WO2022205487A1 - Antenna panel indication in wireless communication - Google Patents

Antenna panel indication in wireless communication Download PDF

Info

Publication number
WO2022205487A1
WO2022205487A1 PCT/CN2021/085485 CN2021085485W WO2022205487A1 WO 2022205487 A1 WO2022205487 A1 WO 2022205487A1 CN 2021085485 W CN2021085485 W CN 2021085485W WO 2022205487 A1 WO2022205487 A1 WO 2022205487A1
Authority
WO
WIPO (PCT)
Prior art keywords
panel
information
panels
scheduling entity
reference signal
Prior art date
Application number
PCT/CN2021/085485
Other languages
French (fr)
Inventor
Fang Yuan
Yan Zhou
Wooseok Nam
Tao Luo
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2021/085485 priority Critical patent/WO2022205487A1/en
Publication of WO2022205487A1 publication Critical patent/WO2022205487A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06956Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping using a selection of antenna panels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal

Definitions

  • the technology discussed below relates generally to wireless communication systems, and more particularly, to wireless communication using antenna panel indication.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level.
  • 5G New Radio is part of a continuous mobile broadband evolution promulgated by Third Generation Partnership Project (3GPP) to meet new requirements associated with latency, reliability, security, scalability (e.g., with Internet of Things (IoT) ) , and other requirements.
  • 3GPP Third Generation Partnership Project
  • 5G NR can support a multi-panel UE (MP-UE) that has multiple panels of antennas.
  • MP-UE can provide flexibility in selection of antennas for wireless communications.
  • aspects of the present disclosure provides a scheduling entity and a user equipment (UE) in a wireless network that can use a beam indication mechanism to indicate an uplink (UL) beam for an UL transmission.
  • the scheduling entity can transmit a pathloss reference signal (PL-RS) indication to the UE.
  • the PL-RS indication can include panel information for indicating the panel (s) for pathloss measurements using the indicated PL-RS.
  • the UE includes a transceiver for wireless communication and a plurality of panels. Each panel includes one or more antennas configured for wireless communication.
  • the UE further includes a memory and a processor coupled to the transceiver, the plurality of panels, and the memory.
  • the processor and the memory are configured to establish a connection with a scheduling entity using the plurality of panels.
  • the processor and the memory are further configured to receive a beam indication from the scheduling entity, wherein the beam indication includes reference signal information and panel information.
  • the processor and the memory are further configured to identify a beam based on the beam indication.
  • the processor and the memory are further configured to perform an uplink transmission on the beam using one or more of the plurality of panels based on the panel information.
  • the UE includes a transceiver for wireless communication and a plurality of panels. Each panel includes one or more antennas configured for wireless communication.
  • the UE further includes a memory and a processor.
  • the processor is coupled to the transceiver, the plurality of panels, and the memory.
  • the processor and the memory are configured to establish a connection with a scheduling entity using the plurality of panels.
  • the processor and the memory are further configured to receive a pathloss reference signal (PL-RS) indication from the scheduling entity.
  • the PL-RS indication includes reference signal information and panel information.
  • the processor and the memory are further configured to perform a pathloss measurement based on the reference signal information and the panel information.
  • the processor and the memory are further configured to perform an uplink transmission based on the pathloss measurement.
  • PL-RS pathloss reference signal
  • the scheduling entity includes a transceiver for wireless communication, a memory, and a processor coupled to the transceiver and the memory.
  • the processor and the memory are configured to establish a connection with a user equipment (UE) equipped with a plurality of panels. Each panel includes one or more antennas configured for wireless communication.
  • the processor and the memory are further configured to transmit a beam indication to the UE.
  • the beam indication includes reference signal information and panel information for indicating one or more of the plurality of panels for a beam.
  • the processor and the memory are further configured to receive an uplink transmission on the beam from the one or more of the plurality of panels based on the panel information.
  • the scheduling entity includes a transceiver for wireless communication, a memory, and a processor.
  • the processor is coupled to the transceiver and the memory.
  • the processor and the memory are configured to establish a connection with a user equipment (UE) equipped with a plurality of panels. Each panel includes one or more antennas configured for wireless communication.
  • the processor and the memory are further configured to transmit a pathloss reference signal (PL-RS) indication to the UE.
  • the PL-RS indication includes reference signal information and panel information for performing a pathloss measurement.
  • the processor and the memory are further configured to receive an uplink transmission based on the pathloss measurement.
  • FIG. 1 is a schematic illustration of a wireless communication system according to some aspects of the disclosure.
  • FIG. 2 is an illustration of an example of a radio access network according to some aspects of the disclosure.
  • FIG. 3 is a schematic illustration of an organization of wireless resources in an air interface utilizing orthogonal frequency divisional multiplexing (OFDM) according to some aspects of the disclosure.
  • OFDM orthogonal frequency divisional multiplexing
  • FIG. 4 is a block diagram illustrating a wireless communication system supporting multiple-input multiple-output (MIMO) communication according to some aspects of the disclosure.
  • MIMO multiple-input multiple-output
  • FIG. 5 is a diagram illustrating communication between a base station and a user equipment using beamforming according to some aspects of the disclosure.
  • FIG. 6 is a block diagram of a multi-panel user equipment according to some aspects of the disclosure.
  • FIG. 7 is a diagram illustrating communication of a beam indication between a scheduling entity and a user equipment according to some aspects of the disclosure.
  • FIG. 8 is a diagram illustrating a procedure for communicating a beam indication between a user equipment and a scheduling entity according to some aspects of the disclosure.
  • FIG. 9 is a diagram illustrating a procedure for communicating panel information for pathloss determination between a scheduling entity and a user equipment according to some aspects of the disclosure.
  • FIG. 10 is a diagram illustrating an exemplary pathloss reference signal indication including panel information according to some aspects of the disclosure.
  • FIG. 11 is a flow chart illustrating a procedure for performing pathloss measurement based on a pathloss reference signal indication with panel information according to some aspects of the disclosure.
  • FIG. 12 is a block diagram illustrating an example of a hardware implementation for a scheduling entity according to some aspects of the disclosure.
  • FIG. 13 is a flow chart illustrating an exemplary process for wireless communication at a scheduling entity using uplink panel indication according to some aspects of the disclosure.
  • FIG. 14 is a flow chart illustrating an exemplary process for wireless communication at a scheduling entity using pathloss reference signal indication according to some aspects of the disclosure.
  • FIG. 15 is a block diagram illustrating an example of a hardware implementation for a scheduled entity according to some aspects of the disclosure.
  • FIG. 16 is a flow chart illustrating an exemplary process for wireless communication at a scheduled entity using uplink panel indication according to some aspects of the disclosure.
  • FIG. 17 is a flow chart illustrating an exemplary process for wireless communication at a scheduled entity using pathloss reference signal indication according to some aspects of the disclosure.
  • implementations and/or uses may come about via integrated chip examples and other non-module-component based devices (e.g., end-user devices, vehicles, communication devices, computing devices, industrial equipment, retail/purchasing devices, medical devices, AI-enabled devices, etc. ) . While some examples may or may not be specifically directed to use cases or applications, a wide assortment of applicability of described innovations may occur.
  • non-module-component based devices e.g., end-user devices, vehicles, communication devices, computing devices, industrial equipment, retail/purchasing devices, medical devices, AI-enabled devices, etc.
  • Implementations may range a spectrum from chip-level or modular components to non-modular, non-chip-level implementations and further to aggregate, distributed, or OEM devices or systems incorporating one or more aspects of the described innovations.
  • devices incorporating described aspects and features may also necessarily include additional components and features for implementation and practice of claimed and described examples.
  • transmission and reception of wireless signals necessarily includes a number of components for analog and digital purposes (e.g., hardware components including antenna, RF-chains, power amplifiers, modulators, buffer, processor (s) , interleaver, adders/summers, etc. ) .
  • innovations described herein may be practiced in a wide variety of devices, chip-level components, systems, distributed arrangements, end-user devices, etc. of varying sizes, shapes and constitution.
  • FR1 frequency range designations FR1 (410 MHz –7.125 GHz) and FR2 (24.25 GHz –52.6 GHz) . It should be understood that although a portion of FR1 is greater than 6 GHz, FR1 is often referred to (interchangeably) as a “Sub-6 GHz” band in various documents and articles.
  • FR2 which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
  • EHF extremely high frequency
  • ITU International Telecommunications Union
  • FR3 7.125 GHz –24.25 GHz
  • FR3 7.125 GHz –24.25 GHz
  • Frequency bands falling within FR3 may inherit FR1 characteristics and/or FR2 characteristics, and thus may effectively extend features of FR1 and/or FR2 into mid-band frequencies.
  • higher frequency bands are currently being explored to extend 5G NR operation beyond 52.6 GHz.
  • FR4-a or FR4-1 52.6 GHz –71 GHz
  • FR4 52.6 GHz –114.25 GHz
  • FR5 114.25 GHz –300 GHz
  • sub-6 GHz or the like if used herein may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies.
  • millimeter wave or the like if used herein may broadly represent frequencies that may include mid-band frequencies, may be within FR2, FR4, FR4-a or FR4-1, and/or FR5, or may be within the EHF band.
  • a scheduling entity e.g., a base station
  • a beam indication mechanism to indicate an uplink beam to a UE for performing an UL transmission.
  • a scheduling entity can use a pathloss reference signal indication mechanism to indicate a panel for pathloss measurement, and the UE can set the UL transmission power based, at least in part, on the pathloss measured using the indicated panel.
  • the various concepts presented throughout this disclosure may be implemented across a broad variety of telecommunication systems, network architectures, and communication standards.
  • the wireless communication system 100 includes three interacting domains: a core network 102, a radio access network (RAN) 104, and a user equipment (UE) 106.
  • the UE 106 may be enabled to carry out data communication with an external data network 110, such as (but not limited to) the Internet.
  • the RAN 104 may implement any suitable wireless communication technology or technologies to provide radio access to the UE 106.
  • the RAN 104 may operate according to 3 rd Generation Partnership Project (3GPP) New Radio (NR) specifications, often referred to as 5G.
  • 3GPP 3 rd Generation Partnership Project
  • NR New Radio
  • the RAN 104 may operate under a hybrid of 5G NR and Evolved Universal Terrestrial Radio Access Network (eUTRAN) standards, often referred to as Long Term Evolution (LTE) .
  • eUTRAN Evolved Universal Terrestrial Radio Access Network
  • LTE Long Term Evolution
  • the 3GPP refers to this hybrid RAN as a next-generation RAN, or NG-RAN.
  • NG-RAN next-generation RAN
  • many other examples may be utilized within the scope of the present disclosure.
  • a base station is a network element in a radio access network responsible for radio transmission and reception in one or more cells to or from a UE.
  • a base station may variously be referred to by those skilled in the art as a base transceiver station (BTS) , a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , an access point (AP) , a Node B (NB) , an eNode B (eNB) , a gNode B (gNB) , a transmission and reception point (TRP) , or some other suitable terminology.
  • BTS base transceiver station
  • a radio base station a radio base station
  • ESS extended service set
  • AP access point
  • NB Node B
  • eNB eNode B
  • gNB gNode B
  • TRP transmission and reception point
  • a base station may include two or more TRPs that may be collocated or non-collocated. Each TRP may communicate on the same or different carrier frequency within the same or different frequency band.
  • the RAN 104 operates according to both the LTE and 5G NR standards, one of the base stations may be an LTE base station, while another base station may be a 5G NR base station.
  • the RAN 104 is further illustrated supporting wireless communication for multiple mobile apparatuses.
  • a mobile apparatus may be referred to as user equipment (UE) in 3GPP standards, but may also be referred to by those skilled in the art as a mobile station (MS) , a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal (AT) , a mobile terminal, a wireless terminal, a remote terminal, a handset, a terminal, a user agent, a mobile client, a client, or some other suitable terminology.
  • a UE may be an apparatus (e.g., a mobile apparatus) that provides a user with access to network services.
  • a “mobile” apparatus need not necessarily have a capability to move and may be stationary.
  • the term mobile apparatus or mobile device broadly refers to a diverse array of devices and technologies.
  • UEs may include a number of hardware structural components sized, shaped, and arranged to help in communication; such components can include antennas, antenna arrays, RF chains, amplifiers, one or more processors, etc. electrically coupled to each other.
  • a mobile apparatus examples include a mobile, a cellular (cell) phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal computer (PC) , a notebook, a netbook, a smartbook, a tablet, a personal digital assistant (PDA) , and a broad array of embedded systems, e.g., corresponding to an “Internet of things” (IoT) .
  • IoT Internet of things
  • a mobile apparatus may additionally be an automotive or other transportation vehicle, a remote sensor or actuator, a robot or robotics device, a satellite radio, a global positioning system (GPS) device, an object tracking device, a drone, a multi-copter, a quad-copter, a remote control device, a consumer and/or wearable device, such as eyewear, a wearable camera, a virtual reality device, a smart watch, a health or fitness tracker, a digital audio player (e.g., MP3 player) , a camera, a game console, etc.
  • GPS global positioning system
  • a mobile apparatus may additionally be a digital home or smart home device such as a home audio, video, and/or multimedia device, an appliance, a vending machine, intelligent lighting, a home security system, a smart meter, etc.
  • a mobile apparatus may additionally be a smart energy device, a security device, a solar panel or solar array, a municipal infrastructure device controlling electric power (e.g., a smart grid) , lighting, water, etc., an industrial automation and enterprise device, a logistics controller, and/or agricultural equipment, etc.
  • a mobile apparatus may provide for connected medicine or telemedicine support, e.g., health care at a distance.
  • Telehealth devices may include telehealth monitoring devices and telehealth administration devices, whose communication may be given preferential treatment or prioritized access over other types of information, e.g., in terms of prioritized access for transport of critical service data, and/or relevant QoS for transport of critical service data.
  • Wireless communication between the RAN 104 and the UE 106 may be described as utilizing an air interface.
  • Transmissions over the air interface from a base station (e.g., base station 108) to one or more UEs (e.g., similar to UE 106) may be referred to as downlink (DL) transmission.
  • the term downlink may refer to a point-to-multipoint transmission originating at a base station (e.g., base station 108) . Another way to describe this scheme may be to use the term broadcast channel multiplexing.
  • Transmissions from a UE (e.g., UE 106) to a base station (e.g., base station 108) may be referred to as uplink (UL) transmissions.
  • the term uplink may refer to a point-to-point transmission originating at a UE (e.g., UE 106) .
  • a scheduling entity e.g., a base station 108 allocates resources for communication among some or all devices and equipment within its service area or cell.
  • the scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for one or more scheduled entities (e.g., UEs 106) . That is, for scheduled communication, a plurality of UEs 106, which may be scheduled entities, may utilize resources allocated by the scheduling entity 108.
  • Base stations 108 are not the only entities that may function as scheduling entities. That is, in some examples, a UE may function as a scheduling entity, scheduling resources for one or more scheduled entities (e.g., one or more other UEs) . For example, UEs may communicate directly with other UEs in a peer-to-peer or device-to-device fashion and/or in a relay configuration.
  • a scheduling entity 108 may broadcast downlink traffic 112 to one or more scheduled entities (e.g., one or more UEs 106) .
  • the scheduling entity 108 is a node or device responsible for scheduling traffic in a wireless communication network, including the downlink traffic 112 and, in some examples, uplink traffic 116 from one or more scheduled entities (e.g., one or more UEs 106) to the scheduling entity 108.
  • the scheduled entity e.g., a UE 106
  • the scheduled entity is a node or device that receives downlink control information 114, including but not limited to scheduling information (e.g., a grant) , synchronization or timing information, or other control information from another entity in the wireless communication network such as the scheduling entity 108.
  • scheduling information e.g., a grant
  • synchronization or timing information e.g., synchronization or timing information
  • the uplink and/or downlink control information and/or traffic information may be transmitted on a waveform that may be time-divided into frames, subframes, slots, and/or symbols.
  • a symbol may refer to a unit of time that, in an orthogonal frequency division multiplexed (OFDM) waveform, carries one resource element (RE) per sub-carrier.
  • a slot may carry 7 or 14 OFDM symbols.
  • a subframe may refer to a duration of 1ms. Multiple subframes or slots may be grouped together to form a single frame or radio frame.
  • a frame may refer to a predetermined duration (e.g., 10 ms) for wireless transmissions, with each frame consisting of, for example, 10 subframes of 1 ms each.
  • a predetermined duration e.g. 10 ms
  • each frame consisting of, for example, 10 subframes of 1 ms each.
  • these definitions are not required, and any suitable scheme for organizing waveforms may be utilized, and various time divisions of the waveform may have any suitable duration.
  • base stations 108 may include a backhaul interface for communication with a backhaul portion 120 of the wireless communication system 100.
  • the backhaul portion 120 may provide a link between a base station 108 and the core network 102.
  • a backhaul network may provide interconnection between the respective base stations 108.
  • Various types of backhaul interfaces may be employed, such as a direct physical connection, a virtual network, or the like using any suitable transport network.
  • the core network 102 may be a part of the wireless communication system 100 and may be independent of the radio access technology used in the RAN 104.
  • the core network 102 may be configured according to 5G standards (e.g., 5GC) .
  • the core network 102 may be configured according to a 4G evolved packet core (EPC) , or any other suitable standard or configuration.
  • 5G standards e.g., 5GC
  • EPC 4G evolved packet core
  • FIG. 2 a schematic illustration of a radio access network (RAN) 200 according to some aspects of the present disclosure is provided.
  • the RAN 200 may be the same as the RAN 104 described above and illustrated in FIG. 1.
  • the geographic region covered by the RAN 200 may be divided into a number of cellular regions (cells) that can be uniquely identified by a user equipment (UE) based on an identification broadcasted over a geographical area from one access point or base station.
  • FIG. 2 illustrates cells 202, 204, 206, and 208, each of which may include one or more sectors (not shown) .
  • a sector is a sub-area of a cell. All sectors within one cell are served by the same base station.
  • a radio link within a sector can be identified by a single logical identification belonging to that sector.
  • the multiple sectors within a cell can be formed by groups of antennas with each antenna responsible for communication with UEs in a portion of the cell.
  • FIG. 2 two base stations, base station 210 and base station 212 are shown in cells 202 and 204.
  • a third base station, base station 214 is shown controlling a remote radio head (RRH) 216 in cell 206. That is, a base station can have an integrated antenna or can be connected to an antenna or RRH 216 by feeder cables.
  • RRH remote radio head
  • cells 202, 204, and 206 may be referred to as macrocells, as the base stations 210, 212, and 214 support cells having a large size.
  • a base station 218 is shown in the cell 208, which may overlap with one or more macrocells.
  • the cell 208 may be referred to as a small cell (e.g., a microcell, picocell, femtocell, home base station, home Node B, home eNode B, etc. ) , as the base station 218 supports a cell having a relatively small size.
  • Cell sizing can be done according to system design as well as component constraints.
  • the RAN 200 may include any number of wireless base stations and cells. Further, a relay node may be deployed to extend the size or coverage area of a given cell.
  • the base stations 210, 212, 214, 218 provide wireless access points to a core network for any number of mobile apparatuses. In some examples, the base stations 210, 212, 214, and/or 218 may be the same as or similar to the scheduling entity 108 described above and illustrated in FIG. 1.
  • FIG. 2 further includes an unmanned aerial vehicle (UAV) 220, which may be a drone or quadcopter.
  • UAV unmanned aerial vehicle
  • the UAV 220 may be configured to function as a base station, or more specifically as a mobile base station. That is, in some examples, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile base station, such as the UAV 220.
  • the cells may include UEs that may be in communication with one or more sectors of each cell.
  • each base station 210, 212, 214, 218, and 220 may be configured to provide an access point to a core network 102 (see FIG. 1) for all the UEs in the respective cells.
  • UEs 222 and 224 may be in communication with base station 210;
  • UEs 226 and 228 may be in communication with base station 212;
  • UEs 230 and 232 may be in communication with base station 214 by way of RRH 216;
  • UE 234 may be in communication with base station 218; and
  • UE 236 may be in communication with mobile base station 220.
  • the UEs 222, 224, 226, 228, 230, 232, 234, 236, 238, 240, and/or 242 may be the same as or similar to the UE/scheduled entity 106 described above and illustrated in FIG. 1.
  • the UAV 220 e.g., the quadcopter
  • the UAV 220 can be a mobile network node and may be configured to function as a UE.
  • the UAV 220 may operate within cell 202 by communicating with base station 210.
  • sidelink signals may be used between UEs without necessarily relying on scheduling or control information from a base station.
  • Sidelink communication may be utilized, for example, in a device-to-device (D2D) network, peer-to-peer (P2P) network, vehicle-to-vehicle (V2V) network, vehicle-to-everything (V2X) network, and/or other suitable sidelink network.
  • D2D device-to-device
  • P2P peer-to-peer
  • V2V vehicle-to-vehicle
  • V2X vehicle-to-everything
  • the UEs 238, 240, and 242 may each function as a scheduling entity or transmitting sidelink device and/or a scheduled entity or a receiving sidelink device to schedule resources and communicate sidelink signals 237 therebetween without relying on scheduling or control information from a base station.
  • two or more UEs e.g., UEs 226 and 228, within the coverage area of a base station (e.g., base station 212) may also communicate sidelink signals 227 over a direct link (sidelink) without conveying that communication through the base station 212.
  • the base station 212 may allocate resources to the UEs 226 and 228 for the sidelink communication.
  • channel coding may be used. That is, wireless communication may generally utilize a suitable error correcting block code.
  • an information message or sequence is split up into code blocks (CBs) , and an encoder (e.g., a CODEC) at the transmitting device then mathematically adds redundancy to the information message. Exploitation of this redundancy in the encoded information message can improve the reliability of the message, enabling correction for any bit errors that may occur due to the noise.
  • Data coding may be implemented in multiple manners.
  • user data is coded using quasi-cyclic low-density parity check (LDPC) with two different base graphs: one base graph is used for large code blocks and/or high code rates, while the other base graph is used otherwise.
  • Control information and the physical broadcast channel (PBCH) are coded using Polar coding, based on nested sequences. For these channels, puncturing, shortening, and repetition are used for rate matching.
  • PBCH physical broadcast channel
  • aspects of the present disclosure may be implemented utilizing any suitable channel code.
  • Various implementations of base stations and UEs may include suitable hardware and capabilities (e.g., an encoder, a decoder, and/or a CODEC) to utilize one or more of these channel codes for wireless communication.
  • suitable hardware and capabilities e.g., an encoder, a decoder, and/or a CODEC
  • the ability of UEs to communicate while moving, independent of their location is referred to as mobility.
  • the various physical channels between the UE and the RAN 200 are generally set up, maintained, and released under the control of an access and mobility management function (AMF) .
  • AMF access and mobility management function
  • the AMF may include a security context management function (SCMF) and a security anchor function (SEAF) that performs authentication.
  • SCMF security context management function
  • SEAF security anchor function
  • the SCMF can manage, in whole or in part, the security context for both the control plane and the user plane functionality.
  • the RAN 200 may utilize DL-based mobility or UL-based mobility to enable mobility and handovers (i.e., the transfer of a UE’s connection from one radio channel to another) .
  • a UE may monitor various parameters of the signal from its serving cell as well as various parameters of neighboring cells. Depending on the quality of these parameters, the UE may maintain communication with one or more of the neighboring cells.
  • the UE may undertake a handoff or handover from the serving cell to the neighboring (target) cell.
  • the UE 224 may move from the geographic area corresponding to its serving cell 202 to the geographic area corresponding to a neighbor cell 206.
  • the UE 224 may transmit a reporting message to its serving base station 210 indicating this condition.
  • the UE 224 may receive a handover command, and the UE may undergo a handover to the cell 206.
  • UL reference signals from each UE may be utilized by the network to select a serving cell for each UE.
  • the base stations 210, 212, and 214/216 may broadcast unified synchronization signals (e.g., unified Primary Synchronization Signals (PSSs) , unified Secondary Synchronization Signals (SSSs) and unified Physical Broadcast Channels (PBCH) ) .
  • PSSs Primary Synchronization Signals
  • SSSs unified Secondary Synchronization Signals
  • PBCH Physical Broadcast Channels
  • the UEs 222, 224, 226, 228, 230, and 232 may receive the unified synchronization signals, derive the carrier frequency, and slot timing from the synchronization signals, and in response to deriving timing, transmit an uplink pilot or reference signal.
  • the uplink pilot signal transmitted by a UE may be concurrently received by two or more cells (e.g., base stations 210 and 214/216) within the RAN 200.
  • Each of the cells may measure a strength of the pilot signal, and the radio access network (e.g., one or more of the base stations 210 and 214/216 and/or a central node within the core network) may determine a serving cell for the UE 224.
  • the radio access network e.g., one or more of the base stations 210 and 214/216 and/or a central node within the core network
  • the RAN 200 may continue to monitor the uplink pilot signal transmitted by the UE 224.
  • the RAN 200 may handover the UE 224 from the serving cell to the neighboring cell, with or without informing the UE 224.
  • the synchronization signal transmitted by the base stations 210, 212, and 214/216 may be unified, the synchronization signal may not identify a particular cell, but rather may identify a zone of multiple cells operating on the same frequency and/or with the same timing.
  • the use of zones in 5G networks or other next generation communication networks enables the uplink-based mobility framework and improves the efficiency of both the UE and the network, since the number of mobility messages that need to be exchanged between the UE and the network may be reduced.
  • the air interface in the radio access network 200 may utilize licensed spectrum, unlicensed spectrum, or shared spectrum.
  • Licensed spectrum provides for exclusive use of a portion of the spectrum, generally by virtue of a mobile network operator purchasing a license from a government regulatory body.
  • Unlicensed spectrum provides for shared use of a portion of the spectrum without need for a government-granted license. While compliance with some technical rules is generally still required to access unlicensed spectrum, generally, any operator or device may gain access.
  • Shared spectrum may fall between licensed and unlicensed spectrum, wherein technical rules or limitations may be required to access the spectrum, but the spectrum may still be shared by multiple operators and/or multiple RATs.
  • the holder of a license for a portion of licensed spectrum may provide licensed shared access (LSA) to share that spectrum with other parties, e.g., with suitable licensee-determined conditions to gain access.
  • LSA licensed shared access
  • Devices communicating in the radio access network 200 may utilize one or more multiplexing techniques and multiple access algorithms to enable simultaneous communication of the various devices.
  • 5G NR specifications provide multiple access for UL transmissions from UEs 222 and 224 to base station 210, and for multiplexing for DL transmissions from base station 210 to one or more UEs 222 and 224, utilizing orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) .
  • OFDM orthogonal frequency division multiplexing
  • CP cyclic prefix
  • 5G NR specifications provide support for discrete Fourier transform-spread-OFDM (DFT-s-OFDM) with a CP (also referred to as single-carrier FDMA (SC-FDMA) ) .
  • DFT-s-OFDM discrete Fourier transform-spread-OFDM
  • SC-FDMA single-carrier FDMA
  • multiplexing and multiple access are not limited to the above schemes, and may be provided utilizing time division multiple access (TDMA) , code division multiple access (CDMA) , frequency division multiple access (FDMA) , sparse code multiple access (SCMA) , resource spread multiple access (RSMA) , or other suitable multiple access schemes.
  • multiplexing DL transmissions from the base station 210 to UEs 222 and 224 may be provided utilizing time division multiplexing (TDM) , code division multiplexing (CDM) , frequency division multiplexing (FDM) , orthogonal frequency division multiplexing (OFDM) , sparse code multiplexing (SCM) , or other suitable multiplexing schemes.
  • Duplex refers to a point-to-point communication link where both endpoints can communicate with one another in both directions.
  • Full-duplex means both endpoints can simultaneously communicate with one another.
  • Half-duplex means only one endpoint can send information to the other at a time.
  • Half-duplex emulation is frequently implemented for wireless links utilizing time division duplex (TDD) .
  • TDD transmissions in different directions on a given channel are separated from one another using time division multiplexing. That is, in some scenarios, a channel is dedicated for transmissions in one direction, while at other times the channel is dedicated for transmissions in the other direction, where the direction may change very rapidly, e.g., several times per slot.
  • a full-duplex channel In a wireless link, a full-duplex channel generally relies on physical isolation of a transmitter and receiver, and suitable interference cancellation technologies.
  • Full-duplex emulation is frequently implemented for wireless links by utilizing frequency division duplex (FDD) or spatial division duplex (SDD) .
  • FDD frequency division duplex
  • SDD spatial division duplex
  • transmissions in different directions may operate at different carrier frequencies (e.g., within paired spectrum) .
  • SDD transmissions in different directions on a given channel are separated from one another using spatial division multiplexing (SDM) .
  • full-duplex communication may be implemented within unpaired spectrum (e.g., within a single carrier bandwidth) , where transmissions in different directions occur within different sub-bands of the carrier bandwidth. This type of full-duplex communication may be referred to herein as sub-band full duplex (SBFD) , also known as flexible duplex.
  • SBFD sub-band full duplex
  • FIG. 3 an expanded view of an exemplary subframe 302 is illustrated, showing an OFDM resource grid.
  • time is in the horizontal direction with units of OFDM symbols; and frequency is in the vertical direction with units of subcarriers of the carrier.
  • the resource grid 304 may be used to schematically represent time–frequency resources for a given antenna port. That is, in a multiple-input-multiple-output (MIMO) implementation with multiple antenna ports available, a corresponding multiple number of resource grids 304 may be available for communication.
  • the resource grid 304 is divided into multiple resource elements (REs) 306.
  • An RE which is 1 subcarrier ⁇ 1 symbol, is the smallest discrete part of the time–frequency grid, and contains a single complex value representing data from a physical channel or signal.
  • each RE may represent one or more bits of information.
  • a block of REs may be referred to as a physical resource block (PRB) or more simply a resource block (RB) 308, which contains any suitable number of consecutive subcarriers in the frequency domain.
  • an RB may include 12 subcarriers, a number independent of the numerology used.
  • an RB may include any suitable number of consecutive OFDM symbols in the time domain.
  • a set of continuous or discontinuous resource blocks may be referred to herein as a Resource Block Group (RBG) , sub-band, or bandwidth part (BWP) .
  • RBG Resource Block Group
  • BWP bandwidth part
  • a set of sub-bands or BWPs may span the entire bandwidth.
  • Scheduling of scheduled entities typically involves scheduling one or more resource elements 306 within one or more sub-bands or bandwidth parts (BWPs) .
  • a UE generally utilizes only a subset of the resource grid 304.
  • an RB may be the smallest unit of resources that can be allocated to a UE.
  • the RBs may be scheduled by a scheduling entity, such as a base station (e.g., gNB, eNB, etc. ) , or may be self-scheduled by a UE implementing D2D sidelink communication.
  • a scheduling entity such as a base station (e.g., gNB, eNB, etc. )
  • a base station e.g., gNB, eNB, etc.
  • the RB 308 is shown as occupying less than the entire bandwidth of the subframe 302, with some subcarriers illustrated above and below the RB 308.
  • the subframe 302 may have a bandwidth corresponding to any number of one or more RBs 308.
  • the RB 308 is shown as occupying less than the entire duration of the subframe 302, although this is merely one possible example.
  • Each 1 ms subframe 302 may consist of one or multiple adjacent slots.
  • one subframe 302 includes four slots 310, as an illustrative example.
  • a slot may be defined according to a specified number of OFDM symbols with a given cyclic prefix (CP) length.
  • CP cyclic prefix
  • a slot may include 7 or 14 OFDM symbols with a nominal CP.
  • Additional examples may include mini-slots, sometimes referred to as shortened transmission time intervals (TTIs) , having a shorter duration (e.g., one to three OFDM symbols) .
  • TTIs shortened transmission time intervals
  • These mini-slots or shortened transmission time intervals (TTIs) may in some cases be transmitted occupying resources scheduled for ongoing slot transmissions for the same or for different UEs. Any number of resource blocks may be utilized within a subframe or slot.
  • An expanded view of one of the slots 310 illustrates the slot 310 including a control region 312 and a data region 314.
  • the control region 312 may carry control channels
  • the data region 314 may carry data channels.
  • a slot may contain all DL, all UL, or at least one DL portion and at least one UL portion.
  • the structure illustrated in FIG. 3 is merely exemplary in nature, and different slot structures may be utilized, and may include one or more of each of the control region (s) and data region (s) .
  • the various REs 306 within a RB 308 may be scheduled to carry one or more physical channels, including control channels, shared channels, data channels, etc.
  • Other REs 306 within the RB 308 may also carry pilots or reference signals. These pilots or reference signals may provide for a receiving device to perform channel estimation of the corresponding channel, which may enable coherent demodulation/detection of the control and/or data channels within the RB 308.
  • the slot 310 may be utilized for broadcast, multicast, groupcast, or unicast communication.
  • a broadcast, multicast, or groupcast communication may refer to a point-to-multipoint transmission by one device (e.g., a base station, UE, or other similar device) to other devices.
  • a broadcast communication is delivered to all devices, whereas a multicast or groupcast communication is delivered to multiple intended recipient devices.
  • a unicast communication may refer to a point-to-point transmission by a one device to a single other device.
  • the scheduling entity may allocate one or more REs 306 (e.g., within the control region 312) to carry DL control information including one or more DL control channels, such as a physical downlink control channel (PDCCH) , to one or more scheduled entities (e.g., UEs) .
  • the PDCCH carries downlink control information (DCI) including but not limited to power control commands (e.g., one or more open loop power control parameters and/or one or more closed loop power control parameters) , scheduling information, a grant, and/or an assignment of REs for DL and UL transmissions.
  • DCI downlink control information
  • the PDCCH may further carry HARQ feedback transmissions such as an acknowledgment (ACK) or negative acknowledgment (NACK) .
  • HARQ is a technique well-known to those of ordinary skill in the art, wherein the integrity of packet transmissions may be checked at the receiving side for accuracy, e.g., utilizing any suitable integrity checking mechanism, such as a checksum or a cyclic redundancy check (CRC) . If the integrity of the transmission is confirmed, an ACK may be transmitted, whereas if not confirmed, a NACK may be transmitted. In response to a NACK, the transmitting device may send a HARQ retransmission, which may implement chase combining, incremental redundancy, etc.
  • the base station may further allocate one or more REs 306 (e.g., in the control region 312 or the data region 314) to carry other DL signals, such as a demodulation reference signal (DMRS) ; a phase-tracking reference signal (PT-RS) ; a channel state information (CSI) reference signal (CSI-RS) ; and a synchronization signal block (SSB) .
  • SSBs may be broadcast at regular intervals based on a periodicity (e.g., 5, 10, 20, 30, 80, or 130 ms) .
  • An SSB includes a primary synchronization signal (PSS) , a secondary synchronization signal (SSS) , and a physical broadcast control channel (PBCH) .
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PBCH physical broadcast control channel
  • a UE may utilize the PSS and SSS to achieve radio frame, subframe, slot, and symbol synchronization in the time domain, identify the center of the channel (system)
  • the PBCH in the SSB may further include a master information block (MIB) that includes various system information, along with parameters for decoding a system information block (SIB) .
  • the SIB may be, for example, a SystemInformationType 1 (SIB1) that may include various additional system information.
  • SIB and SIB1 together provide the minimum system information (SI) for initial access.
  • Examples of system information transmitted in the MIB may include, but are not limited to, a subcarrier spacing (e.g., default downlink numerology) , system frame number, a configuration of a PDCCH control resource set (CORESET) (e.g., PDCCH CORESET0) , a cell barred indicator, a cell reselection indicator, a raster offset, and a search space for SIB1.
  • Examples of remaining minimum system information (RMSI) transmitted in the SIB1 may include, but are not limited to, a random access search space, a paging search space, downlink configuration information, and uplink configuration information.
  • a base station may transmit other system information (OSI) as well.
  • OSI system information
  • the scheduled entity may utilize one or more REs 306 to carry UL control information (UCI) including one or more UL control channels, such as a physical uplink control channel (PUCCH) , to the scheduling entity.
  • UCI may include a variety of packet types and categories, including pilots, reference signals, and information configured to enable or assist in decoding uplink data transmissions.
  • uplink reference signals may include a sounding reference signal (SRS) and an uplink DMRS.
  • the UCI may include a scheduling request (SR) , i.e., request for the scheduling entity to schedule uplink transmissions.
  • SR scheduling request
  • the scheduling entity may transmit downlink control information (DCI) that may schedule resources for uplink packet transmissions.
  • DCI may also include HARQ feedback, channel state feedback (CSF) , such as a CSI report, or any other suitable UCI.
  • CSF channel state feedback
  • one or more REs 306 may be allocated for data traffic. Such data traffic may be carried on one or more traffic channels, such as, for a DL transmission, a physical downlink shared channel (PDSCH) ; or for an UL transmission, a physical uplink shared channel (PUSCH) .
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • one or more REs 306 within the data region 314 may be configured to carry other signals, such as one or more SIBs and DMRSs.
  • the control region 312 of the slot 310 may include a physical sidelink control channel (PSCCH) including sidelink control information (SCI) transmitted by an initiating (transmitting) sidelink device (e.g., Tx V2X device or other Tx UE) towards a set of one or more other receiving sidelink devices (e.g., Rx V2X device or other Rx UE) .
  • the data region 314 of the slot 310 may include a physical sidelink shared channel (PSSCH) including sidelink data traffic transmitted by the initiating (transmitting) sidelink device within resources reserved over the sidelink carrier by the transmitting sidelink device via the SCI.
  • PSSCH physical sidelink shared channel
  • HARQ feedback information may be transmitted in a physical sidelink feedback channel (PSFCH) within the slot 310 from the receiving sidelink device to the transmitting sidelink device.
  • PSFCH physical sidelink feedback channel
  • one or more reference signals such as a sidelink SSB, a sidelink CSI-RS, a sidelink SRS, and/or a sidelink positioning reference signal (PRS) may be transmitted within the slot 310.
  • PRS sidelink positioning reference signal
  • Transport channels carry blocks of information called transport blocks (TB) .
  • TBS transport block size
  • MCS modulation and coding scheme
  • the channels or carriers illustrated in FIG. 3 are not necessarily all of the channels or carriers that may be utilized between devices, and those of ordinary skill in the art will recognize that other channels or carriers may be utilized in addition to those illustrated, such as other traffic, control, and feedback channels.
  • the scheduling entity and/or scheduled entity may be configured for beamforming and/or multiple-input multiple-output (MIMO) technology.
  • FIG. 4 illustrates an example of a wireless communication system 400 supporting MIMO.
  • a transmitter 402 includes multiple transmit antennas 404 (e.g., N transmit antennas) and a receiver 406 includes multiple receive antennas 408 (e.g., M receive antennas) .
  • N transmit antennas e.g., N transmit antennas
  • M receive antennas e.g., M receive antennas
  • Each of the transmitter 402 and the receiver 406 may be implemented, for example, within a scheduling entity 108, a scheduled entity 106, or any other suitable wireless communication device.
  • Spatial multiplexing may be used to transmit different streams of data, also referred to as layers, simultaneously on the same time-frequency resource.
  • the data streams may be transmitted to a single UE to increase the data rate or to multiple UEs to increase the overall system capacity, the latter being referred to as multi-user MIMO (MU-MIMO) .
  • MU-MIMO multi-user MIMO
  • This is achieved by spatially precoding each data stream (i.e., multiplying the data streams with different weighting and phase shifting) and then transmitting each spatially precoded stream through multiple transmit antennas on the downlink.
  • the spatially precoded data streams arrive at the UE (s) with different spatial signatures, which enables each of the UE (s) to recover the one or more data streams destined for that UE.
  • each UE transmits a spatially precoded data stream, which enables the base station to identify the source of each spatially precoded data stream.
  • the number of data streams or layers corresponds to the rank of the transmission.
  • the rank of the MIMO system 400 is limited by the number of transmit or receive antennas 404 or 408, whichever is lower.
  • the channel conditions at the UE, as well as other considerations, such as the available resources at the base station, may also affect the transmission rank.
  • the rank (and therefore, the number of data streams) assigned to a particular UE on the downlink may be determined based on the rank indicator (RI) transmitted from the UE to the base station.
  • the RI may be determined based on the antenna configuration (e.g., the number of transmit and receive antennas) and a measured signal-to-interference-and-noise ratio (SINR) on each of the receive antennas.
  • SINR signal-to-interference-and-noise ratio
  • the RI may indicate, for example, the number of layers that may be supported under the current channel conditions.
  • the base station may use the RI, along with resource information (e.g., the available resources and amount of data to be scheduled for the UE) , to assign a transmission rank to the UE.
  • resource information e.g., the available resources and amount of data to be scheduled for the UE
  • the base station may assign the rank for DL MIMO transmissions based on UL SINR measurements (e.g., based on a Sounding Reference Signal (SRS) transmitted from the UE or other pilot signal) . Based on the assigned rank, the base station may then transmit CSI-RSs with separate C-RS sequences for each layer to provide for multi-layer channel estimation.
  • SINR measurements e.g., based on a Sounding Reference Signal (SRS) transmitted from the UE or other pilot signal
  • SRS Sounding Reference Signal
  • the UE may measure the channel quality across layers and resource blocks and feed back the RI and a channel quality indicator (CQI) that indicates to the base station a modulation and coding scheme (MCS) to use for transmissions to the UE for use in updating the rank and assigning REs for future downlink transmissions.
  • CQI channel quality indicator
  • MCS modulation and coding scheme
  • a rank-2 spatial multiplexing transmission on a 2x2 MIMO antenna configuration will transmit one data stream from each transmit antenna 404.
  • Each data stream reaches each receive antenna 408 along a different signal path 410.
  • the receiver 406 may then reconstruct the data streams using the received signals from each receive antenna 408.
  • Beamforming is a signal processing technique that may be used at the transmitter 402 or receiver 406 to shape or steer an antenna beam (e.g., a transmit beam or receive beam) along a spatial path between the transmitter 402 and the receiver 406. Beamforming may be achieved by combining the signals communicated via antennas 404 or 408 (e.g., antenna elements of an antenna array module) such that some of the signals experience constructive interference while others experience destructive interference. To create the desired constructive/destructive interference, the transmitter 402 or receiver 406 may apply amplitude and/or phase offsets to signals transmitted or received from each of the antennas 404 or 408 associated with the transmitter 402 or receiver 406.
  • antennas 404 or 408 e.g., antenna elements of an antenna array module
  • beamformed signals may be utilized for most downlink channels, including the physical downlink control channel (PDCCH) and physical downlink shared channel (PDSCH) .
  • broadcast control information such as the synchronization signal block (SSB) , slot format indicator (SFI) , and paging information, may be transmitted in a beam-sweeping manner to enable all scheduled entities (UEs) in the coverage area of a transmission and reception point (TRP) (e.g., a gNB) to receive the broadcast control information.
  • TRP transmission and reception point
  • beamformed signals may also be utilized for uplink channels, including the physical uplink control channel (PUCCH) and physical uplink shared channel (PUSCH) .
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • beamformed signals may further be utilized in D2D systems, such as NR sidelink (SL) or V2X, utilizing FR2.
  • FIG. 5 is a diagram illustrating communication between a base station 504 and a UE 502 using beamformed signals according to some aspects.
  • the base station 504 may be any of the base stations (e.g., gNBs) or scheduling entities illustrated in FIGs. 1 and/or 2, and the UE 502 may be any of the UEs or scheduled entities illustrated in FIGs. 1 and/or 2.
  • the base station 504 may generally be capable of communicating with the UE 502 using one or more transmit beams, and the UE 502 may further be capable of communicating with the base station 504 using one or more receive beams.
  • transmit beam refers to a beam (e.g., BS beam) on the base station 504 that may be utilized for downlink or uplink communication with the UE 502.
  • receive beam refers to a beam (e.g., UE beam) on the UE 502 that may be utilized for downlink or uplink communication with the base station 504.
  • the base station 504 is configured to generate a plurality of transmit beams 506a–506h, each associated with a different spatial direction.
  • the UE 502 is configured to generate a plurality of receive beams 508a–508e, each associated with a different spatial direction.
  • transmit beams 506a–506h transmitted during a same symbol may not be adjacent to one another.
  • the base station 504 and UE 502 may each transmit more or less beams distributed in all directions (e.g., 360 degrees) and in three-dimensions.
  • the transmit beams 506a–506h may include beams of varying beam width.
  • the base station 504 may transmit certain signals (e.g., SSBs) on wider beams and other signals (e.g., CSI-RSs) on narrower beams.
  • the base station 504 and UE 502 may select one or more transmit beams 506a–506h on the base station 504 and one or more receive beams 508a–508e on the UE 602 for communication of uplink and downlink signals therebetween using a beam management procedure.
  • the UE 502 may perform a P1 beam management procedure to scan the plurality of transmit beams 506a–506h on the plurality of receive beams 508a–508e to select a beam pair link (e.g., one of the transmit beams 506a–506h and one of the receive beams 508a–508e) for a physical random access channel (PRACH) procedure for initial access to the cell.
  • PRACH physical random access channel
  • periodic SSB beam sweeping may be implemented on the base station 504 at certain intervals (e.g., based on the SSB periodicity) .
  • the base station 504 may be configured to sweep or transmit an SSB on each of a plurality of wider transmit beams 506a–506h during the beam sweeping interval.
  • the UE may measure the reference signal received power (RSRP) of each of the SSB transmit beams on each of the receive beams of the UE and select the transmit and receive beams based on the measured RSRP.
  • the selected receive beam may be the receive beam on which the highest RSRP is measured and the selected transmit beam may have the highest RSRP as measured on the selected receive beam.
  • the base station 504 and UE 502 may perform a P2 beam management procedure for beam refinement at the base station 504.
  • the base station 504 may be configured to sweep or transmit a CSI-RS on each of a plurality of narrower transmit beams 506a–506h.
  • Each of the narrower CSI-RS beams may be a sub-beam of the selected SSB transmit beam (e.g., within the spatial direction of the SSB transmit beam) .
  • Transmission of the CSI-RS transmit beams may occur periodically (e.g., as configured via radio resource control (RRC) signaling by the gNB) , semi-persistently (e.g., as configured via RRC signaling and activated/deactivated via medium access control–control element (MAC-CE) signaling by the gNB) , or aperiodically (e.g., as triggered by the gNB via downlink control information (DCI) ) .
  • RRC radio resource control
  • MAC-CE medium access control–control element
  • DCI downlink control information
  • the UE 502 is configured to scan the plurality of CSI-RS transmit beams 506a–506h on the plurality of receive beams 508a–508e.
  • the UE 502 then performs beam measurements (e.g., RSRP, SINR, etc.
  • the UE 502 can then generate and transmit a Layer 1 (L1) measurement report, including the respective beam index (e.g., CSI-RS resource indicator (CRI) ) and beam measurement (e.g., RSRP or SINR) of one or more of the CSI-RS transmit beams 506a–506h on one or more of the receive beams 508a–508e to the base station 504.
  • the base station 504 may then select one or more CSI-RS transmit beams on which to communicate downlink and/or uplink control and/or data with the UE 502.
  • the selected CSI-RS transmit beam (s) have the highest RSRP from the L1 measurement report.
  • Transmission of the L1 measurement report may occur periodically (e.g., as configured via RRC signaling by the gNB) , semi-persistently (e.g., as configured via RRC signaling and activated/deactivated via MAC-CE signaling by the gNB) , or aperiodically (e.g., as triggered by the gNB via DCI) .
  • the UE 502 may further select a corresponding receive beam on the UE 502 for each selected serving CSI-RS transmit beam to form a respective beam pair link (BPL) for each selected serving CSI-RS transmit beam.
  • BPL beam pair link
  • the UE 502 can utilize the beam measurements obtained during the P2 procedure or perform a P3 beam management procedure to obtain new beam measurements for the selected CSI-RS transmit beams to select the corresponding receive beam for each selected transmit beam.
  • the selected receive beam to pair with a particular CSI-RS transmit beam may be the receive beam on which the highest RSRP for the particular CSI-RS transmit beam is measured.
  • the base station 504 may configure the UE 502 to perform SSB beam measurements and provide an L1 measurement report containing beam measurements of SSB transmit beams 506a–506h.
  • the base station 504 may configure the UE 502 to perform SSB beam measurements and/or CSI-RS beam measurements for beam failure detection (BRD) , beam failure recovery (BFR) , cell reselection, beam tracking (e.g., for a mobile UE 502 and/or base station 504) , or other beam optimization purpose.
  • BTD beam failure detection
  • BFR beam failure recovery
  • cell reselection e.g., for a mobile UE 502 and/or base station 504
  • the transmit and receive beams may be selected using an uplink beam management scheme.
  • the UE 502 may be configured to sweep or transmit on each of a plurality of receive beams 508a–508e.
  • the UE 502 may transmit an SRS on each UL beam in the different beam directions.
  • the base station 504 may be configured to receive the uplink beam reference signals on a plurality of transmit beams 506a–506h. The base station 504 then performs beam measurements (e.g., RSRP, SINR, etc. ) of the beam reference signals on each of the transmit beams 506a–506h to determine the respective beam quality of each of the receive beams 508a–508e as measured on each of the transmit beams 506a–506h.
  • beam measurements e.g., RSRP, SINR, etc.
  • the base station 504 may then select one or more transmit beams on which to communicate downlink and/or uplink control and/or data with the UE 502.
  • the selected transmit beam (s) have the highest RSRP.
  • the UE 502 may then select a corresponding receive beam for each selected serving transmit beam to form a respective beam pair link (BPL) for each selected serving transmit beam, using, for example, a P3 beam management procedure, as described above.
  • BPL beam pair link
  • a single CSI-RS transmit beam (e.g., BS beam 506d) on the base station 504 and a single receive beam (e.g., UE beam 508c) on the UE may form a single BPL used for communication between the base station 504 and the UE 502.
  • multiple CSI-RS transmit beams (e.g., beams 506c, 506d, and 506e) on the base station 504 and a single receive beam (e.g., beam 508c) on the UE 502 may form respective BPLs used for communication between the base station 504 and the UE 502.
  • multiple CSI-RS transmit beams (e.g., beams 506c, 506d, and 506e) on the base station 504 and multiple receive beams (e.g., beams 508c and 508d) on the UE 502 may form multiple BPLs used for communication between the base station 504 and the UE 502.
  • a first BPL may include transmit beam 506c and receive beam 508c
  • a second BPL may include transmit beam 508d and receive beam 508c
  • a third BPL may include transmit beam 508e and receive beam 508d.
  • FIG. 6 is a diagram conceptually illustrating a multi-panel UE (MP-UE) 602 according to some aspects.
  • the MP-UE 602 can include multiple panels (e.g., panels 604, 606, 608, and 610) of antennas.
  • the MP-UE 602 may include any wireless device with multiple antenna groups configured into one or more panels.
  • the multiple panels may provide flexibility in selection of antennas for wireless communications.
  • the MP-UE 602 can activate or deactivate one or more panels in order to improve performance and/or reduce battery consumption.
  • each panel can transmit and/or receive one or more beams.
  • the MP-UE 602 can transmit or receive multiple beams using one or more panels.
  • the MP-UE 602 can control various operational aspects, for example, maximum permissible exposure (MPE) , power consumption, UL interference management, etc.
  • MPE maximum permissible exposure
  • the panel selection for UL transmission can be initiated by the UE and/or a scheduling entity (e.g., gNB or eNB) .
  • the MP-UE 602 can use different sets of panels for DL and UL communications.
  • the MP-UE 602 can use panels 604 and 608 for DL communication, and use panel 604 for UL communication.
  • a scheduling entity can use a beam indication mechanism to indicate a UL or Tx beam to a UE for later UL transmission.
  • the UL transmission may include UL reference signal (RS) transmission for UL beam management and/or channel state information (CSI) acquisition, UL control channel transmission (e.g., PUCCH) , and UL data channel transmission (e.g., PUSCH) .
  • RS UL reference signal
  • CSI channel state information
  • PUCCH UL control channel transmission
  • PUSCH UL data channel transmission
  • a scheduling entity 702 can transmit a beam indication 706 to a UE 704 via a transmission configuration indicator (TCI) state transmission 706.
  • TCI transmission configuration indicator
  • the scheduling entity can transmit the TCI state dynamically in a DCI message and/or MAC CE.
  • the TCI state includes or maps to configurations such as quasi co-location (QCL) relationships between one or more reference signals (e.g., SSB, CSI-RS, and SRS) and either DL or UL transmissions.
  • the scheduling entity 702 can transmit the TCI state 708 in a DCI message (e.g., in a TCI field of the DCI) .
  • the TCI state may include a joint DL/UL TCI, an UL common beam TCI, or spatial relation information for an UL transmission.
  • the TCI state can include one or more reference signal IDs, each identifying an SSB resource, a CSI-RS resource, or an SRS resource.
  • Each resource indicates the particular beam, frequency resource, and OFDM symbol on which the corresponding reference signal is communicated.
  • the reference signal ID may be utilized to identify the beam to use for an UL transmission based on the QCL relationship with an associated reference signal (e.g., SSB, CSI-RS, or SRS) indicated in the TCI state.
  • the TCI state may further indicate an uplink panel ID for each configured DL reference signal resource (e.g., SSB resource and/or CSI-RS resource) .
  • the indicated TCI state 708 includes panel information (e.g., panel ID 710) for the UL transmission 712.
  • the panel information indicates one or more panels for performing the UL transmission.
  • the scheduling entity can indicate the panel information per beam indication.
  • the panel information may include a panel list that includes one or more panel IDs corresponding to the antenna panels (e.g., panels 604, 606, 608, and 610) of the UE.
  • the panel information may include a bitmap with each bit corresponding to a panel of the UE. For example, a bit of 1 can indicate a panel used for UL transmission, and a bit of 0 can indicate a panel not used for UL transmission.
  • the panel information may include a panel set ID among a plurality of panel set IDs.
  • Each panel set ID corresponds to a panel set that can include one or more panels.
  • a panel set ID 0 can indicate a first panel set that includes panels 604 and 608, and a panel set ID 1 can indicate a second panel set that includes a panel 604 only.
  • FIG. 8 is a diagram illustrating a procedure for communicating a beam indication between a UE 802 and a scheduling entity 804 (BS) in accordance with some aspects.
  • the UE 802 and the scheduling entity 804 can be any of the UEs and scheduled entities described in FIGs. 1–2 and 4–7.
  • the UE 802 and the scheduling entity 804 can establish a connection over a trained beam based on a beam training operation (e.g., synchronization, random access, and RRC connection establishment) .
  • the UE 802 can provide UE capability information to the scheduling entity 804.
  • the UE capability information can provide various information including a number of UE antennas and/or antenna panels, beamforming information, and an UL-DL beam correspondence state.
  • the scheduling entity 804 can transmit a beam indication to the UE 802.
  • the beam indication may include a TCI state similar to the TCI state 708 described above in relation to FIG. 7.
  • the beam indication can include reference signal information corresponding to one or more beams and information for identifying one or more panels for UL transmission on the indicated beam (s) .
  • the scheduling entity 804 can select the one or more beams as described above in FIG. 5.
  • the beam indication can include information on reference signal resources (e.g., SSB index, CSI-RS index, and SRS) that are mapped to a corresponding beam indication state.
  • reference signal resources e.g., SSB index, CSI-RS index, and SRS
  • the UE 802 can select one or more beams indicated by the reference signal information of the beam indication.
  • the UE 802 can perform an UL transmission based on the beam indication.
  • the UL transmission may be an PUCCH or PUSCH.
  • the UE can select the UL panel (s) based on the panel ID 710 associated with the reference signal information.
  • the UE 802 can select one or more panels (e.g., panels 604, 606, 608, and 610) for the UL transmission.
  • a scheduled entity can select the UL transmission power based, at least in part, on the pathloss for the channel between the UE and the scheduling entity.
  • Examples of an UL transmission include a sounding reference signal (SRS) transmission, a physical uplink control channel (PUCCH) transmission, and/or a physical uplink shared channel (PUSCH) transmission.
  • SRS sounding reference signal
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • the pathloss of a wireless channel can be determined or estimated based on a downlink (DL) pathloss reference signal (PL-RS) transmitted by the scheduling entity.
  • Examples of PL-RS include a synchronization signal block (SSB) and a CSI-RS.
  • the scheduling entity can configure the DL PL-RS via, for example, RRC signaling, MAC-CE, and/or DCI.
  • the UE can generate different pathloss measurements from different panels that can impact the power control of UL transmission.
  • the PL-RS may be configured jointly with a TCI state.
  • the PL-RS may be configured in a TCI state or associated with a TCI state, which is applicable to uplink transmissions.
  • FIG. 9 illustrates an example of a procedure for communicating PL-RS with panel information between a UE 902 and a scheduling entity 904 according to some aspects.
  • the UE 902 and the scheduling entity 904 can be any of the UEs and scheduling entities described above in FIGs. 1–2 and 4–7.
  • the UE 902 can transmit UE capability information 906 to the scheduling entity 904.
  • the UE capability information 906 can indicate the number of antenna panels (e.g., panels 604, 606, 608, and 610 of FIG. 6) at the UE that can be used for wireless communication and pathloss measurements (e.g., PL measurements) .
  • the UE can transmit the UE capability information upon initial access (e.g., in an RRC configuration/reconfiguration signal) .
  • the scheduling entity 904 can transmit a pathloss reference signal (PL-RS) indication 908 to the UE 902.
  • the PL-RS indication 908 can indicate or can be associated with a periodic downlink reference signal (e.g., SSB or CSI-RS) for measuring the pathloss between scheduling entity and the UE.
  • the scheduling entity 904 can transmit in a TCI state including the PL-RS indication 908.
  • the PL-RS indication 908 can include a pathlossReferenceRS information element (IE) .
  • the scheduling entity 904 can transmit the pathlossReferenceRS IE to the UE 902 using, for example, RRC, MAC-CE, and/or DCI.
  • An example of the pathlossReferenceRS IE 1000 is shown in FIG. 10 for illustration purposes.
  • the pathlossReferenceRS IE 1000 can include panel information 1002 (shown as panel-Id in FIG. 10) for indicating the panel (s) for pathloss measurements using the indicated PL-RS (e.g., SSB and CSI-RS) .
  • the panel information 1002 may include a panel list that identifies one or more panels (e.g., panels 604, 606, 608, and 610) for pathloss (PL) measurement.
  • the panel information may include a bitmap with each bit corresponding or mapped to a panel. For example, a bit of 1 can indicate a panel used for PL measurement, and a bit of 0 can indicate a panel not used for PL measurement.
  • the panel information may include a panel set ID among a plurality of panel set IDs.
  • Each panel set ID can identify a panel set that can include one or more panels for PL measurement.
  • Different panel set IDs can indicate different sets of panels.
  • the panel set ID 0 can indicate a first panel set that includes panels 604 and 608, and the panel set ID 1 can indicate a second panel set that includes a panel 604 only.
  • the panel set ID may be implicitly associated with another ID, such as SRS resource set ID, control resource set (CORESET) pool index, close loop index for power control command, TCI state group ID, TCI list ID, etc.
  • CORESET control resource set
  • the scheduling entity 904 can transmit one or more pathloss reference signals (PL-RS) 910 to the UE 902 based on the PL-RS indication 908 (e.g., pathlossReferenceRS) .
  • PL RS pathloss reference signals
  • Some examples of PL RS include, but are not limited to, periodic SSB and CSI-RS.
  • the UE 902 can perform, based at least in part on the received PL-RS indication 908, a channel measurement procedure 912 using the PL-RS 910 transmitted by the scheduling entity 904.
  • the channel measurement procedure 912 may include pathloss measurement or estimation for the channel between the UE 902 and the scheduling entity 904.
  • the UE can perform the channel measurement procedure using one or more panels indicated by the PL-RS indication.
  • the UE can measure the reference signal received power (RSRP) , reference signal received quality (RSRQ) , received signal strength indicator (RSSI) , and/or signal-to-noise and interference ratio (SINR) of the PL-RS 910.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • SINR signal-to-noise and interference ratio
  • the UE 902 can perform an UL transmission (e.g., PUCCH or PUSCH) to the scheduling entity 904 using transmission power determined based on the channel measurements.
  • the UE 902 can determine or select the UL transmission power based on the pathloss estimation using one or more panels that are indicated by the PL-RS indication.
  • FIG. 11 is a flow chart illustrating a procedure 1100 for performing PL measurement at a UE based on a PL-RS indication 908 with panel information according to some aspects.
  • the procedure 1100 can be performed by any of UEs described above in relation to FIGs. 1–2 and 4–7.
  • the UE 902 e.g., a MP-UE
  • the UE can determine whether or not a PL-RS indication (e.g., PL-RS indication 908) includes panel information that indicates one or more panels for pathloss measurements.
  • the PL-RS indication can be a pathlossReferenceRS IE 1000 that can include panel information (e.g., Panel Id) .
  • the UE can measure the pathloss of the channel using any panel (s) (e.g., panels 604, 606, 608, and/or 610) .
  • the UE can measure the pathloss using only the indicated panel (s) .
  • the panel information may indicate a panel set including one or more panels. In that case, the UE can measure the pathloss measurement using any panel within the panel set.
  • the UE can count the PL-RS as one active PL-RS for PL measurement. For example, for a first PL-RS with a panel ID 0, and a second PL-RS with a panel 1, when both the first PL-RS and the second PL-RS are configured with the same CSI-RS for PL measurement, the UE may count the first and second PL-RSs as one active PL-RS. Alternatively, the UE can count the PL-RS as multiple active PL-RSs equal to the number of panels associated with the PL-RS for PL measurements.
  • the UE may count the first and second PL-RSs as two active PL-RS.
  • FIG. 12 is a block diagram illustrating an example of a hardware implementation for a scheduling entity 1200 employing a processing system 1214.
  • the scheduling entity 1200 may be a scheduling entity, base station, gNB, or eNB as illustrated in any one or more of FIGs. 1, 2, 4, 5, and 7–9.
  • the scheduling entity 1200 may be implemented with a processing system 1214 that includes one or more processors 1204.
  • processors 1204 include microprocessors, microcontrollers, digital signal processors (DSPs) , field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure.
  • DSPs digital signal processors
  • FPGAs field programmable gate arrays
  • PLDs programmable logic devices
  • state machines gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure.
  • the scheduling entity 1200 may be configured to perform any one or more of the functions and procedures described herein. That is, the processor 1204, as utilized in a scheduling entity 1200, may be used to implement any one or more of the processes and procedures described and illustrated in FIGs. 5, 7–10, 13, and 14.
  • the processing system 1214 may be implemented with a bus architecture, represented generally by the bus 1202.
  • the bus 1202 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 1214 and the overall design constraints.
  • the bus 1202 communicatively couples together various circuits including one or more processors (represented generally by the processor 1204) , a memory 1205, and computer-readable media (represented generally by the computer-readable medium 1206) .
  • the bus 1202 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore, will not be described any further.
  • a bus interface 1208 provides an interface between the bus 1202 and a transceiver 1210 connected with one or more antenna panels 1211.
  • Each panel 1211 may include one or more antennas or arrays for beamforming.
  • the transceiver 1210 and the antenna panels provide a communication interface or means for communicating with various other apparatus over a transmission medium.
  • a user interface 1212 e.g., keypad, display, speaker, microphone, joystick, touchscreen
  • a user interface 1212 is optional, and may be omitted in some examples, such as a base station.
  • the processor 1204 is responsible for managing the bus 1202 and general processing, including the execution of software stored on a computer-readable medium 1206.
  • the software when executed by the processor 1204, causes the processing system 1214 to perform the various functions described herein for any particular apparatus.
  • the computer-readable medium 1206 and the memory 1205 may also be used for storing data that is manipulated by the processor 1204 when executing software.
  • the processor 1204 may include circuitry configured for various functions, including, for example, wireless communication using multiple antenna panels.
  • the circuitry may be configured to implement one or more of the functions described in relation to FIGs. 5, 7–10, 13, and 14.
  • the processor 1204 may include communication and processing circuitry 1240 configured for various functions, including, for example, communicating with a network core (e.g., a 5G core network) , scheduled entities (e.g., UE) , or any other entity, such as, for example, local infrastructure or an entity communicating with the scheduling entity 1200 via the Internet, such as a network provider.
  • the communication and processing circuitry 1240 may include one or more hardware components that provide the physical structure that performs processes related to wireless communication (e.g., signal reception and/or signal transmission) and signal processing (e.g., processing a received signal and/or processing a signal for transmission) .
  • the communication and processing circuitry 1240 may be configured to receive and process uplink traffic and uplink control messages (e.g., similar to uplink traffic 116 and uplink control 118 of FIG. 1) , transmit and process downlink traffic and downlink control messages (e.g., similar to downlink traffic 112 and downlink control 114) .
  • the communication and processing circuitry 1240 may further be configured to execute communication and processing software 1250 stored on the computer-readable medium 1206 to implement one or more functions described herein.
  • the processor 1204 may include beam management circuitry 1242 configured for various functions for beamforming or wireless communication using beamforming described herein.
  • the beam management circuitry 1242 may include one or more hardware components that provide the physical structure that performs processes related to beamforming described herein.
  • the beam management circuitry 1242 can be configured to process and provide a beam indication to a scheduled entity (e.g., UE) .
  • the beam indication can include reference signal information (e.g., SSB, CSI-RS, SRS) for a beam and panel information.
  • the panel information can indicate one or more antenna panels of the UE for an uplink transmission (e.g., PUCCH or PUSCH) .
  • the beam management circuitry 1242 may further be configured to execute beam management software 1252 stored on the computer-readable medium 1206 to implement one or more functions described herein.
  • the processor 1204 may include pathloss determination circuitry 1244 configured for various functions for pathloss determination between the scheduling entity and a scheduled entity (e.g., UE) described herein.
  • the pathloss determination circuitry 1244 may include one or more hardware components that provide the physical structure that performs processes related to pathloss determination described herein.
  • the pathloss determination circuitry 1244 can be configured to prepare, process, or provide a pathloss reference signal (PL-RS) indication to the scheduled entity.
  • the PL-RS indication includes reference signal information and panel information for performing a pathloss measurement as described herein.
  • the pathloss determination circuitry 1244 may further be configured to execute pathloss determination software 1254 stored on the computer-readable medium 1206 to implement one or more functions described herein.
  • One or more processors 1204 in the processing system may execute software.
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • the software may reside on a computer-readable medium 1206.
  • the computer-readable medium 1206 may be a non-transitory computer-readable medium.
  • a non-transitory computer-readable medium includes, by way of example, a magnetic storage device (e.g., hard disk, floppy disk, magnetic strip) , an optical disk (e.g., a compact disc (CD) or a digital versatile disc (DVD) ) , a smart card, a flash memory device (e.g., a card, a stick, or a key drive) , a random access memory (RAM) , a read only memory (ROM) , a programmable ROM (PROM) , an erasable PROM (EPROM) , an electrically erasable PROM (EEPROM) , a register, a removable disk, and any other suitable medium for storing software and/or instructions that may be accessed and read by a computer.
  • a magnetic storage device e.g., hard disk, floppy disk, magnetic strip
  • an optical disk e.g., a compact disc (CD) or a digital versatile disc (DVD)
  • the computer-readable medium 1206 may reside in the processing system 1214, external to the processing system 1214, or distributed across multiple entities including the processing system 1214.
  • the computer-readable medium 1206 may be embodied in a computer program product.
  • a computer program product may include a computer-readable medium in packaging materials.
  • FIG. 13 is a flow chart illustrating an exemplary process 1300 for wireless communication using uplink panel indication in accordance with some aspects of the present disclosure. As described below, some or all illustrated features may be omitted in a particular implementation within the scope of the present disclosure, and some illustrated features may not be required for all implementations. In some examples, the process 1300 may be carried out by the scheduling entity 1200 illustrated in FIG. 12. In some examples, the process 1300 may be carried out by any suitable apparatus or means for carrying out the functions or algorithm described below.
  • the scheduling entity can establish a connection with a scheduled entity (e.g., scheduled entity 1500) equipped with a plurality of panels (e.g., panels 1511) .
  • a scheduled entity e.g., scheduled entity 1500
  • a plurality of panels e.g., panels 1511
  • Each panel can include one or more antennas configured for wireless communication using beamforming.
  • the communication and processing circuitry 1240 can provide a means for establishing the connection with the scheduled entity.
  • the connection includes one or more beams forming one or more BPLs for uplink and/or downlink communication between the scheduled entity and the scheduling entity.
  • the scheduling entity can transmit a beam indication to the scheduled entity.
  • the beam management circuitry 1242 can provide a means for transmitting the beam indication to the scheduled entity.
  • the beam indication can include reference signal information and panel information for indicating one or more of the plurality of panels for a beam or UL transmission.
  • the beam indication include reference signal information for identifying a beam for the UL transmission.
  • the reference signal information includes SSB information, CSI-RS information, and/or SRS information.
  • the panel information can indicate one or more panels for an uplink transmission (e.g., PUSCH, PUCCH) from the scheduled entity.
  • the beam indication includes a TCI state that provides reference signal information (e.g., SSB, CSI-RS, and SRS) for identifying the beam and panel information for indicating the panel (s) used for the UL transmission as described herein.
  • reference signal information e.g., SSB, CSI-RS, and SRS
  • the scheduling entity can receive an uplink transmission on a beam from one or more of the plurality of panels of the scheduled entity according to the panel information.
  • the communication and processing circuitry 1240 can provide a means for receiving the uplink transmission from the scheduled entity.
  • the uplink transmission may carry an uplink beam report or metrics associated with reference signals.
  • FIG. 14 is a flow chart illustrating another exemplary process 1400 for wireless communication using uplink panel indication in accordance with some aspects of the present disclosure. As described below, some or all illustrated features may be omitted in a particular implementation within the scope of the present disclosure, and some illustrated features may not be required for all implementations. In some examples, the process 1400 may be carried out by the scheduling entity 1200 illustrated in FIG. 12. In some examples, the process 1400 may be carried out by any suitable apparatus or means for carrying out the functions or algorithm described below.
  • the scheduling entity can establish a connection with a scheduled entity (e.g., scheduled entity 1500) equipped with a plurality of panels (e.g., panels 1511) .
  • a scheduled entity e.g., scheduled entity 1500
  • a plurality of panels e.g., panels 1511
  • Each panel can include one or more antennas configured for wireless communication using beamforming.
  • the communication and processing circuitry 1240 can provide a means for establishing the connection with the scheduled entity.
  • the connection includes one or more beams forming one or more BPLs for uplink and/or downlink communication between the scheduled entity and the scheduling entity.
  • the scheduling entity can transmit a pathloss reference signal indication to the scheduled entity.
  • the pathloss determination circuitry 1244 can provide a means for transmitting the pathloss reference signal indication to the scheduled entity.
  • the pathloss reference signal indication can include reference signal information and panel information for performing a pathloss measurement.
  • the reference signal information includes SSB information and/or CSI-RS information.
  • the panel information can indicate one or more panels for performing a pathloss measurement at the scheduled entity.
  • the pathloss reference signal indication includes a pathlossReferenceRS information element that provides reference signal information (e.g., SSB, CSI-RS) and panel information for the pathloss measurement as described herein.
  • the scheduling entity can receive an uplink transmission on a beam from one or more of the plurality of panels of the scheduled entity.
  • the communication and processing circuitry 1240 can provide a means for receiving the uplink transmission from the scheduled entity.
  • the uplink transmission may have a power based on the pathloss measurement that is measured by the scheduled entity using the indicated panel (s) .
  • FIG. 15 is a conceptual diagram illustrating an example of a hardware implementation for an exemplary scheduled entity 1500 employing a processing system 1514.
  • an element, or any portion of an element, or any combination of elements may be implemented with a processing system 1514 that includes one or more processors 1504.
  • the scheduled entity 1500 may be a user equipment (UE) as illustrated in any one or more of FIGs. 1, 2, 4, 5, 6, and 7–9.
  • UE user equipment
  • the processing system 1514 may be substantially the same as the processing system 1214 illustrated in FIG. 12, including a bus interface 1508, a bus 1502, memory 1505, a processor 1504, and a computer-readable medium 1506.
  • the scheduled entity 1500 may include a user interface 1512 and a transceiver 1510 substantially similar to those described above in FIG. 12.
  • the transceiver 1510 is connected with one or more antenna panels 1511. Each antenna panel can include one or more antennas or arrays for beamforming. That is, the processor 1504, as utilized in a scheduled entity 1500, may be used to implement any one or more of the processes described and illustrated in FIGs. 16, 17.
  • the processor 1504 may include circuitry configured for various functions, including, for example, wireless communication using multiple antenna panels.
  • the circuitry may be configured to implement one or more of the functions described in relation to FIGs. 5, 7–11, 16, and 17.
  • the processor 1504 may include communication and processing circuitry 1540 configured for various functions, including, for example, communicating with scheduling entities or any other entity, such as, for example, local infrastructure or an entity communicating with the scheduling entity 1200.
  • the communication and processing circuitry 1540 may include one or more hardware components that provide the physical structure that performs processes related to wireless communication (e.g., signal reception and/or signal transmission) and signal processing (e.g., processing a received signal and/or processing a signal for transmission) .
  • the communication and processing circuitry 1540 may be configured to transmit and process uplink traffic and uplink control messages (e.g., similar to uplink traffic 116 and uplink control 118 of FIG.
  • the communication and processing circuitry 1540 may further be configured to execute communication and processing software 1550 stored on the computer-readable medium 1506 to implement one or more functions described herein.
  • the processor 1504 may include beam management circuitry 1542 configured for various functions for beamforming or wireless communication using beamforming described herein.
  • the beam management circuitry 1542 may include one or more hardware components that provide the physical structure that performs processes related to beamforming described herein.
  • the beam management circuitry 1542 can be configured to process and receive a beam indication from a scheduling entity (e.g., gNB) .
  • the beam indication can include reference signal information (e.g., SSB, CSI-RS, SRS) for a beam and panel information.
  • the panel information can indicate one or more antenna panels of the scheduled entity for an uplink transmission (e.g., UL beam reporting) or beam.
  • the beam management circuitry 1542 may further be configured to execute beam management software 1552 stored on the computer-readable medium 1506 to implement one or more functions described herein.
  • the processor 1504 may include pathloss determination circuitry 1544 configured for various functions for pathloss determination between the scheduled entity and a scheduling entity (e.g., gNB) described herein.
  • the pathloss determination circuitry 1544 may include one or more hardware components that provide the physical structure that performs processes related to pathloss determination described herein.
  • the pathloss determination circuitry 1544 can be configured to receive and process a pathloss reference signal (PL-RS) indication from the scheduling entity.
  • the PL-RS indication includes reference signal information and panel information for performing pathloss measurement as described herein.
  • the pathloss determination circuitry 1544 may further be configured to execute pathloss determination software 1554 stored on the computer-readable medium 1506 to implement one or more functions described herein.
  • FIG. 16 is a flow chart illustrating an exemplary process 1600 for wireless communication using uplink panel indication in accordance with some aspects of the present disclosure. As described below, some or all illustrated features may be omitted in a particular implementation within the scope of the present disclosure, and some illustrated features may not be required for all implementations.
  • the process 1600 may be carried out by the scheduled entity 1500 illustrated in FIG. 15. In some examples, the process 1600 may be carried out by any suitable apparatus (e.g., UE) or means for carrying out the functions or algorithm described below.
  • the scheduled entity can establish a connection with a scheduling entity (e.g., scheduling entity 1200) using a plurality of panels.
  • a scheduling entity e.g., scheduling entity 1200
  • Each panel can include one or more antennas configured for wireless communication using beamforming.
  • the communication and processing circuitry 1540 can provide a means for establishing the connection with the scheduling entity using the antenna panels 1511.
  • the connection includes one or more beams forming one or more BPLs for uplink and/or downlink communication between the scheduled entity and the scheduling entity.
  • the scheduled entity can receive a beam indication from the scheduling entity.
  • the beam indication can include reference signal information and panel information.
  • the communication and processing circuitry 1540 can provide a means for receiving the beam indication from the scheduling entity.
  • the beam indication may include reference signal information that can identify one or more beams.
  • the reference signal information includes SSB information, CSI-RS information, and/or SRS information.
  • the panel information can indicate one or more panels for an uplink transmission (e.g., PUSCH, PUCCH) from the scheduled entity.
  • the beam indication includes a TCI state that provides reference signal information (e.g., SSB index, CSI-RS index, and SRS) and panel information for the UL transmission as described herein.
  • the scheduled entity can identify a beam based on the beam indication.
  • the beam management circuitry 1542 can provide a means for identifying the beam based on, for example, SSB information and/or CSI-RS information provided by the beam indication.
  • the scheduled entity can transmit an uplink transmission on the beam using one or more of the plurality of panels based on the panel information.
  • the communication and processing circuitry 1540 can provide a means for transmitting the uplink transmission (e.g., PUCCH and/or PUSCH) to the scheduling entity.
  • FIG. 17 is a flow chart illustrating an exemplary process 1700 for wireless communication using uplink panel indication in accordance with some aspects of the present disclosure. As described below, some or all illustrated features may be omitted in a particular implementation within the scope of the present disclosure, and some illustrated features may not be required for all implementations. In some examples, the process 1700 may be carried out by the scheduled entity 1500 illustrated in FIG. 15. In some examples, the process 1700 may be carried out by any suitable apparatus (e.g., UE) or means for carrying out the functions or algorithm described below.
  • UE e.g., UE
  • the scheduled entity can establish a connection with a scheduling entity (e.g., scheduling entity 1200) using a plurality of panels.
  • a scheduling entity e.g., scheduling entity 1200
  • Each panel can include one or more antennas configured for wireless communication using beamforming.
  • the communication and processing circuitry 1540 can provide a means for establishing the connection with the scheduling entity using the antenna panels 1511.
  • the connection includes one or more beams forming one or more BPLs for uplink and/or downlink communication between the scheduled entity and the scheduling entity.
  • the scheduled entity can receive a pathloss reference signal (PL-RS) indication from the scheduling entity.
  • the PL-RS indication can include reference signal information and panel information.
  • the communication and processing circuitry 1540 can provide a means for receiving the PL-RS indication from the scheduling entity.
  • the reference signal information includes SSB information and/or CSI-RS information.
  • the panel information can indicate one or more panels (e.g., panels 604, 606, 608, and 610) for pathloss measurements at the scheduled entity.
  • the scheduled entity can receive the PL-RS indication in a pathlossReferenceRS information element.
  • the scheduled entity can perform a pathloss measurement based on the reference signal information and the panel information.
  • the pathloss determination circuitry 1544 can provide a means for performing a pathloss measurement based on, for example, SSB information and/or CSI-RS information provided by the PL-RS indication.
  • the scheduled entity can transmit an uplink transmission based on the pathloss measurement.
  • the communication and processing circuitry 1540 can provide a means for performing the uplink transmission (e.g., PUSCH or PUCCH) to the scheduling entity.
  • a user equipment includes: a transceiver for wireless communication; a plurality of panels, each panel including one or more antennas configured for wireless communication; a memory; and a processor coupled to the transceiver, the plurality of panels, and the memory.
  • the processor and the memory are configured to: establish a connection with a scheduling entity using the plurality of panels; receive a beam indication from the scheduling entity, wherein the beam indication includes reference signal information and panel information; identify a beam based on the beam indication; and perform an uplink transmission on the beam using one or more of the plurality of panels based on the panel information.
  • the beam indication includes a transmission configuration indicator (TCI) state that includes the reference signal information and the panel information.
  • TCI transmission configuration indicator
  • the panel information includes a panel list including one or more panel IDs respectively corresponding to the one or more of the plurality of panels used for the uplink transmission.
  • the panel information includes a bitmap, each bit of the bitmap corresponding to one of the plurality of panels used for the uplink transmission.
  • the panel information includes a panel set ID identifying a panel set among a plurality of panel sets, each panel set including one or more of the plurality of panels.
  • the reference signal information includes at least one of synchronization signal block (SSB) resource index or channel state information reference signal (CSI-RS) resource index, for identifying the beam.
  • SSB synchronization signal block
  • CSI-RS channel state information reference signal
  • the uplink transmission includes at least one of a physical uplink control channel (PUCCH) or physical uplink shared channel (PUSCH) .
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • a user equipment includes: a transceiver for wireless communication; a plurality of panels, each panel including one or more antennas configured for wireless communication; a memory; and a processor coupled to the transceiver, the plurality of panels, and the memory, wherein the processor and the memory are configured to: establish a connection with a scheduling entity using the plurality of panels; receive a pathloss reference signal (PL-RS) indication from the scheduling entity, wherein the PL-RS indication includes reference signal information and panel information; perform a pathloss measurement based on the reference signal information and the panel information; and perform an uplink transmission based on the pathloss measurement.
  • PL-RS pathloss reference signal
  • the reference signal information includes at least one of synchronization signal block (SSB) information or channel state information reference signal (CSI-RS) information, and wherein the panel information indicates one or more of the plurality of panels for performing the pathloss measurement using at least one of the SSB information or the CSI-RS information.
  • SSB synchronization signal block
  • CSI-RS channel state information reference signal
  • the pathloss reference signal (PL-RS) indication includes a transmission configuration indicator (TCI) state that includes the reference signal information.
  • TCI transmission configuration indicator
  • the processor and the memory are further configured to measure a pathloss between the UE and the scheduling entity using one or more of the plurality of panels indicated by the panel information.
  • the panel information includes a panel set for the pathloss measurement, the panel set indicating one or more of the plurality of panels; and for performing the pathloss measurement, the processor and the memory are further configured to measure a pathloss between the UE and the scheduling entity using any panel of the panel set.
  • the panel information includes a panel list including one or more panel IDs respectively corresponding to the plurality of panels.
  • the panel information includes a bitmap, each bit of the bitmap corresponding to one of the plurality of panels.
  • the panel information includes a panel set ID identifying a panel set among a plurality of panel sets, each panel set including one or more of the plurality of panels.
  • a scheduling entity includes: a transceiver for wireless communication; a memory; and a processor coupled to the transceiver and the memory, wherein the processor and the memory are configured to: establish a connection with a user equipment (UE) equipped with a plurality of panels, each panel including one or more antennas configured for wireless communication; transmit a beam indication to the UE, wherein the beam indication includes reference signal information and panel information for indicating one or more of the plurality of panels for a beam; and receive an uplink transmission on the beam from the one or more of the plurality of panels based on the panel information.
  • UE user equipment
  • the beam indication includes a transmission configuration indicator (TCI) state that includes the reference signal information and the panel information.
  • TCI transmission configuration indicator
  • the panel information includes a panel list including one or more panel IDs respectively corresponding to the one or more of the plurality of panels for the uplink transmission.
  • the panel information includes a bitmap, each bit of the bitmap corresponding to one of the plurality of panels for the uplink transmission.
  • the panel information includes a panel set ID identifying a panel set among a plurality of panel sets, each panel set including one or more of the plurality of panels.
  • the reference signal information includes at least one of synchronization signal block (SSB) resource information or channel state information reference signal (CSI-RS) resource information, for identifying the beam.
  • SSB synchronization signal block
  • CSI-RS channel state information reference signal
  • the uplink transmission includes at least one of a physical uplink control channel (PUCCH) or physical uplink shared channel (PUSCH) .
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • a scheduling entity includes: a transceiver for wireless communication; a memory; and a processor coupled to the transceiver and the memory, wherein the processor and the memory are configured to: establish a connection with a user equipment (UE) equipped with a plurality of panels, each panel including one or more antennas configured for wireless communication; transmit a pathloss reference signal (PL-RS) indication to the UE, wherein the PL-RS indication includes reference signal information and panel information for performing a pathloss measurement; and receive an uplink transmission based on the pathloss measurement.
  • UE user equipment
  • PL-RS pathloss reference signal
  • the reference signal information includes at least one of synchronization signal block (SSB) information or channel state information reference signal (CSI-RS) information
  • the panel information indicates one or more of the plurality of panels for performing the pathloss measurement using at least one of the SSB information or CSI-RS information.
  • the PL-RS indication includes a transmission configuration indicator (TCI) state that includes the reference signal information.
  • TCI transmission configuration indicator
  • the panel information configures the UE to measure a pathloss between the UE and the scheduling entity using one or more of the plurality of panels indicated by the panel information.
  • the panel information includes a panel set for the pathloss measurement, the panel set indicating one or more of the plurality of panels, and the panel information configures the UE to measure a pathloss between the UE and the scheduling entity using any panel of the panel set.
  • the panel information includes a panel list including one or more panel IDs respectively corresponding to the plurality of panels.
  • the panel information includes a bitmap, each bit of the bitmap corresponding to one of the plurality of panels.
  • the panel information includes a panel set ID identifying a panel set among a plurality of panel sets, each panel set including one or more of the plurality of panels.
  • various aspects may be implemented within other systems defined by 3GPP, such as Long-Term Evolution (LTE) , the Evolved Packet System (EPS) , the Universal Mobile Telecommunication System (UMTS) , and/or the Global System for Mobile (GSM) .
  • LTE Long-Term Evolution
  • EPS Evolved Packet System
  • UMTS Universal Mobile Telecommunication System
  • GSM Global System for Mobile
  • Various aspects may also be extended to systems defined by the 3rd Generation Partnership Project 2 (3GPP2) , such as CDMA2000 and/or Evolution-Data Optimized (EV-DO) .
  • 3GPP2 3rd Generation Partnership Project 2
  • EV-DO Evolution-Data Optimized
  • Other examples may be implemented within systems employing IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Ultra-Wideband (UWB) , Bluetooth, and/or other suitable systems.
  • Wi-Fi IEEE 802.11
  • WiMAX IEEE 8
  • the word “exemplary” is used to mean “serving as an example, instance, or illustration. ” Any implementation or aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects of the disclosure. Likewise, the term “aspects” does not require that all aspects of the disclosure include the discussed feature, advantage or mode of operation.
  • the term “coupled” is used herein to refer to the direct or indirect coupling between two objects. For example, if object A physically touches object B, and object B touches object C, then objects A and C may still be considered coupled to one another-even if they do not directly physically touch each other. For instance, a first object may be coupled to a second object even though the first object is never directly physically in contact with the second object.
  • circuit and “circuitry” are used broadly, and intended to include both hardware implementations of electrical devices and conductors that, when connected and configured, enable the performance of the functions described in the present disclosure, without limitation as to the type of electronic circuits, as well as software implementations of information and instructions that, when executed by a processor, enable the performance of the functions described in the present disclosure.
  • FIGs. 1–17 may be rearranged and/or combined into a single component, step, feature or function or embodied in several components, steps, or functions. Additional elements, components, steps, and/or functions may also be added without departing from novel features disclosed herein.
  • the apparatus, devices, and/or components illustrated in FIGs. 1–17 may be configured to perform one or more of the methods, features, or steps described herein.
  • the novel algorithms described herein may also be efficiently implemented in software and/or embedded in hardware.
  • “at least one of: a, b, or c” is intended to cover: a; b; c; a and b; a and c; b and c; and a, b and c. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims.

Abstract

A scheduling entity and a user equipment (UE) can use a beam indication mechanism to indicate an uplink (UL) beam and panel (s) used for an UL transmission. For pathloss measurement, the scheduling entity can transmit a pathloss reference signal (PL-RS) indication to the UE. The PL-RS indication can include panel information for indicating the panel (s) for pathloss measurements using the indicated PL-RS.

Description

ANTENNA PANEL INDICATION IN WIRELESS COMMUNICATION TECHNICAL FIELD
The technology discussed below relates generally to wireless communication systems, and more particularly, to wireless communication using antenna panel indication.
INTRODUCTION
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level.
An example telecommunication standard is 5G New Radio (NR) . 5G NR is part of a continuous mobile broadband evolution promulgated by Third Generation Partnership Project (3GPP) to meet new requirements associated with latency, reliability, security, scalability (e.g., with Internet of Things (IoT) ) , and other requirements. 5G NR can support a multi-panel UE (MP-UE) that has multiple panels of antennas. An MP-UE can provide flexibility in selection of antennas for wireless communications.
BRIEF SUMMARY OF SOME EXAMPLES
The following presents a summary of one or more aspects of the present disclosure, in order to provide a basic understanding of such aspects. This summary is not an extensive overview of all contemplated features of the disclosure, and is intended neither to identify key or critical elements of all aspects of the disclosure nor to delineate the scope of any or all aspects of the disclosure. Its sole purpose is to present some concepts of one or more aspects of the disclosure in a form as a prelude to the more detailed description that is presented later.
Aspects of the present disclosure provides a scheduling entity and a user equipment (UE) in a wireless network that can use a beam indication mechanism to indicate an uplink (UL) beam for an UL transmission. In some aspects, for pathloss measurement, the scheduling entity can transmit a pathloss reference signal (PL-RS)  indication to the UE. In some aspects, the PL-RS indication can include panel information for indicating the panel (s) for pathloss measurements using the indicated PL-RS.
One aspect of the disclosure provides a user equipment (UE) for wireless communication. The UE includes a transceiver for wireless communication and a plurality of panels. Each panel includes one or more antennas configured for wireless communication. The UE further includes a memory and a processor coupled to the transceiver, the plurality of panels, and the memory. The processor and the memory are configured to establish a connection with a scheduling entity using the plurality of panels. The processor and the memory are further configured to receive a beam indication from the scheduling entity, wherein the beam indication includes reference signal information and panel information. The processor and the memory are further configured to identify a beam based on the beam indication. The processor and the memory are further configured to perform an uplink transmission on the beam using one or more of the plurality of panels based on the panel information.
One aspect of the disclosure provides a user equipment (UE) for wireless communication. The UE includes a transceiver for wireless communication and a plurality of panels. Each panel includes one or more antennas configured for wireless communication. The UE further includes a memory and a processor. The processor is coupled to the transceiver, the plurality of panels, and the memory. The processor and the memory are configured to establish a connection with a scheduling entity using the plurality of panels. The processor and the memory are further configured to receive a pathloss reference signal (PL-RS) indication from the scheduling entity. The PL-RS indication includes reference signal information and panel information. The processor and the memory are further configured to perform a pathloss measurement based on the reference signal information and the panel information. The processor and the memory are further configured to perform an uplink transmission based on the pathloss measurement.
One aspect of the disclosure provides a scheduling entity for wireless communication. The scheduling entity includes a transceiver for wireless communication, a memory, and a processor coupled to the transceiver and the memory. The processor and the memory are configured to establish a connection with a user equipment (UE) equipped with a plurality of panels. Each panel includes one or more antennas configured for wireless communication. The processor and the memory are further configured to transmit a beam indication to the UE. The beam indication includes reference signal  information and panel information for indicating one or more of the plurality of panels for a beam. The processor and the memory are further configured to receive an uplink transmission on the beam from the one or more of the plurality of panels based on the panel information.
One aspect of the disclosure includes a scheduling entity for wireless communication. The scheduling entity includes a transceiver for wireless communication, a memory, and a processor. The processor is coupled to the transceiver and the memory. The processor and the memory are configured to establish a connection with a user equipment (UE) equipped with a plurality of panels. Each panel includes one or more antennas configured for wireless communication. The processor and the memory are further configured to transmit a pathloss reference signal (PL-RS) indication to the UE. The PL-RS indication includes reference signal information and panel information for performing a pathloss measurement. The processor and the memory are further configured to receive an uplink transmission based on the pathloss measurement.
These and other aspects of the invention will become more fully understood upon a review of the detailed description, which follows. Other aspects, features, and implementations will become apparent to those of ordinary skill in the art, upon reviewing the following description of specific, exemplary implementations in conjunction with the accompanying figures. While features may be discussed relative to certain implementations and figures below, all implementations can include one or more of the advantageous features discussed herein. In other words, while one or more implementations may be discussed as having certain advantageous features, one or more of such features may also be used in accordance with the various implementations discussed herein. In similar fashion, while exemplary implementations may be discussed below as device, system, or method examples, it should be understood that such examples can be implemented in various devices, systems, and methods.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a schematic illustration of a wireless communication system according to some aspects of the disclosure.
FIG. 2 is an illustration of an example of a radio access network according to some aspects of the disclosure.
FIG. 3 is a schematic illustration of an organization of wireless resources in an air interface utilizing orthogonal frequency divisional multiplexing (OFDM) according to some aspects of the disclosure.
FIG. 4 is a block diagram illustrating a wireless communication system supporting multiple-input multiple-output (MIMO) communication according to some aspects of the disclosure.
FIG. 5 is a diagram illustrating communication between a base station and a user equipment using beamforming according to some aspects of the disclosure.
FIG. 6 is a block diagram of a multi-panel user equipment according to some aspects of the disclosure.
FIG. 7 is a diagram illustrating communication of a beam indication between a scheduling entity and a user equipment according to some aspects of the disclosure.
FIG. 8 is a diagram illustrating a procedure for communicating a beam indication between a user equipment and a scheduling entity according to some aspects of the disclosure.
FIG. 9 is a diagram illustrating a procedure for communicating panel information for pathloss determination between a scheduling entity and a user equipment according to some aspects of the disclosure.
FIG. 10 is a diagram illustrating an exemplary pathloss reference signal indication including panel information according to some aspects of the disclosure.
FIG. 11 is a flow chart illustrating a procedure for performing pathloss measurement based on a pathloss reference signal indication with panel information according to some aspects of the disclosure.
FIG. 12 is a block diagram illustrating an example of a hardware implementation for a scheduling entity according to some aspects of the disclosure.
FIG. 13 is a flow chart illustrating an exemplary process for wireless communication at a scheduling entity using uplink panel indication according to some aspects of the disclosure.
FIG. 14 is a flow chart illustrating an exemplary process for wireless communication at a scheduling entity using pathloss reference signal indication according to some aspects of the disclosure.
FIG. 15 is a block diagram illustrating an example of a hardware implementation for a scheduled entity according to some aspects of the disclosure.
FIG. 16 is a flow chart illustrating an exemplary process for wireless communication at a scheduled entity using uplink panel indication according to some aspects of the disclosure.
FIG. 17 is a flow chart illustrating an exemplary process for wireless communication at a scheduled entity using pathloss reference signal indication according to some aspects of the disclosure.
DETAILED DESCRIPTION
The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
While aspects and implementations are described in this application by illustration to some examples, those skilled in the art will understand that additional implementations and use cases may come about in many different arrangements and scenarios. Innovations described herein may be implemented across many differing platform types, devices, systems, shapes, sizes, and packaging arrangements. For example, implementations and/or uses may come about via integrated chip examples and other non-module-component based devices (e.g., end-user devices, vehicles, communication devices, computing devices, industrial equipment, retail/purchasing devices, medical devices, AI-enabled devices, etc. ) . While some examples may or may not be specifically directed to use cases or applications, a wide assortment of applicability of described innovations may occur. Implementations may range a spectrum from chip-level or modular components to non-modular, non-chip-level implementations and further to aggregate, distributed, or OEM devices or systems incorporating one or more aspects of the described innovations. In some practical settings, devices incorporating described aspects and features may also necessarily include additional components and features for implementation and practice of claimed and described examples. For example, transmission and reception of wireless signals necessarily includes a number of components for analog and digital purposes (e.g.,  hardware components including antenna, RF-chains, power amplifiers, modulators, buffer, processor (s) , interleaver, adders/summers, etc. ) . It is intended that innovations described herein may be practiced in a wide variety of devices, chip-level components, systems, distributed arrangements, end-user devices, etc. of varying sizes, shapes and constitution.
The electromagnetic spectrum is often subdivided, based on frequency/wavelength, into various classes, bands, channels, etc. In 5G NR two initial operating bands have been identified as frequency range designations FR1 (410 MHz –7.125 GHz) and FR2 (24.25 GHz –52.6 GHz) . It should be understood that although a portion of FR1 is greater than 6 GHz, FR1 is often referred to (interchangeably) as a “Sub-6 GHz” band in various documents and articles. A similar nomenclature issue sometimes occurs with regard to FR2, which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
The frequencies between FR1 and FR2 are often referred to as mid-band frequencies. Recent 5G NR studies have identified an operating band for these mid-band frequencies as frequency range designation FR3 (7.125 GHz –24.25 GHz) . Frequency bands falling within FR3 may inherit FR1 characteristics and/or FR2 characteristics, and thus may effectively extend features of FR1 and/or FR2 into mid-band frequencies. In addition, higher frequency bands are currently being explored to extend 5G NR operation beyond 52.6 GHz. For example, three higher operating bands have been identified as frequency range designations FR4-a or FR4-1 (52.6 GHz –71 GHz) , FR4 (52.6 GHz –114.25 GHz) , and FR5 (114.25 GHz –300 GHz) . Each of these higher frequency bands falls within the EHF band.
With the above aspects in mind, unless specifically stated otherwise, it should be understood that the term “sub-6 GHz” or the like if used herein may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies. Further, unless specifically stated otherwise, it should be understood that the term “millimeter wave” or the like if used herein may broadly represent frequencies that may include mid-band frequencies, may be within FR2, FR4, FR4-a or FR4-1, and/or FR5, or may be within the EHF band.
Aspects of the disclosure relate to wireless communication between a scheduling entity and a multi-panel user equipment (MP-UE) equipped with one or more antenna  panels for wireless communication using beamforming. The terms MP-UE and user equipment (UE) may be used interchangeably in this disclosure. In some aspects, a scheduling entity (e.g., a base station) can use a beam indication mechanism to indicate an uplink beam to a UE for performing an UL transmission. In some aspects, a scheduling entity can use a pathloss reference signal indication mechanism to indicate a panel for pathloss measurement, and the UE can set the UL transmission power based, at least in part, on the pathloss measured using the indicated panel.
The various concepts presented throughout this disclosure may be implemented across a broad variety of telecommunication systems, network architectures, and communication standards. Referring now to FIG. 1, as an illustrative example without limitation, various aspects of the present disclosure are illustrated with reference to a wireless communication system 100. The wireless communication system 100 includes three interacting domains: a core network 102, a radio access network (RAN) 104, and a user equipment (UE) 106. By virtue of the wireless communication system 100, the UE 106 may be enabled to carry out data communication with an external data network 110, such as (but not limited to) the Internet.
The RAN 104 may implement any suitable wireless communication technology or technologies to provide radio access to the UE 106. As one example, the RAN 104 may operate according to 3 rd Generation Partnership Project (3GPP) New Radio (NR) specifications, often referred to as 5G. As another example, the RAN 104 may operate under a hybrid of 5G NR and Evolved Universal Terrestrial Radio Access Network (eUTRAN) standards, often referred to as Long Term Evolution (LTE) . The 3GPP refers to this hybrid RAN as a next-generation RAN, or NG-RAN. Of course, many other examples may be utilized within the scope of the present disclosure.
As illustrated, the RAN 104 includes a plurality of base stations 108. Broadly, a base station is a network element in a radio access network responsible for radio transmission and reception in one or more cells to or from a UE. In different technologies, standards, or contexts, a base station may variously be referred to by those skilled in the art as a base transceiver station (BTS) , a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , an access point (AP) , a Node B (NB) , an eNode B (eNB) , a gNode B (gNB) , a transmission and reception point (TRP) , or some other suitable terminology. In some examples, a base station may include two or more TRPs that may be collocated or non-collocated. Each TRP may communicate on the same or different carrier frequency within the same or  different frequency band. In examples where the RAN 104 operates according to both the LTE and 5G NR standards, one of the base stations may be an LTE base station, while another base station may be a 5G NR base station.
The RAN 104 is further illustrated supporting wireless communication for multiple mobile apparatuses. A mobile apparatus may be referred to as user equipment (UE) in 3GPP standards, but may also be referred to by those skilled in the art as a mobile station (MS) , a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal (AT) , a mobile terminal, a wireless terminal, a remote terminal, a handset, a terminal, a user agent, a mobile client, a client, or some other suitable terminology. A UE may be an apparatus (e.g., a mobile apparatus) that provides a user with access to network services.
Within the present disclosure, a “mobile” apparatus need not necessarily have a capability to move and may be stationary. The term mobile apparatus or mobile device broadly refers to a diverse array of devices and technologies. UEs may include a number of hardware structural components sized, shaped, and arranged to help in communication; such components can include antennas, antenna arrays, RF chains, amplifiers, one or more processors, etc. electrically coupled to each other. For example, some non-limiting examples of a mobile apparatus include a mobile, a cellular (cell) phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal computer (PC) , a notebook, a netbook, a smartbook, a tablet, a personal digital assistant (PDA) , and a broad array of embedded systems, e.g., corresponding to an “Internet of things” (IoT) .
A mobile apparatus may additionally be an automotive or other transportation vehicle, a remote sensor or actuator, a robot or robotics device, a satellite radio, a global positioning system (GPS) device, an object tracking device, a drone, a multi-copter, a quad-copter, a remote control device, a consumer and/or wearable device, such as eyewear, a wearable camera, a virtual reality device, a smart watch, a health or fitness tracker, a digital audio player (e.g., MP3 player) , a camera, a game console, etc. A mobile apparatus may additionally be a digital home or smart home device such as a home audio, video, and/or multimedia device, an appliance, a vending machine, intelligent lighting, a home security system, a smart meter, etc. A mobile apparatus may additionally be a smart energy device, a security device, a solar panel or solar array, a municipal infrastructure device controlling electric power (e.g., a smart grid) , lighting, water, etc., an industrial automation and enterprise device, a logistics controller, and/or agricultural equipment,  etc. Still further, a mobile apparatus may provide for connected medicine or telemedicine support, e.g., health care at a distance. Telehealth devices may include telehealth monitoring devices and telehealth administration devices, whose communication may be given preferential treatment or prioritized access over other types of information, e.g., in terms of prioritized access for transport of critical service data, and/or relevant QoS for transport of critical service data.
Wireless communication between the RAN 104 and the UE 106 may be described as utilizing an air interface. Transmissions over the air interface from a base station (e.g., base station 108) to one or more UEs (e.g., similar to UE 106) may be referred to as downlink (DL) transmission. In accordance with certain aspects of the present disclosure, the term downlink may refer to a point-to-multipoint transmission originating at a base station (e.g., base station 108) . Another way to describe this scheme may be to use the term broadcast channel multiplexing. Transmissions from a UE (e.g., UE 106) to a base station (e.g., base station 108) may be referred to as uplink (UL) transmissions. In accordance with further aspects of the present disclosure, the term uplink may refer to a point-to-point transmission originating at a UE (e.g., UE 106) .
In some examples, access to the air interface may be scheduled, wherein a scheduling entity (e.g., a base station 108) allocates resources for communication among some or all devices and equipment within its service area or cell. Within the present disclosure, as discussed further below, the scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for one or more scheduled entities (e.g., UEs 106) . That is, for scheduled communication, a plurality of UEs 106, which may be scheduled entities, may utilize resources allocated by the scheduling entity 108.
Base stations 108 are not the only entities that may function as scheduling entities. That is, in some examples, a UE may function as a scheduling entity, scheduling resources for one or more scheduled entities (e.g., one or more other UEs) . For example, UEs may communicate directly with other UEs in a peer-to-peer or device-to-device fashion and/or in a relay configuration.
As illustrated in FIG. 1, a scheduling entity 108 may broadcast downlink traffic 112 to one or more scheduled entities (e.g., one or more UEs 106) . Broadly, the scheduling entity 108 is a node or device responsible for scheduling traffic in a wireless communication network, including the downlink traffic 112 and, in some examples, uplink traffic 116 from one or more scheduled entities (e.g., one or more UEs 106) to the  scheduling entity 108. On the other hand, the scheduled entity (e.g., a UE 106) is a node or device that receives downlink control information 114, including but not limited to scheduling information (e.g., a grant) , synchronization or timing information, or other control information from another entity in the wireless communication network such as the scheduling entity 108.
In addition, the uplink and/or downlink control information and/or traffic information may be transmitted on a waveform that may be time-divided into frames, subframes, slots, and/or symbols. As used herein, a symbol may refer to a unit of time that, in an orthogonal frequency division multiplexed (OFDM) waveform, carries one resource element (RE) per sub-carrier. A slot may carry 7 or 14 OFDM symbols. A subframe may refer to a duration of 1ms. Multiple subframes or slots may be grouped together to form a single frame or radio frame. Within the present disclosure, a frame may refer to a predetermined duration (e.g., 10 ms) for wireless transmissions, with each frame consisting of, for example, 10 subframes of 1 ms each. Of course, these definitions are not required, and any suitable scheme for organizing waveforms may be utilized, and various time divisions of the waveform may have any suitable duration.
In general, base stations 108 may include a backhaul interface for communication with a backhaul portion 120 of the wireless communication system 100. The backhaul portion 120 may provide a link between a base station 108 and the core network 102. Further, in some examples, a backhaul network may provide interconnection between the respective base stations 108. Various types of backhaul interfaces may be employed, such as a direct physical connection, a virtual network, or the like using any suitable transport network.
The core network 102 may be a part of the wireless communication system 100 and may be independent of the radio access technology used in the RAN 104. In some examples, the core network 102 may be configured according to 5G standards (e.g., 5GC) . In other examples, the core network 102 may be configured according to a 4G evolved packet core (EPC) , or any other suitable standard or configuration.
Referring now to FIG. 2, as an illustrative example without limitation, a schematic illustration of a radio access network (RAN) 200 according to some aspects of the present disclosure is provided. In some examples, the RAN 200 may be the same as the RAN 104 described above and illustrated in FIG. 1.
The geographic region covered by the RAN 200 may be divided into a number of cellular regions (cells) that can be uniquely identified by a user equipment (UE) based on  an identification broadcasted over a geographical area from one access point or base station. FIG. 2 illustrates  cells  202, 204, 206, and 208, each of which may include one or more sectors (not shown) . A sector is a sub-area of a cell. All sectors within one cell are served by the same base station. A radio link within a sector can be identified by a single logical identification belonging to that sector. In a cell that is divided into sectors, the multiple sectors within a cell can be formed by groups of antennas with each antenna responsible for communication with UEs in a portion of the cell.
Various base station arrangements can be utilized. For example, in FIG. 2, two base stations, base station 210 and base station 212 are shown in  cells  202 and 204. A third base station, base station 214 is shown controlling a remote radio head (RRH) 216 in cell 206. That is, a base station can have an integrated antenna or can be connected to an antenna or RRH 216 by feeder cables. In the illustrated example,  cells  202, 204, and 206 may be referred to as macrocells, as the  base stations  210, 212, and 214 support cells having a large size. Further, a base station 218 is shown in the cell 208, which may overlap with one or more macrocells. In this example, the cell 208 may be referred to as a small cell (e.g., a microcell, picocell, femtocell, home base station, home Node B, home eNode B, etc. ) , as the base station 218 supports a cell having a relatively small size. Cell sizing can be done according to system design as well as component constraints.
It is to be understood that the RAN 200 may include any number of wireless base stations and cells. Further, a relay node may be deployed to extend the size or coverage area of a given cell. The  base stations  210, 212, 214, 218 provide wireless access points to a core network for any number of mobile apparatuses. In some examples, the  base stations  210, 212, 214, and/or 218 may be the same as or similar to the scheduling entity 108 described above and illustrated in FIG. 1.
FIG. 2 further includes an unmanned aerial vehicle (UAV) 220, which may be a drone or quadcopter. The UAV 220 may be configured to function as a base station, or more specifically as a mobile base station. That is, in some examples, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile base station, such as the UAV 220.
Within the RAN 200, the cells may include UEs that may be in communication with one or more sectors of each cell. Further, each  base station  210, 212, 214, 218, and 220 may be configured to provide an access point to a core network 102 (see FIG. 1) for all the UEs in the respective cells. For example,  UEs  222 and 224 may be in communication with base station 210;  UEs  226 and 228 may be in communication with  base station 212;  UEs  230 and 232 may be in communication with base station 214 by way of RRH 216; UE 234 may be in communication with base station 218; and UE 236 may be in communication with mobile base station 220. In some examples, the  UEs  222, 224, 226, 228, 230, 232, 234, 236, 238, 240, and/or 242 may be the same as or similar to the UE/scheduled entity 106 described above and illustrated in FIG. 1. In some examples, the UAV 220 (e.g., the quadcopter) can be a mobile network node and may be configured to function as a UE. For example, the UAV 220 may operate within cell 202 by communicating with base station 210.
In a further aspect of the RAN 200, sidelink signals may be used between UEs without necessarily relying on scheduling or control information from a base station. Sidelink communication may be utilized, for example, in a device-to-device (D2D) network, peer-to-peer (P2P) network, vehicle-to-vehicle (V2V) network, vehicle-to-everything (V2X) network, and/or other suitable sidelink network. For example, two or more UEs (e.g.,  UEs  238, 240, and 242) may communicate with each other using sidelink signals 237 without relaying that communication through a base station. In some examples, the  UEs  238, 240, and 242 may each function as a scheduling entity or transmitting sidelink device and/or a scheduled entity or a receiving sidelink device to schedule resources and communicate sidelink signals 237 therebetween without relying on scheduling or control information from a base station. In other examples, two or more UEs (e.g., UEs 226 and 228) within the coverage area of a base station (e.g., base station 212) may also communicate sidelink signals 227 over a direct link (sidelink) without conveying that communication through the base station 212. In this example, the base station 212 may allocate resources to the  UEs  226 and 228 for the sidelink communication.
In order for transmissions over the air interface to obtain a low block error rate (BLER) while still achieving very high data rates, channel coding may be used. That is, wireless communication may generally utilize a suitable error correcting block code. In a typical block code, an information message or sequence is split up into code blocks (CBs) , and an encoder (e.g., a CODEC) at the transmitting device then mathematically adds redundancy to the information message. Exploitation of this redundancy in the encoded information message can improve the reliability of the message, enabling correction for any bit errors that may occur due to the noise.
Data coding may be implemented in multiple manners. In early 5G NR specifications, user data is coded using quasi-cyclic low-density parity check (LDPC)  with two different base graphs: one base graph is used for large code blocks and/or high code rates, while the other base graph is used otherwise. Control information and the physical broadcast channel (PBCH) are coded using Polar coding, based on nested sequences. For these channels, puncturing, shortening, and repetition are used for rate matching.
Aspects of the present disclosure may be implemented utilizing any suitable channel code. Various implementations of base stations and UEs may include suitable hardware and capabilities (e.g., an encoder, a decoder, and/or a CODEC) to utilize one or more of these channel codes for wireless communication.
In the RAN 200, the ability of UEs to communicate while moving, independent of their location, is referred to as mobility. The various physical channels between the UE and the RAN 200 are generally set up, maintained, and released under the control of an access and mobility management function (AMF) . In some scenarios, the AMF may include a security context management function (SCMF) and a security anchor function (SEAF) that performs authentication. The SCMF can manage, in whole or in part, the security context for both the control plane and the user plane functionality.
In various aspects of the disclosure, the RAN 200 may utilize DL-based mobility or UL-based mobility to enable mobility and handovers (i.e., the transfer of a UE’s connection from one radio channel to another) . In a network configured for DL-based mobility, during a call with a scheduling entity, or at any other time, a UE may monitor various parameters of the signal from its serving cell as well as various parameters of neighboring cells. Depending on the quality of these parameters, the UE may maintain communication with one or more of the neighboring cells. During this time, if the UE moves from one cell to another, or if signal quality from a neighboring cell exceeds that from the serving cell for a given amount of time, the UE may undertake a handoff or handover from the serving cell to the neighboring (target) cell. For example, the UE 224 may move from the geographic area corresponding to its serving cell 202 to the geographic area corresponding to a neighbor cell 206. When the signal strength or quality from the neighbor cell 206 exceeds that of its serving cell 202 for a given amount of time, the UE 224 may transmit a reporting message to its serving base station 210 indicating this condition. In response, the UE 224 may receive a handover command, and the UE may undergo a handover to the cell 206.
In a network configured for UL-based mobility, UL reference signals from each UE may be utilized by the network to select a serving cell for each UE. In some examples,  the  base stations  210, 212, and 214/216 may broadcast unified synchronization signals (e.g., unified Primary Synchronization Signals (PSSs) , unified Secondary Synchronization Signals (SSSs) and unified Physical Broadcast Channels (PBCH) ) . The  UEs  222, 224, 226, 228, 230, and 232 may receive the unified synchronization signals, derive the carrier frequency, and slot timing from the synchronization signals, and in response to deriving timing, transmit an uplink pilot or reference signal. The uplink pilot signal transmitted by a UE (e.g., UE 224) may be concurrently received by two or more cells (e.g.,  base stations  210 and 214/216) within the RAN 200. Each of the cells may measure a strength of the pilot signal, and the radio access network (e.g., one or more of the  base stations  210 and 214/216 and/or a central node within the core network) may determine a serving cell for the UE 224. As the UE 224 moves through the RAN 200, the RAN 200 may continue to monitor the uplink pilot signal transmitted by the UE 224. When the signal strength or quality of the pilot signal measured by a neighboring cell exceeds that of the signal strength or quality measured by the serving cell, the RAN 200 may handover the UE 224 from the serving cell to the neighboring cell, with or without informing the UE 224.
Although the synchronization signal transmitted by the  base stations  210, 212, and 214/216 may be unified, the synchronization signal may not identify a particular cell, but rather may identify a zone of multiple cells operating on the same frequency and/or with the same timing. The use of zones in 5G networks or other next generation communication networks enables the uplink-based mobility framework and improves the efficiency of both the UE and the network, since the number of mobility messages that need to be exchanged between the UE and the network may be reduced.
In various implementations, the air interface in the radio access network 200 may utilize licensed spectrum, unlicensed spectrum, or shared spectrum. Licensed spectrum provides for exclusive use of a portion of the spectrum, generally by virtue of a mobile network operator purchasing a license from a government regulatory body. Unlicensed spectrum provides for shared use of a portion of the spectrum without need for a government-granted license. While compliance with some technical rules is generally still required to access unlicensed spectrum, generally, any operator or device may gain access. Shared spectrum may fall between licensed and unlicensed spectrum, wherein technical rules or limitations may be required to access the spectrum, but the spectrum may still be shared by multiple operators and/or multiple RATs. For example, the holder of a license for a portion of licensed spectrum may provide licensed shared access (LSA)  to share that spectrum with other parties, e.g., with suitable licensee-determined conditions to gain access.
Devices communicating in the radio access network 200 may utilize one or more multiplexing techniques and multiple access algorithms to enable simultaneous communication of the various devices. For example, 5G NR specifications provide multiple access for UL transmissions from  UEs  222 and 224 to base station 210, and for multiplexing for DL transmissions from base station 210 to one or  more UEs  222 and 224, utilizing orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) . In addition, for UL transmissions, 5G NR specifications provide support for discrete Fourier transform-spread-OFDM (DFT-s-OFDM) with a CP (also referred to as single-carrier FDMA (SC-FDMA) ) . However, within the scope of the present disclosure, multiplexing and multiple access are not limited to the above schemes, and may be provided utilizing time division multiple access (TDMA) , code division multiple access (CDMA) , frequency division multiple access (FDMA) , sparse code multiple access (SCMA) , resource spread multiple access (RSMA) , or other suitable multiple access schemes. Further, multiplexing DL transmissions from the base station 210 to UEs 222 and 224 may be provided utilizing time division multiplexing (TDM) , code division multiplexing (CDM) , frequency division multiplexing (FDM) , orthogonal frequency division multiplexing (OFDM) , sparse code multiplexing (SCM) , or other suitable multiplexing schemes.
Devices in the radio access network 200 may also utilize one or more duplexing algorithms. Duplex refers to a point-to-point communication link where both endpoints can communicate with one another in both directions. Full-duplex means both endpoints can simultaneously communicate with one another. Half-duplex means only one endpoint can send information to the other at a time. Half-duplex emulation is frequently implemented for wireless links utilizing time division duplex (TDD) . In TDD, transmissions in different directions on a given channel are separated from one another using time division multiplexing. That is, in some scenarios, a channel is dedicated for transmissions in one direction, while at other times the channel is dedicated for transmissions in the other direction, where the direction may change very rapidly, e.g., several times per slot. In a wireless link, a full-duplex channel generally relies on physical isolation of a transmitter and receiver, and suitable interference cancellation technologies. Full-duplex emulation is frequently implemented for wireless links by utilizing frequency division duplex (FDD) or spatial division duplex (SDD) . In FDD, transmissions in  different directions may operate at different carrier frequencies (e.g., within paired spectrum) . In SDD, transmissions in different directions on a given channel are separated from one another using spatial division multiplexing (SDM) . In other examples, full-duplex communication may be implemented within unpaired spectrum (e.g., within a single carrier bandwidth) , where transmissions in different directions occur within different sub-bands of the carrier bandwidth. This type of full-duplex communication may be referred to herein as sub-band full duplex (SBFD) , also known as flexible duplex.
Various aspects of the present disclosure will be described with reference to an OFDM waveform, schematically illustrated in FIG. 3. It should be understood by those of ordinary skill in the art that the various aspects of the present disclosure may be applied to an SC-FDMA waveform in substantially the same way as described herein below. That is, while some examples of the present disclosure may focus on an OFDM link for clarity, it should be understood that the same principles may be applied as well to SC-FDMA waveforms.
Referring now to FIG. 3, an expanded view of an exemplary subframe 302 is illustrated, showing an OFDM resource grid. However, as those skilled in the art will readily appreciate, the PHY transmission structure for any particular application may vary from the example described here, depending on any number of factors. Here, time is in the horizontal direction with units of OFDM symbols; and frequency is in the vertical direction with units of subcarriers of the carrier.
The resource grid 304 may be used to schematically represent time–frequency resources for a given antenna port. That is, in a multiple-input-multiple-output (MIMO) implementation with multiple antenna ports available, a corresponding multiple number of resource grids 304 may be available for communication. The resource grid 304 is divided into multiple resource elements (REs) 306. An RE, which is 1 subcarrier × 1 symbol, is the smallest discrete part of the time–frequency grid, and contains a single complex value representing data from a physical channel or signal. Depending on the modulation utilized in a particular implementation, each RE may represent one or more bits of information. In some examples, a block of REs may be referred to as a physical resource block (PRB) or more simply a resource block (RB) 308, which contains any suitable number of consecutive subcarriers in the frequency domain. In one example, an RB may include 12 subcarriers, a number independent of the numerology used. In some examples, depending on the numerology, an RB may include any suitable number of consecutive OFDM symbols in the time domain. Within the present disclosure, it is  assumed that a single RB such as the RB 308 entirely corresponds to a single direction of communication (either transmission or reception for a given device) .
A set of continuous or discontinuous resource blocks may be referred to herein as a Resource Block Group (RBG) , sub-band, or bandwidth part (BWP) . A set of sub-bands or BWPs may span the entire bandwidth. Scheduling of scheduled entities (e.g., UEs) for downlink, uplink, or sidelink transmissions typically involves scheduling one or more resource elements 306 within one or more sub-bands or bandwidth parts (BWPs) . Thus, a UE generally utilizes only a subset of the resource grid 304. In some examples, an RB may be the smallest unit of resources that can be allocated to a UE. Thus, the more RBs scheduled for a UE, and the higher the modulation scheme chosen for the air interface, the higher the data rate for the UE. The RBs may be scheduled by a scheduling entity, such as a base station (e.g., gNB, eNB, etc. ) , or may be self-scheduled by a UE implementing D2D sidelink communication.
In this illustration, the RB 308 is shown as occupying less than the entire bandwidth of the subframe 302, with some subcarriers illustrated above and below the RB 308. In a given implementation, the subframe 302 may have a bandwidth corresponding to any number of one or more RBs 308. Further, in this illustration, the RB 308 is shown as occupying less than the entire duration of the subframe 302, although this is merely one possible example.
Each 1 ms subframe 302 may consist of one or multiple adjacent slots. In the example shown in FIG. 3, one subframe 302 includes four slots 310, as an illustrative example. In some examples, a slot may be defined according to a specified number of OFDM symbols with a given cyclic prefix (CP) length. For example, a slot may include 7 or 14 OFDM symbols with a nominal CP. Additional examples may include mini-slots, sometimes referred to as shortened transmission time intervals (TTIs) , having a shorter duration (e.g., one to three OFDM symbols) . These mini-slots or shortened transmission time intervals (TTIs) may in some cases be transmitted occupying resources scheduled for ongoing slot transmissions for the same or for different UEs. Any number of resource blocks may be utilized within a subframe or slot.
An expanded view of one of the slots 310 illustrates the slot 310 including a control region 312 and a data region 314. In general, the control region 312 may carry control channels, and the data region 314 may carry data channels. Of course, a slot may contain all DL, all UL, or at least one DL portion and at least one UL portion. The structure illustrated in FIG. 3 is merely exemplary in nature, and different slot structures  may be utilized, and may include one or more of each of the control region (s) and data region (s) .
Although not illustrated in FIG. 3, the various REs 306 within a RB 308 may be scheduled to carry one or more physical channels, including control channels, shared channels, data channels, etc. Other REs 306 within the RB 308 may also carry pilots or reference signals. These pilots or reference signals may provide for a receiving device to perform channel estimation of the corresponding channel, which may enable coherent demodulation/detection of the control and/or data channels within the RB 308.
In some examples, the slot 310 may be utilized for broadcast, multicast, groupcast, or unicast communication. For example, a broadcast, multicast, or groupcast communication may refer to a point-to-multipoint transmission by one device (e.g., a base station, UE, or other similar device) to other devices. Here, a broadcast communication is delivered to all devices, whereas a multicast or groupcast communication is delivered to multiple intended recipient devices. A unicast communication may refer to a point-to-point transmission by a one device to a single other device.
In an example of cellular communication over a cellular carrier via a Uu interface, for a DL transmission, the scheduling entity (e.g., a base station) may allocate one or more REs 306 (e.g., within the control region 312) to carry DL control information including one or more DL control channels, such as a physical downlink control channel (PDCCH) , to one or more scheduled entities (e.g., UEs) . The PDCCH carries downlink control information (DCI) including but not limited to power control commands (e.g., one or more open loop power control parameters and/or one or more closed loop power control parameters) , scheduling information, a grant, and/or an assignment of REs for DL and UL transmissions. The PDCCH may further carry HARQ feedback transmissions such as an acknowledgment (ACK) or negative acknowledgment (NACK) . HARQ is a technique well-known to those of ordinary skill in the art, wherein the integrity of packet transmissions may be checked at the receiving side for accuracy, e.g., utilizing any suitable integrity checking mechanism, such as a checksum or a cyclic redundancy check (CRC) . If the integrity of the transmission is confirmed, an ACK may be transmitted, whereas if not confirmed, a NACK may be transmitted. In response to a NACK, the transmitting device may send a HARQ retransmission, which may implement chase combining, incremental redundancy, etc.
The base station may further allocate one or more REs 306 (e.g., in the control region 312 or the data region 314) to carry other DL signals, such as a demodulation  reference signal (DMRS) ; a phase-tracking reference signal (PT-RS) ; a channel state information (CSI) reference signal (CSI-RS) ; and a synchronization signal block (SSB) . SSBs may be broadcast at regular intervals based on a periodicity (e.g., 5, 10, 20, 30, 80, or 130 ms) . An SSB includes a primary synchronization signal (PSS) , a secondary synchronization signal (SSS) , and a physical broadcast control channel (PBCH) . A UE may utilize the PSS and SSS to achieve radio frame, subframe, slot, and symbol synchronization in the time domain, identify the center of the channel (system) bandwidth in the frequency domain, and identify the physical cell identity (PCI) of the cell.
The PBCH in the SSB may further include a master information block (MIB) that includes various system information, along with parameters for decoding a system information block (SIB) . The SIB may be, for example, a SystemInformationType 1 (SIB1) that may include various additional system information. The MIB and SIB1 together provide the minimum system information (SI) for initial access. Examples of system information transmitted in the MIB may include, but are not limited to, a subcarrier spacing (e.g., default downlink numerology) , system frame number, a configuration of a PDCCH control resource set (CORESET) (e.g., PDCCH CORESET0) , a cell barred indicator, a cell reselection indicator, a raster offset, and a search space for SIB1. Examples of remaining minimum system information (RMSI) transmitted in the SIB1 may include, but are not limited to, a random access search space, a paging search space, downlink configuration information, and uplink configuration information. A base station may transmit other system information (OSI) as well.
In an UL transmission, the scheduled entity (e.g., UE) may utilize one or more REs 306 to carry UL control information (UCI) including one or more UL control channels, such as a physical uplink control channel (PUCCH) , to the scheduling entity. UCI may include a variety of packet types and categories, including pilots, reference signals, and information configured to enable or assist in decoding uplink data transmissions. Examples of uplink reference signals may include a sounding reference signal (SRS) and an uplink DMRS. In some examples, the UCI may include a scheduling request (SR) , i.e., request for the scheduling entity to schedule uplink transmissions. Here, in response to the SR transmitted on the UCI, the scheduling entity may transmit downlink control information (DCI) that may schedule resources for uplink packet transmissions. UCI may also include HARQ feedback, channel state feedback (CSF) , such as a CSI report, or any other suitable UCI.
In addition to control information, one or more REs 306 (e.g., within the data region 314) may be allocated for data traffic. Such data traffic may be carried on one or more traffic channels, such as, for a DL transmission, a physical downlink shared channel (PDSCH) ; or for an UL transmission, a physical uplink shared channel (PUSCH) . In some examples, one or more REs 306 within the data region 314 may be configured to carry other signals, such as one or more SIBs and DMRSs.
In an example of sidelink communication over a sidelink carrier via a proximity service (ProSe) PC5 interface, the control region 312 of the slot 310 may include a physical sidelink control channel (PSCCH) including sidelink control information (SCI) transmitted by an initiating (transmitting) sidelink device (e.g., Tx V2X device or other Tx UE) towards a set of one or more other receiving sidelink devices (e.g., Rx V2X device or other Rx UE) . The data region 314 of the slot 310 may include a physical sidelink shared channel (PSSCH) including sidelink data traffic transmitted by the initiating (transmitting) sidelink device within resources reserved over the sidelink carrier by the transmitting sidelink device via the SCI. Other information may further be transmitted over various REs 306 within slot 310. For example, HARQ feedback information may be transmitted in a physical sidelink feedback channel (PSFCH) within the slot 310 from the receiving sidelink device to the transmitting sidelink device. In addition, one or more reference signals, such as a sidelink SSB, a sidelink CSI-RS, a sidelink SRS, and/or a sidelink positioning reference signal (PRS) may be transmitted within the slot 310.
These physical channels described above are generally multiplexed and mapped to transport channels for handling at the medium access control (MAC) layer. Transport channels carry blocks of information called transport blocks (TB) . The transport block size (TBS) , which may correspond to a number of bits of information, may be a controlled parameter, based on the modulation and coding scheme (MCS) and the number of RBs in a given transmission.
The channels or carriers illustrated in FIG. 3 are not necessarily all of the channels or carriers that may be utilized between devices, and those of ordinary skill in the art will recognize that other channels or carriers may be utilized in addition to those illustrated, such as other traffic, control, and feedback channels.
In some aspects of the disclosure, the scheduling entity and/or scheduled entity may be configured for beamforming and/or multiple-input multiple-output (MIMO) technology. FIG. 4 illustrates an example of a wireless communication system 400 supporting MIMO. In a MIMO system, a transmitter 402 includes multiple transmit  antennas 404 (e.g., N transmit antennas) and a receiver 406 includes multiple receive antennas 408 (e.g., M receive antennas) . Thus, there are N × M signal paths 410 from the transmit antennas 404 to the receive antennas 408. Each of the transmitter 402 and the receiver 406 may be implemented, for example, within a scheduling entity 108, a scheduled entity 106, or any other suitable wireless communication device.
The use of such multiple antenna technology enables the wireless communication system to exploit the spatial domain to support spatial multiplexing, beamforming, and transmit diversity. Spatial multiplexing may be used to transmit different streams of data, also referred to as layers, simultaneously on the same time-frequency resource. The data streams may be transmitted to a single UE to increase the data rate or to multiple UEs to increase the overall system capacity, the latter being referred to as multi-user MIMO (MU-MIMO) . This is achieved by spatially precoding each data stream (i.e., multiplying the data streams with different weighting and phase shifting) and then transmitting each spatially precoded stream through multiple transmit antennas on the downlink. The spatially precoded data streams arrive at the UE (s) with different spatial signatures, which enables each of the UE (s) to recover the one or more data streams destined for that UE. On the uplink, each UE transmits a spatially precoded data stream, which enables the base station to identify the source of each spatially precoded data stream.
The number of data streams or layers corresponds to the rank of the transmission. In general, the rank of the MIMO system 400 is limited by the number of transmit or receive  antennas  404 or 408, whichever is lower. In addition, the channel conditions at the UE, as well as other considerations, such as the available resources at the base station, may also affect the transmission rank. For example, the rank (and therefore, the number of data streams) assigned to a particular UE on the downlink may be determined based on the rank indicator (RI) transmitted from the UE to the base station. The RI may be determined based on the antenna configuration (e.g., the number of transmit and receive antennas) and a measured signal-to-interference-and-noise ratio (SINR) on each of the receive antennas. The RI may indicate, for example, the number of layers that may be supported under the current channel conditions. The base station may use the RI, along with resource information (e.g., the available resources and amount of data to be scheduled for the UE) , to assign a transmission rank to the UE.
In Time Division Duplex (TDD) systems, the UL and DL are reciprocal, in that each uses different time slots of the same frequency bandwidth. Therefore, in TDD systems, the base station may assign the rank for DL MIMO transmissions based on UL  SINR measurements (e.g., based on a Sounding Reference Signal (SRS) transmitted from the UE or other pilot signal) . Based on the assigned rank, the base station may then transmit CSI-RSs with separate C-RS sequences for each layer to provide for multi-layer channel estimation. From the CSI-RS, the UE may measure the channel quality across layers and resource blocks and feed back the RI and a channel quality indicator (CQI) that indicates to the base station a modulation and coding scheme (MCS) to use for transmissions to the UE for use in updating the rank and assigning REs for future downlink transmissions.
In the simplest case, as shown in FIG. 4, a rank-2 spatial multiplexing transmission on a 2x2 MIMO antenna configuration will transmit one data stream from each transmit antenna 404. Each data stream reaches each receive antenna 408 along a different signal path 410. The receiver 406 may then reconstruct the data streams using the received signals from each receive antenna 408.
Beamforming is a signal processing technique that may be used at the transmitter 402 or receiver 406 to shape or steer an antenna beam (e.g., a transmit beam or receive beam) along a spatial path between the transmitter 402 and the receiver 406. Beamforming may be achieved by combining the signals communicated via antennas 404 or 408 (e.g., antenna elements of an antenna array module) such that some of the signals experience constructive interference while others experience destructive interference. To create the desired constructive/destructive interference, the transmitter 402 or receiver 406 may apply amplitude and/or phase offsets to signals transmitted or received from each of the  antennas  404 or 408 associated with the transmitter 402 or receiver 406.
In 5G New Radio (NR) systems, particularly for FR2 or higher (millimeter wave) systems, beamformed signals may be utilized for most downlink channels, including the physical downlink control channel (PDCCH) and physical downlink shared channel (PDSCH) . In addition, broadcast control information, such as the synchronization signal block (SSB) , slot format indicator (SFI) , and paging information, may be transmitted in a beam-sweeping manner to enable all scheduled entities (UEs) in the coverage area of a transmission and reception point (TRP) (e.g., a gNB) to receive the broadcast control information. In addition, for UEs configured with beamforming antenna arrays, beamformed signals may also be utilized for uplink channels, including the physical uplink control channel (PUCCH) and physical uplink shared channel (PUSCH) . In addition, beamformed signals may further be utilized in D2D systems, such as NR sidelink (SL) or V2X, utilizing FR2.
FIG. 5 is a diagram illustrating communication between a base station 504 and a UE 502 using beamformed signals according to some aspects. The base station 504 may be any of the base stations (e.g., gNBs) or scheduling entities illustrated in FIGs. 1 and/or 2, and the UE 502 may be any of the UEs or scheduled entities illustrated in FIGs. 1 and/or 2.
The base station 504 may generally be capable of communicating with the UE 502 using one or more transmit beams, and the UE 502 may further be capable of communicating with the base station 504 using one or more receive beams. As used herein, the term transmit beam refers to a beam (e.g., BS beam) on the base station 504 that may be utilized for downlink or uplink communication with the UE 502. In addition, the term receive beam refers to a beam (e.g., UE beam) on the UE 502 that may be utilized for downlink or uplink communication with the base station 504.
In the example shown in FIG. 5, the base station 504 is configured to generate a plurality of transmit beams 506a–506h, each associated with a different spatial direction. In addition, the UE 502 is configured to generate a plurality of receive beams 508a–508e, each associated with a different spatial direction. It should be noted that while some beams are illustrated as adjacent to one another, such an arrangement may be different in different aspects. For example, transmit beams 506a–506h transmitted during a same symbol may not be adjacent to one another. In some examples, the base station 504 and UE 502 may each transmit more or less beams distributed in all directions (e.g., 360 degrees) and in three-dimensions. In addition, the transmit beams 506a–506h may include beams of varying beam width. For example, the base station 504 may transmit certain signals (e.g., SSBs) on wider beams and other signals (e.g., CSI-RSs) on narrower beams.
The base station 504 and UE 502 may select one or more transmit beams 506a–506h on the base station 504 and one or more receive beams 508a–508e on the UE 602 for communication of uplink and downlink signals therebetween using a beam management procedure. In one example, during initial cell acquisition, the UE 502 may perform a P1 beam management procedure to scan the plurality of transmit beams 506a–506h on the plurality of receive beams 508a–508e to select a beam pair link (e.g., one of the transmit beams 506a–506h and one of the receive beams 508a–508e) for a physical random access channel (PRACH) procedure for initial access to the cell. For example, periodic SSB beam sweeping may be implemented on the base station 504 at certain intervals (e.g., based on the SSB periodicity) . Thus, the base station 504 may be configured to sweep or transmit an SSB on each of a plurality of wider transmit beams  506a–506h during the beam sweeping interval. The UE may measure the reference signal received power (RSRP) of each of the SSB transmit beams on each of the receive beams of the UE and select the transmit and receive beams based on the measured RSRP. In an example, the selected receive beam may be the receive beam on which the highest RSRP is measured and the selected transmit beam may have the highest RSRP as measured on the selected receive beam.
After completing the PRACH procedure, the base station 504 and UE 502 may perform a P2 beam management procedure for beam refinement at the base station 504. For example, the base station 504 may be configured to sweep or transmit a CSI-RS on each of a plurality of narrower transmit beams 506a–506h. Each of the narrower CSI-RS beams may be a sub-beam of the selected SSB transmit beam (e.g., within the spatial direction of the SSB transmit beam) . Transmission of the CSI-RS transmit beams may occur periodically (e.g., as configured via radio resource control (RRC) signaling by the gNB) , semi-persistently (e.g., as configured via RRC signaling and activated/deactivated via medium access control–control element (MAC-CE) signaling by the gNB) , or aperiodically (e.g., as triggered by the gNB via downlink control information (DCI) ) . The UE 502 is configured to scan the plurality of CSI-RS transmit beams 506a–506h on the plurality of receive beams 508a–508e. The UE 502 then performs beam measurements (e.g., RSRP, SINR, etc. ) of the received CSI-RSs on each of the receive beams 508a–508e to determine the respective beam quality of each of the CSI-RS transmit beams 506a–506h as measured on each of the receive beams 508a–508e.
The UE 502 can then generate and transmit a Layer 1 (L1) measurement report, including the respective beam index (e.g., CSI-RS resource indicator (CRI) ) and beam measurement (e.g., RSRP or SINR) of one or more of the CSI-RS transmit beams 506a–506h on one or more of the receive beams 508a–508e to the base station 504. The base station 504 may then select one or more CSI-RS transmit beams on which to communicate downlink and/or uplink control and/or data with the UE 502. In some examples, the selected CSI-RS transmit beam (s) have the highest RSRP from the L1 measurement report. Transmission of the L1 measurement report may occur periodically (e.g., as configured via RRC signaling by the gNB) , semi-persistently (e.g., as configured via RRC signaling and activated/deactivated via MAC-CE signaling by the gNB) , or aperiodically (e.g., as triggered by the gNB via DCI) .
The UE 502 may further select a corresponding receive beam on the UE 502 for each selected serving CSI-RS transmit beam to form a respective beam pair link (BPL)  for each selected serving CSI-RS transmit beam. For example, the UE 502 can utilize the beam measurements obtained during the P2 procedure or perform a P3 beam management procedure to obtain new beam measurements for the selected CSI-RS transmit beams to select the corresponding receive beam for each selected transmit beam. In some examples, the selected receive beam to pair with a particular CSI-RS transmit beam may be the receive beam on which the highest RSRP for the particular CSI-RS transmit beam is measured.
In some examples, in addition to performing CSI-RS beam measurements, the base station 504 may configure the UE 502 to perform SSB beam measurements and provide an L1 measurement report containing beam measurements of SSB transmit beams 506a–506h. For example, the base station 504 may configure the UE 502 to perform SSB beam measurements and/or CSI-RS beam measurements for beam failure detection (BRD) , beam failure recovery (BFR) , cell reselection, beam tracking (e.g., for a mobile UE 502 and/or base station 504) , or other beam optimization purpose.
In addition, when the channel is reciprocal, the transmit and receive beams may be selected using an uplink beam management scheme. In an example, the UE 502 may be configured to sweep or transmit on each of a plurality of receive beams 508a–508e. For example, the UE 502 may transmit an SRS on each UL beam in the different beam directions. In addition, the base station 504 may be configured to receive the uplink beam reference signals on a plurality of transmit beams 506a–506h. The base station 504 then performs beam measurements (e.g., RSRP, SINR, etc. ) of the beam reference signals on each of the transmit beams 506a–506h to determine the respective beam quality of each of the receive beams 508a–508e as measured on each of the transmit beams 506a–506h.
The base station 504 may then select one or more transmit beams on which to communicate downlink and/or uplink control and/or data with the UE 502. In some examples, the selected transmit beam (s) have the highest RSRP. The UE 502 may then select a corresponding receive beam for each selected serving transmit beam to form a respective beam pair link (BPL) for each selected serving transmit beam, using, for example, a P3 beam management procedure, as described above.
In one example, a single CSI-RS transmit beam (e.g., BS beam 506d) on the base station 504 and a single receive beam (e.g., UE beam 508c) on the UE may form a single BPL used for communication between the base station 504 and the UE 502. In another example, multiple CSI-RS transmit beams (e.g.,  beams  506c, 506d, and 506e) on the base station 504 and a single receive beam (e.g., beam 508c) on the UE 502 may form  respective BPLs used for communication between the base station 504 and the UE 502. In another example, multiple CSI-RS transmit beams (e.g.,  beams  506c, 506d, and 506e) on the base station 504 and multiple receive beams (e.g., beams 508c and 508d) on the UE 502 may form multiple BPLs used for communication between the base station 504 and the UE 502. In this example, a first BPL may include transmit beam 506c and receive beam 508c, a second BPL may include transmit beam 508d and receive beam 508c, and a third BPL may include transmit beam 508e and receive beam 508d.
FIG. 6 is a diagram conceptually illustrating a multi-panel UE (MP-UE) 602 according to some aspects. The MP-UE 602 can include multiple panels (e.g.,  panels  604, 606, 608, and 610) of antennas. The MP-UE 602 may include any wireless device with multiple antenna groups configured into one or more panels. The multiple panels may provide flexibility in selection of antennas for wireless communications. For example, the MP-UE 602 can activate or deactivate one or more panels in order to improve performance and/or reduce battery consumption. In one aspect, each panel can transmit and/or receive one or more beams. In some aspects, the MP-UE 602 can transmit or receive multiple beams using one or more panels. By controlling the activation and deactivation of the panels, the MP-UE 602 can control various operational aspects, for example, maximum permissible exposure (MPE) , power consumption, UL interference management, etc. In some aspects, the panel selection for UL transmission can be initiated by the UE and/or a scheduling entity (e.g., gNB or eNB) . In some aspects, the MP-UE 602 can use different sets of panels for DL and UL communications. In one example, the MP-UE 602 can use  panels  604 and 608 for DL communication, and use panel 604 for UL communication.
Beam Indication with Panel Indication
In some aspects, a scheduling entity (e.g., gNB or base station) can use a beam indication mechanism to indicate a UL or Tx beam to a UE for later UL transmission. For example, the UL transmission may include UL reference signal (RS) transmission for UL beam management and/or channel state information (CSI) acquisition, UL control channel transmission (e.g., PUCCH) , and UL data channel transmission (e.g., PUSCH) . In some aspects, referring to FIG. 7, a scheduling entity 702 can transmit a beam indication 706 to a UE 704 via a transmission configuration indicator (TCI) state transmission 706. In some aspects, the scheduling entity can transmit the TCI state dynamically in a DCI message and/or MAC CE. The TCI state includes or maps to  configurations such as quasi co-location (QCL) relationships between one or more reference signals (e.g., SSB, CSI-RS, and SRS) and either DL or UL transmissions. For example, the scheduling entity 702 can transmit the TCI state 708 in a DCI message (e.g., in a TCI field of the DCI) . The TCI state may include a joint DL/UL TCI, an UL common beam TCI, or spatial relation information for an UL transmission. For example, the TCI state can include one or more reference signal IDs, each identifying an SSB resource, a CSI-RS resource, or an SRS resource. Each resource (SSB, CSI-RS, or SRS resource) indicates the particular beam, frequency resource, and OFDM symbol on which the corresponding reference signal is communicated. Thus, the reference signal ID may be utilized to identify the beam to use for an UL transmission based on the QCL relationship with an associated reference signal (e.g., SSB, CSI-RS, or SRS) indicated in the TCI state. For beam indication of an UL transmission when the UE is configured for UL beam reporting, the TCI state may further indicate an uplink panel ID for each configured DL reference signal resource (e.g., SSB resource and/or CSI-RS resource) .
An exemplary TCI state 708 is illustrated in FIG. 7. In this example, the indicated TCI state 708 includes panel information (e.g., panel ID 710) for the UL transmission 712. The panel information indicates one or more panels for performing the UL transmission. The scheduling entity can indicate the panel information per beam indication. In one aspect, the panel information may include a panel list that includes one or more panel IDs corresponding to the antenna panels (e.g.,  panels  604, 606, 608, and 610) of the UE. In one aspect, the panel information may include a bitmap with each bit corresponding to a panel of the UE. For example, a bit of 1 can indicate a panel used for UL transmission, and a bit of 0 can indicate a panel not used for UL transmission. In one aspect, the panel information may include a panel set ID among a plurality of panel set IDs. Each panel set ID corresponds to a panel set that can include one or more panels. For example, a panel set ID 0 can indicate a first panel set that includes  panels  604 and 608, and a panel set ID 1 can indicate a second panel set that includes a panel 604 only.
FIG. 8 is a diagram illustrating a procedure for communicating a beam indication between a UE 802 and a scheduling entity 804 (BS) in accordance with some aspects. The UE 802 and the scheduling entity 804 can be any of the UEs and scheduled entities described in FIGs. 1–2 and 4–7. In step 806, the UE 802 and the scheduling entity 804 can establish a connection over a trained beam based on a beam training operation (e.g., synchronization, random access, and RRC connection establishment) . In step 808, the UE 802 can provide UE capability information to the scheduling entity 804. The UE  capability information can provide various information including a number of UE antennas and/or antenna panels, beamforming information, and an UL-DL beam correspondence state.
In step 810, the scheduling entity 804 can transmit a beam indication to the UE 802. For example, the beam indication may include a TCI state similar to the TCI state 708 described above in relation to FIG. 7. The beam indication can include reference signal information corresponding to one or more beams and information for identifying one or more panels for UL transmission on the indicated beam (s) . The scheduling entity 804 can select the one or more beams as described above in FIG. 5. In some aspects, the beam indication can include information on reference signal resources (e.g., SSB index, CSI-RS index, and SRS) that are mapped to a corresponding beam indication state.
At 811, the UE 802 can select one or more beams indicated by the reference signal information of the beam indication. In step 812, the UE 802 can perform an UL transmission based on the beam indication. For example, the UL transmission may be an PUCCH or PUSCH. In some aspects, the UE can select the UL panel (s) based on the panel ID 710 associated with the reference signal information. For example, the UE 802 can select one or more panels (e.g.,  panels  604, 606, 608, and 610) for the UL transmission.
Pathloss Reference Signal Indication with Panel Indication
In some aspects, a scheduled entity (e.g., UE) can select the UL transmission power based, at least in part, on the pathloss for the channel between the UE and the scheduling entity. Examples of an UL transmission include a sounding reference signal (SRS) transmission, a physical uplink control channel (PUCCH) transmission, and/or a physical uplink shared channel (PUSCH) transmission. The pathloss of a wireless channel can be determined or estimated based on a downlink (DL) pathloss reference signal (PL-RS) transmitted by the scheduling entity. Examples of PL-RS include a synchronization signal block (SSB) and a CSI-RS. In some aspects, the scheduling entity can configure the DL PL-RS via, for example, RRC signaling, MAC-CE, and/or DCI. When the UE has multiple antenna panels, the UE can generate different pathloss measurements from different panels that can impact the power control of UL transmission. In some aspects, the PL-RS may be configured jointly with a TCI state. For example, the PL-RS may be configured in a TCI state or associated with a TCI state, which is applicable to uplink transmissions.
FIG. 9 illustrates an example of a procedure for communicating PL-RS with panel information between a UE 902 and a scheduling entity 904 according to some aspects. The UE 902 and the scheduling entity 904 (BS) can be any of the UEs and scheduling entities described above in FIGs. 1–2 and 4–7. Initially, the UE 902 can transmit UE capability information 906 to the scheduling entity 904. In some aspects, the UE capability information 906 can indicate the number of antenna panels (e.g.,  panels  604, 606, 608, and 610 of FIG. 6) at the UE that can be used for wireless communication and pathloss measurements (e.g., PL measurements) . In some aspects, the UE can transmit the UE capability information upon initial access (e.g., in an RRC configuration/reconfiguration signal) .
For pathloss measurement, the scheduling entity 904 (e.g., gNB) can transmit a pathloss reference signal (PL-RS) indication 908 to the UE 902. The PL-RS indication 908 can indicate or can be associated with a periodic downlink reference signal (e.g., SSB or CSI-RS) for measuring the pathloss between scheduling entity and the UE. In some aspects, the scheduling entity 904 can transmit in a TCI state including the PL-RS indication 908. In some aspects, the PL-RS indication 908 can include a pathlossReferenceRS information element (IE) . The scheduling entity 904 can transmit the pathlossReferenceRS IE to the UE 902 using, for example, RRC, MAC-CE, and/or DCI. An example of the pathlossReferenceRS IE 1000 is shown in FIG. 10 for illustration purposes.
In some aspects, the pathlossReferenceRS IE 1000 can include panel information 1002 (shown as panel-Id in FIG. 10) for indicating the panel (s) for pathloss measurements using the indicated PL-RS (e.g., SSB and CSI-RS) . In one aspect, the panel information 1002 may include a panel list that identifies one or more panels (e.g.,  panels  604, 606, 608, and 610) for pathloss (PL) measurement. In one aspect, the panel information may include a bitmap with each bit corresponding or mapped to a panel. For example, a bit of 1 can indicate a panel used for PL measurement, and a bit of 0 can indicate a panel not used for PL measurement. In one aspect, the panel information may include a panel set ID among a plurality of panel set IDs. Each panel set ID can identify a panel set that can include one or more panels for PL measurement. Different panel set IDs can indicate different sets of panels. For example, the panel set ID 0 can indicate a first panel set that includes  panels  604 and 608, and the panel set ID 1 can indicate a second panel set that includes a panel 604 only. In some aspects, the panel set ID may be implicitly associated  with another ID, such as SRS resource set ID, control resource set (CORESET) pool index, close loop index for power control command, TCI state group ID, TCI list ID, etc.
Then, the scheduling entity 904 can transmit one or more pathloss reference signals (PL-RS) 910 to the UE 902 based on the PL-RS indication 908 (e.g., pathlossReferenceRS) . Some examples of PL RS include, but are not limited to, periodic SSB and CSI-RS. The UE 902 can perform, based at least in part on the received PL-RS indication 908, a channel measurement procedure 912 using the PL-RS 910 transmitted by the scheduling entity 904. In some aspects, the channel measurement procedure 912 may include pathloss measurement or estimation for the channel between the UE 902 and the scheduling entity 904. In some aspects, the UE can perform the channel measurement procedure using one or more panels indicated by the PL-RS indication. In some aspects, the UE can measure the reference signal received power (RSRP) , reference signal received quality (RSRQ) , received signal strength indicator (RSSI) , and/or signal-to-noise and interference ratio (SINR) of the PL-RS 910.
After the pathloss measurement, the UE 902 can perform an UL transmission (e.g., PUCCH or PUSCH) to the scheduling entity 904 using transmission power determined based on the channel measurements. In some aspects, the UE 902 can determine or select the UL transmission power based on the pathloss estimation using one or more panels that are indicated by the PL-RS indication.
FIG. 11 is a flow chart illustrating a procedure 1100 for performing PL measurement at a UE based on a PL-RS indication 908 with panel information according to some aspects. The procedure 1100 can be performed by any of UEs described above in relation to FIGs. 1–2 and 4–7. In one example, the UE 902 (e.g., a MP-UE) can perform the procedure 1100 as part of a channel measurement procedure as described above in relation to FIG. 9.
At decision block 1102, the UE can determine whether or not a PL-RS indication (e.g., PL-RS indication 908) includes panel information that indicates one or more panels for pathloss measurements. In some aspects, the PL-RS indication can be a pathlossReferenceRS IE 1000 that can include panel information (e.g., Panel Id) . At block 1104, if the PL-RS indication does not carry panel information or indicate any panel for pathloss measurement, the UE can measure the pathloss of the channel using any panel (s) (e.g.,  panels  604, 606, 608, and/or 610) . At block 1106, if the PL-RS indication provides panel information or indicates one or more panels for pathloss measurement, the UE can measure the pathloss using only the indicated panel (s) . In some aspects, the panel  information may indicate a panel set including one or more panels. In that case, the UE can measure the pathloss measurement using any panel within the panel set.
In some aspects, when a PL-RS indication provides different panel IDs, the UE can count the PL-RS as one active PL-RS for PL measurement. For example, for a first PL-RS with a panel ID 0, and a second PL-RS with a panel 1, when both the first PL-RS and the second PL-RS are configured with the same CSI-RS for PL measurement, the UE may count the first and second PL-RSs as one active PL-RS. Alternatively, the UE can count the PL-RS as multiple active PL-RSs equal to the number of panels associated with the PL-RS for PL measurements. For example, for a first PL-RS with a panel ID 0, and a second PL-RS with a panel ID 1, when both the first PL-RS and the second PL-RS are configured with the same CSI-RS for PL measurement, the UE may count the first and second PL-RSs as two active PL-RS.
FIG. 12 is a block diagram illustrating an example of a hardware implementation for a scheduling entity 1200 employing a processing system 1214. For example, the scheduling entity 1200 may be a scheduling entity, base station, gNB, or eNB as illustrated in any one or more of FIGs. 1, 2, 4, 5, and 7–9.
The scheduling entity 1200 may be implemented with a processing system 1214 that includes one or more processors 1204. Examples of processors 1204 include microprocessors, microcontrollers, digital signal processors (DSPs) , field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure. In various examples, the scheduling entity 1200 may be configured to perform any one or more of the functions and procedures described herein. That is, the processor 1204, as utilized in a scheduling entity 1200, may be used to implement any one or more of the processes and procedures described and illustrated in FIGs. 5, 7–10, 13, and 14.
In this example, the processing system 1214 may be implemented with a bus architecture, represented generally by the bus 1202. The bus 1202 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 1214 and the overall design constraints. The bus 1202 communicatively couples together various circuits including one or more processors (represented generally by the processor 1204) , a memory 1205, and computer-readable media (represented generally by the computer-readable medium 1206) . The bus 1202 may also link various other circuits such as timing sources, peripherals, voltage regulators, and  power management circuits, which are well known in the art, and therefore, will not be described any further. A bus interface 1208 provides an interface between the bus 1202 and a transceiver 1210 connected with one or more antenna panels 1211. Each panel 1211 may include one or more antennas or arrays for beamforming. The transceiver 1210 and the antenna panels provide a communication interface or means for communicating with various other apparatus over a transmission medium. Depending upon the nature of the apparatus, a user interface 1212 (e.g., keypad, display, speaker, microphone, joystick, touchscreen) may also be provided. Of course, such a user interface 1212 is optional, and may be omitted in some examples, such as a base station.
The processor 1204 is responsible for managing the bus 1202 and general processing, including the execution of software stored on a computer-readable medium 1206. The software, when executed by the processor 1204, causes the processing system 1214 to perform the various functions described herein for any particular apparatus. The computer-readable medium 1206 and the memory 1205 may also be used for storing data that is manipulated by the processor 1204 when executing software.
In some aspects of the disclosure, the processor 1204 may include circuitry configured for various functions, including, for example, wireless communication using multiple antenna panels. For example, the circuitry may be configured to implement one or more of the functions described in relation to FIGs. 5, 7–10, 13, and 14.
In some aspects of the disclosure, the processor 1204 may include communication and processing circuitry 1240 configured for various functions, including, for example, communicating with a network core (e.g., a 5G core network) , scheduled entities (e.g., UE) , or any other entity, such as, for example, local infrastructure or an entity communicating with the scheduling entity 1200 via the Internet, such as a network provider. In some examples, the communication and processing circuitry 1240 may include one or more hardware components that provide the physical structure that performs processes related to wireless communication (e.g., signal reception and/or signal transmission) and signal processing (e.g., processing a received signal and/or processing a signal for transmission) . In addition, the communication and processing circuitry 1240 may be configured to receive and process uplink traffic and uplink control messages (e.g., similar to uplink traffic 116 and uplink control 118 of FIG. 1) , transmit and process downlink traffic and downlink control messages (e.g., similar to downlink traffic 112 and downlink control 114) . The communication and processing circuitry 1240 may further be  configured to execute communication and processing software 1250 stored on the computer-readable medium 1206 to implement one or more functions described herein.
In some aspects of the disclosure, the processor 1204 may include beam management circuitry 1242 configured for various functions for beamforming or wireless communication using beamforming described herein. In some examples, the beam management circuitry 1242 may include one or more hardware components that provide the physical structure that performs processes related to beamforming described herein. In some aspects, the beam management circuitry 1242 can be configured to process and provide a beam indication to a scheduled entity (e.g., UE) . The beam indication can include reference signal information (e.g., SSB, CSI-RS, SRS) for a beam and panel information. The panel information can indicate one or more antenna panels of the UE for an uplink transmission (e.g., PUCCH or PUSCH) . The beam management circuitry 1242 may further be configured to execute beam management software 1252 stored on the computer-readable medium 1206 to implement one or more functions described herein.
In some aspects of the disclosure, the processor 1204 may include pathloss determination circuitry 1244 configured for various functions for pathloss determination between the scheduling entity and a scheduled entity (e.g., UE) described herein. In some examples, the pathloss determination circuitry 1244 may include one or more hardware components that provide the physical structure that performs processes related to pathloss determination described herein. In some aspects, the pathloss determination circuitry 1244 can be configured to prepare, process, or provide a pathloss reference signal (PL-RS) indication to the scheduled entity. The PL-RS indication includes reference signal information and panel information for performing a pathloss measurement as described herein. The pathloss determination circuitry 1244 may further be configured to execute pathloss determination software 1254 stored on the computer-readable medium 1206 to implement one or more functions described herein.
One or more processors 1204 in the processing system may execute software. Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. The software may reside on a computer-readable medium 1206. The computer-readable  medium 1206 may be a non-transitory computer-readable medium. A non-transitory computer-readable medium includes, by way of example, a magnetic storage device (e.g., hard disk, floppy disk, magnetic strip) , an optical disk (e.g., a compact disc (CD) or a digital versatile disc (DVD) ) , a smart card, a flash memory device (e.g., a card, a stick, or a key drive) , a random access memory (RAM) , a read only memory (ROM) , a programmable ROM (PROM) , an erasable PROM (EPROM) , an electrically erasable PROM (EEPROM) , a register, a removable disk, and any other suitable medium for storing software and/or instructions that may be accessed and read by a computer. The computer-readable medium 1206 may reside in the processing system 1214, external to the processing system 1214, or distributed across multiple entities including the processing system 1214. The computer-readable medium 1206 may be embodied in a computer program product. By way of example, a computer program product may include a computer-readable medium in packaging materials. Those skilled in the art will recognize how best to implement the described functionality presented throughout this disclosure depending on the particular application and the overall design constraints imposed on the overall system.
FIG. 13 is a flow chart illustrating an exemplary process 1300 for wireless communication using uplink panel indication in accordance with some aspects of the present disclosure. As described below, some or all illustrated features may be omitted in a particular implementation within the scope of the present disclosure, and some illustrated features may not be required for all implementations. In some examples, the process 1300 may be carried out by the scheduling entity 1200 illustrated in FIG. 12. In some examples, the process 1300 may be carried out by any suitable apparatus or means for carrying out the functions or algorithm described below.
At block 1302, the scheduling entity can establish a connection with a scheduled entity (e.g., scheduled entity 1500) equipped with a plurality of panels (e.g., panels 1511) . Each panel can include one or more antennas configured for wireless communication using beamforming. In one aspect, the communication and processing circuitry 1240 can provide a means for establishing the connection with the scheduled entity. In some examples, the connection includes one or more beams forming one or more BPLs for uplink and/or downlink communication between the scheduled entity and the scheduling entity.
At block 1304, the scheduling entity can transmit a beam indication to the scheduled entity. In one aspect, the beam management circuitry 1242 can provide a means  for transmitting the beam indication to the scheduled entity. The beam indication can include reference signal information and panel information for indicating one or more of the plurality of panels for a beam or UL transmission. In one aspect, the beam indication include reference signal information for identifying a beam for the UL transmission. In one example, the reference signal information includes SSB information, CSI-RS information, and/or SRS information. The panel information can indicate one or more panels for an uplink transmission (e.g., PUSCH, PUCCH) from the scheduled entity. In some aspects, the beam indication includes a TCI state that provides reference signal information (e.g., SSB, CSI-RS, and SRS) for identifying the beam and panel information for indicating the panel (s) used for the UL transmission as described herein.
At block 1306, the scheduling entity can receive an uplink transmission on a beam from one or more of the plurality of panels of the scheduled entity according to the panel information. In one aspect, the communication and processing circuitry 1240 can provide a means for receiving the uplink transmission from the scheduled entity. In some aspects, the uplink transmission may carry an uplink beam report or metrics associated with reference signals.
FIG. 14 is a flow chart illustrating another exemplary process 1400 for wireless communication using uplink panel indication in accordance with some aspects of the present disclosure. As described below, some or all illustrated features may be omitted in a particular implementation within the scope of the present disclosure, and some illustrated features may not be required for all implementations. In some examples, the process 1400 may be carried out by the scheduling entity 1200 illustrated in FIG. 12. In some examples, the process 1400 may be carried out by any suitable apparatus or means for carrying out the functions or algorithm described below.
At block 1402, the scheduling entity can establish a connection with a scheduled entity (e.g., scheduled entity 1500) equipped with a plurality of panels (e.g., panels 1511) . Each panel can include one or more antennas configured for wireless communication using beamforming. In one aspect, the communication and processing circuitry 1240 can provide a means for establishing the connection with the scheduled entity. In some examples, the connection includes one or more beams forming one or more BPLs for uplink and/or downlink communication between the scheduled entity and the scheduling entity.
At block 1404, the scheduling entity can transmit a pathloss reference signal indication to the scheduled entity. In one aspect, the pathloss determination circuitry 1244  can provide a means for transmitting the pathloss reference signal indication to the scheduled entity. The pathloss reference signal indication can include reference signal information and panel information for performing a pathloss measurement. In one example, the reference signal information includes SSB information and/or CSI-RS information. The panel information can indicate one or more panels for performing a pathloss measurement at the scheduled entity. In some aspects, the pathloss reference signal indication includes a pathlossReferenceRS information element that provides reference signal information (e.g., SSB, CSI-RS) and panel information for the pathloss measurement as described herein.
At block 1406, the scheduling entity can receive an uplink transmission on a beam from one or more of the plurality of panels of the scheduled entity. In one aspect, the communication and processing circuitry 1240 can provide a means for receiving the uplink transmission from the scheduled entity. In some aspects, the uplink transmission may have a power based on the pathloss measurement that is measured by the scheduled entity using the indicated panel (s) .
FIG. 15 is a conceptual diagram illustrating an example of a hardware implementation for an exemplary scheduled entity 1500 employing a processing system 1514. In accordance with various aspects of the disclosure, an element, or any portion of an element, or any combination of elements may be implemented with a processing system 1514 that includes one or more processors 1504. For example, the scheduled entity 1500 may be a user equipment (UE) as illustrated in any one or more of FIGs. 1, 2, 4, 5, 6, and 7–9.
The processing system 1514 may be substantially the same as the processing system 1214 illustrated in FIG. 12, including a bus interface 1508, a bus 1502, memory 1505, a processor 1504, and a computer-readable medium 1506. Furthermore, the scheduled entity 1500 may include a user interface 1512 and a transceiver 1510 substantially similar to those described above in FIG. 12. The transceiver 1510 is connected with one or more antenna panels 1511. Each antenna panel can include one or more antennas or arrays for beamforming. That is, the processor 1504, as utilized in a scheduled entity 1500, may be used to implement any one or more of the processes described and illustrated in FIGs. 16, 17.
In some aspects of the disclosure, the processor 1504 may include circuitry configured for various functions, including, for example, wireless communication using  multiple antenna panels. For example, the circuitry may be configured to implement one or more of the functions described in relation to FIGs. 5, 7–11, 16, and 17.
In some aspects of the disclosure, the processor 1504 may include communication and processing circuitry 1540 configured for various functions, including, for example, communicating with scheduling entities or any other entity, such as, for example, local infrastructure or an entity communicating with the scheduling entity 1200. In some examples, the communication and processing circuitry 1540 may include one or more hardware components that provide the physical structure that performs processes related to wireless communication (e.g., signal reception and/or signal transmission) and signal processing (e.g., processing a received signal and/or processing a signal for transmission) . In addition, the communication and processing circuitry 1540 may be configured to transmit and process uplink traffic and uplink control messages (e.g., similar to uplink traffic 116 and uplink control 118 of FIG. 1) , receive and process downlink traffic and downlink control messages (e.g., similar to downlink traffic 112 and downlink control 114) . The communication and processing circuitry 1540 may further be configured to execute communication and processing software 1550 stored on the computer-readable medium 1506 to implement one or more functions described herein.
In some aspects of the disclosure, the processor 1504 may include beam management circuitry 1542 configured for various functions for beamforming or wireless communication using beamforming described herein. In some examples, the beam management circuitry 1542 may include one or more hardware components that provide the physical structure that performs processes related to beamforming described herein. In some aspects, the beam management circuitry 1542 can be configured to process and receive a beam indication from a scheduling entity (e.g., gNB) . The beam indication can include reference signal information (e.g., SSB, CSI-RS, SRS) for a beam and panel information. The panel information can indicate one or more antenna panels of the scheduled entity for an uplink transmission (e.g., UL beam reporting) or beam. The beam management circuitry 1542 may further be configured to execute beam management software 1552 stored on the computer-readable medium 1506 to implement one or more functions described herein.
In some aspects of the disclosure, the processor 1504 may include pathloss determination circuitry 1544 configured for various functions for pathloss determination between the scheduled entity and a scheduling entity (e.g., gNB) described herein. In some examples, the pathloss determination circuitry 1544 may include one or more  hardware components that provide the physical structure that performs processes related to pathloss determination described herein. In some aspects, the pathloss determination circuitry 1544 can be configured to receive and process a pathloss reference signal (PL-RS) indication from the scheduling entity. The PL-RS indication includes reference signal information and panel information for performing pathloss measurement as described herein. The pathloss determination circuitry 1544 may further be configured to execute pathloss determination software 1554 stored on the computer-readable medium 1506 to implement one or more functions described herein.
FIG. 16 is a flow chart illustrating an exemplary process 1600 for wireless communication using uplink panel indication in accordance with some aspects of the present disclosure. As described below, some or all illustrated features may be omitted in a particular implementation within the scope of the present disclosure, and some illustrated features may not be required for all implementations. In some examples, the process 1600 may be carried out by the scheduled entity 1500 illustrated in FIG. 15. In some examples, the process 1600 may be carried out by any suitable apparatus (e.g., UE) or means for carrying out the functions or algorithm described below.
At block 1602, the scheduled entity can establish a connection with a scheduling entity (e.g., scheduling entity 1200) using a plurality of panels. Each panel can include one or more antennas configured for wireless communication using beamforming. In one aspect, the communication and processing circuitry 1540 can provide a means for establishing the connection with the scheduling entity using the antenna panels 1511. In some examples, the connection includes one or more beams forming one or more BPLs for uplink and/or downlink communication between the scheduled entity and the scheduling entity.
At block 1604, the scheduled entity can receive a beam indication from the scheduling entity. The beam indication can include reference signal information and panel information. In one aspect, the communication and processing circuitry 1540 can provide a means for receiving the beam indication from the scheduling entity. In one example, the beam indication may include reference signal information that can identify one or more beams. In one example, the reference signal information includes SSB information, CSI-RS information, and/or SRS information. The panel information can indicate one or more panels for an uplink transmission (e.g., PUSCH, PUCCH) from the scheduled entity. In some aspects, the beam indication includes a TCI state that provides reference signal  information (e.g., SSB index, CSI-RS index, and SRS) and panel information for the UL transmission as described herein.
At block 1606, the scheduled entity can identify a beam based on the beam indication. In one aspect, the beam management circuitry 1542 can provide a means for identifying the beam based on, for example, SSB information and/or CSI-RS information provided by the beam indication.
At block 1608, the scheduled entity can transmit an uplink transmission on the beam using one or more of the plurality of panels based on the panel information. In one aspect, the communication and processing circuitry 1540 can provide a means for transmitting the uplink transmission (e.g., PUCCH and/or PUSCH) to the scheduling entity.
FIG. 17 is a flow chart illustrating an exemplary process 1700 for wireless communication using uplink panel indication in accordance with some aspects of the present disclosure. As described below, some or all illustrated features may be omitted in a particular implementation within the scope of the present disclosure, and some illustrated features may not be required for all implementations. In some examples, the process 1700 may be carried out by the scheduled entity 1500 illustrated in FIG. 15. In some examples, the process 1700 may be carried out by any suitable apparatus (e.g., UE) or means for carrying out the functions or algorithm described below.
At block 1702, the scheduled entity can establish a connection with a scheduling entity (e.g., scheduling entity 1200) using a plurality of panels. Each panel can include one or more antennas configured for wireless communication using beamforming. In one aspect, the communication and processing circuitry 1540 can provide a means for establishing the connection with the scheduling entity using the antenna panels 1511. In some examples, the connection includes one or more beams forming one or more BPLs for uplink and/or downlink communication between the scheduled entity and the scheduling entity.
At block 1704, the scheduled entity can receive a pathloss reference signal (PL-RS) indication from the scheduling entity. The PL-RS indication can include reference signal information and panel information. In one aspect, the communication and processing circuitry 1540 can provide a means for receiving the PL-RS indication from the scheduling entity. In one example, the reference signal information includes SSB information and/or CSI-RS information. The panel information can indicate one or more panels (e.g.,  panels  604, 606, 608, and 610) for pathloss measurements at the scheduled  entity. In one example, the scheduled entity can receive the PL-RS indication in a pathlossReferenceRS information element.
At block 1706, the scheduled entity can perform a pathloss measurement based on the reference signal information and the panel information. In one aspect, the pathloss determination circuitry 1544 can provide a means for performing a pathloss measurement based on, for example, SSB information and/or CSI-RS information provided by the PL-RS indication.
At block 1708, the scheduled entity can transmit an uplink transmission based on the pathloss measurement. In one aspect, the communication and processing circuitry 1540 can provide a means for performing the uplink transmission (e.g., PUSCH or PUCCH) to the scheduling entity.
Several aspects of a wireless communication network have been presented with reference to an exemplary implementation. As those skilled in the art will readily appreciate, various aspects described throughout this disclosure may be extended to other telecommunication systems, network architectures and communication standards.
In a first aspect, a user equipment (UE) includes: a transceiver for wireless communication; a plurality of panels, each panel including one or more antennas configured for wireless communication; a memory; and a processor coupled to the transceiver, the plurality of panels, and the memory. The processor and the memory are configured to: establish a connection with a scheduling entity using the plurality of panels; receive a beam indication from the scheduling entity, wherein the beam indication includes reference signal information and panel information; identify a beam based on the beam indication; and perform an uplink transmission on the beam using one or more of the plurality of panels based on the panel information.
In a second aspect, alone or in combination with the first aspect, wherein the beam indication includes a transmission configuration indicator (TCI) state that includes the reference signal information and the panel information.
In a third aspect, alone or in combination with any of the first to second aspects, wherein the panel information includes a panel list including one or more panel IDs respectively corresponding to the one or more of the plurality of panels used for the uplink transmission.
In a fourth aspect, alone or in combination with any of the first to second aspects, wherein the panel information includes a bitmap, each bit of the bitmap corresponding to one of the plurality of panels used for the uplink transmission.
In a fifth aspect, alone or in combination with any of the first to second aspects, wherein the panel information includes a panel set ID identifying a panel set among a plurality of panel sets, each panel set including one or more of the plurality of panels.
In a sixth aspect, alone or in combination with any of the first to fifth aspects, wherein the reference signal information includes at least one of synchronization signal block (SSB) resource index or channel state information reference signal (CSI-RS) resource index, for identifying the beam.
In a seventh aspect, alone or in combination with any of the first to sixth aspects, wherein the uplink transmission includes at least one of a physical uplink control channel (PUCCH) or physical uplink shared channel (PUSCH) .
In an eighth aspect, a user equipment (UE) includes: a transceiver for wireless communication; a plurality of panels, each panel including one or more antennas configured for wireless communication; a memory; and a processor coupled to the transceiver, the plurality of panels, and the memory, wherein the processor and the memory are configured to: establish a connection with a scheduling entity using the plurality of panels; receive a pathloss reference signal (PL-RS) indication from the scheduling entity, wherein the PL-RS indication includes reference signal information and panel information; perform a pathloss measurement based on the reference signal information and the panel information; and perform an uplink transmission based on the pathloss measurement.
In a ninth aspect, alone or in combination with the eighth aspect, the reference signal information includes at least one of synchronization signal block (SSB) information or channel state information reference signal (CSI-RS) information, and wherein the panel information indicates one or more of the plurality of panels for performing the pathloss measurement using at least one of the SSB information or the CSI-RS information.
In a tenth aspect, alone or in combination with any of the eighth to ninth aspects, wherein the pathloss reference signal (PL-RS) indication includes a transmission configuration indicator (TCI) state that includes the reference signal information.
In an eleventh aspect, alone or in combination with any of the eighth to tenth aspects, wherein for performing the pathloss measurement, the processor and the memory are further configured to measure a pathloss between the UE and the scheduling entity using one or more of the plurality of panels indicated by the panel information.
In a twelfth aspect, alone or in combination with any of the eighth to tenth aspects, the panel information includes a panel set for the pathloss measurement, the panel set indicating one or more of the plurality of panels; and for performing the pathloss measurement, the processor and the memory are further configured to measure a pathloss between the UE and the scheduling entity using any panel of the panel set.
In a thirteenth aspect, alone or in combination with any of the eighth to tenth aspects, wherein the panel information includes a panel list including one or more panel IDs respectively corresponding to the plurality of panels.
In a fourteenth aspect, alone or in combination with any of the eighth to tenth aspects, wherein the panel information includes a bitmap, each bit of the bitmap corresponding to one of the plurality of panels.
In a fifteenth aspect, alone or in combination with any of the eighth to tenth aspects, wherein the panel information includes a panel set ID identifying a panel set among a plurality of panel sets, each panel set including one or more of the plurality of panels.
In a sixteenth aspect, a scheduling entity includes: a transceiver for wireless communication; a memory; and a processor coupled to the transceiver and the memory, wherein the processor and the memory are configured to: establish a connection with a user equipment (UE) equipped with a plurality of panels, each panel including one or more antennas configured for wireless communication; transmit a beam indication to the UE, wherein the beam indication includes reference signal information and panel information for indicating one or more of the plurality of panels for a beam; and receive an uplink transmission on the beam from the one or more of the plurality of panels based on the panel information.
In a seventeenth aspect, alone or in combination with the sixteenth aspects, wherein the beam indication includes a transmission configuration indicator (TCI) state that includes the reference signal information and the panel information.
In an eighteenth aspect, alone or in combination with any of the sixteenth to seventeenth aspects, wherein the panel information includes a panel list including one or more panel IDs respectively corresponding to the one or more of the plurality of panels for the uplink transmission.
In a nineteenth aspect, alone or in combination with any of the sixteenth to seventeenth aspects, wherein the panel information includes a bitmap, each bit of the bitmap corresponding to one of the plurality of panels for the uplink transmission.
In a twentieth aspect, alone or in combination with any of the sixteenth to seventeenth aspects, wherein the panel information includes a panel set ID identifying a panel set among a plurality of panel sets, each panel set including one or more of the plurality of panels.
In a twenty-first aspect, alone or in combination with any of the sixteenth to twentieth aspects, wherein the reference signal information includes at least one of synchronization signal block (SSB) resource information or channel state information reference signal (CSI-RS) resource information, for identifying the beam.
In a twenty-second aspect, alone or in combination with any of the sixteenth to twenty-first aspects, wherein the uplink transmission includes at least one of a physical uplink control channel (PUCCH) or physical uplink shared channel (PUSCH) .
In a twenty-third aspect, a scheduling entity includes: a transceiver for wireless communication; a memory; and a processor coupled to the transceiver and the memory, wherein the processor and the memory are configured to: establish a connection with a user equipment (UE) equipped with a plurality of panels, each panel including one or more antennas configured for wireless communication; transmit a pathloss reference signal (PL-RS) indication to the UE, wherein the PL-RS indication includes reference signal information and panel information for performing a pathloss measurement; and receive an uplink transmission based on the pathloss measurement.
In a twenty-fourth aspect, alone or in combination with the twenty-third aspect, wherein the reference signal information includes at least one of synchronization signal block (SSB) information or channel state information reference signal (CSI-RS) information, and wherein the panel information indicates one or more of the plurality of panels for performing the pathloss measurement using at least one of the SSB information or CSI-RS information.
In a twenty-fifth aspect, alone or in combination with any of the twenty-third to twenty-fourth aspects, wherein the PL-RS indication includes a transmission configuration indicator (TCI) state that includes the reference signal information.
In a twenty-sixth aspect, alone or in combination with any of the twenty-third to twenty-fifth aspects, wherein the panel information configures the UE to measure a pathloss between the UE and the scheduling entity using one or more of the plurality of panels indicated by the panel information.
In a twenty-seventh aspect, alone or in combination with any of the twenty-third to twenty-sixth aspects, wherein the panel information includes a panel set for the pathloss  measurement, the panel set indicating one or more of the plurality of panels, and the panel information configures the UE to measure a pathloss between the UE and the scheduling entity using any panel of the panel set.
In a twenty-eighth aspect, alone or in combination with any of the twenty-third to twenty-sixth aspects, wherein the panel information includes a panel list including one or more panel IDs respectively corresponding to the plurality of panels.
In a twenty-ninth aspect, alone or in combination with any of the twenty-third to twenty-sixth aspects, wherein the panel information includes a bitmap, each bit of the bitmap corresponding to one of the plurality of panels.
In a thirtieth aspect, alone or in combination with any of the twenty-third to twenty-sixth aspects, wherein the panel information includes a panel set ID identifying a panel set among a plurality of panel sets, each panel set including one or more of the plurality of panels.
By way of example, various aspects may be implemented within other systems defined by 3GPP, such as Long-Term Evolution (LTE) , the Evolved Packet System (EPS) , the Universal Mobile Telecommunication System (UMTS) , and/or the Global System for Mobile (GSM) . Various aspects may also be extended to systems defined by the 3rd Generation Partnership Project 2 (3GPP2) , such as CDMA2000 and/or Evolution-Data Optimized (EV-DO) . Other examples may be implemented within systems employing IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Ultra-Wideband (UWB) , Bluetooth, and/or other suitable systems. The actual telecommunication standard, network architecture, and/or communication standard employed will depend on the specific application and the overall design constraints imposed on the system.
Within the present disclosure, the word “exemplary” is used to mean “serving as an example, instance, or illustration. ” Any implementation or aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects of the disclosure. Likewise, the term “aspects” does not require that all aspects of the disclosure include the discussed feature, advantage or mode of operation. The term “coupled” is used herein to refer to the direct or indirect coupling between two objects. For example, if object A physically touches object B, and object B touches object C, then objects A and C may still be considered coupled to one another-even if they do not directly physically touch each other. For instance, a first object may be coupled to a second object even though the first object is never directly physically in contact with the second object. The terms “circuit” and “circuitry” are used broadly, and intended to  include both hardware implementations of electrical devices and conductors that, when connected and configured, enable the performance of the functions described in the present disclosure, without limitation as to the type of electronic circuits, as well as software implementations of information and instructions that, when executed by a processor, enable the performance of the functions described in the present disclosure.
One or more of the components, steps, features and/or functions illustrated in FIGs. 1–17 may be rearranged and/or combined into a single component, step, feature or function or embodied in several components, steps, or functions. Additional elements, components, steps, and/or functions may also be added without departing from novel features disclosed herein. The apparatus, devices, and/or components illustrated in FIGs. 1–17 may be configured to perform one or more of the methods, features, or steps described herein. The novel algorithms described herein may also be efficiently implemented in software and/or embedded in hardware.
It is to be understood that the specific order or hierarchy of steps in the methods disclosed is an illustration of exemplary processes. Based upon design preferences, it is understood that the specific order or hierarchy of steps in the methods may be rearranged. The accompanying method claims present elements of the various steps in a sample order, and are not meant to be limited to the specific order or hierarchy presented unless specifically recited therein.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but are to be accorded the full scope consistent with the language of the claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more. ” Unless specifically stated otherwise, the term “some” refers to one or more. A phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover: a; b; c; a and b; a and c; b and c; and a, b and c. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is  intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims.

Claims (30)

  1. A user equipment (UE) comprising:
    a transceiver for wireless communication;
    a plurality of panels, each panel comprising one or more antennas configured for wireless communication;
    a memory; and
    a processor coupled to the transceiver, the plurality of panels, and the memory,
    wherein the processor and the memory are configured to:
    establish a connection with a scheduling entity using the plurality of panels;
    receive a beam indication from the scheduling entity, wherein the beam indication comprises reference signal information and panel information;
    identify a beam based on the beam indication; and
    perform an uplink transmission on the beam using one or more of the plurality of panels based on the panel information.
  2. The UE of claim 1, wherein the beam indication comprises a transmission configuration indicator (TCI) state that comprises the reference signal information and the panel information.
  3. The UE of claim 1, wherein the panel information comprises a panel list including one or more panel IDs respectively corresponding to the one or more of the plurality of panels used for the uplink transmission.
  4. The UE of claim 1, wherein the panel information comprises a bitmap, each bit of the bitmap corresponding to one of the plurality of panels used for the uplink transmission.
  5. The UE of claim 1, wherein the panel information comprises a panel set ID identifying a panel set among a plurality of panel sets, each panel set comprising one or more of the plurality of panels.
  6. The UE of claim 1, wherein the reference signal information comprises at least one of synchronization signal block (SSB) resource index or channel state information reference signal (CSI-RS) resource index, for identifying the beam.
  7. The UE of claim 1, wherein the uplink transmission comprises at least one of a physical uplink control channel (PUCCH) or physical uplink shared channel (PUSCH) .
  8. A user equipment (UE) comprising:
    a transceiver for wireless communication;
    a plurality of panels, each panel comprising one or more antennas configured for wireless communication;
    a memory; and
    a processor coupled to the transceiver, the plurality of panels, and the memory,
    wherein the processor and the memory are configured to:
    establish a connection with a scheduling entity using the plurality of panels;
    receive a pathloss reference signal (PL-RS) indication from the scheduling entity, wherein the PL-RS indication comprises reference signal information and panel information;
    perform a pathloss measurement based on the reference signal information and the panel information; and
    perform an uplink transmission based on the pathloss measurement.
  9. The UE of claim 8,
    wherein the reference signal information comprises at least one of synchronization signal block (SSB) information or channel state information reference signal (CSI-RS) information, and
    wherein the panel information indicates one or more of the plurality of panels for performing the pathloss measurement using at least one of the SSB information or the CSI-RS information.
  10. The UE of claim 8, wherein the pathloss reference signal (PL-RS) indication comprises a transmission configuration indicator (TCI) state that comprises the reference signal information.
  11. The UE of claim 8, wherein for performing the pathloss measurement, the processor and the memory are further configured to:
    measure a pathloss between the UE and the scheduling entity using one or more of the plurality of panels indicated by the panel information.
  12. The UE of claim 8, wherein:
    the panel information comprises a panel set for the pathloss measurement, the panel set indicating one or more of the plurality of panels; and
    for performing the pathloss measurement, the processor and the memory are further configured to measure a pathloss between the UE and the scheduling entity using any panel of the panel set.
  13. The UE of claim 8, wherein the panel information comprises a panel list including one or more panel IDs respectively corresponding to the plurality of panels.
  14. The UE of claim 8, wherein the panel information comprises a bitmap, each bit of the bitmap corresponding to one of the plurality of panels.
  15. The UE of claim 8, wherein the panel information comprises a panel set ID identifying a panel set among a plurality of panel sets, each panel set comprising one or more of the plurality of panels.
  16. A scheduling entity comprising:
    a transceiver for wireless communication;
    a memory; and
    a processor coupled to the transceiver and the memory,
    wherein the processor and the memory are configured to:
    establish a connection with a user equipment (UE) equipped with a plurality of panels, each panel comprising one or more antennas configured for wireless communication;
    transmit a beam indication to the UE, wherein the beam indication comprises reference signal information and panel information for indicating one or more of the plurality of panels for a beam; and
    receive an uplink transmission on the beam from the one or more of the plurality of panels based on the panel information.
  17. The scheduling entity of claim 16, wherein the beam indication comprises a transmission configuration indicator (TCI) state that comprises the reference signal information and the panel information.
  18. The scheduling entity of claim 16, wherein the panel information comprises a panel list including one or more panel IDs respectively corresponding to the one or more of the plurality of panels for the uplink transmission.
  19. The scheduling entity of claim 16, wherein the panel information comprises a bitmap, each bit of the bitmap corresponding to one of the plurality of panels for the uplink transmission.
  20. The scheduling entity of claim 16, wherein the panel information comprises a panel set ID identifying a panel set among a plurality of panel sets, each panel set comprising one or more of the plurality of panels.
  21. The scheduling entity of claim 16, wherein the reference signal information comprises at least one of synchronization signal block (SSB) resource information or channel state information reference signal (CSI-RS) resource information, for identifying the beam.
  22. The scheduling entity of claim 16, wherein the uplink transmission comprises at least one of a physical uplink control channel (PUCCH) or physical uplink shared channel (PUSCH) .
  23. A scheduling entity comprising:
    a transceiver for wireless communication;
    a memory; and
    a processor coupled to the transceiver and the memory,
    wherein the processor and the memory are configured to:
    establish a connection with a user equipment (UE) equipped with a plurality of panels, each panel comprising one or more antennas configured for wireless communication;
    transmit a pathloss reference signal (PL-RS) indication to the UE, wherein the PL-RS indication comprises reference signal information and panel information for performing a pathloss measurement; and
    receive an uplink transmission based on the pathloss measurement.
  24. The scheduling entity of claim 23,
    wherein the reference signal information comprises at least one of synchronization signal block (SSB) information or channel state information reference signal (CSI-RS) information, and
    wherein the panel information indicates one or more of the plurality of panels for performing the pathloss measurement using at least one of the SSB information or CSI-RS information.
  25. The scheduling entity of claim 23, wherein the PL-RS indication comprises a transmission configuration indicator (TCI) state that comprises the reference signal information.
  26. The scheduling entity of claim 23, wherein the panel information configures the UE to measure a pathloss between the UE and the scheduling entity using one or more of the plurality of panels indicated by the panel information.
  27. The scheduling entity of claim 23,
    wherein the panel information comprises a panel set for the pathloss measurement, the panel set indicating one or more of the plurality of panels, and the  panel information configures the UE to measure a pathloss between the UE and the scheduling entity using any panel of the panel set.
  28. The scheduling entity of claim 23, wherein the panel information comprises a panel list including one or more panel IDs respectively corresponding to the plurality of panels.
  29. The scheduling entity of claim 23, wherein the panel information comprises a bitmap, each bit of the bitmap corresponding to one of the plurality of panels.
  30. The scheduling entity of claim 23, wherein the panel information comprises a panel set ID identifying a panel set among a plurality of panel sets, each panel set comprising one or more of the plurality of panels.
PCT/CN2021/085485 2021-04-03 2021-04-03 Antenna panel indication in wireless communication WO2022205487A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/085485 WO2022205487A1 (en) 2021-04-03 2021-04-03 Antenna panel indication in wireless communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/085485 WO2022205487A1 (en) 2021-04-03 2021-04-03 Antenna panel indication in wireless communication

Publications (1)

Publication Number Publication Date
WO2022205487A1 true WO2022205487A1 (en) 2022-10-06

Family

ID=83455541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/085485 WO2022205487A1 (en) 2021-04-03 2021-04-03 Antenna panel indication in wireless communication

Country Status (1)

Country Link
WO (1) WO2022205487A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016044991A1 (en) * 2014-09-23 2016-03-31 华为技术有限公司 Terminal, base station, base station controller and millimetre wave honeycomb communication method
US20170346543A1 (en) * 2016-05-26 2017-11-30 Qualcomm Incorporated System and method for beam switching and reporting
WO2018201450A1 (en) * 2017-05-05 2018-11-08 Motorola Mobility Llc Indicating a beam switch request
US20190037426A1 (en) * 2017-07-25 2019-01-31 Mediatek Inc. Method for Beam Management with Beam Indication in Wireless Communication Systems with Beamforming
CN110463073A (en) * 2017-04-04 2019-11-15 高通股份有限公司 The wave beam management of synchronization signal is used by channel feedback frame

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016044991A1 (en) * 2014-09-23 2016-03-31 华为技术有限公司 Terminal, base station, base station controller and millimetre wave honeycomb communication method
US20170346543A1 (en) * 2016-05-26 2017-11-30 Qualcomm Incorporated System and method for beam switching and reporting
CN110463073A (en) * 2017-04-04 2019-11-15 高通股份有限公司 The wave beam management of synchronization signal is used by channel feedback frame
WO2018201450A1 (en) * 2017-05-05 2018-11-08 Motorola Mobility Llc Indicating a beam switch request
US20190037426A1 (en) * 2017-07-25 2019-01-31 Mediatek Inc. Method for Beam Management with Beam Indication in Wireless Communication Systems with Beamforming

Similar Documents

Publication Publication Date Title
US10651995B2 (en) Transmission of group common control information in new radio
US11576061B2 (en) Beam report for multi-stream communication
US11777584B2 (en) Measurement report payload reduction techniques
US20220123819A1 (en) Beam selection for random access messaging
US20220046726A1 (en) Beam-specific coverage enhancement for random access procedure
US20220046745A1 (en) Managing discontinuous reception in sidelink relay
US20220022147A1 (en) Radio re-synchronization signal
US11647530B2 (en) Transmission configuration indicator (TCI) state groups
US20220007224A1 (en) Channel state information (csi) signaling for multiple report metrics
EP3984143A1 (en) Fast beam selection for retransmission in wireless communication
US11696301B2 (en) Techniques for configuring control resources using piggyback downlink control information
US20220232555A1 (en) Indication of uplink control channel repetition in wireless communication
US11722369B2 (en) Dynamically updating configuration of a sounding reference signal resource set
US11831375B2 (en) Sub-band channel state information reporting for ultra-reliable low latency communications
US11581935B2 (en) Techniques to enhance user equipment (UE) beam scan
US20240015527A1 (en) Receive spatial configuration indication for communication between wireless devices
US11856568B2 (en) Assisted beam management between frequency bands
WO2022205487A1 (en) Antenna panel indication in wireless communication
WO2023197234A1 (en) Pucch repetition in frequency division multiplexing (fdm) manner
US20230262703A1 (en) TRANSMISSION CONFIGURATION INDICATOR (TCI) FOR FLEXIBLE MULTIPLE TRANSMISSION AND RECEPTION POINT (mTRP) BEAM INDICATION AND MULTIPLEXING CONFIGURATIONS
US11963232B2 (en) Beam refinement using channel state information reference signal in random access procedure
WO2023201698A1 (en) Power control parameter reset associated with beam failure recovery
US20230354458A1 (en) Keep-alive signal for network energy saving in a wireless network
WO2023206393A1 (en) Uplink parameters prediction and indication in wireless communication
US20230074563A1 (en) Intermittent usable time domain resources

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934142

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21934142

Country of ref document: EP

Kind code of ref document: A1