JP2011246747A - Electrolysis electrode and electrolyzer - Google Patents

Electrolysis electrode and electrolyzer Download PDF

Info

Publication number
JP2011246747A
JP2011246747A JP2010118928A JP2010118928A JP2011246747A JP 2011246747 A JP2011246747 A JP 2011246747A JP 2010118928 A JP2010118928 A JP 2010118928A JP 2010118928 A JP2010118928 A JP 2010118928A JP 2011246747 A JP2011246747 A JP 2011246747A
Authority
JP
Japan
Prior art keywords
gas
electrode
electrolysis
liquid separation
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010118928A
Other languages
Japanese (ja)
Inventor
Kazuma Takenaka
一馬 竹中
Yukihiro Shintani
幸弘 新谷
Hiroaki Tanaka
宏明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2010118928A priority Critical patent/JP2011246747A/en
Publication of JP2011246747A publication Critical patent/JP2011246747A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrolysis electrode and an electrolyzer, in which the intrusion of a molten salt to the side of a gas flow passage caused by hydraulic pressure is prevented, an electrolyte and the gas flow passage are stably held, and which therefore has improved gas-liquid separating performance.SOLUTION: The electrolysis electrode includes: a conductive substrate 2 in which through-holes 2a are formed; and a porous membrane 3 which is arranged along the surface of the conductive substrate 2 in which the through-holes 2a are opened and which selectively permeates bubbles 5 from the through-holes 2a to the side of the gas flow passage without permeating an electrolyte. The bubblers 5 generated at the liquid contact face of the conductive substrate 2 are selectively permeated to the gas flow passage through the through-holes 2a by the porous membrane 3.

Description

本発明は、電気分解の効率を向上することによって所望のガスを効率よく生成することが可能な電気分解電極及び電気分解装置に関する。   The present invention relates to an electrolysis electrode and an electrolysis apparatus capable of efficiently generating a desired gas by improving electrolysis efficiency.

特許文献1には、電解液と気体流路を分離するために微細な貫通孔に働くラプラス圧を利用した電気分解装置に関する技術が開示されている。この手法によれば、液圧がラプラス圧以下であれば電解液は貫通孔を通過することができず、電解液と気体流路の界面は安定に保持される。   Patent Document 1 discloses a technique related to an electrolysis apparatus that uses a Laplace pressure acting on a fine through-hole to separate an electrolytic solution and a gas flow path. According to this method, when the hydraulic pressure is equal to or lower than the Laplace pressure, the electrolytic solution cannot pass through the through hole, and the interface between the electrolytic solution and the gas flow path is stably maintained.

国際公開WO2008/132818公報International Publication WO2008 / 132818

しかし、貫通孔の孔径数十um程度の場合ではラプラス圧は非常に小さいため、液圧に依存する電極の浸漬深さは数cm〜十数cm程度に規制されてしまう。また容器内の圧力変動により気体流路側に電解液が侵入する恐れがある。   However, since the Laplace pressure is very small when the diameter of the through hole is about several tens of um, the immersion depth of the electrode depending on the hydraulic pressure is limited to about several centimeters to several tens of centimeters. In addition, there is a risk that the electrolyte may enter the gas flow path due to pressure fluctuations in the container.

本発明の目的は、液圧による気体流路側への溶融塩浸入を防ぎ、電解液と気体流路を安定に保ち、気液分離性能を向上させることができる電気分解電極及び電気分解装置を提供することにある。   An object of the present invention is to provide an electrolysis electrode and an electrolysis device capable of preventing molten salt from entering the gas flow path due to liquid pressure, keeping the electrolyte and the gas flow path stable, and improving the gas-liquid separation performance. There is to do.

本発明の電気分解電極は、電解液の電気分解に際して接液面で発生する発生ガスを前記電解液から分離して気体流路の側に放出する電気分解電極において、微細流路が形成された導電性部材と、前記微細流路が開口する前記導電性部材の表面に沿って配置され、前記電解液を透過させずに前記発生ガスを前記微細流路から前記気体流路の側へ選択的に透過させる多孔質膜と、を備えることを特徴とする。
この電気分解電極によれば、複数の微細流路が形成された導電性部材と、発生ガスを微細流路から気体流路の側へ選択的に透過させる多孔質膜を設けた。多孔質膜により、導電性部材の接液面にて発生したガスを気体流路側へ選択的に透過させる。よって、気体流路への電解液の侵入を防止し、電解液と気体流路とを安定した状態で分離することができる。また、電極部とは別に多孔質膜にて気液分離を行うことにより、ガスが接触する気液分離界面の有効面積を拡大してガスとの接触頻度を向上させることができる。
The electrolysis electrode of the present invention has a fine channel formed in the electrolysis electrode that separates the generated gas generated on the liquid contact surface during electrolysis of the electrolyte from the electrolyte and discharges it to the gas channel side. The conductive member is disposed along the surface of the conductive member where the fine channel opens, and the generated gas is selectively passed from the fine channel to the gas channel without passing through the electrolyte solution. And a porous membrane that is permeated through.
According to this electrolysis electrode, a conductive member in which a plurality of fine channels are formed, and a porous film that selectively transmits generated gas from the fine channels to the gas channel side are provided. By the porous membrane, the gas generated on the liquid contact surface of the conductive member is selectively permeated to the gas channel side. Therefore, the electrolyte solution can be prevented from entering the gas channel, and the electrolyte solution and the gas channel can be separated in a stable state. Further, by performing gas-liquid separation with a porous membrane separately from the electrode part, the effective area of the gas-liquid separation interface with which the gas comes into contact can be expanded and the contact frequency with the gas can be improved.

前記微細流路は前記導電性部材を貫通する貫通孔であって、前記多孔質膜の孔径が前記貫通孔の孔径よりも小さくなるよう構成してもよい。   The fine channel may be a through hole penetrating the conductive member, and the pore diameter of the porous membrane may be smaller than the diameter of the through hole.

前記導電性部材の表面のうち前記電解液との接液面が疎液性となるよう構成してもよい。   You may comprise so that the liquid-contact surface with the said electrolyte solution may become lyophobic among the surfaces of the said electroconductive member.

前記多孔質膜における前記電解液との接液面が疎液性となるよう構成してもよい。   You may comprise so that the liquid-contact surface with the said electrolyte solution in the said porous film may become lyophobic.

前記微細流路から前記気体流路の側へ透過する前記発生ガスを通過させる流路が形成され、かつ、前記気体流路の側から前記多孔質膜を保持する裏打ち基板を備えてもよい。   A flow path through which the generated gas that permeates from the fine flow path to the gas flow path side is formed, and a backing substrate that holds the porous film from the gas flow path side may be provided.

本発明の電気分解装置は、前記電気分解電極を陽極または陰極として用いることを特徴とする。
この電気分解装置によれば、電気分解電極を、複数の微細流路が形成された導電性部材と、発生ガスを微細流路から気体流路の側へ選択的に透過させる多孔質膜を設けて構成する。多孔質膜により、導電性部材の接液面にて発生したガスを気体流路側へ選択的に透過させる。よって、気体流路への電解液の侵入を防止し、電解液と気体流路とを安定した状態で分離することができる。また、電極部とは別に多孔質膜にて気液分離を行うことにより、ガスが接触する気液分離界面の有効面積を拡大してガスとの接触頻度を向上させることができる。また、ガス分離を行うためのスカートなどを電解漕内に取り付ける必要がなくなり、装置の小型化が可能になる。
The electrolysis apparatus of the present invention is characterized in that the electrolysis electrode is used as an anode or a cathode.
According to this electrolysis apparatus, the electrolysis electrode is provided with a conductive member in which a plurality of fine flow paths are formed, and a porous film that selectively permeates the generated gas from the fine flow path to the gas flow path side. Configure. By the porous membrane, the gas generated on the liquid contact surface of the conductive member is selectively permeated to the gas channel side. Therefore, the electrolyte solution can be prevented from entering the gas channel, and the electrolyte solution and the gas channel can be separated in a stable state. Further, by performing gas-liquid separation with a porous membrane separately from the electrode part, the effective area of the gas-liquid separation interface with which the gas comes into contact can be expanded and the contact frequency with the gas can be improved. Further, it is not necessary to attach a skirt or the like for gas separation in the electrolytic bath, and the apparatus can be downsized.

前記電解液としてフッ素化合物を含む溶融塩を用い、前記電気分解電極を陽極として用いてフッ素ガスを発生させてもよい。   A molten salt containing a fluorine compound may be used as the electrolytic solution, and fluorine gas may be generated using the electrolysis electrode as an anode.

本発明の電気分解電極によれば、複数の微細流路が形成された導電性部材と、発生ガスを微細流路から気体流路の側へ選択的に透過させる多孔質膜を設けた。多孔質膜により、導電性部材の接液面にて発生したガスを気体流路側へ選択的に透過させる。よって、気体流路への電解液の侵入を防止し、電解液と気体流路とを安定した状態で分離することができる。また、電極部とは別に多孔質膜にて気液分離を行うことにより、ガスが接触する気液分離界面の有効面積を拡大してガスとの接触頻度を向上させることができる。   According to the electrolysis electrode of the present invention, the conductive member in which a plurality of fine channels are formed and the porous film that selectively transmits the generated gas from the fine channels to the gas channel side are provided. By the porous membrane, the gas generated on the liquid contact surface of the conductive member is selectively permeated to the gas channel side. Therefore, the electrolyte solution can be prevented from entering the gas channel, and the electrolyte solution and the gas channel can be separated in a stable state. Further, by performing gas-liquid separation with a porous membrane separately from the electrode part, the effective area of the gas-liquid separation interface with which the gas comes into contact can be expanded and the contact frequency with the gas can be improved.

本発明の電気分解装置によれば、電気分解電極を、複数の微細流路が形成された導電性部材と、発生ガスを微細流路から気体流路の側へ選択的に透過させる多孔質膜を設けて構成する。多孔質膜により、導電性部材の接液面にて発生したガスを気体流路側へ選択的に透過させる。よって、気体流路への電解液の侵入を防止し、電解液と気体流路とを安定した状態で分離することができる。また、電極部とは別に多孔質膜にて気液分離を行うことにより、ガスが接触する気液分離界面の有効面積を拡大してガスとの接触頻度を向上させることができる。また、ガス分離を行うためのスカートなどを電解漕内に取り付ける必要がなくなり、装置の小型化が可能になる。   According to the electrolysis apparatus of the present invention, the electrolysis electrode includes a conductive member in which a plurality of fine channels are formed, and a porous film that selectively transmits generated gas from the micro channels to the gas channel side. Is provided and configured. By the porous membrane, the gas generated on the liquid contact surface of the conductive member is selectively permeated to the gas channel side. Therefore, the electrolyte solution can be prevented from entering the gas channel, and the electrolyte solution and the gas channel can be separated in a stable state. Further, by performing gas-liquid separation with a porous membrane separately from the electrode part, the effective area of the gas-liquid separation interface with which the gas comes into contact can be expanded and the contact frequency with the gas can be improved. Further, it is not necessary to attach a skirt or the like for gas separation in the electrolytic bath, and the apparatus can be downsized.

一実施形態の気液分離電極1を示す図であり、図1(a)は正面図を示す図、図1(b)は図1(a)のIb−Ib断面図を示す図、図1(c)は導電性基板の正面図を示す図、図1(d)は図1(c)のId−Id断面図を示す図。It is a figure which shows the gas-liquid separation electrode 1 of one Embodiment, FIG. 1 (a) is a figure which shows a front view, FIG.1 (b) is a figure which shows Ib-Ib sectional drawing of Fig.1 (a), FIG. (C) is a figure which shows the front view of an electroconductive board | substrate, FIG.1 (d) is a figure which shows Id-Id sectional drawing of FIG.1 (c). 気液分離電極の変形例を示す図であり、図2(a)〜(c)は図1(a)及び(b)に示す気液分離電極の変形例を示す図、図2(d)〜(f)は図1(c)及び(d)に示す導電性基板の変形例を示す図。It is a figure which shows the modification of a gas-liquid separation electrode, FIG.2 (a)-(c) is a figure which shows the modification of the gas-liquid separation electrode shown to FIG.1 (a) and (b), FIG.2 (d). (F) is a figure which shows the modification of the electroconductive board | substrate shown to FIG.1 (c) and (d). 気液分離電極1を設けた電極ユニット10の構成を示す図であり、図3(a)は正面図、図3(b)は図3(a)のIIIb−IIIb断面図、図3(c)は側面図。It is a figure which shows the structure of the electrode unit 10 which provided the gas-liquid separation electrode 1, FIG.3 (a) is a front view, FIG.3 (b) is IIIb-IIIb sectional drawing of Fig.3 (a), FIG.3 (c). ) Is a side view. 気液分離電極1表面で発生した気泡5の分離状態等を示す図であり、図4(a)は図3に示す電極ユニット10を用いて電気分解を行い、気泡を発生させたときの気泡分離の様子を示す図、図4(b)は導電性基板表面を疎液性材料にて表面処理を施した気液分離電極を示す図、図4(c)は裏打ち基板により固定した気液分離電極を示す図。FIG. 4A is a diagram showing a separation state of bubbles 5 generated on the surface of the gas-liquid separation electrode 1, and FIG. 4A shows the bubbles when the bubbles are generated by electrolysis using the electrode unit 10 shown in FIG. 3. FIG. 4B is a diagram showing a state of separation, FIG. 4B is a diagram showing a gas-liquid separation electrode whose surface is subjected to surface treatment with a lyophobic material, and FIG. 4C is a gas-liquid fixed by a backing substrate. The figure which shows a separation electrode. 一実施形態の電気分解装置を示す図であり、図5(a)は上面図を示す図、図5(b)は図5(a)のVb−Vb断面図を示す図。It is a figure which shows the electrolyzer of one Embodiment, FIG. 5 (a) is a figure which shows a top view, FIG.5 (b) is a figure which shows Vb-Vb sectional drawing of Fig.5 (a). 電気分解装置の他の例を示す図であり、図6(a)は上面図を示す図、図6(b)は図6(a)のVIb−VIb断面図を示す図、図6(c)は図6(b)の矢印方向から見た陽極と陰極の配置図を示す図、図6(d)は図6(c)の陽極と陰極を電解槽に浸漬したときの外観図。It is a figure which shows the other example of an electrolyzer, FIG. 6 (a) is a figure which shows a top view, FIG.6 (b) is a figure which shows VIb-VIb sectional drawing of Fig.6 (a), FIG.6 (c) ) Is a view showing the arrangement of the anode and cathode viewed from the direction of the arrow in FIG. 6B, and FIG. 6D is an external view when the anode and cathode in FIG. 6C are immersed in an electrolytic cell.

以下、本発明による電極の一実施形態について説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。   Hereinafter, an embodiment of the electrode according to the present invention will be described. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.

図1は、一実施形態の気液分離電極1を示す図であり、図1(a)は正面図を示す図、図1(b)は図1(a)のIb−Ib断面図を示す図、図1(c)は、導電性基板2の正面図を示す図、図1(d)は図1(c)のId−Id断面図を示す図である。   FIG. 1 is a view showing a gas-liquid separation electrode 1 according to an embodiment, FIG. 1 (a) is a front view, and FIG. 1 (b) is a sectional view taken along line Ib-Ib of FIG. 1 (a). 1 and FIG. 1C are diagrams showing a front view of the conductive substrate 2, and FIG. 1D is a diagram showing a cross-sectional view taken along line Id-Id of FIG. 1C.

図1に示すように、気液分離電極1は、貫通孔2aが複数形成された導電性基板2と、貫通孔2aが開口する導電性基板2の表面に貼り付けられた多孔質膜3と、からなる。   As shown in FIG. 1, the gas-liquid separation electrode 1 includes a conductive substrate 2 in which a plurality of through holes 2a are formed, and a porous film 3 attached to the surface of the conductive substrate 2 in which the through holes 2a are open. It consists of

導電性基板2は、例えば純ニッケルにより構成される。導電性基板2に設けられた複数の貫通孔2aは、導電性基板2の接液面にて発生したガス(気泡)が通り抜けるための微細流路として機能する。微細流路の形状は貫通孔に限定されることなく、メッシュ構造、図1に示すポーラス構造等の種々の構造等をとることができる。   The conductive substrate 2 is made of pure nickel, for example. The plurality of through holes 2 a provided in the conductive substrate 2 function as fine flow paths through which gas (bubbles) generated on the liquid contact surface of the conductive substrate 2 passes. The shape of the fine channel is not limited to the through hole, and various structures such as a mesh structure and a porous structure shown in FIG.

多孔質膜3は、例えばPTFE(四フッ化エチレン樹脂)多孔質膜により構成される。この多孔は、メッシュ構造、ポーラス構造、複数の貫通孔を穿設した構造などとして形成されている。また多孔質膜3に形成された多孔が互いに独立せず、相互に連結した複数の貫通孔を有する構造をとることもできる。多孔質膜3は、導電性基板2の接液面にて発生したガス(気泡)のみを貫通孔2aを通して後述する気体流路の側へ選択的に透過させるためのものである。つまり、電解液にその深さに応じた圧力(液圧)が発生した場合においても、気体流路側への電解液の流出が抑制される。   The porous membrane 3 is composed of, for example, a PTFE (tetrafluoroethylene resin) porous membrane. The perforations are formed as a mesh structure, a porous structure, a structure having a plurality of through holes, or the like. Further, it is possible to adopt a structure in which the pores formed in the porous film 3 are not independent of each other and have a plurality of through holes connected to each other. The porous film 3 is used to selectively permeate only gas (bubbles) generated on the liquid contact surface of the conductive substrate 2 to the gas flow path side described later through the through hole 2a. That is, even when a pressure (fluid pressure) corresponding to the depth is generated in the electrolytic solution, the electrolytic solution is prevented from flowing out to the gas flow path side.

図2は気液分離電極1の変形例を示す図であり、図2(a)〜(c)は、図1(a)及び(b)に示す気液分離電極1の変形例を示す断面図であり、図2(d)〜(f)は図1(c)及び(d)に示す導電性基板2の変形例を示す断面図である。   FIG. 2 is a diagram showing a modification of the gas-liquid separation electrode 1, and FIGS. 2A to 2C are cross-sectional views showing modifications of the gas-liquid separation electrode 1 shown in FIGS. 1A and 1B. 2 (d) to 2 (f) are cross-sectional views showing modifications of the conductive substrate 2 shown in FIGS. 1 (c) and 1 (d).

図2(a)および図2(d)に示す例では、導電性基板2Bの貫通孔2bの断面積が電解液側から遠ざかるに従って徐々に小さくなり、多孔質膜3側で再び拡大する形状をとる。ここで電解液側とは多孔質膜3を貼り付けた面に対向する面の側である。   In the example shown in FIGS. 2 (a) and 2 (d), a shape in which the cross-sectional area of the through hole 2b of the conductive substrate 2B gradually decreases as the distance from the electrolyte solution side increases, and expands again on the porous membrane 3 side. Take. Here, the electrolyte solution side is the side of the surface facing the surface to which the porous film 3 is attached.

図2(b)および図2(e)に示す例では、導電性基板2Cの貫通孔2cの断面積が電解液側から遠ざかるに従って徐々に大きくなり、多孔質膜3側で最大となる形状をとる。図示していないが、貫通孔の断面積が電解液側から遠ざかるに従って徐々に小さくなり、多孔質膜3側で最小となる形状であっても良い。   In the example shown in FIG. 2B and FIG. 2E, the cross-sectional area of the through hole 2c of the conductive substrate 2C gradually increases as the distance from the electrolyte solution side increases, and the maximum shape is obtained on the porous membrane 3 side. Take. Although not shown, the cross-sectional area of the through hole may gradually decrease as the distance from the electrolyte solution side increases, and the shape may be minimized on the porous membrane 3 side.

図2(c)および図2(f)に示す例では、上述の複数の貫通孔が互いに独立しているのではなく、相互に連結した複数の貫通孔2dを有する平板状の導電性基板2Dを使用する例を示している。このような導電性基板2Dは、例えば発泡金属、シングルポアモノリス型構造体、ダブルポアモノリス型構造体、粉末焼結貴金属、繊維焼結体等から形成される。   In the example shown in FIG. 2C and FIG. 2F, the plurality of through holes described above are not independent of each other, but a flat conductive substrate 2D having a plurality of through holes 2d connected to each other. An example of using is shown. Such a conductive substrate 2D is formed of, for example, a foam metal, a single pore monolith structure, a double pore monolith structure, a powder sintered noble metal, a fiber sintered body, or the like.

(電極保持部の構造)   (Structure of electrode holder)

図3は、気液分離電極1を設けた電極ユニット10の構成を示す図であり、図3(a)は正面図、図3(b)は図3(a)のIIIb−IIIb断面図、図3(c)は側面図である。   FIG. 3 is a diagram showing the configuration of the electrode unit 10 provided with the gas-liquid separation electrode 1, FIG. 3 (a) is a front view, FIG. 3 (b) is a cross-sectional view taken along line IIIb-IIIb in FIG. FIG. 3C is a side view.

電極ユニット10は、気液分離電極1、電極カバー11、電極ホルダ12、気体チャネル13、導線14等により構成される。図3に示すように、気液分離電極1は、電極カバー11と電極ホルダ12により挟まれた状態で固定されている。締結ネジ15により電極カバー11を締め付けることにより、気液分離電極1を電極ホルダ12に密着させ、電解液18が気体チャンバー16に浸入することを防いでいる。   The electrode unit 10 includes a gas-liquid separation electrode 1, an electrode cover 11, an electrode holder 12, a gas channel 13, a conductive wire 14, and the like. As shown in FIG. 3, the gas-liquid separation electrode 1 is fixed in a state of being sandwiched between an electrode cover 11 and an electrode holder 12. By tightening the electrode cover 11 with the fastening screw 15, the gas-liquid separation electrode 1 is brought into close contact with the electrode holder 12 and the electrolyte solution 18 is prevented from entering the gas chamber 16.

気液分離電極1は、多孔質膜3が貼り付けられた面を気体チャンバー16側に、その対向面を電解液18側に向けて設置される。貫通孔2a内には電解液18が浸み込むが、多孔質膜3により電解液18と気体チャンバー16は隔絶されている。特に多孔質膜3の表面が疎液性である場合には電解液18の侵入がより効果的に抑制される。ここで電解液に対して気液分離電極1の接触角をα、多孔質膜3の接触角をβとした場合、疎液性とは90°<α、90°<β、また親液性とは90°>α、90°>βの関係であると定義する。   The gas-liquid separation electrode 1 is installed with the surface on which the porous membrane 3 is attached facing the gas chamber 16 and the facing surface facing the electrolyte 18. The electrolytic solution 18 permeates into the through hole 2 a, but the electrolytic solution 18 and the gas chamber 16 are isolated from each other by the porous film 3. In particular, when the surface of the porous membrane 3 is lyophobic, the penetration of the electrolytic solution 18 is more effectively suppressed. Here, when the contact angle of the gas-liquid separation electrode 1 with respect to the electrolyte is α and the contact angle of the porous membrane 3 is β, lyophobic is 90 ° <α, 90 ° <β, or lyophilic. Is defined as a relationship of 90 °> α and 90 °> β.

電圧の印加は、気液分離電極1と接続されている導線14を介して行なわれる。気体チャンバー16へ分離された気体は、気体チャネル13を通過して電極ユニット10より排出される。   The application of the voltage is performed through a conductive wire 14 connected to the gas-liquid separation electrode 1. The gas separated into the gas chamber 16 passes through the gas channel 13 and is discharged from the electrode unit 10.

図4は、気液分離電極1表面で発生した気泡5の分離状態等を示しており、図4(a)は、図3に示す電極ユニット10を用いて電気分解を行い、気泡5を発生させたときの気泡分離の様子を示す図である。気液分離電極1と電解液18の接する面上において発生した気泡5の少なくとも一部は、貫通孔2a及び多孔質膜3を通して気体チャンバー16へ排出される。多孔質膜3は微細な多孔を有しており、気体は透過するが液体は透過しないようになっている。貫通孔2aの内部へも電解液18が浸入させることで、効率よく気泡5を発生させることができる。   FIG. 4 shows the separation state of the bubbles 5 generated on the surface of the gas-liquid separation electrode 1, and FIG. 4 (a) shows the generation of the bubbles 5 by electrolysis using the electrode unit 10 shown in FIG. It is a figure which shows the mode of bubble separation when letting it be made. At least a part of the bubbles 5 generated on the surface where the gas-liquid separation electrode 1 and the electrolyte 18 are in contact with each other is discharged to the gas chamber 16 through the through hole 2 a and the porous membrane 3. The porous film 3 has a fine porosity and allows gas to pass through but not liquid to pass through. By allowing the electrolytic solution 18 to enter the inside of the through hole 2a, the bubbles 5 can be generated efficiently.

図4(b)は、導電性基板2表面を疎液性材料4にて表面処理を施した気液分離電極1Aを示す断面図である。図3に示す電極ユニット10を用いて電気分解を行い、気泡5を発生させたときの気泡分離の様子が示されている。なお、導電性基板2表面を疎液性材料4にて表面処理した後、多孔質膜3を貼り付けることで、気液分離電極1Aを作成することができる。   FIG. 4B is a cross-sectional view showing a gas-liquid separation electrode 1 </ b> A in which the surface of the conductive substrate 2 is surface-treated with the lyophobic material 4. The state of bubble separation when electrolysis is performed using the electrode unit 10 shown in FIG. 3 to generate bubbles 5 is shown. In addition, after the surface of the conductive substrate 2 is surface-treated with the lyophobic material 4, the gas-liquid separation electrode 1A can be formed by attaching the porous film 3.

この疎液性表面処理は、導電性基板2の少なくとも電解液18と接している表面に施すことが好ましい。疎液性の場合、電解液18よりも発生した気泡5と馴染みやすい。そのため電解液18と接している導電性基板2表面で発生した気泡5は、浮力による分離がされ難くなる。また貫通孔2a内に液圧により電解液18が浸入し、貫通孔2a内の壁面にて電気分解により発生した気泡5が多量に付着する。これにより、発生した気泡5は、貫通孔2aを通って、多孔質膜3の気液分離機能により連続的に気体流路へ分離される。このような構成により、発生した気泡5の気体チャンバー16への背面分離がほぼ完全に行なわれるため、装置の小型化と安定した気液分離性能に寄与することができる。   This lyophobic surface treatment is preferably applied to at least the surface of the conductive substrate 2 that is in contact with the electrolytic solution 18. In the case of the lyophobic property, it is easier to become familiar with the bubbles 5 generated than the electrolytic solution 18. Therefore, the bubbles 5 generated on the surface of the conductive substrate 2 in contact with the electrolytic solution 18 are not easily separated by buoyancy. Further, the electrolytic solution 18 enters the through hole 2a due to the hydraulic pressure, and a large amount of bubbles 5 generated by electrolysis adhere to the wall surface in the through hole 2a. Thereby, the generated bubbles 5 are continuously separated into the gas flow paths through the through holes 2 a by the gas-liquid separation function of the porous membrane 3. With such a configuration, since the back surface separation of the generated bubbles 5 into the gas chamber 16 is almost completely performed, it is possible to contribute to downsizing of the apparatus and stable gas-liquid separation performance.

図4(c)は、裏打ち基板6により固定した気液分離電極1Aを示す図である。裏打ち基板6には、貫通孔2aから気体流路の側へ透過する気泡5を透過させる流路が形成されている。本実施形態では流路の一例である貫通孔6aを形成した構造となっている。裏打ち基板6は、多孔質膜3を気体流路の側から保持する。この構成によれば、導電性基板2と多孔質膜3を密着させた状態で多孔質膜3を支持することができるため、気液分離電極1を強固に構成することができ、安定的に気液分離を行なうことが可能になる。   FIG. 4C shows the gas-liquid separation electrode 1 </ b> A fixed by the backing substrate 6. The backing substrate 6 is formed with a flow path through which the bubbles 5 that pass from the through hole 2a to the gas flow path side are transmitted. In this embodiment, a through hole 6a, which is an example of a flow path, is formed. The backing substrate 6 holds the porous membrane 3 from the gas flow path side. According to this configuration, since the porous membrane 3 can be supported in a state where the conductive substrate 2 and the porous membrane 3 are in close contact with each other, the gas-liquid separation electrode 1 can be configured firmly and stably. Gas-liquid separation can be performed.

(電気分解によるガス発生) (Gas generation by electrolysis)

図5は一実施形態の電気分解装置を示す図であり、図5(a)は上面図を示す図、図5(b)は図5(a)のVb−Vb断面図を示す図である。
電気分解装置は、図4で示す気液分離電極1を保持する電極ユニット10と、気液分離機能を有しない対向電極20とを備える。電極ユニット10および対向電極20を向かい合わせて電解漕19中の電解液18に浸漬し、電解用電源21を用いて電圧を印加することで、電極ユニット10を陽極、対向電極20を陰極として機能させる。
FIG. 5 is a diagram showing an electrolysis apparatus according to an embodiment, FIG. 5 (a) is a diagram showing a top view, and FIG. 5 (b) is a diagram showing a Vb-Vb sectional view of FIG. 5 (a). .
The electrolysis apparatus includes an electrode unit 10 that holds the gas-liquid separation electrode 1 shown in FIG. 4 and a counter electrode 20 that does not have a gas-liquid separation function. The electrode unit 10 and the counter electrode 20 face each other and are immersed in the electrolytic solution 18 in the electrolytic bath 19, and a voltage is applied using an electrolysis power source 21, whereby the electrode unit 10 functions as an anode and the counter electrode 20 functions as a cathode. Let me.

初めに両極においてガス発生電圧以上となる電圧を、電解用電源21を用いて印加すると、電解質種に応じて陽極と陰極の表面にそれぞれ異なるガスが発生する。陽極として使用している電極ユニット10内の気液分離電極1の表面で発生したガスは、前述の原理により気体チャンバー16内に分離される。一方陰極として使用している対向電極20の表面には別種のガスが生じるが、気液分離機構を持たないため表面に付着するか、浮力により電極表面から分離される。このようにして電気分解を行うことにより、陽極で発生したガスと陰極で発生したガスを個別の空間に分離することが可能になり、電解槽19内にガス分離のためのスカートなどを取り付ける必要がなくなり、装置の小型化に寄与する。   When a voltage equal to or higher than the gas generation voltage is first applied to both electrodes using the electrolysis power supply 21, different gases are generated on the surfaces of the anode and the cathode depending on the electrolyte type. The gas generated on the surface of the gas-liquid separation electrode 1 in the electrode unit 10 used as the anode is separated into the gas chamber 16 according to the principle described above. On the other hand, a different kind of gas is generated on the surface of the counter electrode 20 used as the cathode, but it does not have a gas-liquid separation mechanism, so that it adheres to the surface or is separated from the electrode surface by buoyancy. By performing electrolysis in this way, it becomes possible to separate the gas generated at the anode and the gas generated at the cathode into separate spaces, and it is necessary to attach a skirt or the like for gas separation in the electrolytic cell 19 This contributes to downsizing of the device.

本実施例では電極となる導電性基板2の材料として純ニッケルを用いたが、他の材質を用いても良い。例としては、金属電極としてPt(白金)、Au(金)、Ag(銀)、Pd(パラジウム)、Rh(ロジウム)、Ir(イリジウム)、W(タングステン)の単体または前記を主成分とする合金、もしくはNi(ニッケル)-Cu(銅)合金、Ni(ニッケル)-Cr(クロム)-Fe(鉄)合金、Ni(ニッケル)- Mo(モリブデン)合金、Ni(ニッケル)-Cr(クロム)-Mo(モリブデン)合金などが、炭素電極としてグラッシーカーボン、パイロリティックグラファイト、ベーサルプレインパイロリティックグラファイト、カーボンペースト、HOPG(Highly Oriented Pyrolytic Graphite)、炭素繊維、BDD(Boron Doped Diamond)、ECR(Electron Cyclotron Resonance)成膜カーボン、導電性DLC(Diamond Like Carbon)電極などが、透明電極としてNesa(Sb(アンチモン)をドープしたSnO)、Nesatoron(Sn(すず)をドープしたInO)などが、酸化物電極としてTiO、MnO、PbO、ペロブスカイト酸化物、ブロンズ酸化物などが、半導体電極としてSi、Ge、ZnO、CdS、GaAs、TiOなどが、他には高分子固体電解質電極などが挙げられる。陽極・陰極の組み合わせとして前記材料単一あるいは2つ以上の材料の組み合わせでも良い。特にNi(ニッケル)、Ni(ニッケル)-Cu(銅)合金、Ni(ニッケル)-Cr(クロム)-Fe(鉄)合金、Ni(ニッケル)- Mo(モリブデン)合金、Ni(ニッケル)-Cr(クロム)-Mo(モリブデン)合金、グラッシーカーボン、BDD(Boron Doped Diamond)、ECR(Electron Cyclotron Resonance)成膜カーボン、導電性DLC(Diamond Like Carbon)電極が好適である。 In this embodiment, pure nickel is used as the material of the conductive substrate 2 to be an electrode, but other materials may be used. For example, as a metal electrode, Pt (platinum), Au (gold), Ag (silver), Pd (palladium), Rh (rhodium), Ir (iridium), W (tungsten) alone or the above as a main component Alloy, or Ni (nickel) -Cu (copper) alloy, Ni (nickel) -Cr (chromium) -Fe (iron) alloy, Ni (nickel) -Mo (molybdenum) alloy, Ni (nickel) -Cr (chromium) -Mo (molybdenum) alloys, etc. are carbon electrodes such as glassy carbon, pyrolytic graphite, basal plain pyrolytic graphite, carbon paste, HOPG (Highly Oriented Pyrolytic Graphite), carbon fiber, BDD (Boron Doped Diamond), ECR (Electron Cyclotron) Resonance (deposition carbon), conductive DLC (Diamond Like Carbon) electrodes, etc. are transparent electrodes with Nesa (Sb (antimony) doped SnO 2 ) and Nesatoron (Sn (tin)) In 2 O 3 ) etc., TiO 2 , MnO 2 , PbO 2 , perovskite oxide, bronze oxide etc. as oxide electrodes, Si, Ge, ZnO, CdS, GaAs, TiO 2 etc. as semiconductor electrodes Other examples include solid polymer electrolyte electrodes. As the combination of the anode and the cathode, the material may be a single material or a combination of two or more materials. Especially Ni (nickel), Ni (nickel) -Cu (copper) alloy, Ni (nickel) -Cr (chromium) -Fe (iron) alloy, Ni (nickel) -Mo (molybdenum) alloy, Ni (nickel) -Cr (Chromium) -Mo (molybdenum) alloy, glassy carbon, BDD (Boron Doped Diamond), ECR (Electron Cyclotron Resonance) deposited carbon, and conductive DLC (Diamond Like Carbon) electrode are suitable.

また、本実施例では多孔質膜3としてPTFE(四フッ化エチレン樹脂)多孔質膜を用いたが、他の材質の多孔質膜を用いても良い。例としては、ETFE(四フッ化エチレン-エチレン共重合樹脂)、PFA(四フッ化エチレン-パーフロロアルキルビニルエーテル共重合樹脂)、FEP(四フッ化エチレン-六フッ化プロピレン共重合樹脂)、PCTFE(三フッ化塩化エチレン樹脂)、PVDF(フッ化ビニリデン樹脂)、変性PTFE、ECTFE(クロロトリフルオロエチレン-エチレン共重合体樹脂)、パーフロオロアルケニルビニルエーテルポリマー(商品名CYTOP(登録商標))、THV(テトラフルオロエチレン-ヘキサフルオロプロペン-ビニリデンフロライドコポリマー)、PC(ポリカーボネート)、PP(ポリプロピレン)、HDPE(高密度ポリエチレン)、LDPE(低密度ポリエチレン)、PMMA(ポリメチルメタクリレート)、PVC(ポリ塩化ビニル)、ナイロン、PET(ポリエステル)などが挙げられる。特にフッ素系樹脂であるPTFE(四フッ化エチレン樹脂)、ETFE(四フッ化エチレン-エチレン共重合樹脂)、PFA(四フッ化エチレン-パーフロロアルキルビニルエーテル共重合樹脂)、FEP(四フッ化エチレン-六フッ化プロピレン共重合樹脂)、PCTFE(三フッ化塩化エチレン樹脂)、PVDF(フッ化ビニリデン樹脂)、変性PTFE、ECTFE(クロロトリフルオロエチレン-エチレン共重合体樹脂)、パーフロオロアルケニルビニルエーテルポリマー(商品名CYTOP(登録商標))、THV(テトラフルオロエチレン-ヘキサフルオロプロペン-ビニリデンフロライドコポリマー)が好適である。   In the present embodiment, a PTFE (tetrafluoroethylene resin) porous film is used as the porous film 3, but a porous film made of other materials may be used. Examples include ETFE (tetrafluoroethylene-ethylene copolymer resin), PFA (ethylene tetrafluoride-perfluoroalkyl vinyl ether copolymer resin), FEP (tetrafluoroethylene-hexafluoropropylene copolymer resin), PCTFE (Ethylene trifluoride chloride resin), PVDF (vinylidene fluoride resin), modified PTFE, ECTFE (chlorotrifluoroethylene-ethylene copolymer resin), perfluoroalkenyl vinyl ether polymer (trade name CYTOP (registered trademark)), THV (Tetrafluoroethylene-hexafluoropropene-vinylidene fluoride copolymer), PC (polycarbonate), PP (polypropylene), HDPE (high density polyethylene), LDPE (low density polyethylene), PMMA (polymethyl methacrylate), PVC (polychlorinated) Vinyl), nylon, and PET (polyester). In particular, PTFE (tetrafluoroethylene resin), ETFE (tetrafluoroethylene-ethylene copolymer resin), PFA (tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer resin), FEP (ethylene tetrafluoride) are fluororesins. -Propylene hexafluoride copolymer resin), PCTFE (ethylene trifluoride chloride resin), PVDF (vinylidene fluoride resin), modified PTFE, ECTFE (chlorotrifluoroethylene-ethylene copolymer resin), perfluoroalkenyl vinyl ether polymer (Trade name CYTOP (registered trademark)) and THV (tetrafluoroethylene-hexafluoropropene-vinylidene fluoride copolymer) are preferable.

(実施例1)
電極表面で発生した気泡5について気液分離が行なわれているか確認するため、電気分解により電極表面にて気泡5が発生している気液分離電極1の表面観察を行った。透明PC(ポリカーボネート)の窓材22を電解槽19Aに取り付け、電気分解時の気液分離電極1の表面を観察できるようにした。
(Example 1)
In order to confirm whether gas-liquid separation was performed on the bubbles 5 generated on the electrode surface, the surface of the gas-liquid separation electrode 1 where the bubbles 5 were generated on the electrode surface by electrolysis was observed. A transparent PC (polycarbonate) window material 22 was attached to the electrolytic cell 19A so that the surface of the gas-liquid separation electrode 1 during electrolysis could be observed.

本実施例では気液分離電極1の貫通孔2aを、孔径47um、ピッチ135umであり、千鳥格子上に整列した複数の貫通孔として形成した。そして、導電性DLC(Diamond Like Carbon)表面処理を行ったNi(ニッケル)製多孔基板の背面に、多孔質膜3としてPTFEメンブレン・ポアフロン(登録商標)FP-500-100(孔径5um、厚み100um、住友電工ファインポリマー社製)を貼り付けた。さらに孔径47um、ピッチ135um、千鳥格子上に整列した複数の貫通孔6aを持ったNi(ニッケル)製裏打ち基板6によりポアフロン(登録商標)を挟み込んで固定した構造となっている。また電解液18として溶融塩KF・n HF(nは係数、n値に制限は無いが、1≦n≦3であることが好ましい。)、陰極としてNi(ニッケル)電極を用いている。観察は長焦点レンズMX-5040RZとデジタルマイクロスコープKH-1300(いずれもハイロックス社製)を用いて行った。   In this embodiment, the through holes 2a of the gas-liquid separation electrode 1 are formed as a plurality of through holes having a hole diameter of 47 um and a pitch of 135 um and arranged on a staggered lattice. Then, on the back surface of the Ni (nickel) porous substrate subjected to conductive DLC (Diamond Like Carbon) surface treatment, PTFE membrane / Poeflon (registered trademark) FP-500-100 (pore diameter: 5 μm, thickness: 100 μm) as the porous film 3 , Manufactured by Sumitomo Electric Fine Polymer Co., Ltd.). Further, the pore-flon (registered trademark) is sandwiched and fixed by a Ni (nickel) backing substrate 6 having a hole diameter of 47um, a pitch of 135um, and a plurality of through holes 6a arranged on a staggered lattice. Further, molten salt KF · n HF (n is a coefficient and n value is not limited, but preferably 1 ≦ n ≦ 3) is used as the electrolytic solution 18, and a Ni (nickel) electrode is used as the cathode. Observation was performed using a long-focus lens MX-5040RZ and a digital microscope KH-1300 (both manufactured by Hilox).

両極においてガス発生電圧以上となる電圧を、陽極となる電極ユニット10内の気液分離電極1と陰極となる対向電極20の間に印加すると、電解質種に応じて陽極と陰極の表面にそれぞれ異なるガスが発生する。陽極として使用している電極ユニット10内の気液分離電極1の表面で発生したガスは、浮力により電極表面から分離される様子は見られず、気体チャンバー16内に安定して背面に分離される様子を確認した。陽極及び陰極におけるガス発生の化学反応式を下記に示す。

陽極: 2F- → F2 + 2e-
陰極: 2H+ + 2e- → H2
When a voltage equal to or higher than the gas generation voltage at both electrodes is applied between the gas-liquid separation electrode 1 in the electrode unit 10 serving as the anode and the counter electrode 20 serving as the cathode, the surfaces of the anode and the cathode differ depending on the electrolyte type. Gas is generated. The gas generated on the surface of the gas-liquid separation electrode 1 in the electrode unit 10 used as the anode is not separated from the electrode surface by buoyancy, and is stably separated to the back surface in the gas chamber 16. I confirmed the state. The chemical reaction formula of gas generation at the anode and the cathode is shown below.

Anode: 2F - → F 2 + 2e -
Cathode: 2H + + 2e - → H 2

図6は、電気分解装置の他の例を示す図であり、図6(a)は上面図を示す図、図6(b)は図6(a)のVIb−VIb断面図を示す図である。そして、図6(c)は図6(b)の矢印方向から見た陽極と陰極の配置図を示す図、図6(d)は図6(c)の陽極と陰極を電解槽19Aに浸漬したときの外観図である。図6(a)〜(d)に示すように、気液分離電極1を保持する電極ユニット10と気液分離機能を有しない対向電極20Aを設置し、電解液18に浸漬して電圧を印加する電気分解装置を組み立てる。対向電極20Aは、気液分離電極1が電解槽19Aの外から窓材22を通して観察できるような形状になっている。   6A and 6B are diagrams illustrating another example of the electrolysis apparatus, in which FIG. 6A is a diagram illustrating a top view, and FIG. 6B is a diagram illustrating a cross-sectional view taken along line VIb-VIb in FIG. is there. 6 (c) is a view showing the arrangement of the anode and the cathode as viewed from the direction of the arrow in FIG. 6 (b), and FIG. 6 (d) is an immersion of the anode and the cathode in FIG. 6 (c) in the electrolytic cell 19A. It is an external view when doing. As shown in FIGS. 6A to 6D, an electrode unit 10 that holds the gas-liquid separation electrode 1 and a counter electrode 20A that does not have a gas-liquid separation function are installed, and immersed in the electrolyte 18 to apply a voltage. Assemble the electrolyzer. The counter electrode 20A has such a shape that the gas-liquid separation electrode 1 can be observed through the window member 22 from the outside of the electrolytic cell 19A.

このような装置を用いても、同様に陽極として使用している電極ユニット10内の気液分離電極1の表面で発生したガスは、浮力により電極表面から分離される様子は見られず、気体チャンバー16内に安定して背面に分離される様子を確認できる。   Even when such an apparatus is used, the gas generated on the surface of the gas-liquid separation electrode 1 in the electrode unit 10 that is also used as the anode is not seen to be separated from the electrode surface by buoyancy. It can be seen that the chamber 16 is stably separated into the back surface.

(実施例2)
図5に示す電気分解装置を用い、陽極として導電性DLC(Diamond Like Carbon)表面処理を行ったGC(グラッシーカーボン)製平板基板を用い、電解液18として溶融塩KF・n HF(nは係数、n値に制限は無いが、1≦n≦3であることが好ましい。)を用いて、電解実験を行った。その後、導電性DLC表面処理を行ったGC基板を取り出し、電解面の接触角の測定を行った。測定方法は、1[uL]の水滴を電極表面上に滴下し、側面から液滴の形状を観察し、θ/2法により接触角を算出した。結果、接触角は(電解前)75°、(電解後)98.2°と変化し、電極表面は溶融塩KF・n HFを用いた電解反応により疎水性表面となっていた。また導電性DLC表面の場合いわゆる陽極効果を生じず、安定して電解を継続することが可能であった。
(Example 2)
Using an electrolyzer shown in FIG. 5, a flat substrate made of GC (glassy carbon) that has been subjected to conductive DLC (Diamond Like Carbon) surface treatment as an anode, and molten salt KF · n HF (where n is a coefficient) The n value is not limited, but it is preferable that 1 ≦ n ≦ 3). Thereafter, the GC substrate subjected to the conductive DLC surface treatment was taken out, and the contact angle of the electrolytic surface was measured. In the measurement method, a 1 [uL] water droplet was dropped on the electrode surface, the shape of the droplet was observed from the side, and the contact angle was calculated by the θ / 2 method. As a result, the contact angle was changed to 75 ° (before electrolysis) and 98.2 ° (after electrolysis), and the electrode surface became a hydrophobic surface by an electrolytic reaction using molten salt KF · n HF. In the case of the conductive DLC surface, the so-called anodic effect was not generated, and electrolysis could be continued stably.

このことから実施例1において導電性DLCを用いることにより、電解液18よりも気泡5と馴染みやすくなることが判る。そのため発生した気泡5は浮力による分離がされ難くなる。また貫通孔2a内も電解液18が効率的に浸入し、貫通孔2内の壁面にて電気分解により発生した気泡5が付着する。これにより、発生した気泡5は、貫通孔2aを通って、多孔質膜3の気液分離機機能により連続的に気体流路へ分離される。   From this, it can be seen that the use of conductive DLC in Example 1 makes it easier to become familiar with the bubbles 5 than the electrolytic solution 18. Therefore, the generated bubbles 5 are not easily separated by buoyancy. In addition, the electrolytic solution 18 efficiently penetrates into the through hole 2a, and bubbles 5 generated by electrolysis adhere to the wall surface in the through hole 2. Thereby, the generated bubbles 5 are continuously separated into the gas flow paths through the through holes 2a by the gas-liquid separator function of the porous membrane 3.

以上説明したように、本実施形態の気液分離電極1は、貫通孔2aが形成された導電性基板2と、貫通孔2aが開口する導電性基板2の表面に沿って配置され、電解液を透過させずに気泡5を貫通孔2aから気体流路の側へ選択的に透過させる多孔質膜3とを備えている。よって、気体流路側への電解液18の侵入を防止し、電解液18と気体流路とを安定した状態で分離することができる。また、電極部分とは別に多孔質膜3にて気液分離を行うことにより、気泡5が接触する気液分離界面の有効面積を拡大して気泡5との接触頻度を向上させることができる。   As described above, the gas-liquid separation electrode 1 of the present embodiment is disposed along the surface of the conductive substrate 2 in which the through holes 2a are formed and the conductive substrate 2 in which the through holes 2a are opened. And a porous membrane 3 that allows the bubbles 5 to selectively permeate from the through hole 2a to the gas flow path side without passing through. Therefore, the electrolyte solution 18 can be prevented from entering the gas channel side, and the electrolyte solution 18 and the gas channel can be separated in a stable state. Further, by performing gas-liquid separation on the porous membrane 3 separately from the electrode portion, the effective area of the gas-liquid separation interface with which the bubbles 5 come into contact can be expanded and the contact frequency with the bubbles 5 can be improved.

また、本実施形態の気液分離電極1によれば、多孔質膜3の孔径が導電性基板2の貫通孔2aの孔径よりも小さくなるよう構成したので、気泡5が多孔質膜3と接触した際に加わるラプラス圧を大きくすることが可能になる。このため気液分離性能を向上させることができる。   In addition, according to the gas-liquid separation electrode 1 of the present embodiment, since the pore diameter of the porous membrane 3 is configured to be smaller than the pore diameter of the through hole 2 a of the conductive substrate 2, the bubbles 5 are in contact with the porous membrane 3. It becomes possible to increase the Laplace pressure that is applied. For this reason, gas-liquid separation performance can be improved.

また、本実施形態の気液分離電極1Aにおいては、導電性基板2の表面のうち電解液18との接液面を疎液性材料4にて疎液性としている。このため、導電性基板2の表面が気泡5となじみやすくなり、気泡5の浮力による分離がされ難くなる。このため、発生した気泡5を導電性基板2に多量に付着させ、効率的に気体チャンバー16側へと分離させることができる。   In the gas-liquid separation electrode 1 </ b> A of this embodiment, the liquid contact surface of the surface of the conductive substrate 2 with the electrolytic solution 18 is made lyophobic with the lyophobic material 4. For this reason, the surface of the conductive substrate 2 is easily compatible with the bubbles 5, and separation of the bubbles 5 due to buoyancy is difficult. For this reason, the generated bubbles 5 can be attached to the conductive substrate 2 in a large amount and efficiently separated to the gas chamber 16 side.

また、本実施形態の気液分離電極1によれば、多孔質膜3における電解液18との接液面を疎液性としている。このため、多孔質膜3にて電解液18を寄せ付けず、気泡5を気体チャンバー16側へと分離させやすくすることができる。   Moreover, according to the gas-liquid separation electrode 1 of this embodiment, the liquid-contact surface with the electrolyte solution 18 in the porous membrane 3 is made lyophobic. For this reason, it is possible to easily separate the bubbles 5 toward the gas chamber 16 without bringing the electrolyte solution 18 close to the porous membrane 3.

また、本実施形態の気液分離電極1によれば、気体流路側へ気泡5を透過させる複数の貫通孔6aを持ち、かつ、気体流路側から多孔質膜3を保持する裏打ち基板6を備えている。これにより、気液分離電極1を強固に構成することができ、安定的に気液分離を行なうことが可能になる。   Moreover, according to the gas-liquid separation electrode 1 of this embodiment, the back substrate 6 which has the some through-hole 6a which permeate | transmits the bubble 5 to the gas flow path side, and hold | maintains the porous membrane 3 from the gas flow path side is provided. ing. Thereby, the gas-liquid separation electrode 1 can be comprised firmly and it becomes possible to perform gas-liquid separation stably.

また、本実施形態の電気分解装置によれば、貫通孔2aが形成された導電性基板2と、貫通孔2aが開口する導電性基板2の表面に沿って配置され、電解液を透過させずに気泡5を貫通孔2aから気体流路の側へ選択的に透過させる多孔質膜3を備えて構成した気液分離電極1を、陽極又は陰極として用いている。このため、気体流路への電解液18の侵入を防止し、電解液18と気体流路とを安定した状態で分離することができる。また、電極部とは別に多孔質膜3にて気液分離を行うことにより、気泡5が接触する気液分離界面の有効面積を拡大して気泡5との接触頻度を向上させることができる。   Moreover, according to the electrolyzer of this embodiment, it arrange | positions along the surface of the electroconductive board | substrate 2 in which the through-hole 2a was formed, and the electroconductive board | substrate 2 in which the through-hole 2a opens, and does not permeate | transmit electrolyte solution. A gas-liquid separation electrode 1 having a porous membrane 3 that selectively allows bubbles 5 to permeate from the through hole 2a to the gas flow path side is used as an anode or a cathode. For this reason, the electrolyte solution 18 can be prevented from entering the gas channel, and the electrolyte solution 18 and the gas channel can be separated in a stable state. Further, by performing gas-liquid separation on the porous membrane 3 separately from the electrode part, the effective area of the gas-liquid separation interface with which the bubbles 5 come into contact can be expanded and the contact frequency with the bubbles 5 can be improved.

また、本実施形態の電気分解装置によれば、電解液18としてフッ素化合物を用い、気液分離電極1を陽極として用いている。この場合でも、発生したフッ素ガスを速やかに電解面と反対側の気体流路側へ移動させることができ、陰極で発生した水素ガスとの混合回避のための空間を別途設ける必要が無い。したがって、ガス分離を行うためのスカートなどを電解漕19内に取り付ける必要がなくなり、装置の小型化が可能になる。   Further, according to the electrolysis apparatus of the present embodiment, a fluorine compound is used as the electrolytic solution 18 and the gas-liquid separation electrode 1 is used as an anode. Even in this case, the generated fluorine gas can be quickly moved to the gas flow path side opposite to the electrolytic surface, and there is no need to provide a separate space for avoiding mixing with the hydrogen gas generated at the cathode. Therefore, it is not necessary to attach a skirt or the like for performing gas separation in the electrolytic cell 19, and the apparatus can be miniaturized.

本発明の適用範囲は上記実施形態に限定されることはない。本実施形態では気液分離電極1を保持する電極ユニット10を陽極として用いたが、陰極として用いても良い。また、本実施形態では電極ユニット10と電解槽19を独立なものとしているが、電極ユニット10と電解槽19とが組み合わさった一つのユニットとして構成してもよい。   The scope of application of the present invention is not limited to the above embodiment. In the present embodiment, the electrode unit 10 that holds the gas-liquid separation electrode 1 is used as an anode, but may be used as a cathode. Moreover, although the electrode unit 10 and the electrolytic cell 19 are made independent in this embodiment, you may comprise as one unit with which the electrode unit 10 and the electrolytic cell 19 were combined.

1、1A 気液分離電極
2、2B、2C、2D 導電性基板
2a、2b、2c、2d 貫通孔
3 多孔質膜
4 疎液性材料
5 気泡
6 裏打ち基板
6a 貫通孔
10 電極ユニット
11 電極カバー
12 電極ホルダ
13 気体チャネル
14 導線
15 締結ネジ
16 気体チャンバー
18 電解液
19、19A 電解槽
20、20A 対向電極
21 電解用電源
22 窓材
DESCRIPTION OF SYMBOLS 1, 1A Gas-liquid separation electrode 2, 2B, 2C, 2D Conductive board | substrate 2a, 2b, 2c, 2d Through-hole 3 Porous film | membrane 4 Liquidphobic material 5 Air bubble 6 Backing board | substrate 6a Through-hole 10 Electrode unit 11 Electrode cover 12 Electrode holder 13 Gas channel 14 Conductor 15 Fastening screw 16 Gas chamber 18 Electrolytic solution 19, 19A Electrolytic tank 20, 20A Counter electrode 21 Power source for electrolysis 22 Window material

Claims (7)

電解液の電気分解に際して接液面で発生する発生ガスを前記電解液から分離して気体流路の側に放出する電気分解電極において、
微細流路が形成された導電性部材と、
前記微細流路が開口する前記導電性部材の表面に沿って配置され、前記電解液を透過させずに前記発生ガスを前記微細流路から前記気体流路の側へ選択的に透過させる多孔質膜と、
を備えることを特徴とする電気分解電極。
In the electrolysis electrode for separating the generated gas generated on the liquid contact surface during the electrolysis of the electrolyte from the electrolyte and releasing it to the gas flow path side,
A conductive member having a fine channel formed thereon;
A porous material that is disposed along the surface of the conductive member where the fine channel is opened, and selectively transmits the generated gas from the fine channel to the gas channel side without allowing the electrolyte solution to permeate. A membrane,
An electrolysis electrode comprising:
前記微細流路は前記導電性部材を貫通する貫通孔であって、前記多孔質膜の孔径が前記貫通孔の孔径よりも小さいことを特徴とする請求項1記載の電解分解電極。   2. The electrolytic electrode according to claim 1, wherein the fine channel is a through-hole penetrating the conductive member, and a pore diameter of the porous film is smaller than a diameter of the through-hole. 前記導電性部材の表面のうち前記電解液との接液面が疎液性であることを特徴とする請求項1又は2に記載の電気分解電極。   3. The electrolysis electrode according to claim 1, wherein a liquid contact surface of the surface of the conductive member with the electrolytic solution is lyophobic. 4. 前記多孔質膜における前記電解液との接液面が疎液性であることを特徴とする請求項1乃至3のいずれか一項に記載の電気分解電極。   4. The electrolysis electrode according to claim 1, wherein a liquid contact surface of the porous film with the electrolytic solution is lyophobic. 5. 前記微細流路から前記気体流路の側へ透過する前記発生ガスを通過させる流路が形成され、かつ、前記気体流路の側から前記多孔質膜を保持する裏打ち基板を備えることを特徴とする請求項1乃至4のいずれか一項に記載の電気分解電極。   A flow path through which the generated gas that permeates from the fine flow path to the gas flow path is formed, and a backing substrate that holds the porous film from the gas flow path is provided. The electrolysis electrode according to any one of claims 1 to 4. 前記請求項1乃至5のいずれか一項に記載の電気分解電極を陽極または陰極として用いることを特徴とする電気分解装置。   6. An electrolysis apparatus using the electrolysis electrode according to any one of claims 1 to 5 as an anode or a cathode. 電解液としてフッ素化合物を含む溶融塩を用い、前記請求項1乃至5のいずれか一項に記載の電気分解電極を陽極として用いて、前記発生ガスとしてのフッ素ガスを発生させることを特徴とする電気分解装置。   A molten salt containing a fluorine compound is used as an electrolytic solution, and the electrolysis electrode according to any one of claims 1 to 5 is used as an anode to generate fluorine gas as the generated gas. Electrolysis device.
JP2010118928A 2010-05-25 2010-05-25 Electrolysis electrode and electrolyzer Pending JP2011246747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010118928A JP2011246747A (en) 2010-05-25 2010-05-25 Electrolysis electrode and electrolyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010118928A JP2011246747A (en) 2010-05-25 2010-05-25 Electrolysis electrode and electrolyzer

Publications (1)

Publication Number Publication Date
JP2011246747A true JP2011246747A (en) 2011-12-08

Family

ID=45412376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010118928A Pending JP2011246747A (en) 2010-05-25 2010-05-25 Electrolysis electrode and electrolyzer

Country Status (1)

Country Link
JP (1) JP2011246747A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2860288A1 (en) * 2013-10-11 2015-04-15 Solvay SA Improved electrolytic cell
EP2860287A1 (en) * 2013-10-11 2015-04-15 Solvay SA Improved electrolytic cell
WO2016042802A1 (en) * 2014-09-19 2016-03-24 株式会社 東芝 Electrode unit, electrolytic bath provided with electrode unit, and electrolysis device
WO2016042801A1 (en) * 2014-09-19 2016-03-24 株式会社 東芝 Electrode unit, electrolytic bath provided with electrode unit, electrolysis device, and method of manufacturing electrode of electrode unit
JP2022179943A (en) * 2021-05-24 2022-12-06 本田技研工業株式会社 Electrochemical cell, cell operation system and cell operation method
WO2023119730A1 (en) * 2021-12-24 2023-06-29 住友電気工業株式会社 Electrode and water electrolysis device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2860288A1 (en) * 2013-10-11 2015-04-15 Solvay SA Improved electrolytic cell
EP2860287A1 (en) * 2013-10-11 2015-04-15 Solvay SA Improved electrolytic cell
WO2015052253A1 (en) * 2013-10-11 2015-04-16 Solvay Sa Improved electrolytic cell
WO2015052262A1 (en) * 2013-10-11 2015-04-16 Solvay Sa Improved electrolytic cell
WO2016042802A1 (en) * 2014-09-19 2016-03-24 株式会社 東芝 Electrode unit, electrolytic bath provided with electrode unit, and electrolysis device
WO2016042801A1 (en) * 2014-09-19 2016-03-24 株式会社 東芝 Electrode unit, electrolytic bath provided with electrode unit, electrolysis device, and method of manufacturing electrode of electrode unit
CN106661743A (en) * 2014-09-19 2017-05-10 株式会社东芝 Electrode unit, electrolytic bath provided with electrode unit, electrolysis device, and method of manufacturing electrode of electrode unit
CN106661743B (en) * 2014-09-19 2019-12-10 株式会社东芝 Electrode unit, electrolytic cell provided with electrode unit, electrolytic device, and method for manufacturing electrode of electrode unit
JP2022179943A (en) * 2021-05-24 2022-12-06 本田技研工業株式会社 Electrochemical cell, cell operation system and cell operation method
JP7220742B2 (en) 2021-05-24 2023-02-10 本田技研工業株式会社 ELECTROCHEMICAL CELL, CELL OPERATING SYSTEM AND CELL OPERATING METHOD
WO2023119730A1 (en) * 2021-12-24 2023-06-29 住友電気工業株式会社 Electrode and water electrolysis device

Similar Documents

Publication Publication Date Title
JP2011246747A (en) Electrolysis electrode and electrolyzer
CA2630792C (en) Diamond electrode, method for producing same, and electrolytic cell
JP4767370B2 (en) Photoelectrochemical cell
US6235186B1 (en) Apparatus for producing electrolytic water
JP6535818B2 (en) Artificial light synthesis module and artificial light synthesis device
CN1585836A (en) Electrolysis cell with gas diffusion electrode
KR20160040615A (en) Modular Electrochemical Cells
KR101876170B1 (en) Fuel cells
WO2019176141A1 (en) Carbon dioxide electrolysis cell and electrolysis device
JP2014531513A (en) Gas diffusion electrode
CN102653870A (en) Electrooxidation ozone generator
JP2011038145A (en) Electrolytic apparatus and electrolytic method
JP2019157252A (en) Electrolysis cell and electrolysis device of carbon dioxide
EP2436804A1 (en) Gas diffusion electrode-equipped ion-exchange membrane electrolytic cell
KR20190103434A (en) Organic Hydride Manufacturing Equipment
JP2011246748A (en) Electrolysis electrode and electrolytic device
JP6182741B2 (en) Electrode for electrolyzer, electrolyzer, and method for producing electrolyzed product
JP5457951B2 (en) Electrolytic cell
JP6216967B2 (en) Electrode and gas generator
JP2015224392A (en) Oxygen-consuming electrode and method for its production
JP6037282B2 (en) Electrolyzed water generator
WO2014141587A1 (en) Electrolyzed water-generating device
JP6712420B1 (en) Electrolytic cell, ozone water generator including the same, conductive diamond electrode, and method for manufacturing the same
JP6710882B1 (en) Electrolytic cell, ozone water generator including the same, and method for recovering performance of electrolytic cell
US11299811B2 (en) Continuous flow reactor and hybrid electro-catalyst for high selectivity production of C2H4 from CO2 and water via electrolysis