WO2016042802A1 - Electrode unit, electrolytic bath provided with electrode unit, and electrolysis device - Google Patents

Electrode unit, electrolytic bath provided with electrode unit, and electrolysis device Download PDF

Info

Publication number
WO2016042802A1
WO2016042802A1 PCT/JP2015/056547 JP2015056547W WO2016042802A1 WO 2016042802 A1 WO2016042802 A1 WO 2016042802A1 JP 2015056547 W JP2015056547 W JP 2015056547W WO 2016042802 A1 WO2016042802 A1 WO 2016042802A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrode unit
hole
unit according
porous
Prior art date
Application number
PCT/JP2015/056547
Other languages
French (fr)
Japanese (ja)
Inventor
内藤 勝之
典裕 吉永
梅 武
富松 師浩
亮介 八木
横田 昌広
英男 太田
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to CN201580044144.XA priority Critical patent/CN106661744A/en
Priority to JP2016505348A priority patent/JP6407963B2/en
Priority to US15/065,332 priority patent/US20160186336A1/en
Publication of WO2016042802A1 publication Critical patent/WO2016042802A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/13Ozone
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof
    • C25B1/265Chlorates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/02Diaphragms; Spacing elements characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/08Diaphragms; Spacing elements characterised by the material based on organic materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • C02F1/4674Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation with halogen or compound of halogens, e.g. chlorine, bromine
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • C02F2001/46157Perforated or foraminous electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • C02F2001/46157Perforated or foraminous electrodes
    • C02F2001/46161Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46115Electrolytic cell with membranes or diaphragms

Definitions

  • Embodiment described here is related with an electrode unit, an electrolytic cell provided with this electrode unit, and an electrolysis device.
  • electrolyzers that electrolyze water to produce electrolyzed water having various functions, such as alkaline ionized water, ozone water, or hypochlorous acid water, have been provided.
  • hypochlorous acid water has an excellent sterilizing power and is safe for the human body and approved as a food additive.
  • an electrolyzed water generation apparatus having a three-chamber type electrolytic cell has been proposed.
  • the inside of the electrolytic cell is divided into three chambers, an intermediate chamber, and an anode chamber and a cathode chamber located on both sides of the intermediate chamber, by a cation exchange membrane and an anion exchange membrane.
  • the anode chamber and the cathode chamber are provided with an anode and a cathode, respectively.
  • a porous electrode is used in which a large number of holes are processed by expanding, etching, or punching on a metal plate base material.
  • salt water is passed through the intermediate chamber, and water is circulated through the anode chamber and the cathode chamber, respectively.
  • hypochlorous acid water is generated from the chlorine gas generated at the anode
  • sodium hydroxide water is generated in the cathode chamber.
  • the produced hypochlorous acid water is used as sterilizing / disinfecting water
  • sodium hydroxide water is used as washing water.
  • the anion exchange membrane is easily deteriorated by chlorine or hypochlorous acid. Further, when the porous electrode and the ion exchange membrane (electrolyte membrane) are brought into close contact with each other, stress tends to concentrate on the edge portion of the hole of the electrode, and the membrane such as a thin electrolyte membrane having a low mechanical strength tends to deteriorate. Therefore, a technique has been proposed in which a non-woven fabric with an overlap or a cut is inserted between the porous electrode and the electrolyte membrane to reduce the deterioration of the electrode due to chlorine.
  • the problem to be solved by the present invention is to provide an electrode unit, an electrolytic cell, and an electrolyzer having high reaction efficiency and a long life.
  • the electrolysis apparatus includes an electrode unit.
  • the electrode unit has a first surface, a second surface located opposite to the first surface, a plurality of first holes opened in the first surface, and an opening in the second surface, A first electrode having a plurality of second hole portions having an opening area larger than that of the first hole portion, the plurality of first hole portions communicating with one second hole portion, and the first electrode A second electrode provided opposite to the first surface of the first electrode, and a continuous porous film disposed between the first electrode and the second electrode and covering the first surface of the first electrode. I have.
  • FIG. 1 is a cross-sectional view showing an electrolysis apparatus according to the first embodiment.
  • FIG. 2 is a cross-sectional view showing an electrode unit of the electrolysis apparatus according to the first embodiment.
  • FIG. 3 is an exploded perspective view of the electrode unit.
  • FIG. 4 is a cross-sectional view showing an electrode manufacturing process.
  • FIG. 5 is a cross-sectional view showing an electrode unit of the electrolysis apparatus according to the second embodiment.
  • FIG. 6 is a perspective view showing electrodes of an electrode unit according to the second embodiment.
  • FIG. 7 is a cross-sectional view showing an electrode unit of an electrolysis apparatus according to a third embodiment.
  • FIG. 8 is a perspective view showing electrodes of an electrode unit according to the fourth embodiment.
  • FIG. 1 is a cross-sectional view showing an electrolysis apparatus according to the first embodiment.
  • FIG. 2 is a cross-sectional view showing an electrode unit of the electrolysis apparatus according to the first embodiment.
  • FIG. 3 is an exploded perspective view of the electrode
  • FIG. 9 is a cross-sectional view showing an electrolyzer according to a fifth embodiment.
  • FIG. 10 is a cross-sectional view of an electrolysis apparatus according to a sixth embodiment.
  • FIG. 11 is a cross-sectional view showing an electrode unit according to a sixth embodiment.
  • FIG. 12 is a perspective view showing a first electrode and a second electrode according to a modification.
  • FIG. 13 is a cross-sectional view schematically showing a porous film made of a film containing an inorganic oxide having pores that are irregular in a plane or three-dimensionally.
  • FIG. 14 is a cross-sectional view schematically showing a porous film composed of a laminated film.
  • each drawing is a schematic diagram for promoting the embodiment and its understanding, and its shape, dimensions, ratio, etc. are different from the actual device, but these are considered in consideration of the following description and known techniques.
  • the design can be changed as appropriate.
  • the electrodes are drawn on a plane, but may be curved in accordance with the shape of the electrode unit or may be cylindrical.
  • FIG. 1 is a diagram schematically showing an electrolysis apparatus according to the first embodiment.
  • the electrolysis apparatus 10 includes, for example, a two-chamber electrolysis tank 11 and an electrode unit 12 disposed in the electrolysis tank 11.
  • the electrolytic cell 11 is formed in a flat rectangular box shape, and the inside thereof is partitioned into two chambers, an anode chamber 16 and a cathode chamber 18, by a partition wall 14 and an electrode unit 12.
  • the electrode unit 12 is provided between a first electrode (anode) 20 positioned in the anode chamber 16, a second electrode (counter electrode, cathode) 22 positioned in the cathode chamber 18, and the first and second electrodes.
  • the electrolysis apparatus 10 includes a power source 30 for driving the first and second electrodes 20 and 22 of the electrode unit 12, an ammeter 32, a voltmeter 34, and a control device 36 for controlling them.
  • a liquid channel may be provided in the anode chamber 16 and the cathode chamber 18. You may connect the anode chamber 16 and the cathode chamber 18 with piping, a pump, etc. for supplying and discharging a liquid from the outside.
  • a porous spacer may be provided between the electrode unit 12 and the anode chamber 16 or the cathode chamber 18.
  • the electrode unit 12 will be described in detail.
  • FIGS. 2 and 3 is an exploded perspective view of the electrode unit.
  • the first electrode 20 has a porous structure in which a large number of through holes are formed in a base material 21 made of, for example, a rectangular metal plate.
  • the base material 21 has a first surface 22a and a second surface 22b facing the first surface 22a substantially in parallel.
  • the distance between the first surface 22a and the second surface 22b, that is, the plate thickness of the substrate 21 is formed at T1.
  • the first surface 22 a faces the porous film 24, and the second surface 22 b faces the anode chamber 16.
  • a plurality of, for example, square first holes 40 are formed in the first surface 22a of the base material 21 and open to the first surface 22a.
  • a plurality of second holes 42 are formed in the second surface 22b and open to the second surface 22b.
  • the opening area of the second hole portion 42 is formed larger than the opening area of the first hole portion 40.
  • One side R1 of the opening of the first hole 40 on the porous membrane 24 side is smaller than, for example, one side R2 of the opening of the square second hole 42, and the number of holes is the same as that of the first hole 40. More than the second holes 42 are formed.
  • the second holes 42 are formed, for example, in a square shape, and are arranged in a matrix on the second surface 22b.
  • the peripheral wall that defines each second hole 42 is formed by a tapered surface 42a or a curved surface that widens the hole from the bottom of the hole toward the opening, that is, toward the second surface 22b. May be.
  • the interval between the adjacent second hole portions 42, that is, the width of the linear portion of the electrode is set to W2.
  • the second hole portion 42 is not limited to a rectangular shape, and may have other various shapes. Further, the second hole portions 42 are not limited to regular, and may be formed side by side at random.
  • a smaller opening of the first hole portion 40 is preferable in order to make the pressure uniform, but a certain size is necessary to inhibit material diffusion, and one side of the square opening is 0.1 to 2 mm. Preferably, it is 0.3 to 1 mm.
  • the opening various shapes such as a square, a rectangle, a rhombus, a circle, and an ellipse can be used. The vertices of squares, rectangles and rhombuses may be rounded.
  • the opening area is preferably 0.01 to 4 mm 2 which is the same as the square opening area. More preferably, it is 0.1 mm 2 to 1.5 mm 2 . More preferably, it is 0.2 mm 2 to 1 mm 2 .
  • the ratio (opening ratio) of the opening area to the electrode area including the opening is preferably 0.05 to 0.5, more preferably 0.1 to 0.4, and further preferably 0.15 to 0.3. If the aperture ratio is too small, it will be difficult to outgas. If the aperture ratio is too large, the electrode reaction is hindered.
  • the first hole 40 is, for example, formed in a square shape, and is provided side by side in a matrix on the first surface 22a.
  • the peripheral wall that defines each first hole 40 is formed by a tapered surface 40a or a curved surface that widens the opening from the bottom of the hole toward the opening, that is, toward the first surface 22a. Also good.
  • a plurality of, for example, nine first hole portions 40 are provided to face one second hole portion 42, communicate with the second hole portion 42, and penetrate the base material 21. Yes.
  • the interval W1 between the adjacent first hole portions 40 is set to be smaller than the interval W2 between the second hole portions 42. Thereby, the number density of the 1st hole 40 in the 1st surface 22a is sufficiently larger than the number density of the 2nd hole 42 in the 2nd surface 22b.
  • Various shapes such as a square, a rectangle, a rhombus, a circle, and an ellipse can be used for the opening of the second hole portion 42.
  • a larger opening diameter of the second hole portion 42 is preferable in order to improve gas escape, but it cannot be so large because electric resistance increases.
  • one side is preferably 1 to 40 mm, more preferably 2 to 30 mm, and still more preferably 3 to 20 mm.
  • the opening various shapes such as a square, a rectangle, a rhombus, a circle, an ellipse and the like can be used, but the opening area is preferably 1 to 1600 mm 2 which is the same as the opening area of the square.
  • it is 4 mm 2 to 900 mm 2 , and further preferably 9 mm 2 to 400 mm 2 .
  • An opening that extends in one direction and connects from one end of the electrode to the other is also possible, such as a rectangle or an ellipse.
  • a valve metal such as titanium, chromium, aluminum or an alloy thereof, or a conductive metal can be used. Of these, titanium is preferred.
  • an electrolytic catalyst catalyst layer
  • a noble metal catalyst such as platinum or an oxide catalyst such as iridium oxide
  • the amount per unit area of the electrocatalyst may be different on both surfaces of the electrode. Thereby, a side reaction etc. can be suppressed.
  • the 1st hole part 40 may be formed not only regularly but in a line. Furthermore, not only the structure which all the 1st hole parts 40 are connected to the 2nd hole part 42 but the 1st hole part which is not connected to the 2nd hole part 42 may be included. That is, there may be a first hole 40 that is not in communication with the anode chamber 16.
  • the first holes 40 and 44 have a rectangular shape extending from the vicinity of one end of the electrode to the vicinity of the other end, and a plurality of opening portions 41 a communicating with the second holes 42 and 46 therein, 45a may be arranged with a certain interval. Further, only a part of the holes of the first holes 40 and 44 may be connected to the second holes 42 and 44.
  • the first holes 40 and 44 that are not in communication with the second holes 42 and 44 have an effect of increasing the electrode area.
  • the first hole portion having an opening area of 0.01 mm 2 to 4 mm 2 is preferably 85% or more, more preferably 90% or more of all the first hole portions. More preferably, it is 95% or more.
  • the first electrode 20 having the above-described configuration can be produced by, for example, an etching method using a mask.
  • FIG. 4 shows an outline of the manufacturing method.
  • a single flat substrate 21 is prepared, and resist films 50 a and 50 b are applied to the first surface 22 a and the second surface 22 b of the substrate 21.
  • the resist films 50a and 50b are exposed using an optical mask (not shown) to produce etching masks 52a and 52b, respectively.
  • FIG. 4 shows an outline of the manufacturing method.
  • the first surface 22a and the second surface 22b of the base material 21 are wet-etched with a solution through the masks 52a and 52b, so that the plurality of first holes 40 and the plurality of first holes 40 and the plurality of first holes 40 and the plurality of first holes The second hole 42 is formed. Thereafter, the first electrode 20 is obtained by removing the masks 52a and 52b.
  • the taper of the first and second holes 40 and 42 and the shape of the curved surface can be controlled by the material of the base material 21 and the etching conditions.
  • the depth of the first hole 40 is T2, and the depth of the second hole 42 is T3.
  • the first and second holes are formed so that T2 ⁇ T3.
  • both surfaces of the base material 21 may be etched simultaneously, or one surface may be etched.
  • the type of etching is not limited to wet etching, and dry etching or the like may be used.
  • the first electrode 20 can be manufactured not only by etching but also by processing such as laser or precision cutting.
  • the second electrode (counter electrode) 22 is configured in the same manner as the first electrode 20. That is, the second electrode 22 has a porous structure in which a large number of through holes are formed in the base material 23 made of, for example, a rectangular metal plate.
  • the base material 23 has a first surface 23a and a second surface 23b positioned substantially parallel to the opposite side of the first surface 23a.
  • the first surface 23 a faces the diaphragm 26, and the second surface 23 b faces the cathode chamber 18.
  • a plurality of first holes 44 are formed in the first surface 23a of the base material 23 and open to the first surface 23a.
  • a plurality of second holes 46 are formed in the second surface 23b and open to the second surface 23b.
  • the opening area of the first hole 44 on the side of the diaphragm 26 is smaller than the opening area of the second hole 44, and the number of holes is larger in the first hole 44 than in the second hole 46.
  • the depth of the first hole 44 is formed to be smaller than the depth of the second hole 46.
  • a plurality of, for example, nine first hole portions 44 are provided to face one second hole portion 46, communicate with the second hole portion 46 and penetrate the base material 23.
  • the interval between the adjacent first hole portions 44 is set to be smaller than the interval between the second hole portions 46.
  • the porous film 24 and the diaphragm 26 are sandwiched between the first surface 22a of the first electrode 20 and the first surface 23a of the second electrode 22.
  • the continuous porous film 24 is formed in, for example, a rectangular shape having substantially the same dimensions as the first electrode 20, and faces the entire surface of the first surface 22a.
  • a non-woven fabric, cloth, a porous film formed by a sol-gel method can be used, and various materials can be used.
  • Porous membranes are chemically stable, especially resistant to chlorine, hypochlorous acid and oxygen, resistant to acidity and alkalinity, and in the case of polymers when used for food processing, etc.
  • the monomer or the like does not dissolve above the legal value, or in the case of an inorganic substance, it is necessary that the heavy metal ion does not dissolve beyond the legal value.
  • the film thickness is preferably 20 to 500 ⁇ m.
  • the porous film may be thin, but a film thickness of 50 nm or more is preferable in order to obtain the properties as a porous film.
  • a polymer membrane containing a fluorine atom or a chlorine atom in the main chain, a glass cloth, or a membrane containing an inorganic oxide having irregular continuous pores is particularly chemically.
  • Inorganic oxides may contain hydroxides, alkoxides, oxyhalides, and hydrates. When an inorganic oxide is produced through hydrolysis of a metal halide or metal alkoxide, it tends to be a mixture of these depending on the post-treatment temperature.
  • a polymer film, a glass cloth, or an inorganic oxide may be combined, for example, a polymer film or a glass cloth may be coated with an inorganic oxide. As shown in FIG.
  • the porous film 24 in the case where a film containing an inorganic oxide having pores that are irregular in a plane or three-dimensionally is used as the porous film 24, the porous film 24 can also serve as the diaphragm 26. That is, the diaphragm 26 can be omitted.
  • the porous film 24 may be a laminated film of a plurality of porous films 27a and 27b having different pore diameters.
  • the pore diameter of the porous membrane 27b located on the diaphragm 26 side larger than the pore diameter of the porous membrane 27a located on the first electrode 20 side, the movement of ions is facilitated and the pores of the electrode The stress concentration due to can be reduced. This is because the larger the opening on the diaphragm 26 side, the easier the ion movement by diffusion.
  • the electrode 20 is used as an anode, the anion is easily attracted to the electrode even if the hole diameter on the electrode 20 side is small because of the positive potential.
  • the pore diameter on the electrode 20 side is large, the generated chlorine or the like tends to diffuse to the porous membrane side.
  • the pore diameter on the surface of the porous membrane can be measured by using a high-resolution scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the internal holes can be measured by cross-sectional SEM observation.
  • the diaphragm 26 is formed in, for example, a rectangular shape having substantially the same dimensions as the first electrode 20, and is disposed between the first surface 23 a of the second electrode 22 and the porous film 24. Has been. The diaphragm 26 is in close contact with the entire surface of the first surface 23 a of the second electrode 22, and is further in close contact with the porous film 24.
  • the diaphragm 26 located between the first and second electrodes 20 and 22 is a film that allows ions and / or liquids to pass therethrough.
  • various electrolyte membranes and porous membranes having nanopores can be used.
  • a polymer electrolyte membrane for example, a cation exchange solid polymer electrolyte membrane, specifically, a cation exchange membrane, an anion exchange membrane, or a hydrocarbon membrane can be used. .
  • Examples of the cation exchange membrane include NAFION (AI DuPont: Trademark) 112, 115, 117, Flemion (Asahi Glass Co., Ltd .: Trademark), ACIPLEX (Asahi Kasei Corporation: Trademark), Gore Select (W. El Gore and Associates). Company: Trademark).
  • Examples of the anion-exchange membrane include A201 manufactured by Tokuyama Corporation.
  • Porous membranes with nanopores include porous ceramics such as porous glass, high quality alumina, porous titania, porous zeolite, porous zirconia, porous polyethylene, porous propylene, porous teflon, porous polyimide, etc. There are porous polymers.
  • the electrode unit 12 is obtained by contacting the diaphragm 26 with the porous membrane 24 and the second electrode 22.
  • the electrode unit 12 is disposed in the electrolytic cell 11 and attached to the partition wall 14.
  • the electrolytic cell 11 is partitioned into an anode chamber 16 and a cathode chamber 18 by the partition wall 14 and the electrode unit 12.
  • the electrode unit 12 is arrange
  • the anode 20 of the electrode unit 12 is disposed facing the anode chamber 16, and the cathode 22 is disposed facing the cathode chamber 18.
  • both electrodes of the power supply 30 are electrically connected to the first electrode 20 and the second electrode 22.
  • the power supply 30 applies a voltage to the electrode unit 12 under the control of the control device 36.
  • the voltmeter 34 is electrically connected to the first electrode 20 and the second electrode 22 and detects a voltage applied to the electrode unit 12.
  • the detection information is supplied to the control device 35.
  • the ammeter 32 is connected to the voltage application circuit of the electrode unit 12 and detects the current flowing through the electrode unit 12.
  • the detection information is supplied to the control device 36.
  • the control device 36 controls voltage application or load on the electrode unit 12 by the power supply 30 according to the detection information in accordance with a program stored in the memory.
  • the electrolyzer 10 applies an electric voltage or loads between the first electrode 20 and the second electrode 22 in a state in which the reaction target substance is supplied to the anode chamber 16 and the cathode chamber 18, and performs electrochemistry for electrolysis. Allow the reaction to proceed.
  • the electrolyzer 10 of this embodiment preferably electrolyzes an electrolyte containing chloride ions.
  • the diameter (opening area) of the first hole portion 40 formed in the first surface 22a on the porous membrane 24 side is set to the second.
  • the stress concentration acting on the porous film 24 from the first electrode 20 side can be reduced.
  • the porous film 24 By making the porous film 24 into a continuous film and abutting the entire surface of the first surface 22a of the first electrode 20, the pores of the first electrode 20 are covered with the porous film 24, and the first electrode 20 and the diaphragm 26 are covered. Can be easily maintained over the entire surface.
  • the contact angle between the first hole 40 and the porous film 24 is obtuse by making the first hole 40 of the first electrode 20 tapered or curved so that the first surface side of the electrode becomes wider.
  • the first surface 22a of the first electrode 20 on the porous membrane 24 side is preferably substantially flat except for the recess.
  • the recess may be the first hole described above or a recess described later.
  • the second electrode 22 is not limited to the electrode having the first hole and the second hole having different diameters, and may be a flat electrode having no through hole. . Or it is good also as an electrode which formed the through-hole of the same diameter in the 1st surface and the 2nd surface in the electrode base material.
  • the second electrode 22 and the diaphragm 26 may be in contact with each other, or another component may be inserted therebetween.
  • FIG. 5 is a sectional view showing an electrode unit of the electrolysis apparatus according to the second embodiment
  • FIG. 6 is a perspective view showing an electrode.
  • the first surface 22a of the first electrode 20 is formed flat, and the first holes 40 described above are formed on the first surface 22a.
  • the first hole 40 penetrates the base material 21.
  • the first electrode 20 has a plurality of recesses 54 formed on the first surface 22 a, that is, recesses that do not penetrate the base material 21.
  • the concave portion 54 is formed by, for example, a continuous groove extending between the plurality of first hole portions 40. Or the recessed part 54 is good also as many independent dot-shaped recessed parts.
  • the porous film 24 is provided in close contact with the first surface 22 a of the first electrode 20.
  • the porous membrane 24 faces and closes the first hole 40 and the recess 54.
  • the first surface 22 a of the first electrode 20 is preferably flat except for the first hole 40 and the recess 54.
  • the electrode area can be increased and a flow path for removing the generated gas can be provided.
  • the stress concentration on the porous film 24 can be further reduced by making the first surface 22 a of the first electrode 20 substantially flat except for the concave portion 54.
  • the flatness and average roughness of the first surface 22a are preferably 10% or less of the average film thickness of the porous film 24, and more preferably 5% or less. 2% or less is more preferable.
  • the average roughness can be examined by cross-sectional SEM observation.
  • a plurality of recesses may be provided on the first surface 23 a of the second electrode 22.
  • FIG. 7 is a cross-sectional view showing an electrode unit of the electrolysis apparatus according to the third embodiment.
  • an electrical insulating film 56 that does not transmit liquid is formed on at least a part of the surface of the first electrode 20.
  • the first electrode 20 on the first surface 22a that is in wide contact with the porous membrane 24 on the side of the diaphragm 26, it is difficult to discharge a gas such as chlorine generated by the reaction, so that the generated gas tends to deteriorate the diaphragm 26. Therefore, by covering the region where the first hole 40 is not formed in the first surface 22a with the insulating film 56, the generation of the reaction gas in these regions is suppressed and the deterioration of the diaphragm 26 is prevented. Can do.
  • the insulating films 56 are provided on both surfaces of the wide linear portion (width W2) of the first electrode 20.
  • the reaction area of the first electrode 20 is reduced by providing the insulating film 56. Therefore, it is desirable that a sufficient reaction of the first electrode 20 occurs in a portion where the generated gas is easily released.
  • the second surface 22b of the first electrode 20 located on the opposite side of the diaphragm 26 may be covered with an electrical insulating film 57. When such an electrode unit 12 is used in a three-chamber electrolytic cell, multiple reactions on the second surface 22b side can be reduced. Note that a part of the insulating film may protrude in the cross-sectional direction of the electrode.
  • FIG. 8 is a perspective view showing electrodes of the electrode unit of the electrolysis apparatus according to the fourth embodiment.
  • interval W3 between the 1st hole parts 40 formed in the center part of the electrode is the space
  • the aperture ratio at the center of the first electrode 20 ratio of the aperture area to the electrode area including the aperture is smaller than the aperture ratio at the peripheral edge of the first electrode 20.
  • the electrical resistance of the central portion of the first electrode 20 can be made smaller than that of the peripheral portion, and even when power is supplied to the electrode from the peripheral portion of the electrode, an increase in voltage at the central portion of the electrode can be reduced.
  • the opening area of the first hole 40 formed in the central portion of the first electrode 20 is made smaller than the opening area of the first hole 40 provided in the periphery, or the number thereof is set to be smaller. By reducing the aperture ratio, the aperture ratio can be reduced.
  • FIG. 9 is a cross-sectional view showing an electrolysis apparatus according to the fifth embodiment.
  • the electrolytic cell 11 of the electrolytic device 10 is configured as a one-chamber electrolytic cell having a single electrolytic chamber 17.
  • the electrode unit 12 is disposed in the electrolysis chamber 17.
  • the electrolysis chamber 17 may be connected with piping, a pump, and the like for supplying and discharging the electrolyte from the outside.
  • the second electrode (counter electrode) 22 of the electrode unit 12 is preferably formed in a porous structure like the first electrode 20.
  • the electrode area can be increased.
  • FIG. 10 is a cross-sectional view showing an electrolysis apparatus according to the sixth embodiment
  • FIG. 11 is a cross-sectional view showing an electrode unit in the electrolysis apparatus.
  • the electrolysis apparatus 10 includes a three-chamber type electrolytic cell 11 having an electrode unit 12.
  • the electrolytic cell 11 is formed in a flat rectangular box shape, and the internal electrolytic chamber is composed of an anode chamber 16, a cathode chamber 18, and an intermediate chamber 19 formed between the electrodes by the partition wall 14 and the electrode unit 12. It is divided into rooms.
  • the electrode unit 12 is provided between a first electrode (anode) 20 positioned in the anode chamber 16, a second electrode (counter electrode, cathode) 22 positioned in the cathode chamber 18, and the first and second electrodes.
  • the diaphragms 26a and 26b face each other in parallel with a gap, and an intermediate chamber (electrolyte chamber) 19 for holding the electrolyte is formed between the diaphragms 26a and 26b.
  • a holding body 25 that holds the electrolytic solution may be provided in the intermediate chamber 19.
  • the first electrode 20 and the second electrode 22 may be connected to each other by a plurality of bridges 60 having insulating properties.
  • the electrolysis apparatus 10 includes a power supply 30 for applying a voltage to the first and second electrodes 20 and 22 of the electrode unit 12, an ammeter 32, a voltmeter 34, and a control device 36 for controlling them.
  • a liquid channel may be provided in the anode chamber 16 and the cathode chamber 18. You may connect the anode chamber 16 and the cathode chamber 18 with piping, a pump, etc. for supplying and discharging a liquid from the outside.
  • a porous spacer may be provided between the electrode unit 12 and the anode chamber 16 or the cathode chamber 18.
  • the first electrode 20 and the second electrode 22 are configured to have the same porous structure as that of the first embodiment described above.
  • the continuous porous film 24a is formed in, for example, a rectangular shape having substantially the same dimensions as the first electrode 20, and faces the entire surface of the first surface 22a.
  • the continuous porous film 24b is formed in a rectangular shape having substantially the same dimensions as the second electrode 22, and faces the entire surface of the first surface 23a.
  • porous membranes 24a and 24b porous membranes formed by a nonwoven fabric, cloth, or sol-gel method can be used, and various materials can be used.
  • porous membranes it is chemically stable to be a polymer membrane containing fluorine or chlorine atoms in the main chain, or a membrane containing glass cloth or an inorganic oxide having irregular continuous pores. It is preferable.
  • the porous films 24a and 24b can also serve as the diaphragms 26a and 26b as long as the films contain an inorganic oxide having irregular pores.
  • a laminated film of a plurality of porous films having different pore diameters may be used as the porous films 24a and 24b.
  • the diaphragm 26 a is formed in a rectangular shape having substantially the same dimensions as the first electrode 20, and faces the first surface 22 a of the first electrode 20.
  • a porous membrane 24a is sandwiched between the first surface 22a of the first electrode 20 and the diaphragm 26a, and is in close contact with the first electrode 20 and the diaphragm 26a.
  • the diaphragm 26 b is formed in a rectangular shape having substantially the same dimensions as the second electrode 22, and faces the first surface 23 a of the second electrode 22.
  • a porous membrane 24b is sandwiched between the first surface 23a of the second electrode 22 and the diaphragm 26b, and is in close contact with the second electrode 22 and the diaphragm 26b.
  • the diaphragms 26a and 26b are membranes that allow ions and / or liquids to pass therethrough.
  • the various electrolyte membranes and porous membranes having nanopores described in the first embodiment can be used.
  • the same operational effects as those of the first embodiment described above can be obtained, and an electrode unit and an electrolysis apparatus having high reaction efficiency and a long life can be obtained.
  • the electrode base material 21 uses a flat titanium plate having a plate thickness T1 of 0.5 mm, and an electrode is produced by etching the titanium plate shown in FIG. Among the electrodes, the thickness (the first hole depth) T2 of the region including the small-diameter first hole 40 is 0.15 mm, and the thickness (second hole) of the region including the large-diameter second hole 42 is selected. Part depth) T3 is 0.35 mm.
  • the first hole 40 has a square shape, and the apex of the square is rounded, but one side R1 of the square obtained by extrapolating the straight line portion is 0.57 mm, the second hole portion 42 is a square, and the one side R2 is 2 mm. .
  • the width W1 of the linear portion formed between the adjacent first hole portions 40 is 0.1 mm, and the width W2 of the wide linear portion formed between the adjacent second hole portions 42 is 1.0 mm.
  • the electrode substrate 21 is treated at 80 ° C. for 1 hour in a 10 wt% oxalic acid aqueous solution.
  • the surface on which the first hole 40 of the electrode substrate 21 is formed (first surface) by adjusting iridium chloride (IrCl 3 .nH 2 O) by adding 1-butanol to 0.25 M (Ir)
  • drying and baking are performed. In this case, drying is performed at 80 ° C. for 10 minutes, and baking is performed at 450 ° C. for 10 minutes.
  • the electrode base material in which such coating, drying, and baking are repeated five times is cut into a reaction electrode area of 3 cm ⁇ 4 cm to form a first electrode (anode) 20.
  • the average roughness of the flat portion excluding the concave portion of the first electrode 20 is 1 ⁇ m from the measurement of AFM.
  • the 2nd electrode (counter electrode, cathode) 22 is produced by sputter
  • the electrode unit 12 shown in FIG. 11 is produced using the obtained first and second electrodes.
  • A201 manufactured by Tokuyama, which is an anion exchange membrane, is used as the diaphragm 26a, and NAFION (trademark) 117 is used as the diaphragm 26b.
  • Glass cloth (thickness 75 ⁇ m) is used as the porous films 24a and 24b.
  • a porous polystyrene having a thickness of 5 mm is provided in the intermediate chamber (electrolytic solution chamber) 19 as a holding body 25 for holding the electrolytic solution.
  • the first and second electrodes, the porous membrane, the partition walls, and the porous polystyrene are overlapped and fixed using a silicone sealant and screws to form an electrode unit 12.
  • the electrolytic cell 11 and the electrolysis apparatus 10 shown in FIG. 10 are produced.
  • the anode chamber 16 and the cathode chamber 18 of the electrolytic cell 11 are each formed of a vinyl chloride container in which straight channels are formed.
  • a control device 36, a power source 30, a voltmeter 34, and an ammeter 32 are installed.
  • Pipes and pumps for supplying water to the anode chamber 16 and the cathode chamber 18 are connected to the electrolytic cell 11, and saturated saline for circulating and supplying saturated saline 25 to the holder (porous polystyrene) 25 of the electrode unit 12.
  • the tank, piping and pump are connected to the electrode unit.
  • Electrolysis is performed using the electrolysis apparatus 10 at a voltage of 5 V and a current of 1.5 A, and hypochlorous acid water is generated on the anode 20 side and sodium hydroxide water is generated on the cathode 22 side. Even after 1000 hours of continuous operation, there is almost no increase in voltage or change in product concentration, and stable electrolytic treatment can be performed.
  • Example 2 Change the mask at the time of etching so that the first hole 40 in the central portion 1 ⁇ 1.4 cm of the 3 ⁇ 4 cm electrode base material is square, the one side R1 thereof is 0.7 mm, and the width W1 of the linear portion is 0.2 mm.
  • the first electrode 20 is produced.
  • the 2nd hole 42 is made into a square, and the one side is 2 mm.
  • the center second hole includes 2 ⁇ 2 first holes.
  • Other configurations are the same as in Example 1, and the electrode unit 12 and the electrolyzer 10 are produced.
  • electrolysis is performed at a voltage of 4.8 V and a current of 1.5 A, and hypochlorous acid water is generated on the anode 20 side and sodium hydroxide water is generated on the cathode 22 side. Even after 1000 hours of continuous operation, there is almost no increase in voltage or change in product concentration, and stable electrolytic treatment can be performed.
  • Example 3 As the porous film, a nonwoven fabric made of polyvinylidene chloride is used instead of glass cloth. Other configurations are the same as those in the first embodiment, and the electrode unit 12 and the electrolysis apparatus 10 are manufactured.
  • electrolysis is performed at a voltage of 5.1 V and a current of 1.5 A, and hypochlorous acid water is generated on the anode 20 side and sodium hydroxide water is generated on the cathode 22 side. Even after 1000 hours of continuous operation, there is almost no increase in voltage or change in product concentration, and stable electrolytic treatment can be performed.
  • Example 4 As the porous film, a porous titanium oxide film having irregular pores is used instead of glass cloth. Other configurations are the same as those in the first embodiment, and the electrode unit 12 and the electrolysis apparatus 10 are manufactured.
  • electrolysis is performed at a voltage of 5.2 V and a current of 1.5 A, and hypochlorous acid water is generated on the anode 20 side and sodium hydroxide water is generated on the cathode 22 side. Even after 1000 hours of continuous operation, there is almost no increase in voltage or change in product concentration, and stable electrolytic treatment can be performed.
  • Example 5 As the porous film, a non-woven fabric made of Teflon is used instead of glass cloth. Other configurations are the same as those in the first embodiment, and the electrode unit 12 and the electrolysis apparatus 10 are manufactured.
  • electrolysis is performed at a voltage of 5.0 V and a current of 1.5 A, and hypochlorous acid water is generated on the anode 20 side and sodium hydroxide water is generated on the cathode 22 side. Even after 1000 hours of continuous operation, there is almost no increase in voltage or change in product concentration, and stable electrolytic treatment can be performed.
  • Example 6 An electrically insulating polyvinyl chloride is selectively applied to the wide linear portion (width W2) of the first electrode 20 manufactured in the same manner as in Example 1 using a screen printing method to form an insulating film. Other configurations are the same as in Example 1, and the electrode unit 12 and the electrolyzer 10 are produced.
  • electrolysis is performed at a voltage of 5.3 V and a current of 1.5 A to generate hypochlorous acid water on the anode 20 side and sodium hydroxide water on the cathode 22 side. Even after 1000 hours of continuous operation, there is almost no increase in voltage or change in product concentration, and stable electrolytic treatment can be performed.
  • Example 7 In the same manner as in Example 1, a porous second electrode (counter electrode) 22 is produced. A porous glass film (film thickness 50 ⁇ m) is used as the diaphragm 26. A glass cloth (film thickness 75 ⁇ m) is used as the porous film 24. These are overlapped using a silicone sealant and screws to produce the electrode unit 12.
  • Electrolysis is performed at a voltage of 4.3 V and a current of 1.5 A using the electrolyzer 10 to generate sodium hypochlorite water. Even after 1000 hours of continuous operation, there is almost no increase in voltage or change in product concentration, and stable electrolytic treatment can be performed.
  • Example 8 As the porous film, a polyphenylene sulfide porous film coated with a film containing titanium oxide is used instead of glass cloth. As the diaphragms 26a and 26b, a polyphenylene sulfide film coated with the above-described film containing titanium oxide is also used. Other configurations are the same as those in the first embodiment, and the electrode unit 12 and the electrolysis apparatus 10 are manufactured.
  • electrolysis is performed at a voltage of 4.8 V and a current of 1.5 A, and hypochlorous acid water is generated on the anode 20 side and sodium hydroxide water is generated on the cathode 22 side. Even after 2000 hours of continuous operation, there is almost no increase in voltage or change in product concentration, and stable electrolytic treatment can be performed.
  • Example 9 Instead of using a polyphenylene sulfide porous film coated with a film containing titanium oxide, a glass nonwoven fabric (filter paper) coated with a film containing titanium oxide is used as the porous film.
  • the other configuration is the same as in Example 8, and the electrode unit 12 and the electrolyzer 10 are produced.
  • electrolysis is performed at a voltage of 4.7 V and a current of 1.5 A, and hypochlorous acid water is generated on the anode 20 side and sodium hydroxide water is generated on the cathode 22 side. Even after 2000 hours of continuous operation, there is almost no increase in voltage or change in product concentration, and stable electrolytic treatment can be performed.
  • Example 10 Instead of using a polyphenylene sulfide porous film coated with a film containing titanium oxide, a glass nonwoven fabric (filter paper) coated with a film containing zirconium oxide is used as the porous film.
  • the other configuration is the same as in Example 8, and the electrode unit 12 and the electrolyzer 10 are produced.
  • electrolysis is performed at a voltage of 4.8 V and a current of 1.5 A, and hypochlorous acid water is generated on the anode 20 side and sodium hydroxide water is generated on the cathode 22 side. Even after 2000 hours of continuous operation, there is almost no increase in voltage or change in product concentration, and stable electrolytic treatment can be performed.
  • Example 11 Instead of using a polyphenylene sulfide porous film coated with a film containing titanium oxide as the porous film, a film further coated with a denser film containing zirconium oxide is used on the electrode side surface of the porous film. Except for this, the electrode unit 12 and the electrolyzer 10 are produced in the same manner as in Example 8.
  • electrolysis is performed at a voltage of 4.9 V and a current of 1.5 V, and hypochlorous acid water is generated on the anode 20 side and sodium hydroxide water is generated on the cathode 22 side. Even in continuous operation for 2000 hours, almost no voltage increase or product change is observed, and stable electrolytic treatment can be performed.
  • Example 12 Except for using a porous film made of a Teflon porous film coated with a film containing zirconium oxide instead of using a polyphenylene sulfide porous film coated with a film containing titanium oxide as a porous film. In the same manner as in FIG. 8, the electrode unit 12 and the electrolyzer 10 are produced.
  • electrolysis is performed at a voltage of 4.9 V and a current of 1.5 V, and hypochlorous acid water is generated on the anode 20 side and sodium hydroxide water is generated on the cathode 22 side. Even during continuous operation for 2500 hours, almost no voltage increase or product change is observed, and stable electrolytic treatment can be performed.
  • the electrode base material 21 uses a flat titanium plate having a plate thickness T1 of 0.5 mm, and an electrode is produced by etching the titanium plate shown in FIG. Among the electrodes, the thickness (the first hole depth) T2 of the region including the small-diameter first hole 40 is 0.15 mm, and the thickness (second hole) of the region including the large-diameter second hole 42 is selected. Part depth) T3 is 0.35 mm.
  • the 1st hole part 40 is made into a rhombus, and makes a long diagonal line 0.69mm and a short diagonal line 0.4mm.
  • the 2nd hole 42 is made into a rhombus, a long diagonal is 6.1 mm, and a short diagonal is 3.5 mm.
  • the width W1 of the linear portion formed between the adjacent first hole portions 40 is 0.15 mm, and the width W2 of the wide linear portion formed between the adjacent second hole portions 42 is 1 mm.
  • Other configurations are the same as in Example 1, and the electrode unit 12 and the electrolyzer 10 are produced.
  • electrolysis is performed at a voltage of 5.3 V and a current of 1.5 A to generate hypochlorous acid water on the anode 20 side and sodium hydroxide water on the cathode 22 side. Even after 1000 hours of continuous operation, there is almost no increase in voltage or change in product concentration, and stable electrolytic treatment can be performed.
  • the electrode base material 21 uses a flat titanium plate having a plate thickness T1 of 0.5 mm, and an electrode is produced by etching the titanium plate shown in FIG. Among the electrodes, the thickness (the first hole depth) T2 of the region including the small-diameter first hole 40 is 0.15 mm, and the thickness (second hole) of the region including the large-diameter second hole 42 is selected. Part depth) T3 is 0.35 mm.
  • the first hole 40 is square, its one side R1 is 0.57 mm, the second hole 42 is rectangular, its long side is 40 mm, and its short side is 4 mm.
  • the width W1 of the linear portion formed between the adjacent first hole portions 40 is 0.1 mm, and the width W2 of the wide linear portion formed between the adjacent second hole portions 42 is 1.0 mm.
  • Other configurations are the same as in Example 1, and the electrode unit 12 and the electrolyzer 10 are produced.
  • electrolysis is performed at a voltage of 5.8 V and a current of 1.5 A, and hypochlorous acid water is generated on the anode 20 side and sodium hydroxide water is generated on the cathode 22 side. Even after 1000 hours of continuous operation, there is almost no increase in voltage or change in product concentration, and stable electrolytic treatment can be performed.
  • Example 1 An electrolysis device is produced in the same manner as in Example 1 except that a continuous porous membrane is not used. Using this electrolyzer, electrolysis is performed at a voltage of 5 V and a current of 1.5 A, and hypochlorous acid water is generated on the anode side and sodium hydroxide water is generated on the cathode side. After 1000 hours of continuous operation, a significant increase in voltage and a decrease in product concentration are observed, and long-term stability is lacking.
  • electrolysis is performed at a voltage of 5.2 V and a current of 1.5 A, and hypochlorous acid water is generated on the anode side and sodium hydroxide water is generated on the cathode side. After 1000 hours of continuous operation, a significant increase in voltage and a decrease in product concentration are observed, and long-term stability is lacking.
  • the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage.
  • various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment.
  • constituent elements over different embodiments may be appropriately combined.
  • the first electrode and the second electrode are not limited to a rectangular shape, and other various shapes can be selected.
  • the first hole and the second hole of the first electrode are not limited to a square, and may be various other shapes such as a rectangle, a diamond, a circle, and an ellipse.
  • the material of each constituent member is not limited to the above-described embodiments and examples, and other materials can be appropriately selected.
  • the electrolytic cell of the electrode device is not limited to a 1 to 3 chamber type electrolytic cell, and can be applied to all electrolytic cells using electrodes. Electrolytes and products are not limited to salts and hypochlorous acid, and may be applied to various electrolytes and products.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

This electrode unit of an electrolysis device is provided with: a first electrode 20 comprising a first surface, a second surface positioned opposite of the first surface, multiple first holes opening to the first surface, and multiple second holes opening to the second surface and having a greater opening area than the first holes, wherein multiple first holes communicate with a single second hole; a second electrode 22 provided opposite of the first surface of the first electrode; and a continuous porous film 24 arranged between the first electrode and the second electrode and covering the first surface of the first electrode.

Description

電極ユニット、電極ユニットを備える電解槽および電解装置Electrode unit, electrolytic cell including electrode unit, and electrolysis apparatus
 ここで述べる実施形態は、電極ユニット、この電極ユニットを備える電解槽、および電解装置に関する。 Embodiment described here is related with an electrode unit, an electrolytic cell provided with this electrode unit, and an electrolysis device.
 近年、水を電解して様々な機能を有する電解水、例えば、アルカリイオン水、オゾン水または次亜塩素酸水などを生成する電解装置が提供されている。電解水の内、次亜塩素酸水は、優れた殺菌力を有するとともに、人体に安全で食品添加物としても認可されている。 In recent years, electrolyzers that electrolyze water to produce electrolyzed water having various functions, such as alkaline ionized water, ozone water, or hypochlorous acid water, have been provided. Among electrolyzed water, hypochlorous acid water has an excellent sterilizing power and is safe for the human body and approved as a food additive.
 電解装置としては、例えば、3室型の電解槽を有する電解水生成装置が提案されている。電解槽内は、陽イオン交換膜および陰イオン交換膜によって、中間室と、この中間室の両側に位置する陽極室および陰極室との3室に仕切られている。陽極室および陰極室には、陽極および陰極がそれぞれ設けられている。電極として、金属板基材にエクスパンド、エッチング、あるいはパンチングによって多数の孔を加工した多孔構造の電極が用いられている。 As an electrolysis apparatus, for example, an electrolyzed water generation apparatus having a three-chamber type electrolytic cell has been proposed. The inside of the electrolytic cell is divided into three chambers, an intermediate chamber, and an anode chamber and a cathode chamber located on both sides of the intermediate chamber, by a cation exchange membrane and an anion exchange membrane. The anode chamber and the cathode chamber are provided with an anode and a cathode, respectively. As an electrode, a porous electrode is used in which a large number of holes are processed by expanding, etching, or punching on a metal plate base material.
 このような電解装置では、例えば、中間室に塩水を流し、陽極室および陰極室にそれぞれ水を流通する。中間室の塩水を陰極および陽極で電解することで、陽極で発生した塩素ガスから次亜塩素酸水を生成するとともに、陰極室で水酸化ナトリウム水を生成する。生成した次亜塩素酸水は殺菌消毒水として、水酸化ナトリウム水は洗浄水として活用される。 In such an electrolyzer, for example, salt water is passed through the intermediate chamber, and water is circulated through the anode chamber and the cathode chamber, respectively. By electrolyzing the salt water in the intermediate chamber at the cathode and the anode, hypochlorous acid water is generated from the chlorine gas generated at the anode, and sodium hydroxide water is generated in the cathode chamber. The produced hypochlorous acid water is used as sterilizing / disinfecting water, and sodium hydroxide water is used as washing water.
 3室型の電解槽では陰イオン交換膜は塩素や次亜塩素酸により劣化しやすい。また、多孔体の電極とイオン交換膜(電解質膜)とを密着させる場合は、電極の孔のエッジ部分に応力が集中しやすく、薄く機械的強度の低い電解質膜等の隔膜が劣化しやすい。そのため、多孔構造の電極と電解質膜との間に、オーバーラップや切り込みを入れた不織布を挿入して、塩素による電極の劣化を低減する技術が提案されている。 In the three-chamber type electrolytic cell, the anion exchange membrane is easily deteriorated by chlorine or hypochlorous acid. Further, when the porous electrode and the ion exchange membrane (electrolyte membrane) are brought into close contact with each other, stress tends to concentrate on the edge portion of the hole of the electrode, and the membrane such as a thin electrolyte membrane having a low mechanical strength tends to deteriorate. Therefore, a technique has been proposed in which a non-woven fabric with an overlap or a cut is inserted between the porous electrode and the electrolyte membrane to reduce the deterioration of the electrode due to chlorine.
特開2014-101549号公報JP 2014-101549 A 特開2006-322053号公報JP 2006-322053 A
 しかしながら、不織布のような多孔質膜を電極と電解質膜との間に挟んだ場合、多孔質膜に対して応力がかかることから多孔質膜の膜厚に分布が生じる。すなわち、多孔質膜の膜厚が不均一となる。この膜厚の不均一な多孔質膜は、電解反応にむらを生じさせ、電解装置の反応効率の低下や電解質膜の劣化を招く。 
 本発明が解決しようとする課題は、反応効率が高く、長寿命の電極ユニット、電解槽、および電解装置を提供することにある。
However, when a porous film such as a non-woven fabric is sandwiched between the electrode and the electrolyte film, stress is applied to the porous film, resulting in a distribution in the film thickness of the porous film. That is, the film thickness of the porous film is not uniform. This porous film having a non-uniform thickness causes unevenness in the electrolytic reaction, resulting in a decrease in reaction efficiency of the electrolysis apparatus and deterioration of the electrolyte film.
The problem to be solved by the present invention is to provide an electrode unit, an electrolytic cell, and an electrolyzer having high reaction efficiency and a long life.
 実施形態によれば、電解装置は、電極ユニットを備えている。電極ユニットは、第1表面と、この第1表面と反対側に位置する第2表面と、前記第1表面に開口する複数の第1孔部と、前記第2表面に開口しているとともに、前記第1孔部よりも開口面積が大きい複数の第2孔部と、を有し、1つの第2孔部に複数の第1孔部が連通している第1電極と、前記第1電極の第1表面に対向して設けられた第2電極と、前記第1電極と第2電極との間に配置され、前記第1電極の第1表面を覆う連続的な多孔質膜と、を備えている。 According to the embodiment, the electrolysis apparatus includes an electrode unit. The electrode unit has a first surface, a second surface located opposite to the first surface, a plurality of first holes opened in the first surface, and an opening in the second surface, A first electrode having a plurality of second hole portions having an opening area larger than that of the first hole portion, the plurality of first hole portions communicating with one second hole portion, and the first electrode A second electrode provided opposite to the first surface of the first electrode, and a continuous porous film disposed between the first electrode and the second electrode and covering the first surface of the first electrode. I have.
図1は、第1の実施形態に係る電解装置を示す断面図。FIG. 1 is a cross-sectional view showing an electrolysis apparatus according to the first embodiment. 図2は、第1の実施形態に係る電解装置の電極ユニットを示す断面図。FIG. 2 is a cross-sectional view showing an electrode unit of the electrolysis apparatus according to the first embodiment. 図3は、前記電極ユニットの分解斜視図。FIG. 3 is an exploded perspective view of the electrode unit. 図4は、電極の製造工程を示す断面図。FIG. 4 is a cross-sectional view showing an electrode manufacturing process. 図5は、第2の実施形態に係る電解装置の電極ユニットを示す断面図。FIG. 5 is a cross-sectional view showing an electrode unit of the electrolysis apparatus according to the second embodiment. 図6は、第2の実施形態に係る電極ユニットの電極を示す斜視図。FIG. 6 is a perspective view showing electrodes of an electrode unit according to the second embodiment. 図7は、第3の実施形態に係る電解装置の電極ユニットを示す断面図。FIG. 7 is a cross-sectional view showing an electrode unit of an electrolysis apparatus according to a third embodiment. 図8は、第4の実施形態に係る電極ユニットの電極を示す斜視図。FIG. 8 is a perspective view showing electrodes of an electrode unit according to the fourth embodiment. 図9は、第5の実施形態に係る電解装置を示す断面図。FIG. 9 is a cross-sectional view showing an electrolyzer according to a fifth embodiment. 図10は、第6の実施形態に係る電解装置の断面図。FIG. 10 is a cross-sectional view of an electrolysis apparatus according to a sixth embodiment. 図11は、第6の実施形態に係る電極ユニットを示す断面図。FIG. 11 is a cross-sectional view showing an electrode unit according to a sixth embodiment. 図12は、変形例に係る第1電極および第2電極を示す斜視図。FIG. 12 is a perspective view showing a first electrode and a second electrode according to a modification. 図13は、平面内あるいは立体的に不規則的な孔を有する無機酸化物を含有する膜からなる多孔質膜を概略的に示す断面図。FIG. 13 is a cross-sectional view schematically showing a porous film made of a film containing an inorganic oxide having pores that are irregular in a plane or three-dimensionally. 図14は、積層膜で構成された多孔質膜を概略的に示す断面図。FIG. 14 is a cross-sectional view schematically showing a porous film composed of a laminated film.
 以下に、図面を参照しながら、種々の実施形態について説明する。なお、実施形態を通して共通の構成には同一の符号を付すものとし、重複する説明は省略する。また、各図は実施形態とその理解を促すための模式図であり、その形状や寸法、比などは実際の装置と異なる個所があるが、これらは以下の説明と公知の技術を参酌して適宜、設計変更することができる。例えば、図では電極は平面上に描かれているが、電極ユニットの形状に合わせて湾曲してもよいし、円筒状になっていてもよい。 Hereinafter, various embodiments will be described with reference to the drawings. In addition, the same code | symbol shall be attached | subjected to a common structure through embodiment, and the overlapping description is abbreviate | omitted. In addition, each drawing is a schematic diagram for promoting the embodiment and its understanding, and its shape, dimensions, ratio, etc. are different from the actual device, but these are considered in consideration of the following description and known techniques. The design can be changed as appropriate. For example, in the drawing, the electrodes are drawn on a plane, but may be curved in accordance with the shape of the electrode unit or may be cylindrical.
 (第1の実施形態)
 図1は、第1の実施形態に係る電解装置を概略的に示す図である。電解装置10は、例えば、2室型の電解槽11および電解槽11内に配置された電極ユニット12を備えている。電解槽11は、偏平な矩形箱状に形成され、その内部は、隔壁14および電極ユニット12により、陽極室16と陰極室18との2室に仕切られている。
(First embodiment)
FIG. 1 is a diagram schematically showing an electrolysis apparatus according to the first embodiment. The electrolysis apparatus 10 includes, for example, a two-chamber electrolysis tank 11 and an electrode unit 12 disposed in the electrolysis tank 11. The electrolytic cell 11 is formed in a flat rectangular box shape, and the inside thereof is partitioned into two chambers, an anode chamber 16 and a cathode chamber 18, by a partition wall 14 and an electrode unit 12.
 電極ユニット12は、陽極室16内に位置する第1電極(陽極)20と、陰極室18内に位置する第2電極(対向電極、陰極)22と、第1および第2電極間に設けられた多孔質膜24および隔膜26と、を有している。 The electrode unit 12 is provided between a first electrode (anode) 20 positioned in the anode chamber 16, a second electrode (counter electrode, cathode) 22 positioned in the cathode chamber 18, and the first and second electrodes. A porous membrane 24 and a diaphragm 26.
 電解装置10は、電極ユニット12の第1および第2電極20、22を駆動するための電源30、電流計32、電圧計34、およびこれらを制御する制御装置36を備えている。陽極室16、陰極室18には液体の流路を設けても良い。陽極室16、陰極室18には、外部から液体を供給、排出するための配管やポンプ等を接続してもよい。また、場合により、電極ユニット12と陽極室16あるいは陰極室18との間に多孔質のスペーサーを設けてもよい。 The electrolysis apparatus 10 includes a power source 30 for driving the first and second electrodes 20 and 22 of the electrode unit 12, an ammeter 32, a voltmeter 34, and a control device 36 for controlling them. A liquid channel may be provided in the anode chamber 16 and the cathode chamber 18. You may connect the anode chamber 16 and the cathode chamber 18 with piping, a pump, etc. for supplying and discharging a liquid from the outside. In some cases, a porous spacer may be provided between the electrode unit 12 and the anode chamber 16 or the cathode chamber 18.
 次に、電極ユニット12について詳細に説明する。図2は電極ユニットの断面図、図3は電極ユニットの分解斜視図である。 
 図2および図3に示すように、第1電極20は、例えば、矩形状の金属板からなる基材21に多数の貫通孔を形成した多孔構造を有している。基材21は、第1表面22aおよび、第1表面22aとほぼ平行に対向する第2表面22bを有している。第1表面22aと第2表面22bとの間隔、すなわち、基材21の板厚はT1に形成されている。第1表面22aは多孔質膜24に対向し、第2表面22bは陽極室16に対向する。
Next, the electrode unit 12 will be described in detail. 2 is a cross-sectional view of the electrode unit, and FIG. 3 is an exploded perspective view of the electrode unit.
As shown in FIGS. 2 and 3, the first electrode 20 has a porous structure in which a large number of through holes are formed in a base material 21 made of, for example, a rectangular metal plate. The base material 21 has a first surface 22a and a second surface 22b facing the first surface 22a substantially in parallel. The distance between the first surface 22a and the second surface 22b, that is, the plate thickness of the substrate 21 is formed at T1. The first surface 22 a faces the porous film 24, and the second surface 22 b faces the anode chamber 16.
 基材21の第1表面22aに複数の例えば正方形の第1孔部40が形成され、第1表面22aに開口している。また、第2表面22bに複数の第2孔部42が形成され、第2表面22bに開口している。第2孔部42の開口面積は、第1孔部40の開口面積よりも大きく形成されている。多孔質膜24側となる第1孔部40の開口の一辺R1は、例えば正方形の第2孔部42の開口の一辺R2よりも小さく、また、孔部の数は、第1孔部40が第2孔部42よりも多く形成されている。第1孔部40の深さはT2、第2孔部42の深さはT3であり、T2+T3=T1に形成されている。また、本実施形態において、T2<T3に形成されている。 A plurality of, for example, square first holes 40 are formed in the first surface 22a of the base material 21 and open to the first surface 22a. A plurality of second holes 42 are formed in the second surface 22b and open to the second surface 22b. The opening area of the second hole portion 42 is formed larger than the opening area of the first hole portion 40. One side R1 of the opening of the first hole 40 on the porous membrane 24 side is smaller than, for example, one side R2 of the opening of the square second hole 42, and the number of holes is the same as that of the first hole 40. More than the second holes 42 are formed. The depth of the first hole 40 is T2, the depth of the second hole 42 is T3, and T2 + T3 = T1. In the present embodiment, T2 <T3.
 本実施形態において、第2孔部42は、例えば、正方形に形成され、第2表面22bにマトリクス状に並んで設けられている。各第2孔部42を規定している周壁は、孔部の底から開口に向かって、すなわち、第2表面22b側に向かって、孔が広くなるようなテーパー面42aあるいは湾曲面により形成してもよい。隣り合う第2孔部42間の間隔、すなわち、電極の線状部の幅、はW2に設定されている。なお、第2孔部42は、矩形状に限定されることなく、他の種々の形状としてもよい。また、第2孔部42は、規則的に限らず、ランダムに並んで形成してもよい。 In the present embodiment, the second holes 42 are formed, for example, in a square shape, and are arranged in a matrix on the second surface 22b. The peripheral wall that defines each second hole 42 is formed by a tapered surface 42a or a curved surface that widens the hole from the bottom of the hole toward the opening, that is, toward the second surface 22b. May be. The interval between the adjacent second hole portions 42, that is, the width of the linear portion of the electrode is set to W2. The second hole portion 42 is not limited to a rectangular shape, and may have other various shapes. Further, the second hole portions 42 are not limited to regular, and may be formed side by side at random.
 第1孔部40の開口としては小さい方が圧力を均一化するためには好ましいが、物質拡散を阻害するためある程度の大きさは必要であり、正方形の開口の一辺が0.1~2mmが好ましく、さらに好ましくは0.3~1mmである。開口としては正方形、長方形、ひし形、円、楕円等と様々な形状を用いることができる。正方形や長方形、ひし形の頂点は丸まっていてもよい。開口面積としては、上記正方形の開口面積と同じ0.01~4mmのものが好ましい。より好ましくは0.1mmから1.5mmである。さらに好ましくは0.2mmから1mmである。開口も含めた電極面積に占める開口面積の割合(開口率)は、0.05~0.5が好ましく、0.1~0.4がより好ましく、0.15~0.3がさらに好ましい。開口率が小さすぎるとガス抜けが困難になる。開口率が大きすぎると電極反応が阻害される。 A smaller opening of the first hole portion 40 is preferable in order to make the pressure uniform, but a certain size is necessary to inhibit material diffusion, and one side of the square opening is 0.1 to 2 mm. Preferably, it is 0.3 to 1 mm. As the opening, various shapes such as a square, a rectangle, a rhombus, a circle, and an ellipse can be used. The vertices of squares, rectangles and rhombuses may be rounded. The opening area is preferably 0.01 to 4 mm 2 which is the same as the square opening area. More preferably, it is 0.1 mm 2 to 1.5 mm 2 . More preferably, it is 0.2 mm 2 to 1 mm 2 . The ratio (opening ratio) of the opening area to the electrode area including the opening is preferably 0.05 to 0.5, more preferably 0.1 to 0.4, and further preferably 0.15 to 0.3. If the aperture ratio is too small, it will be difficult to outgas. If the aperture ratio is too large, the electrode reaction is hindered.
 第1孔部40は、例えば、正方形に形成され、第1表面22aにマトリクス状に並んで設けられている。各第1孔部40を規定している周壁は、孔部の底から開口に向かって、すなわち、第1表面22aに向かって、開口が広くなるようなテーパー面40aあるいは湾曲面により形成してもよい。本実施形態において、複数、例えば、9個の第1孔部40が、1つの第2孔部42と対向して設けられ、それぞれ第2孔部42に連通し、基材21を貫通している。隣合う第1孔部40間の間隔W1は、第2孔部42間の間隔W2よりも小さく設定されている。これにより、第1表面22aにおける第1孔部40の数密度は、第2表面22bにおける第2孔部42の数密度よりも充分に大きい。 The first hole 40 is, for example, formed in a square shape, and is provided side by side in a matrix on the first surface 22a. The peripheral wall that defines each first hole 40 is formed by a tapered surface 40a or a curved surface that widens the opening from the bottom of the hole toward the opening, that is, toward the first surface 22a. Also good. In the present embodiment, a plurality of, for example, nine first hole portions 40 are provided to face one second hole portion 42, communicate with the second hole portion 42, and penetrate the base material 21. Yes. The interval W1 between the adjacent first hole portions 40 is set to be smaller than the interval W2 between the second hole portions 42. Thereby, the number density of the 1st hole 40 in the 1st surface 22a is sufficiently larger than the number density of the 2nd hole 42 in the 2nd surface 22b.
 第2孔部42の開口も正方形、長方形、ひし形、円、楕円等と様々な形状を用いることができる。第2孔部42の開口径としては大きい方がガス抜けをよくするためには好ましいが、電気抵抗が大きくなるためあまり大きくはできない。正方形の開口のとすると一辺が1~40mmが好ましく、より好ましくは2~30mmであり、さらに好ましくは3~20mmである。開口としては正方形、長方形、ひし形、円、楕円等と様々な形状を用いることができるが、開口面積としては上記正方形の開口面積と同じ、1~1600mmのものが好ましい。より好ましくは4mmから900mmであり、さらに好ましくは9mmから400mmである。長方形や楕円のように一方向に長くして電極の端から端につながるような開口も可能である。 Various shapes such as a square, a rectangle, a rhombus, a circle, and an ellipse can be used for the opening of the second hole portion 42. A larger opening diameter of the second hole portion 42 is preferable in order to improve gas escape, but it cannot be so large because electric resistance increases. In the case of a square opening, one side is preferably 1 to 40 mm, more preferably 2 to 30 mm, and still more preferably 3 to 20 mm. As the opening, various shapes such as a square, a rectangle, a rhombus, a circle, an ellipse and the like can be used, but the opening area is preferably 1 to 1600 mm 2 which is the same as the opening area of the square. More preferably, it is 4 mm 2 to 900 mm 2 , and further preferably 9 mm 2 to 400 mm 2 . An opening that extends in one direction and connects from one end of the electrode to the other is also possible, such as a rectangle or an ellipse.
 第1電極20の基材21としては、チタン、クロム、アルミニウムやその合金等の弁金属、導電性金属を用いることができる。この中ではチタンが好ましい。電解反応によっては、電極の第1表面および第2表面に電解触媒(触媒層)を形成することが好ましい。陽極の場合は、基材自体として白金等の貴金属触媒や酸化イリジウム等の酸化物触媒を用いることが好ましい。電解触媒の単位面積当たりの量が電極の両面で異なることを特徴としてもよい。これにより副反応等を抑制することができる。 As the base material 21 of the first electrode 20, a valve metal such as titanium, chromium, aluminum or an alloy thereof, or a conductive metal can be used. Of these, titanium is preferred. Depending on the electrolytic reaction, it is preferable to form an electrolytic catalyst (catalyst layer) on the first surface and the second surface of the electrode. In the case of the anode, it is preferable to use a noble metal catalyst such as platinum or an oxide catalyst such as iridium oxide as the base material itself. The amount per unit area of the electrocatalyst may be different on both surfaces of the electrode. Thereby, a side reaction etc. can be suppressed.
 第1孔部40は、規則的に限らず、ランダムに並んで形成してもよい。更に、全ての第1孔部40が第2孔部42に連通している構成に限らず、第2孔部42に連通していない第1孔部を含んでいてもよい。すなわち、陽極室16に連通していない第1孔部40があってもよい。例えば、図12に示すように、第1孔部40、44が電極の一端近傍から他端近傍まで延びる長方形であり、その中で第2孔部42、46に連通した複数の開口部分41a、45aがある間隔を持って配置されていてもよい。また、第1孔部40、44の孔の一部分のみが第2孔部42、44に連通した構成としてもよい。第2孔部42、44に連通していない第1孔部40、44は、電極面積を増大させる効果がある。 
 複数の第1孔部40、44の内、開口面積が0.01mmから4mmである第1孔部は、全第1孔部の85%以上が好ましく、より好ましくは90%以上であり、さらに好ましくは95%以上である。
The 1st hole part 40 may be formed not only regularly but in a line. Furthermore, not only the structure which all the 1st hole parts 40 are connected to the 2nd hole part 42 but the 1st hole part which is not connected to the 2nd hole part 42 may be included. That is, there may be a first hole 40 that is not in communication with the anode chamber 16. For example, as shown in FIG. 12, the first holes 40 and 44 have a rectangular shape extending from the vicinity of one end of the electrode to the vicinity of the other end, and a plurality of opening portions 41 a communicating with the second holes 42 and 46 therein, 45a may be arranged with a certain interval. Further, only a part of the holes of the first holes 40 and 44 may be connected to the second holes 42 and 44. The first holes 40 and 44 that are not in communication with the second holes 42 and 44 have an effect of increasing the electrode area.
Of the plurality of first hole portions 40 and 44, the first hole portion having an opening area of 0.01 mm 2 to 4 mm 2 is preferably 85% or more, more preferably 90% or more of all the first hole portions. More preferably, it is 95% or more.
 上記構成の第1電極20は、例えば、マスクを用いたエッチング法により作製することができる。図4にその作製法の概略を示す。図4(a)、(b)に示すように、1枚の平坦な基材21を用意し、基材21の第1表面22aおよび第2表面22bにレジスト膜50a、50bを塗布する。図4(c)に示すように、図示しない光学マスクを用いてレジスト膜50a、50bを露光し、それぞれエッチング用のマスク52a、52bを作製する。図4(d)に示すように、これらマスク52a、52bを介して、基材21の第1表面22aおよび第2表面22bを溶液によりウェットエッチングすることにより、複数の第1孔部40および複数の第2孔部42を形成する。その後、マスク52a、52bを除去することにより、第1電極20が得られる。 The first electrode 20 having the above-described configuration can be produced by, for example, an etching method using a mask. FIG. 4 shows an outline of the manufacturing method. As shown in FIGS. 4A and 4B, a single flat substrate 21 is prepared, and resist films 50 a and 50 b are applied to the first surface 22 a and the second surface 22 b of the substrate 21. As shown in FIG. 4C, the resist films 50a and 50b are exposed using an optical mask (not shown) to produce etching masks 52a and 52b, respectively. As shown in FIG. 4 (d), the first surface 22a and the second surface 22b of the base material 21 are wet-etched with a solution through the masks 52a and 52b, so that the plurality of first holes 40 and the plurality of first holes 40 and the plurality of first holes 40 and the plurality of first holes The second hole 42 is formed. Thereafter, the first electrode 20 is obtained by removing the masks 52a and 52b.
 基材21の材質やエッチング条件により、第1および第2孔部40、42のテーパーや湾曲面の形状を制御することができる。第1孔部40の深さはT2、第2孔部42の深さはT3であり、前述したように、T2<T3となるように、第1および第2孔部を形成する。なお、エッチングにおいては、基材21の両面を同時にエッチングしてもよく、あるいは、片面ずつエッチングしてもよい。エッチングの種類は、ウェットエッチングに限らず、ドライエッチングなどを用いても良い。また、エッチングに限らず、レーザーや精密切削などによる加工で第1電極20を製造することも可能である。 The taper of the first and second holes 40 and 42 and the shape of the curved surface can be controlled by the material of the base material 21 and the etching conditions. The depth of the first hole 40 is T2, and the depth of the second hole 42 is T3. As described above, the first and second holes are formed so that T2 <T3. In the etching, both surfaces of the base material 21 may be etched simultaneously, or one surface may be etched. The type of etching is not limited to wet etching, and dry etching or the like may be used. Further, the first electrode 20 can be manufactured not only by etching but also by processing such as laser or precision cutting.
 図1から図3に示すように、本実施形態によれば、第2電極(対向電極)22は、第1電極20と同様に構成されている。すなわち、第2電極22は、例えば、矩形状の金属板からなる基材23に多数の貫通孔を形成した多孔構造を有している。基材23は、第1表面23aおよび、第1表面23aと反対側にほぼ平行に位置する第2表面23bを有している。第1表面23aは隔膜26に対向し、第2表面23bは陰極室18に対向する。 As shown in FIGS. 1 to 3, according to the present embodiment, the second electrode (counter electrode) 22 is configured in the same manner as the first electrode 20. That is, the second electrode 22 has a porous structure in which a large number of through holes are formed in the base material 23 made of, for example, a rectangular metal plate. The base material 23 has a first surface 23a and a second surface 23b positioned substantially parallel to the opposite side of the first surface 23a. The first surface 23 a faces the diaphragm 26, and the second surface 23 b faces the cathode chamber 18.
 基材23の第1表面23aに複数の第1孔部44が形成され、第1表面23aに開口している。また、第2表面23bに複数の第2孔部46が形成され、第2表面23bに開口している。隔膜26側となる第1孔部44の開口面積は、第2孔部44の開口面積よりも小さく、また、孔部の数は、第1孔部44が第2孔部46よりも多く形成されている。第1孔部44の深さは、第2孔部46の深さよりも小さく形成されている。 A plurality of first holes 44 are formed in the first surface 23a of the base material 23 and open to the first surface 23a. A plurality of second holes 46 are formed in the second surface 23b and open to the second surface 23b. The opening area of the first hole 44 on the side of the diaphragm 26 is smaller than the opening area of the second hole 44, and the number of holes is larger in the first hole 44 than in the second hole 46. Has been. The depth of the first hole 44 is formed to be smaller than the depth of the second hole 46.
 複数、例えば、9個の第1孔部44が、1つの第2孔部46と対向して設けられ、それぞれ第2孔部46に連通し、基材23を貫通している。隣合う第1孔部44間の間隔は、第2孔部46間の間隔よりも小さく設定されている。これにより、第1表面23aにおける第1孔部44の数密度は、第2表面23bにおける第2孔部46の数密度よりも充分に大きい。 A plurality of, for example, nine first hole portions 44 are provided to face one second hole portion 46, communicate with the second hole portion 46 and penetrate the base material 23. The interval between the adjacent first hole portions 44 is set to be smaller than the interval between the second hole portions 46. Thereby, the number density of the 1st hole 44 in the 1st surface 23a is sufficiently larger than the number density of the 2nd hole 46 in the 2nd surface 23b.
 第1電極20の第1表面22aと第2電極22の第1表面23aとの間に、多孔質膜24および隔膜26が挟持されている。連続的な多孔質膜24は、例えば、第1電極20とほぼ等しい寸法の矩形状に形成され、第1表面22aの全面と対向している。多孔質膜24としては、不織布やクロス、ゾルーゲル法で形成されるような多孔質膜を用いることができ、種々の材質のものを用いることができる。多孔質膜には化学的に安定であること、特に塩素や次亜塩素酸や酸素に対する安定性、酸性やアルカリ性に対する耐性であり、また食品を処理する等に使う場合には高分子の場合はモノマー等が法定値以上に溶け出なことや無機物の場合には重金属イオンが法定値以上に溶け出さない必要がある。機械的には多孔質膜を裏打ち材なしで単独で用いる場合にはハンドリングしやすさが重要であり膜厚として20~500μmが好ましい。多孔質膜を電極上に直接作製する場合には薄くてもよいが、多孔質膜としての性質を出すためには50nm以上の膜厚が好ましい。これらの多孔質膜の中では、フッ素原子もしくは塩素原子を主鎖に含む高分子膜や、ガラスクロス、不規則的な連続孔を有する無機酸化物を含有する膜であることが特に化学的に安定であり好ましい。高分子膜としてはテフロンが特に好ましい。無機酸化物中には水酸化物やアルコキシド、オキシハロゲン化物、水和物が含まれていてもよい。金属ハロゲン化物や金属アルコキシドの加水分解を経て無機酸化物を作製する場合には後処理の温度にもよるがこれらの混合物になりやすい。高分子膜やガラスクロスや無機酸化物は組み合わせてもよく例えば高分子膜やガラスクロスを無機酸化物で被覆してもよい。図13に示すように、多孔質膜24として平面内あるいは立体的に不規則的な孔を有する無機酸化物を含有する膜を用いる場合、多孔質膜24によって隔膜26を兼すねることも可能である、すなわち、隔膜26を省略することも可能である。 The porous film 24 and the diaphragm 26 are sandwiched between the first surface 22a of the first electrode 20 and the first surface 23a of the second electrode 22. The continuous porous film 24 is formed in, for example, a rectangular shape having substantially the same dimensions as the first electrode 20, and faces the entire surface of the first surface 22a. As the porous film 24, a non-woven fabric, cloth, a porous film formed by a sol-gel method can be used, and various materials can be used. Porous membranes are chemically stable, especially resistant to chlorine, hypochlorous acid and oxygen, resistant to acidity and alkalinity, and in the case of polymers when used for food processing, etc. In the case where the monomer or the like does not dissolve above the legal value, or in the case of an inorganic substance, it is necessary that the heavy metal ion does not dissolve beyond the legal value. Mechanically, when a porous film is used alone without a backing material, ease of handling is important, and the film thickness is preferably 20 to 500 μm. When the porous film is directly formed on the electrode, it may be thin, but a film thickness of 50 nm or more is preferable in order to obtain the properties as a porous film. Among these porous membranes, a polymer membrane containing a fluorine atom or a chlorine atom in the main chain, a glass cloth, or a membrane containing an inorganic oxide having irregular continuous pores is particularly chemically. It is stable and preferable. Teflon is particularly preferable as the polymer film. Inorganic oxides may contain hydroxides, alkoxides, oxyhalides, and hydrates. When an inorganic oxide is produced through hydrolysis of a metal halide or metal alkoxide, it tends to be a mixture of these depending on the post-treatment temperature. A polymer film, a glass cloth, or an inorganic oxide may be combined, for example, a polymer film or a glass cloth may be coated with an inorganic oxide. As shown in FIG. 13, in the case where a film containing an inorganic oxide having pores that are irregular in a plane or three-dimensionally is used as the porous film 24, the porous film 24 can also serve as the diaphragm 26. That is, the diaphragm 26 can be omitted.
 図14に示すように、多孔質膜24は、孔径の異なる複数の多孔質膜27a、27bの積層膜を用いてもよい。この場合、隔膜26側に位置する多孔質膜27bの孔径を、第1電極20側に位置する多孔質膜27aの孔径よりも大きくすることにより、イオンの移動をより容易にするとともに電極の孔による応力集中を低減することができる。これは隔膜26側の開口が大きい方が拡散によるイオン移動が容易になるからである。電極20を陽極に用いる場合は正電位であるので陰イオンは電極20側の孔径が小さくても容易に電極に引き寄せられる。逆に電極20側の孔径が大きいと生成した塩素等が多孔質膜側に拡散しやすくなってしまう。 As shown in FIG. 14, the porous film 24 may be a laminated film of a plurality of porous films 27a and 27b having different pore diameters. In this case, by making the pore diameter of the porous membrane 27b located on the diaphragm 26 side larger than the pore diameter of the porous membrane 27a located on the first electrode 20 side, the movement of ions is facilitated and the pores of the electrode The stress concentration due to can be reduced. This is because the larger the opening on the diaphragm 26 side, the easier the ion movement by diffusion. When the electrode 20 is used as an anode, the anion is easily attracted to the electrode even if the hole diameter on the electrode 20 side is small because of the positive potential. On the contrary, if the pore diameter on the electrode 20 side is large, the generated chlorine or the like tends to diffuse to the porous membrane side.
 多孔質膜の表面の孔径は高分解能の走査型電子顕微鏡(SEM)を用いることにより測定できる。また内部の孔は断面SEM観察により測定できる。 The pore diameter on the surface of the porous membrane can be measured by using a high-resolution scanning electron microscope (SEM). The internal holes can be measured by cross-sectional SEM observation.
 図2および図3に示すように、隔膜26は、例えば、第1電極20とほぼ等しい寸法の矩形状に形成され、第2電極22の第1表面23aと多孔質膜24との間に配置されている。隔膜26は、第2電極22の第1表面23aの全面と密着し、更に、多孔質膜24と密着している。 As shown in FIGS. 2 and 3, the diaphragm 26 is formed in, for example, a rectangular shape having substantially the same dimensions as the first electrode 20, and is disposed between the first surface 23 a of the second electrode 22 and the porous film 24. Has been. The diaphragm 26 is in close contact with the entire surface of the first surface 23 a of the second electrode 22, and is further in close contact with the porous film 24.
 第1および第2電極20、22間に位置する隔膜26は、イオンおよび/もしくは液体を透過させる膜である。隔膜26として、種々の電解質膜やナノポアを有する多孔質膜を用いることができる。電解質膜としては、高分子電解質膜、例えば、陽イオン交換固体高分子電解質膜、具体的には、カチオン交換性の膜、又はアニオン交換性の膜、或いは炭化水素系の膜を用いることができる。カチオン交換性の膜としては、NAFION(イーアイ デュポン社:商標)112,115,117、フレミオン(旭硝子株式会社:商標)、ACIPLEX(旭化成株式会社:商標)、ゴアセレクト(ダブリュー.エル.ゴア アンド アソシエーツ社:商標)が挙げられる。アニオン交換性の膜としては、株式会社トクヤマ製のA201等が挙げられる。ナノポアを有する多孔質膜としては多孔質ガラス、多高質アルミナ、多孔質チタニア、多孔質ゼオライト、多孔質ジルコニア等の多孔質セラミックス、多孔質ポリエチレン、多孔質プロピレン、多孔質テフロン、多孔質ポリイミド等の多孔質ポリマー等がある。 The diaphragm 26 located between the first and second electrodes 20 and 22 is a film that allows ions and / or liquids to pass therethrough. As the diaphragm 26, various electrolyte membranes and porous membranes having nanopores can be used. As the electrolyte membrane, a polymer electrolyte membrane, for example, a cation exchange solid polymer electrolyte membrane, specifically, a cation exchange membrane, an anion exchange membrane, or a hydrocarbon membrane can be used. . Examples of the cation exchange membrane include NAFION (AI DuPont: Trademark) 112, 115, 117, Flemion (Asahi Glass Co., Ltd .: Trademark), ACIPLEX (Asahi Kasei Corporation: Trademark), Gore Select (W. El Gore and Associates). Company: Trademark). Examples of the anion-exchange membrane include A201 manufactured by Tokuyama Corporation. Porous membranes with nanopores include porous ceramics such as porous glass, high quality alumina, porous titania, porous zeolite, porous zirconia, porous polyethylene, porous propylene, porous teflon, porous polyimide, etc. There are porous polymers.
 上記のように構成された第1電極20と第2電極22との間に多孔質膜24および隔膜26を挟んだ状態で、これらをプレスすることにより、第1電極20と多孔質膜24が接するとともに、隔膜26が多孔質膜24および第2電極22と接することにより電極ユニット12が得られる。 By pressing the porous film 24 and the diaphragm 26 between the first electrode 20 and the second electrode 22 configured as described above, the first electrode 20 and the porous film 24 are pressed. The electrode unit 12 is obtained by contacting the diaphragm 26 with the porous membrane 24 and the second electrode 22.
 図1で示したように、電極ユニット12は、電解槽11内に配設され、隔壁14に取付けられている。隔壁14と電極ユニット12とにより、電解槽11内を陽極室16と陰極室18に仕切っている。これにより、電極ユニット12は、これを構成する各部材の接する方向が、例えば、水平方向となるように、電解槽11内に配設されている。電極ユニット12の陽極20は、陽極室16に臨んで配置され、陰極22は、陰極室18に臨んで配置されている。 As shown in FIG. 1, the electrode unit 12 is disposed in the electrolytic cell 11 and attached to the partition wall 14. The electrolytic cell 11 is partitioned into an anode chamber 16 and a cathode chamber 18 by the partition wall 14 and the electrode unit 12. Thereby, the electrode unit 12 is arrange | positioned in the electrolytic cell 11 so that the direction which each member which comprises this may contact becomes a horizontal direction, for example. The anode 20 of the electrode unit 12 is disposed facing the anode chamber 16, and the cathode 22 is disposed facing the cathode chamber 18.
 電解装置10において、電源30の両極は第1電極20と第2電極22に電気的に接続されている。電源30は、制御装置36による制御の下、電極ユニット12に電圧を印加する。電圧計34は、第1電極20と第2電極22に電気的に接続され、電極ユニット12に印加される電圧を検出する。その検出情報は、制御装置35に供給される。電流計32は、電極ユニット12の電圧印加回路に接続され、電極ユニット12を流れる電流を検出する。その検出情報は制御装置36に供給される。制御装置36は、メモリに記憶されたプログラムに従い、前記検出情報に応じて、電源30による電極ユニット12に対する電圧の印加もしくは負荷を制御する。電解装置10は、陽極室16および陰極室18に反応対象物質が供給された状態で、第1電極20と第2電極22との間に電圧を印加あるいは負荷して、電解のための電気化学反応を進行させる。本実施形態の電解装置10は、塩化物イオンを含む電解質を電解することが好ましい。 In the electrolysis apparatus 10, both electrodes of the power supply 30 are electrically connected to the first electrode 20 and the second electrode 22. The power supply 30 applies a voltage to the electrode unit 12 under the control of the control device 36. The voltmeter 34 is electrically connected to the first electrode 20 and the second electrode 22 and detects a voltage applied to the electrode unit 12. The detection information is supplied to the control device 35. The ammeter 32 is connected to the voltage application circuit of the electrode unit 12 and detects the current flowing through the electrode unit 12. The detection information is supplied to the control device 36. The control device 36 controls voltage application or load on the electrode unit 12 by the power supply 30 according to the detection information in accordance with a program stored in the memory. The electrolyzer 10 applies an electric voltage or loads between the first electrode 20 and the second electrode 22 in a state in which the reaction target substance is supplied to the anode chamber 16 and the cathode chamber 18, and performs electrochemistry for electrolysis. Allow the reaction to proceed. The electrolyzer 10 of this embodiment preferably electrolyzes an electrolyte containing chloride ions.
 以上のように構成された電解装置および電極ユニットによれば、第1電極20において、多孔質膜24側の第1表面22aに形成された第1孔部40の径(開口面積)を第2孔部42の径(開口面積)よりも小さくし、孔部の数密度を大きくすることにより、第1電極20側から多孔質膜24に作用する応力集中を低減することができる。多孔質膜24を連続的な膜として、第1電極20の第1表面22a全面に当接させることにより、第1電極20の孔部を多孔質膜24で覆い、第1電極20と隔膜26との距離を全面に亘って均等に保ちやすくすることができる。すなわち、多孔質膜24の膜厚に分布が生じることを防止し、多孔質膜24の膜厚を均一に維持することが可能となる。これにより、電解反応にむらなく均一に生じさせ、電解装置の反応効率向上および電解質膜の劣化防止を図ることができる。 According to the electrolytic apparatus and the electrode unit configured as described above, in the first electrode 20, the diameter (opening area) of the first hole portion 40 formed in the first surface 22a on the porous membrane 24 side is set to the second. By making it smaller than the diameter (opening area) of the hole 42 and increasing the number density of the hole, the stress concentration acting on the porous film 24 from the first electrode 20 side can be reduced. By making the porous film 24 into a continuous film and abutting the entire surface of the first surface 22a of the first electrode 20, the pores of the first electrode 20 are covered with the porous film 24, and the first electrode 20 and the diaphragm 26 are covered. Can be easily maintained over the entire surface. That is, it is possible to prevent a distribution from occurring in the film thickness of the porous film 24 and to maintain the film thickness of the porous film 24 uniform. Thereby, it is possible to uniformly generate the electrolytic reaction uniformly, and to improve the reaction efficiency of the electrolytic device and prevent the electrolyte membrane from being deteriorated.
 また、第1電極20の第1孔部40を電極の第1表面側が広くなるようなテーパー形状あるいは湾曲面形状とすることにより、第1孔部40と多孔質膜24との接触角が鈍角となり、第1電極20側から多孔質膜24への応力集中を更に低減することができる。なお、第1電極20の多孔質膜24側の第1表面22aは、凹部を除いては略平坦であることが好ましい。凹部とは前述した第1孔部であっても、あるいは、後述する凹所であってもよい。 Further, the contact angle between the first hole 40 and the porous film 24 is obtuse by making the first hole 40 of the first electrode 20 tapered or curved so that the first surface side of the electrode becomes wider. Thus, the stress concentration from the first electrode 20 side to the porous film 24 can be further reduced. The first surface 22a of the first electrode 20 on the porous membrane 24 side is preferably substantially flat except for the recess. The recess may be the first hole described above or a recess described later.
 第1電極20の第2表面22bに形成された第2孔部42の開口面積を大きくし、かつ、数密度を低くすることにより、第2孔部42間の線状部の幅W2を充分に太くすることができる。これにより、第1電極20の機械的強度を高く維持するとともに、電気抵抗の低減を図ることができる。 
 以上のことから、第1の実施形態によれば、反応効率が高く、長寿命の電極ユニットおよび電解装置が得られる。 
 なお、第1の実施形態において、第2電極22は、径の異なる第1孔部と第2孔部とを有する電極に限定されることなく、貫通孔を持たない平板状の電極としてもよい。あるいは、電極基材に、第1表面および第2表面で同一径の貫通孔を形成した電極としてもよい。第2電極22と隔膜26とは、互いに接触していてもよいし、あるいは、別の構成物が間に挿入されていてもよい。
By increasing the opening area of the second hole portion 42 formed on the second surface 22b of the first electrode 20 and decreasing the number density, the width W2 of the linear portion between the second hole portions 42 is sufficiently increased. Can be thickened. Thereby, while maintaining the mechanical strength of the 1st electrode 20 high, reduction of an electrical resistance can be aimed at.
From the above, according to the first embodiment, an electrode unit and an electrolysis apparatus having high reaction efficiency and a long life can be obtained.
In the first embodiment, the second electrode 22 is not limited to the electrode having the first hole and the second hole having different diameters, and may be a flat electrode having no through hole. . Or it is good also as an electrode which formed the through-hole of the same diameter in the 1st surface and the 2nd surface in the electrode base material. The second electrode 22 and the diaphragm 26 may be in contact with each other, or another component may be inserted therebetween.
 次に、他の実施形態に係る電解装置および電極ユニットについて説明する。なお、以下に説明する他の実施形態において、前述した第1の実施形態と同一の部分には、同一の参照符号を付してその詳細な説明を省略し、第1の実施形態と異なる部分を中心に詳しく説明する。 Next, an electrolysis device and an electrode unit according to another embodiment will be described. In other embodiments described below, the same parts as those in the first embodiment described above are denoted by the same reference numerals, and detailed description thereof is omitted, and the parts different from those in the first embodiment. Will be described in detail.
(第2の実施形態) 
 図5は、第2の実施形態に係る電解装置の電極ユニットを示す断面図、図6は、電極を示す斜視図である。 
 第2の実施形態によれば、電極ユニット12において、第1電極20の第1表面22aは平坦に形成され、この第1表面22aに、前述した複数の第1孔部40が形成され、これらの第1孔部40は基材21を貫通している。第1電極20は、第1表面22aに形成された複数の凹部54、すなわち、基材21を貫通していない凹みを有している。凹部54は、例えば、複数の第1孔部40間を延びる連続した溝により形成されている。あるいは、凹部54は、多数の独立したドット状の凹部としてもよい。 
 多孔質膜24は、第1電極20の第1表面22aに密着して設けられている。多孔質膜24は、第1孔部40および凹部54に対向し、これらを塞いでいる。
(Second Embodiment)
FIG. 5 is a sectional view showing an electrode unit of the electrolysis apparatus according to the second embodiment, and FIG. 6 is a perspective view showing an electrode.
According to the second embodiment, in the electrode unit 12, the first surface 22a of the first electrode 20 is formed flat, and the first holes 40 described above are formed on the first surface 22a. The first hole 40 penetrates the base material 21. The first electrode 20 has a plurality of recesses 54 formed on the first surface 22 a, that is, recesses that do not penetrate the base material 21. The concave portion 54 is formed by, for example, a continuous groove extending between the plurality of first hole portions 40. Or the recessed part 54 is good also as many independent dot-shaped recessed parts.
The porous film 24 is provided in close contact with the first surface 22 a of the first electrode 20. The porous membrane 24 faces and closes the first hole 40 and the recess 54.
 第1電極20の第1表面22aは、第1孔部40および凹部54を除いては平坦であることが好ましい。凹部54を設けることにより、電極面積を増大させることができるとともに、生成するガスを抜くための流路とすることができる。第1電極20の第1表面22aを、凹部54を除いては略平坦にすることにより、多孔質膜24への応力集中をさらに低減することができる。多孔質膜24の膜厚によっても変化するが、第1表面22aの平坦性、平均粗さは、多孔質膜24の平均膜厚の10%以下が好ましく、5%以下とするとより好ましい。2%以下がさらに好ましい。平均粗さは、断面SEM観察により調べることができる。 
 なお、第1電極20のみに限らず、第2電極22の第1表面23aに、複数の凹部を設けても良い。
The first surface 22 a of the first electrode 20 is preferably flat except for the first hole 40 and the recess 54. By providing the concave portion 54, the electrode area can be increased and a flow path for removing the generated gas can be provided. The stress concentration on the porous film 24 can be further reduced by making the first surface 22 a of the first electrode 20 substantially flat except for the concave portion 54. Although it varies depending on the film thickness of the porous film 24, the flatness and average roughness of the first surface 22a are preferably 10% or less of the average film thickness of the porous film 24, and more preferably 5% or less. 2% or less is more preferable. The average roughness can be examined by cross-sectional SEM observation.
In addition to the first electrode 20, a plurality of recesses may be provided on the first surface 23 a of the second electrode 22.
(第3の実施形態) 
 図7は、第3の実施形態に係る電解装置の電極ユニットを示す断面図である。第3の実施形態では、第1電極20の表面の少なくとも一部に、液体を透過させない電気的な絶縁膜56を形成している。第1電極20において、隔膜26側で多孔質膜24と広く接している第1表面22aでは、反応により発生する塩素等のガスが排出され難いため、この発生ガスにより隔膜26が劣化しやすい。そのため、第1表面22aの内、第1孔部40が形成されていない領域を絶縁膜56で覆うことにより、これらの領域での反応ガスの発生を抑制し、隔膜26の劣化を防止することができる。本実施形態では、第1電極20の幅広の線状部(幅W2)の両表面上に絶縁膜56を設けている。
(Third embodiment)
FIG. 7 is a cross-sectional view showing an electrode unit of the electrolysis apparatus according to the third embodiment. In the third embodiment, an electrical insulating film 56 that does not transmit liquid is formed on at least a part of the surface of the first electrode 20. In the first electrode 20, on the first surface 22a that is in wide contact with the porous membrane 24 on the side of the diaphragm 26, it is difficult to discharge a gas such as chlorine generated by the reaction, so that the generated gas tends to deteriorate the diaphragm 26. Therefore, by covering the region where the first hole 40 is not formed in the first surface 22a with the insulating film 56, the generation of the reaction gas in these regions is suppressed and the deterioration of the diaphragm 26 is prevented. Can do. In the present embodiment, the insulating films 56 are provided on both surfaces of the wide linear portion (width W2) of the first electrode 20.
 ただし、絶縁膜56を設けることにより第1電極20の反応面積が少なくなる。そのため、発生ガスが抜けやすい部分で、第1電極20の十分な反応が起こるようにすることが望ましい。また、隔膜26と反対側に位置する第1電極20の第2表面22bにも電気的な絶縁膜57で覆ってもよい。このような電極ユニット12を3室型の電解槽で用いた場合、第2表面22b側での複反応を低減することができる。なお、絶縁膜の一部は、電極の断面方向にはみ出してもよい。 However, the reaction area of the first electrode 20 is reduced by providing the insulating film 56. Therefore, it is desirable that a sufficient reaction of the first electrode 20 occurs in a portion where the generated gas is easily released. Further, the second surface 22b of the first electrode 20 located on the opposite side of the diaphragm 26 may be covered with an electrical insulating film 57. When such an electrode unit 12 is used in a three-chamber electrolytic cell, multiple reactions on the second surface 22b side can be reduced. Note that a part of the insulating film may protrude in the cross-sectional direction of the electrode.
(第4の実施形態) 
 図8は、第4の実施形態に係る電解装置の電極ユニットの電極を示す斜視図である。第4の実施形態では、第1電極20において、電極の中心部に形成された第1孔部40間の間隔W3は、電極の周縁部に形成されている第1孔部40間の間隔W1よりも大きく設定されている。これにより、第1電極20の中心部の開口率(開口も含めた電極面積に対する開口面積の割合)は、第1電極20の周縁部における開口率より小さくなる。そのため、第1電極20の中心部の方が周辺部よりも電気抵抗を小さくすることができ、電極の周辺部から電極に給電する場合でも、電極中心部での電圧上昇を低減することができる。第1電極20の中央部に形成された第1孔部40の開口面積は、図8で示すように、周囲に設けられている第1孔部40の開口面積より小さくするか、もしくは数を減らすことにより開口率を小さくすることができる。
(Fourth embodiment)
FIG. 8 is a perspective view showing electrodes of the electrode unit of the electrolysis apparatus according to the fourth embodiment. In 4th Embodiment, in the 1st electrode 20, the space | interval W3 between the 1st hole parts 40 formed in the center part of the electrode is the space | interval W1 between the 1st hole parts 40 formed in the peripheral part of an electrode. Is set larger than. Thereby, the aperture ratio at the center of the first electrode 20 (ratio of the aperture area to the electrode area including the aperture) is smaller than the aperture ratio at the peripheral edge of the first electrode 20. Therefore, the electrical resistance of the central portion of the first electrode 20 can be made smaller than that of the peripheral portion, and even when power is supplied to the electrode from the peripheral portion of the electrode, an increase in voltage at the central portion of the electrode can be reduced. . As shown in FIG. 8, the opening area of the first hole 40 formed in the central portion of the first electrode 20 is made smaller than the opening area of the first hole 40 provided in the periphery, or the number thereof is set to be smaller. By reducing the aperture ratio, the aperture ratio can be reduced.
(第5の実施形態) 
 図9は、第5の実施形態に係る電解装置を示す断面図である。第5の実施形態では、電解装置10の電解槽11は、単一の電解室17を有する1室型の電解槽として構成されている。電極ユニット12は、電解室17内に配置されている。電解室17には、外部から電解液を供給、排出するための配管やポンプ等が接続されていてもよい。
(Fifth embodiment)
FIG. 9 is a cross-sectional view showing an electrolysis apparatus according to the fifth embodiment. In the fifth embodiment, the electrolytic cell 11 of the electrolytic device 10 is configured as a one-chamber electrolytic cell having a single electrolytic chamber 17. The electrode unit 12 is disposed in the electrolysis chamber 17. The electrolysis chamber 17 may be connected with piping, a pump, and the like for supplying and discharging the electrolyte from the outside.
 1室型の電解槽11において、電極ユニット12の第2電極(対向電極)22は、第1電極20と同様に、多孔構造に形成されていることが好ましい。多孔構造とすることにより、電極面積を大きくすることができる。 In the one-chamber type electrolytic cell 11, the second electrode (counter electrode) 22 of the electrode unit 12 is preferably formed in a porous structure like the first electrode 20. By using a porous structure, the electrode area can be increased.
(第6の実施形態) 
 図10は、第6の実施形態に係る電解装置を示す断面図、図11は、電解装置における電極ユニットを示す断面図である。 
 図10に示すように、電解装置10は、電極ユニット12を有する3室型の電解槽11を備えている。電解槽11は、偏平な矩形箱状に形成され、その内部の電解室は、隔壁14および電極ユニット12により、陽極室16と陰極室18と、電極間に形成された中間室19との3室に仕切られている。
(Sixth embodiment)
FIG. 10 is a cross-sectional view showing an electrolysis apparatus according to the sixth embodiment, and FIG. 11 is a cross-sectional view showing an electrode unit in the electrolysis apparatus.
As shown in FIG. 10, the electrolysis apparatus 10 includes a three-chamber type electrolytic cell 11 having an electrode unit 12. The electrolytic cell 11 is formed in a flat rectangular box shape, and the internal electrolytic chamber is composed of an anode chamber 16, a cathode chamber 18, and an intermediate chamber 19 formed between the electrodes by the partition wall 14 and the electrode unit 12. It is divided into rooms.
 電極ユニット12は、陽極室16内に位置する第1電極(陽極)20と、陰極室18内に位置する第2電極(対向電極、陰極)22と、第1および第2電極間に設けられた2つの隔膜26a、26bと、第1電極22と隔膜26aとの間に挟まれた多孔質膜24aと、第2電極22と隔膜26bとの間に挟まれた多孔質膜24bと、を有している。隔膜26a、26bは、隙間をおいて互いに平行に対向し、これらの隔膜26a、26b間に、電解液を保持する中間室(電解液室)19を形成している。中間室19内に、電解液を保持する保持体25を設けても良い。第1電極20および第2電極22は、絶縁性を有する複数のブリッジ60により、互いに連結してもよい。 The electrode unit 12 is provided between a first electrode (anode) 20 positioned in the anode chamber 16, a second electrode (counter electrode, cathode) 22 positioned in the cathode chamber 18, and the first and second electrodes. Two diaphragms 26a and 26b, a porous film 24a sandwiched between the first electrode 22 and the diaphragm 26a, and a porous film 24b sandwiched between the second electrode 22 and the diaphragm 26b. Have. The diaphragms 26a and 26b face each other in parallel with a gap, and an intermediate chamber (electrolyte chamber) 19 for holding the electrolyte is formed between the diaphragms 26a and 26b. A holding body 25 that holds the electrolytic solution may be provided in the intermediate chamber 19. The first electrode 20 and the second electrode 22 may be connected to each other by a plurality of bridges 60 having insulating properties.
 電解装置10は、電極ユニット12の第1および第2電極20、22に電圧を印加するための電源30、電流計32、電圧計34、およびこれらを制御する制御装置36を備えている。陽極室16、陰極室18には液体の流路を設けても良い。陽極室16、陰極室18には、外部から液体を供給、排出するための配管やポンプ等を接続してもよい。また、場合により、電極ユニット12と陽極室16あるいは陰極室18との間に多孔質のスペーサーを設けてもよい。 The electrolysis apparatus 10 includes a power supply 30 for applying a voltage to the first and second electrodes 20 and 22 of the electrode unit 12, an ammeter 32, a voltmeter 34, and a control device 36 for controlling them. A liquid channel may be provided in the anode chamber 16 and the cathode chamber 18. You may connect the anode chamber 16 and the cathode chamber 18 with piping, a pump, etc. for supplying and discharging a liquid from the outside. In some cases, a porous spacer may be provided between the electrode unit 12 and the anode chamber 16 or the cathode chamber 18.
 図10および図11に示すように、電極ユニット12において、第1電極20および第2電極22は、前述した第1の実施形態と同様の多孔構造に構成されている。連続的な多孔質膜24aは、例えば、第1電極20とほぼ等しい寸法の矩形状に形成され、第1表面22aの全面と対向している。連続的な多孔質膜24bは、第2電極22とほぼ等しい寸法の矩形状に形成され、第1表面23aの全面と対向している。これらの多孔質膜24a、24bとしては、不織布やクロス、ゾルーゲル法で形成されるような多孔質膜を用いることができ、種々の材質のものを用いることができる。これらの多孔質膜の中では、フッ素原子もしくは塩素原子を主鎖に含む高分子膜や、ガラスクロス、不規則的な連続孔を有する無機酸化物を含有する膜であることが化学的に安定であり好ましい。多孔質膜24a、24bは、不規則的な孔を有する無機酸化物を含有する膜であれば、隔膜26a、26bを兼ねることも可能である。多孔質膜24a、24bは、孔径の異なる複数の多孔質膜の積層膜を用いてもよい。 As shown in FIGS. 10 and 11, in the electrode unit 12, the first electrode 20 and the second electrode 22 are configured to have the same porous structure as that of the first embodiment described above. The continuous porous film 24a is formed in, for example, a rectangular shape having substantially the same dimensions as the first electrode 20, and faces the entire surface of the first surface 22a. The continuous porous film 24b is formed in a rectangular shape having substantially the same dimensions as the second electrode 22, and faces the entire surface of the first surface 23a. As these porous membranes 24a and 24b, porous membranes formed by a nonwoven fabric, cloth, or sol-gel method can be used, and various materials can be used. Among these porous membranes, it is chemically stable to be a polymer membrane containing fluorine or chlorine atoms in the main chain, or a membrane containing glass cloth or an inorganic oxide having irregular continuous pores. It is preferable. The porous films 24a and 24b can also serve as the diaphragms 26a and 26b as long as the films contain an inorganic oxide having irregular pores. As the porous films 24a and 24b, a laminated film of a plurality of porous films having different pore diameters may be used.
 隔膜26aは、例えば、第1電極20とほぼ等しい寸法の矩形状に形成され、第1電極20の第1表面22aと対向している。第1電極20の第1表面22aと隔膜26aとの間に多孔質膜24aが挟持され、第1電極20および隔膜26aに密着している。 For example, the diaphragm 26 a is formed in a rectangular shape having substantially the same dimensions as the first electrode 20, and faces the first surface 22 a of the first electrode 20. A porous membrane 24a is sandwiched between the first surface 22a of the first electrode 20 and the diaphragm 26a, and is in close contact with the first electrode 20 and the diaphragm 26a.
 隔膜26bは、例えば、第2電極22とほぼ等しい寸法の矩形状に形成され、第2電極22の第1表面23aと対向している。第2電極22の第1表面23aと隔膜26bとの間に多孔質膜24bが挟持され、第2電極22および隔膜26bに密着している。 For example, the diaphragm 26 b is formed in a rectangular shape having substantially the same dimensions as the second electrode 22, and faces the first surface 23 a of the second electrode 22. A porous membrane 24b is sandwiched between the first surface 23a of the second electrode 22 and the diaphragm 26b, and is in close contact with the second electrode 22 and the diaphragm 26b.
 隔膜26a、26bは、イオンおよび/もしくは液体を透過させる膜である。隔膜26a、26bとして、前述の第1の実施形態で説明した、種々の電解質膜やナノポアを有する多孔質膜を用いることができる。 The diaphragms 26a and 26b are membranes that allow ions and / or liquids to pass therethrough. As the diaphragms 26a and 26b, the various electrolyte membranes and porous membranes having nanopores described in the first embodiment can be used.
 以上のように構成された第6の実施形態においても、前述した第1の実施形態と同様の作用効果を得ることができ、反応効率が高く、長寿命の電極ユニットおよび電解装置が得られる。 Also in the sixth embodiment configured as described above, the same operational effects as those of the first embodiment described above can be obtained, and an electrode unit and an electrolysis apparatus having high reaction efficiency and a long life can be obtained.
 次に、種々の実施例および比較例について説明する。 
 (実施例1) 
 電極基材21は、板厚T1が0.5mmの平坦なチタン板を用い、このチタン板を図4で示したエッチングすることにより、電極を作製する。電極の内、小径の第1孔部40を含んだ領域の厚み(第1孔部の深さ)T2は0.15mm、大径の第2孔部42を含んだ領域の厚み(第2孔部の深さ)T3は0.35mmである。第1孔部40は正方形とし、正方形の頂点は丸まっているが直線部を外挿して得られる正方形の一辺R1は0.57mm、第2孔部42は正方形とし、その一辺R2は2mmである。隣合う第1孔部40間に形成される線状部の幅W1は0.1mm、隣合う第2孔部42間に形成される幅広の線状部の幅W2は1.0mmである。
Next, various examples and comparative examples will be described.
(Example 1)
The electrode base material 21 uses a flat titanium plate having a plate thickness T1 of 0.5 mm, and an electrode is produced by etching the titanium plate shown in FIG. Among the electrodes, the thickness (the first hole depth) T2 of the region including the small-diameter first hole 40 is 0.15 mm, and the thickness (second hole) of the region including the large-diameter second hole 42 is selected. Part depth) T3 is 0.35 mm. The first hole 40 has a square shape, and the apex of the square is rounded, but one side R1 of the square obtained by extrapolating the straight line portion is 0.57 mm, the second hole portion 42 is a square, and the one side R2 is 2 mm. . The width W1 of the linear portion formed between the adjacent first hole portions 40 is 0.1 mm, and the width W2 of the wide linear portion formed between the adjacent second hole portions 42 is 1.0 mm.
 予め、電極基材21を10wt%シュウ酸水溶液中で1時間、80℃で処理する。塩化イリジウム(IrCl3・nH2O)に1-ブタノールを0.25M(Ir)になるように加えて調整し、電極基材21の第1孔部40が形成された面(第1表面)に塗布した後、乾燥と焼成をする。この場合、乾燥は80℃で10分間行ない、焼成は450℃で10分間行なう。こうした塗布、乾燥、焼成を5回繰り返した電極基材を、反応電極面積が3cm×4cmの大きさに切り出して、第1電極(陽極)20とする。第1電極20の凹部を除いた平坦部の平均粗さはAFMの測定から1μmである。 
 また、上述した電極基材の第1孔部が形成された第1表面に白金をスパッタすることにより、第2電極(対向電極、陰極)22を作製する。
In advance, the electrode substrate 21 is treated at 80 ° C. for 1 hour in a 10 wt% oxalic acid aqueous solution. The surface on which the first hole 40 of the electrode substrate 21 is formed (first surface) by adjusting iridium chloride (IrCl 3 .nH 2 O) by adding 1-butanol to 0.25 M (Ir) After coating, drying and baking are performed. In this case, drying is performed at 80 ° C. for 10 minutes, and baking is performed at 450 ° C. for 10 minutes. The electrode base material in which such coating, drying, and baking are repeated five times is cut into a reaction electrode area of 3 cm × 4 cm to form a first electrode (anode) 20. The average roughness of the flat portion excluding the concave portion of the first electrode 20 is 1 μm from the measurement of AFM.
Moreover, the 2nd electrode (counter electrode, cathode) 22 is produced by sputter | spatterring platinum to the 1st surface in which the 1st hole part of the electrode base material mentioned above was formed.
 得られた第1および第2電極を用いて、図11に示す電極ユニット12を作製する。隔膜26aとして陰イオン交換膜であるトクヤマ製のA201を用い、隔膜26bとしてNAFION(商標)117を用いる。多孔質膜24a、24bとしてガラスクロス(膜厚75μm)を用いる。電解液を保持する保持体25として、厚さ5mmの多孔質ポリスチレンを中間室(電解液室)19に設けている。これら第1および第2電極、多孔質膜、隔壁、多孔質ポリスチレンをシリコーンシール剤およびネジを用いて重ね合わせて固定し、電極ユニット12とする。この電極ユニット12を用いて、図10に示す電解槽11および電解装置10を作製する。 The electrode unit 12 shown in FIG. 11 is produced using the obtained first and second electrodes. A201 manufactured by Tokuyama, which is an anion exchange membrane, is used as the diaphragm 26a, and NAFION (trademark) 117 is used as the diaphragm 26b. Glass cloth (thickness 75 μm) is used as the porous films 24a and 24b. A porous polystyrene having a thickness of 5 mm is provided in the intermediate chamber (electrolytic solution chamber) 19 as a holding body 25 for holding the electrolytic solution. The first and second electrodes, the porous membrane, the partition walls, and the porous polystyrene are overlapped and fixed using a silicone sealant and screws to form an electrode unit 12. Using this electrode unit 12, the electrolytic cell 11 and the electrolysis apparatus 10 shown in FIG. 10 are produced.
 電解槽11の陽極室16および陰極室18は、それぞれストレート流路が形成された塩化ビニル製の容器で形成している。制御装置36、電源30、電圧計34、電流計32を設置する。陽極室16および陰極室18に水を供給するための配管とポンプを電解槽11に接続し、電極ユニット12の保持体(多孔質ポリスチレン)25に飽和食塩水を循環供給するための飽和食塩水タンクと配管、ポンプを電極ユニットに接続している。 The anode chamber 16 and the cathode chamber 18 of the electrolytic cell 11 are each formed of a vinyl chloride container in which straight channels are formed. A control device 36, a power source 30, a voltmeter 34, and an ammeter 32 are installed. Pipes and pumps for supplying water to the anode chamber 16 and the cathode chamber 18 are connected to the electrolytic cell 11, and saturated saline for circulating and supplying saturated saline 25 to the holder (porous polystyrene) 25 of the electrode unit 12. The tank, piping and pump are connected to the electrode unit.
 電解装置10を用いて、電圧5V、電流1.5Aで電解を行い、陽極20側では次亜塩素酸水を、陰極22側では水酸化ナトリウム水を生成する。1000時間の連続運転後でも、電圧上昇や生成物濃度の変化はほとんど見られず、安定した電解処理を実行することができる。 Electrolysis is performed using the electrolysis apparatus 10 at a voltage of 5 V and a current of 1.5 A, and hypochlorous acid water is generated on the anode 20 side and sodium hydroxide water is generated on the cathode 22 side. Even after 1000 hours of continuous operation, there is almost no increase in voltage or change in product concentration, and stable electrolytic treatment can be performed.
(実施例2) 
 エッチング時のマスクを変え、3x4cmの電極基材の中央部1x1.4cmにおける第1孔部40は正方形とし、その一辺R1は0.7mm、線状部の幅W1が0.2mmとなるように第1電極20を作製する。第2孔部42は正方形として、その一辺は2mmである。中央部の第2孔部には第1孔部が2x2個含まれる。他の構成は実施例1と同様にして、電極ユニット12および電解装置10を作製する。
(Example 2)
Change the mask at the time of etching so that the first hole 40 in the central portion 1 × 1.4 cm of the 3 × 4 cm electrode base material is square, the one side R1 thereof is 0.7 mm, and the width W1 of the linear portion is 0.2 mm. The first electrode 20 is produced. The 2nd hole 42 is made into a square, and the one side is 2 mm. The center second hole includes 2 × 2 first holes. Other configurations are the same as in Example 1, and the electrode unit 12 and the electrolyzer 10 are produced.
 この電解装置10を用いて、電圧4.8V、電流1.5Aで電解を行い、陽極20側では次亜塩素酸水を、陰極22側では水酸化ナトリウム水を生成する。1000時間の連続運転後でも、電圧上昇や生成物濃度の変化はほとんど見られず、安定した電解処理を実行することができる。 Using this electrolyzer 10, electrolysis is performed at a voltage of 4.8 V and a current of 1.5 A, and hypochlorous acid water is generated on the anode 20 side and sodium hydroxide water is generated on the cathode 22 side. Even after 1000 hours of continuous operation, there is almost no increase in voltage or change in product concentration, and stable electrolytic treatment can be performed.
(実施例3) 
 多孔質膜として、ガラスクロスの代わりに、ポリ塩化ビニリデン製の不織布を用いる。他の構成は実施例1に同様として、電極ユニット12および電解装置10を作製する。
(Example 3)
As the porous film, a nonwoven fabric made of polyvinylidene chloride is used instead of glass cloth. Other configurations are the same as those in the first embodiment, and the electrode unit 12 and the electrolysis apparatus 10 are manufactured.
 この電解装置10を用いて、電圧5.1V、電流1.5Aで電解を行い、陽極20側では次亜塩素酸水を、陰極22側では水酸化ナトリウム水を生成する。1000時間の連続運転後でも、電圧上昇や生成物濃度の変化はほとんど見られず、安定した電解処理を実行することができる。 Using this electrolyzer 10, electrolysis is performed at a voltage of 5.1 V and a current of 1.5 A, and hypochlorous acid water is generated on the anode 20 side and sodium hydroxide water is generated on the cathode 22 side. Even after 1000 hours of continuous operation, there is almost no increase in voltage or change in product concentration, and stable electrolytic treatment can be performed.
(実施例4) 
 多孔質膜として、ガラスクロスの代わりに、不規則な孔を有する多孔質の酸化チタン膜を用いる。他の構成は実施例1と同様として、電極ユニット12および電解装置10を作製する。
Example 4
As the porous film, a porous titanium oxide film having irregular pores is used instead of glass cloth. Other configurations are the same as those in the first embodiment, and the electrode unit 12 and the electrolysis apparatus 10 are manufactured.
 この電解装置10を用いて、電圧5.2V、電流1.5Aで電解を行い、陽極20側では次亜塩素酸水を、陰極22側では水酸化ナトリウム水を生成する。1000時間の連続運転後でも、電圧上昇や生成物濃度の変化はほとんど見られず、安定した電解処理を実行することができる。 Using this electrolyzer 10, electrolysis is performed at a voltage of 5.2 V and a current of 1.5 A, and hypochlorous acid water is generated on the anode 20 side and sodium hydroxide water is generated on the cathode 22 side. Even after 1000 hours of continuous operation, there is almost no increase in voltage or change in product concentration, and stable electrolytic treatment can be performed.
(実施例5) 
 多孔質膜として、ガラスクロスの代わりに、テフロン製の不織布を用いる。他の構成は実施例1に同様として、電極ユニット12および電解装置10を作製する。
(Example 5)
As the porous film, a non-woven fabric made of Teflon is used instead of glass cloth. Other configurations are the same as those in the first embodiment, and the electrode unit 12 and the electrolysis apparatus 10 are manufactured.
 この電解装置10を用いて、電圧5.0V、電流1.5Aで電解を行い、陽極20側では次亜塩素酸水を、陰極22側では水酸化ナトリウム水を生成する。1000時間の連続運転後でも、電圧上昇や生成物濃度の変化はほとんど見られず、安定した電解処理を実行することができる。 Using the electrolyzer 10, electrolysis is performed at a voltage of 5.0 V and a current of 1.5 A, and hypochlorous acid water is generated on the anode 20 side and sodium hydroxide water is generated on the cathode 22 side. Even after 1000 hours of continuous operation, there is almost no increase in voltage or change in product concentration, and stable electrolytic treatment can be performed.
(実施例6) 
 実施例1と同様にして作製する第1電極20の広幅の線状部(幅W2)に、スクリーン印刷法を用いて電気絶縁性のポリ塩化ビニルを選択的に塗布し、絶縁膜を形成する他の構成は実施例1と同様にして、電極ユニット12および電解装置10を作製する。
(Example 6)
An electrically insulating polyvinyl chloride is selectively applied to the wide linear portion (width W2) of the first electrode 20 manufactured in the same manner as in Example 1 using a screen printing method to form an insulating film. Other configurations are the same as in Example 1, and the electrode unit 12 and the electrolyzer 10 are produced.
 この電解装置10を用いて、電圧5.3V、電流1.5Aで電解を行い、陽極20側では次亜塩素酸水を、陰極22側では水酸化ナトリウム水を生成する。1000時間の連続運転後でも、電圧上昇や生成物濃度の変化はほとんど見られず、安定した電解処理を実行することができる。 Using this electrolyzer 10, electrolysis is performed at a voltage of 5.3 V and a current of 1.5 A to generate hypochlorous acid water on the anode 20 side and sodium hydroxide water on the cathode 22 side. Even after 1000 hours of continuous operation, there is almost no increase in voltage or change in product concentration, and stable electrolytic treatment can be performed.
(実施例7) 
 実施例1と同様にして多孔構造の第2電極(対向電極)22を作製する。隔膜26として多孔質ガラス膜(膜厚50μm)を用いる。多孔質膜24としてガラスクロス(膜厚75μm)を用いる。これらをシリコーンシール剤およびネジを用いて重ね合わせ電極ユニット12を作製する。
(Example 7)
In the same manner as in Example 1, a porous second electrode (counter electrode) 22 is produced. A porous glass film (film thickness 50 μm) is used as the diaphragm 26. A glass cloth (film thickness 75 μm) is used as the porous film 24. These are overlapped using a silicone sealant and screws to produce the electrode unit 12.
 この電極ユニット12を用いて図9に示した1室型の電解槽11および電解装置10を作製する。制御装置36、電源30、電圧計34、電流計32を設置し、電解室17に食塩水を給するための配管とポンプを設置する。電解装置10を用いて、電圧4.3V、電流1.5Aで電解を行い、次亜塩素酸ナトリウム水を生成する。1000時間の連続運転後でも、電圧上昇や生成物濃度の変化はほとんど見られず、安定した電解処理を実行することができる。 Using this electrode unit 12, the one-chamber electrolytic cell 11 and the electrolyzer 10 shown in FIG. 9 are produced. A control device 36, a power source 30, a voltmeter 34, and an ammeter 32 are installed, and a pipe and a pump for supplying saline to the electrolysis chamber 17 are installed. Electrolysis is performed at a voltage of 4.3 V and a current of 1.5 A using the electrolyzer 10 to generate sodium hypochlorite water. Even after 1000 hours of continuous operation, there is almost no increase in voltage or change in product concentration, and stable electrolytic treatment can be performed.
(実施例8) 
 多孔質膜として、ガラスクロスの代わりに、酸化チタンを含有した膜をコートしたポリフェニレンスルフィド多孔質膜を用いる。隔膜26aおよび26bとして上記酸化チタンを含有した膜をコートしたポリフェニレンスルフィド膜を兼ねさせる。他の構成は実施例1に同様として、電極ユニット12および電解装置10を作製する。
(Example 8)
As the porous film, a polyphenylene sulfide porous film coated with a film containing titanium oxide is used instead of glass cloth. As the diaphragms 26a and 26b, a polyphenylene sulfide film coated with the above-described film containing titanium oxide is also used. Other configurations are the same as those in the first embodiment, and the electrode unit 12 and the electrolysis apparatus 10 are manufactured.
 この電解装置10を用いて、電圧4.8V、電流1.5Aで電解を行い、陽極20側では次亜塩素酸水を、陰極22側では水酸化ナトリウム水を生成する。2000時間の連続運転後でも、電圧上昇や生成物濃度の変化はほとんど見られず、安定した電解処理を実行することができる。 Using this electrolyzer 10, electrolysis is performed at a voltage of 4.8 V and a current of 1.5 A, and hypochlorous acid water is generated on the anode 20 side and sodium hydroxide water is generated on the cathode 22 side. Even after 2000 hours of continuous operation, there is almost no increase in voltage or change in product concentration, and stable electrolytic treatment can be performed.
(実施例9) 
 多孔質膜として、酸化チタンを含有した膜をコートしたポリフェニレンスルフィド多孔質膜を用いる代わりに酸化チタンを含有する膜をコートしたガラス製の不織布(ろ紙)を用いる。他の構成は実施例8に同様として、電極ユニット12および電解装置10を作製する。
Example 9
Instead of using a polyphenylene sulfide porous film coated with a film containing titanium oxide, a glass nonwoven fabric (filter paper) coated with a film containing titanium oxide is used as the porous film. The other configuration is the same as in Example 8, and the electrode unit 12 and the electrolyzer 10 are produced.
 この電解装置10を用いて、電圧4.7V、電流1.5Aで電解を行い、陽極20側では次亜塩素酸水を、陰極22側では水酸化ナトリウム水を生成する。2000時間の連続運転後でも、電圧上昇や生成物濃度の変化はほとんど見られず、安定した電解処理を実行することができる。 Using this electrolyzer 10, electrolysis is performed at a voltage of 4.7 V and a current of 1.5 A, and hypochlorous acid water is generated on the anode 20 side and sodium hydroxide water is generated on the cathode 22 side. Even after 2000 hours of continuous operation, there is almost no increase in voltage or change in product concentration, and stable electrolytic treatment can be performed.
(実施例10) 
 多孔質膜として、酸化チタンを含有した膜をコートしたポリフェニレンスルフィド多孔質膜を用いる代わりに酸化ジルコニウムを含有する膜をコートしたガラス製の不織布(ろ紙)を用いる。他の構成は実施例8と同様として、電極ユニット12および電解装置10を作製する。
(Example 10)
Instead of using a polyphenylene sulfide porous film coated with a film containing titanium oxide, a glass nonwoven fabric (filter paper) coated with a film containing zirconium oxide is used as the porous film. The other configuration is the same as in Example 8, and the electrode unit 12 and the electrolyzer 10 are produced.
 この電解装置10を用いて、電圧4.8V、電流1.5Aで電解を行い、陽極20側では次亜塩素酸水を、陰極22側では水酸化ナトリウム水を生成する。2000時間の連続運転後でも、電圧上昇や生成物濃度の変化はほとんど見られず、安定した電解処理を実行することができる。 Using this electrolyzer 10, electrolysis is performed at a voltage of 4.8 V and a current of 1.5 A, and hypochlorous acid water is generated on the anode 20 side and sodium hydroxide water is generated on the cathode 22 side. Even after 2000 hours of continuous operation, there is almost no increase in voltage or change in product concentration, and stable electrolytic treatment can be performed.
(実施例11) 
 多孔質膜として、酸化チタンを含有した膜をコートしたポリフェニレンスルフィド多孔質膜を用いる代わりに、その多孔質膜の電極側表面に、酸化ジルコニウムを含有したより緻密な膜をさらにコートした膜を用いることを除いては実施例8と同様にして、電極ユニット12および電解装置10を作製する。
(Example 11)
Instead of using a polyphenylene sulfide porous film coated with a film containing titanium oxide as the porous film, a film further coated with a denser film containing zirconium oxide is used on the electrode side surface of the porous film. Except for this, the electrode unit 12 and the electrolyzer 10 are produced in the same manner as in Example 8.
 この電解装置10を用いて、電圧4.9V、電流1.5Vで電解を行い、陽極20側では次亜塩素酸水を、陰極22側では水酸化ナトリウム水を生成する。2000時間の連続運転でも、電圧上昇や生成物の変化はほとんど見られず、安定した電解処理をすることができる。 Using the electrolyzer 10, electrolysis is performed at a voltage of 4.9 V and a current of 1.5 V, and hypochlorous acid water is generated on the anode 20 side and sodium hydroxide water is generated on the cathode 22 side. Even in continuous operation for 2000 hours, almost no voltage increase or product change is observed, and stable electrolytic treatment can be performed.
(実施例12) 
 多孔質膜として、酸化チタンを含有した膜をコートしたポリフェニレンスルフィド多孔質膜を用いる代わりに、酸化ジルコニウムを含有した膜をコートしたテフロン多孔質膜をコートした膜を用いることを除いては実施例8と同様にして、電極ユニット12および電解装置10を作製する。
Example 12
Except for using a porous film made of a Teflon porous film coated with a film containing zirconium oxide instead of using a polyphenylene sulfide porous film coated with a film containing titanium oxide as a porous film. In the same manner as in FIG. 8, the electrode unit 12 and the electrolyzer 10 are produced.
 この電解装置10を用いて、電圧4.9V、電流1.5Vで電解を行い、陽極20側では次亜塩素酸水を、陰極22側では水酸化ナトリウム水を生成する。2500時間の連続運転でも、電圧上昇や生成物の変化はほとんど見られず、安定した電解処理をすることができる。 Using the electrolyzer 10, electrolysis is performed at a voltage of 4.9 V and a current of 1.5 V, and hypochlorous acid water is generated on the anode 20 side and sodium hydroxide water is generated on the cathode 22 side. Even during continuous operation for 2500 hours, almost no voltage increase or product change is observed, and stable electrolytic treatment can be performed.
(実施例13) 
 電極基材21は、板厚T1が0.5mmの平坦なチタン板を用い、このチタン板を図4で示したエッチングすることにより、電極を作製する。電極の内、小径の第1孔部40を含んだ領域の厚み(第1孔部の深さ)T2は0.15mm、大径の第2孔部42を含んだ領域の厚み(第2孔部の深さ)T3は0.35mmである。第1孔部40はひし形とし、長い対角線を0.69mm、短い対角線を0.4mmとする。第2孔部42はひし形とし、長い対角線を6.1mm、短い対角線を3.5mmとする。隣合う第1孔部40間に形成される線状部の幅W1は0.15mm、隣合う第2孔部42間に形成される幅広の線状部の幅W2は1mmである。他の構成は実施例1と同様にして、電極ユニット12および電解装置10を作製する。
(Example 13)
The electrode base material 21 uses a flat titanium plate having a plate thickness T1 of 0.5 mm, and an electrode is produced by etching the titanium plate shown in FIG. Among the electrodes, the thickness (the first hole depth) T2 of the region including the small-diameter first hole 40 is 0.15 mm, and the thickness (second hole) of the region including the large-diameter second hole 42 is selected. Part depth) T3 is 0.35 mm. The 1st hole part 40 is made into a rhombus, and makes a long diagonal line 0.69mm and a short diagonal line 0.4mm. The 2nd hole 42 is made into a rhombus, a long diagonal is 6.1 mm, and a short diagonal is 3.5 mm. The width W1 of the linear portion formed between the adjacent first hole portions 40 is 0.15 mm, and the width W2 of the wide linear portion formed between the adjacent second hole portions 42 is 1 mm. Other configurations are the same as in Example 1, and the electrode unit 12 and the electrolyzer 10 are produced.
 この電解装置10を用いて、電圧5.3V、電流1.5Aで電解を行い、陽極20側では次亜塩素酸水を、陰極22側では水酸化ナトリウム水を生成する。1000時間の連続運転後でも、電圧上昇や生成物濃度の変化はほとんど見られず、安定した電解処理を実行することができる。 Using this electrolyzer 10, electrolysis is performed at a voltage of 5.3 V and a current of 1.5 A to generate hypochlorous acid water on the anode 20 side and sodium hydroxide water on the cathode 22 side. Even after 1000 hours of continuous operation, there is almost no increase in voltage or change in product concentration, and stable electrolytic treatment can be performed.
 (実施例14) 
 電極基材21は、板厚T1が0.5mmの平坦なチタン板を用い、このチタン板を図4で示したエッチングすることにより、電極を作製する。電極の内、小径の第1孔部40を含んだ領域の厚み(第1孔部の深さ)T2は0.15mm、大径の第2孔部42を含んだ領域の厚み(第2孔部の深さ)T3は0.35mmである。第1孔部40は正方形とし、その一辺R1は0.57mm、第2孔部42は長方形とし、その長辺は40mm、短辺は4mmである。隣合う第1孔部40間に形成される線状部の幅W1は0.1mm、隣合う第2孔部42間に形成される幅広の線状部の幅W2は1.0mmである。他の構成は実施例1と同様にして、電極ユニット12および電解装置10を作製する。
(Example 14)
The electrode base material 21 uses a flat titanium plate having a plate thickness T1 of 0.5 mm, and an electrode is produced by etching the titanium plate shown in FIG. Among the electrodes, the thickness (the first hole depth) T2 of the region including the small-diameter first hole 40 is 0.15 mm, and the thickness (second hole) of the region including the large-diameter second hole 42 is selected. Part depth) T3 is 0.35 mm. The first hole 40 is square, its one side R1 is 0.57 mm, the second hole 42 is rectangular, its long side is 40 mm, and its short side is 4 mm. The width W1 of the linear portion formed between the adjacent first hole portions 40 is 0.1 mm, and the width W2 of the wide linear portion formed between the adjacent second hole portions 42 is 1.0 mm. Other configurations are the same as in Example 1, and the electrode unit 12 and the electrolyzer 10 are produced.
 この電解装置10を用いて、電圧5.8V、電流1.5Aで電解を行い、陽極20側では次亜塩素酸水を、陰極22側では水酸化ナトリウム水を生成する。1000時間の連続運転後でも、電圧上昇や生成物濃度の変化はほとんど見られず、安定した電解処理を実行することができる。 Using this electrolyzer 10, electrolysis is performed at a voltage of 5.8 V and a current of 1.5 A, and hypochlorous acid water is generated on the anode 20 side and sodium hydroxide water is generated on the cathode 22 side. Even after 1000 hours of continuous operation, there is almost no increase in voltage or change in product concentration, and stable electrolytic treatment can be performed.
(比較例1) 
 連続的な多孔質膜を用いないことを除いては、実施例1と同様にして電解装置を作製する。この電解装置を用いて、電圧5V、電流1.5Aで電解を行い、陽極側では次亜塩素酸水を、陰極側では水酸化ナトリウム水を生成する。1000時間の連続運転後では、電圧の大幅上昇や生成物濃度の低下が見られ、長期安定性に欠ける。
(Comparative Example 1)
An electrolysis device is produced in the same manner as in Example 1 except that a continuous porous membrane is not used. Using this electrolyzer, electrolysis is performed at a voltage of 5 V and a current of 1.5 A, and hypochlorous acid water is generated on the anode side and sodium hydroxide water is generated on the cathode side. After 1000 hours of continuous operation, a significant increase in voltage and a decrease in product concentration are observed, and long-term stability is lacking.
(比較例2) 
 エッチングで電極を作製する代わりに、電極基材に径1mmの貫通孔をパンチングで形成し、実施例1の電極と同じ開口率にした電極を用いる。他の構成は実施例1に同様として、電極ユニットおよび電解装置を作製する。
(Comparative Example 2)
Instead of producing the electrode by etching, a through hole having a diameter of 1 mm is formed in the electrode substrate by punching, and an electrode having the same aperture ratio as that of the electrode of Example 1 is used. Other configurations are the same as those in the first embodiment, and an electrode unit and an electrolysis apparatus are manufactured.
 この電解装置を用いて、電圧5.2V、電流1.5Aで電解を行い、陽極側では次亜塩素酸水を、陰極側では水酸化ナトリウム水を生成する。1000時間の連続運転後では、電圧の大幅上昇や生成物濃度の低下が見られ、長期安定性に欠ける。 Using this electrolyzer, electrolysis is performed at a voltage of 5.2 V and a current of 1.5 A, and hypochlorous acid water is generated on the anode side and sodium hydroxide water is generated on the cathode side. After 1000 hours of continuous operation, a significant increase in voltage and a decrease in product concentration are observed, and long-term stability is lacking.
 本発明は上述した実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。 
 例えば、第1電極および第2電極は、矩形状に限定されることなく、他の種々の形状を選択可能である。第1電極の第1孔部および第2孔部は、正方形に限定されることなく、長方形、ひし形、円形、楕円形等、他の種々の形状としてもよい。各構成部材の材料は、前述した実施形態および実施例に限定されるものではなく、他の材料を適宜選択可能である。電極装置の電解槽は、1~3室型の電解槽に限定されることなく、電極を用いた電解槽全般に適用することができる。電解質や生成物も塩や次亜塩素酸に限るものではなく、様々な電解質や生成物に展開してもよい。
The present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.
For example, the first electrode and the second electrode are not limited to a rectangular shape, and other various shapes can be selected. The first hole and the second hole of the first electrode are not limited to a square, and may be various other shapes such as a rectangle, a diamond, a circle, and an ellipse. The material of each constituent member is not limited to the above-described embodiments and examples, and other materials can be appropriately selected. The electrolytic cell of the electrode device is not limited to a 1 to 3 chamber type electrolytic cell, and can be applied to all electrolytic cells using electrodes. Electrolytes and products are not limited to salts and hypochlorous acid, and may be applied to various electrolytes and products.

Claims (20)

  1.  第1表面と、この第1表面と反対側に位置する第2表面と、前記第1表面に開口する複数の第1孔部と、前記第2表面に開口しているとともに、前記第1孔部よりも開口面積の大きい複数の第2孔部と、を有し、1つの前記第2孔部に複数の前記第1孔部が連通している第1電極と、
     前記第1電極の第1表面に対向して設けられた第2電極と、
     前記第1電極と第2電極との間に配置され、前記第1電極の前記第1表面を覆う連続的な多孔質膜と、
     を備える電極ユニット。
    A first surface, a second surface located opposite to the first surface, a plurality of first holes opened in the first surface, an opening in the second surface, and the first hole A plurality of second holes having a larger opening area than the first part, and a first electrode in which the plurality of first holes communicates with one second hole,
    A second electrode provided opposite to the first surface of the first electrode;
    A continuous porous membrane disposed between the first electrode and the second electrode and covering the first surface of the first electrode;
    An electrode unit comprising:
  2.  前記第1孔部の前記第1表面の開口面積が0.01~4mmである請求項1に記載の電極ユニット。 The electrode unit according to claim 1, wherein an opening area of the first surface of the first hole portion is 0.01 to 4 mm 2 .
  3.  前記第2孔部の第2表面の開口面積が1~1600mmである請求1又は2記載の電極ユニット。 The electrode unit according to claim 1 or 2, wherein an opening area of the second surface of the second hole portion is 1 to 1600 mm 2 .
  4.  前記第1孔部の単位面積当たりの数密度は、前記第2孔部の単位面積当りの数密度よりも大きい請求項1から3のいずれか1項に記載の電極ユニット。 The electrode unit according to any one of claims 1 to 3, wherein the number density per unit area of the first hole is larger than the number density per unit area of the second hole.
  5.  前記第1電極の前記第1表面および第2表面に触媒層が形成され、触媒層の単位面積当たりの量は、前記第1表面と第2表面とで異なる請求項1から4のいずれか1項に記載の電極ユニット。 The catalyst layer is formed on the first surface and the second surface of the first electrode, and the amount per unit area of the catalyst layer is different between the first surface and the second surface. The electrode unit according to item.
  6.  前記第1孔部は、前記第1表面側が広くなるテーパー面状あるいは湾曲面状により形成されている請求項1から5のいずれか1項に記載の電極ユニット。 The electrode unit according to any one of claims 1 to 5, wherein the first hole portion is formed in a tapered surface shape or a curved surface shape in which the first surface side is widened.
  7.  前記第1電極は、前記第1表面に形成された凹部を有し、前記第1表面は、前記第1孔部および凹部を除いて、平坦に形成されている請求項1から6のいずれか1項に記載の電極ユニット。 The said 1st electrode has a recessed part formed in the said 1st surface, The said 1st surface is formed in flat except the said 1st hole and recessed part. 2. The electrode unit according to item 1.
  8.  前記第1電極の平坦部の平均粗さが多孔質膜の平均膜厚の10%以下である請求項7に記載の電極ユニット。 The electrode unit according to claim 7, wherein the average roughness of the flat portion of the first electrode is 10% or less of the average film thickness of the porous film.
  9.  前記第1電極は、前記第1電極の中心部に位置する第1孔部の開口率が、前記第1電極の周縁部に位置する第1孔部の開口率よりも小さい請求項1から8のいずれか1項に記載の電極ユニット。 9. The first electrode according to claim 1, wherein the first electrode has an aperture ratio of a first hole located at a center portion of the first electrode smaller than an aperture ratio of a first hole located at a peripheral edge of the first electrode. The electrode unit according to any one of the above.
  10.  前記第1電極の前記第1表面の少なくとも一部に、液体を透過させない電気絶縁性を有する絶縁膜が形成されている請求項1から9のいずれか1項に記載の電極ユニット。 The electrode unit according to any one of claims 1 to 9, wherein an insulating film having an electrical insulation property that does not transmit liquid is formed on at least a part of the first surface of the first electrode.
  11.  前記第2電極は、複数の貫通孔を備える多孔構造を有する請求項1から10のいずれか1項に記載の電極ユニット。 The electrode unit according to any one of claims 1 to 10, wherein the second electrode has a porous structure including a plurality of through holes.
  12.  前記多孔質膜は、フッ素原子もしくは塩素原子を主鎖に含む高分子膜である請求項1から11のいずれか1項に記載の電極ユニット。 The electrode unit according to any one of claims 1 to 11, wherein the porous film is a polymer film containing a fluorine atom or a chlorine atom in the main chain.
  13.  前記多孔質膜は、ガラスクロスである請求項1から11のいずれか1項に記載の電極ユニット。 The electrode unit according to any one of claims 1 to 11, wherein the porous film is a glass cloth.
  14.  前記多孔質膜は、面内および立体的に不規則的な孔を有する無機酸化物を含有する膜である請求項1から11のいずれか1項に記載の電極ユニット。 The electrode unit according to any one of claims 1 to 11, wherein the porous film is a film containing an inorganic oxide having in-plane and sterically irregular pores.
  15.  前記多孔質膜は、孔径の異なる複数の多孔質膜を積層した積層膜である請求項1から14のいずれか1項に記載の電極ユニット。 The electrode unit according to any one of claims 1 to 14, wherein the porous film is a laminated film in which a plurality of porous films having different pore diameters are laminated.
  16.  前記第1電極の前記第1表面と前記第2電極との間に設けられ、イオンおよび液体の少なくとも一方を透過する隔膜を更に備え、前記多孔質膜は、前記第1電極の第1表面と前記隔膜との間に挟持されている請求項1から15のいずれか1項に記載の電極ユニット。 A diaphragm provided between the first surface of the first electrode and the second electrode and transmitting at least one of ions and liquid; and the porous membrane includes a first surface of the first electrode The electrode unit according to claim 1, wherein the electrode unit is sandwiched between the diaphragm.
  17.  前記第1電極と第2電極との間に互いに対向して配置された2つの隔膜と、前記2つの隔膜間に位置し、電解液を保持する電解液保持構造部と、を備えている請求項1から16のいずれか1項に記載の電極ユニット。 Two diaphragms disposed opposite to each other between the first electrode and the second electrode, and an electrolyte solution holding structure portion that is located between the two diaphragms and holds the electrolyte solution. Item 17. The electrode unit according to any one of Items 1 to 16.
  18.  電解室と、前記電解室内に配置された請求項1から17のいずれか1項に記載の電極ユニットと、を備える電解槽。 An electrolytic cell comprising an electrolysis chamber and the electrode unit according to any one of claims 1 to 17 disposed in the electrolysis chamber.
  19.  電解室を有する電解槽と、前記電解室内に配置された請求項1から17のいずれか1項に記載の電極ユニットと、前記電極ユニットの第1電極および第2電極に電圧を印加する電源と、を備える電解装置。 An electrolytic cell having an electrolysis chamber, an electrode unit according to any one of claims 1 to 17 disposed in the electrolysis chamber, a power source for applying a voltage to the first electrode and the second electrode of the electrode unit, An electrolysis apparatus comprising:
  20.  前記電極ユニットにより塩化物イオンを含む電解質を電解する請求項19に記載の電解装置。 The electrolysis apparatus according to claim 19, wherein the electrode unit electrolyzes an electrolyte containing chloride ions.
PCT/JP2015/056547 2014-09-19 2015-03-05 Electrode unit, electrolytic bath provided with electrode unit, and electrolysis device WO2016042802A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580044144.XA CN106661744A (en) 2014-09-19 2015-03-05 Electrode unit, electrolytic bath provided with electrode unit, and electrolysis device
JP2016505348A JP6407963B2 (en) 2014-09-19 2015-03-05 Electrode unit, electrolytic cell including electrode unit, and electrolysis apparatus
US15/065,332 US20160186336A1 (en) 2014-09-19 2016-03-09 Electrode unit, electrolytic cell comprising electrode unit and electrolytic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014192015 2014-09-19
JP2014-192015 2014-09-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/065,332 Continuation US20160186336A1 (en) 2014-09-19 2016-03-09 Electrode unit, electrolytic cell comprising electrode unit and electrolytic device

Publications (1)

Publication Number Publication Date
WO2016042802A1 true WO2016042802A1 (en) 2016-03-24

Family

ID=55532851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056547 WO2016042802A1 (en) 2014-09-19 2015-03-05 Electrode unit, electrolytic bath provided with electrode unit, and electrolysis device

Country Status (4)

Country Link
US (1) US20160186336A1 (en)
JP (1) JP6407963B2 (en)
CN (1) CN106661744A (en)
WO (1) WO2016042802A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017017977A1 (en) * 2015-07-29 2017-02-02 株式会社 東芝 Electrode for electrolysis, electrode unit, and electrolysis apparatus
WO2017047129A1 (en) * 2015-09-15 2017-03-23 株式会社 東芝 Electrode, electrode unit, and electrolysis device
WO2017158832A1 (en) * 2016-03-18 2017-09-21 株式会社 東芝 Electrolysis electrode, electrode unit, and electrolyte water generating device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017107891A1 (en) * 2017-04-12 2018-10-18 Willi Bernard Method for controlling an electrolytic cell for the electrolytic production of ozone and a device for disinfecting water
JP6420870B1 (en) * 2017-06-08 2018-11-07 株式会社日本トリム Electrolyzed water generator
CN107268025A (en) * 2017-07-21 2017-10-20 刘秋雷 One kind electrolyzes table salt water electrode
CN107475741A (en) * 2017-10-11 2017-12-15 立宝(清远)实业有限公司 A kind of electrolytic water electric pole piece
US20220025530A1 (en) * 2018-09-21 2022-01-27 Asahi Kasei Kabushiki Kaisha Electrode for electrolysis and laminate
KR102313539B1 (en) * 2018-11-21 2021-10-15 이연주 Sterilizing electrode and method thereof and sterilizer using same
CN113044933A (en) * 2021-04-07 2021-06-29 湖南满缘红水科技有限公司 Low-salt EOW electrolytic cell, low-salt EOW electrolytic device and low-salt EOW preparation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110182A (en) * 2000-09-29 2002-04-12 Sony Corp Gas-diffusion electrode and method for making the same, and, electrochemical device and method for making the same
WO2007060807A1 (en) * 2005-11-24 2007-05-31 Sumitomo Electric Hardmetal Corp. Diamond electrode, method for producing same, and electrolytic bath
WO2010140353A1 (en) * 2009-06-02 2010-12-09 パナソニック株式会社 Photoelectrochemical cell
JP2011246800A (en) * 2010-04-30 2011-12-08 Aquaecos Ltd Membrane-electrode assembly, electrolytic cell using the same, apparatus and method for producing ozone water, disinfection method, and method for treating waste water or waste fluid
JP2011246747A (en) * 2010-05-25 2011-12-08 Yokogawa Electric Corp Electrolysis electrode and electrolyzer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006176835A (en) * 2004-12-22 2006-07-06 Nissan Motor Co Ltd Method for manufacturing water electrolysis apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110182A (en) * 2000-09-29 2002-04-12 Sony Corp Gas-diffusion electrode and method for making the same, and, electrochemical device and method for making the same
WO2007060807A1 (en) * 2005-11-24 2007-05-31 Sumitomo Electric Hardmetal Corp. Diamond electrode, method for producing same, and electrolytic bath
WO2010140353A1 (en) * 2009-06-02 2010-12-09 パナソニック株式会社 Photoelectrochemical cell
JP2011246800A (en) * 2010-04-30 2011-12-08 Aquaecos Ltd Membrane-electrode assembly, electrolytic cell using the same, apparatus and method for producing ozone water, disinfection method, and method for treating waste water or waste fluid
JP2011246747A (en) * 2010-05-25 2011-12-08 Yokogawa Electric Corp Electrolysis electrode and electrolyzer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017017977A1 (en) * 2015-07-29 2017-02-02 株式会社 東芝 Electrode for electrolysis, electrode unit, and electrolysis apparatus
WO2017047129A1 (en) * 2015-09-15 2017-03-23 株式会社 東芝 Electrode, electrode unit, and electrolysis device
WO2017158832A1 (en) * 2016-03-18 2017-09-21 株式会社 東芝 Electrolysis electrode, electrode unit, and electrolyte water generating device

Also Published As

Publication number Publication date
US20160186336A1 (en) 2016-06-30
CN106661744A (en) 2017-05-10
JPWO2016042802A1 (en) 2017-06-29
JP6407963B2 (en) 2018-10-17

Similar Documents

Publication Publication Date Title
JP6407963B2 (en) Electrode unit, electrolytic cell including electrode unit, and electrolysis apparatus
JP6441308B2 (en) Electrode unit, electrolytic cell equipped with electrode unit, electrolysis apparatus, and method for producing electrode of electrode unit
JP6542265B2 (en) Porous diaphragm, method for producing the same, electrode unit for producing hypochlorous acid water, and apparatus for producing hypochlorous acid water using the same
JP6258515B2 (en) Electrode unit, electrolyzer, and electrode used in electrolyzer
JP6062597B2 (en) ELECTROLYTIC DEVICE, ELECTRODE UNIT, AND ELECTROLYTIC WATER GENERATION METHOD
JP6639638B2 (en) Electrolysis electrode, electrode unit, and electrolyzed water generator
JP6216806B2 (en) Ion exchange membrane electrolytic cell
JP2006150151A (en) Electrolytic cell of electrolytic water generator
JP6585176B2 (en) Electrode, electrode unit, and electrolysis device
JPWO2017047121A1 (en) Electrode and electrolyzer
JP6408033B2 (en) Electrode unit and electrolysis apparatus using the same
JP2018076554A (en) Anion exchange membrane, electrolytic cell, and electrolytic water generator
JP6208380B2 (en) Electrode for electrolysis, electrode unit, and electrolysis apparatus
JP6746681B2 (en) Method of manufacturing electrode unit and method of manufacturing electrolyzed water generator
JP2018044229A (en) Electrolysis cell, electrolytic water generator using the same and manufacturing method of electrolysis cell
JPWO2020260370A5 (en)
JP2018154909A (en) Method for producing diaphragm and method for producing electrode unit using the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016505348

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15842351

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15842351

Country of ref document: EP

Kind code of ref document: A1