WO2016041962A1 - Antimicrobiens potentialises - Google Patents

Antimicrobiens potentialises Download PDF

Info

Publication number
WO2016041962A1
WO2016041962A1 PCT/EP2015/071098 EP2015071098W WO2016041962A1 WO 2016041962 A1 WO2016041962 A1 WO 2016041962A1 EP 2015071098 W EP2015071098 W EP 2015071098W WO 2016041962 A1 WO2016041962 A1 WO 2016041962A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
antimicrobial agent
compound
antimicrobial
alkenyl
Prior art date
Application number
PCT/EP2015/071098
Other languages
English (en)
Inventor
Nicolas Tesse
Original Assignee
Septeos
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Septeos filed Critical Septeos
Priority to US15/510,745 priority Critical patent/US10758620B2/en
Priority to CN201580055892.8A priority patent/CN106999463B/zh
Priority to EP15762653.2A priority patent/EP3193860A1/fr
Priority to BR112017005057-9A priority patent/BR112017005057A2/pt
Publication of WO2016041962A1 publication Critical patent/WO2016041962A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/22Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
    • A61K31/222Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin with compounds having aromatic groups, e.g. dipivefrine, ibopamine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/14Esters of carboxylic acids, e.g. fatty acid monoglycerides, medium-chain triglycerides, parabens or PEG fatty acid esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/216Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acids having aromatic rings, e.g. benactizyne, clofibrate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/235Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids having an aromatic ring attached to a carboxyl group
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/407Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with other heterocyclic ring systems, e.g. ketorolac, physostigmine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/41781,3-Diazoles not condensed 1,3-diazoles and containing further heterocyclic rings, e.g. pilocarpine, nitrofurantoin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/42Oxazoles
    • A61K31/424Oxazoles condensed with heterocyclic ring systems, e.g. clavulanic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • A61K31/429Thiazoles condensed with heterocyclic ring systems
    • A61K31/43Compounds containing 4-thia-1-azabicyclo [3.2.0] heptane ring systems, i.e. compounds containing a ring system of the formula, e.g. penicillins, penems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/496Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene or sparfloxacin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/54Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame
    • A61K31/542Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/545Compounds containing 5-thia-1-azabicyclo [4.2.0] octane ring systems, i.e. compounds containing a ring system of the formula:, e.g. cephalosporins, cefaclor, or cephalexine
    • A61K31/546Compounds containing 5-thia-1-azabicyclo [4.2.0] octane ring systems, i.e. compounds containing a ring system of the formula:, e.g. cephalosporins, cefaclor, or cephalexine containing further heterocyclic rings, e.g. cephalothin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/65Tetracyclines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the subject of the invention is the compounds of formula (I), used at a dose where they no longer exhibit antimicrobial properties, for their use as agents intended for the potentiation of the antimicrobial active agents with which they are co-administered.
  • the combination "potentiator (s) + antimicrobial (s)” is intended to prevent and / or treat bacterial and fungal infections in humans or animals.
  • the invention also relates to a method for potentiating antimicrobials in which is co-administered with said antimicrobial compound (or more) of formula (I).
  • the compound of formula (I) is used at a dose where it is inactive alone.
  • the invention aims to provide solutions to the problems related to the decline or loss of antimicrobial activity during their period of commercial and medical use.
  • the invention is therefore a solution that applies to current antimicrobials and will apply to future antimicrobials.
  • microbes bacteria and fungi
  • the invention describes the use of compounds of formulas (I) for potentiating antimicrobials. Unexpectedly, these compounds have demonstrated their ability to potentiation of the effect of antimicrobials at low doses (from 0.01 to 100 mg / l) very far from those where they can, alone, have antimicrobial properties. Consequently, the antimicrobials with which the compounds of formulas (I) are co-administered have, because of the potentiation, an activity greater than that usually observed.
  • the invention aims to potentiate the "antimicrobials", usable in humans or animals and not all compounds that have “antimicrobial properties", which they are often not administrable to humans or animals because of too high a toxicity or a threshold of antimicrobial activity too high requiring doses incompatible with the health.
  • any molecule has, in absolute terms, antimicrobial properties.
  • the antimicrobial properties of a molecule must therefore be evaluated in relation to the minimum concentration that inhibits the bacteria.
  • the invention is based on the surprising discovery that compounds which have antimicrobial properties at very high doses (level incompatible with a use in medicine for this purpose) and whose minimum inhibitory concentration (MIC) exceeds 5000 mg / L preferably greater than 10,000 mg / L exhibit potentiating effects at low doses (0.01 to 100 mg / l). At these doses, it becomes possible to use the compounds (I) in humans or animals.
  • cinnamyl acetate or benzyl benzoate which has antimicrobial properties at a concentration of about g / L (MIC greater than 10,000mg / l is greater than 1% , depending on the strains), shows effects of potentiation of antibiotics at these concentrations close to the MIC (1 to 3 dilutions).
  • benzyl benzoate When its concentration is lowered below the MIC, benzyl benzoate no longer potentiates antimicrobials (see Example 1-10). Then, very surprisingly, it was found that by significantly decreasing the concentration of benzyl benzoate, 10 to 50 times less than the MIC, benzyl benzoate again has potentiating effects on a very large number of antibiotics on a very large number of strains, this time at doses compatible with medical use.
  • the potentiating effect observed with the compound according to the invention is not specific for a particular mechanism of resistance but is observed on various strains, whether they have, or have not, developed. one or more distinct resistance mechanisms.
  • the prior art is consistent with the compounds (I) because they belong to chemical classes that are well studied in many fields.
  • the compounds (I) within the scope of the present invention have the following characteristics which make it possible to exclude them from the prior art and which make it possible to envisage their use as a potentiator of antimicrobials administered to humans and animals:
  • the concentration used to observe antimicrobial activity is not compatible with future use in humans or animals, particularly during systemic application.
  • medical use is envisaged while the measured effective concentrations (of the order of several mg / ml) are incompatible with this use.
  • the antimicrobial effects measured have very often been for levels of essential oil, or its active compound, of the order of several mg / ml.
  • 1 mg / ml corresponds to 1 g / l or 1 g / kg or else 0.1%. If the MIC was 1 mg / ml, depending on the pharmacokinetic parameters, at least 1 g / kg / day body weight should be administered.
  • the effective dose for a cow should be at least 500 g / d and at least 60 g / d for man (this corresponds to the minimum dose since it is assumed here that the product is fully absorbed and distributed in the organization). These doses too important are not possible for safe use in therapy.
  • WO 99/66796 (Wisconsin Alumni Research Foudation) describes a method for sensitizing microbial cells against antibacterial compounds comprising a step of contacting with an antibacterial compound and a sesquiterpenoid, to improve the effect of antibacterial compound.
  • the MICs were determined with the agar diffusion method, unsuited to the volatile and hydrophobic nature of the compounds (I) and related families.
  • This method consists of depositing paper disks impregnated with known quantities of test compounds on an agar seeded with the bacterium to be studied. A concentration gradient of the compound around the agar is established on the agar each disc; after 18 hours the diameter of the inhibition halo is measured.
  • This method is however not reliable for hydrophobic compounds which, because of very different surface tensions and contact angles on the hydrophilic surfaces, interfere with the formation of the concentration gradient in the agar. In some areas, the concentration of test compounds is much higher than the theoretical concentration. Thus, the tests can not be quantitative, when they can be qualitative.
  • there is a dilution of the hydrophobic compound to be tested in ethanol without however correcting the result while ethanol is an antibacterial and volatile compound.
  • Essential oils and their derivatives are usually described as being low in toxicity, which is often true in food or perfumery applications but erroneous in the context of therapeutic administration.
  • WO2006 / 120567 (Advanced Scientific Developments) describes pharmaceutical compositions comprising at least one therapeutic substance that is active and described as non-toxic, chosen from carveol, thymol, eugenol, borneol, carvacrol, alpha-ionone and beta-ionone, and their isomers. , derivatives and mixtures, and comprising, as the second active therapeutic substance, an antibiotic.
  • Carveol, thymol, eugenol, borneol, carvacrol, alpha-ionone, or beta-ionone used alone, exhibit antibacterial activity and many of them also pose toxicity problems, ignored in this application.
  • carvacrol has the following toxicity data: LD 50
  • the main component tea tree essential oil is terpinen-1-ol.
  • micro-organism any living organism, invisible to the naked eye because of its small size.
  • Organism means any biological (living) animal or plant entity capable of birth, development and normally reproduction.
  • microbe includes the definition of microorganism, limited to the medical field to which the invention refers.
  • microbes are living microorganisms potentially pathogenic (bacteria, fungi, yeast and mycobacteria). The term therefore excludes inert pathogens such as viruses and prions.
  • antimicrobial any compound intended to be administered to humans or animals capable of killing or inhibiting the growth of microbes.
  • pharmaceutically acceptable salts of these antimicrobials are also included in this definition. This includes, for example, the sodium, potassium, calcium, etc. salts. and the amine salts of procaine, dibenzylamine, ethylendiamine, ethanolamine, methylglucamine taurine, etc., as well as acid addition salts such as hydrochlorides and basic amino acids.
  • antibiotics to be administered to humans or animals capable of killing or inhibiting the growth of microbes.
  • the pharmaceutically acceptable salts of these antimicrobials are also included in this definition. This includes, for example, the sodium, potassium, calcium, etc. salts. and the amine salts of procaine, dibenzylamine, ethylendiamine, ethanolamine, methylglucamine taurine, etc., as well as acid addition salts such as hydrochlorides and basic amino acids.
  • the term includes antibiotics (t
  • Antimicrobial properties means the properties of any substance capable of destroying or inhibiting the growth of microbes. Products with antimicrobial properties include antimicrobials and biocides.
  • biocide includes products with antimicrobial properties intended to be applied to inert systems (viruses and prions).
  • antibacterial properties and “antifungal properties” is meant not only the bactericidal and fungicidal properties characterized by the destruction of bacteria and fungi (and yeasts, mycobacteria), but also the bacteriostatic and fungistatic properties, characterized by the inhibition of the growth of said bacteria and fungi (and yeasts, mycobacteria). Products with antibacterial or antifungal properties include antimicrobials.
  • antibiotic-resistant bacterium is intended to mean a bacterium resistant to at least one, in particular at least two, in particular at least three or even at least four antibiotics or family (s). antibiotic, conventionally used.
  • multi-resistant bacterium means a bacterium resistant to several antibiotics, in particular for which the strain should be sensitive, or a priori sensitive, especially a bacterium that has at least two unnatural resistances. .
  • Microbial infection in the sense of the present invention refers to an infection caused by one or more microbial strains and includes phases ranging from colonization of the host to pathological phases.
  • the term “microbial infection” therefore includes any adverse effect, clinical sign, symptom or any disease occurring in humans or animals following colonization by the microbe.
  • terpenoid is meant according to the invention any compound comprising a skeleton close to a terpene.
  • Terpene refers to a derivative of isoprene which is obtained biologically by the condensation of C5 units, leading for example to monoterpenes, sesquiterpenes.
  • Near is meant that the backbone is similar to a terpene or different in that at least one alkyl substituent, normally present, may be absent or carried by another atom.
  • the backbone can also be substituted by various radicals such as aliphatic radicals, saturated or unsaturated, linear or cyclic (alkyl, alkenyl, alkylene), oxy, aldehydes, esters, alcohols, ethers and their sulfur or nitrogen equivalents.
  • the terpenoid can advantageously be of natural origin.
  • phenylpropanoide any compound comprising a backbone close to a phenylpropane.
  • Phenylpropane refers to a derivative obtained by biological synthesis from phenylpropane and resulting in derivatives C6 (aromatic) -C3 (aliphatic) or C6 (aromatic) -Cl (aliphatic) and corresponding lactones.
  • near is meant that the backbone is similar to a phenylpropane, in particular the phenyl unit, or different in that at least one alkyl substituent, normally present, may be absent or carried by another atom.
  • the backbone can also be substituted by various radicals such as aliphatic radicals, saturated or unsaturated, linear or cyclic (alkyl, alkenyl, alkylenes), oxy, aldehydes, esters, alcohols, ethers and their sulfur equivalents or nitrogen.
  • the phenylpropanoid can advantageously be of natural origin.
  • prophylaxis or “prevent an infection” as used in this application refers to any degree of delay in the onset of clinical signs or symptoms of infection, as well as any degree of inhibition of severity of clinical signs or symptoms of infection, including but not limited to, total prevention of said infection.
  • This prophylactic administration can take place before, during or after the act likely to cause an infection (particularly a nosocomial infection) in order to prevent, improve, and / or reduce the severity of any subsequent infection.
  • treatment in the context of the present application implies that the antimicrobial and the compound according to the invention are co-administered to a subject (human or animal) at the time of colonization or after contamination or suspicion of contamination by a microbial strain likely to cause an infection such as a nosocomial infection.
  • treatment or “treating an infection” therefore includes: any curative effect (inhibition of growth or destruction of the microbe) obtained by virtue of the antimicrobial co-administration + compound according to the invention as well as the improvement of the clinical signs or symptoms observed as well as the improvement of the condition of the subject.
  • the antimicrobial-compound co-administration according to the invention can indeed also make it possible to slow the progression of a microbe and / or completely or partially prevent a microbial infection from spreading to the surrounding tissues and beyond.
  • co-administered means that the antimicrobial (or the antimicrobial mixture) and the compound according to the invention (or the mixture of compounds according to the invention) are administered in combined or juxtaposed form to the subject (human or animal).
  • the combination includes any combination drug, any pharmaceutical composition, any pharmaceutical kit, and any drug comprising (i) at least one antimicrobial and (ii) at least one compound of the invention.
  • Compounds (i) and (ii) may be present as a mixture or in the form of separate formulations or compositions in said combination.
  • the combination may also comprise several antimicrobials, for example 2, 3 or 4 or more antimicrobials, and / or more compounds according to the invention, in particular 2 or 3 or more compounds according to the invention. These constituents form a functional unit because of a common indication, which is the implementation of an antimicrobial treatment.
  • This combination therapy is more specifically intended for the prophylaxis and / or treatment of microbial infections and diseases, in particular nosocomial infections.
  • Co-administration can be simultaneous or spread over time.
  • the term "simultaneous" means that the antimicrobial (or the antimicrobial mixture) and the compound according to the invention (or the mixture of compounds according to the invention) are administered at the same time, at the same time, to a subject (male or female). animal). These compounds can be administered in the form of a mixture or, simultaneously but separately, in the form of separate compositions.
  • sequential administration means that the antimicrobial (or the antimicrobial mixture) and the compound according to the invention (or the mixture of compounds according to the invention) are administered not simultaneously but separately in time, one after the other.
  • an antimicrobial means that the use of a compound according to the invention makes it possible to obtain a prophylactic or therapeutic effect superior to the prophylactic or therapeutic effect obtained by using the one or more antimicrobials alone. This can be expressed in different, alternative or cumulative ways:, increased antimicrobial effect, decreased antimicrobial antimicrobial dose, reduced MIC. In addition, the potentiation makes it possible to reduce or annihilate the appearance of resistance.
  • the expression "decrease the amount of antimicrobial used” means that the use of the compound according to the invention makes it possible to use an amount of antimicrobial less than the quantity of antimicrobial normally required to obtain a given therapeutic or prophylactic effect when the antimicrobial is administered alone.
  • the decrease in the amount of antimicrobial used may be more or less important; it is preferably at least 10%, and more preferably at least 20%, still more preferably at least 40%, or even 50% or more of the amount normally required to achieve an effect. therapeutic or prophylactic.
  • MIC means "minimal inhibitory concentration", which is the lowest concentration of substance at which microbial growth is no longer observed after 18 to 24 hours of contact under conditions conducive to microbial growth. Measurement of minimum inhibitory concentration are made in solid agar medium according to the international standards in force (CLSI M7-A9 Jan 12 standards): dispersion of test compounds in a Mueller Hinton agar agar. An adaptation relating to the hydrophobicity of the compounds and compositions is however necessary to disperse them in the medium: dilution in a solvent.
  • the compounds and compositions incorporated in the agar may be first diluted in one or more solvents (Tween® 80 diluted in water, Tween® 80 diluted in propylene, DMSO diluted in water).
  • the strains are deposited on the surface of the agar with a steers apparatus.
  • different methods of dissolving the products are tested in parallel to circumvent the problems of water / solvent distribution coefficient of the molecules (antimicrobial and potentiator) while the bacteria grow in the single aqueous phase.
  • the technical constraint will not intervene in the in vivo tests.
  • the same dilution methods can be implemented in a liquid medium (microplates and tubes). The same methodology is implemented with fungi.
  • MICs 50 and MIC 90 respectively represent the concentrations which inhibit 50% and 90% by number of the strains of the same genus.
  • alkyl denotes an unsaturated aliphatic hydrocarbon chain containing from 1 to 6 carbon atoms (Ci-C 6 ) or from 1 to 4 carbon atoms (C 1 -C 4 ), linear or branched.
  • alkyl radicals having from 1 to 4 carbon atoms mention may be made of methyl, ethyl, propyl, butyl, isopropyl, 1-methyl-ethyl, 1-methylpropyl and 2-methylpropyl radicals.
  • alkyl radicals containing from 1 to 6 carbon atoms mention may also be made of the pentyl, hexyl, 1-methyl-butyl, 1-methyl-pentyl, 2-methyl-butyl and 2-methyl-pentyl radicals. methyl-butyl, 3-methyl-pentyl, 4-methyl-pentyl or 1-ethyl-propyl, 1-ethyl-butyl, 2-ethyl-butyl.
  • alkoxy denotes an O-alkyl radical, (where alkyl is as defined above), for example methoxy or ethoxy.
  • alkyl (s) and / or “alkenyl (s)” and / or “alkoxy (s)” radicals carried by the same backbone may together form a ring or a heterocyl (in particular a lactone).
  • alkylene refers to the hydrocarbon chain formed when two "alkyl (s)” and / or “alkenyl (s)” radicals are bonded to each other.
  • cycloalkyl is intended to mean any saturated or unsaturated, but not aromatic, hydrocarbon ring of 3 to 7 members, in particular of 5 or 6 members, such as cyclopentyl and cyclohexyl.
  • cycloheteroalkyl is intended to mean any hydrocarbon ring, saturated or unsaturated, but not aromatic, of 5 to 7 ring members, containing one or more heteroatoms, such as, for example, sulfur or carbon atoms. oxygen.
  • oxy denotes a ketone function and "CHO" designates an aldehyde function.
  • log P is an equilibrium concentration ratio of a non-ionized compound in two immiscible solvent phases (water and n-octanol).
  • the invention relates to a potentiated antimicrobial agent for its use in the treatment of a microbial infection, characterized in that in combination with the antimicrobial agent is used a compound corresponding to the following formula I:
  • the dotted lines represent links that may be absent or present, provided that two double bonds are not adjacent
  • n 0 or 1
  • Ri represents H or an alkyl radical Ci-C 6 alkenyl or C 2 -C 6
  • R 2 represents H or OH, 0-CO- (C 1 -C 4) alkyl, 0- (C 1 -C 4) alkyl-C 6, N-alkyl (Ci-C 6 ) 2 , advantageously R 2 represents H
  • R 3 represents H or an OH, O-CO- (C 1 -C 4 alkyl), O- (C 1 -C 4 alkyl), O- (C 2 -C 4 ) alkenyl radical, advantageously R 3 represents H R 2 and R 3 may together form the corresponding lactone
  • Z represents a radical CO-R 5 with R 5 which represents an OH, O-C 1 -C 6 alkyl, O- (C 1 -C 4 alkyl) -phenyl or O-C 2 -C 6 alkenyl radical, preferably an O-alkyl radical Ci-C 6, O- (Ci-C 4) -p enyl, O-alkenyl, C 2 -C 6,
  • Z represents a radical CO-R 5 or CH 2 -O-CO- (C 1 -C 6 alkyl) or CH m R 7 or C 4 -C 10 alkyl or C 4 -C 10 alkenyl, C 4 -C 4 alkyl radicals; C 10 or C 4 -C 10 alkenyl may be linear or branched, optionally substituted with OH; advantageously these radicals are not substituted
  • R 5 represents OH, O-alkyl, Ci-C 6, O- (Ci-C 4) phenyl, 0- (alkenyl C 2 -C 4 alkyl) -phenyl, O- alkenyl C 2 -C 6 , advantageously an O-C 1 -C 6 alkyl, O- (C 1 -C 4 ) alkylphenyl, O-C 2 -C 6 alkenyl radical, or with R 5 which represents H at the provided that R 4 represents an alkyl radical in C 2 -C 6, or R 2 represents an alkyl radical in C 2 -C 6 alkyl, N- (alkyl-C 6) 2
  • o with m is 1 or 2; m is 2 if the bond between Ci and C 2 is double
  • R 7 represents H or a C 1 -C 6 alkyl radical
  • R 4 represents H or a C 1 -C 6 alkyl radical
  • compound of formula (I) antimicrobial agent, varying from 8: 1 to 1:10, and in that the antimicrobial agent is not a terpenoid or a phenylpropanoid.
  • the antimicrobial agent is advantageously an active ingredient of Western conventional medicine, as will be described later.
  • the antimicrobial agent is not a terpenoid or phenylpropanoid, such as an essential oil extract or an essential oil component.
  • the compound mass ratio of formula (I): antimicrobial agent more preferably from 4: 1 to 1:10, more preferably from 1: 1 to 1:10, still more preferably from 1: 1 to 1: 5.
  • the mass ratio corresponds to the ratio of doses in mg / kg of the compound and the antimicrobial agent to be administered to humans or animals.
  • in vitro concentration of inactive compound which is observed a potentiating effect, is far removed from the threshold of antimicrobial properties (MIC), when antimicrobial properties are observed.
  • MIC threshold of antimicrobial properties
  • the concentration in vitro is at least 10-fold, advantageously at least 20-fold, more preferably at least 50-fold, still more preferably at least 100-fold less than the MIC.
  • x is greater than or equal to 100, preferably 1,000, more preferably x is from 2,000 to 10,000, or even greater than 50,000.
  • the doses of compound (I) are less than 100 mg / l, advantageously less than 64 mg / l, more advantageously between 0.01 and 25 mg / l, more advantageously between 1 and 16 mg / l. .
  • the concentration, per unit dose per kilogram, of compound of formula (I) is advantageously less than 100 mg, more advantageously less than 64 mg.
  • the compounds (I) can be used at a low concentration (in vitro at concentrations of the order of ⁇ / ⁇ 1) to potentiate the antimicrobials, which is entirely compatible with future use in humans or animal (especially if systemic administration is sought).
  • the potentiating compound according to the invention is advantageously administered at a concentration such that its maximum serum concentration is less than 250 mg / l, advantageously less than 150 mg / l, more advantageously between 10 and 150 mg / l after administration.
  • the compound can be administered to humans and animals, including systemically, and does not present major adverse effects, in particular carcinogenicity or genotoxicity.
  • the mass ratio compound according to the invention (or mixture of compounds according to the invention): antimicrobial depends in each case on the antimicrobial used and it will be adapted case by case.
  • the dose of compound of formula (I) may vary between 300 and 850 mg per dose, or less.
  • the dose of compound of formula (I) may vary between 0.1 and 0.8 MUI, or even less.
  • Another formulated, the invention relates to a method for potentiating the antimicrobial activity of an antimicrobial independently of the resistance mechanism comprising the following steps:
  • the invention also relates to a method for treating and / or preventing microbial infection in a subject, comprising co-administration in the subject suffering from said microbial infection of an antimicrobial and a compound of formula (I).
  • the compound and antimicrobial agent are suitable for simultaneous administration, separate or spread over time to humans or animals.
  • the antimicrobial is preferably an antibiotic. It can also be an antifungal.
  • the compounds of formula (I), used at this low concentration are capable of potentiating the activity of antimicrobials.
  • the use of these potentiators advantageously makes it possible to use said antimicrobial at a lower concentration and / or at the usual concentration while having a higher activity than the antimicrobial alone at the same dose (increase in the intensity of the effect or kinetics of the effect).
  • the invention makes it possible in particular:
  • B / to increase the effect at constant dose increase of the capacity of an antimicrobial to inhibit / destroy the sensitive germs (improvement of the kinetics of the effect, the intensity of the effect, and widening of the spectrum activity of an antimicrobial to germs that were inconsistently sensitive or resistant to the antimicrobial).
  • Reducing the administered dose (A /) of an antimicrobial is of interest not only from the point of view of the treatment of microbial infections in humans or animals, in particular the reduction of side effects, but also, and this is not negligible, from an environmental point of view (decreased occurrence of resistance to antimicrobials).
  • the use of known antimicrobials at lower doses may help in the fight against the emergence of new resistance mechanisms.
  • the antimicrobial can be used at a reduced dose, wherein the antimicrobial dose administered corresponds to 1/50 to 3/4 of the antimicrobial dose required in the absence of co-administration of a compound according to the invention. invention for administration to a subject (man, animal) for treating microbial infections.
  • Increasing the effect of a constant-dose antimicrobial is of quantitative clinical interest by improving the kinetics of an antimicrobial and qualitative effect by making it possible to treat a patient (human or animal) suffering from microbial infection with an antimicrobial for which the strain was sensitive or inconsistently sensitive in the absence of potentiation.
  • Increasing the speed of the ⁇ antimicrobial effect reduces the time spent in the "infective" state by the patient or animal, thus reducing the epidemiology of the disease as well as the appearance and spread resistances.
  • the compounds according to the invention Thanks to the presence of the compounds according to the invention, it is possible to increase the bactericidal rate of antimicrobial antimicrobial antimicrobial constant dose. Thus, the rate of action of a potentiated antimicrobial can be increased. This is especially true for concentration-dependent antimicrobials.
  • the antimicrobial spectrum can be broadened, in particular at a constant dose of antimicrobial agent.
  • an antimicrobial potentiated by the compounds according to the invention can be used on strains on which it is no longer sensitive in the absence of potentiation (in particular because of the appearance of resistances).
  • the compound of formula (I) is sufficient to potentiate ⁇ antimicrobial, with the consequence that the use of a single compound of formula (I) is sufficient to potentiate ⁇ antimicrobial.
  • a combined use of inactive compounds may be considered. This is especially true when broad spectrum activity is sought.
  • it may be useful to co-administer a compound according to the invention which is particularly potentiating on Gram + bacteria and a compound according to the invention which is particularly potentiating on Gram - bacteria.
  • the phenylpropanes comprise a C 6 aryl skeleton substituted with at least one aliphatic:
  • the C 6 aryl backbone may comprise one or more substituents.
  • the compounds according to the invention advantageously have a number of carbon atoms ranging from 10 to 18, more preferably from 10 to 15.
  • the compounds according to the invention advantageously have a molecular weight of less than 350 g / mol, advantageously less than 300 g / mol, more advantageously of between 120 g / mol and 280 g / mol.
  • the most preferred compounds are purely hydrocarbon (as carbon and hydrogen atoms) or when they comprise oxygen atoms, the oxygen is preferably in the form of an ester or an ether.
  • the compounds advantageously have a LogP value which is greater than 2, more preferably between 2 and 5.
  • the compounds advantageously have low solubility in water.
  • the solubility in water is advantageously less than 500 mg / l, more preferably between 0.001 mg / l and 50 mg / l, more advantageously between 0.001 and 20 mg / l.
  • the compound according to the invention may advantageously form 0 to 1 hydrogen bond, more preferably 0 hydrogen bond.
  • the compound has the following formula (Ia):
  • Ri represents H or an alkyl radical Ci-C 6 alkenyl or C 2 -C 6
  • R 2 represents H or OH, 0-CO- (C 1 -C 4) alkyl, 0- (C 1 -C 4) alkyl-C 6, N-alkyl (Ci-C 6 ) 2 , advantageously R 2 represents H
  • R 3 represents H or an OH, O-CO- (C 1 -C 4 alkyl), O- (C 1 -C 4 ) alkyl radical, advantageously R 3 represents H
  • R 2 and R 3 may together form the corresponding lactone
  • R 5 represents an OH, O-C 1 -C 6 alkyl, O- (C 1 -C 4 ) alkyl-P enyl, O-C 2 -C 6 alkenyl radical, advantageously an O-C 1 -C 6 alkyl radical; C 6 , 0- (C 1 -C 4 ) alkylphenyl, O-C 2 -C 6 alkenyl,
  • R 4 is H or an alkyl radical C o -C 6
  • R 5 is an O-alkyl radical in C 2 -C 6 alkyl, 0- (C 1 -C 4 alkyl) - phenyl, 0- (alkenyl C 2 -C 4 alkyl) -phenyl, alkyl-C 6 o R 5 is H provided that R 4 represents an alkyl radical in C 2 -C 6, or R 2 represents an alkyl radical in C 2 -C 6, NOT-
  • R 5 represents OH with the proviso that R 2 represents a C 1 -C 6 alkyl radical
  • R 5 is O-alkyl, C 2 -C 6 alkyl, 0- (C 4 -C alkyl) -p enyl, alkyl-C 6.
  • n 0 or 1
  • Ri represents H or an alkyl radical Ci-C 6 alkenyl or C 2 -C 6
  • R 2 represents H or OH, 0-CO- (C 1 -C 4) alkyl, 0- (C 1 -C 4) alkyl-C 6, N-alkyl (Ci-C 6 ) 2 , advantageously R 2 represents H
  • R 3 represents H or an OH, O-CO- (C 1 -C 4 alkyl), O- (C 1 -C 4 ) alkyl radical, advantageously R 3 represents H
  • R 2 and R 3 may together form the corresponding lactone
  • R 5 represents an OH, O-C 1 -C 6 alkyl, O- (C 1 -C 4 ) alkyl-P enyl, O-C 2 -C 6 alkenyl radical, advantageously an O-C 1 -C 6 alkyl radical; C 6 , 0- (C 1 -C 4 alkyl) -p enyl, O-alkenyl
  • R 4 represents H or a C 3 -C 6 alkyl radical
  • R 5 represents an O-C 2 -C 6 , O- (C 1 -C 4 alkyl) phenyl radical
  • R 5 is H provided that R 4 represents an alkyl radical in C 3 -C 6, or R 2 represents an alkyl radical in C 2 -C 6 alkyl, N- (alkyl-C 6) 2
  • R 5 represents OH with the proviso that R 2 represents a C 3 -C 6 alkyl radical
  • R 5 represents an alkyl radical, C 2 -C 6 alkyl, 0- (C 4 -C alkyl) -p enyl.
  • n is 0.
  • R 5 preferably represents OH, O-C 1 -C 3 alkyl, 0- (alkyl Ci-C 2) -phenyl.
  • R 1 advantageously represents H or a C 1 -C 4 alkyl or C 2 -C 4 alkenyl radical.
  • R 2 advantageously represents H or an OH, O- (C 1 -C 4 alkyl) radical.
  • R3 advantageously represents H.
  • the preferred compounds according to the invention are benzoic acid, methyl salicylate or benzyl benzoate.
  • the compound has the following formula (Ib):
  • Ri represents H or an alkyl radical Ci-C 6 alkenyl or C 2 -C 6
  • R 2 represents H or OH, 0-CO- (C 1 -C 4) alkyl, 0- (C 1 -C 4) alkyl-C 6, N-alkyl (Ci-C 6 ) 2 , advantageously R 2 represents H R 3 represents H or an OH, O-CO- (C 1 -C 4 alkyl), O- (C 1 -C 4 alkyl), O- (C 2 -C 4 ) alkenyl radical, advantageously R 3 represents H
  • R 2 and R 3 may together form the corresponding lactone
  • Z represents a CH 2 -O-CO- (C 1 -C 6 ) alkyl radical
  • R 1 advantageously represents H.
  • R 2 advantageously represents H.
  • R 3 advantageously represents H.
  • Z preferably represents a CH 2 -O-CO- (C 1 -C 4) alkyl radical.
  • the preferred compounds according to the invention are cinnamyl acetate and trans-cinnamyl propionate.
  • the microbial infection is advantageously an infection induced by a pathogen selected from the following potentially pathogenic genera: Acetobacter, Acetobacterium, Acinetobacter, Citrobacter, Enterobacter, Enterococcus, Escherichia, Helicobacter, Klebsiella, Proteus, Providencia, Pseudomonas, Salmonella, Serratia, Staphylococcus, Streptococcus, Actinobacillus, Neisseria, Mannheima, Pasteurella, Candida, Aspergillus, Cryptococcus, Trichosporon, Malassezia, and Mycobacterium.
  • a pathogen selected from the following potentially pathogenic genera: Acetobacter, Acetobacterium, Acinetobacter, Citrobacter, Enterobacter, Enterococcus, Escherichia, Helicobacter, Klebsiella, Proteus, Providencia, Pseudomonas, Salmonella, Serratia, Staphylococcus, Strepto
  • the strain or bacterial species is advantageously chosen from the group consisting of: Acetobacter, Acetobacterium, Acinetobacter, Actinobacillus, Citrobacter, Enterobacter, Enterococcus, Escherichia, Helicobacter, Klebsiella, Mannheima, Pasteurella, Proteus, Providencia, Pseudomonas, Salmonella, Serratia, Staphylococcus, and Streptococcus.
  • the strain or bacterial species is advantageously chosen from the group consisting of Citrobacter freundii, Enterobacter aerogenes, Enterobacter cloacae, Escherichia coli, Klebsiella oxytoca, Klebsiella pneumoniae, Proteus mirabilis, Providencia stuartii, Salmonella sp, Serratia marcescens, Acinetobacter baumannii, Burkholderia cepacia, Pseudomonas aeruginosa, Staphylococcaceae, Staphylococcus aureus, Enterococcus faecium, and Enterococcus sp.
  • the bacterium can be either a gram bacterium or a gram + bacterium.
  • the bacterium is more preferably selected from the group consisting of
  • the fungus is advantageously chosen from the group consisting of: Candida, Aspergillus, Cryptococcus, Trichosporus. The fungus is more advantageously candida albicans.
  • the antimicrobial agent may be an antibiotic and / or antifungal agent.
  • the compound of formula (I) and antimicrobial F do not belong to the same family of chemical compounds.
  • the compound of formula (I) being derived from a terpenoid, ⁇ antimicrobial is not a terpenoid, or even is not an essential oil extract or a phenylpropanoid.
  • Membrane-active antibiotics especially beta-lactams, penicillins, cephalosporins, glycopeptides, fosfomycin, polymixins, bacitracin, cycloserine;
  • Antibiotics inhibiting the synthesis of proteins in particular aminoglycosides, tetracyclines, fusidic acid, chloramphenicol and its derivatives, macrolides, lincosamides, streptogramins, synergistines and oxazolidinones;
  • Antibiotics inhibiting the synthesis of nucleic acids, in particular quinolones, nitrofurans, ansamycins and fucidic acid;
  • Antibiotics inhibiting folate synthesis, especially sulfonamides and sulfonamide combinations
  • Antibiotics inhibiting the synthesis of mycolic acids in particular isoniazid, prothionamide, ethionamuide, pyrazynamide
  • the antibiotic is chosen from: antibiotics inhibiting peptidoglycan synthesis, antibiotics inhibiting the synthesis of nucleic acids, antibiotics inhibiting folate synthesis, antibiotics inhibiting the synthesis of mycolic acids, any of their pharmaceutically acceptable salts, and any combination thereof.
  • the particularly advantageous class of antibiotic is that of antibiotics inhibiting the synthesis of peptidoglycan.
  • the antibiotic is chosen from: amoxicillin, amoxicillin / clavulanic acid, imipenem, vancomycin, erythromycin, azithromycin, gentamicin, amikacin, colistin, clindamycin, ciprofloxacin, tigecycline.
  • the microbial infection is a bacterial strain induced by a bacterial strain, of the cocci type or gram-positive bacilli, and the antimicrobial agent is amoxicillin.
  • arnoxicillin is dosed at 1000 mg / dose and the cineole is dosed at 1000 mg / dose, advantageously 500 mg / dose, and still more advantageously at 250 mg / dose.
  • the microbial infection is a bacterial infection induced by a bacterial strain of E. coli or methicillin-resistant S. aureus type and the antimicrobial F is an amoxicillin / clavulanic acid mixture.
  • the ratio of amoxicillin / clavulanic acid: cineole is 10: 1, 1: 1 or 1: 5
  • the microbial infection is a bacterial infection induced by an Enterobacteriaceae, Pseudomonas or S. aureus strain and F antimicrobial is Ciprofloxacin.
  • Antifungals acting on microtubules in particular griseofulvin
  • the antifungal is advantageously chosen from polyenes, azoles, allylamines, thiocarbamates, echinocandins, griseofulvin, and fluorocytosine.
  • the microbial infection is a vaginal yeast infection and the antibiotic is sertaconozole.
  • the compounds according to the invention are advantageously administered systemically.
  • the compounds according to the invention can be used in any pharmaceutical composition formulated to facilitate its administration.
  • the pharmaceutical composition can include any pharmaceutically acceptable excipients commonly used such as vehicle (s) or diluent (s).
  • the pharmaceutical composition may be administered orally, enterally, parenterally (intravenously, intramuscularly or subcutaneously, intraperitoneally), transcutaneously (or transdermally or percutaneously), cutaneous, mucosal, (in particular transmucosal-oral, nasal, ophthalmic, otological, vaginal, rectal), intragastric, intracardiac, intraperitoneal, intrapulmonary or intratracheal.
  • the pharmaceutical composition may be in dry form, dry form to be reconstituted at the time of use (powder, lyophilisate, etc.), solid (in particular cachet, powder, capsule, pill, granule, suppository, tablet, and more precisely accelerated release tablet, gastro-resistant tablet or extended-release tablet), pasty substance (in particular gel, ointment, cream or ovum), liquid (in particular syrup, solution for injection, infusible or drinkable or eye drops), in the form of an aerosol ( spray, steam or gas), in the form of a patch, in injectable form (in an aqueous, non-aqueous or isotonic solution)
  • the pharmaceutical composition can be packaged for administration in the form of a single dose (single dose) or multiple dose (multidose).
  • the antimicrobial (s) and the compound (s) according to the invention may be administered in the same pharmaceutical composition or in separate pharmaceutical compositions, simultaneously, sequentially or spread over time.
  • the forms of the pharmaceutical compositions may be similar or distinct; the routes of administration may be identical or different.
  • the administration scheme will be adapted by the practitioner according to the case.
  • the routes of administration and dosages vary depending on a variety of parameters, for example depending on the condition of the patient, the type of infection and the severity of the infection to be treated or the antimicrobial used.
  • the animal is preferably a mammal, especially humans, pets, livestock.
  • the following examples illustrate the invention.
  • the minimum inhibitory concentration measurement tests are carried out in solid agar medium according to the international standards in force (CLSI standards), according to the protocol defined above.
  • the compounds and compositions incorporated in the agar may be first diluted in one or more solvents (Tween® 80 diluted in water -3.4 ml of Tween for 9.6 ml of water-, tween® 80 diluted in the propylene 10 - 3.4 ml of Tween for 9.6 ml of propylene-, or DMSO diluted in water).
  • Gain MIC 50 (MIC of the antibiotic alone) / (MIC50 (antibiotic + booster))
  • Gain MIC 90 (MIC90 of the antibiotic alone) / (MIC90 (antibiotic + booster))
  • the booster is a generic term for the potentiating compounds of the invention, of formula (I).
  • strains tested are isolated from various human samples (blood, urine, pulmonary aspirations, etc.).
  • Phenotypic characterization ESBL, wild, penicillinase,
  • Pseudomonas Genotypic characterization: ESBL, cephalosporinase, penicillinase, aeruginosa absence of porin, multiresistance, wild
  • Phenotypic characterization resistance to methicillin
  • Staphylococcus fluoroquinolone Staphylococcus fluoroquinolone, kanamicin, tobramicin, multiresistance, wild
  • Phenotypic characterization resistance to erythromycin, at
  • 64/500 corresponds to 1 for 8 or so (noted for 8)
  • 64/100 corresponds to 1 for about 1.5 (noted for 1.5)
  • - 64/50 corresponds to 1 for about 0.75 (noted for 0.75)
  • 64/10 corresponds to 1 for about 0.15 (noted for 0.15)
  • the potentiating effect of antibiotics was tested with benzyl benzoate and cinnamyl acetate.
  • the ratios shown in the tables are mass ratios.
  • the products are tested in successive dilution of 1% to 0.00375%.
  • the value> 1% indicates that no bacterial inhibition was observed at the concentrations tested.
  • a value equal to 1.00% corresponds to 10 000 mg / L (ie 10 g / L).
  • the test shows that the products are inactive (MIC> 10,000mg / l) in the majority of the solvents tested.
  • the test shows that potentiators potentiate amoxicillin on staphylococci at low doses (the MIC of the amox alone is between 0.25 and 32 mg / l).
  • potentiators potentiate ciprofloxacin at low doses (the MIC of gentamycin alone is between 0.125 and 8 mg / l).
  • the test shows that the potentiators potentiate the sertaconazole whereas the MIC 50 and the MIC 90 of the potentiators is equal to 1% on the candidates. This potentiation occurs at low doses (the MIC of sertaconazole alone is between 0.06 and 16 mg / l). This test also shows that, surprisingly, sertaconazole is not potentiated at high dose of potentiator whereas at low dose of these, it is potentiated.
  • the MIC of the antibiotic alone, or in combination with cinnamyl acetate or benzyl benzoate is measured at three different concentrations (lmg / L, 4mg / L, 16mg / L) in different solvents (Tween®80 or DMSO )
  • the control corresponds to the test carried out without cineole.
  • a control is made in each solvent tested: distilled water, Tween / water and DMSO.
  • DMSO control antibiotic alone in DMSO
  • the indication "> 64” means that the MIC is not measurable because greater than 64 mg / L, the indication “ ⁇ ” means that there is no visible culture in the e-test.
  • control ED 6 0.125 6 1.5 0.19 0.094 1 control Tween 4 0.125 6 1.5 0.25 0.19 0.5 water
  • benzyl benzoate or cinnamyl acetate also makes it possible to reduce the appearance of resistant bacteria.
  • benzyl benzoate or cinnamyl acetate have a MIC above 10,000 mg / L on these strains.
  • Ciprofloxacme DMSO addition of Ciprofloxacme in DMSO
  • the growth tests are made in a liquid medium with a dispersion of the antibiotic booster beforehand in a suitable solvent (tween / water).
  • the growth kinetics of the bacteria are measured in the presence of Augmentin®, Augmentin® boosted cinnamyl acetate (AC) / benzyl benzoate (BB) or cinnamyl acetate / benzyl benzoate.
  • Augmentin® Augmentin® boosted cinnamyl acetate (AC) / benzyl benzoate (BB) or cinnamyl acetate / benzyl benzoate.
  • AC Augmentin® boosted cinnamyl acetate
  • BB benzyl benzoate
  • cinnamyl acetate / benzyl benzoate When used alone, benzyl benzoate or cinnamyl acetate have a MIC above 10,000 mg / L on these strains.
  • 99/1 represents a mass ratio of 64/100
  • 4XCMI means that the antibiotic concentration is 4 times higher than its MIC, measured when used alone on the strain in question.
  • Augmentin 64/100 AC 4XCMI means that the Augmentin® concentration is 4 times its MIC (alone) and the Augmentin® / test compound mass ratio is 64/100.
  • witness bacteria alone
  • mice Balb / c mice, the antimicrobial product or the antimicrobial + booster mixture, are injected (se).
  • the doses administered are as follows:
  • Augmentin® Group 1 (AMC) 30 mg / kg
  • mice are euthanized, and the blood collected, heparinized and centrifuged to extract the plasma.
  • the ratio of the plasma concentration relative to the MIC is obtained by the successive dilutions of the plasma. Although this method is semi-quantitative, it nevertheless shows that the effect is more intense when benzyl benzoate is present (higher AUC). Similarly, and unambiguously, the addition of benzyl benzoate allows to extend the time spent above the MIC.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Emergency Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

L'invention a pour objet un agent antimicrobien potentialisé pour son utilisation dans le traitement d'une infection microbienne, caractérisé en ce que l'on utilise en association avec l'agent antimicrobien un composé répondant à la formule (I) suivante :en un ratio massique, composé de formule (I) : agent antimicrobien, variant de 8 : 1 à 1 : 10.

Description

ANTIMICROBIENS POTENTIALISES
L'invention a pour objet les composés de formule (I), utilisés à une dose où ils ne présentent plus de propriétés antimicrobiennes, pour leur utilisation en tant qu'agent destinés à la potentialisation des actifs antimicrobiens avec lesquels ils sont co- administrés. En particulier, la combinaison « potentialisateur(s) + antimicrobien(s) » a pour but de prévenir et/ou traiter les infections bactériennes et fongiques chez l'homme ou l'animal.
L'invention a également pour objet un procédé pour potentialiser des antimicrobiens dans lequel on co-administre avec ledit antimicrobien un composé (ou plusieurs) de formule (I). Dans ce procédé, on utilise le composé de formule (I) à une dose où il est inactif seul.
OBJET DE L'INVENTION
Background
L'invention a pour objet d'apporter des solutions aux problématiques liées à la baisse ou la perte d'activité des antimicrobiens durant leur période d'utilisation commerciale et médicale. L'invention est donc une solution qui s'applique aux antimicrobiens actuels et qui s'appliquera aux antimicrobiens futurs.
Après l'arrivée des antimicrobiens dans les années 1940 il est rapidement apparu que les microbes (bactéries et champignons) avaient la capacité de s'adapter aux antimicrobiens utilisés. L'efficacité de ceux-ci diminue au fil du temps et de leur utilisation. 2 stratégies existent pour lutter contre la résistance, la découverte de nouvelles molécules antimicrobiennes d'une part, et d'autre part l'association avec des molécules destinées à bloquer sélectivement les mécanismes de résistance.
Depuis une vingtaine d'années, il est observé une baisse du nombre de nouvelles molécules antimicrobiennes accédant au marché, ce qui a entraîné l'augmentation majeure de la prévalence mondiale de microbes résistants. Il s'ensuit alors une situation complexe pour les patients qui sont plus difficilement soignés de leurs infections microbiennes. Descriptif
L'invention décrit l'utilisation de composés de formules (I) pour potentialiser des antimicrobiens. De façon inattendue, ces composés ont démontré leur capacité de potentialisation de l'effet des antimicrobiens à des doses faibles ( de 0,01 à 100 mg/1) très éloignées de celles où ils peuvent, seuls, présenter des propriétés antimicrobiennes. En conséquence, les antimicrobiens avec lesquels les composés de formules (I) sont co- administrés présentent, du fait de la potentialisation, une activité supérieure à celle usuellement observée.
L'invention vise à potentialiser les « antimicrobiens », utilisables chez l'homme ou l'animal et non l'ensemble des composés qui présentent « des propriétés antimicrobiennes », qui eux ne sont souvent pas administrables à l'homme ou l'animal du fait d'une toxicité trop importante ou d'un seuil d'activité antimicrobienne trop élevé nécessitant des doses incompatibles avec la santé.
Il est important de rappeler que toute molécule présente, dans l'absolu, des propriétés antimicrobiennes. Les propriétés antimicrobiennes d'une molécule doivent donc s'évaluer en regard de la concentration minimale qui inhibe la bactérie.
L'invention se base sur la découverte surprenante que des composés, qui présentent des propriétés antimicrobiennes à des doses très élevées (niveau incompatible avec un usage en médecine pour cet effet) et dont les concentration minimale inhibitrice (CMI) supérieure à 5000 mg/L, avantageusement supérieure à 10 000 mg/L, présentent des effet de potentialisation à des doses faibles (0,01 à 100 mg/1). A ces doses, il devient envisageable d'utiliser les composés (I) chez l'homme ou l'animal.
De façon encore aussi surprenante, il a été constaté que l'effet de potentialisation est meilleur à dose faible du composé (I), et que l'effet (pour les composés présentant des propriétés antimicrobiennes à dose très élevées) augmente lorsque l'on s'éloigne de la dose à laquelle le composé (I) présente seul des propriétés antimicrobiennes.
Par exemple, il a été constaté de façon inattendue que l'acétate de cinnamyle ou le benzyle benzoate, qui présente des propriétés antimicrobiennes à une concentration de l'ordre du g/L (CMI supérieure à 10 000mg/l soit supérieure à 1%, selon les souches), présente des effets de potentialisation des antibiotiques à ces concentrations proches de la CMI (1 à 3 dilutions).
Lorsque l'on diminue sa concentration en dessous de la CMI, le benzyle benzoate ne potentialise plus les antimicrobiens (voir exemple 1-10). Puis, de manière très surprenante, on a constaté qu'en diminuant encore signifïcativement la concentration en benzyle benzoate, de 10 à 50 fois moins que la CMI, le benzyle benzoate présente à nouveau des effets de potentialisation sur un très grand nombre d'antibiotiques sur un très grand nombre de souches, cette fois à des doses compatibles avec l'usage médical.
Un grand avantage est que les composés (I) utilisés à ces doses éloignées de leur seuil d'efficacité, sont le plus souvent utilisables chez l'homme ou l'animal sans contraintes de toxicité du fait de l'absence de toxicité ou à des niveaux acceptables de toxicité. Cela ne serait pas le cas si l'on souhaitait les utiliser aux doses élevées où ils présentent des propriétés antimicrobiennes voire aux doses proches de leur CMI ou ils pourraient potentialiser les antimicrobiens.
De façon tout aussi surprenante l'effet de potentialisation observé avec le composé selon l'invention n'est pas spécifique d'un mécanisme de résistance particulier mais s'observe sur diverses souches, qu'elles aient, ou n'aient pas, développé un ou plusieurs mécanismes de résistance distincts.
ART ANTERIEUR
L'art antérieur décrit dans de nombreuses publications les propriétés antimicrobiennes de certains composés (I). Ces publications n'anticipent pas l'effet de potentialisation des composés (I) à des doses éloignées de leur seuil d'efficacité.
L'art antérieur est conséquent sur les composés (I) car ils appartiennent à des classes chimiques très étudiées dans de nombreux domaines. Les composés (I) dans le cadre de la présente invention présentent les caractéristiques suivantes qui permettent de les écarter de l'art antérieur et qui permettent d'envisager leur usage comme potentialisateur d' antimicrobiens administrés à l'homme et à l'animal:
Al Ils sont utilisés à des doses faibles (0,01 à 100 mg/1), doses éloignées de leur seuil de propriétés antimicrobienne, leur effet de potentialisation n'est pas spécifique de mécanismes d'action ou de résistance particuliers
B/ ils ont été validés par des méthodes de screening adaptée à leurs caractéristiques physico-chimiques
Cl ils présentent, aux doses ou ils potentialisent, un ratio effet/toxicité qui permet un usage sécurisé chez l'homme ou l'animal
D/ Ils constituent une (des) entité(s) chimique(s) isolée(s) dont les caractéristiques sont reproductibles de façon constante à l'infini car leur méthode d'obtention (synthèse, hémi-synthèse, extraction) le permet. E/ Ils ne possèdent pas de toxicité particulière qui interdirait leur usage même à dose faible (génotoxicité, cardiotoxicité,...)
AJ Concernant les niveaux d'activités mesurés dans l'art antérieur
Dans l'art antérieur, la concentration utilisée pour observer une activité antimicrobienne n'est pas compatible avec une utilisation future chez l'homme ou l'animal, en particulier lors d'une application systémique. Dans la majeure partie des publications scientifiques, l'usage médical est envisagé alors que les concentrations efficaces mesurées (de l'ordre de plusieurs mg/ml) sont incompatibles avec cet usage. Les effets antimicrobiens mesurés l'ont très souvent été pour des teneurs en huile essentielle, ou de son composé actif, de l'ordre de plusieurs mg/ml. Or, une telle concentration n'est pas adaptée pour une utilisation future chez l'homme ou l'animal, en particulier par voie systémique. 1 mg/ml correspond à 1 g/1 ou lg/kg ou encore 0, 1%. Si la CMI était de 1 mg/ml, il faudrait, en fonction des paramètres de pharmacocinétique, administrer au moins 1 g/kg/j de poids vif. Par exemple, la dose effective pour une vache devrait être au moins 500 g/j et au moins 60 g/j pour l'homme (ceci correspond à la dose minimale car on suppose ici que le produit est totalement absorbé et distribué dans l'organisme). Ces doses bien trop importantes ne sont pas envisageables pour une utilisation sécurisée en thérapeutique.
B/ Concernant l'inadaptation des méthodes décrites dans l'art antérieur
Les auteurs ayant travaillé selon des approches différentes (produits actifs seuls, produits naturels,...) sur les familles chimiques comprenant les composés (I) ont en général utilisé les méthodes standard de mesure d'effet antibactérien sans les adapter à la nature hydrophobe et volatile des terpénoïdes et phénylpropanoïdes.
Par exemple, WO 99/66796 (Wisconsin Alumni Research Foudation) décrit une méthode pour sensibiliser des cellules microbiennes vis-à-vis de composés antibactériens comprenant une étape de mise en contact avec un composé antibactérien et un sesquiterpenoïde, pour améliorer l'effet du composé antibactérien.
Dans cette demande, les CMI ont été déterminées avec la méthode de diffusion sur gélose, inadaptée à la nature volatile et hydrophobe des composés (I) et des familles apparentés. Cette méthode consiste à déposer des disques de papier imprégnés de quantités connues de composés à tester sur une gélose ensemencée avec la bactérie à étudier. Il s'établit sur la gélose un gradient de concentration du composé autour de chaque disque ; après 18 heures on mesure le diamètre du halo d'inhibition. Cette méthode n'est toutefois pas fiable pour les composés hydrophobes qui, en raison de tensions de surface et d'angles de contacts très différents sur les surfaces hydrophiles, interfèrent avec la formation du gradient de concentration dans la gélose. Dans certaines zones, la concentration en composés à tester est bien supérieure à la concentration théorique. Ainsi, les tests ne peuvent pas être quantitatifs, lorsqu'ils peuvent être qualitatifs. En outre, on note une dilution du composé hydrophobe à tester dans l'éthanol, sans toutefois corriger le résultat alors que l'éthanol est un composé antibactérien et volatil.
A noter que cette demande enseigne qu'aucun effet n'est obtenu avec des terpènes autres que les sesquiterpènes.
Cl Concernant la toxicité des composés de l'art antérieur
A propos des composés et compositions naturelles, il y a une confusion entre l'origine naturelle et l'absence de toxicité. Les huiles essentielles (et leurs dérivés) sont habituellement décrites comme étant peu toxiques, ce qui est souvent vrai dans des applications alimentaires ou en parfumerie mais erroné dans le cadre d'une administration thérapeutique.
A propos des composés chimiques isolés, la confusion existe aussi et repose sur l'origine naturelle (extraction) des composés.
Par exemple WO2006/120567 (Advanced Scientifïc developments) décrit des compositions pharmaceutiques comprenant au moins une substance thérapeutique active et décrite comme non toxique, choisie parmi carveol, thymol, eugenol, borneol, carvacrol, alpha-ionone, beta-ionone, et leurs isomères, dérivés et mélanges, et comprenant, à titre de deuxième substance thérapeutique active un antibiotique. Le carveol, thymol, eugenol, borneol, carvacrol, alpha-ionone, ou beta-ionone, utilisés seuls, présentent une activité antibactérienne et nombre d'entre eux posent cependant également des problèmes de toxicité, ignorés dans cette demande.
Par exemple, le carvacrol présente les données de toxicité suivantes: la DL 50
(souris, intraveineuse) est de 80 mg/kg tandis que la dose létale la plus faible en voie orale est de 100 mg/kg, chez deux espèces mammifères (chat et rat). Ces données sont à mettre en regard de la dose de 0,3 mg/ml (soit 300 mg/kg), envisagés dans le document. D/ Concernant la variabilité chimique des composés décrits dans l'art antérieur
L'utilisation d'huile essentielle est problématique, à l'échelle industrielle, en termes de qualité et de reproductibilité étant donné que la composition d'une huile essentielle varie d'un lot à l'autre.
Par exemple DE 196 31 037 (Boehringer) décrit l'utilisation de l'huile essentielle d'arbre à thé pour potentialiser l'effet d'antibiotiques sur les souches
Staphylococcus aureus. Le composant principal l'huile essentielle d'arbre à thé est le terpinen-l-ol.
Cette variabilité a notamment trois conséquences qui limitent industrialisation en vue d'une application chez l'homme ou l'animal:
- il est difficile d'assurer la constance de l'effet thérapeutique
- Il est difficile d'assurer la faible toxicité des produits
- le coût relatif à l'approvisionnement et au management de la qualité et de la reproductibilité des matières est important.
Le tableau suivant récapitule l'enseignement de ces arts antérieurs :
Figure imgf000007_0001
Tableau 1 Le travail portant sur des composés (I) à des doses faibles éloignées de celles auxquelles ils présentent une activité antimicrobienne est nouveau et l'art antérieur n'a pas, à notre connaissance, envisagé cet usage.
DEFINITIONS
Par « micro -organisme », on entend tout organisme vivant, invisible à l'œil nu en raison de ses faibles dimensions.
Par « organisme », on entend toute entité biologique (être vivant) animale ou végétale capable de naître, de se développer et normalement de se reproduire.
Dans ce brevet la définition de microbe reprend la définition de micro-organisme, limitée au champ médical auquel l'invention se réfère. Ainsi les « microbes » sont les microorganismes vivants potentiellement pathogènes (bactéries, champignons, levure et mycobactéries). Le terme exclue donc les pathogènes inertes comme les virus et les prions.
Par « antimicrobien » on entend tout composé destiné à être administré à l'homme ou l'animal capable de tuer ou d'inhiber la croissance de microbes. Les sels pharmaceutiquement acceptables de ces antimicrobiens sont également inclus dans cette définition. Cela inclut, par exemple, les sels de sodium, de potassium, de calcium, etc. et les sels aminés de procaine, dibenzylamine, éthylendiamine, éthanolamine, méthylglucamine taurine, etc., de même que les sels d'addition acide tels que les hydrochlorures et les acides aminés basiques. Le terme regroupe ainsi les antibiotiques (leurs associations avec les inhibiteurs de mécanismes de résistance), les antifongiques destinés à un usage systémique ou local.
Par « propriétés antimicrobiennes » on entend les propriétés d'une quelconque substance capable de détruire ou d'inhiber la croissance des microbes. Les produits qui présentent des propriétés antimicrobiennes comprennent notamment les antimicrobiens et les biocides.
Par opposition au terme « antimicrobien » qui regroupe les antibactériens, antifongiques destinés à être administrés, le terme « biocide » regroupe les produits ayant des propriétés antimicrobiennes destinés à être appliqués à des systèmes inertes (virus et prions).
Par « propriétés antibactériennes » et « propriétés antifongiques » on entend non seulement les propriétés bactéricides et fongicides caractérisées par la destruction des bactéries et champignons (et levures, mycobactéries), mais également les propriétés bactériostatiques et fongistatiques, caractérisées par l'inhibition de la croissance desdites bactéries et champignons (et levures, mycobactéries). Les produits qui présentent des propriétés antibactériennes ou antifongiques comprennent notamment les antimicrobiens.
Par « bactérie résistante » aux antibiotiques on entend, au sens de la présente invention, une bactérie résistante à au moins un, notamment au moins deux, en particulier au moins trois, voire au moins quatre, antibiotique(s) ou famille(s) d'antibiotique, classiquement utilisé(s).
Par « bactérie multi-résistante » on entend, au sens de la présente invention une bactérie résistante à plusieurs antibiotiques, en particulier pour lesquels la souche devrait être sensible, ou a priori sensible, tout particulièrement une bactérie qui présente au moins deux résistances non naturelles.
On distingue les « résistances naturelles » des « résistances acquises ». Certains antibiotiques n'ont jamais été efficaces, à des doses non toxiques, contre certaines souches ou espèces bactériennes. Il s'agit d'une résistance naturelle. Lorsque des antibiotiques normalement efficaces ne s'avèrent pas ou peu efficaces vis-à-vis d'une bactérie, cette bactérie a développé une résistance acquise.
Une « infection microbienne » au sens de la présente invention désigne une infection provoquée par une ou plusieurs souches microbiennes et inclut les phases allant de la colonisation de l'hôte aux phases pathologiques. L'expression « infection microbienne » englobe donc tout effet néfaste, signe clinique, symptôme ou toute maladie apparaissant chez l'homme ou l'animal suite à la colonisation par le microbe.
Par "terpenoïde" on entend selon l'invention tout composé comprenant un squelette proche d'un terpène. Un « terpène » désigne un dérivé de l'isoprène qui est obtenu par voie biologique par la condensation d'unités en C5, conduisant par exemple aux monoterpènes, sesquiterpenes. Par « proche » on entend que le squelette est similaire à un terpène ou différent en ce qu'au moins un substituant alkyle, normalement présent, peut être absent ou porté par un autre atome. Le squelette peut en outre être substitué par des radicaux variés tels que des radicaux aliphatiques, saturés ou insaturés, linéaires ou cycliques (alkyles, alcényles, alkylènes), oxy, des aldéhydes, des esters, des alcools, des éthers et leurs équivalents soufrés ou azotés. Le terpénoïde peut avantageusement être d'origine naturelle.
Par "phenylpropanoide" on entend selon l'invention tout composé comprenant un squelette proche d'un phénylpropane. Un « phénylpropane » désigne un dérivé obtenu par synthèse biologique à partir du phénylpropane et conduisant à des dérivés en C6 (aromatique)-C3 (aliphatique) ou en C6 (aromatique)-Cl (aliphatique) et aux lactones correspondantes. Par « proche » on entend que le squelette est similaire à un phénylpropane, en particulier on retrouve le motif phényle, ou différent en ce qu'au moins un substituant alkyle, normalement présent, peut être absent ou porté par un autre atome. Le squelette peut en outre être substitué par des radicaux variés tels que des radicaux aliphatiques, saturés ou insaturés, linéaires ou cycliques (alkyles, alcényles, alkylènes), oxy, des aldéhydes, des esters, des alcools, des éthers et leurs équivalents soufrés ou azotés. Le phénylpropanoïde peut avantageusement être d'origine naturelle.
Le terme « prophylaxie » ou « prévenir une infection » tel qu'utilisé dans la présente demande désigne tout degré de retardement dans le moment d'apparition de signes cliniques ou de symptômes de l'infection, ainsi que tout degré d'inhibition de la sévérité des signes cliniques ou symptômes de l'infection, y compris mais sans limitation à, la prévention totale de ladite infection. Ceci nécessite que Γ antimicrobien et le composé selon l'invention soient co-administrés à l'homme ou l'animal susceptible d'être colonisé par une souche microbienne à titre préventif, par exemple suite à un acte de chirurgie, d'implantation d'un dispositif médical, un acte médical intrusif. Cette administration prophylactique peut avoir lieu avant, pendant ou après l'acte susceptible de provoquer une infection (en particulier une infection nosocomiale) dans le but d'empêcher, améliorer, et/ou réduire la sévérité de n'importe quelle infection subséquente.
Le terme « traitement » au sens de la présente demande implique que Γ antimicrobien et le composé selon l'invention soient co-administrées à un sujet (humain ou animal) au moment de la colonisation ou après la contamination ou la suspicion de contamination par une souche microbienne susceptible de provoquer une infection telle qu'une infection nosocomiale. Le terme « traitement » ou « traiter une infection » inclut donc : tout effet curatif (inhibition de la croissance ou destruction du microbe) obtenu grâce à la co-administration antimicrobien + composé selon l'invention ainsi que l'amélioration des signes cliniques ou des symptômes observés de même que l'amélioration de l'état du sujet.
le ralentissement, l'interruption, ainsi que l'arrêt de la progression de l'infection. La co-administration antimicrobien-composé selon l'invention peut en effet également permettre de ralentir la progression d'un microbe et/ou empêcher complètement ou partiellement une infection microbienne de s'étendre aux tissus environnants et au-delà.
l'inhibition, l'atténuation ou la prévention des conséquences néfastes de l'infection telles que les dommages cellulaire ou physiologiques provoqués par les toxines produites par certains microbes au niveau des tissus infectés ou avoisinants.
Le terme « co-administrés » signifie que Γ antimicrobien (ou le mélange antimicrobien) et le composé selon l'invention (ou le mélange de composés selon l'invention) sont administrés sous forme combinée ou juxtaposée au sujet (homme ou animal). La combinaison inclut toute association médicamenteuse, toute composition pharmaceutique, tout kit pharmaceutique, et tout médicament comprenant (i) au moins un antimicrobien et (ii) au moins un composé selon l'invention. Les composés (i) et (ii) peuvent être présents sous la forme d'un mélange ou sous la forme de formulations ou compositions distinctes dans ladite combinaison. La combinaison peut également comprendre plusieurs antimicrobiens, par exemple 2, 3 ou 4 antimicrobiens ou plus, et/ou plusieurs composés selon l'invention, en particulier 2 ou 3 ou plus composés selon l'invention. Ces constituants forment une unité fonctionnelle du fait d'une indication commune, qui est la mise en œuvre d'un traitement antimicrobien. Cette thérapie combinée est plus spécifiquement destinée à la prophylaxie et/ou au traitement d'infections et de maladies d'origine microbienne, en particulier des infections nosocomiales.
La co-administration peut être simultanée ou étalée dans le temps.
Le terme « simultané » signifie que Γ antimicrobien (ou le mélange antimicrobien) et le composé selon l'invention (ou le mélange de composés selon l'invention) sont administrés en même temps, au même moment, à un sujet (homme ou animal). Ces composés peuvent être administrés sous la forme d'un mélange ou, simultanément mais séparément, sous la forme de compositions distinctes.
L'expression « administration séquentielle » signifie que Γ antimicrobien (ou le mélange antimicrobien) et le composé selon l'invention (ou le mélange de composés selon l'invention) sont administrés non pas simultanément mais séparément dans le temps, l'un après l'autre.
L'expression « potentialiser » un antimicrobien signifie que l'utilisation d'un composé selon l'invention permet d'obtenir un effet prophylactique ou thérapeutique supérieur à l'effet prophylactique ou thérapeutique obtenu en utilisant le ou lesdits antimicrobiens seuls. Ceci peut s'exprimer de différentes manières, alternatives ou cumulatives :, augmentation de l'effet de Γ antimicrobien, diminution de la dose d' antimicrobien à effet constant d' antimicrobien, réduction de la CMI. En outre, la potentialisation permet de réduire, voire annihiler, l'apparition de résistance.
L'expression augmenter l'effet d'un antimicrobiens signifie : l'élargissement du spectre microbien de l'activité de Γ antimicrobien, l'augmentation de la vitesse d'action de Γ antimicrobien, l'amélioration du succès clinique (cure rate) ou de la vitesse de l'obtention du succès clinique (time to cure) de P antimicrobien, à dose constante d'antimicrobien.
L'expression « diminuer la quantité d'antimicrobien utilisée » signifie que l'utilisation de composé selon l'invention permet d'utiliser une quantité d'antimicrobien inférieure à la quantité d'antimicrobien normalement nécessaire pour obtenir un effet thérapeutique ou prophylactique donné lorsque l'antimicrobien est administré seul. La diminution de la quantité d'antimicrobien utilisée peut être plus ou moins importante ; elle est de préférence d'au moins 10%, et plus préférablement d'au moins 20 %>, encore plus préférablement d'au moins 40%>, voire 50%> ou plus par rapport à la quantité normalement nécessaire pour obtenir un effet thérapeutique ou prophylactique donné.
« CMI » signifie « concentration minimale inhibitrice », qui est la plus faible concentration de substance à laquelle on n'observe plus de croissance microbienne après 18 à 24h de contact dans des conditions favorables à la croissance microbienne Les tests de mesure de concentration minimale inhibitrice sont réalisés en milieu solide gélosé selon les normes internationales en vigueur (normes CLSI M7-A9 Jan 12) : dispersion des composés à tester dans une gélose Mueller Hinton gélose. Une adaptation relative à l'hydrophobicité des composés et compositions est cependant nécessaire pour les disperser dans le milieu : dilution dans un solvant. Les composés et compositions incorporés dans la gélose peuvent être au préalable dilués dans un ou plusieurs solvant (Tween® 80 dilué dans l'eau, tween® 80 dilué dans le propylène, DMSO dilué dans l'eau). Les souches sont déposées sur la surface de la gélose avec un appareil de steers. Dans les exemples, différentes méthodes de dissolution des produits sont testées en parallèle pour contourner les problématiques de coefficient de répartition eau/solvant des molécules (antimicrobien et potentialisateur) tandis que les bactéries poussent dans la seule phase aqueuse. La contrainte technique n'interviendra pas dans les tests in vivo. Les mêmes méthodes de dilutions peuvent être mise en œuvre en milieu liquide (microplaques et tubes). La même méthodologie est mise en œuvre avec les champignons.
Les CMI 50 et CMI 90 représentent respectivement les concentrations qui inhibent 50% et 90% en nombre des souches d'un même genre.
Au sens de la présente invention « alkyle » désigne une chaîne hydrocarbonée aliphatique insaturée comportant de 1 à 6 atomes de carbone (Ci-C6) ou de 1 à 4 atomes de carbone (C1-C4), linéaire ou ramifié. Comme exemple de radicaux alkyles comportant de 1 à 4 atomes de carbones, on peut citer les radicaux méthyle, éthyle, propyle, butyle, isopropyle, 1-méthyl-éthyle, 1-méthyl-propyle, 2-méthyl-propyle. Comme exemple de radicaux alkyles comportant de 1 à 6 atomes de carbones, on peut en outre citer les radicaux pentyle, hexyle, 1-méthyl-butyle, 1-méthyl-pentyle, 2- méthyl-butyle, 2-méthyl-pentyle, 3-méthyl-butyle, 3-méthyl-pentyle, 4-méthyl-pentyle ou 1-éthyl-propyle, 1-éthyl-butyle, 2-éthyl-butyle.
Au sens de la présente invention « alcényle » désigne une chaîne hydrocarbonée aliphatique saturée, comprenant au moins une double liaison C=C, par exemple vinyle, allyle ou analogue, comportant de 2 à 6 atomes de carbone, ou de 2 à 4 atomes de carbone, linéaire ou ramifié.
Au sens de la présente invention « alkoxy» désigne un radical O-alkyle, (où l'alkyle est tel que défini précédemment), par exemple methoxy ou ethoxy.
Les radicaux « alkyle », « alcényle », « alkoxy» peuvent en outre être substitués.
Deux radicaux « alkyle(s) » et/ou « alcényle(s) » et/ou « alkoxy(s) » portés par un même squelette peuvent former ensemble un cycle ou un hétérocyle (en particulier une lactone). Le terme « alkylène » désigne la chaîne hydrocarbonée formée lorsque deux radicaux « alkyle(s) » et/ou « alcényle(s) » sont liés l'un à l'autre.
Par le terme "cycloalkyle", on entend au sens de la présente invention tout cycle hydrocarboné, saturé ou non, mais non aromatique, de 3 à 7 chaînons, en particulier de 5 ou 6 chaînons, tels que le cyclopentyle et le cyclohexyle.
Par le terme "cyclohétéroalkyle", on entend au sens de la présente invention tout cycle hydrocarboné, saturé ou non, mais non aromatique, de 5 à 7 chaînons, contenant un ou plusieurs hétéroatomes, tels que par exemple des atomes de soufre ou d'oxygène.
Au sens de la présente invention « oxy » désigne une fonction cétone et « CHO » désigne une fonction aldéhyde.
Le log de P, « log P » est un ratio de concentration à l'équilibre d'un composé non ionisé dans deux phases de solvants non miscibles (eau et n-octanol).
DESCRIPTION DE L'INVENTION
L'invention a pour objet un agent antimicrobien potentialisé pour son utilisation dans le traitement d'une infection microbienne, caractérisé en ce que l'on utilise en association avec l'agent antimicrobien un composé répondant à la formule I suivante :
Figure imgf000014_0001
dans laquelle
les pointillés représentent des liaisons pouvant être absentes ou présentes, à la condition que deux doubles liaisons ne soient pas adjacentes
n vaut 0 ou 1
Ri représente H ou un radical alkyle en Ci-C6 ou alcényle en C2-C6
R2 représente H ou un radical OH, 0-CO-(alkyle en C1-C4), 0-(alkyle en C1-C4), alkyle en Ci-C6, N-(alkyle en Ci-C6)2, avantageusement R2 représente H
R3 représente H ou un radical OH, 0-CO-(alkyle en C1-C4), 0-(alkyle en C1-C4), O- (alcényle en C2-C4), avantageusement R3 représente H R2 et R3 pouvant former ensemble la lactone correspondante
• lorsque n vaut 0
o Z représente un radical CO-R5 avec R5 qui représente un radical OH, O-alkyle en Ci-C6, 0-(alkyle en Ci-C4)-phenyle, O-alcényle en C2-C6, avantageusement un radical O-alkyle en Ci-C6, O- (alkyle en Ci-C4)-p enyle, O-alcényle en C2-C6,
• lorsque n vaut 1
o Z représente un radical CO-R5 ou CH2-0-CO-(alkyle en Ci-C6) ou CHmR7 ou alkyle en C4-C10 ou alcényle en C4-C10, les radicaux alkyle en C4-C10 ou alcényle en C4-C10 pouvant être linéaires ou ramifiés, éventuellement substitués par OH ; avantageusement ces radicaux ne sont pas substitués
o avec R5 qui représente un radical OH, O-alkyle en Ci-C6, O- (alkyle en Ci-C4)-phenyle, 0-(alcényle en C2-C4)-phenyle, O- alcényle en C2-C6, avantageusement un radical O-alkyle en Ci- Ce, 0-(alkyle en Ci-C4)-phenyle, O-alcényle en C2-C6, o ou avec R5 qui représente H à la condition que R4 représente un radical alkyle en C2-C6 ou que R2 représente un radical alkyle en C2-C6, N-(alkyle en Ci-C6)2
o avec m vaut 1 ou 2 ; m vaut 2 si la liaison entre Ci et C2 est double
o avec R7 représente H ou un radical alkyle en Ci-C6
o avec R4 représente H ou un radical alkyle en Ci-C6
en un ratio massique, composé de formule (I) : agent antimicrobien, variant de 8 : 1 à 1 : 10, et en ce que l'agent antimicrobien n'est pas un terpénoïde ou un phenylpropanoide.
L'agent antimicrobien est avantageusement un actif de la médecine conventionnelle occidentale, tel que cela sera décrit par la suite. En particulier, l'agent antimicrobien n'est pas un terpénoïde ou un phenylpropanoide, tel qu'un extrait d'huile essentielle ou un composant d'huile essentielle. Le ratio massique composé de formule (I) : agent antimicrobien variant plus avantageusement de 4 : 1 à 1 : 10, plus avantageusement de 1 : 1 à 1 : 10, encore plus avantageusement de 1 : 1 à 1 :5.
Cela signifie que la dose administrée en composé de formule (I) est du même ordre de grandeur, que celui de l'agent antimicrobien.
Le ratio massique correspond au ratio des doses en mg/kg du composé et de l'agent antimicrobien à administrer à l'homme ou l'animal.
D'une manière surprenante, il a été constaté que l'effet de potentialisation diminue lorsque la dose en composé selon l'invention (ou mélange de composés selon l'invention) augmente. Cet effet de potentialisation peut réapparaître à la CMI du composé seul, mais cela n'est pas l'objet de l'invention.
Dans le cadre de la présente invention, in vitro, la concentration en composé inactif, à laquelle on observe un effet de potentialisation, est très éloignée du seuil des propriétés antimicrobiennes (CMI), lorsque des propriétés antimicrobiennes sont observées. Par très éloignée, on entend que la concentration in vitro est au moins 10 fois, avantageusement au moins 20 fois, plus avantageusement au moins 50 fois, encore plus avantageusement au moins 100 fois inférieure à la CMI.
Sur une souche A, pathogène qui induit notamment l'infection microbienne considérée, la concentration en composé (I) répond à l'équation suivante :
[C] < [CMI] / x
Où [C] est la concentration selon l'invention en composé (I) à utiliser sur la souche
A
[CMI] est la CMI mesurée pour le composé (I), seul, sur cette souche A
x est supérieur ou égal à 100, avantageusement à 1 000, plus avantageusement x est compris entre 2 000 et 10 000, voire supérieur à 50 000.
In vitro, les doses en composé (I) sont inférieures à 100 mg/L, avantageusement inférieures à 64 mg/L, plus avantageusement comprises entre 0,01 et 25 mg/L, encore plus avantageusement comprises entre 1 et 16 mg/L.
Dans les compositions administrées, la concentration, par unité de dose par kilo, en composé de formule (I) est avantageusement inférieure à 100 mg, plus avantageusement inférieure à 64mg. Les composés (I) peuvent être utilisés à une concentration faible (in vitro à des concentrations de l'ordre du μ§/ι 1) pour potentialiser les antimicrobiens, ce qui est tout à fait compatible avec une utilisation future chez l'homme ou l'animal (en particulier si une administration systémique est recherchée).
Cela permet d'envisager des dosages chez l'homme ou l'animal inférieurs à 64 mg/kg, avantageusement compris entre 0,01 et 64 mg/kg, plus avantageusement compris entre 0,5 et 40 mg/kg, encore plus avantageusement compris entre 5 et 30 mg/kg.
Le composé potentialisateur selon l'invention est avantageusement administré à une concentration telle que sa concentration sérique maximale soit inférieure à 250 mg/L, avantageusement inférieure à 150 mg/L, plus avantageusement comprise entre 10 et 150 mg/L après administration.
Bien entendu, à ces concentrations, le composé peut être administré à l'homme et l'animal, y compris par voie systémique, et ne présente pas d'effets indésirables majeurs, en particulier de carcinogénicité ou de génotoxicité.
Le ratio massique composé selon l'invention (ou mélange de composés selon l'invention) : antimicrobien dépend à chaque fois de F antimicrobien utilisé et il sera adapté au cas par cas.
Par exemple, pour l'arnoxicilline dans les cas où elle est usuellement administrée à une dose de 1000 mg par prise, la dose en composé de formule (I) pourra varier entre 300 et 850 mg par prise, voir moins. Par contre, pour la colistine qui est usuellement administrée à une dose de 1 MUI par voie pulmonaire, la dose en composé de formule (I) pourra varier entre 0,1 et 0,8 MUI, voir moins.
Autrement formulée, l'invention a pour objet un procédé pour potentialiser l'activité antimicrobienne d'un antimicrobien de façon indépendante du mécanisme de résistance comprenant les étapes suivantes :
a) Choisir un composé de formule (I) qui soit thérapeutiquement inactif (à visée anti-infectieuse) seul à la dose envisagée,
b) Préparer une composition comprenant le composé choisi à l'étape a) avec Γ antimicrobien
L'invention a également pour objet une méthode pour traiter et/ou prévenir une infection microbienne chez un sujet, comprenant la co-administration chez le sujet souffrant de ladite infection microbienne d'un antimicrobien et d'un composé de formule (I).
Le composé et Γ antimicrobien sont adaptés pour une administration simultanée, séparée ou étalée dans le temps à l'homme ou l'animal.
L' antimicrobien est de préférence un antibiotique. Il peut aussi être un antifongique.
D'une manière surprenante, il a été constaté que les composés de formule (I), utilisés à cette faible concentration, sont capables de potentialiser l'activité des antimicrobiens. Ainsi, l'utilisation de ces potentialisateurs permet avantageusement d'utiliser ledit antimicrobien à une concentration plus faible et/ou, à concentration usuelle tout en ayant une activité supérieure que l'antimicrobien seul à la même dose (augmentation de l'intensité de l'effet ou de la cinétique de l'effet).
Concrètement, l'invention permet notamment:
AJ diminuer les doses à effet constant : diminution la quantité nécessaire d'un antimicrobien pour inhiber/détruire les microbes habituellement sensibles
B/ d'augmenter l'effet à dose constante : augmentation de la capacité d'un antimicrobien à inhiber/détruire les germes sensibles (amélioration de la cinétique de l'effet, de l'intensité de l'effet, et élargissement du spectre d'activité d'un antimicrobien vers des germes qui étaient inconstamment sensibles ou résistant à l'antimicrobien).
Réduire la dose administrée (A/) d'un antimicrobien présente un intérêt non seulement du point de vue du traitement des infections microbiennes chez l'homme ou l'animal notamment la réduction des effets secondaires, mais également, et ceci n'est pas négligeable, d'un point de vue environnemental (diminution de l'apparition de résistances aux d'antimicrobiens). L'utilisation des antimicrobiens connus à des doses plus faibles peut aider dans la lutte contre l'apparition de nouveaux mécanismes de résistance. En particulier, l'antimicrobien peut être utilisé à une dose réduite, dans laquelle la dose administrée en antimicrobien correspond de 1/50 à 3/4 de la dose nécessaire en antimicrobien en absence de la co-administration d'un composé selon l'invention pour une administration à un sujet (homme, animal) pour traiter les infections microbiennes. La diminution de la dose d' antimicrobien à effet constant permet de limiter la toxicité dudit antimicrobien. En application chez l'animal de rente, cela permet de diminuer les temps de latence avant abattage. La réduction de la dose permet également d'envisager la ré-utilisation de certains antimicrobiens, qui à ce jour ne peuvent plus être administrés parce qu'ils présentent à leurs doses efficaces des effets secondaires trop importants, et peuvent de nouveau être administrés efficacement chez l'homme ou l'animal avec peu d'effets secondaires.
Augmenter l'effet d'un antimicrobien à dose constante (B/) présente un intérêt clinique certain tant du point de vue quantitatif en améliorant la cinétique d'un effet antimicrobien que qualitatif en rendant possible de traiter un patient (humain ou animal) souffrant d'une infection microbienne avec un antimicrobien pour lequel la souche était sensible ou inconstamment sensible en l'absence de potentialisation. L'augmentation de la vitesse de l'effet de Γ antimicrobien permet de diminuer le temps passé à l'état « infectant » par le patient ou l'animal, réduisant ainsi l'épidémiologie de la maladie ainsi que l'apparition et la diffusion des résistances.
Grâce à la présence des composés selon l'invention, il est possible d'augmenter la vitesse de bactéricidie de Γ antimicrobien à dose constante d'antimicrobien. Ainsi, la vitesse d'action d'un antimicrobien potentialisé peut être augmentée. Ceci est particulièrement vrai pour des antimicrobiens concentration-dépendant.
Grâce à la présence des composés selon l'invention, le spectre de Γ antimicrobien peut être élargi, notamment à dose constante d'antimicrobien. Ainsi, un antimicrobien potentialisé par les composés selon l'invention peut être utilisé sur des souches sur lesquelles il n'est plus sensible en l'absence de potentialisation (notamment en raison de l'apparition de résistances).
Dans un mode de réalisation, le composé de formule (I) est suffisant pour potentialiser Γ antimicrobien, avec pour conséquence que l'utilisation d'un seul composé de formule (I) est suffisant pour potentialiser Γ antimicrobien. Cependant, dans certains cas, une utilisation combinée de composés inactifs peut être envisagée. Cela est particulièrement vrai lorsque qu'une activité large spectre est recherchée. En particulier, pour potentialiser un antibiotique sur les bactéries à Gram + et à Gram -, il peut être utile de co-administrer un composé selon l'invention particulièrement potentialisateur sur les bactéries à Gram + et un composé selon l'invention particulièrement potentialisateur sur les bactéries à Gram -.
Les phénylpropanes comprennent un squelette aryle en C6 substitué par au moins un aliphatique :
Figure imgf000020_0001
une liaison double C=C entre Cl et C2 ou entre C2 et C3
le squelette aryle en C6 pouvant comprendre un ou plusieurs substituants.
Les composés selon l'invention ont avantageusement un nombre d'atomes de carbone allant de 10 à 18, plus avantageusement de 10 à 15.
Les composés selon l'invention ont avantageusement une masse moléculaire inférieure à 350 g/mol, avantageusement inférieure à 300 g/mol, plus avantageusement comprise entre 120 g/mol et 280 g/mol.
Les composés les plus avantageux sont purement hydrocarbonés (que des atomes de carbone et d'hydrogène) ou lorsqu'ils comprennent des atomes d'oxygène, l'oxygène est de préférence sous la forme d'un ester ou d'un éther.
Les composés ont avantageusement une valeur de LogP qui est supérieure à 2, plus avantageusement comprise entre 2 et 5.
Les composés ont avantageusement une faible solubilité dans l'eau. En particulier, la solubilité dans l'eau est avantageusement inférieure à 500 mg/L, plus avantageusement entre 0,001 mg/L et 50 mg/L, encore plus avantageusement entre 0,001 et 20 mg/L.
Le composé selon l'invention peut avantageusement former de 0 à 1 liaison hydrogène, plus avantageusement 0 liaison hydrogène.
Dans une première variante, le composé répond à la formule (la) suivante :
Figure imgf000020_0002
Dans laquelle
n vaut 0 ou 1 Ri représente H ou un radical alkyle en Ci-C6 ou alcényle en C2-C6
R2 représente H ou un radical OH, 0-CO-(alkyle en C1-C4), 0-(alkyle en C1-C4), alkyle en Ci-C6, N-(alkyle en Ci-C6)2, avantageusement R2 représente H
R3 représente H ou un radical OH, 0-CO-(alkyle en C1-C4), 0-(alkyle en C1-C4), avantageusement R3 représente H
R2 et R3 pouvant former ensemble la lactone correspondante
• lorsque n vaut 0
o R5 représente un radical OH, O-alkyle en Ci-C6, 0-(alkyle en Ci- C4)-p enyle, O-alcényle en C2-C6, avantageusement un radical O- alkyle en Ci-C6, 0-(alkyle en Ci-C4)-phenyle, O-alcényle en C2- C6,
• lorsque n vaut 1
o R4 représente H ou un radical alkyle en Ci-C6 o R5 représente un radical O-alkyle en C2-C6, 0-(alkyle en C1-C4)- phenyle, 0-(alcényle en C2-C4)-phenyle, alkyle en Ci-C6 o R5 représente H à la condition que R4 représente un radical alkyle en C2-C6 ou que R2 représente un radical alkyle en C2-C6, N-
(alkyle en Ci-C6)2
o R5 représente OH à la condition que R2 représente un radical alkyle en Ci-C6
Avantageusement, R5 représente un radical O-alkyle en C2-C6, 0-(alkyle en Ci- C4)-p enyle, alkyle en Ci-C6.
Plus avantageusement,
n vaut 0 ou 1
Ri représente H ou un radical alkyle en Ci-C6 ou alcényle en C2-C6
R2 représente H ou un radical OH, 0-CO-(alkyle en C1-C4), 0-(alkyle en C1-C4), alkyle en Ci-C6, N-(alkyle en Ci-C6)2, avantageusement R2 représente H
R3 représente H ou un radical OH, 0-CO-(alkyle en C1-C4), 0-(alkyle en C1-C4), avantageusement R3représente H
R2 et R3 pouvant former ensemble la lactone correspondante
• lorsque n vaut 0 o R5 représente un radical OH, O-alkyle en Ci-C6, 0-(alkyle en Ci- C4)-p enyle, O-alcényle en C2-C6, avantageusement un radical O-alkyle en Ci-C6, 0-(alkyle en Ci-C4)-p enyle, O-alcényle en
Figure imgf000022_0001
• lorsque n vaut 1
o R4 représente H ou un radical alkyle en C3-C6 o R5 représente un radical O-alkyle en C2-C6, 0-(alkyle en C1-C4)- phenyle
o R5 représente H à la condition que R4 représente un radical alkyle en C3-C6 ou que R2 représente un radical alkyle en C2-C6, N- (alkyle en Ci-C6)2
o R5 représente OH à la condition que R2 représente un radical alkyle en C3-C6
Avantageusement, R5 représente un radical-alkyle en C2-C6, 0-(alkyle en Ci- C4)-p enyle.
Dans une variante, n vaut 0. Dans cette variante, R5 représente avantageusement un radical OH, O-alkyle en C1-C3, 0-(alkyle en Ci-C2)-phényle. Ri représente avantageusement H ou un radical alkyle en C1-C4 ou alcényle en C2-C4. R2 représente avantageusement H ou un radical OH, 0-(alkyle en C1-C4). R3 représente avantageusement H.
Dans cette variante, les composés selon l'invention préférés sont l'acide benzoïque, le méthyl salicylate, le benzoate de benzyle.
Dans une deuxième variante, le composé répond à la formule (Ib) suivante :
Figure imgf000022_0002
Dans laquelle
Ri représente H ou un radical alkyle en Ci-C6 ou alcényle en C2-C6
R2 représente H ou un radical OH, 0-CO-(alkyle en C1-C4), 0-(alkyle en C1-C4), alkyle en Ci-C6, N-(alkyle en Ci-C6)2, avantageusement R2 représente H R3 représente H ou un radical OH, 0-CO-(alkyle en C1-C4), 0-(alkyle en C1-C4), O- (alcényle en C2-C4), avantageusement R3 représente H
R2 et R3 pouvant former ensemble la lactone correspondante
Z représente un radical CH2-0-CO-(alkyle en Ci-C6)
Dans cette variante, Ri représente avantageusement H. R2 représente avantageusement H. R3 représente avantageusement H. Z représente avantageusement un radical CH2-0-CO-(alkyle en C1-C4).
Dans cette variante, les composés selon l'invention préférés sont l'acétate de cinnamyle et le trans-cinnamyl propionate.
Dans le cadre de la présente invention, l'infection microbienne est avantageusement une infection induite par un pathogène choisi parmi les genres potentiellement pathogènes suivants: Acetobacter, Acetobacterium, Acinetobacter, Citrobacter, Enterobacter, Enterococcus, Escherichia, Helicobacter, Klebsiella, Proteus, Providencia, Pseudomonas, Salmonella, Serratia, Staphylococcus, Streptococcus, Actinobacillus, Neisseria, Mannheima, Pasteurella, Candida, Aspergillus, Cryptococcus, Trichosporon, Malassezia, et Mycobacterium.
La souche ou espèce bactérienne est avantageusement choisie dans le groupe constitué de: Acetobacter, Acetobacterium, Acinetobacter, Actinobacillus, Citrobacter, Enterobacter, Enterococcus, Escherichia, Helicobacter, Klebsiella, Mannheima, Pasteurella, Proteus, Providencia, Pseudomonas, Salmonella, Serratia, Staphylococcus, et Streptococcus. Plus particulièrement, la souche ou espèce bactérienne est avantageusement choisie dans le groupe constitué de Citrobacter freundii, Enterobacter aerogenes, Enterobacter cloacae, Escherichia coli, Klebsiella oxytoca, Klebsiella pneumoniae, Proteus mirabilis, Providencia stuartii, Salmonella sp, Serratia marcescens, Acinetobacter baumannii, Burkholderia cepacia, Pseudomonas aeruginosa, Staphylococcaceae, Staphylococcus aureus, Enterococcus faecium, et Enterococcus sp. Ainsi, la bactérie peut indifféremment être une bactérie à gram - ou une bactérie à gram +.
La bactérie est plus avantageusement choisie dans le groupe constitué de
Pseudomonas aeruginosa, Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae et Staphylococcus aureus. Le champignon est avantageusement choisi dans le groupe constitué de: Candida, Aspergillus, Cryptococcus, Trichosporus. Le champignon est plus avantageusement candida albicans.
La mycobactérie est avantageusement le Mycobactérium tuberculosis
L'agent antimicrobien peut être un antibiotique et/ou un agent antifongique. Dans une variante préférée, le composé de formule (I) et F antimicrobien n'appartiennent pas à la même famille de composés chimiques. Ainsi, le composé de formule (I) étant dérivé d'un terpenoïde, Γ antimicrobien n'est pas un terpenoïde, voire même n'est pas un extrait d'huile essentielle ou un phénylpropanoïde.
Les antibiotiques, qui peuvent être utilisés dans la présente invention sont avantageusement choisis parmi :
1. Les antibiotiques actifs sur les membranes, en particulier les bêtalactamines, les pénicillines, les céphalosporines, les glycopeptides, la fosfomycine, les polymixines, la bacitracine, la cyclosérine ;
2. Les antibiotiques inhibant la synthèse des protéines, en particulier les aminosides, des téracyclines, l'acide fusidique, le chloramphenicol et ses dérivés, les macrolides, les lincosamides, les streptogramines, les synergistines et oxazolidinones;
3. Les antibiotiques inhibant la synthèse des acides nucléiques, en particulier les quinolones, les nitrofuranes, les ansamycines et l'acide fucidique ;
4. Les antibiotiques inhibant la synthèse des folates, en particulier les sulfamides et associations sulfamidées ;
5. Les antibiotiques inhibant la synthèse des acides mycoliques, en particulier l'isoniazide, la prothionamide, l'éthionamuide, la pyrazynamide
6. L'un quelconque de leurs sel pharmaceutiquement acceptables, et
7. L'une quelconque de leurs combinaisons.
De préférence, l'antibiotique est choisi parmi : les antibiotiques inhibant la synthèse du peptidoglycane, les antibiotiques inhibant la synthèse des acides nucléiques, les antibiotiques inhibant la synthèse des folates, les antibiotiques inhibant la synthèse des acides mycoliques, l'un quelconque de leurs sel pharmaceutiquement acceptables, et l'une quelconque de leurs combinaisons. La classe d'antibiotique particulièrement avantageuse est celle des antibiotiques inhibant la synthèse du peptidoglycane.
En particulier, l'antibiotique est choisi parmi: amoxicilline, amoxicilline / acide clavulanique, imipenem, vancomycine, erythromycine, azithromycine, gentamicine, amikacine, colistine, clindamycine, ciprofloxacine, tigecycline.
Dans une variante de l'invention, l'infection microbienne est une infection bactérienne induite par une souche bactérienne, de type cocci ou bacilles à gram positif, et F antimicrobien est Γ amoxicilline.
Dans une variante de l'invention, l'arnoxicilline est dosée à 1000 mg/prise et le cinéole est dosé à lOOOmg / prise, avantageusement 500 mg/prise encore plus avantageusement à 250 mg/prise.
Dans une autre variante de l'invention, l'infection microbienne est une infection bactérienne induite par une souche bactérienne de type E. coli ou S. aureus résistant à la methicilline et F antimicrobien est un mélange amoxicilline/ acide clavulanique.
Dans une autre variante de l'invention le ratio mélange amoxicilline/ acide clavulanique : cinéole est de 10 : 1, 1 : 1 voire 1 :5
Dans une autre variante de l'invention, l'infection microbienne est une infection bactérienne induite par une souche de type entérobactérie, Pseudomonas ou S. aureus et F antimicrobien est la ciprofloxacine.
Les antifongiques, qui peuvent être utilisés dans la présente invention sont avantageusement choisis parmi :
1. Les antifongiques agissant sur la membrane, en particulier les polyènes, les azolés les allylamines et thiocarbamates, les echinocandines
2. Les antifongiques agissant sur la synthèse des acides nucléiques, en particulier la griseofulvine, la fluorocytosine
3. Les antifongiques agissant sur les microtubules, en particulier la griseofulvine L'antifongique est avantageusement choisi parmi les polyènes, les azolés, les allylamines, les thiocarbamates, les echinocandines, la griseofulvine, et la fluorocytosine.
Dans une autre variante de l'invention, l'infection microbienne est une mycose vaginale et l'antibiotique est le sertaconozole.
Les composés selon l'invention sont avantageusement administrés par voie systémique.
Les composés selon l'invention peuvent être utilisés dans toute composition pharmaceutique formulée de façon à faciliter son administration. La composition pharmaceutique peut comprendre tous les excipients pharmaceutiquement acceptables habituellement utilisés tels que des véhicule(s) ou diluant(s).
La composition pharmaceutique peut être administrée par voie orale, entérale, parentérale (intraveineuse, intramusculaire ou sous-cutanée, intraperitoneale), transcutanée (ou transdermique ou percutanée), cutanée, mucosale, (en particulier transmuqueuse-buccale, nasale, ophtalmique, otologique, vaginale, rectale), ou encore les voies intragastrique, intracardiaque, intrapéritonéale, intrapulmonaire ou intratrachéale.
La composition pharmaceutique peut se présenter sous forme sèche, forme sèche à reconstituer au moment de l'utilisation (poudre, lyophilisât, etc.), solide (en particulier cachet, poudre, gélule, pilule, granule, suppositoire, comprimé, et plus précisément comprimé à libération accélérée, comprimé gastrorésistants ou comprimé à libération prolongée), pâteuse (en particulier gel, pommade, crème ou ovule), liquide (en particulier sirop, solution injectable, infusible ou buvable ou collyre), sous forme d'un aérosol (spray, vapeur ou gaz), sous la forme d'un patch, sous forme injectable (dans une solution aqueuse, non aqueuse ou isotonique)
Par ailleurs, la composition pharmaceutique peut être conditionnée pour une administration sous la forme d'une dose unique (monodose) ou multiple (multidose).
Le ou les antimicrobien (s) et le ou les composé(s) selon l'invention peuvent être administrés dans une même composition pharmaceutique ou dans des compositions pharmaceutiques distinctes, de manière simultanée, séquentielle ou étalée dans le temps. En cas d'administration séparée, les formes des compositions pharmaceutiques peuvent être similaires ou distinctes ; les voies d'administration pouvant être identiques ou distinctes.
Le schéma d'administration sera adapté par le praticien en fonction des cas. Les voies d'administration et les posologies varient en fonction d'une variété de paramètres, par exemple en fonction de l'état du patient, du type d'infection et de la sévérité de l'infection à traiter ou de F antimicrobien utilisé.
L'animal est de préférence un mammifère, en particulier l'homme, les animaux de compagnie, les animaux de rente. Les exemples qui suivent illustrent l'invention.
Mesure de CMI : Les tests de mesure de concentration minimale inhibitrice sont réalisés en milieu solide gélosé selon les normes internationales en vigueur (normes CLSI), selon le protocole défini précédemment. Les composés et compositions incorporés dans la gélose peuvent être au préalable dilués dans un ou plusieurs solvant (Tween® 80 dilué dans l'eau -3,4 ml de Tween pour 9,6 ml d'eau- , tween® 80 dilué dans le propylène 10 - 3,4 ml de Tween pour 9,6 ml de propylène-, ou le DMSO dilué dans l'eau).
L'apport du booster comparé à la CMI de l'antibiotique seul est exprimé en ratio (CMI ATB)/ (CMI ATB + booster). On définit ainsi des gains :
Gain CMI 50= (CMI50 de l'antibiotique seul) / (CMI50 (antibiotique+booster)) Gain CMI 90= (CMI90 de l'antibiotique seul) / (CMI90 (antibiotique+booster)) Le booster est un terme générique pour désigner les composés potentialisateurs de l'invention, de formule (I).
Sauf indication contraire, les ratios indiqués dans les tableaux sont des ratios massiques.
Description des protocoles de test / souches de test.
- souches bactériennes
Les souches testées sont isolées de divers prélèvements humains (sang, urines, aspirations pulmonaires, etc.). Les souches étudiées dans les exemples suivants sont choisies parmi les souches du tableau suivant: Enterobacteriaceae, n=l 1
Caractérisation phénotypique: BLSE, sauvage, pénicillinase,
Escherichia coli
résistance aux fluoroquinolones, résistance à l'acide nalixidique.
Autres bacilles gram, n= 10
Pseudomonas Caractérisation génotypique: BLSE, céphalosporinase, pénicillinase, aeruginosa absence de porine, multiresistance, sauvage
Staphylococcaceae, n= 10
Caractérisation phénotypique: résistance à la méthicilline, aux
Staphylococcus fluoroquinolone, à la kanamicine, à la tobramicine, multiresistance, sauvage
Streptococcus et app, n= 2
Caractérisation phénotypique: résistance à l'érythromycine, à la
Enterococcus sp
clindamycine, à la pristinamicine, sauvage
Tableau 2
Les souches de levures testées (n=33) appartiennent aux espèces Candidas albicans, Candida tropicalis, Candida krusei, Candida parapsilosis, Candida glabrata.
Dans les exemples qui suivent, on utilise les abréviations suivantes :
AC acétate de cinnamyle
BB benzoate de benzyle
Amox amoxicilline
AMC augmentin®
Staph Staphylococcus
Coli E. coli
Pyo Pseudomonas aeruginosa
CIP ciprofloxacine
Exemple 1 : Mesure des concentrations minimales inhibitrices
RATIOS MASSIQUES UTILISES
64/500 correspond à 1 pour 8 environ (noté lpour 8)
64/100 correspond à 1 pour 1,5 environ (noté lpour 1,5)
- 64/50 correspond à 1 pour 0,75 environ (noté lpour 0,75)
64/10 correspond à 1 pour 0,15 environ (noté lpour 0,15) On a testé l'effet de potentialisation d'antibiotiques avec le benzoate de benzyle et l'acétate de cinnamyle. Les ratios indiqués dans les tableaux sont des ratios massiques.
1-1 / CMI DES PRODUITS POTENTIALISATEURS SEULS (TOUS SOLVANTS)
Figure imgf000029_0001
Tableau 2
Les produits sont testés en dilution successive de 1% à 0,00375 %. La valeur >1% indique qu'aucune inhibition bactérienne n'a été observée aux concentrations testées. Une valeur égale à 1,00% correspond à 10 000 mg/L (soit lOg/L).
Le test montre que les produits sont inactifs (CMI>10 000mg/l) dans la majeure partie des solvants testés.
1-2/ TEST DILUTION Amoxicilline
Figure imgf000029_0002
Tableau 3
Le test montre que les potentialisateurs potentialisent l'amoxicilline sur les staphylocoques à des doses faibles (la CMI de l'amox seul se situe entre 0,25 et 32mg/l).
1-3/ TEST DILUTION Amoxicilline, aérobie vs anaérobie (solvent T/E) Amox /Acétate de cinnamyle Amox /Benzyle benzoate
64/100, 64/100
Tween eau Tween eau
aérobie anaerobie aérobie anaerobie
Coli Gain CMI 50 2,00 0,50 2,00 1,00
Gain CMI 90 2,00 1,00 2,00 1,00
Staph Gain CMI 50 0,63 1,00 0,63 0,80
Gain CMI 90 1,00 0,55 1,00 0,55
Tableau 4
Ce test montre que la voie métabolique utilisée par la souche a un impact potentialisation de l'arnoxicilline. 1-4/ TEST DILUTION Augmentin anaérobie (solvant : T/E)
Figure imgf000030_0001
Tableau 5
Ce test montre que la voie métabolique utilisée par la souche a un impact potentialisation de Γ augmentin. 1-5/ DILUTION ciprofloxacine et impact du ratio (solvent= DMSO)
Ciprofloxacine / Acétate de Cirpofloxacine / Benzyle benzoate cinnamyle
64/500 64/100 64/10 64/500 64/100 64/10
Pyo Gain 1,00 0,50 8,25 1,00 4,25 4,25 CMI 50
Gain 0,50 0,50 0,50 0,50 0,50 0,50 CMI 90
Coli Gain 0,50 0,38 0,50 0,50 0,25 0,50 CMI 50
Gain 0,25 0,22 0,25 0,13 0,25 0,25 CMI 90
Staph Gain 0,75 0,50 0,50 4,25 4,25 0,38 CMI 50
Gain 0,71 1,43 0,79 0,79 1,43 1,43 CMI 90
Tab eau 6 Ce test montre que le ratio utilisé a un impact sur la potentialisation. Il démontre aussi la capacité des potentialisateurs à baisser la CMI de la ciprofloxacine.
LUTION ciprofloxacine AN AEROBIE (solvant=DMSO)
Figure imgf000031_0001
Tableau 7
Ce test montre que la voie métabolique utilisée par la souche a un impact sur la potentialisation de la ciprofloxacine.
1-7/ DILUTION gentamycine (solvent=
Figure imgf000031_0002
Le test montre que les potentialisateurs potentialisent la ciprofloxacine à des doses faibles (la CMI de la gentamycine seule se situe entre 0,125 et 8 mg/1).
1_8/ DILUTION Amoxicilline / acide clavulanique (Augmentin®) (solvent= eau)
Figure imgf000031_0003
Tableau 9
Ce test montre que le ratio utilisé a un impact sur la potentialisation de Γ augmentin. 1-9/ DILUTION Tétracycline (solvant= DMSO)
Figure imgf000032_0001
Tableau 10
Le test montre que les potentialisateurs potentialisent la tétracycline.
1-10/ DILUTION Sertaconazole (solvent = DMSO)
Figure imgf000032_0002
Le test montre que les potentialisateurs potentialisent le sertaconazole alors que la CMI 50 et la CMI 90 des potentialisateurs est égale à 1% sur les candidat. Cette potentialisation intervient à des doses faibles (la CMI du sertaconazole seul se situe entre 0,06 et 16 mg/1). Ce test monre aussi que, de façon surprenante, le sertaconazole n'est pas potentialisé à dose élevée de potentialisateur alors qu'a dose faible de ceux ci, il est potentialisé.
Exemple 2 : etest
Les tests correspondant sont effectués sur la base du test de CMI usuel : la bandelette etest® (Biomérieux) est déposée à la surface d'une gélose ensemencée dans laquelle le booster a été incorporé. Ce test permet de minimiser les risques d'effet solvant, à savoir une éventuelle interaction avec le solvant utilisé in vitro.
On mesure la CMI de l'antibiotique seul, ou en association avec l'acétate de cinnamyle ou le benzoate de benzyle à trois concentrations différentes (lmg/L, 4mg/L, 16mg/L) dans différents solvants (Tween®80 ou DMSO) Le témoin correspond au test réalisé sans cineole. Un témoin est fait dans chaque solvant testé : Eau distillée, Tween/eau et DMSO.
Témoin ED = Antibiotique seul dans Eau distillée
Témoin DMSO = antibiotique seul dans DMSO
Témoin TE = antibiotique seul dans Tween® 80
L'indication «>64» signifie que la CMI n'est pas mesurable car supérieure à 64 mg/L, l'indication « < » signifie qu'il n'y a pas de culture visible en e-test.
Figure imgf000033_0001
Souche 08138 Souche 8150
CMI en mg/L CMI en mg/L
Cefoxitine Tigecycline Pipera tazo Tigecycline Pipera Meropenem tazo
Témoin ED 3 0,38 6 0,125 0,75 0,047 témoin Tween 6 0,38 6 0,125 1 0,094 eau
Témoin DMSO 8 0,38 16 0,19 1,5 0,094
AC lmg 2 0,25 2 0,064 0,5 0,016
Tween/eau
AC lmg 2 0,38 6 0,064 0,75 0,023
DMSO
AC 4mg 1,5 0,19 2 < < <
Tween/eau
AC 4mg 1,5 0,38 4 < < < DMSO
AC 16mg 4 0,19 2 < < < Tween/eau
AC 16mg 0,5 0,125 8 < < < DMSO
BB Img 2 - 6 0,125 1,5 0,094
Tween/eau
BB Img 2 - 3 0,125 0,75 0,047 DMSO
BB 4mg 2 - 4 0,19 1 0,064 Tween/eau
BB 4mg 3 - 6 0,094 1 0,064 DMSO
BB 16mg 3 - 4 0,094 1,5 0,094 Tween/eau
BB 16mg 2 - 6 0,125 1 0,094 DMSO
Tableau 13 - E. Coli
MRSA 10178 MSSA 8237
CMI en mg/L CMI en mg/L
Cefoxitin Tigecycli Cefoxi Pipera Merope Clinda Penicil e ne tine tazo nem mycin line G e
témoin ED 6 0,125 6 1,5 0,19 0,094 1 témoin Tween 4 0,125 6 1,5 0,25 0,19 0,5 eau
Témoin 6 0,125 6 2 0,25 0,064 1,5 DMSO
AC Img 4 0,125 3 1 0,25 0,047 0,5 Tween/eau
AC Img 4 0,125 2 0,75 0,25 0,047 0,25 DMSO
AC 4mg 0,75 0,047 2 0,5 0,19 0,064 0,125 Tween/eau
AC 4mg 1 0,047 3 0,5 0,19 0,047 0,19 DMSO
AC 16mg <0,016 <0,016 1,5 0,38 0,064 0,125 0,064 Tween/eau
AC 16mg <0,016 <0,016 <0,016 <0,016 <0,002 <0,016 <0,002 DMSO
BB Img 3 0,094 3 1 0,19 0,047 0,25
Tween/eau
BB Img 3 0,047 2 1 0,25 0,047 0,38 DMSO
BB 4mg 2 0,25 3 1 0,125 0,047 0,19 Tween/eau
BB 4mg 2 0,125 3 1 0,19 0,047 0,25 DMSO
BB 16mg 1,5 0,047 3 0,75 0,064 0,094 0,125 Tween/eau
BB 16mg 1 0,032 3 0,75 0,19 0,047 0,19 DMSO
Tableau 14 - STAPHYLOCOQUES
L'ensemble de ces résultats d'etest montrent clairement que les potentialisateurs sont capables de potentialiser de nombreux antibiotiques sur de nombreuses souches.
Exemple 3 : résistance
Cent μΐ d'une culture en bouillon Mueller Hinton de la souche à étudier (inoculum lourd
>1010 UFC/ml) sont étalés sur une boîte de Mueller Hinton contenant une concentration d'huile égale à 4 fois la CMI du produit à tester. Après 48h d'incubation on observe la présence ou non de colonies susceptibles d'être des mutants résistants.
On a constaté que l'utilisation de benzoate de benzyle ou d'acétate de cinnamyle permettait également de diminuer l'apparition de bactéries résistantes. Utilisés seuls, sur ces souches, le benzoate de benzyle ou l'acétate de cinnamyle ont une CMI supérieure à 10 000 mg/L.
Les résultats sont reportés dans les tableaux suivants, dans lesquels :
Témoin ED ou DMSO = seulement de l'eau distillée ou du DMSO est ajouté
Ciprofloxacme DMSO : ajout de Ciprofloxacme dans du DMSO
Figure imgf000035_0001
Tableau 15 - Souche 09003
Alors que la ciprofloxacme seule sur le S. aureus résistant à la méthicilline (MRSA) entraine l'apparition d'innombrables mutants, l'ajout d'acétate de cinnamyle ou de benzoate de benzyle à la ciprofloxacme n'entraine plus l'apparition des mutants.
Figure imgf000035_0002
Tableau 16 - Souche 10168 Alors que la ciprofloxacine seule sur le S. aureus résistant à la méthicilline (MRSA) entraine l'apparition d'innombrables mutants, l'ajout d'acétate de cinnamyle ou de benzoate de benzyle à la ciprofloxacine n'entraine plus l'apparition des mutants. Exemple 4 : test de croissance
1 Test de croissance sur la souche 10168 SA RM
Les tests de croissance sont faits en milieu liquide avec une dispersion du booster des antibiotiques préalable dans un solvant adapté (tween/eau).
On mesure la cinétique de croissance des bactéries en présence d'Augmentin®, d'Augmentin® boosté acétate de cinnamyle (AC) / benzoate de benzyle (BB) ou de acétate de cinnamyle / benzoate de benzyle. Utilisés seuls, sur ces souches, le benzoate de benzyle ou l'acétate de cinnamyle ont une CMI supérieure à 10 000 mg/L.
99/1 représente un ratio massique de 64/100
4XCMI signifie que la concentration en antibiotique est 4 fois supérieure à sa CMI, mesurée lorsqu'il est utilisé seul sur la souche considérée.
Augmentin 64/100 AC 4XCMI signifie que la concentration en Augmentin® est de 4 fois sa CMI (seul) et le ratio massique Augmentin® / composé testé est de 64/100. Témoin = bactérie seule
Les résultats sont reportés dans le tableau suivant.
Figure imgf000036_0001
Tableau 17
On constate que la présence d'acétate de cinnamyle ou de benzoate de benzyle, très faible dose, permet d'accélérer la vitesse de bactéricidie de l'Augmentin®.
Exemple 5 : Efficacité antibactérienne du plasma
On injecte (se.) à des souris Balb/c, le produit antimicrobien ou le mélange antimicrobien + booster. Les doses administrées sont les suivantes:
Groupe 1 Augmentin® (AMC) 30 mg/kg
Groupe 2 Augmentin® 30 mg/kg + 30 mg/kg benzoate de benzyle. A différents temps post-injection, les souris sont euthanasiées, et le sang prélevé, hépariné et centrifugé pour en extraire le plasma.
Une série de dilutions successives (1/3) du plasma est réalisée et une goutte de ces différentes concentrations de plasma est déposée sur un milieu Baird Parker ensemencé (MRSA 10168 pour le groupe AMC). Les effets antibactériens sont mesurés après 24 d'incubation. Les dilutions successives permettent de déterminer l'effet antimicrobien et le rapporter à la CMI. Le ratio concentration efficace / CMI est ainsi déterminé
Les résultats sont reportés dans le tableau suivant :
Figure imgf000037_0001
tps >CMI : Temps passé au-dessus de la CMI
AUC : aire sous la courbe
Tableau 18
Le rapport de la concentration plasmatique rapporté à la CMI est obtenu par les dilutions successives du plasma. Bien que cette méthode soit semi quantitative, elle permet néanmoins de montrer que l'effet est plus intense quand le benzoate de benzyle est présent (AUC supérieure). De même et de façon univoque, l'ajout de benzoate de benzyle permet d'allonger le temps passé au-dessus de la CMI.

Claims

Revendications
1. Agent antimicrobien potentialisé pour son utilisation dans le traitement d'une infection microbienne, caractérisé en ce que l'on utilise en association avec l'agent antimicrobien un composé de formule (I),
Figure imgf000038_0001
dans laquelle
les pointillés représentent des liaisons pouvant être absentes ou présentes, à la condition que deux doubles liaisons ne soient pas adjacentes
n vaut 0 ou 1
Ri représente H ou un radical alkyle en Ci-C6 ou alcényle en C2-C6
R2 représente H ou un radical OH, 0-CO-(alkyle en C1-C4), 0-(alkyle en C1-C4), alkyle en Ci-C6, N-(alkyle en Ci-C6)2, avantageusement R2 représente H
R3 représente H ou un radical OH, 0-CO-(alkyle en C1-C4), 0-(alkyle en C1-C4), 0-(alcényle en C2-C4), avantageusement R3 représente H
R2 et R3 pouvant former ensemble la lactone correspondante
• lorsque n vaut 0
o Z représente un radical CO-R5 avec R5 qui représente un radical OH, O-alkyle en Ci-C6, 0-(alkyle en Ci-C4)-phenyle, O-alcényle en C2-C6, avantageusement un radical O-alkyle en Ci-C6, O-
(alkyle en Ci-C4)-phenyle, O-alcényle en C2-C6,
• lorsque n vaut 1
o Z représente un radical CO-R5 ou CH2-0-CO-(alkyle en Ci-C6) ou CHmR7 ou alkyle en C4-C10 ou alcényle en C4-C10, les radicaux alkyle en C4-C10 ou alcényle en C4-C10 pouvant être linéaires ou ramifiés, éventuellement substitués par OH ; avantageusement ces radicaux ne sont pas subsititués o avec R5 qui représente un radical OH, O-alkyle en Ci-C6, O- (alkyle en Ci-C4)-phenyle, 0-(alcényle en C2-C4)-phenyle, O- alcényle en C2-C6, avantageusement un radical O-alkyle en Ci- Ce, 0-(alkyle en Ci-C4)-phenyle, O-alcényle en C2-C6, o ou avec R5 représente H à la condition que R4 représente un radical alkyle en C2-C6 ou que R2 représente un radical alkyle en C2-C6, N-(alkyle en Ci-C6)2
o avec m vaut 1 ou 2 ; m vaut 2 si la liaison entre Ci et C2 est double
o avec R7 représente H ou un radical alkyle en Ci-C6
en un ratio massique, composé de formule (I) : agent antimicrobien, variant de 8 : 1 à 1 : 10, en ce que l'agent antimicrobien n'est pas un terpénoïde ou un phenylpropanoide, et en ce que l'infection microbienne est induite notamment par un pathogène de souche A et que sur cette souche A, la concentration en composé (I) répond à l'équation suivante :
[C] < [CMI] / x
Où [C] est la concentration selon l'invention en composé (I) à utiliser sur la souche
A
[CMI] est la CMI mesurée pour le composé (I), seul, sur cette souche A
x est supérieur ou égal à 100, avantageusement à 1 000, plus avantageusement x est compris entre 2 000 et 10 000, voire supérieur à 50 000.
2. Agent antimicrobien potentialisé pour son utilisation selon la revendication 1, caractérisé en ce que le composé le composé répond à la formule (la) suivante :
Figure imgf000039_0001
Dans laquelle
n vaut 0 ou 1
Ri représente H ou un radical alkyle en Ci-C6 ou alcényle en C2-C6 R2 représente H ou un radical OH, 0-CO-(alkyle en C1-C4), 0-(alkyle en C1-C4), alkyle en Ci-C6, N-(alkyle en Ci-C6)2, avantageusement R2 représente H
R3 représente H ou un radical OH, 0-CO-(alkyle en C1-C4), 0-(alkyle en C1-C4), avantageusement R3 représente H
R2 et R3 pouvant former ensemble la lactone correspondante
• lorsque n vaut 0
o R5 représente un radical OH, O-alkyle en Ci-C6, 0-(alkyle en Ci-
C4)-phenyle, O-alcényle en C2-C6, avantageusement un radical O- alkyle en Ci-C6, 0-(alkyle en Ci-C4)-phenyle, O-alcényle en C2-
C6,
• lorsque n vaut 1
o R4 représente H ou un radical alkyle en Ci-C6 o R5 représente un radical O-alkyle en C2-C6, 0-(alkyle en C1-C4)- phenyle, 0-(alcényle en C2-C4)-phenyle, alkyle en Ci-C6 o R5 représente H à la condition que R4 représente un radical alkyle en C2-C6 ou que R2 représente un radical alkyle en C2-C6, N-
(alkyle en Ci-C6)2
o R5 représente OH à la condition que R2 représente un radical alkyle en Ci-C6
3. Agent antimicrobien potentialisé pour son utilisation selon la revendication 1 , érisé en ce que le composé répond à la formule (Ib) suivante :
Figure imgf000040_0001
Dans laquelle
Ri représente H ou un radical alkyle en Ci-C6 ou alcényle en C2-C6
R2 représente H ou un radical OH, 0-CO-(alkyle en C1-C4), 0-(alkyle en C1-C4), alkyle en Ci-C6, N-(alkyle en Ci-C6)2, avantageusement R2 représente H
R3 représente H ou un radical OH, 0-CO-(alkyle en C1-C4), 0-(alkyle en C1-C4),
0-(alcényle en C2-C4), avantageusement R3 représente H R2 et R3 pouvant former ensemble la lactone correspondante
Z représente un radical CH2-0-CO-(alkyle en Ci-C6)
4. Agent antimicrobien potentialisé pour son utilisation selon l'une des revendications précédentes, caractérisé en ce que le composé est choisi dans le groupe constitué de : l'acétate de cinnamyle et le benzoate de benzyle.
5. Agent antimicrobien potentialisé pour son utilisation selon l'une des revendications précédentes, caractérisé en ce que ledit antimicrobien est un antibiotique, en particulier un antibiotique choisi parmi : les antibiotiques inhibant la synthèse du peptidoglycane, les antibiotiques inhibant la synthèse des acides nucléiques, les antibiotiques inhibant la synthèse des folates, les antibiotiques inhibant la synthèse des acides mycoliques, l'un quelconque de leurs sel pharmaceutiquement acceptables, et l'une quelconque de leurs combinaisons.
6. Agent antimicrobien potentialisé pour son utilisation selon l'une quelconque des revendications précédentes, caractérisé en ce que Γ antimicrobien est un antifongique, en particulier un antifongique choisi parmi : les polyènes, les azolés, les allylamines, les thiocarbamates, les echinocandines, la griseofulvine, et la fluorocytosine.
7. Agent antimicrobien potentialisé pour son utilisation selon l'une des revendications précédentes dans laquelle le ratio massique composé : agent antimicrobien varie de 4 : 1 à 1 : 10, avantageusement de 1 : 1 à 1 : 10, plus avantageusement de 1 : 1 à 1 :5.
8. Agent antimicrobien potentialisé pour son utilisation selon l'une des revendications précédentes, caractérisé en ce que l'infection microbienne est induite par un pathogène choisi parmi les genres potentiellement pathogènes suivants: Acetobacter, Acetobacterium, Acinetobacter, Citrobacter, Enter obacter, Enter ococcus, Escherichia, Helicobacter, Klebsiella, Proteus, Providentiel, Pseudomonas, Salmonella, Serratia , Staphylococcus, Streptococcus, Actinobacillus, Neisseria, Mannheima, Pasteurella, Candida, Aspergillus, Cryptococcus Trichosporon, Malassezia, et Mycobacterium.
9. Agent antimicrobien potentialisé pour son utilisation selon l'une des revendications précédentes, caractérisé en ce que Γ antimicrobien est l'arnoxicilline.
10. Agent antimicrobien potentialisé pour son utilisation selon l'une des revendications précédentes, caractérisé en ce que Γ antimicrobien est un mélange amoxicilline/ acide clavulanique.
11. Agent antimicrobien potentialisé pour son utilisation selon l'une des revendications précédentes, caractérisé en ce que Γ antimicrobien est le sertaconazole.
12. Agent antimicrobien potentialisé pour son utilisation selon l'une des revendications précédentes, caractérisé en ce que le composé de formule (I) est administré par voie systémique.
13. Agent antimicrobien potentialisé pour son utilisation selon l'une des revendications précédentes, caractérisé en ce que le composé de formule (I) est compris à une concentration inférieure à 100 mg par unité de dose par kilo.
PCT/EP2015/071098 2014-09-15 2015-09-15 Antimicrobiens potentialises WO2016041962A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/510,745 US10758620B2 (en) 2014-09-15 2015-09-15 Potentiated antimicrobial agents
CN201580055892.8A CN106999463B (zh) 2014-09-15 2015-09-15 增效的抗微生物剂
EP15762653.2A EP3193860A1 (fr) 2014-09-15 2015-09-15 Antimicrobiens potentialises
BR112017005057-9A BR112017005057A2 (pt) 2014-09-15 2015-09-15 agente antimicrobiano

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1458664A FR3025718A1 (fr) 2014-09-15 2014-09-15 Antimicrobiens potentialises
FR1458664 2014-09-15

Publications (1)

Publication Number Publication Date
WO2016041962A1 true WO2016041962A1 (fr) 2016-03-24

Family

ID=52423807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/071098 WO2016041962A1 (fr) 2014-09-15 2015-09-15 Antimicrobiens potentialises

Country Status (6)

Country Link
US (1) US10758620B2 (fr)
EP (1) EP3193860A1 (fr)
CN (1) CN106999463B (fr)
BR (1) BR112017005057A2 (fr)
FR (1) FR3025718A1 (fr)
WO (1) WO2016041962A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004073671A1 (fr) * 2003-02-18 2004-09-02 Quest International Services B.V. Composition aromatisee d'eau dentifrice
WO2006071471A2 (fr) * 2004-12-08 2006-07-06 Emergent Product Development Gaithersburg Inc. Agents antibacteriens derives de 2-aryloxy(substitues en 2 ou 4) phenol
WO2007070643A2 (fr) * 2005-12-14 2007-06-21 Zars, Inc. Compositions et procedes pour le traitement de conditions dermatologiques
WO2012076718A1 (fr) * 2010-12-09 2012-06-14 Societe De Developpement Scientifique - Sds Composition antimicrobienne
WO2012076717A1 (fr) * 2010-12-09 2012-06-14 Societe De Developpement Scientifique - Sds Composition pharmaceutique contenant du trans-cinnamaldéhyde et son utilisation dans le traitement des infections
WO2014130922A1 (fr) * 2013-02-25 2014-08-28 Trustees Of Boston University Compositions et procédés pour le traitement d'infections fongiques

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19631037C2 (de) 1996-08-01 2002-12-05 Boehringer Ingelheim Vetmed Neue Wirkstoffkombinationen aus bacterizid wirkenden Substanzen mit terpenhaltigen Pflanzenextrakten
US6319958B1 (en) 1998-06-22 2001-11-20 Wisconsin Alumni Research Foundation Method of sensitizing microbial cells to antimicrobial compound
WO2006120494A1 (fr) 2005-05-13 2006-11-16 Advanced Scientific Developements Combinaison pharmaceutique comprenant un antibacterien et une substance active choisie parmi le carveol, le thymol, l’eugenol, le borneol et les carvacrol

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004073671A1 (fr) * 2003-02-18 2004-09-02 Quest International Services B.V. Composition aromatisee d'eau dentifrice
WO2006071471A2 (fr) * 2004-12-08 2006-07-06 Emergent Product Development Gaithersburg Inc. Agents antibacteriens derives de 2-aryloxy(substitues en 2 ou 4) phenol
WO2007070643A2 (fr) * 2005-12-14 2007-06-21 Zars, Inc. Compositions et procedes pour le traitement de conditions dermatologiques
WO2012076718A1 (fr) * 2010-12-09 2012-06-14 Societe De Developpement Scientifique - Sds Composition antimicrobienne
WO2012076717A1 (fr) * 2010-12-09 2012-06-14 Societe De Developpement Scientifique - Sds Composition pharmaceutique contenant du trans-cinnamaldéhyde et son utilisation dans le traitement des infections
WO2014130922A1 (fr) * 2013-02-25 2014-08-28 Trustees Of Boston University Compositions et procédés pour le traitement d'infections fongiques

Also Published As

Publication number Publication date
FR3025718A1 (fr) 2016-03-18
CN106999463A (zh) 2017-08-01
EP3193860A1 (fr) 2017-07-26
BR112017005057A2 (pt) 2018-01-23
CN106999463B (zh) 2021-06-15
US10758620B2 (en) 2020-09-01
US20170216440A1 (en) 2017-08-03

Similar Documents

Publication Publication Date Title
CA2606875C (fr) Combinaison pharmaceutique comprenant un antibiotique et une substance active choisie parmi le carveol, le thymol, le carvacrol, l&#39;alpha-ionone et beta-ionone
EP2437737B1 (fr) Composition comprenant au moins du trans-cinnamaldehyde et son utilisation dans le traitement des infections bacteriennes plus particulierement dans le traitement des maladies nosocomiales
EP3193936B1 (fr) Antimicrobiens potentialises
EP2175870A1 (fr) Compositions antibiotiques a base d&#39;huiles essentielles - prophylaxie et traitement d&#39;infections nosocomiales
FR2925334A1 (fr) Nouvelles compositions antibacteriennes
EP3463479A2 (fr) Formulation pharmaceutique de cinéol et d&#39;amoxicilline
EP2696862B1 (fr) Utilisation de calixarenes dans le traitement des infections bacteriennes
WO2016041962A1 (fr) Antimicrobiens potentialises
EP3429579B1 (fr) Tulathromycine potentialisee
EP3930741A1 (fr) Utilisation de peptides cycliques fongiques de type destruxine comme agents antibactériens actifs contre clostridium perfringens
WO2012140365A1 (fr) Utilisation de calixarenes associes avec un antibiotique dans le traitement des infections bacteriennes
FR3052066B1 (fr) Formulation pharmaceutique de cineol et d&#39;amoxicilline
WO2016075415A1 (fr) Compositions aux propriétés biocides comprenant des composes extraits de plantes tropicales
FR3064179A1 (fr) Agent conservateur contenant de l&#39;hinokitiol avec au moins un acide et compositions preservees par ledit agent
FR2988563A1 (fr) Activite antimicrobienne de ludwigia grandiflora
FR2988562A1 (fr) Activite antibacterienne de ludwigia peploides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15762653

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15510745

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017005057

Country of ref document: BR

REEP Request for entry into the european phase

Ref document number: 2015762653

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015762653

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112017005057

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170314