WO2023197234A1 - Pucch repetition in frequency division multiplexing (fdm) manner - Google Patents

Pucch repetition in frequency division multiplexing (fdm) manner Download PDF

Info

Publication number
WO2023197234A1
WO2023197234A1 PCT/CN2022/086758 CN2022086758W WO2023197234A1 WO 2023197234 A1 WO2023197234 A1 WO 2023197234A1 CN 2022086758 W CN2022086758 W CN 2022086758W WO 2023197234 A1 WO2023197234 A1 WO 2023197234A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
uplink control
pucch
uplink
pucch resource
Prior art date
Application number
PCT/CN2022/086758
Other languages
French (fr)
Inventor
Fang Yuan
Yan Zhou
Tao Luo
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2022/086758 priority Critical patent/WO2023197234A1/en
Publication of WO2023197234A1 publication Critical patent/WO2023197234A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the technology discussed below relates generally to wireless communication networks, and more particularly, to frequency division multiplexing (FDM) repetitions of an uplink control signal, such as a physical uplink control channel (PUCCH) .
  • FDM frequency division multiplexing
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • An example telecommunication standard is 5G New Radio (NR) .
  • 5G NR is part of a continuous mobile broadband evolution promulgated by Third Generation Partnership Project (3GPP) to meet new requirements associated with latency, reliability, security, scalability (e.g., with Internet of Things (IoT) ) , and other requirements.
  • 3GPP Third Generation Partnership Project
  • IoT Internet of Things
  • 5G NR systems may employ one or more multiplexing techniques to enable simultaneous communication of various wireless communication devices.
  • 5G NR specifications provide for multiplexing of downlink transmissions from a network entity (e.g., a base station) to one or more user equipment (UEs) utilizing orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) .
  • a network entity e.g., a base station
  • UEs user equipment
  • OFDM orthogonal frequency division multiplexing
  • CP cyclic prefix
  • 5G NR specifications provide support for discrete Fourier transform-spread-OFDM (DFT-s-OFDM) with a CP.
  • DFT-s-OFDM discrete Fourier transform-spread-OFDM
  • multiplexing schemes that may be supported by 5G NR networks may include, for example, time division multiplexing (TDM) , code division multiplexing (CDM) , frequency division multiplexing (FDM) , sparse code multiplexing (SCM) , or other suitable multiplexing schemes.
  • TDM time division multiplexing
  • CDM code division multiplexing
  • FDM frequency division multiplexing
  • SCM sparse code multiplexing
  • a user equipment configured for wireless communication.
  • the UE includes a transceiver, a memory, and a processor coupled to the transceiver and the memory.
  • the processor and the memory can be configured to receive a configuration of at least two uplink control resources.
  • the at least two uplink control resources can be linked together and each of the at least two uplink control resources can be associated with a different respective uplink beam of the UE.
  • the processor and the memory can further be configured to frequency division multiplex an uplink control signal and at least one repetition of the uplink control signal within a same time resource based on the at least two uplink control resources.
  • the method includes receiving a configuration of at least two uplink control resources.
  • the at least two uplink control resources can be linked together and each of the at least two uplink control resources can be associated with a different respective uplink beam of the UE.
  • the method further includes frequency division multiplexing an uplink control signal and at least one repetition of the uplink control signal within a same time resource based on the at least two uplink control resources.
  • the network entity includes a memory, and a processor coupled to the memory.
  • the processor and the memory can be configured to transmit a configuration of at least two uplink control resources.
  • the at least two uplink control resources can be linked together and each of the at least two uplink control resources can be associated with a different respective uplink beam of a user equipment (UE) .
  • the processor and the memory can further be configured to receive an uplink control signal and at least one repetition of the uplink control signal within a same time resource and different frequency resources based on the at least two uplink control resources.
  • the method includes transmitting a configuration of at least two uplink control resources.
  • the at least two uplink control resources can be linked together and each of the at least two uplink control resources can be associated with a different respective uplink beam of a user equipment (UE) .
  • the method further includes receiving an uplink control signal and at least one repetition of the uplink control signal within a same time resource and different frequency resources based on the at least two uplink control resources.
  • FIG. 1 is a diagram illustrating an example of a wireless communication system according to some aspects.
  • FIG. 2 is a diagram illustrating an example of a radio access network (RAN) according to some aspects.
  • RAN radio access network
  • FIG. 3 is a diagram illustrating an example of a frame structure for use in a wireless communication network according to some aspects.
  • FIG. 4 is a diagram illustrating an example of a wireless communication system supporting beamforming and/or multiple-input multiple-output (MIMO) according to some aspects.
  • MIMO multiple-input multiple-output
  • FIG. 5 is a diagram illustrating an example of communication between a base station and a UE using beamforming according to some aspects.
  • FIG. 6 is a diagram illustrating a multi-panel UE according to some aspects.
  • FIG. 7 is a diagram illustrating an example of simultaneous transmission of two uplink control resources in a frequency division multiplexing (FDM) manner according to some aspects.
  • FIG. 8 is a diagram illustrating another example of simultaneous transmission of two uplink control resources in a frequency division multiplexing (FDM) manner according to some aspects.
  • FIGs. 9A and 9B are diagrams illustrating examples of configurations of at least two uplink control resources for simultaneous transmission using at least two corresponding uplink beams according to some aspects.
  • FIG. 10 is a diagram illustrating an example of a configuration 1002 of an uplink control resource linked to at least one other uplink control resource for simultaneous transmission using at least two corresponding uplink beams according to some aspects.
  • FIG. 11 is a signaling diagram illustrating exemplary signaling for PUCCH repetition in an FDM manner according to some aspects.
  • FIG. 12 is a signaling diagram illustrating other exemplary signaling for PUCCH repetition in an FDM manner according to some aspects.
  • FIG. 13 is a signaling diagram illustrating other exemplary signaling for PUCCH repetition in an FDM manner according to some aspects.
  • FIG. 14 is a diagram illustrating an example of a multiplexing rule according to some aspects.
  • FIG. 15 is a diagram illustrating an example of another multiplexing rule according to some aspects.
  • FIG. 16 is a block diagram illustrating an example of a hardware implementation of a user equipment (UE) employing a processing system according to some aspects.
  • UE user equipment
  • FIG. 17 is a flow chart illustrating an exemplary method of uplink control repetition in an FDM manner according to some aspects.
  • FIG. 18 is a block diagram illustrating an example of a hardware implementation of a network entity employing a processing system according to some aspects.
  • FIG. 19 is a flow chart illustrating an exemplary method of uplink control repetition in an FDM manner according to some aspects.
  • aspects and examples are described in this application by illustration to some examples, those skilled in the art will understand that additional implementations and use cases may come about in many different arrangements and scenarios. Innovations described herein may be implemented across many differing platform types, devices, systems, shapes, sizes, and packaging arrangements. For example, aspects and/or uses may come about via integrated chip examples and other non-module-component-based devices (e.g., end-user devices, vehicles, communication devices, computing devices, industrial equipment, retail/purchasing devices, medical devices, artificial intelligence (AI) -enabled devices, etc. ) . While some examples may or may not be specifically directed to use cases or applications, a wide assortment of applicability of described innovations may occur.
  • non-module-component-based devices e.g., end-user devices, vehicles, communication devices, computing devices, industrial equipment, retail/purchasing devices, medical devices, artificial intelligence (AI) -enabled devices, etc.
  • AI artificial intelligence
  • Implementations may range in spectrum from chip-level or modular components to non-modular, non-chip-level implementations and further to aggregate, distributed, or original equipment manufacturer (OEM) devices or systems incorporating one or more aspects of the described innovations.
  • devices incorporating described aspects and features may also necessarily include additional components and features for the implementation and practice of claimed and described examples.
  • transmission and reception of wireless signals necessarily includes a number of components for analog and digital purposes (e.g., hardware components including antenna, radio frequency (RF) chains (RF-chains) , power amplifiers, modulators, buffer, processor (s) , interleaver, adders/summers, etc. ) .
  • the various concepts presented throughout this disclosure may be implemented across a broad variety of telecommunication systems, network architectures, and communication standards.
  • the wireless communication system 100 includes three interacting domains: a core network 102, a radio access network (RAN) 104, and a user equipment (UE) 106.
  • the UE 106 may be enabled to carry out data communication with an external data network 110, such as (but not limited to) the Internet.
  • the RAN 104 may implement any suitable wireless communication technology or technologies to provide radio access to the UE 106.
  • the RAN 104 may operate according to 3rd Generation Partnership Project (3GPP) New Radio (NR) specifications, often referred to as 5G.
  • 3GPP 3rd Generation Partnership Project
  • NR New Radio
  • the RAN 104 may operate under a hybrid of 5G NR and Evolved Universal Terrestrial Radio Access Network (eUTRAN) standards, often referred to as Long Term Evolution (LTE) .
  • eUTRAN Evolved Universal Terrestrial Radio Access Network
  • LTE Long Term Evolution
  • the 3GPP refers to this hybrid RAN as a next-generation RAN, or NG-RAN.
  • NG-RAN next-generation RAN
  • a base station is a network element in a radio access network responsible for radio transmission and reception in one or more cells to or from a UE.
  • a base station may variously be referred to by those skilled in the art as a base transceiver station (BTS) , a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , an access point (AP) , a Node B (NB) , an eNode B (eNB) , a gNode B (gNB) , a transmission and reception point (TRP) , or some other suitable terminology.
  • BTS base transceiver station
  • a radio base station a radio base station
  • ESS extended service set
  • AP access point
  • NB Node B
  • eNB eNode B
  • gNB gNode B
  • TRP transmission and reception point
  • a base station may include two or more TRPs that may be collocated or non-collocated. Each TRP may communicate on the same or different carrier frequency within the same or different frequency band.
  • the RAN 104 operates according to both the LTE and 5G NR standards, one of the base stations may be an LTE base station, while another base station may be a 5G NR base station.
  • the RAN 104 is further illustrated supporting wireless communication for multiple mobile apparatuses.
  • a mobile apparatus may be referred to as user equipment (UE) in 3GPP standards, but may also be referred to by those skilled in the art as a mobile station (MS) , a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal (AT) , a mobile terminal, a wireless terminal, a remote terminal, a handset, a terminal, a user agent, a mobile client, a client, or some other suitable terminology.
  • a UE may be an apparatus (e.g., a mobile apparatus) that provides a user with access to network services.
  • a “mobile” apparatus need not necessarily have a capability to move and may be stationary.
  • the term mobile apparatus or mobile device broadly refers to a diverse array of devices and technologies.
  • UEs may include a number of hardware structural components sized, shaped, and arranged to help in communication; such components can include antennas, antenna arrays, RF chains, TX chains, amplifiers, one or more processors, etc. electrically coupled to each other.
  • a mobile apparatus examples include a mobile, a cellular (cell) phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal computer (PC) , a notebook, a netbook, a smartbook, a tablet, a personal digital assistant (PDA) , and a broad array of embedded systems, e.g., corresponding to an “Internet of things” (IoT) .
  • IoT Internet of things
  • a mobile apparatus may additionally be an automotive or other transportation vehicle, a remote sensor or actuator, a robot or robotics device, a satellite radio, a global positioning system (GPS) device, an object tracking device, a drone, a multi-copter, a quad-copter, a remote control device, a consumer and/or wearable device, such as eyewear, a wearable camera, a virtual reality device, a smart watch, a health or fitness tracker, a digital audio player (e.g., MP3 player) , a camera, a game console, etc.
  • GPS global positioning system
  • a mobile apparatus may additionally be a digital home or smart home device such as a home audio, video, and/or multimedia device, an appliance, a vending machine, intelligent lighting, a home security system, a smart meter, etc.
  • a mobile apparatus may additionally be a smart energy device, a security device, a solar panel or solar array, a municipal infrastructure device controlling electric power (e.g., a smart grid) , lighting, water, etc., an industrial automation and enterprise device, a logistics controller, and/or agricultural equipment, etc.
  • a mobile apparatus may provide for connected medicine or telemedicine support, e.g., health care at a distance.
  • Telehealth devices may include telehealth monitoring devices and telehealth administration devices, whose communication may be given preferential treatment or prioritized access over other types of information, e.g., in terms of prioritized access for transport of critical service data, and/or relevant QoS for transport of critical service data.
  • Wireless communication between the RAN 104 and the UE 106 may be described as utilizing an air interface.
  • Transmissions over the air interface from a base station (e.g., base station 108) to one or more UEs (e.g., similar to UE 106) may be referred to as downlink (DL) transmissions.
  • the term downlink may refer to a point-to-multipoint transmission originating at a base station (e.g., base station 108) . Another way to describe this scheme may be to use the term broadcast channel multiplexing.
  • Transmissions from a UE (e.g., UE 106) to a base station (e.g., base station 108) may be referred to as uplink (UL) transmissions.
  • the term uplink may refer to a point-to-point transmission originating at a UE (e.g., UE 106) .
  • a scheduling entity e.g., a base station 108 allocates resources for communication among some or all devices and equipment within its service area or cell.
  • the scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for one or more scheduled entities (e.g., UEs 106) . That is, for scheduled communication, a plurality of UEs 106, which may be scheduled entities, may utilize resources allocated by the scheduling entity 108.
  • Base stations 108 are not the only entities that may function as scheduling entities. That is, in some examples, a UE may function as a scheduling entity, scheduling resources for one or more scheduled entities (e.g., one or more other UEs) . For example, UEs may communicate directly with other UEs in a peer-to-peer or device-to-device fashion and/or in a relay configuration.
  • a scheduling entity 108 may broadcast downlink traffic 112 to one or more scheduled entities (e.g., one or more UEs 106) .
  • the scheduling entity 108 is a node or device responsible for scheduling traffic in a wireless communication network, including the downlink traffic 112 and, in some examples, uplink traffic 116 from one or more scheduled entities (e.g., one or more UEs 106) to the scheduling entity 108.
  • the scheduled entity e.g., a UE 106
  • the scheduled entity is a node or device that receives downlink control 114 information, including but not limited to scheduling information (e.g., a grant) , synchronization or timing information, or other control information from another entity in the wireless communication network such as the scheduling entity 108.
  • the scheduled entity e.g., a UE 106
  • Uplink control 118 information may include a variety of packet types and categories, including pilots, reference signals, and information configured to enable or assist in decoding uplink data transmissions.
  • the uplink and/or downlink control information and/or traffic information may be transmitted on a waveform that may be time-divided into frames, subframes, slots, and/or symbols.
  • a symbol may refer to a unit of time that, in an orthogonal frequency division multiplexed (OFDM) waveform, carries one resource element (RE) per sub-carrier.
  • a slot may carry 7 or 14 OFDM symbols.
  • a subframe may refer to a duration of 1 ms. Multiple subframes or slots may be grouped together to form a single frame or radio frame.
  • a frame may refer to a predetermined duration (e.g., 10 ms) for wireless transmissions, with each frame consisting of, for example, 10 subframes of 1 ms each.
  • a predetermined duration e.g. 10 ms
  • each frame consisting of, for example, 10 subframes of 1 ms each.
  • these definitions are not required, and any suitable scheme for organizing waveforms may be utilized, and various time divisions of the waveform may have any suitable duration.
  • base stations 108 may include a backhaul interface for communication with a backhaul portion 120 of the wireless communication system 100.
  • the backhaul portion 120 may provide a link between a base station 108 and the core network 102.
  • a backhaul network may provide interconnection between the respective base stations 108.
  • Various types of backhaul interfaces may be employed, such as a direct physical connection, a virtual network, or the like using any suitable transport network.
  • the core network 102 may be a part of the wireless communication system 100 and may be independent of the radio access technology used in the RAN 104.
  • the core network 102 may be configured according to 5G standards (e.g., 5GC) .
  • the core network 102 may be configured according to a 4G evolved packet core (EPC) , or any other suitable standard or configuration.
  • 5G standards e.g., 5GC
  • EPC 4G evolved packet core
  • FIG. 2 a schematic illustration of an example of a radio access network (RAN) 200 according to some aspects of the disclosure is provided.
  • the RAN 200 may be the same as the RAN 104 described above and illustrated in FIG. 1.
  • the geographic region covered by the RAN 200 may be divided into a number of cellular regions (cells) that can be uniquely identified by a user equipment (UE) based on an identification broadcasted over a geographical area from one access point or base station.
  • FIG. 2 illustrates cells 202, 204, 206, and 208, each of which may include one or more sectors (not shown) .
  • a sector is a sub-area of a cell. All sectors within one cell are served by the same base station.
  • a radio link within a sector can be identified by a single logical identification belonging to that sector.
  • the multiple sectors within a cell can be formed by groups of antennas with each antenna responsible for communication with UEs in a portion of the cell.
  • FIG. 2 two base stations, base station 210 and base station 212 are shown in cells 202 and 204.
  • cells 202, 204, and 206 may be referred to as macrocells, as the base stations 210, 212, and 214 support cells having a large size.
  • a base station 218 is shown in the cell 208, which may overlap with one or more macrocells.
  • the cell 208 may be referred to as a small cell (e.g., a microcell, picocell, femtocell, home base station, home Node B, home eNode B, etc. ) , as the base station 218 supports a cell having a relatively small size.
  • Cell sizing can be done according to system design as well as component constraints.
  • the RAN 200 may include any number of wireless base stations and cells. Further, a relay node may be deployed to extend the size or coverage area of a given cell.
  • the base stations 210, 212, 214, 218 provide wireless access points to a core network for any number of mobile apparatuses. In some examples, the base stations 210, 212, 214, and/or 218 may be the same as or similar to the scheduling entity 108 described above and illustrated in FIG. 1.
  • FIG. 2 further includes an unmanned aerial vehicle (UAV) 220, which may be a drone or quadcopter.
  • UAV unmanned aerial vehicle
  • the UAV 220 may be configured to function as a base station, or more specifically as a mobile base station. That is, in some examples, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile base station, such as the UAV 220.
  • the cells may include UEs that may be in communication with one or more sectors of each cell.
  • each base station 210, 212, 214, 218, and 220 may be configured to provide an access point to a core network 102 (see FIG. 1) for all the UEs in the respective cells.
  • UEs 222 and 224 may be in communication with base station 210;
  • UEs 226 and 228 may be in communication with base station 212;
  • UEs 230 and 232 may be in communication with base station 214 by way of RRH 216;
  • UE 234 may be in communication with base station 218; and
  • UE 236 may be in communication with mobile base station 220.
  • the UEs 222, 224, 226, 228, 230, 232, 234, 236, 238, 240, and/or 242 may be the same as or similar to the UE/scheduled entity 106 described above and illustrated in FIG. 1.
  • the UAV 220 e.g., the quadcopter
  • the UAV 220 can be a mobile network node and may be configured to function as a UE.
  • the UAV 220 may operate within cell 202 by communicating with base station 210.
  • sidelink signals may be used between UEs without necessarily relying on scheduling or control information from a base station.
  • Sidelink communication may be utilized, for example, in a device-to-device (D2D) network, peer-to-peer (P2P) network, vehicle-to-vehicle (V2V) network, vehicle-to-everything (V2X) network, and/or other suitable sidelink network.
  • D2D device-to-device
  • P2P peer-to-peer
  • V2V vehicle-to-vehicle
  • V2X vehicle-to-everything
  • the UEs 238, 240, and 242 may each function as a scheduling entity or transmitting sidelink device and/or a scheduled entity or a receiving sidelink device to schedule resources and communicate sidelink signals 237 therebetween without relying on scheduling or control information from a base station.
  • two or more UEs e.g., UEs 226 and 228, within the coverage area of a base station (e.g., base station 212) may also communicate sidelink signals 227 over a direct link (sidelink) without conveying that communication through the base station 212.
  • the base station 212 may allocate resources to the UEs 226 and 228 for the sidelink communication.
  • channel coding may be used. That is, wireless communication may generally utilize a suitable error correcting block code.
  • an information message or sequence is split up into code blocks (CBs) , and an encoder (e.g., a CODEC) at the transmitting device then mathematically adds redundancy to the information message. Exploitation of this redundancy in the encoded information message can improve the reliability of the message, enabling correction for any bit errors that may occur due to the noise.
  • Data coding may be implemented in multiple manners.
  • user data is coded using quasi-cyclic low-density parity check (LDPC) with two different base graphs: one base graph is used for large code blocks and/or high code rates, while the other base graph is used otherwise.
  • Control information and the physical broadcast channel (PBCH) are coded using Polar coding, based on nested sequences. For these channels, puncturing, shortening, and repetition are used for rate matching.
  • PBCH physical broadcast channel
  • aspects of the present disclosure may be implemented utilizing any suitable channel code.
  • Various implementations of base stations and UEs may include suitable hardware and capabilities (e.g., an encoder, a decoder, and/or a CODEC) to utilize one or more of these channel codes for wireless communication.
  • suitable hardware and capabilities e.g., an encoder, a decoder, and/or a CODEC
  • the ability of UEs to communicate while moving, independent of their location is referred to as mobility.
  • the various physical channels between the UE and the RAN 200 are generally set up, maintained, and released under the control of an access and mobility management function (AMF) .
  • AMF access and mobility management function
  • the AMF may include a security context management function (SCMF) and a security anchor function (SEAF) that performs authentication.
  • SCMF security context management function
  • SEAF security anchor function
  • the SCMF can manage, in whole or in part, the security context for both the control plane and the user plane functionality.
  • the RAN 200 may utilize DL-based mobility or UL-based mobility to enable mobility and handovers (i.e., the transfer of a UE’s connection from one radio channel to another) .
  • a UE may monitor various parameters of the signal from its serving cell as well as various parameters of neighboring cells. Depending on the quality of these parameters, the UE may maintain communication with one or more of the neighboring cells.
  • the UE may undertake a handoff or handover from the serving cell to the neighboring (target) cell.
  • the UE 224 may move from the geographic area corresponding to its serving cell 202 to the geographic area corresponding to a neighbor cell 206.
  • the UE 224 may transmit a reporting message to its serving base station 210 indicating this condition.
  • the UE 224 may receive a handover command, and the UE may undergo a handover to the cell 206.
  • UL reference signals from each UE may be utilized by the network to select a serving cell for each UE.
  • the base stations 210, 212, and 214/216 may broadcast unified synchronization signals (e.g., unified Primary Synchronization Signals (PSSs) , unified Secondary Synchronization Signals (SSSs) and unified Physical Broadcast Channels (PBCHs) ) .
  • PSSs Primary Synchronization Signals
  • SSSs unified Secondary Synchronization Signals
  • PBCHs Physical Broadcast Channels
  • the UEs 222, 224, 226, 228, 230, and 232 may receive the unified synchronization signals, derive the carrier frequency and slot timing from the synchronization signals, and in response to deriving timing, transmit an uplink pilot or reference signal.
  • the uplink pilot signal transmitted by a UE may be concurrently received by two or more cells (e.g., base stations 210 and 214/216) within the RAN 200.
  • Each of the cells may measure a strength of the pilot signal, and the radio access network (e.g., one or more of the base stations 210 and 214/216 and/or a central node within the core network) may determine a serving cell for the UE 224.
  • the radio access network e.g., one or more of the base stations 210 and 214/216 and/or a central node within the core network
  • the RAN 200 may continue to monitor the uplink pilot signal transmitted by the UE 224.
  • the RAN 200 may handover the UE 224 from the serving cell to the neighboring cell, with or without informing the UE 224.
  • the synchronization signal transmitted by the base stations 210, 212, and 214/216 may be unified, the synchronization signal may not identify a particular cell, but rather may identify a zone of multiple cells operating on the same frequency and/or with the same timing.
  • the use of zones in 5G networks or other next generation communication networks enables the uplink-based mobility framework and improves the efficiency of both the UE and the network, since the number of mobility messages that need to be exchanged between the UE and the network may be reduced.
  • the air interface in the radio access network 200 may utilize licensed spectrum, unlicensed spectrum, or shared spectrum.
  • Licensed spectrum provides for exclusive use of a portion of the spectrum, generally by virtue of a mobile network operator purchasing a license from a government regulatory body.
  • Unlicensed spectrum provides for shared use of a portion of the spectrum without need for a government-granted license. While compliance with some technical rules is generally still required to access unlicensed spectrum, generally, any operator or device may gain access.
  • Shared spectrum may fall between licensed and unlicensed spectrum, wherein technical rules or limitations may be required to access the spectrum, but the spectrum may still be shared by multiple operators and/or multiple radio access technologies (RATs) .
  • RATs radio access technologies
  • the holder of a license for a portion of licensed spectrum may provide licensed shared access (LSA) to share that spectrum with other parties, e.g., with suitable licensee-determined conditions to gain access.
  • LSA licensed shared access
  • FR1 frequency range designations FR1 (410 MHz –7.125 GHz) and FR2 (24.25 GHz –52.6 GHz) . It should be understood that although a portion of FR1 is greater than 6 GHz, FR1 is often referred to (interchangeably) as a “Sub-6 GHz” band in various documents and articles.
  • FR2 which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
  • EHF extremely high frequency
  • ITU International Telecommunications Union
  • FR3 7.125 GHz –24.25 GHz
  • FR3 7.125 GHz –24.25 GHz
  • Frequency bands falling within FR3 may inherit FR1 characteristics and/or FR2 characteristics, and thus may effectively extend features of FR1 and/or FR2 into mid-band frequencies.
  • higher frequency bands are currently being explored to extend 5G NR operation beyond 52.6 GHz.
  • FR4-a or FR4-1 52.6 GHz –71 GHz
  • FR4 52.6 GHz –114.25 GHz
  • FR5 114.25 GHz –300 GHz
  • sub-6 GHz or the like if used herein may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies.
  • millimeter wave or the like if used herein may broadly represent frequencies that may include mid-band frequencies, may be within FR2, FR4, FR4-a or FR4-1, and/or FR5, or may be within the EHF band.
  • Devices communicating in the radio access network 200 may utilize one or more multiplexing techniques and multiple access algorithms to enable simultaneous communication of the various devices.
  • 5G NR specifications provide multiple access for UL transmissions from UEs 222 and 224 to base station 210, and for multiplexing for DL transmissions from base station 210 to one or more UEs 222 and 224, utilizing orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) .
  • OFDM orthogonal frequency division multiplexing
  • CP cyclic prefix
  • 5G NR specifications provide support for discrete Fourier transform-spread-OFDM (DFT-s-OFDM) with a CP (also referred to as single-carrier FDMA (SC-FDMA) ) .
  • DFT-s-OFDM discrete Fourier transform-spread-OFDM
  • SC-FDMA single-carrier FDMA
  • multiplexing and multiple access are not limited to the above schemes, and may be provided utilizing time division multiple access (TDMA) , code division multiple access (CDMA) , frequency division multiple access (FDMA) , sparse code multiple access (SCMA) , resource spread multiple access (RSMA) , or other suitable multiple access schemes.
  • multiplexing DL transmissions from the base station 210 to UEs 222 and 224 may be provided utilizing time division multiplexing (TDM) , code division multiplexing (CDM) , frequency division multiplexing (FDM) , orthogonal frequency division multiplexing (OFDM) , sparse code multiplexing (SCM) , or other suitable multiplexing schemes.
  • Duplex refers to a point-to-point communication link where both endpoints can communicate with one another in both directions.
  • Full-duplex means both endpoints can simultaneously communicate with one another.
  • Half-duplex means only one endpoint can send information to the other at a time.
  • Half-duplex emulation is frequently implemented for wireless links utilizing time division duplex (TDD) .
  • TDD transmissions in different directions on a given channel are separated from one another using time division multiplexing. That is, in some scenarios, a channel is dedicated for transmissions in one direction, while at other times the channel is dedicated for transmissions in the other direction, where the direction may change very rapidly, e.g., several times per slot.
  • a full-duplex channel In a wireless link, a full-duplex channel generally relies on physical isolation of a transmitter and receiver, and suitable interference cancellation technologies.
  • Full-duplex emulation is frequently implemented for wireless links by utilizing frequency division duplex (FDD) or spatial division duplex (SDD) .
  • FDD frequency division duplex
  • SDD spatial division duplex
  • transmissions in different directions may operate at different carrier frequencies (e.g., within paired spectrum) .
  • SDD transmissions in different directions on a given channel are separated from one another using spatial division multiplexing (SDM) .
  • full-duplex communication may be implemented within unpaired spectrum (e.g., within a single carrier bandwidth) , where transmissions in different directions occur within different sub-bands of the carrier bandwidth. This type of full-duplex communication may be referred to herein as sub-band full duplex (SBFD) , also known as flexible duplex.
  • SBFD sub-band full duplex
  • OFDM orthogonal frequency division multiplexing
  • FIG. 3 an expanded view of an exemplary subframe 302 is illustrated, showing an OFDM resource grid.
  • PHY physical
  • the resource grid 304 may be used to schematically represent time–frequency resources for a given antenna port. That is, in a multiple-input-multiple-output (MIMO) implementation with multiple antenna ports available, a corresponding multiple number of resource grids 304 may be available for communication.
  • the resource grid 304 is divided into multiple resource elements (REs) 306.
  • An RE which is 1 subcarrier ⁇ 1 symbol, is the smallest discrete part of the time–frequency grid, and contains a single complex value representing data from a physical channel or signal.
  • each RE may represent one or more bits of information.
  • a block of REs may be referred to as a physical resource block (PRB) or more simply a resource block (RB) 308, which contains any suitable number of consecutive subcarriers in the frequency domain.
  • an RB may include 12 subcarriers, a number independent of the numerology used.
  • an RB may include any suitable number of consecutive OFDM symbols in the time domain.
  • a set of continuous or discontinuous resource blocks may be referred to herein as a Resource Block Group (RBG) , sub-band, or bandwidth part (BWP) .
  • RBG Resource Block Group
  • BWP bandwidth part
  • a set of sub-bands or BWPs may span the entire bandwidth.
  • Scheduling of scheduled entities e.g., UEs
  • UEs e.g., UEs
  • Scheduling of scheduled entities e.g., UEs
  • UEs resource elements 306 within one or more sub-bands or bandwidth parts (BWPs) .
  • a UE generally utilizes only a subset of the resource grid 304.
  • an RB may be the smallest unit of resources that can be allocated to a UE.
  • the RBs may be scheduled by a base station (e.g., gNB, eNB, etc. ) , or may be self-scheduled by a UE implementing D2D sidelink communication.
  • a base station e.g., gNB, eNB, etc.
  • the RB 308 is shown as occupying less than the entire bandwidth of the subframe 302, with some subcarriers illustrated above and below the RB 308.
  • the subframe 302 may have a bandwidth corresponding to any number of one or more RBs 308.
  • the RB 308 is shown as occupying less than the entire duration of the subframe 302, although this is merely one possible example.
  • Each 1 ms subframe 302 may consist of one or multiple adjacent slots.
  • one subframe 302 includes four slots 310, as an illustrative example.
  • a slot may be defined according to a specified number of OFDM symbols with a given cyclic prefix (CP) length.
  • CP cyclic prefix
  • a slot may include 7 or 14 OFDM symbols with a nominal CP.
  • Additional examples may include mini-slots, sometimes referred to as shortened transmission time intervals (TTIs) , having a shorter duration (e.g., one to three OFDM symbols) .
  • TTIs shortened transmission time intervals
  • These mini-slots or shortened transmission time intervals (TTIs) may in some cases be transmitted occupying resources scheduled for ongoing slot transmissions for the same or for different UEs. Any number of resource blocks may be utilized within a subframe or slot.
  • An expanded view of one of the slots 310 illustrates the slot 310 including a control region 312 and a data region 314.
  • the control region 312 may carry control channels
  • the data region 314 may carry data channels.
  • a slot may contain all DL, all UL, or at least one DL portion and at least one UL portion.
  • the structure illustrated in FIG. 3 is merely exemplary in nature, and different slot structures may be utilized, and may include one or more of each of the control region (s) and data region (s) .
  • the various REs 306 within an RB 308 may be scheduled to carry one or more physical channels, including control channels, shared channels, data channels, etc.
  • Other REs 306 within the RB 308 may also carry pilots or reference signals. These pilots or reference signals may provide for a receiving device to perform channel estimation of the corresponding channel, which may enable coherent demodulation/detection of the control and/or data channels within the RB 308.
  • the slot 310 may be utilized for broadcast, multicast, groupcast, or unicast communication.
  • a broadcast, multicast, or groupcast communication may refer to a point-to-multipoint transmission by one device (e.g., a base station, UE, or other similar device) to other devices.
  • a broadcast communication is delivered to all devices, whereas a multicast or groupcast communication is delivered to multiple intended recipient devices.
  • a unicast communication may refer to a point-to-point transmission by a one device to a single other device.
  • the scheduling entity may allocate one or more REs 306 (e.g., within the control region 312) to carry DL control information including one or more DL control channels, such as a physical downlink control channel (PDCCH) , to one or more scheduled entities (e.g., UEs) .
  • the PDCCH carries downlink control information (DCI) including but not limited to power control commands (e.g., one or more open loop power control parameters and/or one or more closed loop power control parameters) , scheduling information, a grant, and/or an assignment of REs for DL and UL transmissions.
  • DCI downlink control information
  • the PDCCH may further carry hybrid automatic repeat request (HARQ) feedback transmissions such as an acknowledgment (ACK) or negative acknowledgment (NACK) .
  • HARQ is a technique well-known to those of ordinary skill in the art, wherein the integrity of packet transmissions may be checked at the receiving side for accuracy, e.g., utilizing any suitable integrity checking mechanism, such as a checksum or a cyclic redundancy check (CRC) . If the integrity of the transmission is confirmed, an ACK may be transmitted, whereas if not confirmed, a NACK may be transmitted. In response to a NACK, the transmitting device may send a HARQ retransmission, which may implement chase combining, incremental redundancy, etc.
  • the base station may further allocate one or more REs 306 (e.g., in the control region 312 or the data region 314) to carry other DL signals, such as a demodulation reference signal (DMRS) ; a phase-tracking reference signal (PT-RS) ; a channel state information (CSI) reference signal (CSI-RS) ; and a synchronization signal block (SSB) .
  • SSBs may be broadcast at regular intervals based on a periodicity (e.g., 5, 10, 20, 40, 80, or 160 ms) .
  • An SSB includes a primary synchronization signal (PSS) , a secondary synchronization signal (SSS) , and a physical broadcast control channel (PBCH) .
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PBCH physical broadcast control channel
  • a UE may utilize the PSS and SSS to achieve radio frame, subframe, slot, and symbol synchronization in the time domain, identify the center of the channel (system
  • the PBCH in the SSB may further include a master information block (MIB) that includes various system information, along with parameters for decoding a system information block (SIB) .
  • the SIB may be, for example, a SystemInformationType1 (SIB1) that may include various additional system information.
  • SIB1 together provide the minimum system information (SI) for initial access.
  • Examples of system information transmitted in the MIB may include, but are not limited to, a subcarrier spacing (e.g., default downlink numerology) , system frame number, a configuration of a PDCCH control resource set (CORESET) (e.g., PDCCH CORESET0) , a cell barred indicator, a cell reselection indicator, a raster offset, and a search space for SIB1.
  • Examples of remaining minimum system information (RMSI) transmitted in the SIB1 may include, but are not limited to, a random access search space, a paging search space, downlink configuration information, and uplink configuration information.
  • a base station may transmit other system information (OSI) as well.
  • OSI system information
  • the scheduled entity may utilize one or more REs 306 to carry UL control information (UCI) including one or more UL control channels, such as a physical uplink control channel (PUCCH) , to the scheduling entity.
  • UCI may include a variety of packet types and categories, including pilots, reference signals, and information configured to enable or assist in decoding uplink data transmissions.
  • uplink reference signals may include a sounding reference signal (SRS) and an uplink DMRS.
  • the UCI may include a scheduling request (SR) , i.e., request for the scheduling entity to schedule uplink transmissions.
  • SR scheduling request
  • the scheduling entity may transmit downlink control information (DCI) that may schedule resources for uplink packet transmissions.
  • DCI may also include HARQ feedback, channel state feedback (CSF) , such as a CSI report, or any other suitable UCI.
  • CSF channel state feedback
  • one or more REs 306 may be allocated for data traffic. Such data traffic may be carried on one or more traffic channels, such as, for a DL transmission, a physical downlink shared channel (PDSCH) ; or for an UL transmission, a physical uplink shared channel (PUSCH) .
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • one or more REs 306 within the data region 314 may be configured to carry other signals, such as one or more SIBs and DMRSs.
  • the control region 312 of the slot 310 may include a physical sidelink control channel (PSCCH) including sidelink control information (SCI) transmitted by an initiating (transmitting) sidelink device (e.g., Tx V2X device or other Tx UE) towards a set of one or more other receiving sidelink devices (e.g., Rx V2X device or other Rx UE) .
  • the data region 314 of the slot 310 may include a physical sidelink shared channel (PSSCH) including sidelink data traffic transmitted by the initiating (transmitting) sidelink device within resources reserved over the sidelink carrier by the transmitting sidelink device via the SCI.
  • PSSCH physical sidelink shared channel
  • HARQ feedback information may be transmitted in a physical sidelink feedback channel (PSFCH) within the slot 310 from the receiving sidelink device to the transmitting sidelink device.
  • PSFCH physical sidelink feedback channel
  • one or more reference signals such as a sidelink SSB, a sidelink CSI-RS, a sidelink SRS, and/or a sidelink positioning reference signal (PRS) may be transmitted within the slot 310.
  • PRS sidelink positioning reference signal
  • Transport channels carry blocks of information called transport blocks (TB) .
  • TBS transport block size
  • MCS modulation and coding scheme
  • the channels or carriers illustrated in FIG. 3 are not necessarily all of the channels or carriers that may be utilized between devices, and those of ordinary skill in the art will recognize that other channels or carriers may be utilized in addition to those illustrated, such as other traffic, control, and feedback channels.
  • the PDCCH may be constructed from a variable number of control channel elements (CCEs) , depending on the PDCCH format (or aggregation level) .
  • CCE control channel elements
  • Each CCE includes a number of resource elements (REs) that may be grouped into resource element groups (REGs) .
  • Each REG generally may contain, for example, twelve consecutive REs (or nine REs and three DMRS REs) within the same OFDM symbol and the same RB.
  • Each PDCCH format (or aggregation level) supports a different DCI length.
  • PDCCH aggregation levels of 1, 2, 4, 8, and 16 may be supported, corresponding to 1, 2, 4, 8, or 16 contiguous CCEs, respectively.
  • the UE may perform blind decoding of various PDCCH candidates within the first N control OFDM symbols (as indicated by the slot format of the slot) based on an expected RNTI (e.g., UE-specific RNTI or group RNTI) .
  • Each PDCCH candidate includes a collection of one or more consecutive CCEs based on an assumed DCI length (e.g., PDCCH aggregation level) .
  • search spaces defining UE-specific search spaces (USSs) and common search spaces (CSSs) may be defined.
  • the search space sets e.g., USSs and CSSs
  • the starting point (offset or index) of a UE-specific search space may be different for each UE and each UE may have multiple UE-specific search spaces (e.g., one for each aggregation level) .
  • the common search space sets consist of CCEs used for sending control information that is common to a group of UEs or to all UEs. Thus, the common search space sets are monitored by multiple UEs in a cell.
  • the starting point (offset or index) of a search space set for group common control information may be the same for all UEs in the group and there may be multiple search space sets defined for group common control information (e.g., one for each configured aggregation level for the group of UEs) .
  • the UE may perform blind decoding over all aggregation levels and corresponding USSs or CSSs to determine whether at least one valid DCI exists for the UE.
  • the scheduling entity e.g., base station
  • scheduled entity e.g., UE
  • FIG. 4 is a diagram illustrating an example of a wireless communication system 400 supporting beamforming and/or multiple-input multiple-output (MIMO) according to some aspects.
  • a transmitter 402 includes multiple transmit antennas 404 (e.g., N transmit antennas) and a receiver 406 includes multiple receive antennas 408 (e.g., M receive antennas) .
  • N transmit antennas e.g., N transmit antennas
  • M receive antennas e.g., M receive antennas
  • the multiple transmit antennas 404 and multiple receive antennas 408 may each be configured in a single panel or multi-panel antenna array.
  • Each of the transmitter 402 and the receiver 406 may be implemented, for example, within a scheduling entity (e.g., base station 108) , as illustrated in FIGs. 1 and/or 2, a scheduled entity (e.g., UE 106) , as illustrated in FIGs. 1 and/or 2, or any other suitable wireless communication device.
  • Spatial multiplexing may be used to transmit different streams of data, also referred to as layers, simultaneously on the same time-frequency resource.
  • the data streams may be transmitted to a single UE to increase the data rate or to multiple UEs to increase the overall system capacity, the latter being referred to as multi-user MIMO (MU-MIMO) .
  • MU-MIMO multi-user MIMO
  • This is achieved by spatially precoding each data stream (i.e., multiplying the data streams with different weighting and phase shifting) and then transmitting each spatially precoded stream through multiple transmit antennas on the downlink.
  • the spatially precoded data streams arrive at the UE (s) with different spatial signatures, which enables each of the UE (s) to recover the one or more data streams destined for that UE.
  • each UE transmits a spatially precoded data stream, which enables the base station to identify the source of each spatially precoded data stream.
  • the number of data streams or layers corresponds to the rank of the transmission.
  • the rank of the MIMO system e.g., the wireless communication system 400 supporting MIMO
  • the rank (and therefore, the number of data streams) assigned to a particular UE on the downlink may be determined based on the rank indicator (RI) transmitted from the UE to the base station.
  • the RI may be determined based on the antenna configuration (e.g., the number of transmit and receive antennas) and a measured signal-to-interference-plus-noise ratio (SINR) on each of the receive antennas.
  • SINR signal-to-interference-plus-noise ratio
  • the RI may indicate, for example, the number of layers that may be supported under the current channel conditions.
  • the base station may use the RI, along with resource information (e.g., the available resources and amount of data to be scheduled for the UE) , to assign a transmission rank to the UE.
  • the base station may assign the rank for DL MIMO transmissions based on UL SINR measurements (e.g., based on a sounding reference signal (SRS) transmitted from the UE or other pilot signal) . Based on the assigned rank, the base station may then transmit a channel state information-reference signal (CSI-RS) with separate CSI-RS sequences for each layer to provide for multi-layer channel estimation. From the CSI-RS, the UE may measure the channel quality across layers and resource blocks and feed back channel quality indicator (CQI) and rank indicator (RI) values to the base station for use in updating the rank and assigning REs for future downlink transmissions.
  • CQI channel quality indicator
  • RI rank indicator
  • a rank-2 spatial multiplexing transmission on a 2x2 MIMO antenna configuration will transmit one data stream from each of the transmit antennas 404.
  • Each data stream reaches each of the receive antennas 408 along a different one of the signal paths 410.
  • the receiver 406 may then reconstruct the data streams using the received signals from each of the receive antennas 408.
  • Beamforming is a signal processing technique that may be used at the transmitter 402 or receiver 406 to shape or steer an antenna beam (e.g., a transmit/receive beam) along a spatial path between the transmitter 402 and the receiver 406. Beamforming may be achieved by combining the signals communicated via antennas 404 or 408 (e.g., antenna elements of an antenna array) such that some of the signals experience constructive interference while others experience destructive interference. To create the desired constructive/destructive interference, the transmitter 402 or receiver 406 may apply amplitude and/or phase offsets to signals transmitted or received from each of the antennas 404 or 408 associated with the transmitter 402 or receiver 406.
  • antennas 404 or 408 e.g., antenna elements of an antenna array
  • a base station may generally be capable of communicating with UEs using transmit beams (e.g., downlink transmit beams) of varying beam widths.
  • transmit beams e.g., downlink transmit beams
  • a base station may be configured to utilize a wider beam when communicating with a UE that is in motion and a narrower beam when communicating with a UE that is stationary.
  • the UE may further be configured to utilize one or more downlink receive beams to receive signals from the base station.
  • the base station may transmit a reference signal, such as a synchronization signal block (SSB) , a tracking reference signal (TRS) , or a channel state information reference signal (CSI-RS) , on each of a plurality of beams (e.g., on each of a plurality of downlink transmit beams) in a beam-sweeping manner.
  • a reference signal such as a synchronization signal block (SSB) , a tracking reference signal (TRS) , or a channel state information reference signal (CSI-RS)
  • the UE may measure the reference signal received power (RSRP) on each of the beams (e.g., measure RSRP on each of the plurality of downlink transmit beams) and transmit a beam measurement report to the base station indicating the Layer 1 RSRP (L-1 RSRP) of each of the measured beams.
  • the base station may then select the serving beam (s) for communication with the UE based on the beam measurement report.
  • the base station may derive the particular beam (s) (e.g., the particular downlink beam (s) ) to communicate with the UE based on uplink measurements of one or more uplink reference signals, such as a sounding reference signal (SRS) .
  • uplink reference signals such as a sounding reference signal (SRS)
  • uplink beams may be selected by measuring the RSRP of received uplink reference signals (e.g., SRSs) or downlink reference signals (e.g., SSBs or CSI-RSs) during an uplink or downlink beam sweep.
  • the base station may determine the uplink beams either by uplink beam management via an SRS beam sweep with measurement at the base station or by downlink beam management via an SSB/CSI-RS beam sweep with measurement at the UE.
  • the selected uplink beam may be indicated by a selected SRS resource (e.g., time–frequency resources utilized for the transmission of an SRS) when implementing uplink beam management or a selected SSB/CSI-RS resource when implementing downlink beam management.
  • the selected SSB/CSI-RS resource can have a spatial relation to the selected uplink transmit beam (e.g., the uplink transmit beam utilized for the PUCCH, SRS, and/or PUSCH) .
  • the resulting selected uplink transmit beam and uplink receive beam may form an uplink beam pair link.
  • beamformed signals may be utilized for downlink channels, including the physical downlink control channel (PDCCH) and physical downlink shared channel (PDSCH) .
  • downlink channels including the physical downlink control channel (PDCCH) and physical downlink shared channel (PDSCH) .
  • PDCH physical downlink control channel
  • PUSCH physical uplink shared channel
  • FIG. 5 is a diagram illustrating an example of communication between a base station 504 and a UE 502 using beamforming according to some aspects.
  • the base station 504 may be any of the base stations (e.g., gNBs) or scheduling entities illustrated in FIGs. 1, 2, or 4, and the UE 502 may be any of the UEs or scheduled entities illustrated in FIGs. 1, 2, or 4.
  • the base station 504 may generally be capable of communicating with the UE 502 using one or more transmit beams, and the UE 502 may further be capable of communicating with the base station 504 using one or more receive beams.
  • transmit beam refers to a beam on the base station 504 that may be utilized for downlink or uplink communication with the UE 502.
  • receive beam refers to a beam on the UE 502 that may be utilized for downlink or uplink communication with the base station 504.
  • the base station 504 is configured to generate a plurality of transmit beams 506a, 506b, 506c, 506d, 506e, 506f, 506g, and 506h (506a–506h) , each associated with a different spatial direction.
  • the UE 502 is configured to generate a plurality of receive beams 508a, 508b, 508c, 508d, and 508e (508a–508e) , each associated with a different spatial direction. It should be noted that while some beams are illustrated as adjacent to one another, such an arrangement may be different in different aspects. For example, transmit beams 506a–506h transmitted during a same symbol may not be adjacent to one another.
  • the base station 504 and UE 502 may each transmit more or less beams distributed in all directions (e.g., 350 degrees) and in three-dimensions.
  • the transmit beams 506a–506h may include beams of varying beam width.
  • the base station 504 may transmit certain signals (e.g., synchronization signal blocks (SSBs) ) on wider beams and other signals (e.g., CSI-RSs) on narrower beams.
  • SSBs synchronization signal blocks
  • the base station 504 and UE 502 may select one or more transmit beams 506a–506h on the base station 504 and one or more receive beams 508a–508e on the UE 502 for communication of uplink and downlink signals therebetween using a beam management procedure.
  • the UE 502 may perform a P1 beam management procedure to scan the plurality of transmit beams 506a–506h using the plurality of receive beams 508a–508e to select a beam pair link (e.g., one of the transmit beams 506a–506h and one of the receive beams 508a–508e) for a physical random access channel (PRACH) procedure for initial access to the cell.
  • PRACH physical random access channel
  • periodic SSB beam sweeping may be implemented on the base station 504 at certain intervals (e.g., based on the SSB periodicity) .
  • the base station 504 may be configured to sweep or transmit an SSB on each of a plurality of wider transmit beams 506a–506h during the beam sweeping interval.
  • the UE 502 may measure the reference signal received power (RSRP) of each of the SSB transmitted on each of the transmit beams 506a-506h on each of the receive beams 508a-508e of the UE 502.
  • the UE 502 may select the transmit and receive beams based on the measured RSRP.
  • the selected receive beam may be the receive beam on which the highest RSRP is measured and the selected transmit beam may have the highest RSRP as measured on the selected receive beam.
  • the base station 504 and UE 502 may perform a P2 beam management procedure for beam refinement at the base station 504.
  • the base station 504 may be configured to sweep or transmit a CSI-RS on each of a plurality of narrower transmit beams 506a–506h.
  • Each of the narrower CSI-RS beams may be a sub-beam (not shown) of the selected SSB transmit beam (e.g., within the spatial direction of the SSB transmit beam) .
  • Transmission of the CSI-RS transmit beams may occur periodically (e.g., as configured via radio resource control (RRC) signaling by the gNB) , semi-persistently (e.g., as configured via RRC signaling and activated/deactivated via medium access control –control element (MAC-CE) signaling by the gNB) , or aperiodically (e.g., as triggered by the gNB via downlink control information (DCI) ) .
  • RRC radio resource control
  • MAC-CE medium access control –control element
  • DCI downlink control information
  • the UE 502 may be configured to scan the plurality of CSI-RS transmit beams 506a–506h on the plurality of receive beams 508a–508e.
  • the UE 502 may then perform beam measurements (e.g., measurements of RSRP, SINR, etc. ) of the received CSI-RSs on each of the receive beams 508a–508e to determine the respective beam quality of each of the CSI-RS transmit beams 506a–506h as measured on each of the receive beams 508a–508e.
  • beam measurements e.g., measurements of RSRP, SINR, etc.
  • the UE 502 can then generate and transmit a Layer 1 (L1) measurement report, including the respective beam index (e.g., CSI-RS resource indicator (CRI) ) and beam measurement (e.g., RSRP or SINR) of one or more of the CSI-RS transmit beams 506a–506h on one or more of the receive beams 508a–508e to the base station 504.
  • the base station 504 may then select one or more CSI-RS transmit beams on which to communicate downlink and/or uplink control and/or data with the UE 502.
  • the selected CSI-RS transmit beam (s) have the highest RSRP from the L1 measurement report.
  • Transmission of the L1 measurement report may occur periodically (e.g., as configured via RRC signaling by the gNB) , semi-persistently (e.g., as configured via RRC signaling and activated/deactivated via MAC-CE signaling by the gNB) , or aperiodically (e.g., as triggered by the gNB via DCI) .
  • the UE 502 may further select a corresponding receive beam on the UE 502 for each selected serving CSI-RS transmit beam to form a respective beam pair link (BPL) for each selected serving CSI-RS transmit beam.
  • BPL beam pair link
  • the UE 502 may utilize the beam measurements obtained during the P2 procedure or perform a P3 beam management procedure to obtain new beam measurements for the selected CSI-RS transmit beams to select the corresponding receive beam for each selected transmit beam.
  • the selected receive beam to pair with a particular CSI-RS transmit beam may be the receive beam on which the highest RSRP for the particular CSI-RS transmit beam is measured.
  • the base station 504 may configure the UE 502 to perform SSB beam measurements and provide an L1 measurement report including beam measurements of SSB transmit beams 506a–506h.
  • the base station 504 may configure the UE 502 to perform SSB beam measurements and/or CSI-RS beam measurements for beam failure detection (BFD) , beam failure recovery (BFR) , cell reselection, beam tracking (e.g., for a mobile UE 502 and/or base station 504) , or other beam optimization purposes.
  • BFD beam failure detection
  • BFR beam failure recovery
  • beam tracking e.g., for a mobile UE 502 and/or base station 504
  • other beam optimization purposes e.g., beam optimization purposes.
  • the transmit and receive beams may be selected using an uplink beam management scheme.
  • the UE 502 may be configured to sweep or transmit on each of a plurality of receive beams 508a–508e.
  • the UE 502 may transmit an SRS on each beam in the different beam directions.
  • the base station 504 may be configured to receive the uplink beam reference signals on a plurality of transmit beams 506a–506h. The base station 504 may then perform beam measurements (e.g., RSRP, SINR, etc. ) of the beam reference signals on each of the transmit beams 506a–506h to determine the respective beam quality of each of the receive beams 508a–508e as measured on each of the transmit beams 506a–506h.
  • beam measurements e.g., RSRP, SINR, etc.
  • the base station 504 may then select one or more transmit beams on which to communicate downlink and/or uplink control and/or data with the UE 502.
  • the selected transmit beam (s) may have the highest RSRP.
  • the UE 502 may then select a corresponding receive beam for each selected serving transmit beam to form a respective beam pair link (BPL) for each selected serving transmit beam, using, for example, a P3 beam management procedure, as described above.
  • BPL beam pair link
  • a single CSI-RS transmit beam (e.g., transmit beam 506d) on the base station 504 and a single receive beam (e.g., receive beam 508c) on the UE 502 may form a single BPL used for communication between the base station 504 and the UE 502.
  • multiple CSI-RS transmit beams (e.g., transmit beams 506c, 506d, and 506e) on the base station 504 and a single receive beam (e.g., receive beam 508c) on the UE 502 may form respective BPLs used for communication between the base station 504 and the UE 502.
  • multiple CSI-RS transmit beams (e.g., transmit beams 506c, 506d, and 506e) on the base station 504 and multiple receive beams (e.g., receive beams 508c and 508d) on the UE 502 may form multiple BPLs used for communication between the base station 504 and the UE 502.
  • a first BPL may include transmit beam 506c and receive beam 508c
  • a second BPL may include transmit beam 506d and receive beam 508c
  • a third BPL may include transmit beam 506e and receive beam 508d.
  • the UE 502 may be configured with multiple antenna panels for communication with the base station 504 on multiple UE beams.
  • FIG. 6 is a diagram illustrating a multi-panel UE (MP-UE) 602 according to some aspects.
  • the MP-UE 602 can include multiple antenna panels (e.g., antenna panels 606a and 606b) .
  • the antenna panels 606a and 606b may be located at various positions on the UE 602 to enable the plurality of antenna panels 606a and 606b to cover a sphere surrounding the UE 602.
  • the plurality of antenna panels 606a and 606b (or any one antenna panel among them) may support a plurality of beams (e.g., beams 608a and 608b) .
  • each of the antenna panels 606a and 606b includes a plurality of antenna elements that may be mapped to antenna ports for generation of the beams 608a and 608b.
  • antenna port refers to a logical port (e.g., a beam) over which a signal (e.g., a data stream or layer) may be transmitted.
  • the multiple panels may provide flexibility in selection of antennas for wireless communication with a network entity 604 (e.g., a base station, such as a gNB) .
  • a network entity 604 e.g., a base station, such as a gNB
  • the MP-UE 602 can activate or deactivate one or more panels in order to improve performance and/or reduce battery consumption.
  • the MP-UE 602 can control various operational aspects, for example, maximum permissible exposure (MPE) , power consumption, UL interference management, etc.
  • MPE maximum permissible exposure
  • the panel selection for UL transmission can be initiated by the UE 602 and/or the network entity 604.
  • the MP-UE 602 can use different sets of panels 606a and 606b for downlink and uplink communications. In one example, the MP-UE 602 can use panel 606a for downlink communication and use panel 606b for uplink communication. In other examples, the MP-UE 602 can use both panels 606a and 606b for communication in the same direction. For example, the MP-UE 602 can transmit or receive multiple beams using the panels 606a and 606b.
  • the MP-UE 602 may be configured for simultaneous multi-panel uplink transmission.
  • the UE 602 may simultaneously transmit an uplink control signal (e.g., a PUCCH) on beam 608a using panel 606a and a repetition of the PUCCH (e.g., carrying the same UCI) on beam 608b using panel 606b.
  • the two uplink control signal transmissions may be frequency division multiplexed within a same time resource.
  • FIG. 7 is a diagram illustrating an example of simultaneous transmission of two uplink control resources in a frequency division multiplexing (FDM) manner according to some aspects.
  • an uplink control signal e.g., a PUCCH
  • UCI uplink control information
  • ACK/NACK acknowledgement information
  • CSI channel state information
  • first uplink control resource 704a e.g., first PUCCH resource
  • second uplink control resource 704b e.g., second PUCCH resource
  • a same time resource 702 e.g., a slot or subframe
  • the first PUCCH resource 704a is associated with transmission of the PUCCH on a first uplink beam 706a
  • the second PUCCH resource 704b is associated with transmission of the repetition of the PUCCH on a second uplink beam 706b.
  • Each uplink beam 706a and 706b may be associated with a different antenna panel on the UE.
  • the first uplink beam 706a may be generated by a first antenna panel
  • the second uplink beam 706b may be generated by a second antenna panel.
  • the network entity may provide the UE with a respective transmission configuration indicator (TCI) state for each PUCCH resource 704a and 704b.
  • the TCI states may include, for example, uplink TCI states or joint uplink/downlink TCI states.
  • Each of the first PUCCH resource 704a and the second PUCCH resource 704b includes one or more OFDM symbols in the time domain.
  • the first PUCCH resource 704a includes a first set of subcarriers 710a and the second PUCCH resource 704b includes a second set of subcarriers 710b in the frequency domain.
  • the uplink control signal transmitted on the first PUCCH resource 704a using the first uplink beam 706a is frequency division multiplexed (FDMed) within the time resource 702 with the repetition of the uplink control signal transmitted on the second PUCCH resource 704b using the second uplink beam 706b.
  • each of the first PUCCH resource 704a and the second PUCCH resource 704b includes a same time duration 708 (e.g., same OFDM symbol (s) ) and a same number of resource blocks 718a and 718b.
  • each of the first and second PUCCH resources 704a/704b includes a same number of subcarriers 710a/710b within the time duration 708.
  • the first and second PUCCH resources 704a and 704b may be configured using a single PUCCH resource identifier (ID) .
  • ID PUCCH resource identifier
  • the first and second PUCCH resources 704a and 704b may be linked by a common (same) PUCCH resource ID.
  • the configuration may further include a respective starting resource block 712a and 712b of each of the first and second PUCCH resources 704a and 704b.
  • the configuration may include the starting resource block 712a of the first PUCCH 704a and either a first offset 716a between the starting resource block 712a of the first PUCCH resource 704a and the starting resource block 712b of the second PUCCH resource 704b or a second offset 716b between an ending resource block 714 of the first PUCCH resource 704a and the starting resource block 712b of the second PUCCH resource 704b.
  • the UCI coded bits may be mapped consecutively in two PUCCH resources 704a and 704b of a single PUCCH resource ID.
  • the first and second PUCCH resources 704a and 704b may be configured using respective PUCCH resource IDs (e.g., a first PUCCH resource ID for the first PUCCH resource 704a and a second PUCCH resource ID for the second PUCCH resource 704b) .
  • the first PUCCH resource ID may be linked to the second PUCCH resource ID.
  • the network entity may transmit a radio resource control (RRC) message (e.g., an RRC configuration of the first or second PUCCH resource 704a or 704b) or a medium access control (MAC) –control element (MAC-CE) including an indication of a linkage between the first and second PUCCH resource IDs.
  • RRC radio resource control
  • MAC medium access control
  • MAC-CE control element
  • the first and second PUCCH resources 704a and 704b may have the same time duration 708 and same number of resource blocks or different time durations and/or different numbers of resource blocks.
  • FIG. 8 is a diagram illustrating another example of simultaneous transmission of two uplink control resources in a frequency division multiplexing (FDM) manner according to some aspects.
  • an uplink control signal e.g., a PUCCH
  • UCI uplink control information
  • ACK/NACK acknowledgement information
  • CSI channel state information
  • first uplink control resource 804a e.g., first PUCCH resource
  • second uplink control resource 804b e.g., second PUCCH resource
  • a same time resource 802 e.g., a slot or subframe
  • the first PUCCH resource 804a is associated with transmission of the PUCCH on a first uplink beam 806a
  • the second PUCCH resource 804b is associated with transmission of the repetition of the PUCCH on a second uplink beam 806b.
  • Each uplink beam 806a and 806b may be associated with a different antenna panel on the UE.
  • the first uplink beam 806a may be generated by a first antenna panel
  • the second uplink beam 806b may be generated by a second antenna panel.
  • the network entity may provide the UE with a respective transmission configuration indicator (TCI) state for each PUCCH resource 804a and 804b.
  • the TCI states may include, for example, uplink TCI states or joint uplink/downlink TCI states.
  • Each of the first PUCCH resource 804a and the second PUCCH resource 804b includes one or more OFDM symbols in the time domain.
  • the first PUCCH resource 804a includes a first set of subcarriers 810a and the second PUCCH resource 804b includes a second set of subcarriers 810b in the frequency domain.
  • the uplink control signal transmitted on the first PUCCH resource 804a using the first uplink beam 806a is frequency division multiplexed (FDMed) within the time resource 802 with the repetition of the uplink control signal transmitted on the second PUCCH resource 804b using the second uplink beam 806b.
  • the first PUCCH resource 804a includes a first set of one or more OFDM symbols (e.g., a first time duration 808a) and the second PUCCH resource 804b includes a second set of one or more OFDM symbols (e.g., a second time duration 808b) .
  • the first time duration 808a differs from the second time duration 808b.
  • the first set of subcarriers 810a may include the same number of subcarriers or a different number of subcarriers as the second set of subcarriers 810b.
  • the first PUCCH resource 804a includes a first number of resource blocks 818a and the second PUCCH resource 804b includes a second number of resource blocks 818b, where the first number of resource blocks 818a is different than the second number of resource blocks 818b.
  • the first and second PUCCH resources 804a and 804b shown in FIG. 8 may be configured using respective PUCCH resource IDs (e.g., a first PUCCH resource ID for the first PUCCH resource 804a and a second PUCCH resource ID for the second PUCCH resource 804b) .
  • the first PUCCH resource ID may be linked to the second PUCCH resource ID.
  • the network entity may transmit an RRC message (e.g., an RRC configuration of the first or second PUCCH resource 804a or 804b) or a MAC-CE including an indication of a linkage between the first and second PUCCH resource IDs.
  • FIGs. 9A and 9B are diagrams illustrating examples of configurations 902a and 902b of at least two uplink control resources for simultaneous transmission using at least two corresponding uplink beams according to some aspects.
  • the configurations 902a and 902b shown in FIG. 9 may be radio resource control (RRC) configurations transmitted from the network entity to the UE.
  • RRC radio resource control
  • Each configuration 902a and 902b includes a PUCCH resource identifier (ID) 904.
  • the PUCCH resource ID 904 identifies at least two uplink control resources.
  • the PUCCH resource ID 904 may identify the first PUCCH resource 704a and the second PUCCH resource 704b shown in FIG. 7.
  • each configuration 902a and 902b may further include an indication that simultaneous transmission on respective beams is enabled and a PUCCH format (e.g., format0, format1, format2, format 3, format 4, etc. ) associated with the PUCCH resource ID 904 (e.g., the PUCCH format of the first and second PUCCH resources) .
  • the format may indicate, for example, a number of resource blocks associated with the PUCCH resource ID 904 (e.g., the number of PRBs for each of the first and second PUCCH resources) .
  • the number of PRBs is the same for each of the first and second PUCCH resources, and as such, both PUCCH resources may be configured using a single PUCCH resource ID 904.
  • the number of PRBs associated with the first PUCCH resource or the number of PRBs associated with the second PUCCH resource may be equal to a number of where ⁇ 2 , ⁇ 3 and ⁇ 5 are non-negative integers when the PUCCH resource is transmitted by a transform precoding scheme.
  • the configuration 902a indicates a first starting resource block 906 (starting PRB1) for the first uplink control resource (first PUCCH resource 704a) and a second starting resource block 908 (PRB2) for the second uplink control resource (second PUCCH resource 704b) .
  • the configuration 902b includes the starting resource block 906 of the first uplink control resource (first PUCCH resource 704a) and an offset 910 (e.g., offset PRBs) between the first uplink control resource (first PUCCH resource 704a) and the second uplink control resource (second PUCCH resource 704b) .
  • the offset may indicate a number of resource blocks between the first or last resource block of the first uplink control resource and the starting resource block of the second uplink control resource.
  • An offset configuration indicating how the offset is measured (e.g., between the starting RBs of the uplink control resources or between the ending RB of the first uplink control resource and the starting RB of the second uplink control resource) may be indicated via RRC signaling or may be pre-configured (e.g., by the original equipment manufacturer (OEM) in accordance with one or more standards or specifications) .
  • OEM original equipment manufacturer
  • FIG. 10 is a diagram illustrating an example of a configuration 1002 of an uplink control resource linked to at least one other uplink control resource for simultaneous transmission using at least two corresponding uplink beams according to some aspects.
  • the configuration 1002 shown in FIG. 10 may be an RRC configuration transmitted from the network entity to the UE.
  • the configuration 1002 includes a first PUCCH resource identifier (ID) 1004 identifying a first uplink control resource.
  • ID 1004 may identify the first PUCCH resource 704a shown in FIG. 7 or the first PUCCH resource 804a shown in FIG. 8.
  • the configuration 1002 indicates a first starting resource block 1006 (starting PRB1) for the first uplink control resource (first PUCCH resource 704a or 804a)
  • the configuration 1002 may further include an indication that simultaneous transmission on respective beams is enabled and a PUCCH format (e.g., format0, format1, format2, etc. ) associated with the PUCCH resource ID 1004 (e.g., the PUCCH format of the first PUCCH resource) .
  • the format may indicate, for example, a number of resource blocks associated with the PUCCH resource ID 1004 (e.g., the number of PRBs of the first PUCCH resource) .
  • the configuration 1002 further includes a linkage indication 1008 (linked PUCCH) that indicates that the PUCCH resource ID 1004 of the first uplink control resource (e.g., first PUCCH resource 704a or 804a) is linked to another PUCCH resource ID.
  • the configuration 1002 further includes the PUCCH Resource ID of the other uplink control resource (e.g., second PUCCH resource 704b or 804b) .
  • the second PUCCH resource 704b or 804b may further be configured by a different RRC configuration that includes a linkage indication indicating the linkage between the second PUCCH resource ID and the first PUCCH resource ID.
  • an indication of the linkage between the first PUCCH resource ID and the second PUCCH resource ID may be transmitted via another signal or message, such as a MAC-CE.
  • FIG. 11 is a signaling diagram illustrating exemplary signaling between a UE 1102 and a network entity 1104 for PUCCH repetition in an FDM manner according to some aspects.
  • the network entity 1104 may be any of the network entities (e.g., gNB, eNB, etc. ) or scheduling entities shown in FIGs. 1, 2, 5, and/or 6.
  • the network entity 1104 may be implemented as an aggregated base station or a disaggregated base station. In a disaggregated base station architecture, the network entity 1104 may include one or more of a central unit (CU) , a distributed unit (DU) , or a radio unit (RU) .
  • the UE 1102 may be any of the UEs or scheduled entities shown in FIGs. 1, 2, 5, and/or 6.
  • the network entity 1104 transmits a configuration (e.g., an RRC configuration) of at least two PUCCH resources to the UE 1102.
  • the configuration may include a single PUCCH resource ID identifying and linking a first PUCCH resource associated with a first uplink beam and a second PUCCH resource associated with a second uplink beam.
  • the configuration may further include a first starting resource block of the first PUCCH resource and either a second starting resource block of the second PUCCH resource or an offset between the first PUCCH resource and the second PUCCH resource.
  • the offset may be between the first starting resource block of the first PUCCH resource and the second starting resource block of the second PUCCH resource or between a last resource block of the first PUCCH resource and the second starting block of the second PUCCH resource.
  • the first PUCCH resource and the second PUCCH resource may include a same time duration and a same number of resource blocks.
  • the configuration may include a first PUCCH resource ID identifying the first PUCCH resource (e.g., a first RRC configuration of the first PUCCH resource) and a second PUCCH resource ID identifying the second PUCCH resource (e.g., a second RRC configuration of the second PUCCH resource) .
  • the first PUCCH resource may be associated with a first uplink beam (e.g., uplink TCI state or joint TCI state) and the second PUCCH resource may be associated with a second uplink beam (e.g., uplink TCI state or joint TCI state) .
  • the first PUCCH resource and the second PUCCH resource may include the same time duration and same number of resource blocks or may include different respective time durations and/or different numbers of resource blocks.
  • the network entity 1104 may optionally transmit a linkage indication to the UE 1102 indicating a linkage between the first PUCCH resource and the second PUCCH resource.
  • the network entity 1104 may transmit the linkage indication to the UE 1102 to link the first PUCCH resource ID identifying the first PUCCH resource with the second PUCCH resource ID identifying the second PUCCH resource.
  • the linkage indication may be included within the configuration of the first PUCCH resource ID and the configuration of the second PUCCH resource ID.
  • a first RRC configuration of the first PUCCH resource ID may include a first linkage indication identifying a linkage between the first PUCCH resource ID and the second PUCCH resource ID.
  • a second RRC configuration of the second PUCCH resource ID may include a second linkage indication identifying a linkage between the second PUCCH resource ID and the first PUCCH resource ID.
  • the network entity 1104 may transmit a different signal or message including the linkage indication.
  • the network entity 1104 may transmit a MAC-CE including the linkage indication indicating that the first PUCCH resource ID is linked to the second PUCCH resource ID.
  • the UE 1102 simultaneously transmits a PUCCH and at least one repetition of the PUCCH based on the PUCCH resource configuration and the linkage indication.
  • the UE 1102 may frequency division multiplex the PUCCH and the repetition of the PUCCH within a same time resource (e.g., within a same symbol/slot/subframe) .
  • the PUCCH may be transmitted, for example, using a first uplink beam from a first antenna panel on the UE.
  • the repetition of the PUCCH may be transmitted, for example, using a second uplink beam from a second antenna panel on the UE.
  • the PUCCH and the repetition of the PUCCH may be transmitted within the same time-frequency resources (e.g., same time duration and same resource blocks) or within overlapping time-frequency resources (e.g.., different (overlapping) time durations and/or different (overlapping) resource blocks) .
  • FIG. 12 is a signaling diagram illustrating exemplary signaling between a UE 1202 and a network entity 1204 for PUCCH repetition in an FDM manner according to some aspects.
  • the network entity 1204 may be any of the network entitys (e.g., gNB, eNB, etc. ) or scheduling entities shown in FIGs. 1, 2, 5, and/or 6.
  • the network entity 1204 may be implemented as an aggregated base station or a disaggregated base station. In a disaggregated base station architecture, the network entity 1204 may include one or more of a central unit (CU) , a distributed unit (DU) , or a radio unit (RU) .
  • the UE 1202 may be any of the UEs or scheduled entities shown in FIGs. 1, 2, 5, and/or 6.
  • the network entity 1204 transmits a configuration (e.g., an RRC configuration) of at least two PUCCH resources to the UE 1202.
  • the configuration may include a single PUCCH resource ID identifying and linking a first PUCCH resource associated with a first uplink beam and a second PUCCH resource associated with a second uplink beam.
  • the configuration may further include a first starting resource block of the first PUCCH resource and either a second starting resource block of the second PUCCH resource or an offset between the first PUCCH resource and the second PUCCH resource.
  • the offset may be between the first starting resource block of the first PUCCH resource and the second starting resource block of the second PUCCH resource or between a last resource block of the first PUCCH resource and the second starting block of the second PUCCH resource.
  • the first PUCCH resource and the second PUCCH resource may include a same time duration and a same number of resource blocks.
  • the configuration may include a first PUCCH resource ID identifying the first PUCCH resource (e.g., a first RRC configuration of the first PUCCH resource) and a second PUCCH resource ID identifying the second PUCCH resource (e.g., a second RRC configuration of the second PUCCH resource) .
  • the first PUCCH resource may be associated with a first uplink beam (e.g., uplink TCI state or joint TCI state) and the second PUCCH resource may be associated with a second uplink beam (e.g., uplink TCI state or joint TCI state) .
  • the first PUCCH resource and the second PUCCH resource may include the same time duration and same number of resource blocks or may include different respective time durations and/or different numbers of resource blocks.
  • the first PUCCH resource ID may be linked to the second PUCCH resource ID within the configuration (s) and/or via a linkage indication included in a MAC-CE transmitted from the network entity 1204 to the UE 1202.
  • the UE 1202 identifies a rate-matching behavior of the first PUCCH resource and the second PUCCH resource. For example, the UE 1202 can identify the rate-matching behavior of the first and second PUCCH resources based on a predetermined PUCCH resource of the two linked (first and second) PUCCH resources.
  • the predetermined PUCCH resource may be one of the first and second PUCCH resources that has a lower PUCCH resource ID, a lower beam (TCI state) ID, or an earlier starting symbol.
  • the rate-matching behavior may indicate, for example, a number of UCI bits that may be transmitted within the predetermined PUCCH resource without UCI dropping and/or the number of RBs that will actually be used for transmission of a PUCCH in the predetermined PUCCH resource.
  • the UE 1202 simultaneously transmits the PUCCH and at least one repetition of the PUCCH based on the PUCCH resource configuration, the linkage indication, and the rate-matching behavior. For example, based on the rate-matching behavior of the predetermined PUCCH resource, the UE 1202 may transmit the same number of UCI bits and/or the same number of RBs on the linked PUCCH resource. The UE 1202 may then frequency division multiplex the PUCCH and the repetition of the PUCCH within a same time resource (e.g., within a same symbol/slot/subframe) .
  • the PUCCH may be transmitted, for example, using a first uplink beam from a first antenna panel on the UE.
  • the repetition of the PUCCH may be transmitted, for example, using a second uplink beam from a second antenna panel on the UE.
  • the PUCCH and the repetition of the PUCCH may be transmitted within the same time-frequency resources (e.g., same time duration and same resource blocks) or within overlapping time-frequency resources (e.g.., different (overlapping) time durations and/or different (overlapping) resource blocks) .
  • FIG. 13 is a signaling diagram illustrating exemplary signaling between a UE 1302 and a network entity 1304 for PUCCH repetition in an FDM manner according to some aspects.
  • the network entity 1304 may be any of the network entitys (e.g., gNB, eNB, etc. ) or scheduling entities shown in FIGs. 1, 2, 5, and/or 6.
  • the network entity 1304 may be implemented as an aggregated base station or a disaggregated base station. In a disaggregated base station architecture, the network entity 1304 may include one or more of a central unit (CU) , a distributed unit (DU) , or a radio unit (RU) .
  • the UE 1302 may be any of the UEs or scheduled entities shown in FIGs. 1, 2, 5, and/or 6.
  • the network entity 1304 transmits a configuration (e.g., an RRC configuration) of at least two PUCCH resources to the UE 1302.
  • the configuration may include a single PUCCH resource ID identifying and linking a first PUCCH resource associated with a first uplink beam and a second PUCCH resource associated with a second uplink beam.
  • the configuration may further include a first starting resource block of the first PUCCH resource and either a second starting resource block of the second PUCCH resource or an offset between the first PUCCH resource and the second PUCCH resource.
  • the offset may be between the first starting resource block of the first PUCCH resource and the second starting resource block of the second PUCCH resource or between a last resource block of the first PUCCH resource and the second starting block of the second PUCCH resource.
  • the first PUCCH resource and the second PUCCH resource may include a same time duration and a same number of resource blocks.
  • the configuration may include a first PUCCH resource ID identifying the first PUCCH resource (e.g., a first RRC configuration of the first PUCCH resource) and a second PUCCH resource ID identifying the second PUCCH resource (e.g., a second RRC configuration of the second PUCCH resource) .
  • the first PUCCH resource may be associated with a first uplink beam (e.g., uplink TCI state or joint TCI state) and the second PUCCH resource may be associated with a second uplink beam (e.g., uplink TCI state or joint TCI state) .
  • the first PUCCH resource and the second PUCCH resource may include the same time duration and same number of resource blocks or may include different respective time durations and/or different numbers of resource blocks.
  • the first PUCCH resource ID may be linked to the second PUCCH resource ID within the configuration (s) and/or via a linkage indication included in a MAC-CE transmitted from the network entity 1304 to the UE 1302.
  • the UE 1302 identifies an additional (e.g., third) overlapping PUCCH resource carrying other UCI than the first and second PUCCH resources.
  • the first and second PUCCH resources may carry HARQ-ACK (acknowledgement information) feedback (e.g., the HARQ-ACK feedback and a repetition of the HARQ-ACK feedback)
  • the third PUCCH resource may carry channel state information (CSI) feedback.
  • the third PUCCH resource may overlap in time at least one of the first or second PUCCH resources.
  • the UE 1302 may further identify a multiplexing rule for the first, second, and third PUCCH resources.
  • the UE 1302 may determine whether the two linked PUCCH resources are overlapped with another PUCCH or PUSCH resource or not based on whether one predetermined PUCCH resource of the two link PUCCH resources is overlapped with the other PUCCH or PUSCH resource or not. If the predetermined PUCCH resource overlaps with the other PUCCH or PUSCH resource, the UE 1302 may determine that the two linked PUCCH resources are overlapped with the PUCCH or PUSCH resource.
  • the UE 1302 can identify the multiplexing rule based on a predetermined PUCCH resource of the two linked (first and second) PUCCH resources.
  • the predetermined PUCCH resource may be one of the first and second PUCCH resources that has a lower PUCCH resource ID, a lower beam (TCI state) ID, or an earlier starting symbol.
  • the multiplexing rule may indicate, for example, that the UCI bits of the predetermined PUCCH resource and the third PUCCH resource are combined to produce a combined UCI payload that may be transmitted, for example, on the predetermined PUCCH resource.
  • a repetition of the combined UCI payload may also be transmitted on the other linked PUCCH resource regardless of whether the other linked PUCCH resource overlaps with the third PUCCH resource.
  • the multiplexing rule may determine whether a predetermined PUCCH resource (e.g., the earlier one) of the two link PUCCH resources can satisfy the time requirements for UCI multiplexing or not. In some examples, the multiplexing rule may indicate that the timeline of the predetermined PUCCH resource does not satisfy the multiplexing requirements, and as a result, the UE may cancel the PUCCH transmission for the first and second PUCCH resources.
  • a predetermined PUCCH resource e.g., the earlier one
  • the multiplexing rule may indicate that the timeline of the predetermined PUCCH resource does not satisfy the multiplexing requirements, and as a result, the UE may cancel the PUCCH transmission for the first and second PUCCH resources.
  • the UE 1302 may determine whether the two linked PUCCH resources are overlapped with other PUCCH or PUSCH resource or not based on whether any of the two link PUCCH resources is overlapped with the other PUCCH or PUSCH resource. If any of the two link PUCCH resources overlaps with the other PUCCH or PUSCH resources, the UE 1302 may determine that the two linked PUCCH resources are overlapped with the PUCCH or PUSCH resource.
  • the UE 1302 can optionally simultaneously transmit the PUCCH and at least one repetition of the PUCCH based on the PUCCH resource configuration, the linkage indication, and the multiplexing rule. For example, based on the multiplexing rule, the UE 1302 may transmit the combined UCI payload on the first PUCCH resource and a repetition of the combined UCI payload on the second PUCCH resource. As another example, the UE 1302 may cancel the PUCCH transmissions on the first and second PUCCH resources (e.g., not transmit the PUCCH and the repetition of the PUCCH) .
  • the UE 1302 may frequency division multiplex the PUCCH and the repetition of the PUCCH within a same time resource (e.g., within a same symbol/slot/subframe) .
  • the PUCCH may be transmitted, for example, using a first uplink beam from a first antenna panel on the UE.
  • the repetition of the PUCCH may be transmitted, for example, using a second uplink beam from a second antenna panel on the UE.
  • the PUCCH and the repetition of the PUCCH may be transmitted within the same time-frequency resources (e.g., same time duration and same resource blocks) or within overlapping time-frequency resources (e.g.., different (overlapping) time durations and/or different (overlapping) resource blocks) .
  • FIG. 14 is a diagram illustrating an example of a multiplexing rule according to some aspects.
  • the first and second PUCCH resources 1404a and 1404b are linked PUCCH resources for PUCCH repetition on different uplink beams in an FDM manner.
  • the first and second PUCCH resources 1404a and 1404b may be configured to carry HARQ-ACK (A/N) feedback.
  • A/N HARQ-ACK
  • the third PUCCH resource 1406 overlaps the first PUCCH resource 1404a and is configured to carry different UCI than the first and second PUCCH resources 1404a and 1404b.
  • the third PUCCH resource 1406 may be configured to carry CSI feedback (CSI) .
  • CSI CSI feedback
  • the UE may be configured to identify a multiplexing rule for the third PUCCH resource 1406 and the first/second linked PUCCH resources 1404a and 1404b.
  • the UE may determine the multiplexing rule using a predetermined PUCCH resource of the first/second linked PUCCH resources 1404a and 1404b.
  • the predetermined PUCCH resource may be, for example, the first PUCCH resource 1404a having an earlier starting symbol than the second PUCCH resource 1404b.
  • the multiplexing rule may indicate that the UCI bits associated with the third PUCCH resource 1406 should be combined with the UCI bits associated with the first PUCCH resource 1404a to produce a combined UCI payload (A/N + CSI) that is transmitted on the first PUCCH resource 1404a. Since the second PUCCH resource 1404b is linked with the first PUCCH resource 1404a for PUCCH repetition, the PUCCH carrying the combined UCI payload (A/N + CSI) is transmitted on the PUCCH resource 1404a and a repetition of the PUCCH carrying the combined UCI payload is transmitted on PUCCH resource 1404b. In addition, the third PUCCH resource 1406 may be canceled.
  • FIG. 15 is a diagram illustrating an example of another multiplexing rule according to some aspects.
  • the first and second PUCCH resources 1504a and 1504b are linked PUCCH resources for PUCCH repetition on different uplink beams in an FDM manner.
  • the first and second PUCCH resources 1504a and 1504b may be configured to carry HARQ-ACK (A/N) feedback.
  • the third PUCCH resource 1506 overlaps the first PUCCH resource 1504a and is configured to carry different UCI than the first and second PUCCH resources 1504a and 1504b.
  • the third PUCCH resource 1506 may be configured to carry CSI feedback (CSI) .
  • CSI CSI feedback
  • the UE may be configured to identify a multiplexing rule for the third PUCCH resource 1506 and the first/second linked PUCCH resources 1504a and 1504b.
  • the UE may determine the multiplexing rule using a predetermined PUCCH resource of the first/second linked PUCCH resources 1504a and 1504b.
  • the predetermined PUCCH resource may be, for example, the first PUCCH resource 1504a having an earlier starting symbol than the second PUCCH resource 1504b.
  • the multiplexing rule may indicate whether a UCI multiplexing timeline 1508 may be satisfied to enable multiplexing of the UCI bits (e.g., CSI) of the third PUCCH resource 1506 with the first PUCCH resource 1504a.
  • the third PUCCH resource 1506 may begin at time t 1
  • the first PUCCH resource 1504a may begin at time t 0 .
  • the difference between time t 0 and t 1 may be referred to as the multiplexing timeline 1508.
  • the first PUCCH resource 1504a satisfies the multiplexing timeline 1508 and the UCI bits associated with the third PUCCH resource 1506 can be combined with the UCI bits associated with the first PUCCH resource 1504a to produce a combined UCI payload (A/N + CSI) that is transmitted on the first PUCCH resource 1504a.
  • A/N + CSI combined UCI payload
  • the PUCCH carrying the combined UCI payload (A/N + CSI) is transmitted on the PUCCH resource 1504a and a repetition of the PUCCH carrying the combined UCI payload is transmitted on PUCCH resource 1504b.
  • the multiplexing rule may further indicate that the first, second, and third PUCCH resources 1504a, 1504b, and 1506 may be canceled, thus preventing transmission of the PUCCH and repetition of the PUCCH.
  • FIG. 16 is a block diagram illustrating an example of a hardware implementation of a user equipment (UE) 1600 employing a processing system 1614 according to some aspects.
  • the UE 1600 may be any of the UEs or other scheduled entities illustrated in any one or more of FIGs. 1, 2, 5, 6, and/or 11–13.
  • an element, or any portion of an element, or any combination of elements may be implemented with a processing system 1614 that includes one or more processors, such as processor 1604.
  • processors 1604 include microprocessors, microcontrollers, digital signal processors (DSPs) , field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure.
  • the UE 1600 may be configured to perform any one or more of the functions described herein. That is, the processor 1604, as utilized in the UE 1600, may be used to implement any one or more of the methods or processes described and illustrated, for example, in FIGs. 11–13 or 17.
  • the processor 1604 may in some instances be implemented via a baseband or modem chip and in other implementations, the processor 1604 may include a number of devices distinct and different from a baseband or modem chip (e.g., in such scenarios as may work in concert to achieve examples discussed herein) . And as mentioned above, various hardware arrangements and components outside of a baseband modem processor can be used in implementations, including RF-chains, power amplifiers, modulators, buffers, interleavers, adders/summers, etc.
  • the processing system 1614 may be implemented with a bus architecture, represented generally by the bus 1602.
  • the bus 1602 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 1614 and the overall design constraints.
  • the bus 1602 communicatively couples together various circuits, including one or more processors (represented generally by the processor 1604) , a memory 1605, and computer-readable media (represented generally by the computer-readable medium 1606) .
  • the bus 1602 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore, are not described any further.
  • a bus interface 1608 provides an interface between the bus 1602 and a transceiver 1610.
  • the transceiver 1610 may be, for example, a wireless transceiver.
  • the transceiver 1610 provides a means for communicating with various other apparatus over a transmission medium (e.g., air interface) .
  • the transceiver 1610 may further be coupled to one or more antenna panels 1620 configured to generate one or more uplink transmit/downlink receive beams.
  • the bus interface 1608 further provides an interface between the bus 1602 and a user interface 1612 (e.g., keypad, display, touch screen, speaker, microphone, control features, etc. ) .
  • a user interface 1612 may be omitted in some examples.
  • the computer-readable medium 1606 may be a non-transitory computer-readable medium.
  • a non-transitory computer-readable medium includes, by way of example, a magnetic storage device (e.g., hard disk, floppy disk, magnetic strip) , an optical disk (e.g., a compact disc (CD) or a digital versatile disc (DVD) ) , a smart card, a flash memory device (e.g., a card, a stick, or a key drive) , a random access memory (RAM) , a read only memory (ROM) , a programmable ROM (PROM) , an erasable PROM (EPROM) , an electrically erasable PROM (EEPROM) , a register, a removable disk, and any other suitable medium for storing software and/or instructions that may be accessed and read by a computer.
  • a magnetic storage device e.g., hard disk, floppy disk, magnetic strip
  • an optical disk e.g.
  • the computer-readable medium 1606 may reside in the processing system 1614, external to the processing system 1614, or distributed across multiple entities including the processing system 1614.
  • the computer-readable medium 1606 may be embodied in a computer program product.
  • a computer program product may include a computer-readable medium in packaging materials.
  • the computer-readable medium 1606 may be part of the memory 1605.
  • the computer-readable medium 1606 may be implemented on an article of manufacture, which may further include one or more other elements or circuits, such as the processor 1604 and/or memory 1605.
  • the computer-readable medium 1606 may store computer-executable code (e.g., software) .
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures/processes, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • processor 1604 may be responsible for managing the bus 1602 and general processing, including the execution of the software (e.g., instructions or computer-executable code) stored on the computer-readable medium 1606.
  • the software when executed by the processor 1604, causes the processing system 1614 to perform the various processes and functions described herein for any particular apparatus.
  • the computer-readable medium 1606 and/or the memory 1605 may also be used for storing data that may be manipulated by the processor 1604 when executing software.
  • the memory 1605 may store an uplink control configuration 1616 of linked uplink control resources (e.g., PUCCH resources) .
  • the processor 1604 may include circuitry configured for various functions.
  • the processor 1604 may include communication and processing circuitry 1642 configured to communicate with a network entity (e.g., a base station, such as a gNB or eNB) .
  • the communication and processing circuitry 1642 may include one or more hardware components that provide the physical structure that performs processes related to wireless communication (e.g., signal reception and/or signal transmission) and signal processing (e.g., processing a received signal and/or processing a signal for transmission) .
  • the communication and processing circuitry 1642 may include one or more transmit/receive chains.
  • the communication and processing circuitry 1642 may obtain information from a component of the UE 1600 (e.g., from the transceiver 1610 that receives the information via radio frequency signaling or some other type of signaling suitable for the applicable communication medium) , process (e.g., decode) the information, and output the processed information.
  • the communication and processing circuitry 1642 may output the information to another component of the processor 1604, to the memory 1605, or to the bus interface 1608.
  • the communication and processing circuitry 1642 may receive one or more of signals, messages, other information, or any combination thereof.
  • the communication and processing circuitry 1642 may receive information via one or more channels.
  • the communication and processing circuitry 1642 may include functionality for a means for receiving.
  • the communication and processing circuitry 1642 may include functionality for a means for processing, including a means for demodulating, a means for decoding, etc.
  • the communication and processing circuitry 1642 may obtain information (e.g., from another component of the processor 1604, the memory 1605, or the bus interface 1608) , process (e.g., modulate, encode, etc. ) the information, and output the processed information.
  • the communication and processing circuitry 1642 may output the information to the transceiver 1610 (e.g., that transmits the information via radio frequency signaling or some other type of signaling suitable for the applicable communication medium) .
  • the communication and processing circuitry 1642 may send one or more of signals, messages, other information, or any combination thereof.
  • the communication and processing circuitry 1642 may send information via one or more channels.
  • the communication and processing circuitry 1642 may include functionality for a means for sending (e.g., a means for transmitting) . In some examples, the communication and processing circuitry 1642 may include functionality for a means for generating, including a means for modulating, a means for encoding, etc.
  • the communication and processing circuitry 1642 may be configured to receive the configuration 1616 of at least two uplink control resources that are linked together via the transceiver 1610. Each of the at least two uplink control resources may further be associated with a different respective uplink beam. For example, each uplink beam may be generated by a different respective antenna panel 1620.
  • the configuration 1616 may be an RRC configuration received by the communication and processing circuitry 1642. In some examples, the configuration 1616 may include a single configuration identifying the at least two uplink control resources.
  • the configuration 1616 may include a physical uplink control channel (PUCCH) resource identifier (ID) identifying a first uplink control resource of the at least two uplink control resources associated with a first uplink beam and a second uplink control resource of the at least two uplink control resources associated with a second uplink beam.
  • PUCCH physical uplink control channel
  • ID resource identifier
  • the configuration 1616 may include multiple configurations, each including a respective PUCCH resource ID identifying a respective one of the at least two uplink resources.
  • the configuration 1616 may include a first physical uplink control channel (PUCCH) resource identifier (ID) identifying a first PUCCH resource of the at least two uplink control resources associated with a first uplink beam and a second PUCCH resource ID identifying a second PUCCH resource of the at least two uplink control resources associated with a second uplink beam.
  • the first PUCCH resource ID may be linked to the second PUCCH resource ID.
  • the communication and processing circuitry 1642 may further be configured to receive an indication of a linkage between the first PUCCH resource ID and the second PUCCH resource ID via a MAC-CE or an RRC message.
  • the indication may be included in each RRC configuration 1616 of each of the PUCCH resources.
  • the communication and processing circuitry 1642 may further be configured to frequency division multiplex an uplink control signal (e.g., a PUCCH) and at least one repetition of the uplink control signal within a same time resource (e.g., a symbol, slot, or subframe) .
  • the communication and processing circuitry 1642 may further be configured to transmit the uplink control signal and the at least one repetition of the uplink control signal from different respective antenna panels 1620 of the UE.
  • the communication and processing circuitry 1642 may further be configured to execute communication and processing instructions (software) 1652 stored on the computer-readable medium 1606 to implement one or more functions described herein.
  • the processor 1604 may further include uplink control circuitry 1644, configured to generate the uplink control signal (e.g., a PUCCH including UCI) and to operate together with the communication and processing circuitry 1642 to frequency division multiplex the uplink control signal and the at least one repetition of the uplink control signal based on the configuration 1616.
  • the configuration includes the single PUCCH resource ID identifying the first uplink control resource and the second uplink control resource.
  • the first uplink control resource and the second uplink control resource may include a same time duration and a same number of resource blocks.
  • the configuration may then further indicate a first starting resource block of the first uplink control resource and a second starting resource block of the second uplink control resource or a first starting resource block of the first uplink control resource and an offset indicating a second starting resource block of the second uplink control resource.
  • the offset is based on the first starting resource block or a last resource block of the first uplink control resource.
  • the configuration may include the first PUCCH resource ID and the second PUCCH resource ID linked to the first PUCCH resource ID.
  • the first PUCCH resource and the second PUCCH resource may include a same time duration and a same number of resource blocks or at least one of different respective time durations or different respective numbers of resource blocks.
  • the uplink control circuitry 1644 may further be configured to identify a rate-matching behavior of the at least two uplink control resources based on a predetermined uplink control resource of the at least two uplink control resources.
  • the predetermined uplink control resource may include a lower resource identifier (ID) (e.g., PUCCH resource ID) , a lower beam ID (e.g., TCI state ID) , or an earlier starting symbol than other ones of the at least two uplink control resources.
  • ID lower resource identifier
  • the uplink control circuitry 1644 may further be configured to operate together with the communication and processing circuitry 1642 to rate-match each of the at least two uplink control resources using the rate-matching behavior of the predetermined uplink control resource.
  • the uplink control circuitry 1644 may further be configured to identify a multiplexing rule for the at least two uplink control resources and at least one additional uplink control resource carrying different uplink control information (UCI) than the at least two uplink control resources based on a predetermined uplink control resource of the at least two uplink control resources.
  • the predetermined uplink control resource may include a lower resource identifier (ID) (e.g., PUCCH resource ID) , a lower beam ID (e.g., TCI state ID) , or an earlier starting symbol than other ones of the at least two uplink control resources.
  • ID lower resource identifier
  • TCI state ID e.g., TCI state ID
  • the uplink control circuitry 1644 may then further be configured to combine the payload (s) of the uplink control signal (s) (e.g., additional PUCCH (s) ) scheduled to be transmitted in the at least one additional uplink control resource with the payload of the uplink control signal scheduled to be transmitted in the predetermined PUCCH resource to produce a combined uplink control signal based on the multiplexing rule.
  • the uplink control circuitry 1644 may further be configured to operate together with the communication and processing circuitry 1642 to frequency division multiplex the combined uplink control signal and at least one repetition of the combined uplink control signal based on the configuration 1616.
  • the combined uplink control signal may be transmitted within the first uplink control resource (first PUCCH resource) and the repetition of the combined uplink control signal may be transmitted within the second uplink control resource (second PUCCH resource) .
  • the uplink control circuitry 1644 may be configured to cancel the at least two uplink resources based on the multiplexing rule.
  • the uplink control circuitry 1644 may further be configured to execute uplink control instructions (software) 1654 stored on the computer-readable medium 1606 to implement one or more functions described herein.
  • FIG. 17 is a flow chart illustrating an exemplary method 1700 of uplink control repetition in an FDM manner according to some aspects. As described below, some or all illustrated features may be omitted in a particular implementation within the scope of the present disclosure, and some illustrated features may not be required for implementation of all aspects. In some examples, the method 1700 may be performed by the UE 1600, as described herein and illustrated in FIG. 16, by a processor or processing system, or by any suitable means for carrying out the described functions.
  • the UE may receive a configuration of at least two uplink control resources.
  • the at least two uplink control resources are linked together and each of the at least two uplink control resources is associated with a different respective uplink beam of the UE.
  • the configuration is a radio resource control (RRC) configuration.
  • RRC radio resource control
  • the communication and processing circuitry 1642 together with the transceiver 1610, shown and described above in connection with FIG. 16, may provide a means for receiving the configuration.
  • the UE may frequency division multiplex an uplink control signal and at least one repetition of the uplink control signal within a same time resource based on the configuration of the at least two uplink control resources.
  • the UE may transmit the uplink control signal and the at least one repetition of the uplink control signal from different respective antenna panels of the UE.
  • the configuration includes a physical uplink control channel (PUCCH) resource identifier (ID) identifying a first uplink control resource of the at least two uplink control resources associated with a first uplink beam and a second uplink control resource of the at least two uplink control resources associated with a second uplink beam.
  • the first uplink control resource and the second uplink control resource include a same time duration and a same number of resource blocks.
  • the configuration further indicates a first starting resource block of the first uplink control resource and a second starting resource block of the second uplink control resource.
  • the configuration further indicates a first starting resource block of the first uplink control resource and an offset indicating a second starting resource block of the second uplink control resource.
  • the offset is based on the first starting resource block or a last resource block of the first uplink control resource.
  • the configuration includes a first physical uplink control channel (PUCCH) resource identifier (ID) identifying a first PUCCH resource of the at least two uplink control resources associated with a first uplink beam and a second PUCCH resource ID identifying a second PUCCH resource of the at least two uplink control resources associated with a second uplink beam, where the first PUCCH resource ID is linked to the second PUCCH resource ID.
  • the UE may further receive an indication of a linkage between the first PUCCH resource ID and the second PUCCH resource ID via a medium access control (MAC) control element (MAC-CE) or a radio resource control (RRC) message.
  • MAC medium access control
  • RRC radio resource control
  • the first PUCCH resource and the second PUCCH resource include a same time duration and a same number of resource blocks. In other examples, the first PUCCH resource and the second PUCCH resource include at least one of different respective time durations or different respective numbers of resource blocks.
  • the UE may further rate-match each of the at least two uplink control resources using a rate-matching behavior of a predetermined uplink control resource of the at least two uplink control resources.
  • the predetermined uplink control resource includes a lower resource identifier (ID) , a lower beam ID, or an earlier starting symbol than other ones of the at least two uplink control resources.
  • the UE may further identify a multiplexing rule for the at least two uplink control resources and at least one additional uplink control resource carrying different uplink control information (UCI) than the at least two uplink control resources based on a predetermined uplink control resource of the at least two uplink control resources.
  • the predetermined uplink control resource includes a lower resource identifier (ID) , a lower beam ID, or an earlier starting symbol than other ones of the at least two uplink control resources.
  • the uplink control circuitry 1644 together with the communication and processing circuitry 1642 and the transceiver 1610, shown and described above in connection with FIG. 16, may provide a means for frequency division multiplexing the uplink control signal and the at least one repetition of the uplink control signal within the same time resource based on the configuration of the at least two uplink control resources.
  • the UE 1600 includes means for receiving a configuration of at least two uplink control resources, the at least two uplink control resources being linked together, each of the at least two uplink control resources being associated with a different respective uplink beam of the UE.
  • the UE may include means for frequency division multiplexing an uplink control signal and at least one repetition of the uplink control signal within a same time resource based on the configuration of the at least two uplink control resources.
  • the aforementioned means may be the processor 1604 shown in FIG. 16 configured to perform the functions recited by the aforementioned means.
  • the aforementioned means may be a circuit or any apparatus configured to perform the functions recited by the aforementioned means.
  • circuitry included in the processor 1604 is merely provided as an example, and other means for carrying out the described functions may be included within various aspects of the present disclosure, including but not limited to the instructions stored in the computer-readable storage medium 1606, or any other suitable apparatus or means described in any one of the FIGs. 1, 2, 5, and/or 6, and utilizing, for example, the processes and/or algorithms described herein in relation to FIGs. 11–13 and 17.
  • FIG. 18 is a block diagram illustrating an example of a hardware implementation of a network entity 1800 employing a processing system 1814 according to some aspects.
  • the network entity 1800 may be, for example, any base station (e.g., gNB, eNB) or other scheduling entity as illustrated in any one or more of FIGs. 1, 2, 5, 6, and/or 11–13.
  • the network entity 1800 may further be implemented in an aggregated or monolithic base station architecture, or in a disaggregated base station architecture, and may include one or more of a central unit (CU) , a distributed unit (DU) , a radio unit (RU) , a Near-Real Time (Near-RT) RAN Intelligent Controller (RIC) , or a Non-Real Time (Non-RT) RIC.
  • CU central unit
  • DU distributed unit
  • RU radio unit
  • RIC Near-Real Time
  • Non-RT Non-Real Time
  • an element, or any portion of an element, or any combination of elements may be implemented with a processing system 1814 that includes one or more processors, such as processor 1804.
  • the processing system 1814 may be substantially the same as the processing system 1414 as shown and described above in connection with FIG. 14, including a bus interface 1808, a bus 1802, a memory 1805, a processor 1804, and a computer-readable medium 1806.
  • the network entity 1800 may include an optional user interface 1812 and a communication interface 1810, substantially similar to those described above in FIG. 16. Accordingly, their descriptions will not be repeated for the sake of brevity.
  • the communication interface 1810 may provide an interface (e.g., wireless or wired) between the network entity 1800 and a plurality of transmission and reception points (TRPs) , a core network node, and/or a plurality of UEs.
  • TRPs transmission and reception points
  • the communication interface 1810 may include a wireless transceiver.
  • the processor 1804, as utilized in the network entity 1800, may be used to implement any one or more of the processes described below.
  • the memory 1805 may store an uplink control configuration (config) 1816 of at least two uplink control resources generated by the network entity 1800 for a UE.
  • config uplink control configuration
  • the processor 1804 may include communication and processing circuitry 1842 configured for various functions, including, for example, communicating with one or more UEs or other scheduled entities, or a core network node.
  • the communication and processing circuitry 1842 may communicate with one or more UEs via one or more TRPs associated with the network entity 1800.
  • the communication and processing circuitry 1842 may include one or more hardware components that provide the physical structure that performs processes related to wireless communication (e.g., signal reception and/or signal transmission) and signal processing (e.g., processing a received signal and/or processing a signal for transmission) .
  • the communication and processing circuitry 1842 may be configured to process and transmit downlink traffic and downlink control and receive and process uplink traffic and uplink control.
  • the communication and processing circuitry 1842 may be configured to provide the configuration 1816 of at least two uplink control resources linked together to the UE. Each of the at least two uplink control resources is associated with a different respective uplink beam of the UE.
  • the communication and processing circuitry 1842 may be configured to provide an RRC message including the configuration 1816 to the UE via the communication interface 1810.
  • the communication and processing circuitry 1842 may further be configured to receive an uplink control signal and at least one repetition of the uplink control signal within a same time resource and different frequency resources based on the configuration of the at least two uplink resources.
  • the communication and processing circuitry 1842 may further be configured to provide an indication of a linkage between the first PUCCH resource ID and the second PUCCH resource ID to the UE via a MAC-CE or an RRC message.
  • the indication may be included in each RRC configuration 1816 of each of the PUCCH resources.
  • the communication and processing circuitry 1842 may further be configured to execute communication and processing instructions (software) 1852 stored on the computer-readable medium 1806 to implement one or more functions described herein.
  • the processor 1804 may include other circuitry configured for various functions.
  • the processor 1804 may include uplink control circuitry 1844, configured to generate the uplink control configuration (s) 1816 and to store the uplink control configuration (s) 1816 within, for example, memory 1805.
  • the configuration 1816 may include a single configuration identifying the at least two uplink control resources.
  • the configuration 1816 may include a physical uplink control channel (PUCCH) resource identifier (ID) identifying a first uplink control resource of the at least two uplink control resources associated with a first uplink beam and a second uplink control resource of the at least two uplink control resources associated with a second uplink beam.
  • PUCCH physical uplink control channel
  • ID resource identifier
  • the first uplink control resource and the second uplink control resource may include a same time duration and a same number of resource blocks.
  • the configuration may then further indicate a first starting resource block of the first uplink control resource and a second starting resource block of the second uplink control resource or a first starting resource block of the first uplink control resource and an offset indicating a second starting resource block of the second uplink control resource.
  • the offset is based on the first starting resource block or a last resource block of the first uplink control resource.
  • the configuration 1816 may include multiple configurations, each including a respective PUCCH resource ID identifying a respective one of the at least two uplink resources.
  • the configuration 1816 may include a first physical uplink control channel (PUCCH) resource identifier (ID) identifying a first PUCCH resource of the at least two uplink control resources associated with a first uplink beam and a second PUCCH resource ID identifying a second PUCCH resource of the at least two uplink control resources associated with a second uplink beam.
  • the first PUCCH resource ID may be linked to the second PUCCH resource ID.
  • the first PUCCH resource and the second PUCCH resource may include a same time duration and a same number of resource blocks or at least one of different respective time durations or different respective numbers of resource blocks.
  • the uplink control circuitry 1844 may further be configured to execute uplink control instructions (software) 1854 stored on the computer-readable medium 1806 to implement one or more functions described herein.
  • FIG. 19 is a flow chart illustrating an exemplary method 1900 of uplink control repetition in an FDM manner according to some aspects. As described below, some or all illustrated features may be omitted in a particular implementation within the scope of the present disclosure, and some illustrated features may not be required for implementation of all aspects. In some examples, the method 1900 may be performed by the network entity 1800, as described herein and illustrated in FIG. 18, by a processor or processing system, or by any suitable means for carrying out the described functions.
  • the network entity may provide a configuration of at least two uplink control resources.
  • the at least two uplink control resources are linked together and each of the at least two uplink control resources is associated with a different respective uplink beam of the UE.
  • the configuration is a radio resource control (RRC) configuration.
  • RRC radio resource control
  • the communication and processing circuitry 1842 together with the communication interface 1810, shown and described above in connection with FIG. 18, may provide a means for providing the configuration.
  • the network entity may receive an uplink control signal and at least one repetition of the uplink control signal frequency division multiplexed with the uplink control signal within a same time resource based on the configuration of the at least two uplink control resources.
  • the configuration includes a physical uplink control channel (PUCCH) resource identifier (ID) identifying a first uplink control resource of the at least two uplink control resources associated with a first uplink beam and a second uplink control resource of the at least two uplink control resources associated with a second uplink beam.
  • the first uplink control resource and the second uplink control resource include a same time duration and a same number of resource blocks.
  • the configuration further indicates a first starting resource block of the first uplink control resource and a second starting resource block of the second uplink control resource.
  • the configuration further indicates a first starting resource block of the first uplink control resource and an offset indicating a second starting resource block of the second uplink control resource.
  • the offset is based on the first starting resource block or a last resource block of the first uplink control resource.
  • the configuration includes a first physical uplink control channel (PUCCH) resource identifier (ID) identifying a first PUCCH resource of the at least two uplink control resources associated with a first uplink beam and a second PUCCH resource ID identifying a second PUCCH resource of the at least two uplink control resources associated with a second uplink beam, where the first PUCCH resource ID is linked to the second PUCCH resource ID.
  • the network entity may further transmit an indication of a linkage between the first PUCCH resource ID and the second PUCCH resource ID via a medium access control (MAC) control element (MAC-CE) or a radio resource control (RRC) message.
  • MAC medium access control
  • RRC radio resource control
  • the first PUCCH resource and the second PUCCH resource include a same time duration and a same number of resource blocks. In other examples, the first PUCCH resource and the second PUCCH resource include at least one of different respective time durations or different respective numbers of resource blocks.
  • the uplink control circuitry 1844 together with the communication and processing circuitry 1842 and the communication interface 1810, shown and described above in connection with FIG. 18, may provide a means for receiving the uplink control signal and the repetition of the uplink control signal frequency division multiplexed with the uplink control signal within the same time resource based on the configuration of the at least two uplink control resources.
  • the network entity 1800 includes means for providing a configuration of at least two uplink control resources to a UE, the at least two uplink control resources being linked together, each of the at least two uplink control resources being associated with a different respective uplink beam of the UE.
  • the network entity may include means for receiving an uplink control signal and at least one repetition of the uplink control signal frequency division multiplexed with the uplink control signal within a same time resource based on the configuration of the at least two uplink control resources.
  • the aforementioned means may be the processor 1804 shown in FIG. 18 configured to perform the functions recited by the aforementioned means.
  • the aforementioned means may be a circuit or any apparatus configured to perform the functions recited by the aforementioned means.
  • circuitry included in the processor 1804 is merely provided as an example, and other means for carrying out the described functions may be included within various aspects of the present disclosure, including but not limited to the instructions stored in the computer-readable storage medium 1806, or any other suitable apparatus or means described in any one of the FIGs. 1, 2, 5, and/or 6, and utilizing, for example, the processes and/or algorithms described herein in relation to FIGs. 11–13 and 19.
  • a method for wireless communication at a user equipment (UE) comprising: receiving a configuration of at least two uplink control resources, the at least two uplink control resources being linked together, each of the at least two uplink control resources being associated with a different respective uplink beam of the UE; and frequency division multiplexing an uplink control signal and at least one repetition of the uplink control signal within a same time resource based on the configuration of the at least two uplink control resources.
  • Aspect 2 The method of aspect 1, wherein the configuration comprises a physical uplink control channel (PUCCH) resource identifier (ID) identifying a first uplink control resource of the at least two uplink control resources associated with a first uplink beam and a second uplink control resource of the at least two uplink control resources associated with a second uplink beam.
  • PUCCH physical uplink control channel
  • ID resource identifier
  • Aspect 3 The method of aspect 2, wherein the first uplink control resource and the second uplink control resource comprise a same time duration and a same number of resource blocks.
  • Aspect 4 The method of aspect 3, wherein the configuration further indicates a first starting resource block of the first uplink control resource and a second starting resource block of the second uplink control resource.
  • Aspect 5 The method of aspect 3, wherein the configuration further indicates a first starting resource block of the first uplink control resource and an offset indicating a second starting resource block of the second uplink control resource.
  • Aspect 6 The method of aspect 5, wherein the offset is based on the first starting resource block or a last resource block of the first uplink control resource.
  • Aspect 7 The method of aspect 1, wherein the configuration comprises a first physical uplink control channel (PUCCH) resource identifier (ID) identifying a first PUCCH resource of the at least two uplink control resources associated with a first uplink beam and a second PUCCH resource ID identifying a second PUCCH resource of the at least two uplink control resources associated with a second uplink beam, the first PUCCH resource ID being linked to the second PUCCH resource ID.
  • PUCCH physical uplink control channel
  • ID resource identifier
  • Aspect 8 The method of aspect 7, further comprising: receiving an indication of a linkage between the first PUCCH resource ID and the second PUCCH resource ID via a medium access control (MAC) control element (MAC-CE) or a radio resource control (RRC) message.
  • MAC medium access control
  • RRC radio resource control
  • Aspect 9 The method of aspect 7 or 8, wherein the first PUCCH resource and the second PUCCH resource comprise a same time duration and a same number of resource blocks.
  • Aspect 10 The method of aspect 7 or 8, wherein the first PUCCH resource and the second PUCCH resource comprise at least one of different respective time durations or different respective numbers of resource blocks.
  • Aspect 11 The method of any of aspects 1 through 10, further comprising: rate-matching each of the at least two uplink control resources using a rate-matching behavior of a predetermined uplink control resource of the at least two uplink control resources, the predetermined uplink control resource comprising a lower resource identifier (ID) , a lower beam ID, or an earlier starting symbol than other ones of the at least two uplink control resources.
  • ID resource identifier
  • Aspect 12 The method of any of aspects 1 through 11, further comprising: identifying a multiplexing rule for the at least two uplink control resources and at least one additional uplink control resource carrying different uplink control information (UCI) than the at least two uplink control resources based on a predetermined uplink control resource of the at least two uplink control resources, the predetermined uplink control resource comprising a lower resource identifier (ID) , a lower beam ID, or an earlier starting symbol than other ones of the at least two uplink control resources.
  • UCI uplink control information
  • Aspect 13 The method of any of aspects 1 through 12, wherein the configuration comprises a radio resource control (RRC) configuration.
  • RRC radio resource control
  • Aspect 14 The method of any of aspects 1 through 13, wherein the frequency division multiplexing the uplink control signal and the at least one repetition of the uplink control signal within the same time resource based on the configuration of the at least two uplink control resources further comprises: transmitting the uplink control signal and the at least one repetition of the uplink control signal from different respective antenna panels of the UE.
  • a user equipment configured for wireless communication comprising a transceiver, a memory, and a processor coupled to the transceiver and the memory, the processor being configured to perform a method of any one of aspects 1–14.
  • a UE configured for wireless communication comprising means for performing a method of any one of aspects 1–14.
  • Aspect 17 A non-transitory computer-readable medium having stored therein instructions executable by one or more processors of a UE to perform a method of any one of aspects 1–14.
  • a method for wireless communication at a network entity comprising: providing a configuration of at least two uplink control resources to a user equipment (UE) , the at least two uplink control resources being linked together, each of the at least two uplink control resources being associated with a different respective uplink beam of the UE; and receiving an uplink control signal and at least one repetition of the uplink control signal frequency division multiplexed with the uplink control signal within a same time resource based on the at least two uplink control resources.
  • UE user equipment
  • Aspect 19 The method of aspect 18, wherein the configuration comprises a physical uplink control channel (PUCCH) resource identifier (ID) identifying a first uplink control resource of the at least two uplink control resources associated with a first uplink beam and a second uplink control resource of the at least two uplink control resources associated with a second uplink beam.
  • PUCCH physical uplink control channel
  • ID resource identifier
  • Aspect 20 The method of aspect 19, wherein the first uplink control resource and the second uplink control resource comprise a same time duration and a same number of resource blocks.
  • Aspect 21 The method of aspect 20, wherein the configuration further indicates a first starting resource block of the first uplink control resource and a second starting resource block of the second uplink control resource.
  • Aspect 22 The method of aspect 20, wherein the configuration further indicates a first starting resource block of the first uplink control resource and an offset indicating a second starting resource block of the second uplink control resource.
  • Aspect 23 The method of aspect 22, wherein the offset is based on the first starting resource block or a last resource block of the first uplink control resource.
  • Aspect 24 The method of aspect 18, wherein the configuration comprises a first physical uplink control channel (PUCCH) resource identifier (ID) identifying a first PUCCH resource of the at least two uplink control resources associated with a first uplink beam and a second PUCCH resource ID identifying a second PUCCH resource of the at least two uplink control resources associated with a second uplink beam, the first PUCCH resource ID being linked to the second PUCCH resource ID.
  • PUCCH physical uplink control channel
  • ID resource identifier
  • Aspect 25 The method of aspect 24, further comprising: transmitting an indication of a linkage between the first PUCCH resource ID and the second PUCCH resource ID via a medium access control (MAC) control element (MAC-CE) or a radio resource control (RRC) message.
  • MAC medium access control
  • RRC radio resource control
  • Aspect 26 The method of aspect 24, wherein the first PUCCH resource and the second PUCCH resource comprise a same time duration and a same number of resource blocks.
  • Aspect 27 The method of aspect 24, wherein the first PUCCH resource and the second PUCCH resource comprise at least one of different respective time durations or different respective numbers of resource blocks.
  • a network entity configured for wireless communication comprising a memory and a processor coupled to the memory, the processor being configured to perform a method of any one of aspects 18–27.
  • a network entity configured for wireless communication comprising means for performing a method of any one of aspects 18–27.
  • Aspect 30 A non-transitory computer-readable medium having stored therein instructions executable by one or more processors of a base station to perform a method of any one of aspects 18–27.
  • various aspects may be implemented within other systems defined by 3GPP, such as Long-Term Evolution (LTE) , the Evolved Packet System (EPS) , the Universal Mobile Telecommunication System (UMTS) , and/or the Global System for Mobile (GSM) .
  • LTE Long-Term Evolution
  • EPS Evolved Packet System
  • UMTS Universal Mobile Telecommunication System
  • GSM Global System for Mobile
  • Various aspects may also be extended to systems defined by the 3rd Generation Partnership Project 2 (3GPP2) , such as CDMA2000 and/or Evolution-Data Optimized (EV-DO) .
  • 3GPP2 3rd Generation Partnership Project 2
  • EV-DO Evolution-Data Optimized
  • Other examples may be implemented within systems employing IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Ultra-Wideband (UWB) , Bluetooth, and/or other suitable systems.
  • Wi-Fi IEEE 802.11
  • WiMAX IEEE 8
  • the word “exemplary” is used to mean “serving as an example, instance, or illustration. ” Any implementation or aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects of the disclosure. Likewise, the term “aspects” does not require that all aspects of the disclosure include the discussed feature, advantage, or mode of operation.
  • the term “coupled” is used herein to refer to the direct or indirect coupling between two objects. For example, if object A physically touches object B, and object B touches object C, then objects A and C may still be considered coupled to one another-even if they do not directly physically touch each other. For instance, a first object may be coupled to a second object even though the first object is never directly physically in contact with the second object.
  • circuit and “circuitry” are used broadly, and intended to include both hardware implementations of electrical devices and conductors that, when connected and configured, enable the performance of the functions described in the present disclosure, without limitation as to the type of electronic circuits, as well as software implementations of information and instructions that, when executed by a processor, enable the performance of the functions described in the present disclosure.
  • FIGs. 1–19 One or more of the components, steps, features and/or functions illustrated in FIGs. 1–19 may be rearranged and/or combined into a single component, step, feature, or function or embodied in several components, steps, or functions. Additional elements, components, steps, and/or functions may also be added without departing from novel features disclosed herein.
  • the apparatus, devices, and/or components illustrated in FIGs. 1, 2, 4–6, 11–13, 16, and/or 18 may be configured to perform one or more of the methods, features, or steps described herein.
  • the novel algorithms described herein may also be efficiently implemented in software and/or embedded in hardware.
  • “at least one of: a, b, or c” is intended to cover: a; b; c; a and b; a and c; b and c; and a, b and c.
  • the construct A and/or B is intended to cover A, B, and A and B. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. ⁇ 112 (f) unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for. ”

Abstract

Aspects relate to techniques for uplink control signal (e.g., physical uplink control channel (PUCCH) ) repetition in a frequency division multiplexing manner. A user equipment (UE) may receive a configuration of at least two uplink control resources that are linked together. Each of the uplink control resources may be associated with a different respective uplink beam of the UE. The UE may frequency division multiplex an uplink control signal (e.g., a PUCCH) and at least one repetition of the uplink control signal within a same time resource based on the configuration of the at least two uplink resources.

Description

PUCCH REPETITION IN FREQUENCY DIVISION MULTIPLEXING (FDM) MANNER TECHNICAL FIELD
The technology discussed below relates generally to wireless communication networks, and more particularly, to frequency division multiplexing (FDM) repetitions of an uplink control signal, such as a physical uplink control channel (PUCCH) .
INTRODUCTION
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. An example telecommunication standard is 5G New Radio (NR) . 5G NR is part of a continuous mobile broadband evolution promulgated by Third Generation Partnership Project (3GPP) to meet new requirements associated with latency, reliability, security, scalability (e.g., with Internet of Things (IoT) ) , and other requirements.
5G NR systems may employ one or more multiplexing techniques to enable simultaneous communication of various wireless communication devices. For example, 5G NR specifications provide for multiplexing of downlink transmissions from a network entity (e.g., a base station) to one or more user equipment (UEs) utilizing orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) . In addition, for uplink transmissions, 5G NR specifications provide support for discrete Fourier transform-spread-OFDM (DFT-s-OFDM) with a CP. Other multiplexing schemes that may be supported by 5G NR networks may include, for example, time division multiplexing (TDM) , code division multiplexing (CDM) , frequency division multiplexing (FDM) , sparse code multiplexing (SCM) , or other suitable multiplexing schemes.
BRIEF SUMMARY OF SOME EXAMPLES
The following presents a summary of one or more aspects of the present disclosure, in order to provide a basic understanding of such aspects. This summary is not an extensive overview of all contemplated features of the disclosure, and is intended neither to identify key or critical elements of all aspects of the disclosure nor to delineate the scope of any or all aspects of the disclosure. Its sole purpose is to present some concepts of one or more aspects of the disclosure in a form as a prelude to the more detailed description that is presented later.
In one example, a user equipment (UE) configured for wireless communication is provided. The UE includes a transceiver, a memory, and a processor coupled to the transceiver and the memory. The processor and the memory can be configured to receive a configuration of at least two uplink control resources. The at least two uplink control resources can be linked together and each of the at least two uplink control resources can be associated with a different respective uplink beam of the UE. The processor and the memory can further be configured to frequency division multiplex an uplink control signal and at least one repetition of the uplink control signal within a same time resource based on the at least two uplink control resources.
Another example provides a method for wireless communication at a user equipment (UE) . The method includes receiving a configuration of at least two uplink control resources. The at least two uplink control resources can be linked together and each of the at least two uplink control resources can be associated with a different respective uplink beam of the UE. The method further includes frequency division multiplexing an uplink control signal and at least one repetition of the uplink control signal within a same time resource based on the at least two uplink control resources.
Another example provides a network entity configured for wireless communication. The network entity includes a memory, and a processor coupled to the memory. The processor and the memory can be configured to transmit a configuration of at least two uplink control resources. The at least two uplink control resources can be linked together and each of the at least two uplink control resources can be associated with a different respective uplink beam of a user equipment (UE) . The processor and the memory can further be configured to receive an uplink control signal and at least one repetition of the uplink control signal within a same time resource and different frequency resources based on the at least two uplink control resources.
Another example provides a method for wireless communication at a network entity. The method includes transmitting a configuration of at least two uplink control resources. The at least two uplink control resources can be linked together and each of the at least two uplink control resources can be associated with a different respective uplink beam of a user equipment (UE) . The method further includes receiving an uplink control signal and at least one repetition of the uplink control signal within a same time resource and different frequency resources based on the at least two uplink control resources.
These and other aspects will become more fully understood upon a review of the detailed description, which follows. Other aspects, features, and examples will become apparent to those of ordinary skill in the art upon reviewing the following description of specific exemplary aspects in conjunction with the accompanying figures. While features may be discussed relative to certain examples and figures below, all examples can include one or more of the advantageous features discussed herein. In other words, while one or more examples may be discussed as having certain advantageous features, one or more of such features may also be used in accordance with the various examples discussed herein. Similarly, while examples may be discussed below as device, system, or method examples, it should be understood that such examples can be implemented in various devices, systems, and methods.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a diagram illustrating an example of a wireless communication system according to some aspects.
FIG. 2 is a diagram illustrating an example of a radio access network (RAN) according to some aspects.
FIG. 3 is a diagram illustrating an example of a frame structure for use in a wireless communication network according to some aspects.
FIG. 4 is a diagram illustrating an example of a wireless communication system supporting beamforming and/or multiple-input multiple-output (MIMO) according to some aspects.
FIG. 5 is a diagram illustrating an example of communication between a base station and a UE using beamforming according to some aspects.
FIG. 6 is a diagram illustrating a multi-panel UE according to some aspects.
FIG. 7 is a diagram illustrating an example of simultaneous transmission of two uplink control resources in a frequency division multiplexing (FDM) manner according to some aspects.
FIG. 8 is a diagram illustrating another example of simultaneous transmission of two uplink control resources in a frequency division multiplexing (FDM) manner according to some aspects.
FIGs. 9A and 9B are diagrams illustrating examples of configurations of at least two uplink control resources for simultaneous transmission using at least two corresponding uplink beams according to some aspects.
FIG. 10 is a diagram illustrating an example of a configuration 1002 of an uplink control resource linked to at least one other uplink control resource for simultaneous transmission using at least two corresponding uplink beams according to some aspects.
FIG. 11 is a signaling diagram illustrating exemplary signaling for PUCCH repetition in an FDM manner according to some aspects.
FIG. 12 is a signaling diagram illustrating other exemplary signaling for PUCCH repetition in an FDM manner according to some aspects.
FIG. 13 is a signaling diagram illustrating other exemplary signaling for PUCCH repetition in an FDM manner according to some aspects.
FIG. 14 is a diagram illustrating an example of a multiplexing rule according to some aspects.
FIG. 15 is a diagram illustrating an example of another multiplexing rule according to some aspects.
FIG. 16 is a block diagram illustrating an example of a hardware implementation of a user equipment (UE) employing a processing system according to some aspects.
FIG. 17 is a flow chart illustrating an exemplary method of uplink control repetition in an FDM manner according to some aspects.
FIG. 18 is a block diagram illustrating an example of a hardware implementation of a network entity employing a processing system according to some aspects.
FIG. 19 is a flow chart illustrating an exemplary method of uplink control repetition in an FDM manner according to some aspects.
DETAILED DESCRIPTION
The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
While aspects and examples are described in this application by illustration to some examples, those skilled in the art will understand that additional implementations and use cases may come about in many different arrangements and scenarios. Innovations  described herein may be implemented across many differing platform types, devices, systems, shapes, sizes, and packaging arrangements. For example, aspects and/or uses may come about via integrated chip examples and other non-module-component-based devices (e.g., end-user devices, vehicles, communication devices, computing devices, industrial equipment, retail/purchasing devices, medical devices, artificial intelligence (AI) -enabled devices, etc. ) . While some examples may or may not be specifically directed to use cases or applications, a wide assortment of applicability of described innovations may occur. Implementations may range in spectrum from chip-level or modular components to non-modular, non-chip-level implementations and further to aggregate, distributed, or original equipment manufacturer (OEM) devices or systems incorporating one or more aspects of the described innovations. In some practical settings, devices incorporating described aspects and features may also necessarily include additional components and features for the implementation and practice of claimed and described examples. For example, transmission and reception of wireless signals necessarily includes a number of components for analog and digital purposes (e.g., hardware components including antenna, radio frequency (RF) chains (RF-chains) , power amplifiers, modulators, buffer, processor (s) , interleaver, adders/summers, etc. ) . It is intended that innovations described herein may be practiced in a wide variety of devices, chip-level components, systems, distributed arrangements, disaggregated arrangements (e.g., base station and/or UE) , end-user devices, etc., of varying sizes, shapes, and constitution.
The various concepts presented throughout this disclosure may be implemented across a broad variety of telecommunication systems, network architectures, and communication standards. Referring now to FIG. 1, as an illustrative example without limitation, various aspects of the present disclosure are illustrated with reference to a wireless communication system 100. The wireless communication system 100 includes three interacting domains: a core network 102, a radio access network (RAN) 104, and a user equipment (UE) 106. By virtue of the wireless communication system 100, the UE 106 may be enabled to carry out data communication with an external data network 110, such as (but not limited to) the Internet.
The RAN 104 may implement any suitable wireless communication technology or technologies to provide radio access to the UE 106. As one example, the RAN 104 may operate according to 3rd Generation Partnership Project (3GPP) New Radio (NR) specifications, often referred to as 5G. As another example, the RAN 104 may operate  under a hybrid of 5G NR and Evolved Universal Terrestrial Radio Access Network (eUTRAN) standards, often referred to as Long Term Evolution (LTE) . The 3GPP refers to this hybrid RAN as a next-generation RAN, or NG-RAN. Of course, many other examples may be utilized within the scope of the present disclosure.
As illustrated, the RAN 104 includes a plurality of base stations 108. Broadly, a base station is a network element in a radio access network responsible for radio transmission and reception in one or more cells to or from a UE. In different technologies, standards, or contexts, a base station may variously be referred to by those skilled in the art as a base transceiver station (BTS) , a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , an access point (AP) , a Node B (NB) , an eNode B (eNB) , a gNode B (gNB) , a transmission and reception point (TRP) , or some other suitable terminology. In some examples, a base station may include two or more TRPs that may be collocated or non-collocated. Each TRP may communicate on the same or different carrier frequency within the same or different frequency band. In examples where the RAN 104 operates according to both the LTE and 5G NR standards, one of the base stations may be an LTE base station, while another base station may be a 5G NR base station.
The RAN 104 is further illustrated supporting wireless communication for multiple mobile apparatuses. A mobile apparatus may be referred to as user equipment (UE) in 3GPP standards, but may also be referred to by those skilled in the art as a mobile station (MS) , a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal (AT) , a mobile terminal, a wireless terminal, a remote terminal, a handset, a terminal, a user agent, a mobile client, a client, or some other suitable terminology. A UE may be an apparatus (e.g., a mobile apparatus) that provides a user with access to network services.
Within the present disclosure, a “mobile” apparatus need not necessarily have a capability to move and may be stationary. The term mobile apparatus or mobile device broadly refers to a diverse array of devices and technologies. UEs may include a number of hardware structural components sized, shaped, and arranged to help in communication; such components can include antennas, antenna arrays, RF chains, TX chains, amplifiers, one or more processors, etc. electrically coupled to each other. For example, some non-limiting examples of a mobile apparatus include a mobile, a cellular (cell) phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal computer (PC) , a  notebook, a netbook, a smartbook, a tablet, a personal digital assistant (PDA) , and a broad array of embedded systems, e.g., corresponding to an “Internet of things” (IoT) .
A mobile apparatus may additionally be an automotive or other transportation vehicle, a remote sensor or actuator, a robot or robotics device, a satellite radio, a global positioning system (GPS) device, an object tracking device, a drone, a multi-copter, a quad-copter, a remote control device, a consumer and/or wearable device, such as eyewear, a wearable camera, a virtual reality device, a smart watch, a health or fitness tracker, a digital audio player (e.g., MP3 player) , a camera, a game console, etc. A mobile apparatus may additionally be a digital home or smart home device such as a home audio, video, and/or multimedia device, an appliance, a vending machine, intelligent lighting, a home security system, a smart meter, etc. A mobile apparatus may additionally be a smart energy device, a security device, a solar panel or solar array, a municipal infrastructure device controlling electric power (e.g., a smart grid) , lighting, water, etc., an industrial automation and enterprise device, a logistics controller, and/or agricultural equipment, etc. Still further, a mobile apparatus may provide for connected medicine or telemedicine support, e.g., health care at a distance. Telehealth devices may include telehealth monitoring devices and telehealth administration devices, whose communication may be given preferential treatment or prioritized access over other types of information, e.g., in terms of prioritized access for transport of critical service data, and/or relevant QoS for transport of critical service data.
Wireless communication between the RAN 104 and the UE 106 may be described as utilizing an air interface. Transmissions over the air interface from a base station (e.g., base station 108) to one or more UEs (e.g., similar to UE 106) may be referred to as downlink (DL) transmissions. In accordance with certain aspects of the present disclosure, the term downlink may refer to a point-to-multipoint transmission originating at a base station (e.g., base station 108) . Another way to describe this scheme may be to use the term broadcast channel multiplexing. Transmissions from a UE (e.g., UE 106) to a base station (e.g., base station 108) may be referred to as uplink (UL) transmissions. In accordance with further aspects of the present disclosure, the term uplink may refer to a point-to-point transmission originating at a UE (e.g., UE 106) .
In some examples, access to the air interface may be scheduled, wherein a scheduling entity (e.g., a base station 108) allocates resources for communication among some or all devices and equipment within its service area or cell. Within the present disclosure, as discussed further below, the scheduling entity may be responsible for  scheduling, assigning, reconfiguring, and releasing resources for one or more scheduled entities (e.g., UEs 106) . That is, for scheduled communication, a plurality of UEs 106, which may be scheduled entities, may utilize resources allocated by the scheduling entity 108.
Base stations 108 are not the only entities that may function as scheduling entities. That is, in some examples, a UE may function as a scheduling entity, scheduling resources for one or more scheduled entities (e.g., one or more other UEs) . For example, UEs may communicate directly with other UEs in a peer-to-peer or device-to-device fashion and/or in a relay configuration.
As illustrated in FIG. 1, a scheduling entity 108 may broadcast downlink traffic 112 to one or more scheduled entities (e.g., one or more UEs 106) . Broadly, the scheduling entity 108 is a node or device responsible for scheduling traffic in a wireless communication network, including the downlink traffic 112 and, in some examples, uplink traffic 116 from one or more scheduled entities (e.g., one or more UEs 106) to the scheduling entity 108. On the other hand, the scheduled entity (e.g., a UE 106) is a node or device that receives downlink control 114 information, including but not limited to scheduling information (e.g., a grant) , synchronization or timing information, or other control information from another entity in the wireless communication network such as the scheduling entity 108. The scheduled entity (e.g., a UE 106) may transmit uplink control 118 information including one or more uplink control channels to the scheduling entity 108. Uplink control 118 information may include a variety of packet types and categories, including pilots, reference signals, and information configured to enable or assist in decoding uplink data transmissions.
In addition, the uplink and/or downlink control information and/or traffic information may be transmitted on a waveform that may be time-divided into frames, subframes, slots, and/or symbols. As used herein, a symbol may refer to a unit of time that, in an orthogonal frequency division multiplexed (OFDM) waveform, carries one resource element (RE) per sub-carrier. A slot may carry 7 or 14 OFDM symbols. A subframe may refer to a duration of 1 ms. Multiple subframes or slots may be grouped together to form a single frame or radio frame. Within the present disclosure, a frame may refer to a predetermined duration (e.g., 10 ms) for wireless transmissions, with each frame consisting of, for example, 10 subframes of 1 ms each. Of course, these definitions are not required, and any suitable scheme for organizing waveforms may be utilized, and various time divisions of the waveform may have any suitable duration.
In general, base stations 108 may include a backhaul interface for communication with a backhaul portion 120 of the wireless communication system 100. The backhaul portion 120 may provide a link between a base station 108 and the core network 102. Further, in some examples, a backhaul network may provide interconnection between the respective base stations 108. Various types of backhaul interfaces may be employed, such as a direct physical connection, a virtual network, or the like using any suitable transport network.
The core network 102 may be a part of the wireless communication system 100 and may be independent of the radio access technology used in the RAN 104. In some examples, the core network 102 may be configured according to 5G standards (e.g., 5GC) . In other examples, the core network 102 may be configured according to a 4G evolved packet core (EPC) , or any other suitable standard or configuration.
Referring now to FIG. 2, as an illustrative example without limitation, a schematic illustration of an example of a radio access network (RAN) 200 according to some aspects of the disclosure is provided. In some examples, the RAN 200 may be the same as the RAN 104 described above and illustrated in FIG. 1.
The geographic region covered by the RAN 200 may be divided into a number of cellular regions (cells) that can be uniquely identified by a user equipment (UE) based on an identification broadcasted over a geographical area from one access point or base station. FIG. 2 illustrates  cells  202, 204, 206, and 208, each of which may include one or more sectors (not shown) . A sector is a sub-area of a cell. All sectors within one cell are served by the same base station. A radio link within a sector can be identified by a single logical identification belonging to that sector. In a cell that is divided into sectors, the multiple sectors within a cell can be formed by groups of antennas with each antenna responsible for communication with UEs in a portion of the cell.
Various base station arrangements can be utilized. For example, in FIG. 2, two base stations, base station 210 and base station 212 are shown in  cells  202 and 204. A third base station, base station 214, is shown controlling a remote radio head (RRH) 216 in cell 206. That is, a base station can have an integrated antenna or can be connected to an antenna or RRH 216 by feeder cables. In the illustrated example,  cells  202, 204, and 206 may be referred to as macrocells, as the  base stations  210, 212, and 214 support cells having a large size. Further, a base station 218 is shown in the cell 208, which may overlap with one or more macrocells. In this example, the cell 208 may be referred to as a small cell (e.g., a microcell, picocell, femtocell, home base station, home Node B, home eNode  B, etc. ) , as the base station 218 supports a cell having a relatively small size. Cell sizing can be done according to system design as well as component constraints.
It is to be understood that the RAN 200 may include any number of wireless base stations and cells. Further, a relay node may be deployed to extend the size or coverage area of a given cell. The  base stations  210, 212, 214, 218 provide wireless access points to a core network for any number of mobile apparatuses. In some examples, the  base stations  210, 212, 214, and/or 218 may be the same as or similar to the scheduling entity 108 described above and illustrated in FIG. 1.
FIG. 2 further includes an unmanned aerial vehicle (UAV) 220, which may be a drone or quadcopter. The UAV 220 may be configured to function as a base station, or more specifically as a mobile base station. That is, in some examples, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile base station, such as the UAV 220.
Within the RAN 200, the cells may include UEs that may be in communication with one or more sectors of each cell. Further, each  base station  210, 212, 214, 218, and 220 may be configured to provide an access point to a core network 102 (see FIG. 1) for all the UEs in the respective cells. For example,  UEs  222 and 224 may be in communication with base station 210;  UEs  226 and 228 may be in communication with base station 212;  UEs  230 and 232 may be in communication with base station 214 by way of RRH 216; UE 234 may be in communication with base station 218; and UE 236 may be in communication with mobile base station 220. In some examples, the  UEs  222, 224, 226, 228, 230, 232, 234, 236, 238, 240, and/or 242 may be the same as or similar to the UE/scheduled entity 106 described above and illustrated in FIG. 1. In some examples, the UAV 220 (e.g., the quadcopter) can be a mobile network node and may be configured to function as a UE. For example, the UAV 220 may operate within cell 202 by communicating with base station 210.
In a further aspect of the RAN 200, sidelink signals may be used between UEs without necessarily relying on scheduling or control information from a base station. Sidelink communication may be utilized, for example, in a device-to-device (D2D) network, peer-to-peer (P2P) network, vehicle-to-vehicle (V2V) network, vehicle-to-everything (V2X) network, and/or other suitable sidelink network. For example, two or more UEs (e.g.,  UEs  238, 240, and 242) may communicate with each other using sidelink signals 237 without relaying that communication through a base station. In some examples, the  UEs  238, 240, and 242 may each function as a scheduling entity or  transmitting sidelink device and/or a scheduled entity or a receiving sidelink device to schedule resources and communicate sidelink signals 237 therebetween without relying on scheduling or control information from a base station. In other examples, two or more UEs (e.g., UEs 226 and 228) within the coverage area of a base station (e.g., base station 212) may also communicate sidelink signals 227 over a direct link (sidelink) without conveying that communication through the base station 212. In this example, the base station 212 may allocate resources to the  UEs  226 and 228 for the sidelink communication.
In order for transmissions over the air interface to obtain a low block error rate (BLER) while still achieving very high data rates, channel coding may be used. That is, wireless communication may generally utilize a suitable error correcting block code. In a typical block code, an information message or sequence is split up into code blocks (CBs) , and an encoder (e.g., a CODEC) at the transmitting device then mathematically adds redundancy to the information message. Exploitation of this redundancy in the encoded information message can improve the reliability of the message, enabling correction for any bit errors that may occur due to the noise.
Data coding may be implemented in multiple manners. In early 5G NR specifications, user data is coded using quasi-cyclic low-density parity check (LDPC) with two different base graphs: one base graph is used for large code blocks and/or high code rates, while the other base graph is used otherwise. Control information and the physical broadcast channel (PBCH) are coded using Polar coding, based on nested sequences. For these channels, puncturing, shortening, and repetition are used for rate matching.
Aspects of the present disclosure may be implemented utilizing any suitable channel code. Various implementations of base stations and UEs may include suitable hardware and capabilities (e.g., an encoder, a decoder, and/or a CODEC) to utilize one or more of these channel codes for wireless communication.
In the RAN 200, the ability of UEs to communicate while moving, independent of their location, is referred to as mobility. The various physical channels between the UE and the RAN 200 are generally set up, maintained, and released under the control of an access and mobility management function (AMF) . In some scenarios, the AMF may include a security context management function (SCMF) and a security anchor function (SEAF) that performs authentication. The SCMF can manage, in whole or in part, the security context for both the control plane and the user plane functionality.
In various aspects of the disclosure, the RAN 200 may utilize DL-based mobility or UL-based mobility to enable mobility and handovers (i.e., the transfer of a UE’s connection from one radio channel to another) . In a network configured for DL-based mobility, during a call with a scheduling entity, or at any other time, a UE may monitor various parameters of the signal from its serving cell as well as various parameters of neighboring cells. Depending on the quality of these parameters, the UE may maintain communication with one or more of the neighboring cells. During this time, if the UE moves from one cell to another, or if signal quality from a neighboring cell exceeds that from the serving cell for a given amount of time, the UE may undertake a handoff or handover from the serving cell to the neighboring (target) cell. For example, the UE 224 may move from the geographic area corresponding to its serving cell 202 to the geographic area corresponding to a neighbor cell 206. When the signal strength or quality from the neighbor cell 206 exceeds that of its serving cell 202 for a given amount of time, the UE 224 may transmit a reporting message to its serving base station 210 indicating this condition. In response, the UE 224 may receive a handover command, and the UE may undergo a handover to the cell 206.
In a network configured for UL-based mobility, UL reference signals from each UE may be utilized by the network to select a serving cell for each UE. In some examples, the  base stations  210, 212, and 214/216 may broadcast unified synchronization signals (e.g., unified Primary Synchronization Signals (PSSs) , unified Secondary Synchronization Signals (SSSs) and unified Physical Broadcast Channels (PBCHs) ) . The  UEs  222, 224, 226, 228, 230, and 232 may receive the unified synchronization signals, derive the carrier frequency and slot timing from the synchronization signals, and in response to deriving timing, transmit an uplink pilot or reference signal. The uplink pilot signal transmitted by a UE (e.g., UE 224) may be concurrently received by two or more cells (e.g., base stations 210 and 214/216) within the RAN 200. Each of the cells may measure a strength of the pilot signal, and the radio access network (e.g., one or more of the base stations 210 and 214/216 and/or a central node within the core network) may determine a serving cell for the UE 224. As the UE 224 moves through the RAN 200, the RAN 200 may continue to monitor the uplink pilot signal transmitted by the UE 224. When the signal strength or quality of the pilot signal measured by a neighboring cell exceeds that of the signal strength or quality measured by the serving cell, the RAN 200 may handover the UE 224 from the serving cell to the neighboring cell, with or without informing the UE 224.
Although the synchronization signal transmitted by the  base stations  210, 212, and 214/216 may be unified, the synchronization signal may not identify a particular cell, but rather may identify a zone of multiple cells operating on the same frequency and/or with the same timing. The use of zones in 5G networks or other next generation communication networks enables the uplink-based mobility framework and improves the efficiency of both the UE and the network, since the number of mobility messages that need to be exchanged between the UE and the network may be reduced.
In various implementations, the air interface in the radio access network 200 may utilize licensed spectrum, unlicensed spectrum, or shared spectrum. Licensed spectrum provides for exclusive use of a portion of the spectrum, generally by virtue of a mobile network operator purchasing a license from a government regulatory body. Unlicensed spectrum provides for shared use of a portion of the spectrum without need for a government-granted license. While compliance with some technical rules is generally still required to access unlicensed spectrum, generally, any operator or device may gain access. Shared spectrum may fall between licensed and unlicensed spectrum, wherein technical rules or limitations may be required to access the spectrum, but the spectrum may still be shared by multiple operators and/or multiple radio access technologies (RATs) . For example, the holder of a license for a portion of licensed spectrum may provide licensed shared access (LSA) to share that spectrum with other parties, e.g., with suitable licensee-determined conditions to gain access.
The electromagnetic spectrum is often subdivided, based on frequency/wavelength, into various classes, bands, channels, etc. In 5G NR two initial operating bands have been identified as frequency range designations FR1 (410 MHz –7.125 GHz) and FR2 (24.25 GHz –52.6 GHz) . It should be understood that although a portion of FR1 is greater than 6 GHz, FR1 is often referred to (interchangeably) as a “Sub-6 GHz” band in various documents and articles. A similar nomenclature issue sometimes occurs with regard to FR2, which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
The frequencies between FR1 and FR2 are often referred to as mid-band frequencies. Recent 5G NR studies have identified an operating band for these mid-band frequencies as frequency range designation FR3 (7.125 GHz –24.25 GHz) . Frequency bands falling within FR3 may inherit FR1 characteristics and/or FR2 characteristics, and  thus may effectively extend features of FR1 and/or FR2 into mid-band frequencies. In addition, higher frequency bands are currently being explored to extend 5G NR operation beyond 52.6 GHz. For example, three higher operating bands have been identified as frequency range designations FR4-a or FR4-1 (52.6 GHz –71 GHz) , FR4 (52.6 GHz –114.25 GHz) , and FR5 (114.25 GHz –300 GHz) . Each of these higher frequency bands falls within the EHF band.
With the above aspects in mind, unless specifically stated otherwise, it should be understood that the term “sub-6 GHz” or the like if used herein may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies. Further, unless specifically stated otherwise, it should be understood that the term “millimeter wave” or the like if used herein may broadly represent frequencies that may include mid-band frequencies, may be within FR2, FR4, FR4-a or FR4-1, and/or FR5, or may be within the EHF band.
Devices communicating in the radio access network 200 may utilize one or more multiplexing techniques and multiple access algorithms to enable simultaneous communication of the various devices. For example, 5G NR specifications provide multiple access for UL transmissions from  UEs  222 and 224 to base station 210, and for multiplexing for DL transmissions from base station 210 to one or  more UEs  222 and 224, utilizing orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) . In addition, for UL transmissions, 5G NR specifications provide support for discrete Fourier transform-spread-OFDM (DFT-s-OFDM) with a CP (also referred to as single-carrier FDMA (SC-FDMA) ) . However, within the scope of the present disclosure, multiplexing and multiple access are not limited to the above schemes, and may be provided utilizing time division multiple access (TDMA) , code division multiple access (CDMA) , frequency division multiple access (FDMA) , sparse code multiple access (SCMA) , resource spread multiple access (RSMA) , or other suitable multiple access schemes. Further, multiplexing DL transmissions from the base station 210 to UEs 222 and 224 may be provided utilizing time division multiplexing (TDM) , code division multiplexing (CDM) , frequency division multiplexing (FDM) , orthogonal frequency division multiplexing (OFDM) , sparse code multiplexing (SCM) , or other suitable multiplexing schemes.
Devices in the radio access network 200 may also utilize one or more duplexing algorithms. Duplex refers to a point-to-point communication link where both endpoints can communicate with one another in both directions. Full-duplex means both endpoints  can simultaneously communicate with one another. Half-duplex means only one endpoint can send information to the other at a time. Half-duplex emulation is frequently implemented for wireless links utilizing time division duplex (TDD) . In TDD, transmissions in different directions on a given channel are separated from one another using time division multiplexing. That is, in some scenarios, a channel is dedicated for transmissions in one direction, while at other times the channel is dedicated for transmissions in the other direction, where the direction may change very rapidly, e.g., several times per slot. In a wireless link, a full-duplex channel generally relies on physical isolation of a transmitter and receiver, and suitable interference cancellation technologies. Full-duplex emulation is frequently implemented for wireless links by utilizing frequency division duplex (FDD) or spatial division duplex (SDD) . In FDD, transmissions in different directions may operate at different carrier frequencies (e.g., within paired spectrum) . In SDD, transmissions in different directions on a given channel are separated from one another using spatial division multiplexing (SDM) . In other examples, full-duplex communication may be implemented within unpaired spectrum (e.g., within a single carrier bandwidth) , where transmissions in different directions occur within different sub-bands of the carrier bandwidth. This type of full-duplex communication may be referred to herein as sub-band full duplex (SBFD) , also known as flexible duplex.
Various aspects of the present disclosure will be described with reference to an orthogonal frequency division multiplexing (OFDM) waveform, schematically illustrated in FIG. 3. It should be understood by those of ordinary skill in the art that the various aspects of the present disclosure may be applied to an SC-FDMA waveform in substantially the same way as described herein below. That is, while some examples of the present disclosure may focus on an OFDM link for clarity, it should be understood that the same principles may be applied as well to SC-FDMA waveforms.
Referring now to FIG. 3, an expanded view of an exemplary subframe 302 is illustrated, showing an OFDM resource grid. However, as those skilled in the art will readily appreciate, the physical (PHY) transmission structure for any particular application may vary from the example described here, depending on any number of factors. Here, time is in the horizontal direction with units of OFDM symbols; and frequency is in the vertical direction with units of subcarriers of the carrier.
The resource grid 304 may be used to schematically represent time–frequency resources for a given antenna port. That is, in a multiple-input-multiple-output (MIMO) implementation with multiple antenna ports available, a corresponding multiple number  of resource grids 304 may be available for communication. The resource grid 304 is divided into multiple resource elements (REs) 306. An RE, which is 1 subcarrier × 1 symbol, is the smallest discrete part of the time–frequency grid, and contains a single complex value representing data from a physical channel or signal. Depending on the modulation utilized in a particular implementation, each RE may represent one or more bits of information. In some examples, a block of REs may be referred to as a physical resource block (PRB) or more simply a resource block (RB) 308, which contains any suitable number of consecutive subcarriers in the frequency domain. In one example, an RB may include 12 subcarriers, a number independent of the numerology used. In some examples, depending on the numerology, an RB may include any suitable number of consecutive OFDM symbols in the time domain. Within the present disclosure, it is assumed that a single RB such as the RB 308 entirely corresponds to a single direction of communication (either transmission or reception for a given device) .
A set of continuous or discontinuous resource blocks may be referred to herein as a Resource Block Group (RBG) , sub-band, or bandwidth part (BWP) . A set of sub-bands or BWPs may span the entire bandwidth. Scheduling of scheduled entities (e.g., UEs) for downlink, uplink, or sidelink transmissions involves scheduling one or more resource elements 306 within one or more sub-bands or bandwidth parts (BWPs) . Thus, a UE generally utilizes only a subset of the resource grid 304. In some examples, an RB may be the smallest unit of resources that can be allocated to a UE. Thus, the more RBs scheduled for a UE, and the higher the modulation scheme chosen for the air interface, the higher the data rate for the UE. The RBs may be scheduled by a base station (e.g., gNB, eNB, etc. ) , or may be self-scheduled by a UE implementing D2D sidelink communication.
In this illustration, the RB 308 is shown as occupying less than the entire bandwidth of the subframe 302, with some subcarriers illustrated above and below the RB 308. In a given implementation, the subframe 302 may have a bandwidth corresponding to any number of one or more RBs 308. Further, in this illustration, the RB 308 is shown as occupying less than the entire duration of the subframe 302, although this is merely one possible example.
Each 1 ms subframe 302 may consist of one or multiple adjacent slots. In the example shown in FIG. 3, one subframe 302 includes four slots 310, as an illustrative example. In some examples, a slot may be defined according to a specified number of OFDM symbols with a given cyclic prefix (CP) length. For example, a slot may include  7 or 14 OFDM symbols with a nominal CP. Additional examples may include mini-slots, sometimes referred to as shortened transmission time intervals (TTIs) , having a shorter duration (e.g., one to three OFDM symbols) . These mini-slots or shortened transmission time intervals (TTIs) may in some cases be transmitted occupying resources scheduled for ongoing slot transmissions for the same or for different UEs. Any number of resource blocks may be utilized within a subframe or slot.
An expanded view of one of the slots 310 illustrates the slot 310 including a control region 312 and a data region 314. In general, the control region 312 may carry control channels, and the data region 314 may carry data channels. Of course, a slot may contain all DL, all UL, or at least one DL portion and at least one UL portion. The structure illustrated in FIG. 3 is merely exemplary in nature, and different slot structures may be utilized, and may include one or more of each of the control region (s) and data region (s) .
Although not illustrated in FIG. 3, the various REs 306 within an RB 308 may be scheduled to carry one or more physical channels, including control channels, shared channels, data channels, etc. Other REs 306 within the RB 308 may also carry pilots or reference signals. These pilots or reference signals may provide for a receiving device to perform channel estimation of the corresponding channel, which may enable coherent demodulation/detection of the control and/or data channels within the RB 308.
In some examples, the slot 310 may be utilized for broadcast, multicast, groupcast, or unicast communication. For example, a broadcast, multicast, or groupcast communication may refer to a point-to-multipoint transmission by one device (e.g., a base station, UE, or other similar device) to other devices. Here, a broadcast communication is delivered to all devices, whereas a multicast or groupcast communication is delivered to multiple intended recipient devices. A unicast communication may refer to a point-to-point transmission by a one device to a single other device.
In an example of cellular communication over a cellular carrier via a Uu interface, for a DL transmission, the scheduling entity (e.g., a base station) may allocate one or more REs 306 (e.g., within the control region 312) to carry DL control information including one or more DL control channels, such as a physical downlink control channel (PDCCH) , to one or more scheduled entities (e.g., UEs) . The PDCCH carries downlink control information (DCI) including but not limited to power control commands (e.g., one or more open loop power control parameters and/or one or more closed loop power control parameters) , scheduling information, a grant, and/or an assignment of REs for DL and  UL transmissions. The PDCCH may further carry hybrid automatic repeat request (HARQ) feedback transmissions such as an acknowledgment (ACK) or negative acknowledgment (NACK) . HARQ is a technique well-known to those of ordinary skill in the art, wherein the integrity of packet transmissions may be checked at the receiving side for accuracy, e.g., utilizing any suitable integrity checking mechanism, such as a checksum or a cyclic redundancy check (CRC) . If the integrity of the transmission is confirmed, an ACK may be transmitted, whereas if not confirmed, a NACK may be transmitted. In response to a NACK, the transmitting device may send a HARQ retransmission, which may implement chase combining, incremental redundancy, etc.
The base station may further allocate one or more REs 306 (e.g., in the control region 312 or the data region 314) to carry other DL signals, such as a demodulation reference signal (DMRS) ; a phase-tracking reference signal (PT-RS) ; a channel state information (CSI) reference signal (CSI-RS) ; and a synchronization signal block (SSB) . SSBs may be broadcast at regular intervals based on a periodicity (e.g., 5, 10, 20, 40, 80, or 160 ms) . An SSB includes a primary synchronization signal (PSS) , a secondary synchronization signal (SSS) , and a physical broadcast control channel (PBCH) . A UE may utilize the PSS and SSS to achieve radio frame, subframe, slot, and symbol synchronization in the time domain, identify the center of the channel (system) bandwidth in the frequency domain, and identify the physical cell identity (PCI) of the cell.
The PBCH in the SSB may further include a master information block (MIB) that includes various system information, along with parameters for decoding a system information block (SIB) . The SIB may be, for example, a SystemInformationType1 (SIB1) that may include various additional system information. The MIB and SIB1 together provide the minimum system information (SI) for initial access. Examples of system information transmitted in the MIB may include, but are not limited to, a subcarrier spacing (e.g., default downlink numerology) , system frame number, a configuration of a PDCCH control resource set (CORESET) (e.g., PDCCH CORESET0) , a cell barred indicator, a cell reselection indicator, a raster offset, and a search space for SIB1. Examples of remaining minimum system information (RMSI) transmitted in the SIB1 may include, but are not limited to, a random access search space, a paging search space, downlink configuration information, and uplink configuration information. A base station may transmit other system information (OSI) as well.
In an UL transmission, the scheduled entity (e.g., UE) may utilize one or more REs 306 to carry UL control information (UCI) including one or more UL control  channels, such as a physical uplink control channel (PUCCH) , to the scheduling entity. UCI may include a variety of packet types and categories, including pilots, reference signals, and information configured to enable or assist in decoding uplink data transmissions. Examples of uplink reference signals may include a sounding reference signal (SRS) and an uplink DMRS. In some examples, the UCI may include a scheduling request (SR) , i.e., request for the scheduling entity to schedule uplink transmissions. Here, in response to the SR transmitted on the UCI, the scheduling entity may transmit downlink control information (DCI) that may schedule resources for uplink packet transmissions. UCI may also include HARQ feedback, channel state feedback (CSF) , such as a CSI report, or any other suitable UCI.
In addition to control information, one or more REs 306 (e.g., within the data region 314) may be allocated for data traffic. Such data traffic may be carried on one or more traffic channels, such as, for a DL transmission, a physical downlink shared channel (PDSCH) ; or for an UL transmission, a physical uplink shared channel (PUSCH) . In some examples, one or more REs 306 within the data region 314 may be configured to carry other signals, such as one or more SIBs and DMRSs.
In an example of sidelink communication over a sidelink carrier via a proximity service (ProSe) PC5 interface, the control region 312 of the slot 310 may include a physical sidelink control channel (PSCCH) including sidelink control information (SCI) transmitted by an initiating (transmitting) sidelink device (e.g., Tx V2X device or other Tx UE) towards a set of one or more other receiving sidelink devices (e.g., Rx V2X device or other Rx UE) . The data region 314 of the slot 310 may include a physical sidelink shared channel (PSSCH) including sidelink data traffic transmitted by the initiating (transmitting) sidelink device within resources reserved over the sidelink carrier by the transmitting sidelink device via the SCI. Other information may further be transmitted over various REs 306 within slot 310. For example, HARQ feedback information may be transmitted in a physical sidelink feedback channel (PSFCH) within the slot 310 from the receiving sidelink device to the transmitting sidelink device. In addition, one or more reference signals, such as a sidelink SSB, a sidelink CSI-RS, a sidelink SRS, and/or a sidelink positioning reference signal (PRS) may be transmitted within the slot 310.
These physical channels described above are generally multiplexed and mapped to transport channels for handling at the medium access control (MAC) layer. Transport channels carry blocks of information called transport blocks (TB) . The transport block size (TBS) , which may correspond to a number of bits of information, may be a controlled  parameter, based on the modulation and coding scheme (MCS) and the number of RBs in a given transmission.
The channels or carriers illustrated in FIG. 3 are not necessarily all of the channels or carriers that may be utilized between devices, and those of ordinary skill in the art will recognize that other channels or carriers may be utilized in addition to those illustrated, such as other traffic, control, and feedback channels.
In some examples, the PDCCH may be constructed from a variable number of control channel elements (CCEs) , depending on the PDCCH format (or aggregation level) . Each CCE includes a number of resource elements (REs) that may be grouped into resource element groups (REGs) . Each REG generally may contain, for example, twelve consecutive REs (or nine REs and three DMRS REs) within the same OFDM symbol and the same RB. Each PDCCH format (or aggregation level) supports a different DCI length. In some examples, PDCCH aggregation levels of 1, 2, 4, 8, and 16 may be supported, corresponding to 1, 2, 4, 8, or 16 contiguous CCEs, respectively.
Since the UE is unaware of the particular aggregation level of the PDCCH or whether multiple PDCCHs may exist for the UE in the slot, the UE may perform blind decoding of various PDCCH candidates within the first N control OFDM symbols (as indicated by the slot format of the slot) based on an expected RNTI (e.g., UE-specific RNTI or group RNTI) . Each PDCCH candidate includes a collection of one or more consecutive CCEs based on an assumed DCI length (e.g., PDCCH aggregation level) .
To limit the number of blind decodes, search spaces defining UE-specific search spaces (USSs) and common search spaces (CSSs) may be defined. The search space sets (e.g., USSs and CSSs) configured for a UE limit the number of blind decodes that the UE performs for each PDCCH format combination. The starting point (offset or index) of a UE-specific search space may be different for each UE and each UE may have multiple UE-specific search spaces (e.g., one for each aggregation level) . The common search space sets consist of CCEs used for sending control information that is common to a group of UEs or to all UEs. Thus, the common search space sets are monitored by multiple UEs in a cell. The starting point (offset or index) of a search space set for group common control information may be the same for all UEs in the group and there may be multiple search space sets defined for group common control information (e.g., one for each configured aggregation level for the group of UEs) . The UE may perform blind decoding over all aggregation levels and corresponding USSs or CSSs to determine whether at least one valid DCI exists for the UE.
In some aspects of the disclosure, the scheduling entity (e.g., base station) and/or scheduled entity (e.g., UE) may be configured for beamforming and/or multiple-input multiple-output (MIMO) technology. FIG. 4 is a diagram illustrating an example of a wireless communication system 400 supporting beamforming and/or multiple-input multiple-output (MIMO) according to some aspects. In a MIMO system, a transmitter 402 includes multiple transmit antennas 404 (e.g., N transmit antennas) and a receiver 406 includes multiple receive antennas 408 (e.g., M receive antennas) . Thus, there are N × M signal paths 410 from the transmit antennas 404 to the receive antennas 408. The multiple transmit antennas 404 and multiple receive antennas 408 may each be configured in a single panel or multi-panel antenna array. Each of the transmitter 402 and the receiver 406 may be implemented, for example, within a scheduling entity (e.g., base station 108) , as illustrated in FIGs. 1 and/or 2, a scheduled entity (e.g., UE 106) , as illustrated in FIGs. 1 and/or 2, or any other suitable wireless communication device.
The use of such multiple antenna technology enables the wireless communication system 400 to exploit the spatial domain to support spatial multiplexing, beamforming, and transmit diversity. Spatial multiplexing may be used to transmit different streams of data, also referred to as layers, simultaneously on the same time-frequency resource. The data streams may be transmitted to a single UE to increase the data rate or to multiple UEs to increase the overall system capacity, the latter being referred to as multi-user MIMO (MU-MIMO) . This is achieved by spatially precoding each data stream (i.e., multiplying the data streams with different weighting and phase shifting) and then transmitting each spatially precoded stream through multiple transmit antennas on the downlink. The spatially precoded data streams arrive at the UE (s) with different spatial signatures, which enables each of the UE (s) to recover the one or more data streams destined for that UE. On the uplink, each UE transmits a spatially precoded data stream, which enables the base station to identify the source of each spatially precoded data stream.
The number of data streams or layers corresponds to the rank of the transmission. In general, the rank of the MIMO system (e.g., the wireless communication system 400 supporting MIMO) is limited by the number of transmit or receive  antennas  404 or 408, whichever is lower. In addition, the channel conditions at the UE, as well as other considerations, such as the available resources at the base station, may also affect the transmission rank. For example, the rank (and therefore, the number of data streams) assigned to a particular UE on the downlink may be determined based on the rank  indicator (RI) transmitted from the UE to the base station. The RI may be determined based on the antenna configuration (e.g., the number of transmit and receive antennas) and a measured signal-to-interference-plus-noise ratio (SINR) on each of the receive antennas. The RI may indicate, for example, the number of layers that may be supported under the current channel conditions. The base station may use the RI, along with resource information (e.g., the available resources and amount of data to be scheduled for the UE) , to assign a transmission rank to the UE.
In Time Division Duplex (TDD) systems, the UL and DL are reciprocal, in that each uses different time slots of the same frequency bandwidth. Therefore, in TDD systems, the base station may assign the rank for DL MIMO transmissions based on UL SINR measurements (e.g., based on a sounding reference signal (SRS) transmitted from the UE or other pilot signal) . Based on the assigned rank, the base station may then transmit a channel state information-reference signal (CSI-RS) with separate CSI-RS sequences for each layer to provide for multi-layer channel estimation. From the CSI-RS, the UE may measure the channel quality across layers and resource blocks and feed back channel quality indicator (CQI) and rank indicator (RI) values to the base station for use in updating the rank and assigning REs for future downlink transmissions.
In one example, as shown in FIG. 4, a rank-2 spatial multiplexing transmission on a 2x2 MIMO antenna configuration will transmit one data stream from each of the transmit antennas 404. Each data stream reaches each of the receive antennas 408 along a different one of the signal paths 410. The receiver 406 may then reconstruct the data streams using the received signals from each of the receive antennas 408.
Beamforming is a signal processing technique that may be used at the transmitter 402 or receiver 406 to shape or steer an antenna beam (e.g., a transmit/receive beam) along a spatial path between the transmitter 402 and the receiver 406. Beamforming may be achieved by combining the signals communicated via antennas 404 or 408 (e.g., antenna elements of an antenna array) such that some of the signals experience constructive interference while others experience destructive interference. To create the desired constructive/destructive interference, the transmitter 402 or receiver 406 may apply amplitude and/or phase offsets to signals transmitted or received from each of the  antennas  404 or 408 associated with the transmitter 402 or receiver 406.
A base station (e.g., gNB) may generally be capable of communicating with UEs using transmit beams (e.g., downlink transmit beams) of varying beam widths. For example, a base station may be configured to utilize a wider beam when communicating  with a UE that is in motion and a narrower beam when communicating with a UE that is stationary. The UE may further be configured to utilize one or more downlink receive beams to receive signals from the base station.
In some examples, to select one or more serving beams (e.g., one or more downlink transmit beams and one or more downlink receive beams) for communication with a UE, the base station may transmit a reference signal, such as a synchronization signal block (SSB) , a tracking reference signal (TRS) , or a channel state information reference signal (CSI-RS) , on each of a plurality of beams (e.g., on each of a plurality of downlink transmit beams) in a beam-sweeping manner. The UE may measure the reference signal received power (RSRP) on each of the beams (e.g., measure RSRP on each of the plurality of downlink transmit beams) and transmit a beam measurement report to the base station indicating the Layer 1 RSRP (L-1 RSRP) of each of the measured beams. The base station may then select the serving beam (s) for communication with the UE based on the beam measurement report. In other examples, when the channel is reciprocal, the base station may derive the particular beam (s) (e.g., the particular downlink beam (s) ) to communicate with the UE based on uplink measurements of one or more uplink reference signals, such as a sounding reference signal (SRS) .
Similarly, uplink beams (e.g., uplink transmit beam (s) at the UE and uplink receive beam (s) at the base station) may be selected by measuring the RSRP of received uplink reference signals (e.g., SRSs) or downlink reference signals (e.g., SSBs or CSI-RSs) during an uplink or downlink beam sweep. For example, the base station may determine the uplink beams either by uplink beam management via an SRS beam sweep with measurement at the base station or by downlink beam management via an SSB/CSI-RS beam sweep with measurement at the UE. The selected uplink beam may be indicated by a selected SRS resource (e.g., time–frequency resources utilized for the transmission of an SRS) when implementing uplink beam management or a selected SSB/CSI-RS resource when implementing downlink beam management. For example, the selected SSB/CSI-RS resource can have a spatial relation to the selected uplink transmit beam (e.g., the uplink transmit beam utilized for the PUCCH, SRS, and/or PUSCH) . The resulting selected uplink transmit beam and uplink receive beam may form an uplink beam pair link.
In 5G New Radio (NR) systems, particularly for above 6 GHz or millimeter wave (mmWave) systems (e.g., FR2 or above) , beamformed signals may be utilized for downlink channels, including the physical downlink control channel (PDCCH) and  physical downlink shared channel (PDSCH) . In addition, for UEs configured with beamforming antenna panels, beamformed signals may also be utilized for uplink channels, including the physical uplink control channel (PUCCH) and the physical uplink shared channel (PUSCH) .
FIG. 5 is a diagram illustrating an example of communication between a base station 504 and a UE 502 using beamforming according to some aspects. The base station 504 may be any of the base stations (e.g., gNBs) or scheduling entities illustrated in FIGs. 1, 2, or 4, and the UE 502 may be any of the UEs or scheduled entities illustrated in FIGs. 1, 2, or 4.
The base station 504 may generally be capable of communicating with the UE 502 using one or more transmit beams, and the UE 502 may further be capable of communicating with the base station 504 using one or more receive beams. As used herein, the term transmit beam refers to a beam on the base station 504 that may be utilized for downlink or uplink communication with the UE 502. In addition, the term receive beam refers to a beam on the UE 502 that may be utilized for downlink or uplink communication with the base station 504.
In the example shown in FIG. 5, the base station 504 is configured to generate a plurality of transmit  beams  506a, 506b, 506c, 506d, 506e, 506f, 506g, and 506h (506a–506h) , each associated with a different spatial direction. In addition, the UE 502 is configured to generate a plurality of receive  beams  508a, 508b, 508c, 508d, and 508e (508a–508e) , each associated with a different spatial direction. It should be noted that while some beams are illustrated as adjacent to one another, such an arrangement may be different in different aspects. For example, transmit beams 506a–506h transmitted during a same symbol may not be adjacent to one another. In some examples, the base station 504 and UE 502 may each transmit more or less beams distributed in all directions (e.g., 350 degrees) and in three-dimensions. In addition, the transmit beams 506a–506h may include beams of varying beam width. For example, the base station 504 may transmit certain signals (e.g., synchronization signal blocks (SSBs) ) on wider beams and other signals (e.g., CSI-RSs) on narrower beams.
The base station 504 and UE 502 may select one or more transmit beams 506a–506h on the base station 504 and one or more receive beams 508a–508e on the UE 502 for communication of uplink and downlink signals therebetween using a beam management procedure. In one example, during an initial cell acquisition, the UE 502 may perform a P1 beam management procedure to scan the plurality of transmit beams  506a–506h using the plurality of receive beams 508a–508e to select a beam pair link (e.g., one of the transmit beams 506a–506h and one of the receive beams 508a–508e) for a physical random access channel (PRACH) procedure for initial access to the cell. For example, periodic SSB beam sweeping may be implemented on the base station 504 at certain intervals (e.g., based on the SSB periodicity) . Thus, the base station 504 may be configured to sweep or transmit an SSB on each of a plurality of wider transmit beams 506a–506h during the beam sweeping interval. The UE 502 may measure the reference signal received power (RSRP) of each of the SSB transmitted on each of the transmit beams 506a-506h on each of the receive beams 508a-508e of the UE 502. The UE 502 may select the transmit and receive beams based on the measured RSRP. In an example, the selected receive beam may be the receive beam on which the highest RSRP is measured and the selected transmit beam may have the highest RSRP as measured on the selected receive beam.
After completing the PRACH procedure, the base station 504 and UE 502 may perform a P2 beam management procedure for beam refinement at the base station 504. For example, the base station 504 may be configured to sweep or transmit a CSI-RS on each of a plurality of narrower transmit beams 506a–506h. Each of the narrower CSI-RS beams may be a sub-beam (not shown) of the selected SSB transmit beam (e.g., within the spatial direction of the SSB transmit beam) . Transmission of the CSI-RS transmit beams may occur periodically (e.g., as configured via radio resource control (RRC) signaling by the gNB) , semi-persistently (e.g., as configured via RRC signaling and activated/deactivated via medium access control –control element (MAC-CE) signaling by the gNB) , or aperiodically (e.g., as triggered by the gNB via downlink control information (DCI) ) . The UE 502 may be configured to scan the plurality of CSI-RS transmit beams 506a–506h on the plurality of receive beams 508a–508e. The UE 502 may then perform beam measurements (e.g., measurements of RSRP, SINR, etc. ) of the received CSI-RSs on each of the receive beams 508a–508e to determine the respective beam quality of each of the CSI-RS transmit beams 506a–506h as measured on each of the receive beams 508a–508e.
The UE 502 can then generate and transmit a Layer 1 (L1) measurement report, including the respective beam index (e.g., CSI-RS resource indicator (CRI) ) and beam measurement (e.g., RSRP or SINR) of one or more of the CSI-RS transmit beams 506a–506h on one or more of the receive beams 508a–508e to the base station 504. The base station 504 may then select one or more CSI-RS transmit beams on which to communicate  downlink and/or uplink control and/or data with the UE 502. In some examples, the selected CSI-RS transmit beam (s) have the highest RSRP from the L1 measurement report. Transmission of the L1 measurement report may occur periodically (e.g., as configured via RRC signaling by the gNB) , semi-persistently (e.g., as configured via RRC signaling and activated/deactivated via MAC-CE signaling by the gNB) , or aperiodically (e.g., as triggered by the gNB via DCI) .
The UE 502 may further select a corresponding receive beam on the UE 502 for each selected serving CSI-RS transmit beam to form a respective beam pair link (BPL) for each selected serving CSI-RS transmit beam. For example, the UE 502 may utilize the beam measurements obtained during the P2 procedure or perform a P3 beam management procedure to obtain new beam measurements for the selected CSI-RS transmit beams to select the corresponding receive beam for each selected transmit beam. In some examples, the selected receive beam to pair with a particular CSI-RS transmit beam may be the receive beam on which the highest RSRP for the particular CSI-RS transmit beam is measured.
In some examples, in addition to performing CSI-RS beam measurements, the base station 504 may configure the UE 502 to perform SSB beam measurements and provide an L1 measurement report including beam measurements of SSB transmit beams 506a–506h. For example, the base station 504 may configure the UE 502 to perform SSB beam measurements and/or CSI-RS beam measurements for beam failure detection (BFD) , beam failure recovery (BFR) , cell reselection, beam tracking (e.g., for a mobile UE 502 and/or base station 504) , or other beam optimization purposes.
In addition, when the channel is reciprocal, the transmit and receive beams may be selected using an uplink beam management scheme. In an example, the UE 502 may be configured to sweep or transmit on each of a plurality of receive beams 508a–508e. For example, the UE 502 may transmit an SRS on each beam in the different beam directions. In addition, the base station 504 may be configured to receive the uplink beam reference signals on a plurality of transmit beams 506a–506h. The base station 504 may then perform beam measurements (e.g., RSRP, SINR, etc. ) of the beam reference signals on each of the transmit beams 506a–506h to determine the respective beam quality of each of the receive beams 508a–508e as measured on each of the transmit beams 506a–506h.
The base station 504 may then select one or more transmit beams on which to communicate downlink and/or uplink control and/or data with the UE 502. In some  examples, the selected transmit beam (s) may have the highest RSRP. The UE 502 may then select a corresponding receive beam for each selected serving transmit beam to form a respective beam pair link (BPL) for each selected serving transmit beam, using, for example, a P3 beam management procedure, as described above.
In one example, a single CSI-RS transmit beam (e.g., transmit beam 506d) on the base station 504 and a single receive beam (e.g., receive beam 508c) on the UE 502 may form a single BPL used for communication between the base station 504 and the UE 502. In another example, multiple CSI-RS transmit beams (e.g., transmit  beams  506c, 506d, and 506e) on the base station 504 and a single receive beam (e.g., receive beam 508c) on the UE 502 may form respective BPLs used for communication between the base station 504 and the UE 502. In another example, multiple CSI-RS transmit beams (e.g., transmit  beams  506c, 506d, and 506e) on the base station 504 and multiple receive beams (e.g., receive beams 508c and 508d) on the UE 502 may form multiple BPLs used for communication between the base station 504 and the UE 502. In this example, a first BPL may include transmit beam 506c and receive beam 508c, a second BPL may include transmit beam 506d and receive beam 508c, and a third BPL may include transmit beam 506e and receive beam 508d. For example, the UE 502 may be configured with multiple antenna panels for communication with the base station 504 on multiple UE beams.
FIG. 6 is a diagram illustrating a multi-panel UE (MP-UE) 602 according to some aspects. The MP-UE 602 can include multiple antenna panels (e.g.,  antenna panels  606a and 606b) . For example, the  antenna panels  606a and 606b may be located at various positions on the UE 602 to enable the plurality of  antenna panels  606a and 606b to cover a sphere surrounding the UE 602. The plurality of  antenna panels  606a and 606b (or any one antenna panel among them) may support a plurality of beams (e.g.,  beams  608a and 608b) . For example, each of the  antenna panels  606a and 606b includes a plurality of antenna elements that may be mapped to antenna ports for generation of the  beams  608a and 608b. Here, the term antenna port refers to a logical port (e.g., a beam) over which a signal (e.g., a data stream or layer) may be transmitted.
The multiple panels may provide flexibility in selection of antennas for wireless communication with a network entity 604 (e.g., a base station, such as a gNB) . For example, the MP-UE 602 can activate or deactivate one or more panels in order to improve performance and/or reduce battery consumption. By controlling the activation and deactivation of the  panels  606a and 606b, the MP-UE 602 can control various operational aspects, for example, maximum permissible exposure (MPE) , power  consumption, UL interference management, etc. In some aspects, the panel selection for UL transmission can be initiated by the UE 602 and/or the network entity 604.
In some examples, the MP-UE 602 can use different sets of  panels  606a and 606b for downlink and uplink communications. In one example, the MP-UE 602 can use panel 606a for downlink communication and use panel 606b for uplink communication. In other examples, the MP-UE 602 can use both  panels  606a and 606b for communication in the same direction. For example, the MP-UE 602 can transmit or receive multiple beams using the  panels  606a and 606b.
In various aspects of the disclosure, to increase uplink throughput and/or reliability, the MP-UE 602 may be configured for simultaneous multi-panel uplink transmission. For example, the UE 602 may simultaneously transmit an uplink control signal (e.g., a PUCCH) on beam 608a using panel 606a and a repetition of the PUCCH (e.g., carrying the same UCI) on beam 608b using panel 606b. In this example, the two uplink control signal transmissions may be frequency division multiplexed within a same time resource.
FIG. 7 is a diagram illustrating an example of simultaneous transmission of two uplink control resources in a frequency division multiplexing (FDM) manner according to some aspects. In the example shown in FIG. 7, an uplink control signal (e.g., a PUCCH) carrying uplink control information (UCI) (e.g., acknowledgement information (ACK/NACK) , scheduling request, channel state information (CSI) , etc. ) is transmitted on a first uplink control resource 704a (e.g., first PUCCH resource) and a repetition of the uplink control signal (e.g., carrying the same UCI) is transmitted on a second uplink control resource 704b (e.g., second PUCCH resource) within a same time resource 702 (e.g., a slot or subframe) .
The first PUCCH resource 704a is associated with transmission of the PUCCH on a first uplink beam 706a, while the second PUCCH resource 704b is associated with transmission of the repetition of the PUCCH on a second uplink beam 706b. Each  uplink beam  706a and 706b may be associated with a different antenna panel on the UE. For example, the first uplink beam 706a may be generated by a first antenna panel, while the second uplink beam 706b may be generated by a second antenna panel. To facilitate beamformed multi-panel communication, the network entity may provide the UE with a respective transmission configuration indicator (TCI) state for each  PUCCH resource  704a and 704b. The TCI states may include, for example, uplink TCI states or joint uplink/downlink TCI states.
Each of the first PUCCH resource 704a and the second PUCCH resource 704b includes one or more OFDM symbols in the time domain. In addition, the first PUCCH resource 704a includes a first set of subcarriers 710a and the second PUCCH resource 704b includes a second set of subcarriers 710b in the frequency domain. Thus, the uplink control signal transmitted on the first PUCCH resource 704a using the first uplink beam 706a is frequency division multiplexed (FDMed) within the time resource 702 with the repetition of the uplink control signal transmitted on the second PUCCH resource 704b using the second uplink beam 706b.
In the example shown in FIG. 7, each of the first PUCCH resource 704a and the second PUCCH resource 704b includes a same time duration 708 (e.g., same OFDM symbol (s) ) and a same number of  resource blocks  718a and 718b. Thus, each of the first and second PUCCH resources 704a/704b includes a same number of subcarriers 710a/710b within the time duration 708.
In some examples, the first and  second PUCCH resources  704a and 704b may be configured using a single PUCCH resource identifier (ID) . Thus, the first and  second PUCCH resources  704a and 704b may be linked by a common (same) PUCCH resource ID.In some examples, the configuration may further include a respective  starting resource block  712a and 712b of each of the first and  second PUCCH resources  704a and 704b. In other examples, the configuration may include the starting resource block 712a of the first PUCCH 704a and either a first offset 716a between the starting resource block 712a of the first PUCCH resource 704a and the starting resource block 712b of the second PUCCH resource 704b or a second offset 716b between an ending resource block 714 of the first PUCCH resource 704a and the starting resource block 712b of the second PUCCH resource 704b. The UCI coded bits may be mapped consecutively in two  PUCCH resources  704a and 704b of a single PUCCH resource ID.
In other examples, the first and  second PUCCH resources  704a and 704b may be configured using respective PUCCH resource IDs (e.g., a first PUCCH resource ID for the first PUCCH resource 704a and a second PUCCH resource ID for the second PUCCH resource 704b) . In addition, the first PUCCH resource ID may be linked to the second PUCCH resource ID. In some examples, the network entity may transmit a radio resource control (RRC) message (e.g., an RRC configuration of the first or  second PUCCH resource  704a or 704b) or a medium access control (MAC) –control element (MAC-CE) including an indication of a linkage between the first and second PUCCH resource IDs. In this example, the first and  second PUCCH resources  704a and 704b may have the same  time duration 708 and same number of resource blocks or different time durations and/or different numbers of resource blocks.
FIG. 8 is a diagram illustrating another example of simultaneous transmission of two uplink control resources in a frequency division multiplexing (FDM) manner according to some aspects. In the example shown in FIG. 8, an uplink control signal (e.g., a PUCCH) carrying uplink control information (UCI) (e.g., acknowledgement information (ACK/NACK) , scheduling request, channel state information (CSI) , etc. ) is transmitted on a first uplink control resource 804a (e.g., first PUCCH resource) and a repetition of the uplink control signal (e.g., carrying the same UCI) is transmitted on a second uplink control resource 804b (e.g., second PUCCH resource) within a same time resource 802 (e.g., a slot or subframe) .
The first PUCCH resource 804a is associated with transmission of the PUCCH on a first uplink beam 806a, while the second PUCCH resource 804b is associated with transmission of the repetition of the PUCCH on a second uplink beam 806b. Each  uplink beam  806a and 806b may be associated with a different antenna panel on the UE. For example, the first uplink beam 806a may be generated by a first antenna panel, while the second uplink beam 806b may be generated by a second antenna panel. To facilitate beamformed multi-panel communication, the network entity may provide the UE with a respective transmission configuration indicator (TCI) state for each  PUCCH resource  804a and 804b. The TCI states may include, for example, uplink TCI states or joint uplink/downlink TCI states.
Each of the first PUCCH resource 804a and the second PUCCH resource 804b includes one or more OFDM symbols in the time domain. In addition, the first PUCCH resource 804a includes a first set of subcarriers 810a and the second PUCCH resource 804b includes a second set of subcarriers 810b in the frequency domain. Thus, the uplink control signal transmitted on the first PUCCH resource 804a using the first uplink beam 806a is frequency division multiplexed (FDMed) within the time resource 802 with the repetition of the uplink control signal transmitted on the second PUCCH resource 804b using the second uplink beam 806b.
In the example shown in FIG. 8, the first PUCCH resource 804a includes a first set of one or more OFDM symbols (e.g., a first time duration 808a) and the second PUCCH resource 804b includes a second set of one or more OFDM symbols (e.g., a second time duration 808b) . The first time duration 808a differs from the second time duration 808b. In addition, the first set of subcarriers 810a may include the same number  of subcarriers or a different number of subcarriers as the second set of subcarriers 810b. Thus, the first PUCCH resource 804a includes a first number of resource blocks 818a and the second PUCCH resource 804b includes a second number of resource blocks 818b, where the first number of resource blocks 818a is different than the second number of resource blocks 818b.
In some examples, the first and  second PUCCH resources  804a and 804b shown in FIG. 8 may be configured using respective PUCCH resource IDs (e.g., a first PUCCH resource ID for the first PUCCH resource 804a and a second PUCCH resource ID for the second PUCCH resource 804b) . In addition, the first PUCCH resource ID may be linked to the second PUCCH resource ID. In some examples, the network entity may transmit an RRC message (e.g., an RRC configuration of the first or  second PUCCH resource  804a or 804b) or a MAC-CE including an indication of a linkage between the first and second PUCCH resource IDs.
FIGs. 9A and 9B are diagrams illustrating examples of  configurations  902a and 902b of at least two uplink control resources for simultaneous transmission using at least two corresponding uplink beams according to some aspects. In some examples, the  configurations  902a and 902b shown in FIG. 9 may be radio resource control (RRC) configurations transmitted from the network entity to the UE. Each  configuration  902a and 902b includes a PUCCH resource identifier (ID) 904. The PUCCH resource ID 904 identifies at least two uplink control resources. For example, the PUCCH resource ID 904 may identify the first PUCCH resource 704a and the second PUCCH resource 704b shown in FIG. 7.
In addition, each  configuration  902a and 902b may further include an indication that simultaneous transmission on respective beams is enabled and a PUCCH format (e.g., format0, format1, format2, format 3, format 4, etc. ) associated with the PUCCH resource ID 904 (e.g., the PUCCH format of the first and second PUCCH resources) . The format may indicate, for example, a number of resource blocks associated with the PUCCH resource ID 904 (e.g., the number of PRBs for each of the first and second PUCCH resources) . Here, the number of PRBs is the same for each of the first and second PUCCH resources, and as such, both PUCCH resources may be configured using a single PUCCH resource ID 904. In some aspects, the number of PRBs associated with the first PUCCH resource or the number of PRBs associated with the second PUCCH resource may be equal to a number of
Figure PCTCN2022086758-appb-000001
where α 2, α 3 and α 5 are non-negative integers when the PUCCH resource is transmitted by a transform precoding scheme.
In the example shown in FIG. 9A, the configuration 902a indicates a first starting resource block 906 (starting PRB1) for the first uplink control resource (first PUCCH resource 704a) and a second starting resource block 908 (PRB2) for the second uplink control resource (second PUCCH resource 704b) . In the example shown in FIG. 9B, the configuration 902b includes the starting resource block 906 of the first uplink control resource (first PUCCH resource 704a) and an offset 910 (e.g., offset PRBs) between the first uplink control resource (first PUCCH resource 704a) and the second uplink control resource (second PUCCH resource 704b) . In some examples, the offset may indicate a number of resource blocks between the first or last resource block of the first uplink control resource and the starting resource block of the second uplink control resource. An offset configuration indicating how the offset is measured (e.g., between the starting RBs of the uplink control resources or between the ending RB of the first uplink control resource and the starting RB of the second uplink control resource) may be indicated via RRC signaling or may be pre-configured (e.g., by the original equipment manufacturer (OEM) in accordance with one or more standards or specifications) .
FIG. 10 is a diagram illustrating an example of a configuration 1002 of an uplink control resource linked to at least one other uplink control resource for simultaneous transmission using at least two corresponding uplink beams according to some aspects. In some examples, the configuration 1002 shown in FIG. 10 may be an RRC configuration transmitted from the network entity to the UE. The configuration 1002 includes a first PUCCH resource identifier (ID) 1004 identifying a first uplink control resource. For example, the first PUCCH resource ID 1004 may identify the first PUCCH resource 704a shown in FIG. 7 or the first PUCCH resource 804a shown in FIG. 8. In addition, the configuration 1002 indicates a first starting resource block 1006 (starting PRB1) for the first uplink control resource ( first PUCCH resource  704a or 804a) 
In addition, the configuration 1002 may further include an indication that simultaneous transmission on respective beams is enabled and a PUCCH format (e.g., format0, format1, format2, etc. ) associated with the PUCCH resource ID 1004 (e.g., the PUCCH format of the first PUCCH resource) . The format may indicate, for example, a number of resource blocks associated with the PUCCH resource ID 1004 (e.g., the number of PRBs of the first PUCCH resource) .
In the example shown in FIG. 10, the configuration 1002 further includes a linkage indication 1008 (linked PUCCH) that indicates that the PUCCH resource ID 1004 of the first uplink control resource (e.g.,  first PUCCH resource  704a or 804a) is linked to another  PUCCH resource ID. Thus, the configuration 1002 further includes the PUCCH Resource ID of the other uplink control resource (e.g.,  second PUCCH resource  704b or 804b) . In some examples, the  second PUCCH resource  704b or 804b may further be configured by a different RRC configuration that includes a linkage indication indicating the linkage between the second PUCCH resource ID and the first PUCCH resource ID.
In some examples, instead of including the linkage indication 1008 in the RRC configuration 1002, an indication of the linkage between the first PUCCH resource ID and the second PUCCH resource ID may be transmitted via another signal or message, such as a MAC-CE.
FIG. 11 is a signaling diagram illustrating exemplary signaling between a UE 1102 and a network entity 1104 for PUCCH repetition in an FDM manner according to some aspects. The network entity 1104 may be any of the network entities (e.g., gNB, eNB, etc. ) or scheduling entities shown in FIGs. 1, 2, 5, and/or 6. The network entity 1104 may be implemented as an aggregated base station or a disaggregated base station. In a disaggregated base station architecture, the network entity 1104 may include one or more of a central unit (CU) , a distributed unit (DU) , or a radio unit (RU) . The UE 1102 may be any of the UEs or scheduled entities shown in FIGs. 1, 2, 5, and/or 6.
At 1106, the network entity 1104 transmits a configuration (e.g., an RRC configuration) of at least two PUCCH resources to the UE 1102. In some examples, the configuration may include a single PUCCH resource ID identifying and linking a first PUCCH resource associated with a first uplink beam and a second PUCCH resource associated with a second uplink beam. In this example, the configuration may further include a first starting resource block of the first PUCCH resource and either a second starting resource block of the second PUCCH resource or an offset between the first PUCCH resource and the second PUCCH resource. For example, the offset may be between the first starting resource block of the first PUCCH resource and the second starting resource block of the second PUCCH resource or between a last resource block of the first PUCCH resource and the second starting block of the second PUCCH resource. In addition, in this example, the first PUCCH resource and the second PUCCH resource may include a same time duration and a same number of resource blocks.
In some examples, the configuration may include a first PUCCH resource ID identifying the first PUCCH resource (e.g., a first RRC configuration of the first PUCCH resource) and a second PUCCH resource ID identifying the second PUCCH resource (e.g., a second RRC configuration of the second PUCCH resource) . In addition, the first  PUCCH resource may be associated with a first uplink beam (e.g., uplink TCI state or joint TCI state) and the second PUCCH resource may be associated with a second uplink beam (e.g., uplink TCI state or joint TCI state) . In this example, the first PUCCH resource and the second PUCCH resource may include the same time duration and same number of resource blocks or may include different respective time durations and/or different numbers of resource blocks.
At 1108, the network entity 1104 may optionally transmit a linkage indication to the UE 1102 indicating a linkage between the first PUCCH resource and the second PUCCH resource. For example, the network entity 1104 may transmit the linkage indication to the UE 1102 to link the first PUCCH resource ID identifying the first PUCCH resource with the second PUCCH resource ID identifying the second PUCCH resource. In some examples, the linkage indication may be included within the configuration of the first PUCCH resource ID and the configuration of the second PUCCH resource ID. For example, a first RRC configuration of the first PUCCH resource ID may include a first linkage indication identifying a linkage between the first PUCCH resource ID and the second PUCCH resource ID. In addition, a second RRC configuration of the second PUCCH resource ID may include a second linkage indication identifying a linkage between the second PUCCH resource ID and the first PUCCH resource ID.
In other examples, the network entity 1104 may transmit a different signal or message including the linkage indication. For example, the network entity 1104 may transmit a MAC-CE including the linkage indication indicating that the first PUCCH resource ID is linked to the second PUCCH resource ID.
At 1110, the UE 1102 simultaneously transmits a PUCCH and at least one repetition of the PUCCH based on the PUCCH resource configuration and the linkage indication. For example, the UE 1102 may frequency division multiplex the PUCCH and the repetition of the PUCCH within a same time resource (e.g., within a same symbol/slot/subframe) . The PUCCH may be transmitted, for example, using a first uplink beam from a first antenna panel on the UE. In addition, the repetition of the PUCCH may be transmitted, for example, using a second uplink beam from a second antenna panel on the UE. In some examples, the PUCCH and the repetition of the PUCCH may be transmitted within the same time-frequency resources (e.g., same time duration and same resource blocks) or within overlapping time-frequency resources (e.g.., different (overlapping) time durations and/or different (overlapping) resource blocks) .
FIG. 12 is a signaling diagram illustrating exemplary signaling between a UE 1202 and a network entity 1204 for PUCCH repetition in an FDM manner according to some aspects. The network entity 1204 may be any of the network entitys (e.g., gNB, eNB, etc. ) or scheduling entities shown in FIGs. 1, 2, 5, and/or 6. The network entity 1204 may be implemented as an aggregated base station or a disaggregated base station. In a disaggregated base station architecture, the network entity 1204 may include one or more of a central unit (CU) , a distributed unit (DU) , or a radio unit (RU) . The UE 1202 may be any of the UEs or scheduled entities shown in FIGs. 1, 2, 5, and/or 6.
At 1206, the network entity 1204 transmits a configuration (e.g., an RRC configuration) of at least two PUCCH resources to the UE 1202. In some examples, the configuration may include a single PUCCH resource ID identifying and linking a first PUCCH resource associated with a first uplink beam and a second PUCCH resource associated with a second uplink beam. In this example, the configuration may further include a first starting resource block of the first PUCCH resource and either a second starting resource block of the second PUCCH resource or an offset between the first PUCCH resource and the second PUCCH resource. For example, the offset may be between the first starting resource block of the first PUCCH resource and the second starting resource block of the second PUCCH resource or between a last resource block of the first PUCCH resource and the second starting block of the second PUCCH resource. In addition, in this example, the first PUCCH resource and the second PUCCH resource may include a same time duration and a same number of resource blocks.
In some examples, the configuration may include a first PUCCH resource ID identifying the first PUCCH resource (e.g., a first RRC configuration of the first PUCCH resource) and a second PUCCH resource ID identifying the second PUCCH resource (e.g., a second RRC configuration of the second PUCCH resource) . In addition, the first PUCCH resource may be associated with a first uplink beam (e.g., uplink TCI state or joint TCI state) and the second PUCCH resource may be associated with a second uplink beam (e.g., uplink TCI state or joint TCI state) . In this example, the first PUCCH resource and the second PUCCH resource may include the same time duration and same number of resource blocks or may include different respective time durations and/or different numbers of resource blocks. In addition, in this example, the first PUCCH resource ID may be linked to the second PUCCH resource ID within the configuration (s) and/or via a linkage indication included in a MAC-CE transmitted from the network entity 1204 to the UE 1202.
At 1208, the UE 1202 identifies a rate-matching behavior of the first PUCCH resource and the second PUCCH resource. For example, the UE 1202 can identify the rate-matching behavior of the first and second PUCCH resources based on a predetermined PUCCH resource of the two linked (first and second) PUCCH resources. In some examples, the predetermined PUCCH resource may be one of the first and second PUCCH resources that has a lower PUCCH resource ID, a lower beam (TCI state) ID, or an earlier starting symbol. The rate-matching behavior may indicate, for example, a number of UCI bits that may be transmitted within the predetermined PUCCH resource without UCI dropping and/or the number of RBs that will actually be used for transmission of a PUCCH in the predetermined PUCCH resource.
At 1210, the UE 1202 simultaneously transmits the PUCCH and at least one repetition of the PUCCH based on the PUCCH resource configuration, the linkage indication, and the rate-matching behavior. For example, based on the rate-matching behavior of the predetermined PUCCH resource, the UE 1202 may transmit the same number of UCI bits and/or the same number of RBs on the linked PUCCH resource. The UE 1202 may then frequency division multiplex the PUCCH and the repetition of the PUCCH within a same time resource (e.g., within a same symbol/slot/subframe) . The PUCCH may be transmitted, for example, using a first uplink beam from a first antenna panel on the UE. In addition, the repetition of the PUCCH may be transmitted, for example, using a second uplink beam from a second antenna panel on the UE. In some examples, the PUCCH and the repetition of the PUCCH may be transmitted within the same time-frequency resources (e.g., same time duration and same resource blocks) or within overlapping time-frequency resources (e.g.., different (overlapping) time durations and/or different (overlapping) resource blocks) .
FIG. 13 is a signaling diagram illustrating exemplary signaling between a UE 1302 and a network entity 1304 for PUCCH repetition in an FDM manner according to some aspects. The network entity 1304 may be any of the network entitys (e.g., gNB, eNB, etc. ) or scheduling entities shown in FIGs. 1, 2, 5, and/or 6. The network entity 1304 may be implemented as an aggregated base station or a disaggregated base station. In a disaggregated base station architecture, the network entity 1304 may include one or more of a central unit (CU) , a distributed unit (DU) , or a radio unit (RU) . The UE 1302 may be any of the UEs or scheduled entities shown in FIGs. 1, 2, 5, and/or 6.
At 1306, the network entity 1304 transmits a configuration (e.g., an RRC configuration) of at least two PUCCH resources to the UE 1302. In some examples, the  configuration may include a single PUCCH resource ID identifying and linking a first PUCCH resource associated with a first uplink beam and a second PUCCH resource associated with a second uplink beam. In this example, the configuration may further include a first starting resource block of the first PUCCH resource and either a second starting resource block of the second PUCCH resource or an offset between the first PUCCH resource and the second PUCCH resource. For example, the offset may be between the first starting resource block of the first PUCCH resource and the second starting resource block of the second PUCCH resource or between a last resource block of the first PUCCH resource and the second starting block of the second PUCCH resource. In addition, in this example, the first PUCCH resource and the second PUCCH resource may include a same time duration and a same number of resource blocks.
In some examples, the configuration may include a first PUCCH resource ID identifying the first PUCCH resource (e.g., a first RRC configuration of the first PUCCH resource) and a second PUCCH resource ID identifying the second PUCCH resource (e.g., a second RRC configuration of the second PUCCH resource) . In addition, the first PUCCH resource may be associated with a first uplink beam (e.g., uplink TCI state or joint TCI state) and the second PUCCH resource may be associated with a second uplink beam (e.g., uplink TCI state or joint TCI state) . In this example, the first PUCCH resource and the second PUCCH resource may include the same time duration and same number of resource blocks or may include different respective time durations and/or different numbers of resource blocks. In addition, in this example, the first PUCCH resource ID may be linked to the second PUCCH resource ID within the configuration (s) and/or via a linkage indication included in a MAC-CE transmitted from the network entity 1304 to the UE 1302.
At 1308, the UE 1302 identifies an additional (e.g., third) overlapping PUCCH resource carrying other UCI than the first and second PUCCH resources. For example, the first and second PUCCH resources may carry HARQ-ACK (acknowledgement information) feedback (e.g., the HARQ-ACK feedback and a repetition of the HARQ-ACK feedback) , whereas the third PUCCH resource may carry channel state information (CSI) feedback. The third PUCCH resource may overlap in time at least one of the first or second PUCCH resources.
At 1310, the UE 1302 may further identify a multiplexing rule for the first, second, and third PUCCH resources. In some aspects, in a UCI multiplexing procedure, the UE 1302 may determine whether the two linked PUCCH resources are overlapped with  another PUCCH or PUSCH resource or not based on whether one predetermined PUCCH resource of the two link PUCCH resources is overlapped with the other PUCCH or PUSCH resource or not. If the predetermined PUCCH resource overlaps with the other PUCCH or PUSCH resource, the UE 1302 may determine that the two linked PUCCH resources are overlapped with the PUCCH or PUSCH resource. For example, the UE 1302 can identify the multiplexing rule based on a predetermined PUCCH resource of the two linked (first and second) PUCCH resources. In some examples, the predetermined PUCCH resource may be one of the first and second PUCCH resources that has a lower PUCCH resource ID, a lower beam (TCI state) ID, or an earlier starting symbol. The multiplexing rule may indicate, for example, that the UCI bits of the predetermined PUCCH resource and the third PUCCH resource are combined to produce a combined UCI payload that may be transmitted, for example, on the predetermined PUCCH resource. In addition, a repetition of the combined UCI payload may also be transmitted on the other linked PUCCH resource regardless of whether the other linked PUCCH resource overlaps with the third PUCCH resource.
In some aspects, the multiplexing rule may determine whether a predetermined PUCCH resource (e.g., the earlier one) of the two link PUCCH resources can satisfy the time requirements for UCI multiplexing or not. In some examples, the multiplexing rule may indicate that the timeline of the predetermined PUCCH resource does not satisfy the multiplexing requirements, and as a result, the UE may cancel the PUCCH transmission for the first and second PUCCH resources.
In some aspects, the UE 1302 may determine whether the two linked PUCCH resources are overlapped with other PUCCH or PUSCH resource or not based on whether any of the two link PUCCH resources is overlapped with the other PUCCH or PUSCH resource. If any of the two link PUCCH resources overlaps with the other PUCCH or PUSCH resources, the UE 1302 may determine that the two linked PUCCH resources are overlapped with the PUCCH or PUSCH resource.
At 1312, the UE 1302 can optionally simultaneously transmit the PUCCH and at least one repetition of the PUCCH based on the PUCCH resource configuration, the linkage indication, and the multiplexing rule. For example, based on the multiplexing rule, the UE 1302 may transmit the combined UCI payload on the first PUCCH resource and a repetition of the combined UCI payload on the second PUCCH resource. As another example, the UE 1302 may cancel the PUCCH transmissions on the first and second PUCCH resources (e.g., not transmit the PUCCH and the repetition of the PUCCH) . In  examples in which the UE 1302 does transmit the PUCCH (combined UCI payload) and the repetition of the PUCCH (combined UCI payload) , the UE 1302 may frequency division multiplex the PUCCH and the repetition of the PUCCH within a same time resource (e.g., within a same symbol/slot/subframe) . The PUCCH may be transmitted, for example, using a first uplink beam from a first antenna panel on the UE. In addition, the repetition of the PUCCH may be transmitted, for example, using a second uplink beam from a second antenna panel on the UE. In some examples, the PUCCH and the repetition of the PUCCH may be transmitted within the same time-frequency resources (e.g., same time duration and same resource blocks) or within overlapping time-frequency resources (e.g.., different (overlapping) time durations and/or different (overlapping) resource blocks) .
FIG. 14 is a diagram illustrating an example of a multiplexing rule according to some aspects. In the example shown in FIG. 14, there are three  PUCCH resources  1404a, 1404b, and 1406 scheduled within a same time resource 1402 (e.g., a symbol/slot/subframe) . The first and  second PUCCH resources  1404a and 1404b are linked PUCCH resources for PUCCH repetition on different uplink beams in an FDM manner. For example, the first and  second PUCCH resources  1404a and 1404b may be configured to carry HARQ-ACK (A/N) feedback. The third PUCCH resource 1406 overlaps the first PUCCH resource 1404a and is configured to carry different UCI than the first and  second PUCCH resources  1404a and 1404b. For example, the third PUCCH resource 1406 may be configured to carry CSI feedback (CSI) .
As the third PUCCH resource 1406 overlaps the first PUCCH resource 1404a in time, the UE may be configured to identify a multiplexing rule for the third PUCCH resource 1406 and the first/second linked  PUCCH resources  1404a and 1404b. The UE may determine the multiplexing rule using a predetermined PUCCH resource of the first/second linked  PUCCH resources  1404a and 1404b. The predetermined PUCCH resource may be, for example, the first PUCCH resource 1404a having an earlier starting symbol than the second PUCCH resource 1404b.
In the example shown in FIG. 14, the multiplexing rule may indicate that the UCI bits associated with the third PUCCH resource 1406 should be combined with the UCI bits associated with the first PUCCH resource 1404a to produce a combined UCI payload (A/N + CSI) that is transmitted on the first PUCCH resource 1404a. Since the second PUCCH resource 1404b is linked with the first PUCCH resource 1404a for PUCCH repetition, the PUCCH carrying the combined UCI payload (A/N + CSI) is transmitted  on the PUCCH resource 1404a and a repetition of the PUCCH carrying the combined UCI payload is transmitted on PUCCH resource 1404b. In addition, the third PUCCH resource 1406 may be canceled.
FIG. 15 is a diagram illustrating an example of another multiplexing rule according to some aspects. In the example shown in FIG. 15, there are three  PUCCH resources  1504a, 1504b, and 1506 scheduled within a same time resource 1502 (e.g., a symbol/slot/subframe) . The first and  second PUCCH resources  1504a and 1504b are linked PUCCH resources for PUCCH repetition on different uplink beams in an FDM manner. For example, the first and  second PUCCH resources  1504a and 1504b may be configured to carry HARQ-ACK (A/N) feedback. The third PUCCH resource 1506 overlaps the first PUCCH resource 1504a and is configured to carry different UCI than the first and  second PUCCH resources  1504a and 1504b. For example, the third PUCCH resource 1506 may be configured to carry CSI feedback (CSI) .
As the third PUCCH resource 1506 overlaps the second PUCCH resource 1504b in time, the UE may be configured to identify a multiplexing rule for the third PUCCH resource 1506 and the first/second linked  PUCCH resources  1504a and 1504b. The UE may determine the multiplexing rule using a predetermined PUCCH resource of the first/second linked  PUCCH resources  1504a and 1504b. The predetermined PUCCH resource may be, for example, the first PUCCH resource 1504a having an earlier starting symbol than the second PUCCH resource 1504b.
In the example shown in FIG. 15, the multiplexing rule may indicate whether a UCI multiplexing timeline 1508 may be satisfied to enable multiplexing of the UCI bits (e.g., CSI) of the third PUCCH resource 1506 with the first PUCCH resource 1504a. For example, the third PUCCH resource 1506 may begin at time t 1, while the first PUCCH resource 1504a may begin at time t 0. The difference between time t 0 and t 1 may be referred to as the multiplexing timeline 1508. If the UCI (e.g., CSI) scheduled for transmission in the third PUCCH resource 1506 is available and ready for transmission at time t 0, the first PUCCH resource 1504a satisfies the multiplexing timeline 1508 and the UCI bits associated with the third PUCCH resource 1506 can be combined with the UCI bits associated with the first PUCCH resource 1504a to produce a combined UCI payload (A/N + CSI) that is transmitted on the first PUCCH resource 1504a. Since the second PUCCH resource 1504b is linked with the first PUCCH resource 1504a for PUCCH repetition, the PUCCH carrying the combined UCI payload (A/N + CSI) is transmitted  on the PUCCH resource 1504a and a repetition of the PUCCH carrying the combined UCI payload is transmitted on PUCCH resource 1504b.
However, if the multiplexing rule indicates that the UCI multiplexing timeline 1508 is not satisfied (e.g., the CSI bits will not be available at time t 0) , the multiplexing rule may further indicate that the first, second, and  third PUCCH resources  1504a, 1504b, and 1506 may be canceled, thus preventing transmission of the PUCCH and repetition of the PUCCH.
FIG. 16 is a block diagram illustrating an example of a hardware implementation of a user equipment (UE) 1600 employing a processing system 1614 according to some aspects. The UE 1600 may be any of the UEs or other scheduled entities illustrated in any one or more of FIGs. 1, 2, 5, 6, and/or 11–13.
In accordance with various aspects of the disclosure, an element, or any portion of an element, or any combination of elements may be implemented with a processing system 1614 that includes one or more processors, such as processor 1604. Examples of processors 1604 include microprocessors, microcontrollers, digital signal processors (DSPs) , field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure. In various examples, the UE 1600 may be configured to perform any one or more of the functions described herein. That is, the processor 1604, as utilized in the UE 1600, may be used to implement any one or more of the methods or processes described and illustrated, for example, in FIGs. 11–13 or 17.
The processor 1604 may in some instances be implemented via a baseband or modem chip and in other implementations, the processor 1604 may include a number of devices distinct and different from a baseband or modem chip (e.g., in such scenarios as may work in concert to achieve examples discussed herein) . And as mentioned above, various hardware arrangements and components outside of a baseband modem processor can be used in implementations, including RF-chains, power amplifiers, modulators, buffers, interleavers, adders/summers, etc.
In this example, the processing system 1614 may be implemented with a bus architecture, represented generally by the bus 1602. The bus 1602 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 1614 and the overall design constraints. The bus 1602 communicatively couples together various circuits, including one or more processors  (represented generally by the processor 1604) , a memory 1605, and computer-readable media (represented generally by the computer-readable medium 1606) . The bus 1602 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore, are not described any further.
bus interface 1608 provides an interface between the bus 1602 and a transceiver 1610. The transceiver 1610 may be, for example, a wireless transceiver. The transceiver 1610 provides a means for communicating with various other apparatus over a transmission medium (e.g., air interface) . The transceiver 1610 may further be coupled to one or more antenna panels 1620 configured to generate one or more uplink transmit/downlink receive beams. The bus interface 1608 further provides an interface between the bus 1602 and a user interface 1612 (e.g., keypad, display, touch screen, speaker, microphone, control features, etc. ) . Of course, such a user interface 1612 may be omitted in some examples.
The computer-readable medium 1606 may be a non-transitory computer-readable medium. A non-transitory computer-readable medium includes, by way of example, a magnetic storage device (e.g., hard disk, floppy disk, magnetic strip) , an optical disk (e.g., a compact disc (CD) or a digital versatile disc (DVD) ) , a smart card, a flash memory device (e.g., a card, a stick, or a key drive) , a random access memory (RAM) , a read only memory (ROM) , a programmable ROM (PROM) , an erasable PROM (EPROM) , an electrically erasable PROM (EEPROM) , a register, a removable disk, and any other suitable medium for storing software and/or instructions that may be accessed and read by a computer. The computer-readable medium 1606 may reside in the processing system 1614, external to the processing system 1614, or distributed across multiple entities including the processing system 1614. The computer-readable medium 1606 may be embodied in a computer program product. By way of example, a computer program product may include a computer-readable medium in packaging materials. In some examples, the computer-readable medium 1606 may be part of the memory 1605. Those skilled in the art will recognize how best to implement the described functionality presented throughout this disclosure depending on the particular application and the overall design constraints imposed on the overall system. In some examples, the computer-readable medium 1606 may be implemented on an article of manufacture, which may further include one or more other elements or circuits, such as the processor 1604 and/or memory 1605.
The computer-readable medium 1606 may store computer-executable code (e.g., software) . Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures/processes, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
One or more processors, such as processor 1604, may be responsible for managing the bus 1602 and general processing, including the execution of the software (e.g., instructions or computer-executable code) stored on the computer-readable medium 1606. The software, when executed by the processor 1604, causes the processing system 1614 to perform the various processes and functions described herein for any particular apparatus. The computer-readable medium 1606 and/or the memory 1605 may also be used for storing data that may be manipulated by the processor 1604 when executing software. For example, the memory 1605 may store an uplink control configuration 1616 of linked uplink control resources (e.g., PUCCH resources) .
In some aspects of the disclosure, the processor 1604 may include circuitry configured for various functions. For example, the processor 1604 may include communication and processing circuitry 1642 configured to communicate with a network entity (e.g., a base station, such as a gNB or eNB) . In some examples, the communication and processing circuitry 1642 may include one or more hardware components that provide the physical structure that performs processes related to wireless communication (e.g., signal reception and/or signal transmission) and signal processing (e.g., processing a received signal and/or processing a signal for transmission) . For example, the communication and processing circuitry 1642 may include one or more transmit/receive chains.
In some implementations where the communication involves receiving information, the communication and processing circuitry 1642 may obtain information from a component of the UE 1600 (e.g., from the transceiver 1610 that receives the information via radio frequency signaling or some other type of signaling suitable for the applicable communication medium) , process (e.g., decode) the information, and output the processed information. For example, the communication and processing circuitry 1642 may output the information to another component of the processor 1604, to the memory 1605, or to the bus interface 1608. In some examples, the communication and  processing circuitry 1642 may receive one or more of signals, messages, other information, or any combination thereof. In some examples, the communication and processing circuitry 1642 may receive information via one or more channels. In some examples, the communication and processing circuitry 1642 may include functionality for a means for receiving. In some examples, the communication and processing circuitry 1642 may include functionality for a means for processing, including a means for demodulating, a means for decoding, etc.
In some implementations where the communication involves sending (e.g., transmitting) information, the communication and processing circuitry 1642 may obtain information (e.g., from another component of the processor 1604, the memory 1605, or the bus interface 1608) , process (e.g., modulate, encode, etc. ) the information, and output the processed information. For example, the communication and processing circuitry 1642 may output the information to the transceiver 1610 (e.g., that transmits the information via radio frequency signaling or some other type of signaling suitable for the applicable communication medium) . In some examples, the communication and processing circuitry 1642 may send one or more of signals, messages, other information, or any combination thereof. In some examples, the communication and processing circuitry 1642 may send information via one or more channels. In some examples, the communication and processing circuitry 1642 may include functionality for a means for sending (e.g., a means for transmitting) . In some examples, the communication and processing circuitry 1642 may include functionality for a means for generating, including a means for modulating, a means for encoding, etc.
In some examples, the communication and processing circuitry 1642 may be configured to receive the configuration 1616 of at least two uplink control resources that are linked together via the transceiver 1610. Each of the at least two uplink control resources may further be associated with a different respective uplink beam. For example, each uplink beam may be generated by a different respective antenna panel 1620. In some examples, the configuration 1616 may be an RRC configuration received by the communication and processing circuitry 1642. In some examples, the configuration 1616 may include a single configuration identifying the at least two uplink control resources. For example, the configuration 1616 may include a physical uplink control channel (PUCCH) resource identifier (ID) identifying a first uplink control resource of the at least two uplink control resources associated with a first uplink beam and a second uplink  control resource of the at least two uplink control resources associated with a second uplink beam.
In other examples, the configuration 1616 may include multiple configurations, each including a respective PUCCH resource ID identifying a respective one of the at least two uplink resources. For example, the configuration 1616 may include a first physical uplink control channel (PUCCH) resource identifier (ID) identifying a first PUCCH resource of the at least two uplink control resources associated with a first uplink beam and a second PUCCH resource ID identifying a second PUCCH resource of the at least two uplink control resources associated with a second uplink beam. In this example, the first PUCCH resource ID may be linked to the second PUCCH resource ID.
In some examples, the communication and processing circuitry 1642 may further be configured to receive an indication of a linkage between the first PUCCH resource ID and the second PUCCH resource ID via a MAC-CE or an RRC message. For example, the indication may be included in each RRC configuration 1616 of each of the PUCCH resources.
The communication and processing circuitry 1642 may further be configured to frequency division multiplex an uplink control signal (e.g., a PUCCH) and at least one repetition of the uplink control signal within a same time resource (e.g., a symbol, slot, or subframe) . For example, the communication and processing circuitry 1642 may further be configured to transmit the uplink control signal and the at least one repetition of the uplink control signal from different respective antenna panels 1620 of the UE. The communication and processing circuitry 1642 may further be configured to execute communication and processing instructions (software) 1652 stored on the computer-readable medium 1606 to implement one or more functions described herein.
The processor 1604 may further include uplink control circuitry 1644, configured to generate the uplink control signal (e.g., a PUCCH including UCI) and to operate together with the communication and processing circuitry 1642 to frequency division multiplex the uplink control signal and the at least one repetition of the uplink control signal based on the configuration 1616. In some examples, the configuration includes the single PUCCH resource ID identifying the first uplink control resource and the second uplink control resource. In this example, the first uplink control resource and the second uplink control resource may include a same time duration and a same number of resource blocks. The configuration may then further indicate a first starting resource block of the first uplink control resource and a second starting resource block of the second uplink  control resource or a first starting resource block of the first uplink control resource and an offset indicating a second starting resource block of the second uplink control resource. In some examples, the offset is based on the first starting resource block or a last resource block of the first uplink control resource.
In some examples, the configuration may include the first PUCCH resource ID and the second PUCCH resource ID linked to the first PUCCH resource ID. In this example, the first PUCCH resource and the second PUCCH resource may include a same time duration and a same number of resource blocks or at least one of different respective time durations or different respective numbers of resource blocks.
The uplink control circuitry 1644 may further be configured to identify a rate-matching behavior of the at least two uplink control resources based on a predetermined uplink control resource of the at least two uplink control resources. Here, the predetermined uplink control resource may include a lower resource identifier (ID) (e.g., PUCCH resource ID) , a lower beam ID (e.g., TCI state ID) , or an earlier starting symbol than other ones of the at least two uplink control resources. The uplink control circuitry 1644 may further be configured to operate together with the communication and processing circuitry 1642 to rate-match each of the at least two uplink control resources using the rate-matching behavior of the predetermined uplink control resource.
The uplink control circuitry 1644 may further be configured to identify a multiplexing rule for the at least two uplink control resources and at least one additional uplink control resource carrying different uplink control information (UCI) than the at least two uplink control resources based on a predetermined uplink control resource of the at least two uplink control resources. Here, the predetermined uplink control resource may include a lower resource identifier (ID) (e.g., PUCCH resource ID) , a lower beam ID (e.g., TCI state ID) , or an earlier starting symbol than other ones of the at least two uplink control resources.
The uplink control circuitry 1644 may then further be configured to combine the payload (s) of the uplink control signal (s) (e.g., additional PUCCH (s) ) scheduled to be transmitted in the at least one additional uplink control resource with the payload of the uplink control signal scheduled to be transmitted in the predetermined PUCCH resource to produce a combined uplink control signal based on the multiplexing rule. The uplink control circuitry 1644 may further be configured to operate together with the communication and processing circuitry 1642 to frequency division multiplex the combined uplink control signal and at least one repetition of the combined uplink control  signal based on the configuration 1616. For example, the combined uplink control signal may be transmitted within the first uplink control resource (first PUCCH resource) and the repetition of the combined uplink control signal may be transmitted within the second uplink control resource (second PUCCH resource) . In other examples, the uplink control circuitry 1644 may be configured to cancel the at least two uplink resources based on the multiplexing rule. The uplink control circuitry 1644 may further be configured to execute uplink control instructions (software) 1654 stored on the computer-readable medium 1606 to implement one or more functions described herein.
FIG. 17 is a flow chart illustrating an exemplary method 1700 of uplink control repetition in an FDM manner according to some aspects. As described below, some or all illustrated features may be omitted in a particular implementation within the scope of the present disclosure, and some illustrated features may not be required for implementation of all aspects. In some examples, the method 1700 may be performed by the UE 1600, as described herein and illustrated in FIG. 16, by a processor or processing system, or by any suitable means for carrying out the described functions.
At block 1702, the UE may receive a configuration of at least two uplink control resources. The at least two uplink control resources are linked together and each of the at least two uplink control resources is associated with a different respective uplink beam of the UE. In some examples, the configuration is a radio resource control (RRC) configuration. For example, the communication and processing circuitry 1642 together with the transceiver 1610, shown and described above in connection with FIG. 16, may provide a means for receiving the configuration.
At block 1704, the UE may frequency division multiplex an uplink control signal and at least one repetition of the uplink control signal within a same time resource based on the configuration of the at least two uplink control resources. In some examples, the UE may transmit the uplink control signal and the at least one repetition of the uplink control signal from different respective antenna panels of the UE.
In some examples, the configuration includes a physical uplink control channel (PUCCH) resource identifier (ID) identifying a first uplink control resource of the at least two uplink control resources associated with a first uplink beam and a second uplink control resource of the at least two uplink control resources associated with a second uplink beam. In this example, the first uplink control resource and the second uplink control resource include a same time duration and a same number of resource blocks. In some examples, the configuration further indicates a first starting resource block of the  first uplink control resource and a second starting resource block of the second uplink control resource. In other examples, the configuration further indicates a first starting resource block of the first uplink control resource and an offset indicating a second starting resource block of the second uplink control resource. In some examples, the offset is based on the first starting resource block or a last resource block of the first uplink control resource.
In some examples, the configuration includes a first physical uplink control channel (PUCCH) resource identifier (ID) identifying a first PUCCH resource of the at least two uplink control resources associated with a first uplink beam and a second PUCCH resource ID identifying a second PUCCH resource of the at least two uplink control resources associated with a second uplink beam, where the first PUCCH resource ID is linked to the second PUCCH resource ID. In some examples, the UE may further receive an indication of a linkage between the first PUCCH resource ID and the second PUCCH resource ID via a medium access control (MAC) control element (MAC-CE) or a radio resource control (RRC) message. In some examples, the first PUCCH resource and the second PUCCH resource include a same time duration and a same number of resource blocks. In other examples, the first PUCCH resource and the second PUCCH resource include at least one of different respective time durations or different respective numbers of resource blocks.
In some examples, the UE may further rate-match each of the at least two uplink control resources using a rate-matching behavior of a predetermined uplink control resource of the at least two uplink control resources. The predetermined uplink control resource includes a lower resource identifier (ID) , a lower beam ID, or an earlier starting symbol than other ones of the at least two uplink control resources.
In some examples, the UE may further identify a multiplexing rule for the at least two uplink control resources and at least one additional uplink control resource carrying different uplink control information (UCI) than the at least two uplink control resources based on a predetermined uplink control resource of the at least two uplink control resources. The predetermined uplink control resource includes a lower resource identifier (ID) , a lower beam ID, or an earlier starting symbol than other ones of the at least two uplink control resources. For example, the uplink control circuitry 1644, together with the communication and processing circuitry 1642 and the transceiver 1610, shown and described above in connection with FIG. 16, may provide a means for frequency division multiplexing the uplink control signal and the at least one repetition of the uplink control  signal within the same time resource based on the configuration of the at least two uplink control resources.
In one configuration, the UE 1600 includes means for receiving a configuration of at least two uplink control resources, the at least two uplink control resources being linked together, each of the at least two uplink control resources being associated with a different respective uplink beam of the UE. In addition, the UE may include means for frequency division multiplexing an uplink control signal and at least one repetition of the uplink control signal within a same time resource based on the configuration of the at least two uplink control resources. In one aspect, the aforementioned means may be the processor 1604 shown in FIG. 16 configured to perform the functions recited by the aforementioned means. In another aspect, the aforementioned means may be a circuit or any apparatus configured to perform the functions recited by the aforementioned means.
Of course, in the above examples, the circuitry included in the processor 1604 is merely provided as an example, and other means for carrying out the described functions may be included within various aspects of the present disclosure, including but not limited to the instructions stored in the computer-readable storage medium 1606, or any other suitable apparatus or means described in any one of the FIGs. 1, 2, 5, and/or 6, and utilizing, for example, the processes and/or algorithms described herein in relation to FIGs. 11–13 and 17.
FIG. 18 is a block diagram illustrating an example of a hardware implementation of a network entity 1800 employing a processing system 1814 according to some aspects. The network entity 1800 may be, for example, any base station (e.g., gNB, eNB) or other scheduling entity as illustrated in any one or more of FIGs. 1, 2, 5, 6, and/or 11–13. The network entity 1800 may further be implemented in an aggregated or monolithic base station architecture, or in a disaggregated base station architecture, and may include one or more of a central unit (CU) , a distributed unit (DU) , a radio unit (RU) , a Near-Real Time (Near-RT) RAN Intelligent Controller (RIC) , or a Non-Real Time (Non-RT) RIC.
In accordance with various aspects of the disclosure, an element, or any portion of an element, or any combination of elements may be implemented with a processing system 1814 that includes one or more processors, such as processor 1804. The processing system 1814 may be substantially the same as the processing system 1414 as shown and described above in connection with FIG. 14, including a bus interface 1808, a bus 1802, a memory 1805, a processor 1804, and a computer-readable medium 1806. Furthermore, the network entity 1800 may include an optional user interface 1812 and a communication  interface 1810, substantially similar to those described above in FIG. 16. Accordingly, their descriptions will not be repeated for the sake of brevity. The communication interface 1810 may provide an interface (e.g., wireless or wired) between the network entity 1800 and a plurality of transmission and reception points (TRPs) , a core network node, and/or a plurality of UEs. In some examples, the communication interface 1810 may include a wireless transceiver.
The processor 1804, as utilized in the network entity 1800, may be used to implement any one or more of the processes described below. In some examples, the memory 1805 may store an uplink control configuration (config) 1816 of at least two uplink control resources generated by the network entity 1800 for a UE.
In some aspects of the disclosure, the processor 1804 may include communication and processing circuitry 1842 configured for various functions, including, for example, communicating with one or more UEs or other scheduled entities, or a core network node. In some examples, the communication and processing circuitry 1842 may communicate with one or more UEs via one or more TRPs associated with the network entity 1800. In some examples, the communication and processing circuitry 1842 may include one or more hardware components that provide the physical structure that performs processes related to wireless communication (e.g., signal reception and/or signal transmission) and signal processing (e.g., processing a received signal and/or processing a signal for transmission) . In addition, the communication and processing circuitry 1842 may be configured to process and transmit downlink traffic and downlink control and receive and process uplink traffic and uplink control.
In some examples, the communication and processing circuitry 1842 may be configured to provide the configuration 1816 of at least two uplink control resources linked together to the UE. Each of the at least two uplink control resources is associated with a different respective uplink beam of the UE. For example, the communication and processing circuitry 1842 may be configured to provide an RRC message including the configuration 1816 to the UE via the communication interface 1810. The communication and processing circuitry 1842 may further be configured to receive an uplink control signal and at least one repetition of the uplink control signal within a same time resource and different frequency resources based on the configuration of the at least two uplink resources.
In some examples, the communication and processing circuitry 1842 may further be configured to provide an indication of a linkage between the first PUCCH resource ID  and the second PUCCH resource ID to the UE via a MAC-CE or an RRC message. For example, the indication may be included in each RRC configuration 1816 of each of the PUCCH resources. The communication and processing circuitry 1842 may further be configured to execute communication and processing instructions (software) 1852 stored on the computer-readable medium 1806 to implement one or more functions described herein.
In some aspects of the disclosure, the processor 1804 may include other circuitry configured for various functions. For example, the processor 1804 may include uplink control circuitry 1844, configured to generate the uplink control configuration (s) 1816 and to store the uplink control configuration (s) 1816 within, for example, memory 1805. In some examples, the configuration 1816 may include a single configuration identifying the at least two uplink control resources. For example, the configuration 1816 may include a physical uplink control channel (PUCCH) resource identifier (ID) identifying a first uplink control resource of the at least two uplink control resources associated with a first uplink beam and a second uplink control resource of the at least two uplink control resources associated with a second uplink beam. In this example, the first uplink control resource and the second uplink control resource may include a same time duration and a same number of resource blocks. The configuration may then further indicate a first starting resource block of the first uplink control resource and a second starting resource block of the second uplink control resource or a first starting resource block of the first uplink control resource and an offset indicating a second starting resource block of the second uplink control resource. In some examples, the offset is based on the first starting resource block or a last resource block of the first uplink control resource.
In other examples, the configuration 1816 may include multiple configurations, each including a respective PUCCH resource ID identifying a respective one of the at least two uplink resources. For example, the configuration 1816 may include a first physical uplink control channel (PUCCH) resource identifier (ID) identifying a first PUCCH resource of the at least two uplink control resources associated with a first uplink beam and a second PUCCH resource ID identifying a second PUCCH resource of the at least two uplink control resources associated with a second uplink beam. In this example, the first PUCCH resource ID may be linked to the second PUCCH resource ID. In this example, the first PUCCH resource and the second PUCCH resource may include a same time duration and a same number of resource blocks or at least one of different respective time durations or different respective numbers of resource blocks. The uplink control  circuitry 1844 may further be configured to execute uplink control instructions (software) 1854 stored on the computer-readable medium 1806 to implement one or more functions described herein.
FIG. 19 is a flow chart illustrating an exemplary method 1900 of uplink control repetition in an FDM manner according to some aspects. As described below, some or all illustrated features may be omitted in a particular implementation within the scope of the present disclosure, and some illustrated features may not be required for implementation of all aspects. In some examples, the method 1900 may be performed by the network entity 1800, as described herein and illustrated in FIG. 18, by a processor or processing system, or by any suitable means for carrying out the described functions.
At block 1902, the network entity may provide a configuration of at least two uplink control resources. The at least two uplink control resources are linked together and each of the at least two uplink control resources is associated with a different respective uplink beam of the UE. In some examples, the configuration is a radio resource control (RRC) configuration. For example, the communication and processing circuitry 1842 together with the communication interface 1810, shown and described above in connection with FIG. 18, may provide a means for providing the configuration.
At block 1904, the network entity may receive an uplink control signal and at least one repetition of the uplink control signal frequency division multiplexed with the uplink control signal within a same time resource based on the configuration of the at least two uplink control resources.
In some examples, the configuration includes a physical uplink control channel (PUCCH) resource identifier (ID) identifying a first uplink control resource of the at least two uplink control resources associated with a first uplink beam and a second uplink control resource of the at least two uplink control resources associated with a second uplink beam. In this example, the first uplink control resource and the second uplink control resource include a same time duration and a same number of resource blocks. In some examples, the configuration further indicates a first starting resource block of the first uplink control resource and a second starting resource block of the second uplink control resource. In other examples, the configuration further indicates a first starting resource block of the first uplink control resource and an offset indicating a second starting resource block of the second uplink control resource. In some examples, the offset is based on the first starting resource block or a last resource block of the first uplink control resource.
In some examples, the configuration includes a first physical uplink control channel (PUCCH) resource identifier (ID) identifying a first PUCCH resource of the at least two uplink control resources associated with a first uplink beam and a second PUCCH resource ID identifying a second PUCCH resource of the at least two uplink control resources associated with a second uplink beam, where the first PUCCH resource ID is linked to the second PUCCH resource ID. In some examples, the network entity may further transmit an indication of a linkage between the first PUCCH resource ID and the second PUCCH resource ID via a medium access control (MAC) control element (MAC-CE) or a radio resource control (RRC) message. In some examples, the first PUCCH resource and the second PUCCH resource include a same time duration and a same number of resource blocks. In other examples, the first PUCCH resource and the second PUCCH resource include at least one of different respective time durations or different respective numbers of resource blocks. For example, the uplink control circuitry 1844, together with the communication and processing circuitry 1842 and the communication interface 1810, shown and described above in connection with FIG. 18, may provide a means for receiving the uplink control signal and the repetition of the uplink control signal frequency division multiplexed with the uplink control signal within the same time resource based on the configuration of the at least two uplink control resources.
In one configuration, the network entity 1800 includes means for providing a configuration of at least two uplink control resources to a UE, the at least two uplink control resources being linked together, each of the at least two uplink control resources being associated with a different respective uplink beam of the UE. In addition, the network entity may include means for receiving an uplink control signal and at least one repetition of the uplink control signal frequency division multiplexed with the uplink control signal within a same time resource based on the configuration of the at least two uplink control resources. In one aspect, the aforementioned means may be the processor 1804 shown in FIG. 18 configured to perform the functions recited by the aforementioned means. In another aspect, the aforementioned means may be a circuit or any apparatus configured to perform the functions recited by the aforementioned means.
Of course, in the above examples, the circuitry included in the processor 1804 is merely provided as an example, and other means for carrying out the described functions may be included within various aspects of the present disclosure, including but not limited to the instructions stored in the computer-readable storage medium 1806, or any other  suitable apparatus or means described in any one of the FIGs. 1, 2, 5, and/or 6, and utilizing, for example, the processes and/or algorithms described herein in relation to FIGs. 11–13 and 19.
The following provides an overview of aspects of the present disclosure:
Aspect 1: A method for wireless communication at a user equipment (UE) , the method comprising: receiving a configuration of at least two uplink control resources, the at least two uplink control resources being linked together, each of the at least two uplink control resources being associated with a different respective uplink beam of the UE; and frequency division multiplexing an uplink control signal and at least one repetition of the uplink control signal within a same time resource based on the configuration of the at least two uplink control resources.
Aspect 2: The method of aspect 1, wherein the configuration comprises a physical uplink control channel (PUCCH) resource identifier (ID) identifying a first uplink control resource of the at least two uplink control resources associated with a first uplink beam and a second uplink control resource of the at least two uplink control resources associated with a second uplink beam.
Aspect 3: The method of aspect 2, wherein the first uplink control resource and the second uplink control resource comprise a same time duration and a same number of resource blocks.
Aspect 4: The method of aspect 3, wherein the configuration further indicates a first starting resource block of the first uplink control resource and a second starting resource block of the second uplink control resource.
Aspect 5: The method of aspect 3, wherein the configuration further indicates a first starting resource block of the first uplink control resource and an offset indicating a second starting resource block of the second uplink control resource.
Aspect 6: The method of aspect 5, wherein the offset is based on the first starting resource block or a last resource block of the first uplink control resource.
Aspect 7: The method of aspect 1, wherein the configuration comprises a first physical uplink control channel (PUCCH) resource identifier (ID) identifying a first PUCCH resource of the at least two uplink control resources associated with a first uplink beam and a second PUCCH resource ID identifying a second PUCCH resource of the at least two uplink control resources associated with a second uplink beam, the first PUCCH resource ID being linked to the second PUCCH resource ID.
Aspect 8: The method of aspect 7, further comprising: receiving an indication of a linkage between the first PUCCH resource ID and the second PUCCH resource ID via a medium access control (MAC) control element (MAC-CE) or a radio resource control (RRC) message.
Aspect 9: The method of aspect 7 or 8, wherein the first PUCCH resource and the second PUCCH resource comprise a same time duration and a same number of resource blocks.
Aspect 10: The method of aspect 7 or 8, wherein the first PUCCH resource and the second PUCCH resource comprise at least one of different respective time durations or different respective numbers of resource blocks.
Aspect 11: The method of any of aspects 1 through 10, further comprising: rate-matching each of the at least two uplink control resources using a rate-matching behavior of a predetermined uplink control resource of the at least two uplink control resources, the predetermined uplink control resource comprising a lower resource identifier (ID) , a lower beam ID, or an earlier starting symbol than other ones of the at least two uplink control resources.
Aspect 12: The method of any of aspects 1 through 11, further comprising: identifying a multiplexing rule for the at least two uplink control resources and at least one additional uplink control resource carrying different uplink control information (UCI) than the at least two uplink control resources based on a predetermined uplink control resource of the at least two uplink control resources, the predetermined uplink control resource comprising a lower resource identifier (ID) , a lower beam ID, or an earlier starting symbol than other ones of the at least two uplink control resources.
Aspect 13: The method of any of aspects 1 through 12, wherein the configuration comprises a radio resource control (RRC) configuration.
Aspect 14: The method of any of aspects 1 through 13, wherein the frequency division multiplexing the uplink control signal and the at least one repetition of the uplink control signal within the same time resource based on the configuration of the at least two uplink control resources further comprises: transmitting the uplink control signal and the at least one repetition of the uplink control signal from different respective antenna panels of the UE.
Aspect 15: A user equipment (UE) configured for wireless communication comprising a transceiver, a memory, and a processor coupled to the transceiver and the memory, the processor being configured to perform a method of any one of aspects 1–14.
Aspect 16: A UE configured for wireless communication comprising means for performing a method of any one of aspects 1–14.
Aspect 17: A non-transitory computer-readable medium having stored therein instructions executable by one or more processors of a UE to perform a method of any one of aspects 1–14.
Aspect 18: A method for wireless communication at a network entity, comprising: providing a configuration of at least two uplink control resources to a user equipment (UE) , the at least two uplink control resources being linked together, each of the at least two uplink control resources being associated with a different respective uplink beam of the UE; and receiving an uplink control signal and at least one repetition of the uplink control signal frequency division multiplexed with the uplink control signal within a same time resource based on the at least two uplink control resources.
Aspect 19: The method of aspect 18, wherein the configuration comprises a physical uplink control channel (PUCCH) resource identifier (ID) identifying a first uplink control resource of the at least two uplink control resources associated with a first uplink beam and a second uplink control resource of the at least two uplink control resources associated with a second uplink beam.
Aspect 20: The method of aspect 19, wherein the first uplink control resource and the second uplink control resource comprise a same time duration and a same number of resource blocks.
Aspect 21: The method of aspect 20, wherein the configuration further indicates a first starting resource block of the first uplink control resource and a second starting resource block of the second uplink control resource.
Aspect 22: The method of aspect 20, wherein the configuration further indicates a first starting resource block of the first uplink control resource and an offset indicating a second starting resource block of the second uplink control resource.
Aspect 23: The method of aspect 22, wherein the offset is based on the first starting resource block or a last resource block of the first uplink control resource.
Aspect 24: The method of aspect 18, wherein the configuration comprises a first physical uplink control channel (PUCCH) resource identifier (ID) identifying a first PUCCH resource of the at least two uplink control resources associated with a first uplink beam and a second PUCCH resource ID identifying a second PUCCH resource of the at least two uplink control resources associated with a second uplink beam, the first PUCCH resource ID being linked to the second PUCCH resource ID.
Aspect 25: The method of aspect 24, further comprising: transmitting an indication of a linkage between the first PUCCH resource ID and the second PUCCH resource ID via a medium access control (MAC) control element (MAC-CE) or a radio resource control (RRC) message.
Aspect 26: The method of aspect 24, wherein the first PUCCH resource and the second PUCCH resource comprise a same time duration and a same number of resource blocks.
Aspect 27: The method of aspect 24, wherein the first PUCCH resource and the second PUCCH resource comprise at least one of different respective time durations or different respective numbers of resource blocks.
Aspect 28: A network entity configured for wireless communication comprising a memory and a processor coupled to the memory, the processor being configured to perform a method of any one of aspects 18–27.
Aspect 29: A network entity configured for wireless communication comprising means for performing a method of any one of aspects 18–27.
Aspect 30: A non-transitory computer-readable medium having stored therein instructions executable by one or more processors of a base station to perform a method of any one of aspects 18–27.
Several aspects of a wireless communication network have been presented with reference to an exemplary implementation. As those skilled in the art will readily appreciate, various aspects described throughout this disclosure may be extended to other telecommunication systems, network architectures and communication standards.
By way of example, various aspects may be implemented within other systems defined by 3GPP, such as Long-Term Evolution (LTE) , the Evolved Packet System (EPS) , the Universal Mobile Telecommunication System (UMTS) , and/or the Global System for Mobile (GSM) . Various aspects may also be extended to systems defined by the 3rd Generation Partnership Project 2 (3GPP2) , such as CDMA2000 and/or Evolution-Data Optimized (EV-DO) . Other examples may be implemented within systems employing IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Ultra-Wideband (UWB) , Bluetooth, and/or other suitable systems. The actual telecommunication standard, network architecture, and/or communication standard employed will depend on the specific application and the overall design constraints imposed on the system.
Within the present disclosure, the word “exemplary” is used to mean “serving as an example, instance, or illustration. ” Any implementation or aspect described herein as  “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects of the disclosure. Likewise, the term “aspects” does not require that all aspects of the disclosure include the discussed feature, advantage, or mode of operation. The term “coupled” is used herein to refer to the direct or indirect coupling between two objects. For example, if object A physically touches object B, and object B touches object C, then objects A and C may still be considered coupled to one another-even if they do not directly physically touch each other. For instance, a first object may be coupled to a second object even though the first object is never directly physically in contact with the second object. The terms “circuit” and “circuitry” are used broadly, and intended to include both hardware implementations of electrical devices and conductors that, when connected and configured, enable the performance of the functions described in the present disclosure, without limitation as to the type of electronic circuits, as well as software implementations of information and instructions that, when executed by a processor, enable the performance of the functions described in the present disclosure.
One or more of the components, steps, features and/or functions illustrated in FIGs. 1–19 may be rearranged and/or combined into a single component, step, feature, or function or embodied in several components, steps, or functions. Additional elements, components, steps, and/or functions may also be added without departing from novel features disclosed herein. The apparatus, devices, and/or components illustrated in FIGs. 1, 2, 4–6, 11–13, 16, and/or 18 may be configured to perform one or more of the methods, features, or steps described herein. The novel algorithms described herein may also be efficiently implemented in software and/or embedded in hardware.
It is to be understood that the specific order or hierarchy of steps in the methods disclosed is an illustration of exemplary processes. Based upon design preferences, it is understood that the specific order or hierarchy of steps in the methods may be rearranged. The accompanying method claims present elements of the various steps in a sample order, and are not meant to be limited to the specific order or hierarchy presented unless specifically recited therein.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but are to be accorded the full scope consistent with the language of the claims, wherein reference to an element in the singular is not intended to mean “one  and only one” unless specifically so stated, but rather “one or more. ” Unless specifically stated otherwise, the term “some” refers to one or more. A phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover: a; b; c; a and b; a and c; b and c; and a, b and c. The construct A and/or B is intended to cover A, B, and A and B. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. §112 (f) unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for. ”

Claims (30)

  1. A user equipment (UE) configured for wireless communication, comprising:
    a transceiver;
    a memory; and
    a processor coupled to the transceiver and the memory, the processor being configured to:
    receive a configuration of at least two uplink control resources via the transceiver, the at least two uplink control resources being linked together, each of the at least two uplink control resources being associated with a different respective uplink beam of the UE; and
    frequency division multiplex an uplink control signal and at least one repetition of the uplink control signal within a same time resource based on the configuration of the at least two uplink control resources.
  2. The UE of claim 1, wherein the configuration comprises a physical uplink control channel (PUCCH) resource identifier (ID) identifying a first uplink control resource of the at least two uplink control resources associated with a first uplink beam and a second uplink control resource of the at least two uplink control resources associated with a second uplink beam.
  3. The UE of claim 2, wherein the first uplink control resource and the second uplink control resource comprise a same time duration and a same number of resource blocks.
  4. The UE of claim 3, wherein the configuration further indicates a first starting resource block of the first uplink control resource and a second starting resource block of the second uplink control resource.
  5. The UE of claim 3, wherein the configuration further indicates a first starting resource block of the first uplink control resource and an offset indicating a second starting resource block of the second uplink control resource.
  6. The UE of claim 5, wherein the offset is based on the first starting resource block or a last resource block of the first uplink control resource.
  7. The UE of claim 1, wherein the configuration comprises a first physical uplink control channel (PUCCH) resource identifier (ID) identifying a first PUCCH resource of the at least two uplink control resources associated with a first uplink beam and a second PUCCH resource ID identifying a second PUCCH resource of the at least two uplink control resources associated with a second uplink beam, the first PUCCH resource ID being linked to the second PUCCH resource ID.
  8. The UE of claim 7, wherein the processor is further configured to:
    receive an indication of a linkage between the first PUCCH resource ID and the second PUCCH resource ID via a medium access control (MAC) control element (MAC-CE) or a radio resource control (RRC) message.
  9. The UE of claim 7, wherein the first PUCCH resource and the second PUCCH resource comprise a same time duration and a same number of resource blocks.
  10. The UE of claim 7, wherein the first PUCCH resource and the second PUCCH resource comprise at least one of different respective time durations or different respective numbers of resource blocks.
  11. The UE of claim 1, wherein the processor is further configured to:
    rate-match each of the at least two uplink control resources using a rate-matching behavior of a predetermined uplink control resource of the at least two uplink control resources, the predetermined uplink control resource comprising a lower resource identifier (ID) , a lower beam ID, or an earlier starting symbol than other ones of the at least two uplink control resources.
  12. The UE of claim 1, wherein the processor is further configured to:
    identify a multiplexing rule for the at least two uplink control resources and at least one additional uplink control resource carrying different uplink control information (UCI) than the at least two uplink control resources based on a predetermined uplink  control resource of the at least two uplink control resources, the predetermined uplink control resource comprising a lower resource identifier (ID) , a lower beam ID, or an earlier starting symbol than other ones of the at least two uplink control resources.
  13. The UE of claim 1, further comprising:
    at least two antenna panels, wherein the processor is further configured to:
    transmit the uplink control signal and the at least one repetition of the uplink control signal from different respective ones of the at least two antenna panels.
  14. A network entity configured for wireless communication, comprising:
    a memory; and
    a processor coupled to the memory, the processor being configured to:
    provide a configuration of at least two uplink control resources to a user equipment (UE) , the at least two uplink control resources being linked together, each of the at least two uplink control resources being associated with a different respective uplink beam of the UE; and
    receive an uplink control signal and at least one repetition of the uplink control signal frequency division multiplexed with the uplink control signal within a same time resource based on the at least two uplink control resources.
  15. The network entity of claim 14, wherein the configuration comprises a physical uplink control channel (PUCCH) resource identifier (ID) identifying a first uplink control resource of the at least two uplink control resources associated with a first uplink beam and a second uplink control resource of the at least two uplink control resources associated with a second uplink beam.
  16. The network entity of claim 15, wherein the first uplink control resource and the second uplink control resource comprise a same time duration and a same number of resource blocks.
  17. The network entity of claim 16, wherein the configuration further indicates a first starting resource block of the first uplink control resource and a second starting resource block of the second uplink control resource.
  18. The network entity of claim 16, wherein the configuration further indicates a first starting resource block of the first uplink control resource and an offset indicating a second starting resource block of the second uplink control resource.
  19. The network entity of claim 18, wherein the offset is based on the first starting resource block or a last resource block of the first uplink control resource.
  20. The network entity of claim 14, wherein the configuration comprises a first physical uplink control channel (PUCCH) resource identifier (ID) identifying a first PUCCH resource of the at least two uplink control resources associated with a first uplink beam and a second PUCCH resource ID identifying a second PUCCH resource of the at least two uplink control resources associated with a second uplink beam, the first PUCCH resource ID being linked to the second PUCCH resource ID.
  21. The network entity of claim 20, wherein the processor is further configured to:
    transmit an indication of a linkage between the first PUCCH resource ID and the second PUCCH resource ID via a medium access control (MAC) control element (MAC-CE) or a radio resource control (RRC) message.
  22. The network entity of claim 20, wherein the first PUCCH resource and the second PUCCH resource comprise a same time duration and a same number of resource blocks.
  23. The network entity of claim 20, wherein the first PUCCH resource and the second PUCCH resource comprise at least one of different respective time durations or different respective numbers of resource blocks.
  24. A method for wireless communication at a user equipment (UE) , the method comprising:
    receiving a configuration of at least two uplink control resources, the at least two uplink control resources being linked together, each of the at least two uplink control resources being associated with a different respective uplink beam of the UE; and
    frequency division multiplexing an uplink control signal and at least one repetition of the uplink control signal within a same time resource based on the configuration of the at least two uplink control resources.
  25. The method of claim 24, wherein the configuration comprises a physical uplink control channel (PUCCH) resource identifier (ID) identifying a first uplink control resource of the at least two uplink control resources associated with a first uplink beam and a second uplink control resource of the at least two uplink control resources associated with a second uplink beam.
  26. The method of claim 25, wherein the first uplink control resource and the second uplink control resource comprise a same time duration and a same number of resource blocks.
  27. The method of claim 26, wherein the configuration further indicates a first starting resource block of the first uplink control resource and a second starting resource block of the second uplink control resource or the first starting resource block of the first uplink control resource and an offset indicating the second starting resource block of the second uplink control resource.
  28. The method of claim 24, wherein the configuration comprises a first physical uplink control channel (PUCCH) resource identifier (ID) identifying a first PUCCH resource of the at least two uplink control resources associated with a first uplink beam and a second PUCCH resource ID identifying a second PUCCH resource of the at least two uplink control resources associated with a second uplink beam, the first PUCCH resource ID being linked to the second PUCCH resource ID.
  29. The method of claim 28, wherein the first PUCCH resource and the second PUCCH resource comprise a same time duration and a same number of resource blocks or at least one of different respective time durations or different respective numbers of resource blocks.
  30. A method for wireless communication at a network entity, comprising:
    providing a configuration of at least two uplink control resources to a user equipment (UE) , the at least two uplink control resources being linked together, each of the at least two uplink control resources being associated with a different respective uplink beam of the UE; and
    receiving an uplink control signal and at least one repetition of the uplink control signal frequency division multiplexed with the uplink control signal within a same time resource based on the at least two uplink control resources.
PCT/CN2022/086758 2022-04-14 2022-04-14 Pucch repetition in frequency division multiplexing (fdm) manner WO2023197234A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/086758 WO2023197234A1 (en) 2022-04-14 2022-04-14 Pucch repetition in frequency division multiplexing (fdm) manner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/086758 WO2023197234A1 (en) 2022-04-14 2022-04-14 Pucch repetition in frequency division multiplexing (fdm) manner

Publications (1)

Publication Number Publication Date
WO2023197234A1 true WO2023197234A1 (en) 2023-10-19

Family

ID=88328569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086758 WO2023197234A1 (en) 2022-04-14 2022-04-14 Pucch repetition in frequency division multiplexing (fdm) manner

Country Status (1)

Country Link
WO (1) WO2023197234A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200205149A1 (en) * 2018-12-21 2020-06-25 Qualcomm Incorporated Pucch carrying harq-a for multi-trp with non-ideal backhaul
CN112400283A (en) * 2018-07-18 2021-02-23 高通股份有限公司 Method and apparatus related to beam recovery in secondary cell
CN112514305A (en) * 2018-07-20 2021-03-16 高通股份有限公司 Physical uplink control channel repetition configuration

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112400283A (en) * 2018-07-18 2021-02-23 高通股份有限公司 Method and apparatus related to beam recovery in secondary cell
CN112514305A (en) * 2018-07-20 2021-03-16 高通股份有限公司 Physical uplink control channel repetition configuration
US20200205149A1 (en) * 2018-12-21 2020-06-25 Qualcomm Incorporated Pucch carrying harq-a for multi-trp with non-ideal backhaul

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC.: "On uplink inter-UE transmission prioritization and multiplexing", 3GPP DRAFT; R1-1912120, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 9 November 2019 (2019-11-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051823213 *

Similar Documents

Publication Publication Date Title
US11937235B2 (en) Slot format indicator (SFI) enhancement for sub-band full-duplex
US10651995B2 (en) Transmission of group common control information in new radio
US11323227B2 (en) Multiplexing of physical uplink shared channel (PUSCH) and physical uplink control channel (PUCCH) in uplink short burst transmission
US11576061B2 (en) Beam report for multi-stream communication
US11777584B2 (en) Measurement report payload reduction techniques
US11582771B2 (en) Fast beam selection in wireless communication
US11570796B2 (en) Triggering reference signals in wireless networks
US20220046726A1 (en) Beam-specific coverage enhancement for random access procedure
US20220046745A1 (en) Managing discontinuous reception in sidelink relay
US20220007224A1 (en) Channel state information (csi) signaling for multiple report metrics
US11647530B2 (en) Transmission configuration indicator (TCI) state groups
US20230275631A1 (en) Channel reciprocity for a multi-panel base station
US11856436B2 (en) Transient compact measurement reports via alternative beam indexing
US20220232555A1 (en) Indication of uplink control channel repetition in wireless communication
US11696301B2 (en) Techniques for configuring control resources using piggyback downlink control information
US11831375B2 (en) Sub-band channel state information reporting for ultra-reliable low latency communications
US11581935B2 (en) Techniques to enhance user equipment (UE) beam scan
US10998956B1 (en) Optimized receive beam selection
WO2023197234A1 (en) Pucch repetition in frequency division multiplexing (fdm) manner
WO2022205487A1 (en) Antenna panel indication in wireless communication
WO2023201698A1 (en) Power control parameter reset associated with beam failure recovery
US11943730B2 (en) Search space specific delay between a downlink control channel and corresponding downlink/uplink data
WO2024040366A1 (en) Layer-1 report capturing multiple time domain occasions
US20230336276A1 (en) Channel state information (csi) reduction for deferred feedback
US20230262703A1 (en) TRANSMISSION CONFIGURATION INDICATOR (TCI) FOR FLEXIBLE MULTIPLE TRANSMISSION AND RECEPTION POINT (mTRP) BEAM INDICATION AND MULTIPLEXING CONFIGURATIONS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22936883

Country of ref document: EP

Kind code of ref document: A1