隙周期信息,并将该测量间隔周期信息与用于进行同频测量的波束索引信息相关联,仅在该测量间隔周期信息所指示的测量间隙内进行同频测量。
在本实施例中,还可以对发送第一测量报告的事件设置触发条件,例如当某波束索引信息对应的波束上的的RSRP低于预设值,其它波束索引信息对应的波束上的RSRP仍然有高于预设值,则触发第一测量报告。
结合本步骤所示的RRM测量的方法,终端与毫米波基站进行通信时,可以在RSRP和/或RSRQ最高的波束索引信息所对应的波束上进行通信。
可选的,终端根据该波束索引信息进行随机接入。
其中,该终端从该波束索引信息中确定用于物理随机接入信道资源的第五波束索引信息,并根据该第五波束索引信息所对应的波束进行随机接入。
在确定第五波束索引信息时,该终端可以从该波束索引信息中选择一个波束索引信息作为该第五波束索引信息;或者,该终端可以将该波束索引信息中,该主基站或者该毫米波基站指定用于物理随机接入信道资源的波束索引信息确定为该第五波束索引信息。
该随机接入过程可以是基于竞争的随机接入,也可以是基于非竞争的随机接入。在基于非竞争的随机接入过程中,主基站或者基站控制器为终端分配接入的毫米波基站以及用于接入的波束索引信息,即该第五波束索引信息,该终端在该第五波束索引信息所对应的波束发送随机接入前导(preamble,即msg1);该第五波束索引信息所对应的波束方向上的毫米波基站接收到该msg1之后,若该毫米波基站是主基站或者基站控制器为该终端分配用于随机接入的基站,则该毫米波基站在该五波束索引信息所对应的波束上发送随机接入响应消息(msg2),终端在该第五波束索引信息所对应的波束接收随机接入响应消息,该随机接入响应消息可以包含有针对至少一个UE的信息,这些UE使用相同的时频域资源发送了msg1;UE根据物理下行控制信道上的标识,比如随机接入-无线网络临时标识,来判断msg2中是否包含有针对自己的信息,当RA-RNTI与自己发送随机接入前导时所使用的时频资源一致时,UE判断msg2中可能包含有针对自己的信息,UE进一步根据msg2中所包含的preamble是否与自己发送msg1时所使用的preamble一致来最终判断msg2中是否包含有针对自己的信息。当终端仅在该第五波束索引信息所对应的波束接收msg2时,RA-RNTI的计算公式可以采用现有技术LTE中的计算方法,如下:
RA-RNTI=1+t_id+10*f_id;
其中,t_id指UE发送msg1时所使用的的物理随机接入信道资源所在的子帧,f_id指该子帧内PRACH资源的索引,例如对于时分双工模式在一个子帧可以在不同的频率范围配置有多个PRACH信道资源,每个PRACH信道的频率范围对应一个频域的索引信息。
或者,终端也可以在该波束索引信息所对应的波束接收随机接入响应消息msg2;此时,msg2可以包含在不同波束索引对应的波束上发送msg1的UE的信息,RA-RNTI的计算公式可以包含波束索引信息,以指示该UE是在哪一个波束索引所对应的波束发送msg1消息的,从而UE可以更准确地判断msg2中是否包含有该UE的信息;RA-RNTI的计算公式如下:
RA-RNTI=1+t_id+10*f_id+beam_idx;
其中beam_idx指该UE发送msg1时所使用的波束索引信息。
至此,基于非竞争的随机接入完成。
进一步的,该随机接入响应消息中包含第六波束指引信息,该终端在该第六波束索引信息所对应的波束发送随机接入消息,该随机接入消息中包含该终端的标识;该终端在该第六波束索引所对应的波束接收竞争解决消息,或者,该终端在该波束索引信息所对应的波束接收竞争解决消息;该竞争解决消息包含该终端的标识;该终端的标识为该终端的小区-无线网络临时标识C-RNTI或系统架构演进临时移动站标识S-TMSI。
在基于竞争的随机接入过程中,主基站或者基站控制器仅为终端分配用于接入的波束索引信息,即该第五波束索引信息,而不为该终端指定接入的毫米波基站,该终端在该第五波束索引信息所对应的波束发送随机接入前导(msg1);该第五波束索引信息所对应的波束方向上的毫米波基站接收到该msg1之后,在该五波束索引信息所对应的波束上发送随机接入响应消息(msg2),终端在该第五波束索引信息所对应的波束接收msg2,UE使用公式RA-RNTI=1+t_id+10*f_id判断msg2中是否包含有针对自己的信息;或者,终端也可以在该波束索引信息所对应的波束接收msg2,UE使用公式RA-RNTI=1+t_id+10*f_id+beam_idx判断msg2中是否包含有针对自己的信息;该msg2中包含第六波束指引信息,终端根据该第六波束索引信息发送随机接入消息(msg3),该msg3中包含该终端的标识,终端在该第六波束索引信息对应的波束上接收该msg3,若允许该终端接入,则在同样的波束上发送包含该终端的msg4,终端接收到该msg4后,检测出msg4中包含自身的标识,则确认接入成功。对于后续各实施例中的随机接入过程,UE判断msg2中是否包含有针对自己的信息的方法同本实施例,本发明不再赘述。
在另一种接入方法中,主基站或者基站控制器为各个随机接入前导指定波束索引信息,UE可以根据上述步骤906的RRM测量的测量结果,选择在某一个波束方向上发送msg1给毫米波基站。例如根据前一次报告的RRM测量结果中信号最好的波束索引信息对应的波束发送msg1。毫米波基站以全方向接收的方式检测msg1中的随机接入前导。
毫米波基站在接收到msg1的方向发送msg2,其中,msg2中包含该方向上的多个UE的信息。由于该方向上不同的UE产生的发送波束可能有所不同,因此毫米波基站适配多个UE的波束生成新的下行波束,从而使用相同时频域 资源的UE都能够接收到msg2。此外,UE也可能移动至其它方向,因此msg2需要从多个不同的方向上发送,msg2的内容也因此有所不同,例如由于UE的不同而包含的随机接入前导不同。UE仅在发送msg1的方向接收msg2。
此外,在基于竞争的随机接入过程中,UE也可以同时使用多个波束发送msg1。可以提高主基站检测到该msg1的概率。
可选的,终端根据该波束索引信息发送探测参考信号。
具体的,该终端接收主基站发送的探测参考信号配置信息;该终端根据该探测参考信号配置信息,在该波束索引信息所对应的波束上发送探测参考信号。
主基站或者毫米波基站控制器指示哪些毫米波基站测量哪些UE的SRS。UE按照预配的多个波束索引信息对应的波束发送SRS。毫米波基站测量指定UE的SRS,判断是否适合为UE服务。若是,则毫米波基站通知基站控制器或其它毫米波基站它将要分配给UE的时频空域资源信息以避免干扰。
其中,毫米波基站测量该终端发送的探测参考信号的功率之后,将该探测参考信号的测量结果发送给基站控制器。在该毫米波基站与终端进行通信之前,基站控制器根据该终端发送的探测参考信号的功率确定是否要为该终端服务;或者,在该毫米波基站与终端进行通信的过程中,基站控制器根据该终端发送的探测参考信号的功率确定是否继续为该终端服务,比如,若该终端发送的探测参考信号的功率小于某个阈值,则说明该终端不再适合与该毫米波基站进行通信,则基站控制器可以向主基站发送检测报告,请求主基站更新为该终端服务的毫米波基站的集合。若该终端发送的探测参考信号的功率不小于该阈值,则不发送检测报告。
当基站更新为UE服务的毫米波基站的集合时,新加入的毫米波基站(目标mmB)向当前为终端服务的mmB通知其对应小区的配置信息,比如广播控制信道、SSH、CRS、CSI-RS、解调参考信号、物理随机接入信道以及测量配置所包含的波束配置信息等,当前为终端服务的毫米波基站将该配置信息发送给UE,以便UE快速接入目标毫米波基站。
综上所述,本发明实施例提供的方法,终端获取毫米波频段对应的波束索引信息,通过该波束索引信息所对应的波束与该毫米波频段对应的毫米波基站进行通信,解决了现有技术中终端进行蜂窝通信时,可利用带宽较小的问题,达到扩展了终端通信的频率范围,提高了终端的数据传输速率的效果。
同时,本发明实施例提供的方法,终端在指定的波束索引信息对应的波束上进行通信、RRM测量以及随机接入,达到减小终端与毫米波基站进行毫米波通信时信号的衰落与失真,降低同信道用户间的干扰的效果。
请参考图10,其示出了本发明一个实施例提供的毫米波蜂窝通信方法的方法流程图,该毫米波通信方法对应的主基站可以是图3所示的实施例中的基站,本方法可以利用图3所示的实施例中的基站执行下述步骤:
步骤1002,主基站为终端配置毫米波频段对应的波束索引信息;该波束索引信息用于指示该终端通过该波束索引信息所对应的波束与该毫米波频段对应的毫米波基站进行通信。
具体的,主基站可以向该终端发送包含有该波束索引信息的无线资源重配置消息;或者,主基站也可以与该终端协商确定该波束索引信息。
可选的,主基站接收该终端发送的测量报告。
其中,该测量报告为该终端根据该波束索引信息中包含的第一波束索引信息所对应的波束进行RRM测量后,根据该RRM测量的测量结果发送的报告。
其中,终端根据第一波束索引信息所对应的波束进行RRM测量的具体过程请参见图9对应实施例中的描述,此处不再赘述。本发明实施例中的第一波束索引信息与图9对应实施例中的第二波束索引信息的作用相同。
可选的,主基站根据该测量报告进行数据调度。
具体的,主基站可以根据该测量报告确定向该终端发送数据的毫米波基站,以及向该终端发送数据所使用的波束索引信息。
可选的,主基站向该终端发送毫米波频段上的小区的探测参考信号配置信息,并向该毫米波基站发送上行测量配置信息。
该主基站向该终端发送探测参考信号配置信息,该探测参考信号配置信息用于指示该终端在该波束索引信息所对应的波束上发送探测参考信号。
同时,该主基站还向该毫米波基站发送上行测量配置信息,该上行测量配置信息中包含有第二波束索引信息,该上行测量配置信息用于指示该毫米波基站在该第二波束索引信息所对应的波束上测量该终端发送的探测参考信号的功率。
主基站或者基站控制器可以指定哪些毫米波基站测量哪些终端的探测参考信号的功率,具体的,主基站或者基站控制器指示终端在该波束索引信息对 应的波束上发送SRS,并指示毫米波基站在特定的波束索引信息(第二波束索引信息)对应的波束上测量该终端的探测参考信号。其中,本发明实施例中的第二波束索引信息与图9对应的实施例中的第七波束索引信息的作用相同。
其中,毫米波基站测量该终端发送的探测参考信号的功率之后,将该探测参考信号的测量结果发送给基站控制器。在该毫米波基站与终端进行通信之前,基站控制器根据该终端发送的探测参考信号的功率确定是否要为该终端服务;或者,在该毫米波基站与终端进行通信的过程中,基站控制器根据该终端发送的探测参考信号的功率确定是否继续为该终端服务,比如,若该终端发送的探测参考信号的功率小于某个阈值,则说明该终端不再适合与该毫米波基站进行通信,则基站控制器可以向主基站发送检测报告,请求主基站更新为该终端服务的毫米波基站的集合。若该终端发送的探测参考信号的功率不小于该阈值,则不发送检测报告。
综上所述,本发明实施例提供的方法,主基站为终端配置毫米波频段对应的波束索引信息,使终端通过该波束索引信息所对应的波束与该毫米波频段对应的毫米波基站进行通信,解决了现有技术中终端进行蜂窝通信时,可利用带宽较小的问题,达到扩展了终端通信的频率范围,提高了终端的数据传输速率,且减小终端与毫米波基站进行毫米波通信时信号的衰落与失真,降低同信道用户间的干扰的效果。
请参考图11,其示出了本发明一个实施例提供的毫米波蜂窝通信方法的方法流程图,该毫米波通信方法对应的毫米波基站可以是图5所示的实施例中的基站,本方法可以利用图5所示的实施例中的基站执行下述步骤:
步骤1102,毫米波基站为终端配置毫米波频段对应的波束索引信息,该波束索引信息用于指示该终端通过该波束索引信息所对应的波束与该毫米波频段对应的毫米波基站进行通信。
具体的,毫米波基站可以向该终端发送包含有波束索引信息的无线资源重配置消息或广播消息;
或者,
毫米波基站可以与该终端协商确定波束索引信息。
此外,该毫米波基站还可以接收该终端发送的测量报告,该测量报告为该终端根据该波束索引信息中包含的第一波束索引信息所对应的波束进行RRM 测量后,根据该RRM测量的测量结果发送的测量报告;该毫米波基站将该测量报告发送给基站控制器,该测量报告用于指示该基站控制器确定向该终端发送数据的毫米波基站,以及向该终端发送数据所使用的波束索引信息。
其中,本发明实施例中的第一波束索引信息与上述图9对应的实施例中的第二波束索引信息的作用相同。
另外,该毫米波基站还可以向该终端发送毫米波频段上的小区的探测参考信号配置信息,该探测参考信号配置信息用于指示该终端在该波束索引信息所对应的波束上发送探测参考信号。
可选的,毫米波基站接收该终端在用于物理随机接入信道资源的第二波束索引信息所对应的波束上发送的随机接入前导。
可选的,毫米波基站在该二波束索引信息所对应的波束上发送随机接入响应消息。
该随机接入响应消息中包含第三波束指引信息。
可选的,毫米波基站在该第三波束索引信息所对应的波束接收随机接入消息,该随机接入消息中包含该终端的标识。
可选的,毫米波基站在该第三波束索引所对应的波束发送竞争解决消息;该竞争解决消息包含该终端的标识。
其中,该终端的标识为该终端的小区-无线网络临时标识C-RNTI或系统架构演进临时移动站标识S-TMSI。
其中,终端可以根据该波束索引信息中的第二波束索引信息与该毫米波基站进行随机接入,该随机接入可以是基于非竞争的随机接入过程,也可以是基于竞争的随机接入过程,具体的随机接入方法可以参考图9对应的实施例中的描述,此处不再赘述。其中,本发明实施例中的第二波束索引信息与上述图9对应的实施例中的第五波束索引信息的作用相同。本发明实施例中的第三波束索引信息与上述图9对应的实施例中的第六波束索引信息的作用相同
可选的,毫米波基站接收主基站或者基站控制器发送的上行测量配置信息,该上行测量配置信息中包含有第四波束索引信息。
可选的,毫米波基站在该第四波束索引信息所对应的波束上测量该终端发送的探测参考信号的功率。
可选的,毫米波基站向该基站控制器发送包含测量获得的该探测参考信号的功率的测量结果,该测量结果用于指示该基站控制器在该探测参考信号的功 率大于预设的功率阈值时,指示该毫米波基站准备与该终端进行通信。
其中,本发明实施例中的第四波束索引信息与上述图9对应的实施例中的第七波束索引信息的作用相同。
主基站或者基站控制器可以指定哪些毫米波基站测量哪些终端的探测参考信号的功率,具体的,主基站或者基站控制器指示终端在该波束索引信息对应的波束上发送SRS,并指示毫米波基站在特定的波束索引信息(第四波束索引信息)对应的波束上测量该终端的探测参考信号。
其中,毫米波基站测量该终端发送的探测参考信号的功率之后,将该探测参考信号的测量结果发送给基站控制器。在该毫米波基站与终端进行通信之前,基站控制器根据该终端发送的探测参考信号的功率确定是否要为该终端服务;或者,在该毫米波基站与终端进行通信的过程中,基站控制器根据该终端发送的探测参考信号的功率确定是否继续为该终端服务,比如,若该终端发送的探测参考信号的功率小于某个阈值,则说明该终端不再适合与该毫米波基站进行通信,则基站控制器可以向主基站发送检测报告,请求主基站更新为该终端服务的毫米波基站的集合。若该终端发送的探测参考信号的功率不小于该阈值,则不发送检测报告。
综上所述,本发明实施例提供的毫米波蜂窝通信方法,毫米波基站与终端之间通过毫米波频段对应的波束索引信息所对应的波束进行通信,解决了现有技术中终端进行蜂窝通信时,可利用带宽较小的问题,达到扩展了终端通信的频率范围,提高了终端的数据传输速率,且减小终端与毫米波基站进行毫米波通信时信号的衰落与失真,降低同信道用户间的干扰的效果。
请参考图12,其示出了本发明一个实施例提供的毫米波蜂窝通信方法的方法流程图,该毫米波通信方法可以对应的基站控制器可以是图7所示的实施例中的基站控制器,本方法可以利用图7所示的实施例中的基站控制器执行下述步骤:
步骤1202,基站控制器向毫米波基站发送上行测量配置信息,该上行测量配置信息中包含有波束索引信息,该上行测量配置信息用于指示该毫米波基站在该波束索引信息所对应的波束上测量该终端发送的探测参考信号的功率。
步骤1204,基站控制器接收该毫米波基站发送的,包含测量获得的该探测参考信号的功率的测量结果。
步骤1206,基站控制器在该探测参考信号的功率大于预设的功率阈值时,指示该毫米波基站准备与该终端进行通信。
其中,该终端通过毫米波频段对应的波束索引信息与该毫米波频段对应的各个毫米波基站进行通信。
主基站或者基站控制器可以指定哪些毫米波基站测量哪些终端的探测参考信号的功率,具体的,主基站或者基站控制器指示终端在波束索引信息对应的波束上发送SRS,并指示毫米波基站在特定的波束索引信息对应的波束上测量该终端的探测参考信号。其中,本发明实施例中的波束索引信息与上述图9对应的实施例中的第七波束索引信息的作用相同。
其中,毫米波基站测量该终端发送的探测参考信号的功率之后,将该探测参考信号的测量结果发送给基站控制器。在该毫米波基站与终端进行通信之前,基站控制器根据该终端发送的探测参考信号的功率确定是否要为该终端服务;或者,在该毫米波基站与终端进行通信的过程中,基站控制器根据该终端发送的探测参考信号的功率确定是否继续为该终端服务,比如,若该终端发送的探测参考信号的功率小于某个阈值,则说明该终端不再适合与该毫米波基站进行通信,则基站控制器可以向主基站发送检测报告,请求主基站更新为该终端服务的毫米波基站的集合。若该终端发送的探测参考信号的功率不小于该阈值,则不发送检测报告。
此外,该基站控制器还可以接收该毫米波基站发送的测量报告,该测量报告为该终端根据进行RRM测量后,根据该RRM测量的测量结果发送的测量报告;
该基站控制器根据该测量报告确定向该终端发送数据的毫米波基站,以及向该终端发送数据所使用的波束索引信息。
综上所述,本发明实施例提供的毫米波蜂窝通信方法,基站控制器通过指示指示毫米波基站在特定的波束索引信息对应的波束上测量该终端的探测参考信号,以便终端在毫米波频段对应的波束索引信息所对应的波束上进行通信,解决了现有技术中终端进行蜂窝通信时,可利用带宽较小的问题,达到扩展了终端通信的频率范围,提高了终端的数据传输速率,且减小终端与毫米波基站进行毫米波通信时信号的衰落与失真,降低同信道用户间的干扰的效果。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通 过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (84)

  1. 一种终端,其特征在于,所述终端包括:总线,以及连接到所述总线的处理器、存储器、发射器和接收器;其中,所述存储器用于存储若干个指令,所述若干个指令被配置成由所述处理器执行;
    所述处理器,用于:
    控制所述接收器获取毫米波频段对应的波束索引信息;
    通过所述波束索引信息所对应的波束与所述毫米波频段对应的毫米波基站进行通信。
  2. 根据权利要求1所述的终端,其特征在于,
    所述处理器,还用于控制所述接收器接收主基站或所述毫米波基站发送的无线资源重配置消息或广播消息,获取所述无线资源重配置消息或所述广播消息中包含的所述波束索引信息;
    或者,
    所述处理器,还用于与主基站或者所述毫米波基站进行协商,以约定所述波束索引信息;
    其中,所述主基站和所述毫米波基站为同一基站或者不同基站。
  3. 根据权利要求2所述的终端,其特征在于,
    所述处理器,还用于选择所述波束索引信息中的部分或者全部波束索引信息所对应的波束与所述毫米波基站进行通信;
    或者,
    所述处理器,还用于确定所述波束索引信息中,所述主基站或所述毫米波基站指定的第一波束索引信息,根据所述第一波束索引信息所对应的波束与所述毫米波基站进行通信。
  4. 根据权利要求1至3任一所述的终端,其特征在于,每个所述波束索引信息对应于一个预编码码本信息或者一组天线权值信息,或者,每个所述波束索引对应于多个预编码码本信息或者多组天线权值信息;其中,每个所述预编码码本或每组所述天线权值信息唯一确定一个波束。
  5. 根据权利要求1至3任一所述的终端,其特征在于,每个所述波束索引信息对应一个扇区或者一个小区的覆盖范围,或者,每个所述波束索引信息对应一个扇区或者一个小区的覆盖范围内的一部分;
    所述波束索引信息为一级索引信息或者N级索引信息,N为整数且N≥2;
    当所述波束索引信息为N级索引信息时,所述波束索引信息中的一个第i级索引信息关联第i+1级索引信息;其中,所述第i+1级索引信息对应波束的覆盖范围不大于所述第i级索引信息对应波束的覆盖范围,i为整数,且2≤i≤N。
  6. 根据权利要求1或2所述的终端,其特征在于,所述波束索引信息包括用于无线资源管理RRM测量的第二波束索引信息;
    所述处理器,还用于:
    根据所述第二波束索引信息所对应的波束进行RRM测量,获得第一测量结果,所述第一测量结果中包含参考信号接收功率RSRP和/或参考信号接收质量RSRQ;
    控制所述发射器,根据所述第一测量结果向所述主基站或所述毫米波基站发送第一测量报告,所述第一测量报告包括以下信息中的至少一种:RSRP和/或RSRQ最高的波束索引信息、在所述RSRP和/或RSRQ最高的波束索引信息所对应的波束上的RSRP和/或RSRQ测量结果、所述RSRP和/或RSRQ最高的波束索引信息所在的频率信息、所述RSRP和/或RSRQ最高的波束索引信息所关联的服务小区信息、所述RSRP和/或RSRQ最高的波束索引信息所关联的邻居小区信息;
    其中,所述服务小区信息或者所述邻居小区信息通过物理小区标识PCI和/或小区全局标识CGI表示。
  7. 根据权利要求6所述的终端,其特征在于,所述波束索引信息还包括用于候选RRM测量的第三波束索引信息,
    所述处理器,还用于在所述第一测量结果中包含的RSRP和/或RSRQ低于预配置门限时,根据所述第三波束索引信息所对应的波束进行RRM测量。
  8. 根据权利要求6所述的终端,其特征在于,所述波束索引信息还包括用 于进行同频测量的第四波束索引信息,
    所述处理器,还用于:
    控制所述接收器获取所述第四波束索引信息关联的测量间隙周期信息;
    在所述测量间隙周期信息所指示的测量间隙内,根据所述第四波束索引信息所对应的波束进行所述毫米波频段的同频测量。
  9. 根据权利要求6所述的终端,其特征在于,
    所述处理器,还用于在RSRP和/或RSRQ最高的波束索引信息所对应的波束上与所述毫米波基站进行通信。
  10. 根据权利要求1或2所述的终端,其特征在于,
    所述处理器,还用于:
    从所述波束索引信息中确定用于物理随机接入信道资源的第五波束索引信息;
    根据所述第五波束索引信息所对应的波束进行随机接入。
  11. 根据权利要求10所述的终端,其特征在于,
    所述处理器,还用于从所述波束索引信息中选择一个波束索引信息作为所述第五波束索引信息;
    或者,
    所述处理器,还用于将所述波束索引信息中,所述主基站或者所述毫米波基站指定用于物理随机接入信道资源的波束索引信息确定为所述第五波束索引信息。
  12. 根据权利要求10所述的终端,其特征在于,
    所述处理器,还用于:
    控制所述发射器,在所述第五波束索引信息所对应的波束发送随机接入前导;
    控制所述接收器,在所述第五波束索引信息所对应的波束接收随机接入响应消息,或者,在所述波束索引信息所对应的波束接收随机接入响应消息。
  13. 根据权利要求12所述的终端,其特征在于,所述随机接入响应消息中包含第六波束指引信息,
    所述处理器,还用于:
    控制所述发射器,在所述第六波束索引信息所对应的波束发送随机接入消息,所述随机接入消息中包含所述终端的标识;
    控制所述接收器,在所述第六波束索引所对应的波束接收竞争解决消息,或者,在所述波束索引信息所对应的波束接收竞争解决消息;所述竞争解决消息包含所述终端的标识;
    所述终端的标识为所述终端的小区-无线网络临时标识C-RNTI或系统架构演进临时移动站标识S-TMSI。
  14. 根据权利要求1所述的终端,其特征在于,
    所述处理器,还用于:
    控制所述接收器,接收所述主基站或毫米波基站发送的所述毫米波频段上的小区的探测参考信号配置信息;
    根据所述探测参考信号配置信息,控制所述发射器在所述波束索引信息所对应的波束上发送探测参考信号。
  15. 一种终端,其特征在于,所述终端包括:
    接收模块,用于获取毫米波频段对应的波束索引信息;
    通信模块,用于通过所述波束索引信息所对应的波束与所述毫米波频段对应的毫米波基站进行通信。
  16. 根据权利要求15所述的终端,其特征在于:所述接收模块,还用于:
    接收主基站或所述毫米波基站发送的无线资源重配置消息或广播消息;
    获取所述无线资源重配置消息或所述广播消息中包含的所述波束索引信息;
    所述通信模块,还用于与主基站或者所述毫米波基站进行协商,以约定所述波束索引信息;
    其中,所述主基站和所述毫米波基站为同一基站或者不同基站。
  17. 根据权利要求16所述的终端,其特征在于:
    所述通信模块,还用于:
    选择所述波束索引信息中的部分或者全部波束索引信息所对应的波束与所述毫米波基站进行通信;
    或者,
    确定所述波束索引信息中,所述主基站或所述毫米波基站指定的第一波束索引信息;根据所述第一波束索引信息所对应的波束与所述毫米波基站进行通信。
  18. 根据权利要求15至17任一所述的终端,其特征在于,每个所述波束索引信息对应于一个预编码码本信息或者一组天线权值信息,或者,每个所述波束索引对应于多个预编码码本信息或者多组天线权值信息;其中,每个所述预编码码本或每组所述天线权值信息唯一确定一个波束。
  19. 根据权利要求15至17任一所述的终端,其特征在于,每个所述波束索引信息对应一个扇区或者一个小区的覆盖范围,或者,每个所述波束索引信息对应一个扇区或者一个小区的覆盖范围内的一部分;
    所述波束索引信息为一级索引信息或者N级索引信息,N为整数且N≥2;
    当所述波束索引信息为N级索引信息时,所述波束索引信息中的一个第i级索引信息关联第i+1级索引信息;其中,所述第i+1级索引信息对应波束的覆盖范围不大于所述第i级索引信息对应波束的覆盖范围,i为整数,且2≤i≤N。
  20. 根据权利要求15或16所述的终端,其特征在于,所述波束索引信息包括用于无线资源管理RRM测量的第二波束索引信息,所述终端还包括:
    测量模块,用于根据所述第二波束索引信息所对应的波束进行RRM测量,获得第一测量结果,所述第一测量结果中包含参考信号接收功率RSRP和/或参考信号接收质量RSRQ;
    发送模块,用于根据所述第一测量结果向所述主基站或所述毫米波基站发送第一测量报告,所述第一测量报告包括以下信息中的至少一种:RSRP和/或RSRQ最高的波束索引信息、在所述RSRP和/或RSRQ最高的波束索引信息所对应的波束上的RSRP和/或RSRQ测量结果、所述RSRP和/或RSRQ最高的波 束索引信息所在的频率信息、所述RSRP和/或RSRQ最高的波束索引信息所关联的服务小区信息、所述RSRP和/或RSRQ最高的波束索引信息所关联的邻居小区信息;
    其中,所述服务小区信息或者所述邻居小区信息通过物理小区标识PCI和/或小区全局标识CGI表示。
  21. 根据权利要求20所述的终端,其特征在于,所述波束索引信息还包括用于候选RRM测量的第三波束索引信息,所述测量模块,还用于:
    在所述第一测量结果中包含的RSRP和/或RSRQ低于预配置门限时,开始根据所述第三波束索引信息所对应的波束进行RRM测量。
  22. 根据权利要求20所述的终端,其特征在于,所述波束索引信息还包括用于进行同频测量的第四波束索引信息,
    所述接收模块,还用于获取所述第四波束索引信息关联的测量间隙周期信息;
    所述测量模块,还用于在所述测量间隙周期信息所指示的测量间隙内,根据所述第四波束索引信息所对应的波束进行所述毫米波频段的同频测量。
  23. 根据权利要求20所述的终端,其特征在于,
    所述通信模块,还用于所述终端在RSRP和/或RSRQ最高的波束索引信息所对应的波束上与所述毫米波基站进行通信。
  24. 根据权利要求15或16所述的终端,其特征在于,所述终端还包括:
    确定模块,用于从所述波束索引信息中确定用于物理随机接入信道资源的第五波束索引信息;
    接入模块,用于根据所述第五波束索引信息所对应的波束进行随机接入。
  25. 根据权利要求24所述的终端,其特征在于,所述确定模块,具体用于:从所述波束索引信息中选择一个波束索引信息作为所述第五波束索引信息;
    或者,
    将所述波束索引信息中,所述主基站或者所述毫米波基站指定用于物理随 机接入信道资源的波束索引信息确定为所述第五波束索引信息。
  26. 根据权利要求24所述的终端,其特征在于:
    所述发送模块,还用于在所述第五波束索引信息所对应的波束发送随机接入前导;
    所述接收模块,还用于:
    在所述第五波束索引信息所对应的波束接收随机接入响应消息;
    或者,
    在所述波束索引信息所对应的波束接收随机接入响应消息。
  27. 根据权利要求26所述的终端,其特征在于,所述随机接入响应消息中包含第六波束指引信息,
    所述发送模块,还用于在所述第六波束索引信息所对应的波束发送随机接入消息,所述随机接入消息中包含所述终端的标识;
    所述接收模块,还用于:
    在所述第六波束索引所对应的波束接收竞争解决消息;
    或者,
    在所述波束索引信息所对应的波束接收竞争解决消息;所述竞争解决消息包含所述终端的标识;
    所述终端的标识为所述终端的小区-无线网络临时标识C-RNTI或系统架构演进临时移动站标识S-TMSI。
  28. 根据权利要求15所述的终端,其特征在于:
    所述接收模块,还用于接收所述主基站或所述毫米波基站发送的所述毫米波频段上的小区的探测参考信号配置信息;
    所述发送模块,还用于根据所述探测参考信号配置信息,在所述波束索引信息所对应的波束上发送探测参考信号。
  29. 一种基站,其特征在于,所述基站包括:总线,以及连接到所述总线的处理器、存储器、发射器和接收器;其中,所述存储器用于存储若干个指令,所述若干个指令被配置成由所述处理器执行;
    所述处理器,用于为终端配置毫米波频段对应的波束索引信息;所述波束索引信息用于指示所述终端通过所述波束索引信息所对应的波束与所述毫米波频段对应的毫米波基站进行通信。
  30. 根据权利要求29所述的基站,其特征在于,
    所述处理器,还用于控制所述发射器向所述终端发送包含有所述波束索引信息的无线资源重配置消息或广播消息;
    或者,
    所述处理器,还用于与所述终端协商确定所述波束索引信息。
  31. 根据权利要求29或30所述的基站,其特征在于,
    所述处理器,还用于:
    控制所述接收器接收所述终端发送的测量报告,所述测量报告为所述终端根据所述波束索引信息中包含的第一波束索引信息所对应的波束进行RRM测量后,根据所述RRM测量的测量结果发送的报告;
    根据所述测量报告确定向所述终端发送数据的毫米波基站,以及向所述终端发送数据所使用的波束索引信息。
  32. 根据权利要求29或30所述的基站,其特征在于,
    所述处理器,还用于控制所述发射器向所述终端发送所述毫米波频段上的小区的探测参考信号配置信息,所述探测参考信号配置信息用于指示所述终端在所述波束索引信息所对应的波束上发送探测参考信号。
  33. 根据权利要求29或30所述的基站,其特征在于,
    所述处理器,还用于控制所述发射器向所述毫米波基站发送上行测量配置信息,所述上行测量配置信息中包含有第二波束索引信息,所述上行测量配置信息用于指示所述毫米波基站在所述第二波束索引信息所对应的波束上测量所述终端发送的探测参考信号的功率。
  34. 一种基站,其特征在于,所述基站包括:
    配置模块,用于为终端配置毫米波频段对应的波束索引信息;所述波束索 引信息用于指示所述终端通过所述波束索引信息所对应的波束与所述基站进行通信。
  35. 根据权利要求34所述的基站,其特征在于,还包括:
    发送模块,用于向所述终端发送包含有所述波束索引信息的无线资源重配置消息或广播消息;
    或者,
    所述基站还包括:协商模块,用于与所述终端协商确定所述波束索引信息。
  36. 根据权利要求34或35所述的基站,其特征在于,所述基站还包括:
    接收模块,用于接收所述终端发送的测量报告,所述测量报告为所述终端根据所述波束索引信息中包含的第一波束索引信息所对应的波束进行RRM测量后,根据所RRM测量的测量结果发送的报告;
    确定模块,用于根据所述测量报告确定向所述终端发送数据的毫米波基站,以及向所述终端发送数据所使用的波束索引信息。
  37. 根据权利要求34或35所述的基站,其特征在于:
    所述发送模块,还用于向所述终端发送所述毫米波频段上的小区的探测参考信号配置信息,所述探测参考信号配置信息用于指示所述终端在所述波束索引信息所对应的波束上发送探测参考信号。
  38. 根据权利要求34或35所述的基站,其特征在于:
    所述发送模块,还用于向所述毫米波基站发送上行测量配置信息,所述上行测量配置信息中包含有第二波束索引信息,所述上行测量配置信息用于指示所述毫米波基站在所述第二波束索引信息所对应的波束上测量所述终端发送的探测参考信号的功率。
  39. 一种基站,其特征在于,所述基站包括:总线,以及连接到所述总线的处理器、存储器、发射器和接收器;其中,所述存储器用于存储若干个指令,所述若干个指令被配置成由所述处理器执行;
    所述处理器,用于为终端配置毫米波频段对应的波束索引信息;所述波束 索引信息用于指示所述终端通过所述波束索引信息所对应的波束与所述基站进行通信。
  40. 根据权利要求39所述的基站,其特征在于,
    所述处理器,还用于控制所述发射器向所述终端发送包含有所述波束索引信息的无线资源重配置消息或广播消息;
    或者,
    所述处理器,还用于与所述终端协商确定所述波束索引信息。
  41. 根据权利要求39或40所述的基站,其特征在于,
    所述处理器,还用于:
    控制所述接收器接收所述终端发送的测量报告,所述测量报告为所述终端根据所述波束索引信息中包含的第一波束索引信息所对应的波束进行RRM测量后,根据所述RRM测量的测量结果发送的测量报告;
    控制所述发射器将所述测量报告发送给基站控制器,所述测量报告用于指示所述基站控制器确定向所述终端发送数据的毫米波基站,以及向所述终端发送数据所使用的波束索引信息。
  42. 根据权利要求39或40所述的基站,其特征在于,
    所述处理器,还用于控制所述发射器向所述终端发送毫米波频段上的小区的探测参考信号配置信息,所述探测参考信号配置信息用于指示所述终端在所述波束索引信息所对应的波束上发送探测参考信号。
  43. 根据权利要求39所述的基站,其特征在于,
    所述处理器,还用于:
    控制所述接收器接收所述终端在用于物理随机接入信道资源的第二波束索引信息所对应的波束上发送的随机接入前导;
    控制所述发射器在所述第二波束索引信息所对应的波束上发送随机接入响应消息。
  44. 根据权利要求43所述的基站,其特征在于,所述随机接入响应消息中 包含第三波束指引信息,
    所述处理器,还用于:
    控制所述接收器在所述第三波束索引信息所对应的波束接收随机接入消息,所述随机接入消息中包含所述终端的标识;
    控制所述发射器在所述第三波束索引所对应的波束发送竞争解决消息;所述竞争解决消息包含所述终端的标识;
    所述终端的标识为所述终端的小区-无线网络临时标识C-RNTI或系统架构演进临时移动站标识S-TMSI。
  45. 根据权利要求39至44任一所述的基站,其特征在于,
    所述处理器,还用于:
    控制所述接收器接收主基站或者基站控制器发送的上行测量配置信息,所述上行测量配置信息中包含有第四波束索引信息;
    在所述第四波束索引信息所对应的波束上测量所述终端发送的探测参考信号的功率;
    控制所述发射器向所述基站控制器发送包含测量获得的所述探测参考信号的功率的测量结果,所述测量结果用于指示所述基站控制器在所述探测参考信号的功率大于预设的功率阈值时,指示所述毫米波基站准备与所述终端进行通信。
  46. 一种基站,其特征在于,所述基站包括:
    配置模块,用于为终端配置毫米波频段对应的波束索引信息;所述波束索引信息用于指示所述终端通过所述波束索引信息所对应的波束与所述毫米波频段对应的毫米波基站进行通信。
  47. 根据权利要求46所述的基站,其特征在于,还包括:发送模块,用于向所述终端发送包含有所述波束索引信息的无线资源重配置消息或广播消息;
    或者,
    所述基站还包括:协商模块,用于与所述终端协商确定所述波束索引信息。
  48. 根据权利要求46或47所述的基站,其特征在于:
    所述基站还包括:
    接收模块,用于接收所述终端发送的测量报告,所述测量报告为所述终端根据所述波束索引信息中包含的第一波束索引信息所对应的波束进行RRM测量后,根据所述RRM测量的测量结果发送的测量报告;
    所述发送模块,还用于将所述测量报告发送给基站控制器,所述测量报告用于指示所述基站控制器确定向所述终端发送数据的毫米波基站,以及向所述终端发送数据所使用的波束索引信息。
  49. 根据权利要求46或47所述的基站,其特征在于:
    所述发送模块,还用于向所述终端发送毫米波频段上的小区的探测参考信号配置信息,所述探测参考信号配置信息用于指示所述终端在所述波束索引信息所对应的波束上发送探测参考信号。
  50. 根据权利要求46所述的基站,其特征在于:
    所述接收模块,还用于接收所述终端在用于物理随机接入信道资源的第二波束索引信息所对应的波束上发送的随机接入前导;
    所述发送模块,还用于在所述第二波束索引信息所对应的波束上发送随机接入响应消息。
  51. 根据权利要求50所述的基站,其特征在于,所述随机接入响应消息中包含第三波束指引信息,
    所述接收模块,还用于在所述第三波束索引信息所对应的波束接收随机接入消息,所述随机接入消息中包含所述终端的标识;
    所述发送模块,还用于在所述第三波束索引所对应的波束发送竞争解决消息;所述竞争解决消息包含所述终端的标识;
    所述终端的标识为所述终端的小区-无线网络临时标识C-RNTI或系统架构演进临时移动站标识S-TMSI。
  52. 根据权利要求46至51任一所述的基站,其特征在于:
    所述接收模块,还用于接收主基站或者基站控制器发送的上行测量配置信息,所述上行测量配置信息中包含有第四波束索引信息;
    所述基站还包括:测量模块,用于在所述第四波束索引信息所对应的波束上测量所述终端发送的探测参考信号的功率;
    所述发送模块,还用于发送包含测量获得的所述探测参考信号的功率的测量结果,所述测量结果用于指示所述基站控制器在所述探测参考信号的功率大于预设的功率阈值时,指示所述毫米波基站准备与所述终端进行通信。
  53. 一种基站控制器,其特征在于,所述基站控制器包括:总线,以及连接到所述总线的处理器、存储器、发射器和接收器;其中,所述存储器用于存储若干个指令,所述若干个指令被配置成由所述处理器执行;
    所述处理器,用于:
    控制所述发射器向毫米波基站发送上行测量配置信息,所述上行测量配置信息中包含有波束索引信息,所述上行测量配置信息用于指示所述毫米波基站在所述波束索引信息所对应的波束上测量所述终端发送的探测参考信号的功率;
    控制所述接收器接收所述毫米波基站发送的,包含测量获得的所述探测参考信号的功率的测量结果;
    在所述探测参考信号的功率大于预设的功率阈值时,指示所述毫米波基站准备与所述终端进行通信;
    其中,所述终端通过毫米波频段对应的波束索引信息与所述毫米波频段对应的各个毫米波基站进行通信。
  54. 根据权利要求53所述的基站控制器,其特征在于,
    所述处理器,还用于:
    控制所述接收器接收所述毫米波基站发送的测量报告,所述测量报告为所述终端根据进行RRM测量后,根据所述RRM测量的测量结果发送的测量报告;
    根据所述测量报告确定向所述终端发送数据的毫米波基站,以及向所述终端发送数据所使用的波束索引信息。
  55. 一种基站控制器,其特征在于,所述基站控制器包括:
    发送模块,用于向毫米波基站发送上行测量配置信息,所述上行测量配置信息中包含有波束索引信息,所述上行测量配置信息用于指示所述毫米波基站 在所述波束索引信息所对应的波束上测量所述终端发送的探测参考信号的功率;
    接收模块,用于接收所述毫米波基站发送的,包含测量获得的所述探测参考信号的功率的测量结果;
    指示模块,用于在所述探测参考信号的功率大于预设的功率阈值时,指示所述毫米波基站准备与所述终端进行通信;
    其中,所述终端通过毫米波频段对应的波束索引信息与所述毫米波频段对应的各个毫米波基站进行通信。
  56. 根据权利要求55所述的基站控制器,其特征在于:
    所述接收模块,还用于接收所述毫米波基站发送的测量报告,所述测量报告为所述终端根据进行RRM测量后,根据所述RRM测量的测量结果发送的测量报告;
    所述基站控制器还包括:确定模块,用于根据所述测量报告确定向所述终端发送数据的毫米波基站,以及向所述终端发送数据所使用的波束索引信息。
  57. 一种毫米波蜂窝通信方法,其特征在于,所述方法包括:
    终端获取毫米波频段对应的波束索引信息;
    所述终端通过所述波束索引信息所对应的波束与所述毫米波频段对应的毫米波基站进行通信。
  58. 根据权利要求57所述的方法,其特征在于,所述终端获取毫米波频段对应的波束索引信息,包括:
    接收主基站或所述毫米波基站发送的无线资源重配置消息或广播消息,获取所述无线资源重配置消息或所述广播消息中包含的所述波束索引信息;
    或者,
    与主基站或者所述毫米波基站进行协商,以约定所述波束索引信息;
    其中,所述主基站和所述毫米波基站为同一基站或者不同基站。
  59. 根据权利要求58所述的方法,其特征在于,所述终端通过所述波束索引信息所对应的波束与所述毫米波频段对应的毫米波基站进行通信,包括:
    选择所述波束索引信息中的部分或者全部波束索引信息所对应的波束与所述毫米波基站进行通信;
    或者,
    确定所述波束索引信息中,所述主基站或所述毫米波基站指定的第一波束索引信息;根据所述第一波束索引信息所对应的波束与所述毫米波基站进行通信。
  60. 根据权利要求57至59任一所述的方法,其特征在于,每个所述波束索引信息对应于一个预编码码本信息或者一组天线权值信息,或者,每个所述波束索引对应于多个预编码码本信息或者多组天线权值信息;其中,每个所述预编码码本或每组所述天线权值信息唯一确定一个波束。
  61. 根据权利要求57至59任一所述的方法,其特征在于,每个所述波束索引信息对应一个扇区或者一个小区的覆盖范围,或者,每个所述波束索引信息对应一个扇区或者一个小区的覆盖范围内的一部分;
    所述波束索引信息为一级索引信息或者N级索引信息,N为整数且N≥2;
    当所述波束索引信息为N级索引信息时,所述波束索引信息中的一个第i级索引信息关联第i+1级索引信息;其中,所述第i+1级索引信息对应波束的覆盖范围不大于所述第i级索引信息对应波束的覆盖范围,i为整数,且2≤i≤N。
  62. 根据权利要求57或58所述的方法,其特征在于,所述波束索引信息包括用于无线资源管理RRM测量的第二波束索引信息,所述方法还包括:
    所述终端根据所述第二波束索引信息所对应的波束进行RRM测量,获得第一测量结果,所述第一测量结果中包含参考信号接收功率RSRP和/或参考信号接收质量RSRQ;
    所述终端根据所述第一测量结果向所述主基站或所述毫米波基站发送第一测量报告,所述第一测量报告包括以下信息中的至少一种:RSRP和/或RSRQ最高的波束索引信息、在所述RSRP和/或RSRQ最高的波束索引信息所对应的波束上的RSRP和/或RSRQ测量结果、所述RSRP和/或RSRQ最高的波束索引信息所在的频率信息、所述RSRP和/或RSRQ最高的波束索引信息所关联的服务小区信息、所述RSRP和/或RSRQ最高的波束索引信息所关联的邻居小区信 息;
    其中,所述服务小区信息或者所述邻居小区信息通过物理小区标识PCI和/或小区全局标识CGI表示。
  63. 根据权利要求62所述的方法,其特征在于,所述波束索引信息还包括用于候选RRM测量的第三波束索引信息,所述方法还包括:
    所述终端在所述第一测量结果中包含的RSRP和/或RSRQ低于预配置门限时,开始根据所述第三波束索引信息所对应的波束进行RRM测量。
  64. 根据权利要求62所述的方法,其特征在于,所述波束索引信息还包括用于进行同频测量的第四波束索引信息,所述方法还包括:
    所述终端获取所述第四波束索引信息关联的测量间隙周期信息;
    所述终端在所述测量间隙周期信息所指示的测量间隙内,根据所述第四波束索引信息所对应的波束进行所述毫米波频段的同频测量。
  65. 根据权利要求62所述的方法,其特征在于,所述终端通过所述波束索引信息所对应的波束与所述毫米波频段对应的毫米波基站进行通信,包括:
    所述终端在RSRP和/或RSRQ最高的波束索引信息所对应的波束上与所述毫米波基站进行通信。
  66. 根据权利要求57或58所述的方法,其特征在于,所述方法还包括:
    所述终端从所述波束索引信息中确定用于物理随机接入信道资源的第五波束索引信息;
    所述终端根据所述第五波束索引信息所对应的波束进行随机接入。
  67. 根据权利要求66所述的方法,其特征在于,所述终端从所述波束索引信息中确定用于物理随机接入信道资源的第五波束索引信息,包括:
    从所述波束索引信息中选择一个波束索引信息作为所述第五波束索引信息;
    或者,
    将所述波束索引信息中,所述主基站或者所述毫米波基站指定用于物理随 机接入信道资源的波束索引信息确定为所述第五波束索引信息。
  68. 根据权利要求66所述的方法,其特征在于,所述终端根据所述第五波束索引信息所对应的波束进行随机接入,包括:
    在所述第五波束索引信息所对应的波束发送随机接入前导;
    在所述第五波束索引信息所对应的波束接收随机接入响应消息;或者,在所述波束索引信息所对应的波束接收随机接入响应消息。
  69. 根据权利要求68所述的方法,其特征在于,所述随机接入响应消息中包含第六波束指引信息,所述方法还包括:
    所述终端在所述第六波束索引信息所对应的波束发送随机接入消息,所述随机接入消息中包含所述终端的标识;
    所述终端在所述第六波束索引所对应的波束接收竞争解决消息,或者,所述终端在所述波束索引信息所对应的波束接收竞争解决消息;所述竞争解决消息包含所述终端的标识;
    所述终端的标识为所述终端的小区-无线网络临时标识C-RNTI或系统架构演进临时移动站标识S-TMSI。
  70. 根据权利要求57所述的方法,其特征在于,所述方法还包括:
    所述终端接收所述主基站或所述毫米波基站发送的所述毫米波频段上的小区的探测参考信号配置信息;
    所述终端根据所述探测参考信号配置信息,在所述波束索引信息所对应的波束上发送探测参考信号。
  71. 一种毫米波蜂窝通信方法,其特征在于,所述方法包括:
    主基站为终端配置毫米波频段对应的波束索引信息;所述波束索引信息用于指示所述终端通过所述波束索引信息所对应的波束与所述毫米波频段对应的毫米波基站进行通信。
  72. 根据权利要求71所述的方法,其特征在于,所述主基站为终端配置毫米波频段对应的波束索引信息,包括:
    向所述终端发送包含有所述波束索引信息的无线资源重配置消息或广播消息;
    或者,
    与所述终端协商确定所述波束索引信息。
  73. 根据权利要求71或72所述的方法,其特征在于,所述方法还包括:
    所述主基站接收所述终端发送的测量报告,所述测量报告为所述终端根据所述波束索引信息中包含的第一波束索引信息所对应的波束进行RRM测量后,根据所述RRM测量的测量结果发送的测量报告;
    所述主基站根据所述测量报告确定向所述终端发送数据的毫米波基站,以及向所述终端发送数据所使用的波束索引信息。
  74. 根据权利要求71或72所述的方法,其特征在于,所述方法还包括:
    所述主基站向所述终端发送所述毫米波频段上的小区的探测参考信号配置信息,所述探测参考信号配置信息用于指示所述终端在所述波束索引信息所对应的波束上发送探测参考信号。
  75. 根据权利要求71或72所述的方法,其特征在于,所述方法还包括:
    所述主基站向所述毫米波基站发送上行测量配置信息,所述上行测量配置信息中包含有第二波束索引信息,所述上行测量配置信息用于指示所述毫米波基站在所述第二波束索引信息所对应的波束上测量所述终端发送的探测参考信号的功率。
  76. 一种毫米波蜂窝通信方法,其特征在于,所述方法包括:
    毫米波基站为终端配置毫米波频段对应的波束索引信息;所述波束索引信息用于指示所述终端通过所述波束索引信息所对应的波束与所述毫米波频段对应的毫米波基站进行通信。
  77. 根据权利要求76所述的方法,其特征在于,所述毫米波基站为终端配置毫米波频段对应的波束索引信息,包括:
    向所述终端发送包含有所述波束索引信息的无线资源重配置消息或广播消 息;
    或者,
    与所述终端协商确定所述波束索引信息。
  78. 根据权利要求76或77所述的方法,其特征在于,所述方法还包括:
    所述毫米波基站接收所述终端发送的测量报告,所述测量报告为所述终端根据所述波束索引信息中包含的第一波束索引信息所对应的波束进行RRM测量后,根据所述RRM测量的测量结果发送的测量报告;
    所述毫米波基站将所述测量报告发送给基站控制器,所述测量报告用于指示所述基站控制器确定向所述终端发送数据的毫米波基站,以及向所述终端发送数据所使用的波束索引信息。
  79. 根据权利要求76或77所述的方法,其特征在于,所述方法还包括:
    所述毫米波基站向所述终端发送毫米波频段上的小区的探测参考信号配置信息,所述探测参考信号配置信息用于指示所述终端在所述波束索引信息所对应的波束上发送探测参考信号。
  80. 根据权利要求76所述的方法,其特征在于,所述方法还包括:
    所述毫米波基站接收所述终端在用于物理随机接入信道资源的第二波束索引信息所对应的波束上发送的随机接入前导;
    所述毫米波基站在所述二波束索引信息所对应的波束上发送随机接入响应消息。
  81. 根据权利要求80所述的方法,其特征在于,所述随机接入响应消息中包含第三波束指引信息,所述方法还包括:
    所述毫米波基站在所述第三波束索引信息所对应的波束接收随机接入消息,所述随机接入消息中包含所述终端的标识;
    所述毫米波基站在所述第三波束索引所对应的波束发送竞争解决消息;所述竞争解决消息包含所述终端的标识;
    所述终端的标识为所述终端的小区-无线网络临时标识C-RNTI或系统架构演进临时移动站标识S-TMSI。
  82. 根据权利要求76至81任一所述的方法,其特征在于,所述方法还包括:
    所述毫米波基站接收主基站或者基站控制器发送的上行测量配置信息,所述上行测量配置信息中包含有第四波束索引信息;
    所述毫米波基站在所述第四波束索引信息所对应的波束上测量所述终端发送的探测参考信号的功率;
    所述毫米波基站向所述基站控制器发送包含测量获得的所述探测参考信号的功率的测量结果,所述测量结果用于指示所述基站控制器在所述探测参考信号的功率大于预设的功率阈值时,指示所述毫米波基站准备与所述终端进行通信。
  83. 一种毫米波蜂窝通信方法,其特征在于,所述方法包括:
    基站控制器向毫米波基站发送上行测量配置信息,所述上行测量配置信息中包含有波束索引信息,所述上行测量配置信息用于指示所述毫米波基站在所述波束索引信息所对应的波束上测量所述终端发送的探测参考信号的功率;
    所述基站控制器接收所述毫米波基站发送的,包含测量获得的所述探测参考信号的功率的测量结果;
    所述基站控制器在所述探测参考信号的功率大于预设的功率阈值时,指示所述毫米波基站准备与所述终端进行通信;
    其中,所述终端通过毫米波频段对应的波束索引信息与所述毫米波频段对应的各个毫米波基站进行通信。
  84. 根据权利要求83所述的方法,其特征在于,所述方法还包括:
    所述基站控制器接收所述毫米波基站发送的测量报告,所述测量报告为所述终端根据进行RRM测量后,根据所述RRM测量的测量结果发送的测量报告;
    所述基站控制器根据所述测量报告确定向所述终端发送数据的毫米波基站,以及向所述终端发送数据所使用的波束索引信息。
PCT/CN2014/087171 2014-09-23 2014-09-23 终端、基站、基站控制器及毫米波蜂窝通信方法 WO2016044991A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/CN2014/087171 WO2016044991A1 (zh) 2014-09-23 2014-09-23 终端、基站、基站控制器及毫米波蜂窝通信方法
EP14902509.0A EP3188548A4 (en) 2014-09-23 2014-09-23 Terminal, base station, base station controller and millimetre wave honeycomb communication method
CN201480038158.6A CN105637939B (zh) 2014-09-23 2014-09-23 终端、基站、基站控制器及毫米波蜂窝通信方法
JP2017534863A JP2017535211A (ja) 2014-09-23 2014-09-23 端末、基地局、基地局コントローラ、およびミリメートル波のセルラー通信方法
CN202010124602.3A CN111417136A (zh) 2014-09-23 2014-09-23 终端、基站、基站控制器及毫米波蜂窝通信方法
US15/467,209 US20170195033A1 (en) 2014-09-23 2017-03-23 Terminal, Base Station, Base Station Controller, and Millimeter-Wave Cellular Communication Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/087171 WO2016044991A1 (zh) 2014-09-23 2014-09-23 终端、基站、基站控制器及毫米波蜂窝通信方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/467,209 Continuation US20170195033A1 (en) 2014-09-23 2017-03-23 Terminal, Base Station, Base Station Controller, and Millimeter-Wave Cellular Communication Method

Publications (1)

Publication Number Publication Date
WO2016044991A1 true WO2016044991A1 (zh) 2016-03-31

Family

ID=55580040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/087171 WO2016044991A1 (zh) 2014-09-23 2014-09-23 终端、基站、基站控制器及毫米波蜂窝通信方法

Country Status (5)

Country Link
US (1) US20170195033A1 (zh)
EP (1) EP3188548A4 (zh)
JP (1) JP2017535211A (zh)
CN (2) CN111417136A (zh)
WO (1) WO2016044991A1 (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170317866A1 (en) * 2016-04-27 2017-11-02 Futurewei Technologies, Inc. Sounding Reference Signal (SRS) Design for Cellular Time Division Duplex (TDD) mmWave Systems
WO2017204929A1 (en) * 2016-05-26 2017-11-30 Qualcomm Incorporated System and method for beam switching and reporting
WO2018031138A1 (en) * 2016-08-11 2018-02-15 Intel IP Corporation Beam measurement and reporting in cellular networks
WO2018031908A1 (en) * 2016-08-11 2018-02-15 Convida Wireless, Llc Beam management
WO2018082667A1 (en) * 2016-11-03 2018-05-11 Huawei Technologies Co., Ltd. System and method for synchronization and link acquisition in cellular wireless systems with directional antennas
WO2018098826A1 (zh) * 2016-12-02 2018-06-07 广东欧珀移动通信有限公司 用于随机接入的方法,终端设备和网络设备
TWI637608B (zh) * 2017-07-04 2018-10-01 中華電信股份有限公司 Beam resource management method applied to millimeter wave large-scale antenna array system
US10181891B2 (en) 2016-05-26 2019-01-15 Qualcomm Incorporated System and method for beam switching and reporting
EP3449682A4 (en) * 2016-05-16 2019-04-17 Huawei Technologies Co., Ltd. RANDOM ACCESS PROCEDURE AND GUSTING TRANSMISSION IN A HIGH FREQUENCY SYSTEM
EP3427519A4 (en) * 2016-04-06 2019-05-15 Huawei Technologies Co., Ltd. MILLIMETER WAVE COMMUNICATION SYSTEM AND METHOD
US10425138B2 (en) 2016-05-26 2019-09-24 Qualcomm Incorporated System and method for beam switching and reporting
US10498406B2 (en) 2016-05-26 2019-12-03 Qualcomm Incorporated System and method for beam switching and reporting
US10541741B2 (en) 2016-05-26 2020-01-21 Qualcomm Incorporated System and method for beam switching and reporting
US10651899B2 (en) 2016-05-26 2020-05-12 Qualcomm Incorporated System and method for beam switching and reporting
EP3499956A4 (en) * 2016-08-10 2020-08-26 ZTE Corporation RADIO ACCESS METHOD, DEVICE, SYSTEM AND COMPUTER STORAGE MEDIUM
CN111758267A (zh) * 2020-05-22 2020-10-09 北京小米移动软件有限公司 频率资源授权方法、装置及计算机可读存储介质
WO2022205487A1 (en) * 2021-04-03 2022-10-06 Qualcomm Incorporated Antenna panel indication in wireless communication

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106304354B (zh) * 2015-06-08 2019-02-15 中兴通讯股份有限公司 一种载频间协作方法及装置
CN106341828B (zh) * 2015-07-10 2020-04-03 华为技术有限公司 一种信道测量方法及sta
EP3198940B1 (en) * 2016-04-01 2020-06-03 Telefonaktiebolaget LM Ericsson (publ) Network device, terminal device and methods for facilitating handover of terminal device
US10511421B2 (en) * 2016-05-18 2019-12-17 Qualcomm Incorporated CSI-RS design with dynamic subframe structure
WO2017209505A1 (ko) * 2016-05-31 2017-12-07 엘지전자 주식회사 무선 통신 시스템에서 rrm 보고 방법 및 이를 지원하는 장치
CN109417822B (zh) * 2016-07-26 2023-12-26 苹果公司 用户设备的设备、用户设备装置和用于通信的方法
CN111510981B (zh) * 2016-08-10 2021-10-22 中兴通讯股份有限公司 无线链路管理方法及装置
CN112333760B (zh) * 2016-09-30 2023-12-29 华为技术有限公司 测量和上报方法、终端及基站
EP3528530B1 (en) * 2016-10-13 2021-09-08 Huawei Technologies Co., Ltd. Measurement reporting method and related device
KR102449472B1 (ko) * 2016-11-03 2022-10-11 삼성전자 주식회사 무선 통신 시스템에서 단말 간 간섭 관리 방법 및 장치
CN108347768B (zh) * 2017-01-24 2024-03-26 华为技术有限公司 前导资源分组方法、前导选择方法,网络设备及终端设备
KR102543491B1 (ko) * 2017-02-06 2023-06-14 삼성전자 주식회사 무선 통신 시스템에서 빔 탐색 및 운용 방법 및 장치
US20210136639A1 (en) * 2017-03-16 2021-05-06 Ntt Docomo, Inc. User terminal and radio communication method
CN109104227A (zh) * 2017-06-20 2018-12-28 索尼公司 用于无线通信系统的电子设备、方法和存储介质
US11330457B2 (en) 2017-07-25 2022-05-10 Mediatek Inc. Method for beam management with beam indication in wireless communication systems with beamforming
KR102355636B1 (ko) * 2017-07-27 2022-02-08 엘지전자 주식회사 Srs를 전송하는 방법 및 이를 위한 단말
JP6944040B2 (ja) * 2017-08-01 2021-10-06 テレフオンアクチーボラゲット エルエム エリクソン(パブル) ユーザ機器によって監視されるべきビームのセットを選択するための方法、基地局および前記ue
JP7409086B2 (ja) * 2017-08-10 2024-01-09 ソニーグループ株式会社 通信装置、通信制御方法及びコンピュータプログラム
US11032779B2 (en) * 2017-08-11 2021-06-08 Telefonaktiebolaget Lm Ericsson (Publ) Use of cell specific reference signals for NR open loop uplink power control
CN109392188B (zh) * 2017-08-11 2020-12-25 华为技术有限公司 随机接入方法、设备及系统
US20200252997A1 (en) * 2017-08-14 2020-08-06 Apple Inc. Configure Measurement Gaps for CSI-RS from Neighbor Cells in NR
US10779331B2 (en) * 2017-08-21 2020-09-15 Qualcomm Incorporated Random access channel (RACH) transmission with cross-band downlink/uplink (DL/UL) pairing
US11013034B2 (en) 2017-09-07 2021-05-18 Futurewei Technologies, Inc. System and method for random access communications
US10312988B2 (en) 2017-09-15 2019-06-04 At&T Intellectual Property I, L.P. Two reference signal beam reporting and identification
EP3685619A4 (en) * 2017-09-28 2021-04-07 Samsung Electronics Co., Ltd. METHOD AND NETWORK NODE FOR PERFORMING DATA TRANSMISSION AND MEASUREMENTS ON MULTIPLE PARTS OF BANDWIDTH
CN109600158B (zh) * 2017-09-30 2022-05-17 中国电信股份有限公司 波束调度方法、ue及通信系统
US11470569B2 (en) * 2017-11-21 2022-10-11 Qualcomm Incorporated Uplink transmissions without uplink timing control and measurement
US11184125B2 (en) * 2018-01-31 2021-11-23 Qualcomm Incorporated Network triggered reference signal coverage extension in wireless communication
US11644529B2 (en) * 2018-03-26 2023-05-09 Qualcomm Incorporated Using a side-communication channel for exchanging radar information to improve multi-radar coexistence
US11280876B2 (en) 2018-06-18 2022-03-22 Qualcomm Incorporated Multi-radar coexistence using phase-coded frequency modulated continuous wave waveforms
US11385323B2 (en) 2018-06-25 2022-07-12 Qualcomm Incorporated Selection of frequency modulated continuous wave (FMWC) waveform parameters for multi-radar coexistence
US11585889B2 (en) 2018-07-25 2023-02-21 Qualcomm Incorporated Methods for radar coexistence
US11700045B2 (en) * 2019-10-29 2023-07-11 Qualcomm Incorporated System and method for beam training with relay links
US11843986B2 (en) 2019-12-13 2023-12-12 Beijing Xiaomi Mobile Software Co., Ltd. Beam measurement method and beam measurement device
US20210195651A1 (en) * 2019-12-20 2021-06-24 Qualcomm Incorporated Beam sweep based random access msg 2
US11696333B2 (en) 2019-12-20 2023-07-04 Qualcomm Incorporated Beam sweep based random access msg 1 and msg 2
US11743742B2 (en) 2020-03-31 2023-08-29 Qualcomm Incorporated Beam sweep based random access msg 3 and msg 4
JP2024516888A (ja) * 2021-05-10 2024-04-17 北京小米移動軟件有限公司 協調セルのビーム測定方法、装置及び通信デバイス

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102326339A (zh) * 2009-02-25 2012-01-18 索尼公司 通信装置和通信方法、计算机程序和通信系统
WO2013170169A2 (en) * 2012-05-10 2013-11-14 Interdigital Patent Holdings, Inc. Systems and methods for directional mesh networks with joint backhaul and access link design
CN103988551A (zh) * 2011-12-08 2014-08-13 交互数字专利控股公司 用于毫米波通信系统的方法和装置
CN103988546A (zh) * 2011-12-08 2014-08-13 交互数字专利控股公司 高速双波段蜂窝通信

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5244631B2 (ja) * 2009-01-22 2013-07-24 京セラ株式会社 無線装置および無線通信方法
US9288742B2 (en) * 2011-04-01 2016-03-15 Intel Corporation Opportunistic carrier aggregation using short range extension carriers
KR101884332B1 (ko) * 2011-09-14 2018-08-01 삼성전자주식회사 무선통신 시스템에서 가상 셀 형성 방법 및 장치
CA2858171C (en) * 2011-12-15 2017-12-05 Intel Corporation Use of location information in multi-radio devices for mmwave beamforming
US10264478B2 (en) * 2011-12-16 2019-04-16 Samsung Electronics Co., Ltd. Methods and apparatus to enhance reliability in millimeter wave wideband communications
US9237475B2 (en) * 2012-03-09 2016-01-12 Samsung Electronics Co., Ltd. Channel quality information and beam index reporting
US20130286960A1 (en) * 2012-04-30 2013-10-31 Samsung Electronics Co., Ltd Apparatus and method for control channel beam management in a wireless system with a large number of antennas
US9468022B2 (en) * 2012-12-26 2016-10-11 Samsung Electronics Co., Ltd. Method and apparatus for random access in communication system with large number of antennas
US9392639B2 (en) * 2013-02-27 2016-07-12 Samsung Electronics Co., Ltd. Methods and apparatus for channel sounding in beamformed massive MIMO systems
JP2016516338A (ja) * 2013-03-11 2016-06-02 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいてチャネル状態情報報告方法及び装置
KR20150134328A (ko) * 2013-03-25 2015-12-01 엘지전자 주식회사 하향링크 무선 신호를 수신하기 위한 방법 및 이를 위한 장치
US9497047B2 (en) * 2013-07-02 2016-11-15 Samsung Electronics Co., Ltd. Methods and apparatus for sounding channel operation in millimeter wave communication systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102326339A (zh) * 2009-02-25 2012-01-18 索尼公司 通信装置和通信方法、计算机程序和通信系统
CN103988551A (zh) * 2011-12-08 2014-08-13 交互数字专利控股公司 用于毫米波通信系统的方法和装置
CN103988546A (zh) * 2011-12-08 2014-08-13 交互数字专利控股公司 高速双波段蜂窝通信
WO2013170169A2 (en) * 2012-05-10 2013-11-14 Interdigital Patent Holdings, Inc. Systems and methods for directional mesh networks with joint backhaul and access link design

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3188548A4 *

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10757582B2 (en) 2016-04-06 2020-08-25 Futurewei Technologies, Inc. System and method for millimeter wave communications
EP3427519A4 (en) * 2016-04-06 2019-05-15 Huawei Technologies Co., Ltd. MILLIMETER WAVE COMMUNICATION SYSTEM AND METHOD
US11425576B2 (en) 2016-04-06 2022-08-23 Futurewei Technologies, Inc. System and method for millimeter wave communications
RU2713607C1 (ru) * 2016-04-06 2020-02-05 Хуавей Текнолоджиз Ко., Лтд. Система и способ связи в миллиметровом диапазоне длин волн
US11888665B2 (en) 2016-04-27 2024-01-30 Futurewei Technologies, Inc. Sounding reference signal (SRS) design for cellular time division duplex (TDD) mmWave systems
US11522743B2 (en) * 2016-04-27 2022-12-06 Futurewei Technologies, Inc. Sounding reference signal (SRS) design for cellular time division duplex (TDD) mmWave systems
RU2712127C1 (ru) * 2016-04-27 2020-01-24 Хуавэй Текнолоджиз Ко., Лтд. Структура зондирующего опорного сигнала (srs) для сотовой системы дуплекса с временным разделением (tdd) миллиметровых волн
US20170317866A1 (en) * 2016-04-27 2017-11-02 Futurewei Technologies, Inc. Sounding Reference Signal (SRS) Design for Cellular Time Division Duplex (TDD) mmWave Systems
EP3449682A4 (en) * 2016-05-16 2019-04-17 Huawei Technologies Co., Ltd. RANDOM ACCESS PROCEDURE AND GUSTING TRANSMISSION IN A HIGH FREQUENCY SYSTEM
US11101869B2 (en) 2016-05-26 2021-08-24 Qualcomm Incorporated System and method for beam switching and reporting
US10651899B2 (en) 2016-05-26 2020-05-12 Qualcomm Incorporated System and method for beam switching and reporting
US10425138B2 (en) 2016-05-26 2019-09-24 Qualcomm Incorporated System and method for beam switching and reporting
US10498406B2 (en) 2016-05-26 2019-12-03 Qualcomm Incorporated System and method for beam switching and reporting
US10541741B2 (en) 2016-05-26 2020-01-21 Qualcomm Incorporated System and method for beam switching and reporting
US10181891B2 (en) 2016-05-26 2019-01-15 Qualcomm Incorporated System and method for beam switching and reporting
US10917158B2 (en) 2016-05-26 2021-02-09 Qualcomm Incorporated System and method for beam switching and reporting
US10985828B2 (en) 2016-05-26 2021-04-20 Qualcomm Incorporated System and method for beam switching and reporting
US11309941B2 (en) 2016-05-26 2022-04-19 Qualcomm Incorporated System and method for beam switching and reporting
US11108441B2 (en) 2016-05-26 2021-08-31 Qualcomm Incorporated System and method for beam switching and reporting
US11855737B2 (en) 2016-05-26 2023-12-26 Qualcomm Incorporated System and method for beam switching and reporting
EP3800799A1 (en) * 2016-05-26 2021-04-07 QUALCOMM Incorporated System and method for beam switching and reporting
WO2017204929A1 (en) * 2016-05-26 2017-11-30 Qualcomm Incorporated System and method for beam switching and reporting
US11095358B2 (en) 2016-05-26 2021-08-17 Qualcomm Incorporated System and method for beam switching and reporting
EP3499956A4 (en) * 2016-08-10 2020-08-26 ZTE Corporation RADIO ACCESS METHOD, DEVICE, SYSTEM AND COMPUTER STORAGE MEDIUM
US10932150B2 (en) 2016-08-11 2021-02-23 Convida Wireless, Llc Beam management
WO2018031138A1 (en) * 2016-08-11 2018-02-15 Intel IP Corporation Beam measurement and reporting in cellular networks
US10856169B2 (en) 2016-08-11 2020-12-01 Apple Inc. Beam measurement and reporting in cellular networks
WO2018031908A1 (en) * 2016-08-11 2018-02-15 Convida Wireless, Llc Beam management
US11350376B2 (en) 2016-11-03 2022-05-31 Futurewei Technologies, Inc. System and method for synchronization and link acquisition in cellular wireless systems with directional antennas
US10321421B2 (en) 2016-11-03 2019-06-11 Futurewei Technologies, Inc. System and method for synchronization and link acquisition in cellular wireless systems with directional antennas
WO2018082667A1 (en) * 2016-11-03 2018-05-11 Huawei Technologies Co., Ltd. System and method for synchronization and link acquisition in cellular wireless systems with directional antennas
TWI700015B (zh) * 2016-12-02 2020-07-21 大陸商Oppo廣東移動通信有限公司 用於隨機接入的方法,終端設備和網路設備
WO2018098826A1 (zh) * 2016-12-02 2018-06-07 广东欧珀移动通信有限公司 用于随机接入的方法,终端设备和网络设备
US10863549B2 (en) 2016-12-02 2020-12-08 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Random access method, terminal device, and network device
TWI637608B (zh) * 2017-07-04 2018-10-01 中華電信股份有限公司 Beam resource management method applied to millimeter wave large-scale antenna array system
CN111758267A (zh) * 2020-05-22 2020-10-09 北京小米移动软件有限公司 频率资源授权方法、装置及计算机可读存储介质
WO2021232439A1 (zh) * 2020-05-22 2021-11-25 北京小米移动软件有限公司 频率资源授权方法、装置及计算机可读存储介质
WO2022205487A1 (en) * 2021-04-03 2022-10-06 Qualcomm Incorporated Antenna panel indication in wireless communication

Also Published As

Publication number Publication date
EP3188548A1 (en) 2017-07-05
CN105637939B (zh) 2020-03-20
EP3188548A4 (en) 2017-07-05
US20170195033A1 (en) 2017-07-06
JP2017535211A (ja) 2017-11-24
CN111417136A (zh) 2020-07-14
CN105637939A (zh) 2016-06-01

Similar Documents

Publication Publication Date Title
WO2016044991A1 (zh) 终端、基站、基站控制器及毫米波蜂窝通信方法
TWI734887B (zh) 方法、系統及設備
US11184933B2 (en) Rach conveyance of DL synchronization beam information for various DL-UL correspondence states
CN107889244B (zh) 通信方法、装置及计算机可读存储介质
CN106797656B (zh) 用于基于波束的物理随机接入的系统和方法
US10412767B2 (en) System and method for initial attachment in a communications system utilizing beam-formed signals
US10292092B2 (en) Device and method that uses base station frequency band as a secondary component carrier of carrier aggregation
CN107005975B (zh) 在网络节点中使用的方法和链路的接收和发送节点以及相关联设备
JP2019180092A (ja) 端末、基地局、基地局コントローラ、およびミリメートル波のセルラー通信方法
CN107079489A (zh) 信号传输方法和网络设备
CN107113646B (zh) 信道空间特征信息获取方法及基站
WO2015162974A1 (ja) 装置及び方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14902509

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017534863

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014902509

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014902509

Country of ref document: EP