WO2016043443A1 - Electrolyte solution comprising sulfur dioxide-based, gallium-based inorganic electrolyte, and sodium-sulfur dioxide secondary battery having same - Google Patents

Electrolyte solution comprising sulfur dioxide-based, gallium-based inorganic electrolyte, and sodium-sulfur dioxide secondary battery having same Download PDF

Info

Publication number
WO2016043443A1
WO2016043443A1 PCT/KR2015/008853 KR2015008853W WO2016043443A1 WO 2016043443 A1 WO2016043443 A1 WO 2016043443A1 KR 2015008853 W KR2015008853 W KR 2015008853W WO 2016043443 A1 WO2016043443 A1 WO 2016043443A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfur dioxide
sodium
secondary battery
electrolyte
gallium
Prior art date
Application number
PCT/KR2015/008853
Other languages
French (fr)
Korean (ko)
Inventor
임태은
김영준
김영권
박민식
정구진
조용남
Original Assignee
전자부품연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전자부품연구원 filed Critical 전자부품연구원
Publication of WO2016043443A1 publication Critical patent/WO2016043443A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0563Liquid materials, e.g. for Li-SOCl2 cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a sodium-based secondary battery, and more particularly, an electrolyte containing a sulfur dioxide-based gallium-based inorganic material that suppresses polarization and has more stable electrochemical properties, and sodium-sulfur dioxide having the same (Na-SO 2). ) Relates to a secondary battery.
  • Lithium-based secondary batteries have been put to practical use as small, light weight and high capacity rechargeable batteries, and are used in portable electronic and communication devices such as small video cameras, mobile phones, and notebook computers.
  • the lithium secondary battery is composed of a positive electrode, a negative electrode, and an electrolyte, and is charged and discharged because it functions to transfer energy while reciprocating both electrodes such that lithium ions from the positive electrode active material are inserted into the negative electrode active material by charge and are detached again during discharge. This is possible.
  • sodium based secondary batteries are useful, but conventional sodium metal based secondary batteries such as NAS (Na-S cells), ZEBRA (Na-NiCl 2 cells) cannot be used at room temperature, i.e., high temperature. There is a problem in that battery performance due to the use of the liquid sodium and the positive electrode active material in the battery and the degradation of the battery due to corrosion problems. On the other hand, recently, although a lithium ion battery using a de-insertion of sodium ions has been actively studied, their energy density and life characteristics are still poor. For this reason, there is a need for a sodium-based secondary battery that can be used at room temperature and has excellent energy density and life characteristics.
  • NAS Na-S cells
  • ZEBRA Na-NiCl 2 cells
  • sodium-sulfur dioxide (Na-SO 2 ) secondary batteries have been introduced.
  • Sodium-sulfur dioxide secondary battery is a new battery system that can significantly improve the low energy density of the existing lithium secondary battery by using a material in the form of room temperature molten salt as an electrolyte, and can be used as a power source for large-capacity power storage.
  • the sodium-sulfur dioxide secondary battery is a novel battery system having the advantage of lowering the price to less than 1/2 of the existing lithium secondary battery by using Na which is inexpensive in price.
  • an object of the present invention is to improve the overall polarization efficiency of the battery by improving the serious polarization phenomenon occurring in the evaluation of the battery of the conventional sodium-sulfur dioxide secondary battery, an electrolyte containing a sulfur-based gallium-based inorganic electrolyte and sodium containing the same To provide a sulfur dioxide secondary battery.
  • the present invention provides a sodium-sulfur dioxide secondary battery comprising a negative electrode of an inorganic material containing sodium, a positive electrode and an electrolyte of a carbon material.
  • the electrolyte solution contains a sulfur dioxide-based gallium-based inorganic electrolyte prepared by injecting SO 2 gas into a mixture of NaX and GaX 3 .
  • X includes halogenated compounds, saturated hydrocarbons (R) with C1 to C20, unsaturated hydrocarbons (R) with C1 to C20, OR or SR.
  • the molar ratio of NaX and GaX 3 may be 2.0: 1.0 to 1.0: 2.0.
  • the sulfur dioxide-based gallium-based inorganic electrolyte may be NaGaCl 4 -xSO 2 (1.5 ⁇ x ⁇ 3.0).
  • the electrolyte may further include an aluminum-based inorganic electrolyte based on sulfur dioxide.
  • the sulfur-based aluminum-based inorganic electrolyte may be NaAlCl 4 -xSO 2 (1.5 ⁇ x ⁇ 3.0).
  • the electrolyte may be a mixture of NaGaCl 4 -xSO 2 and NaAlCl 4 -xSO 2 .
  • the present invention also provides a sodium-sulfur dioxide secondary battery comprising an electrolyte solution containing a sulfur dioxide-based gallium-based inorganic electrolyte prepared by injecting SO 2 gas into a mixture of NaX and GaX 3 .
  • the present invention also provides an electrolyte solution for sodium-sulfur dioxide secondary battery comprising a sulfur dioxide-based gallium-based inorganic electrolyte prepared by injecting SO 2 gas into a mixture of NaX and GaX 3 .
  • X is a halogen-based compound, saturated hydrocarbon (R) having a C1 ⁇ C20, unsaturated hydrocarbon (R) having a C1 ⁇ C20, OR or SR.
  • the mixture of NaX and GaX 3 may be NaGaX 4 .
  • the mixture of NaX and GaX 3 may be NaGaCl 4 mixed with NaCl and GaCl 3 .
  • the present invention by using a sulfur dioxide-based gallium-based inorganic electrolyte capable of chelation with sulfur dioxide as a sodium-sulfur dioxide secondary battery electrolyte but having a weak bonding force, a serious problem generated during battery evaluation of a conventional sodium-sulfur dioxide secondary battery By improving the polarization phenomenon, the overall energy efficiency of the battery can be improved.
  • FIG. 1 is a view for explaining a sodium-sulfur dioxide secondary battery according to the present invention.
  • FIG. 3 is a graph evaluating battery characteristics of a sodium-sulfur dioxide secondary battery according to Examples and Comparative Examples of the present invention.
  • FIG. 1 is a view for explaining a sodium-sulfur dioxide secondary battery according to the present invention.
  • the sodium-sulfur dioxide secondary battery 100 of the present invention includes a carbon anode 2, a sodium-containing anode 3, and a sulfur dioxide-based inorganic electrolyte solution 1, and further include a case 4. Can be.
  • the sulfur dioxide-based inorganic electrolyte (1) includes a gallium-based inorganic electrolyte as the sulfur dioxide-based inorganic electrolyte.
  • the anode 2 is made of a porous carbon material. This anode 2 provides a place where the oxidation-reduction reaction of the sulfur dioxide-based inorganic electrolyte takes place.
  • the carbon material constituting the anode 2 may include one or two or more heteroatoms in some cases.
  • Heterogeneous elements refer to nitrogen (N), oxygen (O), boron (B), fluorine (F), phosphorus (P), sulfur (S), and silicon (Si).
  • the content of hetero elements is 0 to 20 at%, preferably 5 to 15 at%. When the content of hetero elements is less than 5 at%, the effect of increasing capacity according to the addition of hetero elements is insignificant, and when the content of more than 15 at% is reduced, the electrical conductivity of the carbon material and the ease of forming the electrode are reduced.
  • anode 2 may further include metal chloride, metal fluoride or metal bromide in the porous carbon material.
  • the anode 2 may include a porous carbon material and CuCl 2 in a predetermined weight ratio.
  • CuCl 2 reacts with sodium ions as the oxidation number of Cu changes during charging and discharging, thereby obtaining a discharge product of Cu and NaCl, and reversibly regenerates CuCl 2 during charging.
  • the content of the metal chloride in the positive electrode 2 may be 50 to 100 wt% or 60 to 99 wt%, preferably 70 to 95 wt% for blending additional elements to improve the properties of the positive electrode 2.
  • Metal fluorides include CuF 2 , CuF, NiF 2 , FeF 2 , FeF 3 , CoF 2 , CoF 3 , MnF 2 , CrF 2 , CrF 3 , ZnF 2 , ZrF 4 , ZrF 2 , TiF 4 , TiF 3 , NbF 5 , AgF 2, SbF 3, GaF 3 , NbF may include one or two or more of five.
  • the anode 2 may include a porous carbon material and CuF 2 in a predetermined weight ratio.
  • CuF 2 reacts with sodium ions as the oxidation number of Cu changes during charging and discharging, thereby obtaining a discharge product of Cu and NaCl, and reversibly regenerates CuF 2 during charging.
  • the content of the metal fluoride in the positive electrode 2 may be 50 to 100 wt% or 60 to 99 wt%, preferably 70 to 95 wt% for blending additional elements to improve the properties of the positive electrode 2.
  • the anode 2 may include a porous carbon material and CuBr 2 in a predetermined weight ratio.
  • CuBr 2 reacts with sodium ions as the oxidation number of Cu changes during charging and discharging, thereby obtaining a discharge product of Cu and NaCl, and reversibly regenerates CuBr 2 during charging.
  • the content of the metal bromide in the anode 2 may be 50-100 wt% or 60-99 wt%, preferably 70-95 wt% for the blending of additional elements to improve the properties of the anode 2. .
  • the negative electrode 3 may be a sodium metal, an alloy containing sodium, an intermetallic compound containing sodium, a carbon material containing sodium, an inorganic material containing sodium, or the like.
  • the inorganic material may include at least one of oxides, sulfides, phosphides, nitrides, and fluorides.
  • the negative electrode material content in the negative electrode 3 may be 60 to 100 wt%.
  • the sulfur dioxide-based inorganic electrolyte (1) used as an electrolyte and an anode active material is a sulfur dioxide-based gallium-based inorganic electrolyte (hereinafter referred to as a 'gallium-based inorganic electrolyte') that can chelate with sulfur dioxide but has a weak bonding force. use.
  • Gallium-based inorganic electrolytes contain NaX, GaX 3 and SO 2 .
  • X is a ligand (Ligand), for example, a variety of ligands can be used, including halogen-based compounds, saturated or unsaturated hydrocarbon (R) having C1 ⁇ C20, OR, SR and the like.
  • the molar ratio of NaX and GaX 3 may be 2.0: 1.0 to 1.0: 2.0.
  • the gallium-based inorganic electrolyte may be composed of NaGaCl 4 (solute) and SO 2 (solvent).
  • NaGaCl 4 —xSO 2 may be prepared by injecting SO 2 gas into a mixture of NaCl and GaCl 3 (or NaGaCl 4 alone salt).
  • the NaGaCl 4 -xSO 2 electrolyte corresponds to a molar ratio (x) of SO 2 to NaGaCl 4 of 0.5 to 10, preferably 1.5 to 3.0.
  • a problem of decreasing electrolyte ion conductivity appears, and when higher than 3.0, a problem of increasing vapor pressure of the electrolyte appears.
  • the gallium-based inorganic electrolyte may be used alone as the sulfur dioxide-based inorganic electrolyte solution (1), but may be used together with other sulfur dioxide-based inorganic electrolytes.
  • NaGaCl 4 used as a solute NaAlCl 4 , Na 2 CuCl 4 , Na 2 MnCl 4 , Na 2 CoCl 4 , Na 2 NiCl 4 , Na 2 ZnCl 4 , Na 2 PdCl 4 , and the like may be used together with NaGaCl 4 .
  • NaGaCl 4 and NaAlCl 4 may be used together, and in this case, it may be used as a mixture of NaGaCl 4 -nSO 2 and NaAlCl 4 -nSO 2 .
  • the case 4 may be provided to surround the structure in which the sulfur dioxide-based inorganic electrolyte solution 1 is disposed between the anode 2 and the cathode 3.
  • One side of the case 4 may have a signal line connected to the positive electrode 2 and a signal line connected to the negative electrode 3.
  • the case 4 may be determined in shape or size according to a field to which the sodium-sulfur dioxide secondary battery 100 is applied.
  • the material of the case 4 may be made of a non-conductive material.
  • the case 4 may also be formed of a conductive material.
  • the sodium-sulfur dioxide secondary battery 100 using the gallium-based inorganic electrolyte according to the present invention can be used at temperatures of ?? 50 ° C to 300 ° C and current conditions of 0.001C to 1000C.
  • the electrode density of the sodium-sulfur dioxide secondary battery 100 according to the present invention is 0.01 mg / cm 2 to 100 mg / cm 2 , the electrolyte injection amount is 10ug to 1g.
  • the sodium-sulfur dioxide secondary battery 100 according to the present invention may be manufactured in various forms such as coin cells, beaker cells, pouch cells, cylindrical cells, square cells, and the like.
  • gallium-based inorganic electrolyte was prepared as follows.
  • a sulfur dioxide-based aluminum-based inorganic electrolyte (hereinafter referred to as an 'aluminum-based inorganic electrolyte') was prepared in which NaCl and AlCl 3 were mixed at a ratio of 1.1: 1.0 mol, followed by SO 2 injection.
  • the positive electrode includes 80 wt% of a carbon material, a conductive material (ketchun black, 10 wt%), and a binder (PTFE, 10 wt%), and was prepared to be 2.5 mg / cm 2 .
  • a 2032 coin type cell was manufactured using a cathode made of sodium metal, an inorganic sulfur dioxide-based inorganic electrolyte solution, and a glassy separator using the prepared anode.
  • Example and Comparative Example In order to confirm the storage characteristics of SO 2 after preparation of the electrolyte solution, the ratio of SO 2 in the electrolyte solution over time was calculated and the results are shown in FIG. 2.
  • 2 is a graph evaluating SO 2 storage characteristics of a sodium-sulfur dioxide secondary battery according to Examples and Comparative Examples of the present invention.
  • the evaluation result shows that the gallium-based inorganic electrolyte has better storage characteristics of initial SO 2 than the aluminum-based inorganic electrolyte.
  • the gallium-based inorganic electrolyte was confirmed that the SO 2 is stably dissolved in the electrolyte despite the passage of time. This means that the gallium-based inorganic electrolyte has better compatibility with SO 2 .
  • the results of evaluating battery characteristics of the sodium-sulfur dioxide secondary battery according to the examples and the comparative example are as shown in FIG. 3.
  • the evaluation conditions were 2 cycles of charging and discharging by the constant current method in the range of 2.0 ⁇ 4.05 V (vs. Na / Na +) with a current density of 0.1C. After that, the charging current density was 0.2C and the discharge current density was 0.5C. 50 charging and discharging was performed. 3 shows the first charge / discharge profile.
  • the electrochemical behavior was confirmed to vary greatly depending on the metal component of the electrolyte. That is, while the discharge voltage of the NaAlCl 4 -nSO 2 electrolyte according to the comparative example appeared at about 3.05 (V), the discharge voltage of the electrolyte of NaGaCl 4 -nSO 2 according to the embodiment was found to be lower than 2.75 (V).
  • gallium inorganic electrolyte according to an embodiment can be combined with SO 2, but relatively by using a gallium bonding force between the SO 2 is weak, easy desorption reaction at charging gallium and SO 2, as described above intend I think that.
  • the gallium-based inorganic electrolyte according to the embodiment exhibited a capacity of 800 mAh / g or more after initial manufacture, and then it was confirmed that stable life characteristics were expressed. This is believed to be due to the stable storage characteristics of the gallium-based inorganic electrolyte with SO 2 . Through these results, it was confirmed that the gallium-based inorganic electrolyte effectively contributes to the overall performance of the battery based on the stable life characteristics as well as the energy efficiency of the sodium-sulfur dioxide secondary battery.

Abstract

The present invention relates to an electrolyte solution comprising a sulfur dioxide-based, gallium-based inorganic electrolyte, and a sodium-sulfur dioxide (Na-SO2) secondary battery having same, the purpose of the present invention being to enhance the overall energy efficiency of the sodium-sulfur dioxide secondary battery by improving a serious polarization phenomenon that occurs during the battery assessment of the battery. The sodium-sulfur dioxide secondary battery, according to the present invention, comprises: a negative electrode which is formed from an inorganic material and which contains sodium; a positive electrode which is formed from a carbon material; and a sulfur dioxide-based inorganic electrolyte solution. The electrolyte solution comprises a sulfur dioxide-based, gallium-based inorganic electrolyte prepared by injecting SO2 gas in a mixture of NaX and GaX3. Here, X comprises a halogen-based compound, a saturated hydrocarbon(R) having C1~C20, an unsaturated hydrocarbon(R) having C1~C20, OR, or SR.

Description

이산화황 기반의 갈륨계 무기 전해질을 포함하는 전해액 및 그를 갖는 나트륨-이산화황 이차 전지Electrolyte containing a sulfur dioxide-based gallium-based inorganic electrolyte and sodium-sulfur dioxide secondary battery having the same
본 발명은 나트륨계 이차 전지에 관한 것으로, 더욱 상세하게는 분극 현상을 억제하고 보다 안정적인 전기화학적 특성을 가지는 이산화황 기반의 갈륨계 무기물을 전해질로 포함하는 전해액 및 그를 갖는 나트륨-이산화황(Na-SO2) 이차 전지에 관한 것이다.The present invention relates to a sodium-based secondary battery, and more particularly, an electrolyte containing a sulfur dioxide-based gallium-based inorganic material that suppresses polarization and has more stable electrochemical properties, and sodium-sulfur dioxide having the same (Na-SO 2). ) Relates to a secondary battery.
전자제품의 디지털화와 고성능화 등으로 소비자의 요구가 바뀜에 따라 시장요구도 박형, 경량화와 고에너지 밀도에 의한 고용량을 지니는 전지의 개발로 흐름이 바뀌고 있는 상황이다. 또한, 미래의 에너지 및 환경 문제를 대처하기 위하여 하이브리드 전기 자동차나 전기 자동차, 및 연료전지 자동차의 개발이 활발히 진행되고 있는 바, 자동차 전원용으로 전지의 대형화가 요구되고 있다.As consumer demands change due to the digitization and high performance of electronic products, the market demand is shifting to the development of batteries having thin capacity, light weight, and high capacity due to high energy density. In addition, in order to cope with future energy and environmental problems, development of hybrid electric vehicles, electric vehicles, and fuel cell vehicles has been actively progressed, and thus an increase in size of batteries for automotive power supplies is required.
소형 경량화 및 고용량으로 충방전 가능한 전지로서 리튬 계열 이차 전지가 실용화되고 있으며, 소형 비디오 카메라, 휴대전화, 노트퍼스컴 등의 휴대용 전자 및 통신기기 등에 이용되고 있다. 리튬 이차 전지는 양극, 음극, 전해질로 구성되며, 충전에 의해 양극 활물질로부터 나온 리튬 이온이 음극 활물질에 삽입되고 방전시 다시 탈리되는 등의 양 전극을 왕복하면서 에너지를 전달하는 역할을 하기 때문에 충방전이 가능하다.BACKGROUND ART Lithium-based secondary batteries have been put to practical use as small, light weight and high capacity rechargeable batteries, and are used in portable electronic and communication devices such as small video cameras, mobile phones, and notebook computers. The lithium secondary battery is composed of a positive electrode, a negative electrode, and an electrolyte, and is charged and discharged because it functions to transfer energy while reciprocating both electrodes such that lithium ions from the positive electrode active material are inserted into the negative electrode active material by charge and are detached again during discharge. This is possible.
한편, 최근에는 리튬 대신에 나트륨을 이용한 나트륨 기반 이차 전지의 연구가 다시 재조명 되고 있다. 나트륨은 자원 매장량이 풍부하기 때문에 리튬 대신에 나트륨을 이용한 이차 전지를 제작할 수 있다면 이차 전지를 낮은 비용으로 제조할 수 있게 된다.Recently, research on sodium-based secondary batteries using sodium instead of lithium has been re-examined. Since sodium has abundant resource reserves, if a secondary battery using sodium instead of lithium can be manufactured, the secondary battery can be manufactured at low cost.
상기한 바와 같이, 나트륨 기반 이차 전지는 유용하지만, 종래의 나트륨 금속 기반의 이차 전지, 예컨대 NAS(Na-S 전지), ZEBRA(Na-NiCl2 전지)는 실온에서 사용할 수 없다는 점, 즉, 고온에서의 액상 나트륨 및 정극 활물질 사용으로 인한 전지 안전성 문제 및 부식 문제로 인한 전지 성능 저하라는 점에 문제가 있다. 한편 최근 나트륨 이온의 탈삽입을 이용한 나트튬 이온 전지가 활발히 연구되고 있으나, 이들의 에너지 밀도 및 수명 특성은 아직 저조한 상황이다. 이 때문에, 실온에서 사용 가능하고 에너지 밀도 및 수명 특성이 우수한 나트륨 기반 이차 전지가 요구되고 있다.As mentioned above, sodium based secondary batteries are useful, but conventional sodium metal based secondary batteries such as NAS (Na-S cells), ZEBRA (Na-NiCl 2 cells) cannot be used at room temperature, i.e., high temperature. There is a problem in that battery performance due to the use of the liquid sodium and the positive electrode active material in the battery and the degradation of the battery due to corrosion problems. On the other hand, recently, although a lithium ion battery using a de-insertion of sodium ions has been actively studied, their energy density and life characteristics are still poor. For this reason, there is a need for a sodium-based secondary battery that can be used at room temperature and has excellent energy density and life characteristics.
이러한 문제점을 해소하기 위해서, 나트륨-이산화황(Na-SO2) 이차 전지가 소개되고 있다. 나트륨-이산화황 이차 전지는 상온 용융염 형태의 물질을 전해질로 사용하여 기존 리튬 이차 전지의 낮은 에너지 밀도를 크게 개선시키고 이를 이용하여 대용량 전력저장의 전력 공급원으로 사용 가능한 새로운 전지 시스템이다.In order to solve this problem, sodium-sulfur dioxide (Na-SO 2 ) secondary batteries have been introduced. Sodium-sulfur dioxide secondary battery is a new battery system that can significantly improve the low energy density of the existing lithium secondary battery by using a material in the form of room temperature molten salt as an electrolyte, and can be used as a power source for large-capacity power storage.
특히 나트륨-이산화황 이차 전지는 가격적으로 저렴한 Na를 사용함으로서 기존 리튬 이차 전지 대비 1/2 이하의 수준으로 가격을 낮출 수 있는 장점을 지닌 신규 전지 시스템이다.In particular, the sodium-sulfur dioxide secondary battery is a novel battery system having the advantage of lowering the price to less than 1/2 of the existing lithium secondary battery by using Na which is inexpensive in price.
그러나 나트륨-이산화황 이차 전지의 충/방전 전압의 심각한 히스테리시스(hysterisis) 현상에 따른 분극은 전지의 전반적인 에너지 효율을 저하시켜 전반적인 전지의 성능의 감소를 야기하는데, 이는 현재 사용 중인 무기계 전해질을 구성하는 알루미늄과 이산화황 간의 결합력이 강하여 이산화황의 탈리가 용이하지 않음에 기인한다.However, polarization due to severe hysterisis in the charge / discharge voltage of sodium-sulfur dioxide secondary batteries decreases the overall energy efficiency of the battery, leading to a decrease in the overall battery performance. Due to the strong bonding force between the sulfur dioxide and sulfur dioxide is not easy to remove.
[선행기술문헌][Preceding technical literature]
[특허문헌][Patent Documents]
한국등록특허 제10-1254613호(2013.04.09.)Korea Patent Registration No. 10-1254613 (2013.04.09.)
따라서 본 발명의 목적은 기존 나트륨-이산화황 이차 전지의 전지 평가 시 발생하는 심각한 분극 현상을 개선하여 전지의 전반적인 에너지 효율을 향상시킬 수 있는 이산화황 기반의 갈륨계 무기 전해질을 포함하는 전해액 및 그를 포함하는 나트륨-이산화황 이차 전지를 제공하는 데 있다.Accordingly, an object of the present invention is to improve the overall polarization efficiency of the battery by improving the serious polarization phenomenon occurring in the evaluation of the battery of the conventional sodium-sulfur dioxide secondary battery, an electrolyte containing a sulfur-based gallium-based inorganic electrolyte and sodium containing the same To provide a sulfur dioxide secondary battery.
상기 목적을 달성하기 위하여, 본 발명은 나트륨을 함유하는 무기계 소재의 음극과, 탄소 소재의 양극 및 전해액을 포함하는 나트륨-이산화황 이차 전지를 제공한다. 이때 상기 전해액은 NaX 및 GaX3의 혼합물에 SO2 가스를 주입하여 제조한 이산화황 기반의 갈륨계 무기 전해질을 함유한다. X는 할로겐계 화합물, C1~C20을 지니는 포화 hydrocarbon(R), C1~C20을 지니는 불포화 hydrocarbon(R), OR 또는 SR을 포함한다.In order to achieve the above object, the present invention provides a sodium-sulfur dioxide secondary battery comprising a negative electrode of an inorganic material containing sodium, a positive electrode and an electrolyte of a carbon material. In this case, the electrolyte solution contains a sulfur dioxide-based gallium-based inorganic electrolyte prepared by injecting SO 2 gas into a mixture of NaX and GaX 3 . X includes halogenated compounds, saturated hydrocarbons (R) with C1 to C20, unsaturated hydrocarbons (R) with C1 to C20, OR or SR.
본 발명에 따른 나트륨-이산화황 이차 전지에 있어서, 상기 NaX 및 GaX3의 몰비는 2.0 : 1.0 ~ 1.0 : 2.0 일 수 있다.In the sodium-sulfur dioxide secondary battery according to the present invention, the molar ratio of NaX and GaX 3 may be 2.0: 1.0 to 1.0: 2.0.
본 발명에 따른 나트륨-이산화황 이차 전지에 있어서, 상기 이산화황 기반의 갈륨계 무기 전해질은 NaGaCl4-xSO2(1.5≤x≤3.0) 일 수 있다.In the sodium-sulfur dioxide secondary battery according to the present invention, the sulfur dioxide-based gallium-based inorganic electrolyte may be NaGaCl 4 -xSO 2 (1.5≤x≤3.0).
본 발명에 따른 나트륨-이산화황 이차 전지에 있어서, 상기 전해액은 이산화황 기반의 알루미늄계 무기 전해질을 더 포함할 수 있다.In the sodium-sulfur dioxide secondary battery according to the present invention, the electrolyte may further include an aluminum-based inorganic electrolyte based on sulfur dioxide.
본 발명에 따른 나트륨-이산화황 이차 전지에 있어서, 상기 이산화황 기반의 알루미늄계 무기 전해질은 NaAlCl4-xSO2(1.5≤x≤3.0) 일 수 있다.In the sodium-sulfur dioxide secondary battery according to the present invention, the sulfur-based aluminum-based inorganic electrolyte may be NaAlCl 4 -xSO 2 (1.5 ≦ x ≦ 3.0).
본 발명에 따른 나트륨-이산화황 이차 전지에 있어서, 상기 전해액은 NaGaCl4-xSO2와 NaAlCl4-xSO2의 혼합물일 수 있다.In the sodium-sulfur dioxide secondary battery according to the present invention, the electrolyte may be a mixture of NaGaCl 4 -xSO 2 and NaAlCl 4 -xSO 2 .
본 발명은 또한, NaX 및 GaX3의 혼합물에 SO2 가스를 주입하여 제조한 이산화황 기반의 갈륨계 무기 전해질을 함유하는 전해액을 포함하는 나트륨-이산화황 이차 전지를 제공한다.The present invention also provides a sodium-sulfur dioxide secondary battery comprising an electrolyte solution containing a sulfur dioxide-based gallium-based inorganic electrolyte prepared by injecting SO 2 gas into a mixture of NaX and GaX 3 .
본 발명은 또한, NaX 및 GaX3의 혼합물에 SO2 가스를 주입하여 제조한 이산화황 기반의 갈륨계 무기 전해질을 포함하는 나트륨-이산화황 이차 전지용 전해액을 제공한다. 여기서 X는 할로겐계 화합물, C1~C20을 지니는 포화 hydrocarbon(R), C1~C20을 지니는 불포화 hydrocarbon(R), OR 또는 SR을 포함한다.The present invention also provides an electrolyte solution for sodium-sulfur dioxide secondary battery comprising a sulfur dioxide-based gallium-based inorganic electrolyte prepared by injecting SO 2 gas into a mixture of NaX and GaX 3 . X is a halogen-based compound, saturated hydrocarbon (R) having a C1 ~ C20, unsaturated hydrocarbon (R) having a C1 ~ C20, OR or SR.
본 발명에 따른 나트륨-이산화황 이차 전지용 전해액에 있어서, 상기 NaX 및 GaX3의 혼합물은 NaGaX4 일 수 있다.In the sodium-sulfur dioxide secondary battery electrolyte according to the present invention, the mixture of NaX and GaX 3 may be NaGaX 4 .
그리고 본 발명에 따른 나트륨-이산화황 이차 전지용 전해액에 있어서, 상기 NaX 및 GaX3의 혼합물은 상기 NaCl 및 GaCl3의 혼합한 NaGaCl4 일 수 있다.In the electrolyte solution for sodium-sulfur dioxide secondary battery according to the present invention, the mixture of NaX and GaX 3 may be NaGaCl 4 mixed with NaCl and GaCl 3 .
본 발명에 따르면, 나트륨-이산화황 이차 전지용 전해액으로 이산화황과 킬레이트화(chelation)가 가능하지만 결합력이 약한 이산화황 기반의 갈륨계 무기 전해질을 사용함으로써, 기존의 나트륨-이산화황 이차 전지의 전지 평가 시 발생하는 심각한 분극 현상을 개선하여 전지의 전반적인 에너지 효율을 향상시킬 수 있다.According to the present invention, by using a sulfur dioxide-based gallium-based inorganic electrolyte capable of chelation with sulfur dioxide as a sodium-sulfur dioxide secondary battery electrolyte but having a weak bonding force, a serious problem generated during battery evaluation of a conventional sodium-sulfur dioxide secondary battery By improving the polarization phenomenon, the overall energy efficiency of the battery can be improved.
도 1은 본 발명에 따른 나트륨-이산화황 이차 전지를 설명하기 위한 도면이다.1 is a view for explaining a sodium-sulfur dioxide secondary battery according to the present invention.
도 2는 본 발명의 실시예 및 비교예에 따른 나트륨-이산화황 이차 전지의 SO2 저장 특성을 평가한 그래프이다.2 is a graph evaluating SO 2 storage characteristics of a sodium-sulfur dioxide secondary battery according to Examples and Comparative Examples of the present invention.
도 3은 본 발명의 실시예 및 비교예에 따른 나트륨-이산화황 이차 전지의 전지 특성을 평가한 그래프이다.3 is a graph evaluating battery characteristics of a sodium-sulfur dioxide secondary battery according to Examples and Comparative Examples of the present invention.
도 4는 본 발명의 실시예 및 비교예에 따른 나트륨-이산화황 이차 전지의 수평 특성을 평가한 그래프이다.4 is a graph evaluating the horizontal characteristics of the sodium-sulfur dioxide secondary battery according to the Examples and Comparative Examples of the present invention.
하기의 설명에서는 본 발명의 실시예를 이해하는데 필요한 부분만이 설명되며, 그 이외 부분의 설명은 본 발명의 요지를 흩트리지 않는 범위에서 생략될 것이라는 것을 유의하여야 한다.In the following description, only parts necessary for understanding the embodiments of the present invention will be described, it should be noted that the description of other parts will be omitted in a range that does not distract from the gist of the present invention.
이하에서 설명되는 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념으로 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 바람직한 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.The terms or words used in the specification and claims described below should not be construed as being limited to the ordinary or dictionary meanings, and the inventors are appropriate to the concept of terms in order to explain their invention in the best way. It should be interpreted as meanings and concepts in accordance with the technical spirit of the present invention based on the principle that it can be defined. Therefore, the embodiments described in the present specification and the configuration shown in the drawings are only preferred embodiments of the present invention, and do not represent all of the technical idea of the present invention, and various equivalents may be substituted for them at the time of the present application. It should be understood that there may be variations and variations.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 보다 상세하게 설명하고자 한다.Hereinafter, with reference to the accompanying drawings will be described in detail an embodiment of the present invention.
도 1은 본 발명에 따른 나트륨-이산화황 이차 전지를 설명하기 위한 도면이다.1 is a view for explaining a sodium-sulfur dioxide secondary battery according to the present invention.
도 1을 참조하면, 본 발명의 나트륨-이산화황 이차 전지(100)는 탄소 양극(2), 나트륨 함유 음극(3) 및 이산화황 기반 무기 전해액(1)을 포함하며, 케이스(4)를 더 포함할 수 있다. 이때 이산화황 기반 무기 전해액(1)은 이산화황 기반 무기 전해질로 갈륨계 무기 전해질을 포함한다.Referring to FIG. 1, the sodium-sulfur dioxide secondary battery 100 of the present invention includes a carbon anode 2, a sodium-containing anode 3, and a sulfur dioxide-based inorganic electrolyte solution 1, and further include a case 4. Can be. At this time, the sulfur dioxide-based inorganic electrolyte (1) includes a gallium-based inorganic electrolyte as the sulfur dioxide-based inorganic electrolyte.
여기서 양극(2)은 다공성의 탄소재로 이루어져 있다. 이러한 양극(2)은 이산화황 기반 무기 전해질의 산화-환원반응이 일어나는 장소를 제공하게 된다. 양극(2)을 구성하는 탄소재는 경우에 따라 하나 또는 둘 이상의 이종원소를 포함하게 된다. 이종원소라 함은, 질소(N), 산소(O), 붕소(B), 불소(F), 인(P), 황(S), 규소(Si)를 말한다. 이종원소 함유량은 0~20 at%이며, 바람직하게는 5~15 at%에 해당한다. 이종원소 함량이 5 at% 미만인 경우, 이종원소 첨가에 따른 용량증대 효과가 미미하며, 15 at% 이상의 경우, 탄소재의 전기 전도도 및 전극 성형 용이성이 감소하게 된다.The anode 2 is made of a porous carbon material. This anode 2 provides a place where the oxidation-reduction reaction of the sulfur dioxide-based inorganic electrolyte takes place. The carbon material constituting the anode 2 may include one or two or more heteroatoms in some cases. Heterogeneous elements refer to nitrogen (N), oxygen (O), boron (B), fluorine (F), phosphorus (P), sulfur (S), and silicon (Si). The content of hetero elements is 0 to 20 at%, preferably 5 to 15 at%. When the content of hetero elements is less than 5 at%, the effect of increasing capacity according to the addition of hetero elements is insignificant, and when the content of more than 15 at% is reduced, the electrical conductivity of the carbon material and the ease of forming the electrode are reduced.
또한 양극(2)에는 다공성의 탄소재에 금속염화물, 금속불화물 또는 금속브롬화물이 더 포함될 수 있다.In addition, the anode 2 may further include metal chloride, metal fluoride or metal bromide in the porous carbon material.
여기서 금속염화물은 CuCl2, CuCl, NiCl2, FeCl2, FeCl3, CoCl2, MnCl2, CrCl2, CrCl3, VCl2, VCl3, ZnCl2, ZrCl4, NbCl5, MoCl3, MoCl5, RuCl3, RhCl3, PdCl2, AgCl, CdCl2 중 하나 또는 둘 이상을 포함할 수 있다. 예컨대 양극(2)은 다공성의 탄소재와 일정 중량비의 CuCl2을 포함할 수 있다. CuCl2는 충방전시 Cu의 산화수가 변화하면서 나트륨 이온과 반응하여, Cu와 NaCl의 방전산물을 얻게 되며, 충전시 가역적으로 CuCl2가 재형성된다. 양극(2) 내 금속염화물의 함량은 50~100 wt% 또는 60~99 wt%, 바람직하게는 양극(2)의 특성 개선을 위해 추가적인 원소들의 배합 등을 위하여 70~95 wt%일 수 있다.Where the metal chloride is CuCl 2 , CuCl, NiCl 2 , FeCl 2 , FeCl 3 , CoCl 2 , MnCl 2 , CrCl 2 , CrCl 3 , VCl 2 , VCl 3 , ZnCl 2 , ZrCl 4 , NbCl 5 , MoCl 3 , MoCl 5 , RuCl 3 , RhCl 3 , PdCl 2 , AgCl, CdCl 2 may include one or two or more. For example, the anode 2 may include a porous carbon material and CuCl 2 in a predetermined weight ratio. CuCl 2 reacts with sodium ions as the oxidation number of Cu changes during charging and discharging, thereby obtaining a discharge product of Cu and NaCl, and reversibly regenerates CuCl 2 during charging. The content of the metal chloride in the positive electrode 2 may be 50 to 100 wt% or 60 to 99 wt%, preferably 70 to 95 wt% for blending additional elements to improve the properties of the positive electrode 2.
금속불화물은 CuF2, CuF, NiF2, FeF2, FeF3, CoF2, CoF3, MnF2, CrF2, CrF3, ZnF2, ZrF4, ZrF2, TiF4, TiF3, NbF5, AgF2, SbF3, GaF3, NbF5 중 하나 또는 둘 이상을 포함할 수 있다. 예컨대 양극(2)은 다공성의 탄소재와 일정 중량비의 CuF2을 포함할 수 있다. CuF2는 충방전시 Cu의 산화수가 변화하면서 나트륨 이온과 반응하여, Cu와 NaCl의 방전산물을 얻게 되며, 충전시 가역적으로 CuF2가 재형성된다. 양극(2) 내 금속불화물의 함량은 50~100 wt% 또는 60~99 wt%, 바람직하게는 양극(2)의 특성 개선을 위해 추가적인 원소들의 배합 등을 위하여 70~95 wt%일 수 있다.Metal fluorides include CuF 2 , CuF, NiF 2 , FeF 2 , FeF 3 , CoF 2 , CoF 3 , MnF 2 , CrF 2 , CrF 3 , ZnF 2 , ZrF 4 , ZrF 2 , TiF 4 , TiF 3 , NbF 5 , AgF 2, SbF 3, GaF 3 , NbF may include one or two or more of five. For example, the anode 2 may include a porous carbon material and CuF 2 in a predetermined weight ratio. CuF 2 reacts with sodium ions as the oxidation number of Cu changes during charging and discharging, thereby obtaining a discharge product of Cu and NaCl, and reversibly regenerates CuF 2 during charging. The content of the metal fluoride in the positive electrode 2 may be 50 to 100 wt% or 60 to 99 wt%, preferably 70 to 95 wt% for blending additional elements to improve the properties of the positive electrode 2.
그리고 금속브롬화물은 CuBr2, CuBr, NiBr2, FeBr2, FeBr3, CoBr2, MnBr2, CrBr2, ZnBr2, ZrBr4, ZrBr2, TiBr4, TiBr3, NbBr5, AgBr, SbBr3, GaBr3, NbBr5, BiBr3, MoBr3, SnBr2, WBr6, WBr5 중 하나 또는 둘 이상을 포함할 수 있다. 예컨대 양극(2)은 다공성의 탄소재와 일정 중량비의 CuBr2을 포함할 수 있다. CuBr2는 충방전시 Cu의 산화수가 변화하면서 나트륨 이온과 반응하여, Cu와 NaCl의 방전산물을 얻게 되며, 충전시 가역적으로 CuBr2가 재형성된다. 양극(2) 내 금속브롬화물의 함량은 50~100 wt% 또는 60~99 wt%, 바람직하게는 양극(2)의 특성 개선을 위해 추가적인 원소들의 배합 등을 위하여 70~95 wt%일 수 있다.And metal bromide is CuBr 2, CuBr, NiBr 2, FeBr 2, FeBr 3, CoBr 2, MnBr 2, CrBr 2, ZnBr 2, ZrBr 4, ZrBr 2, TiBr 4, TiBr 3, NbBr 5, AgBr, SbBr 3 , GaBr 3 , NbBr 5 , BiBr 3 , MoBr 3 , SnBr 2 , WBr 6 , and WBr 5 . For example, the anode 2 may include a porous carbon material and CuBr 2 in a predetermined weight ratio. CuBr 2 reacts with sodium ions as the oxidation number of Cu changes during charging and discharging, thereby obtaining a discharge product of Cu and NaCl, and reversibly regenerates CuBr 2 during charging. The content of the metal bromide in the anode 2 may be 50-100 wt% or 60-99 wt%, preferably 70-95 wt% for the blending of additional elements to improve the properties of the anode 2. .
음극(3)은 나트륨 금속, 나트륨을 포함하는 합금, 나트륨을 함유하는 금속간화합물, 나트륨을 함유하는 탄소 재료, 나트륨을 함유하는 무기계 물질 등을 사용할 수 있다. 무기계 물질은 산화물, 황화물, 인화물, 질화물, 불화물 중 적어도 하나를 포함할 수 있다. 음극(3) 내 음극물질 함유량은 60~100 wt%일 수 있다.The negative electrode 3 may be a sodium metal, an alloy containing sodium, an intermetallic compound containing sodium, a carbon material containing sodium, an inorganic material containing sodium, or the like. The inorganic material may include at least one of oxides, sulfides, phosphides, nitrides, and fluorides. The negative electrode material content in the negative electrode 3 may be 60 to 100 wt%.
전해질 및 양극반응 활물질로 사용되는 이산화황 기반 무기 전해액(1)으로는 이산화황과 킬레이트화(chelation)가 가능하지만 결합력이 약한 이산화황 기반의 갈륨계 무기 전해질(이하, '갈륨계 무기 전해질'이라 함)을 사용한다.The sulfur dioxide-based inorganic electrolyte (1) used as an electrolyte and an anode active material is a sulfur dioxide-based gallium-based inorganic electrolyte (hereinafter referred to as a 'gallium-based inorganic electrolyte') that can chelate with sulfur dioxide but has a weak bonding force. use.
갈륨계 무기 전해질은 NaX, GaX3 및 SO2을 함유한다. 여기서 X는 리간드(Ligand)로서, 예컨대 할로겐계 화합물, C1~C20을 지니는 포화 또는 불포화 hydrocarbon(R), OR, SR 등을 포함하여 다양한 리간드가 사용될 수 있다. 구체적으로 리간드로는 -COOH, -COO-, -CHO, -NH2, -SH, -OH, -SO3H, -SO3 -, -C(=NH)-, -CONH2, -CN, -CS2H, -CS2 -, 할라이드기(-Cl, -F, -Br 등), 피리딘기 및 피라진기로 이루어진 군으로부터 선택된 1종 이상일 수 있다.Gallium-based inorganic electrolytes contain NaX, GaX 3 and SO 2 . X is a ligand (Ligand), for example, a variety of ligands can be used, including halogen-based compounds, saturated or unsaturated hydrocarbon (R) having C1 ~ C20, OR, SR and the like. Specifically, a ligand is -COOH, -COO -, -CHO, -NH 2, -SH, -OH, -SO 3 H, -SO 3 -, -C (= NH) -, -CONH 2, -CN, may be at least one member selected from, halide groups (-Cl, -F, -Br, etc.), pyridine group, and the group consisting of a pyrazine - -CS 2 H, -CS 2.
여기서 NaX와 GaX3의 몰비는 2.0 : 1.0 ~ 1.0 : 2.0 일 수 있다.Here, the molar ratio of NaX and GaX 3 may be 2.0: 1.0 to 1.0: 2.0.
예컨대 갈륨계 무기 전해질은 NaGaCl4(용질)과 SO2(용매)으로 구성될 수 있다. NaGaCl4-xSO2은 NaCl과 GaCl3 혼합물(또는 NaGaCl4 단독염)에 SO2 기체를 주입하여 제조할 수 있다.For example, the gallium-based inorganic electrolyte may be composed of NaGaCl 4 (solute) and SO 2 (solvent). NaGaCl 4 —xSO 2 may be prepared by injecting SO 2 gas into a mixture of NaCl and GaCl 3 (or NaGaCl 4 alone salt).
NaGaCl4-xSO2의 전해질은 NaGaCl4 대비 SO2의 함량 몰비(x)가 0.5~10에 해당하는 것으로, 바람직하게는 1.5~3.0에 해당한다. SO2 함량 몰비(x)가 1.5 미만으로 낮아지는 경우, 전해질 이온 전도도가 감소하는 문제점이 나타나며, 3.0 초과로 높아지는 경우, 전해질의 증기압이 높아지는 문제점이 나타난다.The NaGaCl 4 -xSO 2 electrolyte corresponds to a molar ratio (x) of SO 2 to NaGaCl 4 of 0.5 to 10, preferably 1.5 to 3.0. When the SO 2 content molar ratio (x) is lowered to less than 1.5, a problem of decreasing electrolyte ion conductivity appears, and when higher than 3.0, a problem of increasing vapor pressure of the electrolyte appears.
한편 갈륨계 무기 전해질을 단독으로 이산화황 기반 무기 전해액(1)으로 사용할 수도 있지만, 다른 이산화황 기반 무기 전해질과 함께 사용할 수 있다. 예컨대 용질로 사용되는 NaGaCl4 이외에도, NaAlCl4, Na2CuCl4, Na2MnCl4, Na2CoCl4, Na2NiCl4, Na2ZnCl4, Na2PdCl4 등이 NaGaCl4과 함께 사용될 수 있다. 즉 NaGaCl4와 NaAlCl4가 함께 사용할 수 있고, 이 경우 NaGaCl4-nSO2와 NaAlCl4-nSO2의 혼합물로 사용할 수 있다.Meanwhile, the gallium-based inorganic electrolyte may be used alone as the sulfur dioxide-based inorganic electrolyte solution (1), but may be used together with other sulfur dioxide-based inorganic electrolytes. For example, in addition to NaGaCl 4 used as a solute, NaAlCl 4 , Na 2 CuCl 4 , Na 2 MnCl 4 , Na 2 CoCl 4 , Na 2 NiCl 4 , Na 2 ZnCl 4 , Na 2 PdCl 4 , and the like may be used together with NaGaCl 4 . . That is, NaGaCl 4 and NaAlCl 4 may be used together, and in this case, it may be used as a mixture of NaGaCl 4 -nSO 2 and NaAlCl 4 -nSO 2 .
그리고 케이스(4)는 양극(2)과 음극(3) 사이에 이산화황 기반 무기 전해액(1)이 배치된 구성물을 감싸도록 마련될 수 있다. 케이스(4) 일측에는 양극(2)과 연결되는 신호라인 및 음극(3)과 연결되는 신호라인이 배치될 수 있다. 케이스(4)는 나트륨-이산화황 이차 전지(100)를 적용할 분야에 따라 그 모양이나 크기가 결정될 수 있다. 케이스(4)의 재질은 비전도성 재질로 구성될 수 있다. 양극(2)과 음극(3)을 감싸는 절연체가 마련되는 경우, 케이스(4)는 전도성 재질로도 형성될 수 있다.In addition, the case 4 may be provided to surround the structure in which the sulfur dioxide-based inorganic electrolyte solution 1 is disposed between the anode 2 and the cathode 3. One side of the case 4 may have a signal line connected to the positive electrode 2 and a signal line connected to the negative electrode 3. The case 4 may be determined in shape or size according to a field to which the sodium-sulfur dioxide secondary battery 100 is applied. The material of the case 4 may be made of a non-conductive material. When an insulator surrounding the positive electrode 2 and the negative electrode 3 is provided, the case 4 may also be formed of a conductive material.
이와 같은 본 발명에 따른 갈륨계 무기 전해질을 사용하는 나트륨-이산화황 이차 전지(100)는 ??50℃ 내지 300℃의 온도와, 0.001C 내지 1000C의 전류 조건에서 사용할 수 있다. 본 발명에 따른 나트륨-이산화황 이차 전지(100)의 전극 밀도는 0.01 mg/cm2 내지 100 mg/cm2이고, 전해액 주입량은 10ug 내지 1g이다. 본 발명에 따른 나트륨-이산화황 이차 전지(100)는 다양한 전지 타입, 예컨대 코인셀, 비커셀, 파우치셀, 원통형셀, 각형셀 등 다양한 형태로 제조될 수 있다.The sodium-sulfur dioxide secondary battery 100 using the gallium-based inorganic electrolyte according to the present invention can be used at temperatures of ?? 50 ° C to 300 ° C and current conditions of 0.001C to 1000C. The electrode density of the sodium-sulfur dioxide secondary battery 100 according to the present invention is 0.01 mg / cm 2 to 100 mg / cm 2 , the electrolyte injection amount is 10ug to 1g. The sodium-sulfur dioxide secondary battery 100 according to the present invention may be manufactured in various forms such as coin cells, beaker cells, pouch cells, cylindrical cells, square cells, and the like.
본 발명에 따른 갈륨계 무기 전해질을 사용하는 나트륨-이산화황 이차전지(100)의 특성을 평가하기 위해서 다음과 같이 갈륨계 무기 전해질을 제조하였다.In order to evaluate the characteristics of the sodium-sulfur dioxide secondary battery 100 using the gallium-based inorganic electrolyte according to the present invention, a gallium-based inorganic electrolyte was prepared as follows.
실시예로 NaCl과 GaCl3를 1.1 : 1.0 몰의 비율로 혼합한 후, SO2 가스를 주입하여 갈륨계 무기 전해질을 제조하였다.As an example, after mixing NaCl and GaCl 3 at a ratio of 1.1: 1.0 mole, SO 2 gas was injected to prepare a gallium-based inorganic electrolyte.
비교예로서 NaCl과 AlCl3를 1.1 : 1.0 몰의 비율로 혼합한 후 SO2를 주입한 이산화황 기반 알루미늄계 무기 전해질(이하 '알루미늄계 무기 전해질'이라 함)을 제조하였다.As a comparative example, a sulfur dioxide-based aluminum-based inorganic electrolyte (hereinafter referred to as an 'aluminum-based inorganic electrolyte') was prepared in which NaCl and AlCl 3 were mixed at a ratio of 1.1: 1.0 mol, followed by SO 2 injection.
이와 같은 실시예 및 비교예에 따른 이산화황 기반 무기 전해질을 전해액으로 사용하여 실시예 및 비교예에 따른 전지를 제조하였다. 양극은 탄소재 80wt%, 도전재(ketchun black, 10wt%) 및 바인더(PTFE, 10 wt%)를 포함하며, 2.5 mg/cm2가 되도록 제조하였다. 제조된 양극을 이용하여 나트륨 금속 소재의 음극과 이산화황계 무기 전해액 및 유리질 격리막을 사용하여, 2032 코인타입 셀을 제조하였다.Using the sulfur dioxide-based inorganic electrolyte according to the Examples and Comparative Examples as an electrolyte solution to prepare a battery according to the Examples and Comparative Examples. The positive electrode includes 80 wt% of a carbon material, a conductive material (ketchun black, 10 wt%), and a binder (PTFE, 10 wt%), and was prepared to be 2.5 mg / cm 2 . A 2032 coin type cell was manufactured using a cathode made of sodium metal, an inorganic sulfur dioxide-based inorganic electrolyte solution, and a glassy separator using the prepared anode.
실시예 및 비교예 전해액의 제조 후 SO2에 대한 저장 특성을 확인하기 위하여 시간에 따른 SO2의 전해액 내 존재 비율을 계산하였으며 그 결과를 도 2로 나타내었다. 여기서 도 2는 본 발명의 실시예 및 비교예에 따른 나트륨-이산화황 이차 전지의 SO2 저장 특성을 평가한 그래프이다.Example and Comparative Example In order to confirm the storage characteristics of SO 2 after preparation of the electrolyte solution, the ratio of SO 2 in the electrolyte solution over time was calculated and the results are shown in FIG. 2. 2 is a graph evaluating SO 2 storage characteristics of a sodium-sulfur dioxide secondary battery according to Examples and Comparative Examples of the present invention.
도 2를 참조하면, 평가 결과 갈륨계 무기 전해질은 알루미늄계 무기 전해질 대비 초기 SO2의 저장 특성이 우수함을 확인하였다.Referring to FIG. 2, the evaluation result shows that the gallium-based inorganic electrolyte has better storage characteristics of initial SO 2 than the aluminum-based inorganic electrolyte.
또한 알루미늄계 무기 전해질에서 초기 SO2의 휘발 현상이 관찰되는 것과 달리 갈륨계 무기 전해질은 시간이 경과함에도 불구하고 SO2가 안정적으로 전해질 내에 용해되어 있는 현상을 확인하였다. 이는 갈륨계 무기 전해질의 SO2와의 양립성(compatibility)이 더 우수하다는 것을 의미한다. In addition, unlike the initial volatilization of SO 2 in the aluminum-based inorganic electrolyte, the gallium-based inorganic electrolyte was confirmed that the SO 2 is stably dissolved in the electrolyte despite the passage of time. This means that the gallium-based inorganic electrolyte has better compatibility with SO 2 .
실시예 및 비교예에 따른 나트륨-이산화황 이차 전지의 전지 특성을 평가한 결과는 도 3과 같다. 여기서 평가 조건은 0.1C의 전류밀도로 2.0~4.05 V(vs. Na/Na+) 영역에서 정전류법으로 충방전을 2 cycles 진행하였으며, 이후 충전 전류밀도는 0.2C, 방전 전류밀도는 0.5C로 공정하여 50회 충방전을 진행하였다. 도 3은 첫 회 충방전 프로파일(profile)을 도시하였다.The results of evaluating battery characteristics of the sodium-sulfur dioxide secondary battery according to the examples and the comparative example are as shown in FIG. 3. Here, the evaluation conditions were 2 cycles of charging and discharging by the constant current method in the range of 2.0 ~ 4.05 V (vs. Na / Na +) with a current density of 0.1C. After that, the charging current density was 0.2C and the discharge current density was 0.5C. 50 charging and discharging was performed. 3 shows the first charge / discharge profile.
도 3을 참조하면, 전기화학적 거동은 전해액의 금속 성분(component)에 따라 크게 달라지는 현상을 확인하였다. 즉 비교예에 따른 NaAlCl4-nSO2 전해질의 방전전압이 약 3.05 (V)에서 나타나는 반면, 실시예에 따른 NaGaCl4-nSO2의 전해질의 방전전압은 이보다 더 낮은 2.75 (V)에서 확인되었다.Referring to FIG. 3, the electrochemical behavior was confirmed to vary greatly depending on the metal component of the electrolyte. That is, while the discharge voltage of the NaAlCl 4 -nSO 2 electrolyte according to the comparative example appeared at about 3.05 (V), the discharge voltage of the electrolyte of NaGaCl 4 -nSO 2 according to the embodiment was found to be lower than 2.75 (V).
이는 금속의 종류에 따라 형성되는 전해질의 실제 화학적 구조의 변화에 기인하는 것이라 판단된다. 이와 더불어 충전시의 전기화학적 거동에 큰 차이가 나는 것을 발견하였는데, 비교예에 따른 알루미늄계 무기 전해질이 약 0.80 (V)의 과전압 현상을 나타내는 반면, 실시예에 따른 갈륨계 무기 전해질은 0.35 (V)의 과전압만이 관찰되었다.This is believed to be due to the change in the actual chemical structure of the electrolyte formed according to the type of metal. In addition, it was found that there is a big difference in the electrochemical behavior at the time of charging, while the aluminum-based inorganic electrolyte according to the comparative example exhibited an overvoltage phenomenon of about 0.80 (V), whereas the gallium-based inorganic electrolyte according to the example was 0.35 (V). ) Only overvoltage was observed.
이는 앞서 의도한 바와 같이, 실시예에 따른 갈륨계 무기 전해질은 SO2와 결합이 가능하지만 상대적으로 SO2와의 결합력이 약한 갈륨을 사용함으로서, 충전시 갈륨과 SO2의 탈리반응이 용이해지는 것에 기인하는 것으로 판단된다.This is due to become, gallium inorganic electrolyte according to an embodiment can be combined with SO 2, but relatively by using a gallium bonding force between the SO 2 is weak, easy desorption reaction at charging gallium and SO 2, as described above intend I think that.
실시예 및 비교예에 따른 나트륨-이산화황 이차 전지의 수명 특성을 평가한 결과는 도 4와 같다.As a result of evaluating the life characteristics of the sodium-sulfur dioxide secondary battery according to the Examples and Comparative Examples is shown in FIG.
도 4를 참조하면, 실시예에 따른 갈륨계 무기 전해질은 초기 제조 후 800 mAh/g 이상의 용량을 나타내며, 이후 안정적인 수명 특성이 발현되는 것을 확인하였다. 이는 갈륨계 무기 전해질의 SO2와의 안정적인 저장 특성에 기인하는 것으로 판단된다. 이와 같은 결과를 통하여 갈륨계 무기 전해질은 나트륨-이산화황 이차 전지의 에너지 효율의 향상 뿐만 아니라 안정적인 수명 특성을 바탕으로 전지의 전반적인 성능 향상에 효과적으로 기여함을 확인하였다.Referring to FIG. 4, the gallium-based inorganic electrolyte according to the embodiment exhibited a capacity of 800 mAh / g or more after initial manufacture, and then it was confirmed that stable life characteristics were expressed. This is believed to be due to the stable storage characteristics of the gallium-based inorganic electrolyte with SO 2 . Through these results, it was confirmed that the gallium-based inorganic electrolyte effectively contributes to the overall performance of the battery based on the stable life characteristics as well as the energy efficiency of the sodium-sulfur dioxide secondary battery.
한편, 본 명세서와 도면에 개시된 실시예들은 이해를 돕기 위해 특정 예를 제시한 것에 지나지 않으며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게는 자명한 것이다.On the other hand, the embodiments disclosed in the specification and drawings are merely presented specific examples to aid understanding, and are not intended to limit the scope of the present invention. It is apparent to those skilled in the art that other modifications based on the technical idea of the present invention can be carried out in addition to the embodiments disclosed herein.
[부호의 설명][Description of the code]
1 : 이산화황 기반 무기 전해액1: sulfur dioxide-based inorganic electrolyte
2 : 양극2: anode
3 : 음극3: cathode
4 : 케이스4 case
100 : 나트륨-이산화황 이차 전지100: sodium-sulfur dioxide secondary battery

Claims (15)

  1. 나트륨을 함유하는 무기계 소재의 음극;An anode of an inorganic material containing sodium;
    탄소 소재의 양극;Anode of carbon material;
    NaX 및 GaX3의 혼합물에 SO2 가스를 주입하여 제조한 이산화황 기반의 갈륨계 무기 전해질을 함유하는 전해액;An electrolyte containing a sulfur dioxide-based gallium-based inorganic electrolyte prepared by injecting SO 2 gas into a mixture of NaX and GaX 3 ;
    을 포함하는 것을 특징으로 하는 나트륨-이산화황 이차 전지.Sodium-sulfur dioxide secondary battery comprising a.
    (X는 할로겐계 화합물, C1~C20을 지니는 포화 hydrocarbon(R), C1~C20을 지니는 불포화 hydrocarbon(R), OR 또는 SR)(X is a halogen-based compound, saturated hydrocarbon (R) with C1 to C20, unsaturated hydrocarbon (R) with C1 to C20, OR or SR)
  2. 제1항에 있어서,The method of claim 1,
    상기 NaX 및 GaX3의 몰비는 2.0 : 1.0 ~ 1.0 : 2.0 인 것을 특징으로 하는 나트륨-이산화황 이차 전지.The molar ratio of the NaX and GaX 3 is 2.0: 1.0 ~ 1.0: 2.0 sodium-sulfur dioxide secondary battery, characterized in that.
  3. 제1항에 있어서,The method of claim 1,
    상기 이산화황 기반의 갈륨계 무기 전해질은 NaGaCl4-xSO2(1.5≤x≤3.0) 인 것을 특징으로 하는 나트륨-이산화황 이차 전지.The sulfur dioxide-based gallium-based inorganic electrolyte is NaGaCl 4 -xSO 2 (1.5≤x≤3.0) Sodium-sulfur dioxide secondary battery, characterized in that.
  4. 제1항에 있어서,The method of claim 1,
    상기 전해액은 이산화황 기반의 알루미늄계 무기 전해질을 더 포함하는 것을 특징으로 하는 나트륨-이산화황 이차 전지.The electrolyte solution is sodium-sulfur dioxide secondary battery further comprises a sulfur-based aluminum-based inorganic electrolyte.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 이산화황 기반의 알루미늄계 무기 전해질은 NaAlCl4-xSO2(1.5≤x≤3.0) 인 것을 특징으로 하는 나트륨-이산화황 이차 전지.The sulfur-based aluminum-based inorganic electrolyte is NaAlCl 4 -xSO 2 (1.5≤x≤3.0) Sodium-sulfur dioxide secondary battery, characterized in that.
  6. 제5항에 있어서,The method of claim 5,
    상기 전해액은 NaGaCl4-xSO2와 NaAlCl4-xSO2의 혼합물인 것을 특징으로 하는 나트륨-이산화황 이차 전지.The electrolyte solution is sodium-sulfur dioxide secondary battery, characterized in that the mixture of NaGaCl 4 -xSO 2 And NaAlCl 4 -xSO 2 .
  7. NaX 및 GaX3의 혼합물에 SO2 가스를 주입하여 제조한 이산화황 기반의 갈륨계 무기 전해질을 함유하는 전해액을 포함하는 나트륨-이산화황 이차 전지.A sodium-sulfur dioxide secondary battery comprising an electrolyte solution containing a sulfur dioxide-based gallium-based inorganic electrolyte prepared by injecting SO 2 gas into a mixture of NaX and GaX 3 .
  8. NaX 및 GaX3의 혼합물에 SO2 가스를 주입하여 제조한 이산화황 기반의 갈륨계 무기 전해질을 포함하는 나트륨-이산화황 이차 전지용 전해액.An electrolyte for a sodium-sulfur dioxide secondary battery comprising a sulfur dioxide-based gallium-based inorganic electrolyte prepared by injecting SO 2 gas into a mixture of NaX and GaX 3 .
    (X는 할로겐계 화합물, C1~C20을 지니는 포화 hydrocarbon(R), C1~C20을 지니는 불포화 hydrocarbon(R), OR 또는 SR)(X is a halogen-based compound, saturated hydrocarbon (R) with C1 to C20, unsaturated hydrocarbon (R) with C1 to C20, OR or SR)
  9. 제8항에 있어서,The method of claim 8,
    상기 NaX 및 GaX3의 몰비는 2.0 : 1.0 ~ 1.0 : 2.0 인 것을 특징으로 하는 나트륨-이산화황 이차 전지용 전해액.The molar ratio of NaX and GaX 3 is 2.0: 1.0 ~ 1.0: 2.0 electrolyte solution for sodium-sulfur dioxide secondary battery.
  10. 제8항에 있어서,The method of claim 8,
    상기 NaX 및 GaX3의 혼합물은 NaGaX4인 것을 특징으로 하는 나트륨-이산화황 이차 전지용 전해액.The mixture of NaX and GaX 3 is NaGaX 4 electrolyte solution for sodium-sulfur dioxide secondary battery.
  11. 제8항에 있어서,The method of claim 8,
    상기 NaX 및 GaX3의 혼합물은 상기 NaCl 및 GaCl3의 혼합한 NaGaCl4인 것을 특징으로 하는 나트륨-이산화황 이차 전지용 전해액.The mixture of NaX and GaX 3 is NaGaCl 4 , characterized in that the mixture of NaCl and GaCl 3 Sodium-sulfur dioxide secondary battery electrolyte.
  12. 제8항에 있어서,The method of claim 8,
    상기 이산화황 기반의 갈륨계 무기 전해질은 NaGaCl4-xSO2(1.5≤x≤3.0) 인 것을 특징으로 하는 나트륨-이산화황 이차 전지용 전해액.The sulfur dioxide-based gallium-based inorganic electrolyte is NaGaCl 4 -xSO 2 (1.5≤x≤3.0) characterized in that the electrolyte solution for sodium-sulfur dioxide secondary battery.
  13. 제8항에 있어서,The method of claim 8,
    이산화황 기반의 알루미늄계 무기 전해질을 더 포함하는 것을 특징으로 하는 나트륨-이산화황 이차 전지용 전해액.Sodium-sulfur dioxide secondary battery electrolyte characterized in that it further comprises a sulfur-based aluminum-based inorganic electrolyte.
  14. 제13항에 있어서,The method of claim 13,
    상기 이산화황 기반의 알루미늄계 무기 전해질은 NaAlCl4-xSO2(1.5≤x≤3.0) 인 것을 특징으로 하는 나트륨-이산화황 이차 전지용 전해액.The sulfur dioxide-based aluminum-based inorganic electrolyte is NaAlCl 4 -xSO 2 (1.5≤x≤3.0), characterized in that the electrolyte solution for sodium-sulfur dioxide secondary battery.
  15. 제13항에 있어서,The method of claim 13,
    NaGaCl4-xSO2와 NaAlCl4-xSO2(1.5≤x≤3.0)의 혼합물인 것을 특징으로 하는 나트륨-이산화황 이차 전지용 전해액.An electrolyte solution for sodium-sulfur dioxide secondary batteries, characterized in that a mixture of NaGaCl 4 -xSO 2 and NaAlCl 4 -xSO 2 (1.5 ≦ x ≦ 3.0).
PCT/KR2015/008853 2014-09-16 2015-08-25 Electrolyte solution comprising sulfur dioxide-based, gallium-based inorganic electrolyte, and sodium-sulfur dioxide secondary battery having same WO2016043443A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140122849A KR20160032773A (en) 2014-09-16 2014-09-16 Electrolyte solution comprising sulfur dioxide based gallium inorganic electrolyte and sodium-sulfur dioxide secondary battery having the same
KR10-2014-0122849 2014-09-16

Publications (1)

Publication Number Publication Date
WO2016043443A1 true WO2016043443A1 (en) 2016-03-24

Family

ID=55533443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/008853 WO2016043443A1 (en) 2014-09-16 2015-08-25 Electrolyte solution comprising sulfur dioxide-based, gallium-based inorganic electrolyte, and sodium-sulfur dioxide secondary battery having same

Country Status (2)

Country Link
KR (1) KR20160032773A (en)
WO (1) WO2016043443A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113994514A (en) * 2019-07-11 2022-01-28 株式会社Lg新能源 Electrolyte for lithium secondary battery and lithium secondary battery comprising same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102594515B1 (en) * 2018-10-26 2023-10-27 주식회사 엘지에너지솔루션 Method for preparing electrode for lithium secondary battery, electrode for lithium secondary battery prepared by using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4891281A (en) * 1982-08-09 1990-01-02 Duracell Inc. Electrochemical cells having low vapor pressure complexed SO2 electrolytes
KR20060097111A (en) * 2003-09-23 2006-09-13 귄터 함빗처 Electrochemical battery cell
JP2013054987A (en) * 2011-09-06 2013-03-21 National Institute Of Advanced Industrial & Technology Sodium secondary battery, method for manufacturing negative electrode for sodium secondary battery, and electric equipment
KR20130098236A (en) * 2012-02-27 2013-09-04 에스케이이노베이션 주식회사 Na based secondary battery
KR20130137445A (en) * 2012-06-07 2013-12-17 경상대학교산학협력단 Sodium-sulfur battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4891281A (en) * 1982-08-09 1990-01-02 Duracell Inc. Electrochemical cells having low vapor pressure complexed SO2 electrolytes
KR20060097111A (en) * 2003-09-23 2006-09-13 귄터 함빗처 Electrochemical battery cell
JP2013054987A (en) * 2011-09-06 2013-03-21 National Institute Of Advanced Industrial & Technology Sodium secondary battery, method for manufacturing negative electrode for sodium secondary battery, and electric equipment
KR20130098236A (en) * 2012-02-27 2013-09-04 에스케이이노베이션 주식회사 Na based secondary battery
KR20130137445A (en) * 2012-06-07 2013-12-17 경상대학교산학협력단 Sodium-sulfur battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113994514A (en) * 2019-07-11 2022-01-28 株式会社Lg新能源 Electrolyte for lithium secondary battery and lithium secondary battery comprising same
EP3951984A4 (en) * 2019-07-11 2022-05-25 LG Energy Solution, Ltd. Electrolyte for lithium secondary battery, and lithium secondary battery comprising same

Also Published As

Publication number Publication date
KR20160032773A (en) 2016-03-25

Similar Documents

Publication Publication Date Title
US10461317B2 (en) Solid electrode including electrolyte-impregnated active material particles
US10153514B2 (en) Polymer composition with electrophilic groups for stabilization of lithium sulfur batteries
US9166249B2 (en) Fluoride ion battery compositions
CN103618111B (en) A kind of il electrolyte and the serondary lithium battery containing this electrolyte
EP2709194B1 (en) Lithium-sulfur battery with performance enhanced additives
US20100178555A1 (en) Lithium energy storage device
US20150140422A1 (en) Mixed electrolytes for hybrid magnesium-alkali metal ion batteries
WO2016085191A1 (en) Sodium secondary battery
WO2016043444A1 (en) Electrolyte solution comprising sulfur dioxide-based ionic liquid electrolyte, and sodium-sulfur dioxide secondary battery having same
US7943257B2 (en) Electrolyte solvent and rechargeable lithium battery
WO2016043442A1 (en) Cathode active material using porous carbon structure, preparation method therefor, and sodium-sulfur dioxide secondary battery having same
WO2016043443A1 (en) Electrolyte solution comprising sulfur dioxide-based, gallium-based inorganic electrolyte, and sodium-sulfur dioxide secondary battery having same
KR100736909B1 (en) Nonaqueous electrolyte for lithium battery and lithium secondary battery comprising the electrolyte
JP4076738B2 (en) Lithium battery and electrolyte for lithium ion battery, electrolyte solution or solid electrolyte thereof, and lithium battery or lithium ion battery
KR20180025998A (en) Electrolyte solution comprising sulfur dioxide based Fe inorganic electrolyte and sodium-sulfur dioxide secondary battery having the same
JP3974012B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP2004103372A (en) Nonaqueous electrolytic solution for electrochemical device, and electrochemical device using the same
JP4076748B2 (en) Lithium battery and electrolyte for lithium ion battery, electrolyte solution or solid electrolyte thereof, and lithium battery or lithium ion battery
WO2019039642A1 (en) Liquid electrolyte for sodium secondary battery and sodium secondary battery comprising same
JP4076727B2 (en) Lithium battery and electrolyte for lithium ion battery, electrolyte solution or solid electrolyte thereof, and lithium battery or lithium ion battery
WO2014084642A1 (en) Rechargeable battery comprising non-aqueous electrolytic solution using alkyl methanesulfonate as solvent for dissolving electrolytic salt
WO2022039577A1 (en) Composite polymer solid electrolyte and preparation method therefor
WO2016104903A1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
JP4104289B2 (en) Electrolyte for electrochemical device, electrolyte or solid electrolyte thereof, and battery
KR101559722B1 (en) Charging method of sodium sulfur dioxide secondary batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15841287

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15841287

Country of ref document: EP

Kind code of ref document: A1