WO2016043174A1 - Variable compression control system - Google Patents

Variable compression control system Download PDF

Info

Publication number
WO2016043174A1
WO2016043174A1 PCT/JP2015/076098 JP2015076098W WO2016043174A1 WO 2016043174 A1 WO2016043174 A1 WO 2016043174A1 JP 2015076098 W JP2015076098 W JP 2015076098W WO 2016043174 A1 WO2016043174 A1 WO 2016043174A1
Authority
WO
WIPO (PCT)
Prior art keywords
control system
variable compression
housing
actuator unit
unit
Prior art date
Application number
PCT/JP2015/076098
Other languages
French (fr)
Japanese (ja)
Inventor
謙司 菊池
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2016043174A1 publication Critical patent/WO2016043174A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/32Engines characterised by connections between pistons and main shafts and not specific to preceding main groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B77/00Component parts, details or accessories, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • F02D15/02Varying compression ratio by alteration or displacement of piston stroke

Definitions

  • the present invention relates to the structure of a variable compression control system that can change the compression ratio of an engine.
  • a conventional variable compression control system includes an actuator having a motor that changes the rotational position of a control shaft that changes the compression ratio of the internal combustion engine, and a controller that controls the motor (Patent Documents 1 and 2).
  • the actuator and the controller are mounted in the engine room in a state of being separated from each other.
  • the actuator is placed at the bottom of the engine, but this part may be submerged, so the controller cannot be mounted near the actuator.
  • the number of harnesses has increased due to an increase in controllers, which has become a cause of complicated wiring in the engine room.
  • the controller since it is necessary for the controller to ensure the heat dissipation of the heat generating parts used in the inverter section etc., the miniaturization is hindered and the material cost and processing cost increase. Further, the harness connecting the controller and the actuator is also a factor that increases the cost of the harness and its processing according to the number of motor wires and signal wires.
  • an object of the present invention is to improve the mountability of a variable compression control system on a vehicle and reduce the cost.
  • variable compression control system of the present invention includes an actuator unit that is stored in a first region in a housing attached to an engine block having a control shaft that varies the compression ratio of the internal combustion engine and varies the rotational position of the control shaft. And a controller unit stored in a second region isolated from the first region via a partition wall in the housing to control the operation of the actuator unit.
  • variable compression control system of the present invention is an actuator unit that is housed in a first housing that is mounted immediately below an engine block having a control shaft that varies the compression ratio of the internal combustion engine, and that varies the rotational position of the control shaft. And a controller unit that is stored in a second casing connected to the casing through a gap below the first casing and controls the operation of the actuator unit.
  • the actuator part and the controller part are integrally provided in the vicinity of the engine block, the electrical connection between these functional parts can be performed in the shortest and easy manner. Further, in this aspect, since the refrigerant can be introduced from the existing cooling means, there is no need to separately add a cooling means to the controller unit.
  • variable compression control system can be mounted on a vehicle, and the size and cost can be reduced.
  • FIG. 1 is a perspective view of a variable compression control system as a first embodiment of the present invention.
  • casing provided with the actuator part and controller part of the same system.
  • the variable compression control system 1 of the present embodiment shown in FIGS. 1 and 2 is housed in a casing 4 attached to an engine block 3 having a control shaft 2 that varies the compression ratio of the internal combustion engine, and is stored in the control shaft 2.
  • An actuator unit 5 that varies the rotational position, and a controller unit 6 that is housed in the housing 4 through a partition wall 43 so as to be isolated from the actuator unit 5 and controls the operation of the actuator unit 5 are provided.
  • the actuator unit 5 includes a compression ratio control shaft 53, a shaft absolute angle detection sensor 54, a speed reducer 55, a motor relative angle detection sensor 56, and a motor 57 via output shafts 51 and 52. Are provided on the same axis.
  • the controller unit 6 includes an inverter unit 61 that drives the motor 57, and a control unit 62 that controls the operation of the inverter unit 61 and the actuator unit 5.
  • the control shaft 2 is rotatably supported inside the engine block 3 as shown in FIG.
  • the control shaft 2 is connected to a compression ratio control shaft 53 at the end of the output shaft 52 of the speed reducer 55 in the actuator unit 5 shown in FIG.
  • the compression ratio of the internal combustion engine can be adjusted. Therefore, by driving and controlling the motor 57 by the controller unit 6, the compression ratio of the internal combustion engine can be controlled according to the engine operating state.
  • the reduction gear 55 decelerates the rotation of the output shaft 51 of the motor 57 and transmits it to the output shaft 52.
  • a known type of speed reducer exemplified by a harmonic drive (registered trademark) mechanism, a cyclo speed reducer or the like is applied as the speed reducer 55.
  • the output shaft 52 of the speed reducer 55 and the output shaft 51 of the motor 57 are rotatably accommodated in the first region 41 of the housing 4 and extend in a direction parallel to the control shaft 2.
  • the control shaft 2 and the output shaft 52 are mechanically connected by a lever 7 penetrating the side wall of the engine block 3, and the control shaft 2 rotates in conjunction with the output shaft 52.
  • a slit (not shown) through which the lever 7 is inserted is formed through the side wall of the engine block 3, and the housing 4 is placed on the side wall of the engine block 3 so as to close the slit.
  • one end of the lever 7 is connected to the tip of the arm portion 21 extending radially outward from the center of the control shaft 2 via a connection pin (not shown) so as to be relatively rotatable.
  • the other end of the lever 7 is connected to the end of the compression ratio control shaft 53 extending radially outward from the center of the output shaft 52 and a connection pin (not shown) in the housing 4 shown in FIG. And are connected so as to be relatively rotatable.
  • the housing 4 is made of a metal material having the same quality as that of the engine block 3, for example, and is formed into a rectangular box-shaped housing by die casting.
  • a rectangular first area 41 and a second area 42 are partitioned in the housing 4 via a partition wall 43.
  • Fasteners for fixing the casing 4 to the side wall of the engine block 3 are mounted on the edge in the width direction of the end of the casing 4 having the openings of the first region 41 and the second region 42.
  • a mounting portion 47 is provided.
  • a refrigerant flow passage 44 is formed in the wall portion of the housing 4.
  • the flow passage 44 illustrated in FIG. 2 is formed in the thick wall portion of the housing 4, the flow passage 44 may be formed so as to surround the first region 41 and the second region 42.
  • the refrigerant for example, existing cooling water used in an engine room or air introduced from a radiator fan is used.
  • an inlet 45 of a harness 8 connected to the actuator unit 5 and the controller unit 6 is formed on the wall of the housing 4.
  • a harness 8 for example, a power harness that supplies power to the actuator unit 5 and the controller unit 6, a signal harness that transmits and receives control signals, and communication between the controller unit 6 and the main controller of the vehicle and other controllers.
  • a network communication harness such as a CAN to be performed, a start signal harness of the controller unit 6 and the like can be mentioned.
  • the partition wall 43 is formed with an insertion port 46 for the bus bar 9 that electrically connects the actuator unit 5 and the controller unit 6.
  • variable compression control system 1 of the present embodiment includes the first region 41 in which the actuator unit 5 is stored and the second region in which the controller unit 6 is stored in the housing 4 attached to the engine block 3.
  • a region 42 is partitioned.
  • the housing 4 is directly attached to the engine block 3, heat dissipation using the cooling function of the engine is ensured. Therefore, it is not necessary to newly attach a cooling means to the controller unit 6, so that the system can be downsized.
  • the refrigerant flow passage 44 is formed inside the wall of the housing 4, the heat dissipation of the actuator unit 5 and the controller unit 6 is further improved. Furthermore, since the inlet port 45 of the harness 8 is formed in the wall portion of the housing 4, the breathability of the controller unit 6 is ensured via the harness 8, so that the heat dissipation effect in the controller unit 6 is enhanced. Similarly, in the partition wall 43 that divides the first region 41 and the second region 42, the insertion port 46 of the bus bar 9 that electrically connects the actuator unit 5 and the controller unit 6 is formed. Since the breathability of the actuator unit 5 is ensured through the heat dissipation effect in the actuator unit 5 is enhanced.
  • the casing 4 is made of a metal material like the engine block 3, the body ground is secured by the casing 4 main body and the engine block 3, and the controller unit 6 allows the controller section 6 to be connected to other parts by the shielding effect. Unwanted radiation noise that affects electrical equipment is reduced.
  • casing 4 is shape
  • the first area 41 and the second area 42 are secured in the housing 4, so that the number of parts is reduced as compared with the case where the actuator unit 5 and the controller unit 6 are separated from each other in the engine room. . Further, the conventional seal structure for connecting the actuator unit 5 and the controller unit 6 is not required. Further, even when a liquid such as engine oil flows into the actuator unit 5 from the engine block 3 side, the liquid is prevented from flowing into the controller unit 6 side, so that the function of the controller unit 6 is maintained.
  • the actuator unit 5 and the controller unit 6 are built in the housing 4, it is not necessary to consider the layout of the controller unit 6 in the engine room, and the manufacturing cost can be reduced.
  • the partition wall 48 that separates the compression ratio control shaft 53 (and the shaft absolute angle detection sensor 54) that is an element of the actuator unit 5 from the speed reducer 55. May be further provided. According to this aspect, even when a liquid such as engine oil flows into the housing 4 from the engine block 3 side and further shifts to the speed reducer 55 side, the inflow of the fluid is blocked by the partition wall 48. Therefore, the functions of the reduction gear 55 and the motor 57 can be maintained.
  • the variable compression control system 10 of the present embodiment shown in FIG. 5 improves the cooling effect of the functional units 5 and 6 by disposing the controller unit 6 near the lower part of the actuator unit 5 via a gap S. .
  • the actuator unit 5 is housed in a first housing 4 that is attached immediately below the engine block 3 in the vicinity of a radiator fan (air cooling type cooling means) (not shown) in the engine room.
  • a radiator fan air cooling type cooling means
  • a compression ratio control shaft 53, a shaft absolute angle detection sensor 54, and a speed reducer 55 which are elements of the actuator unit 5, an output shaft 51 of the motor 57 and a speed reducer 55. It is arranged coaxially with the output shaft 52.
  • a motor relative angle detection sensor 56 and a motor 57 which are elements of the actuator unit 5, are arranged coaxially with the output shaft 51 of the motor 57.
  • the controller unit 6 is stored in a second casing 11 connected via a gap S near the lower portion of the casing 4.
  • the controller unit 6 supplies electric power and control signals to the actuator unit 5, while receiving sensor signals from the shaft absolute angle detection sensor 54 and the motor relative angle detection sensor 56 of the actuator unit 5, and a control signal based on this signal Is provided.
  • the casings 4 and 11 are connected via a gap S by a plurality of connecting portions 13.
  • a bus bar 14 for electrically connecting the element of the actuator unit 5 and the control board 12 is inserted into each connecting portion 13.
  • variable compression control system 10 of the present embodiment as described above, the actuator unit 5 and the controller unit 6 are disposed in the vicinity of each other immediately below the engine block 3, and are the same as the variable compression control system 10 of the first embodiment. Since the effect is obtained, the description of the specific effect is omitted.
  • the housing 11 of the controller unit 6 is connected to the housing 4 via the gap S below the housing 4 of the actuator unit 5, so that natural convection and a radiator fan in the engine room Air flow can be secured. Therefore, in addition to the effect of the first embodiment, the cooling effect of the actuator unit 5 and the controller unit 6 is further improved.

Abstract

 The present invention is intended to facilitate installation of a variable compression control system in a vehicle and reduce the cost of said system. A variable compression control system 1 is provided with: an actuator unit 5 accommodated in a first area 41 within a housing 4 attached to an engine block having a control shaft for varying the compression ratio of an internal combustion engine, said actuator unit 5 allowing the rotation position of the control shaft to be varied; and a control unit 6 housed within a second area 42 separated from the first area 41 within the housing 4 by a partition wall 43, said control unit 6 controlling actuating of the actuator unit 5.

Description

可変圧縮制御システムVariable compression control system
 本発明は機関の圧縮比を変更可能にする可変圧縮制御システムの構造に関する。 The present invention relates to the structure of a variable compression control system that can change the compression ratio of an engine.
 従来の可変圧縮制御システムは、内燃機関の圧縮比を可変させる制御軸の回転位置を可変させるモータを有するアクチュエータと、前記モータを制御するコントローラとを有する(特許文献1,2)。前記アクチュエータとコントローラは互いに離間した状態でエンジンルーム内に搭載されている。 A conventional variable compression control system includes an actuator having a motor that changes the rotational position of a control shaft that changes the compression ratio of the internal combustion engine, and a controller that controls the motor (Patent Documents 1 and 2). The actuator and the controller are mounted in the engine room in a state of being separated from each other.
特開2013-241846号公報JP 2013-241846 A 特開2013-253512号公報JP2013-253512A
 近年、電子電動化に伴い、エンジンルーム内に実装するコントローラの数が増加の一途であり、新規システムのためのコントローラの実装箇所の確保が困難になりつつある。 In recent years, the number of controllers to be mounted in the engine room has been increasing along with the electrification of electric motors, and it has become difficult to secure the mounting locations of controllers for new systems.
 アクチュエータはエンジンの下部に配置されるが、この部位は水没する可能性もあるので、アクチュエータの近傍にコントローラを実装することができない。また、コントローラの増加によりハーネスの本数も増加しており、エンジンルーム内の配線の複雑化する原因にもなっている。 The actuator is placed at the bottom of the engine, but this part may be submerged, so the controller cannot be mounted near the actuator. In addition, the number of harnesses has increased due to an increase in controllers, which has become a cause of complicated wiring in the engine room.
 さらに、コントローラは、インバータ部などに用いられている発熱部品の放熱性を筐体に確保する必要があるので、小型化の妨げになるとともに材料費や加工費の増大が要因になっている。また、コントローラとアクチュエータを繋ぐハーネスについても、モータ線と信号線の数に応じてハーネスとその加工のコストが増大する要因になっている。 Furthermore, since it is necessary for the controller to ensure the heat dissipation of the heat generating parts used in the inverter section etc., the miniaturization is hindered and the material cost and processing cost increase. Further, the harness connecting the controller and the actuator is also a factor that increases the cost of the harness and its processing according to the number of motor wires and signal wires.
 本発明は、上記の事情に鑑み、可変圧縮制御システムの車両への搭載性の改善と低コスト化を図ることを課題とする。 In view of the above circumstances, an object of the present invention is to improve the mountability of a variable compression control system on a vehicle and reduce the cost.
 そこで、本発明の可変圧縮制御システムは、内燃機関の圧縮比を可変させる制御軸を有するエンジンブロックに取付けられる筐体内の第一領域に格納されて当該制御軸の回転位置を可変させるアクチュエータ部と、前記筐体内に隔壁を介して前記第一領域と隔離された第二領域に格納されて前記アクチュエータ部を動作制御するコントローラ部とを備える。 Therefore, the variable compression control system of the present invention includes an actuator unit that is stored in a first region in a housing attached to an engine block having a control shaft that varies the compression ratio of the internal combustion engine and varies the rotational position of the control shaft. And a controller unit stored in a second region isolated from the first region via a partition wall in the housing to control the operation of the actuator unit.
 また、本発明の可変圧縮制御システムは、内燃機関の圧縮比を可変させる制御軸を有するエンジンブロックの直下に取り付けられる第一の筐体内に格納されて当該制御軸の回転位置を可変させるアクチュエータ部と、前記第一の筐体の下方に隙間を介して当該筐体に連結される第二の筐体内に格納されて前記アクチュエータ部を動作制御するコントローラ部とを備える。 Further, the variable compression control system of the present invention is an actuator unit that is housed in a first housing that is mounted immediately below an engine block having a control shaft that varies the compression ratio of the internal combustion engine, and that varies the rotational position of the control shaft. And a controller unit that is stored in a second casing connected to the casing through a gap below the first casing and controls the operation of the actuator unit.
 以上の発明によれば、エンジンブロックの近傍にてアクチュエータ部とコントローラ部とが一体的に具備されるので、この両者の機能部間の電気的接続が最短かつ容易に行える。また、この態様は既存の冷却手段から冷媒を導入できるのでコントローラ部に対して別途に冷却手段を付帯する必要がなくなる。 According to the above invention, since the actuator part and the controller part are integrally provided in the vicinity of the engine block, the electrical connection between these functional parts can be performed in the shortest and easy manner. Further, in this aspect, since the refrigerant can be introduced from the existing cooling means, there is no need to separately add a cooling means to the controller unit.
 したがって、以上の本発明によれば、可変圧縮制御システムの車両への搭載性が改善すると共に小型化並びに低コスト化が実現する。 Therefore, according to the present invention described above, the variable compression control system can be mounted on a vehicle, and the size and cost can be reduced.
本発明の第一実施形態としての可変圧縮制御システムの斜視図。1 is a perspective view of a variable compression control system as a first embodiment of the present invention. 同システムのアクチュエータ部とコントローラ部とを備えた筐体の概略平面図。The schematic plan view of the housing | casing provided with the actuator part and controller part of the same system. 同実施形態の筐体の斜視図。The perspective view of the housing | casing of the embodiment. 同実施形態のアクチュエータ部とコントローラ部とを備えた筐体の他の態様を示した概略平面図。The schematic plan view which showed the other aspect of the housing | casing provided with the actuator part and controller part of the embodiment. 本発明の第二実施形態としての可変圧縮制御システムの概略縦断面図。The schematic longitudinal cross-sectional view of the variable compression control system as 2nd embodiment of this invention.
 以下、図面を参照しながら本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 (実施形態1)
 図1,2に示された本実施形態の可変圧縮制御システム1は、内燃機関の圧縮比を可変させる制御軸2を有するエンジンブロック3に取付けられる筐体4内に格納されて制御軸2の回転位置を可変させるアクチュエータ部5と、筐体4内に隔壁43を介してアクチュエータ部5と隔離されて格納されてアクチュエータ部5を動作制御するコントローラ部6とを備える。
(Embodiment 1)
The variable compression control system 1 of the present embodiment shown in FIGS. 1 and 2 is housed in a casing 4 attached to an engine block 3 having a control shaft 2 that varies the compression ratio of the internal combustion engine, and is stored in the control shaft 2. An actuator unit 5 that varies the rotational position, and a controller unit 6 that is housed in the housing 4 through a partition wall 43 so as to be isolated from the actuator unit 5 and controls the operation of the actuator unit 5 are provided.
 アクチュエータ部5は、図2に示したように、出力軸51,52を介して、圧縮比制御用シャフト53とシャフト絶対角度検出センサ54と減速機55とモータ相対角度検出用センサ56とモータ57とを同軸に備える。 As shown in FIG. 2, the actuator unit 5 includes a compression ratio control shaft 53, a shaft absolute angle detection sensor 54, a speed reducer 55, a motor relative angle detection sensor 56, and a motor 57 via output shafts 51 and 52. Are provided on the same axis.
 コントローラ部6は、モータ57を駆動させるインバータ部61と、このインバータ部61とアクチュエータ部5とを動作制御する制御部62とを備える。 The controller unit 6 includes an inverter unit 61 that drives the motor 57, and a control unit 62 that controls the operation of the inverter unit 61 and the actuator unit 5.
 制御軸2は、図1に示したように、エンジンブロック3の内部に回転可能に支持されている。制御軸2はレバー7を介して図2に示したアクチュエータ部5における減速機55の出力軸52端部の圧縮比制御用シャフト53に連結されている。 The control shaft 2 is rotatably supported inside the engine block 3 as shown in FIG. The control shaft 2 is connected to a compression ratio control shaft 53 at the end of the output shaft 52 of the speed reducer 55 in the actuator unit 5 shown in FIG.
 そして、モータ57による圧縮比制御用シャフト53の動作によって制御軸2の回転位置(角度)を変更させることにより、ピストン上死点位置やピストン下死点位置を含むピストンストローク特性を変化させ、これにより前記内燃機関の圧縮比を調整できるようになっている。したがって、コントローラ部6によりモータ57を駆動制御することによって、機関運転状態に応じて内燃機関の圧縮比を制御することができる。 Then, by changing the rotational position (angle) of the control shaft 2 by the operation of the compression ratio control shaft 53 by the motor 57, the piston stroke characteristics including the piston top dead center position and the piston bottom dead center position are changed. Thus, the compression ratio of the internal combustion engine can be adjusted. Therefore, by driving and controlling the motor 57 by the controller unit 6, the compression ratio of the internal combustion engine can be controlled according to the engine operating state.
 減速機55はモータ57の出力軸51の回転を減速して出力軸52へ伝達する。減速機55はハーモニックドライブ(登録商標)機構、サイクロ減速機などに例示される周知の型式の減速機が適用される。 The reduction gear 55 decelerates the rotation of the output shaft 51 of the motor 57 and transmits it to the output shaft 52. As the speed reducer 55, a known type of speed reducer exemplified by a harmonic drive (registered trademark) mechanism, a cyclo speed reducer or the like is applied.
 減速機55の出力軸52、モータ57の出力軸51は、筐体4の第一領域41内に回転可能に収容配置されており、制御軸2と平行な方向に延在している。そして、制御軸2と出力軸52とはエンジンブロック3の側壁を貫通するレバー7によって機械的に連結されており、制御軸2は出力軸52と連動して回転するようになっている。尚、エンジンブロック3の側壁には、レバー7が挿通する図示省略のスリットが貫通形成されており、このスリットを塞ぐように筐体4がエンジンブロック3の側壁に横付けされている。 The output shaft 52 of the speed reducer 55 and the output shaft 51 of the motor 57 are rotatably accommodated in the first region 41 of the housing 4 and extend in a direction parallel to the control shaft 2. The control shaft 2 and the output shaft 52 are mechanically connected by a lever 7 penetrating the side wall of the engine block 3, and the control shaft 2 rotates in conjunction with the output shaft 52. A slit (not shown) through which the lever 7 is inserted is formed through the side wall of the engine block 3, and the housing 4 is placed on the side wall of the engine block 3 so as to close the slit.
 レバー7の一端は、図1に示したように、制御軸2の中心より径方向外方へ延在するアーム部21の先端と図示省略の連結ピンを介して相対回転可能に連結されている。一方、レバー7の他端は、図2に示した筐体4内において、出力軸52の中心より径方向外方へ延在する圧縮比制御用シャフト53の先端と図示省略の連結ピンを介して相対回転可能に連結されている。 As shown in FIG. 1, one end of the lever 7 is connected to the tip of the arm portion 21 extending radially outward from the center of the control shaft 2 via a connection pin (not shown) so as to be relatively rotatable. . On the other hand, the other end of the lever 7 is connected to the end of the compression ratio control shaft 53 extending radially outward from the center of the output shaft 52 and a connection pin (not shown) in the housing 4 shown in FIG. And are connected so as to be relatively rotatable.
 このようなリンク構造によって、制御軸2を回転させると、機関圧縮比が変化すると共に、アーム部21、レバー7、圧縮比制御用シャフト53の姿勢が変化するので、モータ57から制御軸2への回転動力伝達経路の減速比も変化することとなる。 When the control shaft 2 is rotated by such a link structure, the engine compression ratio changes and the postures of the arm portion 21, the lever 7, and the compression ratio control shaft 53 change, so that the motor 57 changes to the control shaft 2. The reduction ratio of the rotational power transmission path will also change.
 筐体4は、図3に示したように、例えばエンジンブロック3と同質の金属材料から構成され、ダイカスト成形により矩形箱型の筐体に形成されている。筐体4内には矩形の第一領域41,第二領域42が隔壁43を介して区画形成されている。第一領域41,第二領域42の開口部を有する筐体4端部の幅方向縁部には、エンジンブロック3の側壁部に対して筐体4を横付けに固定させる締結具が装着される取付け部47が具備されている。 As shown in FIG. 3, the housing 4 is made of a metal material having the same quality as that of the engine block 3, for example, and is formed into a rectangular box-shaped housing by die casting. A rectangular first area 41 and a second area 42 are partitioned in the housing 4 via a partition wall 43. Fasteners for fixing the casing 4 to the side wall of the engine block 3 are mounted on the edge in the width direction of the end of the casing 4 having the openings of the first region 41 and the second region 42. A mounting portion 47 is provided.
 また、筐体4の壁部には、冷媒の流通路44が形成されている。図2に例示された流通路44は筐体4の肉厚な壁部に形成されているが、第一領域41,第二領域42を包囲するように流通路44を形成してもよい。冷媒としては例えばエンジンルーム内で使用される既存の冷却水やラジエータファンから導入した空気が利用される。 Further, a refrigerant flow passage 44 is formed in the wall portion of the housing 4. Although the flow passage 44 illustrated in FIG. 2 is formed in the thick wall portion of the housing 4, the flow passage 44 may be formed so as to surround the first region 41 and the second region 42. As the refrigerant, for example, existing cooling water used in an engine room or air introduced from a radiator fan is used.
 さらに、筐体4の壁部には、アクチュエータ部5やコントローラ部6に接続されるハーネス8の導入口45が形成されている。ハーネス8としては、例えば、アクチュエータ部5やコントローラ部6に電力を供給する電源用ハーネス、制御信号を送受信させる信号用ハーネス、コントローラ部6と車両のメインコントローラや他のコントローラとの間で通信を行うCANなどのネットワークの通信用ハーネス、コントローラ部6の起動信号用ハーネスなどが挙げられる。また、隔壁43には、アクチュエータ部5とコントローラ部6とを電気的に接続させるバスバー9の挿通口46が形成されている。 Furthermore, an inlet 45 of a harness 8 connected to the actuator unit 5 and the controller unit 6 is formed on the wall of the housing 4. As the harness 8, for example, a power harness that supplies power to the actuator unit 5 and the controller unit 6, a signal harness that transmits and receives control signals, and communication between the controller unit 6 and the main controller of the vehicle and other controllers. A network communication harness such as a CAN to be performed, a start signal harness of the controller unit 6 and the like can be mentioned. The partition wall 43 is formed with an insertion port 46 for the bus bar 9 that electrically connects the actuator unit 5 and the controller unit 6.
 以上説明したように本実施形態の可変圧縮制御システム1は、エンジンブロック3に取り付けられる筐体4内において、アクチュエータ部5が格納される第一領域41と、コントローラ部6が格納される第二領域42とが区画形成されている。このように、アクチュエータ部5とコントローラ部6との電気的接続が最短かつ容易に行える態様となっている。したがって、エンジンルームへの可変圧縮制御システム1の搭載性が改善する。さらに、エンジンルーム内でアクチュエータ部5とコントローラ部6とを接続するハーネスの削減も可能となる。 As described above, the variable compression control system 1 of the present embodiment includes the first region 41 in which the actuator unit 5 is stored and the second region in which the controller unit 6 is stored in the housing 4 attached to the engine block 3. A region 42 is partitioned. Thus, the electrical connection between the actuator unit 5 and the controller unit 6 can be performed in the shortest and easy manner. Therefore, the mountability of the variable compression control system 1 in the engine room is improved. Furthermore, it is possible to reduce the number of harnesses that connect the actuator unit 5 and the controller unit 6 in the engine room.
 特に、筐体4はエンジンブロック3に対して直接取り付けられる構造となっているので、エンジンの冷却機能を利用した放熱性が確保される。したがって、コントローラ部6に冷却手段を新たに付帯する必要がなくなるので、システムの小型化が実現する。 Particularly, since the housing 4 is directly attached to the engine block 3, heat dissipation using the cooling function of the engine is ensured. Therefore, it is not necessary to newly attach a cooling means to the controller unit 6, so that the system can be downsized.
 また、筐体4の壁内部には、冷媒の流通路44が形成されているので、アクチュエータ部5とコントローラ部6の放熱性がさらに向上する。さらに、筐体4の壁部に、ハーネス8の導入口45が形成されたことにより、ハーネス8を介してコントローラ部6の呼吸性が確保されるので、コントローラ部6内の放熱効果が高まる。同様に、第一領域41と第二領域42とを区画する隔壁43において、アクチュエータ部5とコントローラ部6とを電気的に接続するバスバー9の挿通口46が形成されたことにより、挿通口46を介してアクチュエータ部5の呼吸性が確保されるので、アクチュエータ部5内の放熱効果が高まる。 Further, since the refrigerant flow passage 44 is formed inside the wall of the housing 4, the heat dissipation of the actuator unit 5 and the controller unit 6 is further improved. Furthermore, since the inlet port 45 of the harness 8 is formed in the wall portion of the housing 4, the breathability of the controller unit 6 is ensured via the harness 8, so that the heat dissipation effect in the controller unit 6 is enhanced. Similarly, in the partition wall 43 that divides the first region 41 and the second region 42, the insertion port 46 of the bus bar 9 that electrically connects the actuator unit 5 and the controller unit 6 is formed. Since the breathability of the actuator unit 5 is ensured through the heat dissipation effect in the actuator unit 5 is enhanced.
 さらに、筐体4はエンジンブロック3と同様に金属材料から構成されているので、筐体4本体とエンジンブロック3とによってボディアースが確保されており、そのシールド効果により、コントローラ部6が他の電装機器などに影響を及ぼす不要な放射ノイズが低減する。尚、筐体4はエンジンブロック3と一体的に成形すれば、筐体4はエンジンブロック3の一部となり、水没及び石跳ねからの保護も可能となる。 Further, since the casing 4 is made of a metal material like the engine block 3, the body ground is secured by the casing 4 main body and the engine block 3, and the controller unit 6 allows the controller section 6 to be connected to other parts by the shielding effect. Unwanted radiation noise that affects electrical equipment is reduced. In addition, if the housing | casing 4 is shape | molded integrally with the engine block 3, the housing | casing 4 will become a part of engine block 3, and the protection from a water immersion and a rock jump is also possible.
 そして、筐体4内に第一領域41、第二領域42が確保されたことにより、アクチュエータ部5とコントローラ部6とをエンジンルーム内で離間して配置する場合と比べて部品点数が低減する。また、従来のようなアクチュエータ部5とコントローラ部6とを接続する際のシール構造も不要となる。さらに、エンジンブロック3側からエンジンオイルなどの液体がアクチュエータ部5内に流入する状況となっても、コントローラ部6側への当該液体の流入が防止されるので、コントローラ部6の機能が保全される。 The first area 41 and the second area 42 are secured in the housing 4, so that the number of parts is reduced as compared with the case where the actuator unit 5 and the controller unit 6 are separated from each other in the engine room. . Further, the conventional seal structure for connecting the actuator unit 5 and the controller unit 6 is not required. Further, even when a liquid such as engine oil flows into the actuator unit 5 from the engine block 3 side, the liquid is prevented from flowing into the controller unit 6 side, so that the function of the controller unit 6 is maintained. The
 また、筐体4内にアクチュエータ部5とコントローラ部6が内蔵された態様により、エンジンルーム内におけるコントローラ部6のレイアウトを考慮する必要がなくなり、製造コストの低減が実現する。 In addition, since the actuator unit 5 and the controller unit 6 are built in the housing 4, it is not necessary to consider the layout of the controller unit 6 in the engine room, and the manufacturing cost can be reduced.
 尚、図4に例示したように、第一領域41においては、アクチュエータ部5の要素である圧縮比制御用シャフト53(さらにはシャフト絶対角度検出センサ54)と減速機55とを隔離する隔壁48をさらに設けるとよい。本態様によれば、エンジンブロック3側からエンジンオイルなどの液体が筐体4内に流入してさらに減速機55側に移行する状況となった場合でも、当該流体の流入が隔壁48によって遮断されるので、減速機55とモータ57の機能を保全できる。 As illustrated in FIG. 4, in the first region 41, the partition wall 48 that separates the compression ratio control shaft 53 (and the shaft absolute angle detection sensor 54) that is an element of the actuator unit 5 from the speed reducer 55. May be further provided. According to this aspect, even when a liquid such as engine oil flows into the housing 4 from the engine block 3 side and further shifts to the speed reducer 55 side, the inflow of the fluid is blocked by the partition wall 48. Therefore, the functions of the reduction gear 55 and the motor 57 can be maintained.
 (実施形態2)
 図5に示された本実施形態の可変圧縮制御システム10は、コントローラ部6をアクチュエータ部5の下方近傍に隙間Sを介して配置させることにより当該機能部5,6の冷却効果の向上を図る。
(Embodiment 2)
The variable compression control system 10 of the present embodiment shown in FIG. 5 improves the cooling effect of the functional units 5 and 6 by disposing the controller unit 6 near the lower part of the actuator unit 5 via a gap S. .
 アクチュエータ部5は、エンジンルーム内の図示省略のラジエータファン(空冷式の冷却手段)近傍におけるエンジンブロック3の直下に取付けられる第一の筐体4内に格納されている。 The actuator unit 5 is housed in a first housing 4 that is attached immediately below the engine block 3 in the vicinity of a radiator fan (air cooling type cooling means) (not shown) in the engine room.
 筐体4内の第一領域41内には、アクチュエータ部5の要素である圧縮比制御用シャフト53、シャフト絶対角度検出センサ54及び減速機55が、モータ57の出力軸51並びに減速機55の出力軸52と同軸に配置されている。第二領域42内には、アクチュエータ部5の要素であるモータ相対角度検出用センサ56及びモータ57がモータ57の出力軸51と同軸に配置されている。 In the first region 41 in the housing 4, a compression ratio control shaft 53, a shaft absolute angle detection sensor 54, and a speed reducer 55, which are elements of the actuator unit 5, an output shaft 51 of the motor 57 and a speed reducer 55. It is arranged coaxially with the output shaft 52. In the second region 42, a motor relative angle detection sensor 56 and a motor 57, which are elements of the actuator unit 5, are arranged coaxially with the output shaft 51 of the motor 57.
 コントローラ部6は、筐体4の下方近傍に隙間Sを介して連結される第二の筐体11内に格納されている。コントローラ部6は、アクチュエータ部5に対して電力及び制御信号を供給する一方でアクチュエータ部5のシャフト絶対角度検出センサ54、モータ相対角度検出用センサ56からセンサ信号を受けてこの信号に基づく制御信号を出力する制御基板12を備える。 The controller unit 6 is stored in a second casing 11 connected via a gap S near the lower portion of the casing 4. The controller unit 6 supplies electric power and control signals to the actuator unit 5, while receiving sensor signals from the shaft absolute angle detection sensor 54 and the motor relative angle detection sensor 56 of the actuator unit 5, and a control signal based on this signal Is provided.
 筐体4,11は複数の連結部13によって隙間Sを介して連結されている。個々の連結部13内には、アクチュエータ部5の要素と制御基板12とを電気的に接続させるバスバー14が挿通されている。 The casings 4 and 11 are connected via a gap S by a plurality of connecting portions 13. A bus bar 14 for electrically connecting the element of the actuator unit 5 and the control board 12 is inserted into each connecting portion 13.
 以上の本実施形態の可変圧縮制御システム10は、エンジンブロック3の直下にてアクチュエータ部5とコントローラ部6とが互いに近傍して配置されており、実施形態1の可変圧縮制御システム10と同様の効果が得られるのでその具体的な効果の説明は省略する。 In the variable compression control system 10 of the present embodiment as described above, the actuator unit 5 and the controller unit 6 are disposed in the vicinity of each other immediately below the engine block 3, and are the same as the variable compression control system 10 of the first embodiment. Since the effect is obtained, the description of the specific effect is omitted.
 特に本実施形態においては、コントローラ部6の筐体11がアクチュエータ部5の筐体4の下方にて隙間Sを介して筐体4に連結されているので、エンジンルーム内の自然対流及びラジエータファンによる空気の流れを確保できる。したがって、実施形態1の効果に加えて、アクチュエータ部5とコントローラ部6の冷却効果がさらに向上する。 In particular, in the present embodiment, the housing 11 of the controller unit 6 is connected to the housing 4 via the gap S below the housing 4 of the actuator unit 5, so that natural convection and a radiator fan in the engine room Air flow can be secured. Therefore, in addition to the effect of the first embodiment, the cooling effect of the actuator unit 5 and the controller unit 6 is further improved.

Claims (7)

  1.  内燃機関の圧縮比を可変させる制御軸を有するエンジンブロックに取付けられる筐体内の第一領域に格納されて当該制御軸の回転位置を可変させるアクチュエータ部と、
     前記筐体内に隔壁を介して前記第一領域と隔離された第二領域に格納されて前記アクチュエータ部を動作制御するコントローラ部と
    を備えた
    可変圧縮制御システム。
    An actuator unit that is stored in a first region in a housing attached to an engine block having a control shaft that varies a compression ratio of the internal combustion engine and varies a rotational position of the control shaft;
    A variable compression control system comprising: a controller unit that is stored in a second region isolated from the first region via a partition wall in the housing and controls the operation of the actuator unit.
  2.  前記筐体の壁内部には、冷媒の流通路が形成された
    請求項1に記載の可変圧縮制御システム。
    The variable compression control system according to claim 1, wherein a flow path for the refrigerant is formed inside the wall of the casing.
  3.  前記筐体の壁部には、電源用ハーネス、通信用ハーネスの導入口が形成された
    請求項1または2に記載の可変圧縮制御システム。
    The variable compression control system according to claim 1, wherein an inlet for a power harness and a communication harness is formed in a wall portion of the housing.
  4.  前記第一領域と前記第二領域とを区画する隔壁には、前記アクチュエータ部と前記コントローラ部とを電気的に接続する導体の挿通口が形成された
    請求項1から3のいずれか1項に記載の可変圧縮制御システム。
    The partition which divides said 1st area | region and said 2nd area | region WHEREIN: The insertion hole of the conductor which electrically connects the said actuator part and the said controller part was formed in any one of Claim 1 to 3 The variable compression control system described.
  5.  前記第一領域には、前記アクチュエータ部の要素である圧縮比制御用シャフトと減速機とを隔離する隔壁が設けられた
    請求項4に記載の可変圧縮制御システム。
    The variable compression control system according to claim 4, wherein the first region is provided with a partition that separates a compression ratio control shaft that is an element of the actuator unit and a speed reducer.
  6.  内燃機関の圧縮比を可変させる制御軸を有するエンジンブロックの直下に取り付けられる第一の筐体内に格納されて当該制御軸の回転位置を可変させるアクチュエータ部と、
     前記第一の筐体の下方近傍に隙間を介して当該筐体に連結される第二の筐体内に格納されて前記アクチュエータ部を動作制御するコントローラ部と
    を備えた
    可変圧縮制御システム。
    An actuator unit that is housed in a first housing that is mounted directly below an engine block having a control shaft that varies the compression ratio of the internal combustion engine, and that varies the rotational position of the control shaft;
    A variable compression control system comprising: a controller unit that is stored in a second casing connected to the casing through a gap near the lower side of the first casing and controls the operation of the actuator unit.
  7.  前記第二の筐体は、空冷式の冷却手段の近傍に配置された
    請求項6に記載の可変圧縮制御システム。
    The variable compression control system according to claim 6, wherein the second casing is disposed in the vicinity of an air-cooling type cooling unit.
PCT/JP2015/076098 2014-09-17 2015-09-15 Variable compression control system WO2016043174A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014188353A JP2016061186A (en) 2014-09-17 2014-09-17 Variable compression control system
JP2014-188353 2014-09-17

Publications (1)

Publication Number Publication Date
WO2016043174A1 true WO2016043174A1 (en) 2016-03-24

Family

ID=55533211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076098 WO2016043174A1 (en) 2014-09-17 2015-09-15 Variable compression control system

Country Status (2)

Country Link
JP (1) JP2016061186A (en)
WO (1) WO2016043174A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10322973A (en) * 1997-05-14 1998-12-04 Toshiba Corp Motor mounted with power converter
JP2004215368A (en) * 2002-12-27 2004-07-29 Tokyo R & D Co Ltd Motor
JP2005030234A (en) * 2003-07-08 2005-02-03 Honda Motor Co Ltd Variable compression ratio engine
JP2013060119A (en) * 2011-09-14 2013-04-04 Hitachi Automotive Systems Ltd Electric power steering system
WO2013069129A1 (en) * 2011-11-10 2013-05-16 株式会社安川電機 Rotating electrical machine
JP2013241845A (en) * 2012-05-18 2013-12-05 Nissan Motor Co Ltd Variable compression ratio internal combustion engine
WO2014017170A1 (en) * 2012-07-27 2014-01-30 日産自動車株式会社 Actuator mounting structure for internal-combustion engine having variable compression ratio
WO2014109179A1 (en) * 2013-01-09 2014-07-17 日産自動車株式会社 Drive device
WO2014112266A1 (en) * 2013-01-17 2014-07-24 日産自動車株式会社 Internal combustion engine with variable compression ratio

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10322973A (en) * 1997-05-14 1998-12-04 Toshiba Corp Motor mounted with power converter
JP2004215368A (en) * 2002-12-27 2004-07-29 Tokyo R & D Co Ltd Motor
JP2005030234A (en) * 2003-07-08 2005-02-03 Honda Motor Co Ltd Variable compression ratio engine
JP2013060119A (en) * 2011-09-14 2013-04-04 Hitachi Automotive Systems Ltd Electric power steering system
WO2013069129A1 (en) * 2011-11-10 2013-05-16 株式会社安川電機 Rotating electrical machine
JP2013241845A (en) * 2012-05-18 2013-12-05 Nissan Motor Co Ltd Variable compression ratio internal combustion engine
WO2014017170A1 (en) * 2012-07-27 2014-01-30 日産自動車株式会社 Actuator mounting structure for internal-combustion engine having variable compression ratio
WO2014109179A1 (en) * 2013-01-09 2014-07-17 日産自動車株式会社 Drive device
WO2014112266A1 (en) * 2013-01-17 2014-07-24 日産自動車株式会社 Internal combustion engine with variable compression ratio

Also Published As

Publication number Publication date
JP2016061186A (en) 2016-04-25

Similar Documents

Publication Publication Date Title
CN105383550A (en) Electric drive device and electric power steering device
CN110892614B (en) Electric drive device and electric power steering device
CN104313833B (en) Integrative motor and controller assemblies for horizontal axis washer
EP2898593B1 (en) Ventilation unit
US9118227B2 (en) Rotating electrical machine
JP6180810B2 (en) Inverter-integrated electric compressor
JP2016034202A (en) Drive device, and electric power steering device using the same
US10647191B2 (en) Transmission for a motor vehicle
EP3536958A1 (en) Electric pump
CN104884780A (en) Valve
US11085507B2 (en) Control device and associated production method
JP6915495B2 (en) Actuator
WO2016043174A1 (en) Variable compression control system
CN103790097A (en) Construction machine with machine component
JPH0557467B2 (en)
CN109861463A (en) The cooling structure of driving controller connection motor
US8189336B2 (en) Composite cover with integral heat sink
WO2015114842A1 (en) Brake control device
JPH07115778A (en) Inverter device
JP6727304B2 (en) Electric drive
EP3608176B1 (en) Power assembly of electric scooter
JP2009001246A (en) Electric power steering device
CN212163091U (en) Integrated servo motor with quick-connection plug
KR100535115B1 (en) ECU mounting structure of electronic power steering system
CN106059162A (en) Generator motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15842871

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15842871

Country of ref document: EP

Kind code of ref document: A1