WO2016041383A1 - 一种热稳定的光学敏化材料及其应用 - Google Patents

一种热稳定的光学敏化材料及其应用 Download PDF

Info

Publication number
WO2016041383A1
WO2016041383A1 PCT/CN2015/080861 CN2015080861W WO2016041383A1 WO 2016041383 A1 WO2016041383 A1 WO 2016041383A1 CN 2015080861 W CN2015080861 W CN 2015080861W WO 2016041383 A1 WO2016041383 A1 WO 2016041383A1
Authority
WO
WIPO (PCT)
Prior art keywords
phycobilisome
cyanobacteria
cross
buffer
intact
Prior art date
Application number
PCT/CN2015/080861
Other languages
English (en)
French (fr)
Inventor
马建飞
林瀚智
葛保胜
秦松
Original Assignee
中国科学院烟台海岸带研究所
中国石油大学(华东)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院烟台海岸带研究所, 中国石油大学(华东) filed Critical 中国科学院烟台海岸带研究所
Publication of WO2016041383A1 publication Critical patent/WO2016041383A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Definitions

  • the invention belongs to biotechnology, and in particular relates to a heat stable optical sensitizing material and application thereof.
  • solar energy is increasingly attracting interest.
  • solar energy is 100,000 TW per year on the surface of the earth.
  • the hourly rate is equivalent to the sum of energy used by humans for one year. It is estimated that the current annual energy storage rate of photosynthesis is 100 TW, using only one thousandth. One.
  • Solar energy is the foundation of all energy and the most direct and environmentally friendly energy we can use.
  • Photosynthesis on the earth is a device evolved by nature to efficiently utilize and transform solar energy. It is the process of converting the largest photon energy into chemical energy.
  • Photosynthetic organisms release oxygen through the “photobio-effect” oxidized water, and bury a large amount of organic matter.
  • the million-year scale guarantees an increase in the free oxygen O2 content in the atmosphere, which is necessary for large biological explosions and evolution (Falkowski and Isozaki 2008).
  • the chemical energy of fossil fuels originated from photosynthesis millions of years ago. They used energy as a source of energy, and on the scale of the geological history, they transiently reversed the process of billions of years.
  • the light-harvesting complex captures and transmits light energy as an initial step in natural photosynthesis.
  • the light-harvesting phycobilisomes of cyanobacteria and red algae capture and transmit light energy nearly 100%; in the yellow-green region where the chlorophyll light-harvesting range is weak There is also a strong absorption; and the thermophilic cyanobacteria Thermosynechococcus vulcanus NIES 2134 (hereafter referred to as 2134) survives in fresh water at 55 ° C; it is extracted from its photosynthesis light-harvesting complex - intact phycobilisome, and the heat resistance test verifies its comparison with For mesophilic cyanobacteria, it has better thermal stability. Based on its high capture-transmitting efficiency of light energy, broad-spectrum absorption range, and good thermal stability, we have tried to apply it to optical sensitized materials for photoelectric conversion devices.
  • the most important component of a dye-sensitized solar cell is a photoelectrode composed of a semiconductor oxide and a sensitizer.
  • the sensitizer has also evolved from the original polypyridinium to later organic dyes, natural pigments, and the like, as well as several dyes synergistically sensitized.
  • the working principle of the photosensitive battery is mainly that the dye molecules on the sensitized electrode absorb sunlight, and the photoelectric effect generates electrons, which become themselves into an oxidation state; electrons are injected into the conduction band of the semiconductor photoelectrode, and the electrons are instantaneously concentrated on the conductive glass to generate light.
  • phycobilisomes As a natural light-harvesting device for cyanobacteria and red algae, phycobilisomes must have the characteristics of high light absorption coefficient and wide absorption wavelength range, and Themosynechococcus vulcanus NIES 2134 (hereinafter referred to as 2134) as thermophilic cyanobacteria, algae The biliary body has been verified by our experiments and has good thermal stability. This is why we have considered this phycobilisome as a photosensitive cell sensitizer to construct a biodym sensitized solar cell based on phycobilisome (Bio-DSSC). One of the factors.
  • thermostable phycobilisomes of thermophilic cyanobacteria have an initial maximum short-circuit current that is 17% higher than that of mesophilic cyanobacteria, which is 3% more efficient than the latter. Their open circuit voltages are almost identical, but the fill factor of DSSC sensitized by mesophilic cyanobacteria is 14% higher than that of thermophilic cyanobacterial sensitized DSSC.
  • the photoelectric conversion efficiency of 0.269% of the DS134 sensitized DSSC after cross-linking treatment it is found that it can efficiently capture and transfer energy in vitro, and it is used as a photosensitizer material for capturing visible light. Good prospects for development.
  • a thermally stable optical sensitizing material the optical sensitizing material being an intact phycobilisome naturally extracted by thermophilic cyanobacteria.
  • the optical sensitizing material has higher thermal stability than the intact phycobilisome naturally extracted by mesophilic cyanobacteria.
  • the optical sensitizing material is an intact phycobilisome of the thermophilic cyanobacteria which is replaced in a low salt buffer after the crosslinking treatment.
  • the optical sensitizing material still maintains the thermal stability of the intact phycobilisome of the thermophilic cyanobacteria.
  • the whole phycobilisome extracted from the thermophilic cyanobacteria is added to the upper layer of the density gradient solution C containing different concentrations of cross-linking agent and sucrose, 200000-239000g ultracentrifugation 0.67-1h, and the 0.6M-0.75M sucrose density layer is collected. a blue solution; the blue solution is repeatedly ultrafiltered with buffer A to obtain a purified cross-linked phycobilisome, The cross-linked phycobilisomes were added to the sucrose density gradient of the low-salt buffer B to be ultracentrifuged and purified by ultracentrifugation to obtain intact sorghum which remained intact under low salt buffer and did not crosslink excessively.
  • the body the cross-linking process was improved based on the GraFix method, and the steps were similar to those of (David, Prado et al. 2014), but the key conditions were changed).
  • the density gradient solution C containing different concentrations of crosslinking agent and sucrose is a solution containing 0-0.25% of a crosslinking agent and 0.15M-1.5M of sucrose arranged in sequence with buffer A;
  • the buffer B component is 50 mM Tris-HCl, pH 8.0;
  • the buffer A component was 0.75 mol.L -1 disodium hydrogen phosphate-potassium dihydrogen phosphate buffer containing 10 mmol.L -1 EDTA ⁇ Na 2 , pH 7.0.
  • the intact phycobilisome of the thermophilic cyanobacteria the algal culture medium of the thermophilic cyanobacteria cultured to the late logarithmic growth phase is centrifuged to obtain a natural algal body, and the algae are added according to the wet weight of the algal body by adding 3.33 to 5.00 ml of the buffer solution.
  • the upper layer of the density gradient the dark blue layer collected between about 0.5M-0.75M sucrose density layer after ultracentrifugation, the dark blue layer solution is concentrated, and the concentrated protein is repeatedly ultrafiltered with buffer A, which is natural and complete. Algae body.
  • the algae culture solution of the thermophilic cyanobacteria cultured to the late logarithmic growth phase is centrifuged to obtain a natural algal body, and 3.33 ml of 0.75 mol.L -1 disodium hydrogen phosphate-phosphoric acid is added according to the wet weight per gram of algae body.
  • the algae were suspended in a buffer of potassium hydrogen (containing 10 mmol.L -1 EDTA ⁇ Na 2 , pH 7.0), and 100 mmol ⁇ L -1 of PMSF was added to a final concentration of 1.0 mmol ⁇ L -1 ; followed by French Press method, 4000p The .si pressure was passed twice, and the algae suspension was fully broken to obtain a blue homogenate of the broken algae cells; then a volume fraction of 20% (v/v) Triton X-100 was added to the homogenate to a final concentration of Volume fraction 2% (v / v), then add 100mmol.L -1 PMSF to a final concentration of 1.0mmol.L -1 , slightly shaken conditions, the film is 30-40min; then 20000g centrifugation 0.5h, collect the middle
  • the blue water-soluble liquid is a crude liquid containing phycobilisomes; then in the "12.5mL centrifuge tube for Beckman ultracentrifuge", the syringe is sequential
  • optical sensitizing material which is an optical sensitizing material from an intact phycobilisome naturally extracted by thermophilic cyanobacteria.
  • the solution was 1.7 mg/ml.
  • the intact phycobilisome from thermophilic cyanobacteria treated with heat stability and cross-linking was used as an optical sensitizing material.
  • the solution was 1.04 mg/ml.
  • thermophilic cyanobacteria treated with thermophilic cyanobacteria or cross-linking treatment is used as a sensitizer adsorbed on the surface of the semiconductor photoanode.
  • the intact phycobilisome molecule of the cross-linked treated thermophilic cyanobacteria interacts with the surface of the semiconductor photoanode by electrostatic force adsorption and hydrogen bonding, and completes adsorption of the sensitizing material by the electrode, and adsorbs the electrode of the intact phycobilisome layer Solar to electrical energy conversion is accomplished under light conditions.
  • the electrode having a thermally stable, cross-linked, treated phycobilisome layer from thermophilic cyanobacteria can be used as an electrode of a solar cell or an optical sensor. And the results of the heat-resistance test of the electrodes assembled into the dye-sensitized solar cell show that, compared with the intact phycobilisome of the cross-linked treated mesophilic cyanobacteria, the electrode is assembled with the dye-sensitized solar cell and the result is higher heat. stability.
  • the electrode assembly process is: first, sensitization of the photoanode is performed: the anode electrode is heated at 350 ° C for 30 minutes in a muffle furnace (Yamato, Inc., Model 1889 muffle furnace, Japan), and then naturally cooled to 50 at room temperature. °C. Immediately immerse the titanium dioxide anode electrode in a thermally stable, cross-linked, treated phycobilisome (1.04 mg/ml) from thermophilic cyanobacteria in a pH 8.0 Tris-HCl buffer and adsorb in the dark at room temperature. 24 hours. After adsorption, the sensitized photoanode was rinsed with a buffer of Tris-HCl, pH 8.0, to remove the weak adsorption, and then vacuum dried at room temperature.
  • a muffle furnace Yamato, Inc., Model 1889 muffle furnace, Japan
  • the Surlyn heat sealing film was cut by laser with a diameter of 7 mm (pre-cut inner hole size 7mm ⁇ 7mm, thickness 25 microns, purchased from Dalian seven colors Light Technology DHS-SN1725-200) is assembled, and the center forms a closed cavity, which is staggered for easy clamping.
  • a liquid electrolyte solution self-configured, 0.5 M LiI, 0.05 M I 2 , 0.3 M DMPII, 0.5 M 4-TBP and 0.1 M GNCS co-dissolved in acetonitrile, brown transparent liquid was injected into the cavity approximately 2 ⁇ L.
  • the electrolyte diffuses to the entire TiO 2 electrode.
  • the sealing film purchased from Dalian Seven Color Light Technology DHS-SN1725-200, DSC sealing film, thickness 25 microns
  • DSC sealing film thickness 25 microns
  • the invention has the following advantages:
  • thermophilic cyanobacteria has high quantum efficiency, and the efficiency of capturing and transmitting light energy is close to 100%; it also has strong absorption to the yellow-green visible light spectrum region, which broadens the range of captured light energy;
  • the optical sensitizing material of the photoanode of the invention is derived from the naturally cultured thermophilic cyanobacteria, is non-toxic, and does not have to worry about environmental pollution caused by genetic engineering;
  • the buffer is replaced by a low-salt solution, which maintains the original structure of the protein to the greatest extent, and maintains the original thermal stability;
  • the solution is replaced by a low salt, which avoids the formation of a high concentration of phosphate after vacuum drying at room temperature after the photosensitive material sensitized electrode Crystallization, which may affect the contact problem between the electrolyte and the layer of photosensitizer material;
  • the sensitized semiconductor electrode can directly convert solar energy to electric energy under illumination conditions; the nanometer-scale photoanode can better collect and transmit electrons, and can use modular technology to reduce cost and have high photovoltaic characteristics. ;
  • the invention relates to a bio-macro-molecule solar sensitized battery with heat-stable and cross-linked intact phycobilisomes from thermophilic cyanobacteria as sensitizing dye, which has high efficiency, non-toxicity, environmental friendliness, simple manufacturing process and energy saving. High thermal stability and low cost, which can further reduce costs and have great development potential;
  • the sensitizing material of the present invention processes the semiconductor electrode by sensitizing the TiO2 particle electrode, and then vacuum drying at room temperature, relies on electrostatic force adsorption and hydrogen bonding interaction to complete adsorption of the sensitizing material by the electrode, and then assembles into dye sensitization.
  • the solar cell, the sensitized semiconductor electrode enables direct conversion of solar energy to electrical energy under illumination conditions, and realizes its function as a novel optical sensitizing material. Due to the long-term exposure to the thermal environment of light, the thermal stability of the optically sensitized material greatly extends the life of the assembled battery. It will have broad application prospects in solar energy utilization, conversion and storage, and has a wide range of applications in transforming solar energy as a new generation of alternative energy sources and providing sufficient power and social sustainability for human beings.
  • FIG. 1 is a flow chart of a sensitizing material and a method for determining heat treatment using a sensitizing material according to an embodiment of the present invention.
  • FIG. 2 is a graph showing current-voltage characteristics of a solar cell sensitized with sensible materials of 2134 (top) and 6803 (bottom) using higher thermal stability according to an embodiment of the present invention; Heat resistance test conducted after 28 ° C room temperature for 10 h (indicated at -10 h). The comparison of the current-voltage characteristic curves after processing at 0 ° C for 55 ° C and after treatment for 8 h - 120 h at 65 ° C. As can be seen from the curve, 2134 is more thermally stable than 6803. Since the photocurrent activity of 6803 was destroyed at 77h, the photocurrent activity of 2134 remained stable; the photocurrent activity of 2134 was reduced to the level of 6803 at 50h until 103h. (The horizontal axis is voltage V (V) and the vertical axis is current I (mA/cm 2 )).
  • FIG. 3 is a current-voltage characteristic curve of a solar cell sensitized with sensitizing materials of 2134 (top) and 6803 (bottom) using higher thermal stability according to an embodiment of the present invention;
  • the comparison of current-voltage characteristic curves after 8h and 65°C treatment for 8h-120h was processed at °C.
  • the efficiency of the 6803 sensitized solar cell was reduced to 0.1%, and the 50h to 77h has been at an inefficiency level of 0.1%.
  • the photocurrent activity of 2134 remained stable; the photocurrent activity of 2134 was reduced to the level of 6803 at 50 h until 103 h.
  • the horizontal axis is time (h), and the vertical axis is current I (mA/cm 2 ), voltage V (V), fill factor FF, and efficiency ⁇ (%), respectively.
  • thermophilic cyanobacteria Prior to the present invention, in vitro heat resistance experiments on photosensitive materials showed that the intact phycobilisomes of the extracted thermophilic cyanobacteria had higher thermal stability of the intact phycobilisomes of the extracted thermophilic cyanobacteria. After further molecular modification, thermal stability is maintained.
  • This patent validates a thermally stable, cross-linked, treated phycobilisome from thermophilic cyanobacteria as an optical sensitizing material, and a dye-sensitized solar cell device assembled after sensitizing the electrode also has higher thermal stability.
  • the sensitizing material of the photoanode selected by the invention is derived from the naturally-cultured thermophilic cyanobacteria, and there is no need to worry about the environmental pollution problem caused by genetic engineering, the process of extracting the complete phycobilisome body is simple and energy-saving; and the thermophilic cyanobacterial protein is added to contain different Concentration cross-linking agent and sucrose density gradient solution C upper layer, 200000-239000g ultracentrifugation 0.67-1h, collecting cross-linked phycobilisomes added to low salt buffer B configuration sucrose density gradient upper layer ultracentrifugation separation purification, maximum Maintaining the original structure of the protein, the stability of the phycobilisome is enhanced; the electrode is treated by the cross-linked protein solution at a concentration of 1.04 mg/ml, and then vacuum-dried at room temperature, relying on electrostatic force adsorption. The interaction with the hydrogen bond forms a directional or non-oriented single layer or multiple layers of adsorption on the surface of the electrode
  • thermophilic cyanobacteria Sensitization of the sensitizing material thermophilic cyanobacteria:
  • thermophilic cyanobacteria were aseptically inoculated into 5 ml of liquid sterile BG-11 medium at a volume ratio of 1% inoculum, and cultured at 45 ° C for about 14 days in air to grow the algae to the late stage of logarithmic growth.
  • thermophilic cyanobacteria is selected from the group consisting of Thermosynechococcus vulcanus NIES 2134 (hereinafter referred to as 2134), and is purchased from the Japanese NIES algae species bank.
  • the mesophilic cyanobacteria are selected from Synechocystis sp. 6803.
  • the method for extracting intact phycobilisomes of the thermophilic cyanobacteria is to firstly centrifuge the algal culture medium of the thermophilic cyanobacteria cultured to the late logarithmic growth stage to obtain natural algal bodies, per gram of algae The wet weight was added to 3.33 ml of buffer A to suspend the algae, and 100 mmol.L -1 of PMSF was added to a final concentration of 1.0 mmol.L -1 ; secondly, at 4 ° C, using the French Press method, with a pressure of 4000 p.
  • the crushed algae body was fully broken 2 times to obtain blue homogenate of the algae cells; then, the volume fraction of 20% (v/v) Triton X-100 was added to the homogenate to a final concentration of 2% by volume (v /v), add 100mmol.L -1 of PMSF to a final concentration of 1.0mmol.L -1 , and dissolve the membrane for 30-40min under slight shaking conditions; then centrifuge at 20000g for 0.5h to remove the upper blue oily liquid.
  • the chemical cross-linking molecular modification is then carried out: the modified GraFix method is used to treat the whole phycobilisome extracted from the thermophilic cyanobacteria in a density gradient solution C containing different concentrations of cross-linking agent and sucrose, and 200000 g ultracentrifugation for 1 h.
  • the blue solution between the 0.6M-0.75M sucrose density layer is collected; the blue solution is repeatedly ultrafiltered with buffer A to obtain purified cross-linked phycobilisome, and the cross-linked phycobilisome is dissolved in low Purification by ultracentrifugation in salt buffer B yielded intact phycobilisomes that remained intact under low salt buffer conditions and that were not cross-linked to multiple molecules.
  • the density gradient solution C containing different concentrations of crosslinking agent and sucrose is a solution containing 0-0.25% of a crosslinking agent and 0.15M-1.5M of sucrose arranged in sequence with buffer A;
  • the buffer solution A is used to sequentially arrange the following eight different concentrations of the sucrose solution C, namely: 0.15 M sucrose, 0.3 M sucrose containing 0.075% glutaraldehyde, and a volume fraction of 0.125% glutaraldehyde. 0.45 M sucrose, 0.6 M sucrose containing 0.25% glutaraldehyde, 0.75 M sucrose, 1.0 M sucrose, 1.25 M sucrose, 1.5 M sucrose.
  • the buffer B component is 50 mM Tris-HCl, pH 8.0;
  • the buffer A component was 0.75 mol.L -1 disodium hydrogen phosphate-potassium dihydrogen phosphate buffer containing 10 mmol.L -1 EDTA ⁇ Na 2 , pH 7.0.
  • the syringe sequentially injects the above eight concentrations of solution C into the bottom of the tube (the above eight concentrations of solution C are sequentially added in the order of 1.5ml, 1.5ml, 1.5ml, 1.5ml, 1.5ml, 1ml, 1ml, 1ml) (When a high concentration of sucrose is injected into the lower layer, the sucrose layer with a small density is pushed to the upper layer due to the density assembly, and there is a clear limit between the two due to the difference in refractive index).
  • Discontinuous sucrose density gradients in low salt buffer B were set at 2 ml, 2 ml, 2 ml, 2 ml, 2 ml of different concentrations of sucrose.
  • the above-mentioned cross-treated phycobilisome to be further purified without sucrose was carefully added to 1 ml to the upper layer of the discontinuous sucrose density gradient in the laid low-salt buffer B, and 200000 g was ultracentrifuged for 4 h to collect the low-salt buffer B.
  • the blue solution of the 1.75M dispersed sucrose density layer is the intact 2134 phycobilisome after the cross-linking treatment.
  • Sesame was removed as above, and concentrated by ultrafiltration to control the concentration of phycobilisomes at 1.04 mg.mL -1 to obtain the intact phycobilisome of the cross-linked treated thermophilic cyanobacteria 2134.
  • the control group of Thermophilic Cyanobacteria 6803 was also treated as such, but the final step was to collect a blue solution of the sucrose density layer between 1.5 M and 1.75 M in Low Salt Buffer B.
  • the fluorescence emission peak between 600nm and 800nm is measured, and the fluorescence emission peak of the complete 2134 phycobilisome after cross-linking treatment is 669.6nm, and the fluorescence emission of the intact 6803 phycobilisome after cross-linking treatment is obtained.
  • the light peak is 666.2 nm, and the energy transfer ends are basically complete.
  • the purpose of this step is: in order to obtain cross-linked phycobilisomes from thermophilic cyanobacteria, while maintaining the integrity of the phycobilisome, the sensitizer is placed in a low-salt buffer, and vacuum is dried to form phosphoric acid. Salt precipitation, covering the surface of the sensitizer, affects battery performance.
  • the obtained electrode can directly convert solar energy to electric energy under illumination conditions, and can be used as an electrode of a solar cell or an optical sensor.
  • photoanode electrode is TiO 2, TiO 2 semiconductor film thickness customized by Dalian Rainbow Light technology 1: "20nm TiO 2 single layer film (2 ⁇ m) + 200nmTiO 2 single scattering layer (2 ⁇ m)"1's.
  • the above photoanode is made by screen printing and exists on FTO (fluorine-doped tin oxide) glass substrate.
  • the size of the single-piece electrode glass is 12 ⁇ 18 mm and the thickness is 2.2 mm.
  • the TiO 2 semiconductor film has a size of 6 ⁇ 6 mm (effective area: 0.36 cm 2 ) and is a nanoporous structure having a pore diameter of 1-1000 nm.
  • the anode electrode was heated at 350 ° C for 30 minutes in a muffle furnace (Yamato, Inc., Model 1889 muffle furnace, Japan), and then naturally cooled rapidly to 50 ° C at room temperature.
  • a muffle furnace Yamato, Inc., Model 1889 muffle furnace, Japan
  • a thermally stable, cross-linked, treated phycobilisome (1.04 mg/ml) from thermophilic cyanobacteria in a pH 8.0 Tris-HCl buffer and adsorb in the dark at room temperature. 24 hours.
  • the sensitized photoanode was rinsed with a buffer of Tris-HCl, pH 8.0, to remove the weak adsorption, and then vacuum dried at room temperature.
  • the final phycobilisome interacts with the surface of the semiconductor photoanode by electrostatic force adsorption and hydrogen bonding to form an electrode of a directional or non-directional, single or multiple layer adsorption layer.
  • the counter electrode is a "porous Pt electrode.” Purchased from Dalian Seven Color Light Technology (DHS-Ed03), each electrode glass size is 12 ⁇ 18mm, made of Pt slurry (PtSP), Pt effective size is 8 ⁇ 8mm; pre-punched, hole diameter is 1mm, use In the electrolyte perfusion; the edge of the Pt printing is 2mm, 2mm, 2mm, 8mm from the edge of the glass, and the distance from the side of the hole is 12mm.
  • PtSP Pt slurry
  • Pt effective size is 8 ⁇ 8mm
  • pre-punched hole diameter is 1mm, use In the electrolyte perfusion
  • the edge of the Pt printing is 2mm, 2mm, 2mm, 8mm from the edge of the glass, and the distance from the side of the hole is 12mm.
  • the above counter electrode is also present on the (FTO) glass substrate.
  • biomimetic solar energy conversion device sensitized photoanode and platinized counter electrode, laser-cut Surlyn heat sealing film with 7mm diameter (pre-cut inner hole size 7mm ⁇ 7mm, thickness 25 microns, purchased from Dalian Seven Color Light Technology) DHS-SN1725-200) is assembled, and the center forms a closed cavity, which is staggered for easy clamping.
  • a liquid electrolyte solution self-configured, 0.5 M LiI, 0.05 M I 2 , 0.3 M DMPII, 0.5 M 4-TBP and 0.1 M GNCS co-dissolved in acetonitrile, brown transparent liquid was injected into the cavity approximately 2 ⁇ L.
  • the electrolyte diffuses to the entire TiO 2 electrode.
  • the sealing film purchased from Dalian Seven Color Light Technology DHS-SN1725-200, DSC sealing film, thickness 25 microns
  • DSC sealing film thickness 25 microns
  • thermophilic cyanobacteria 2134 and room temperature cyanobacteria 6803 sensitized solar cells Table 10h, maximum solar cell parameters for thermophilic cyanobacteria 2134 and room temperature cyanobacteria 6803 sensitized solar cells.
  • the 10h time after assembly but not heat treatment is recorded as -10h, and the sampling time points after heat treatment are set to 0h, 0.667h, 2h, 3h, 5h, 8h, 13h, 21h, 36h, 44h, 50h, 77h, 103h, 120h
  • the photovoltaic characteristics of the solar cell were tested using the IV solar cell test system (Dawn CrownTech, USA), including short-circuit current, open circuit voltage, fill factor and conversion efficiency.
  • the summary results show As the heat treatment time increases, the battery performance gradually decreases.
  • thermophilic protein complex In order to show the performance of the dye-sensitized solar cell of the thermophilic protein complex as a sensitizer, a control--a solar cell sensitized from the whole phycobilisome sensitized by mesophilic cyanobacteria and cross-linking treatment was provided for its photovoltaic characteristics. Tests, including short-circuit current, open circuit voltage, fill factor and conversion efficiency, summarizing the knot of mesophilic cyanobacteria 6803 The effect (see Fig. 3, bottom) shows a tendency for the battery performance to gradually decrease as the heat treatment time increases. Moreover, the performance of the solar cell sensitized by the phycobilisomes from the thermophilic cyanobacteria 2134 (see Fig. 3, above) and cross-linking treatment is gradually reduced.
  • thermophilic cyanobacteria 2134 see Figure 2
  • mesophilic cyanobacteria 6803 see Figure 2 below
  • cross-linked intact phycobilisome sensitization display, after battery assembly
  • the IV characteristic curves of the two gradually change toward the trend of decreasing both I and V; and the change of mesophilic cyanobacteria is faster (see Figure 2).
  • the battery is placed in the original container. , continue heat treatment. The measured data after the collection was collected to evaluate the degree of thermal stability of the assembled battery.
  • Example 2 The difference from Example 1 is that after the natural intact phycobilisome extraction, the following steps of chemical crosslinking molecular modification are:
  • glutaraldehyde was added to a final concentration of 0.2%, and chemical cross-linking was carried out for 20 min; then, a 30 KDa Millipore ultrafiltration tube was used to sequentially add an equal volume of glutaraldehyde-free buffer to the protein.
  • B buffer B component is 50 mM Tris-HCl, pH 8.0
  • the purpose of this step is: in order to obtain cross-linked phycobilisomes from thermophilic cyanobacteria, while maintaining the integrity of the phycobilisome, the sensitizer is placed in a low-salt buffer, and vacuum is dried to form phosphoric acid. Salt precipitation, covering the surface of the sensitizer, affects battery performance.
  • the obtained electrode can directly convert solar energy to electric energy under illumination conditions, and can be used as an electrode of a solar cell or an optical sensor.
  • Example 2 The difference from Example 2 is that after the anode electrode is prepared, it is heated in a muffle furnace at 350 ° C (Yamato, Japan, Since 1889 model muffle furnace) for 30 minutes, then cooled to 50 ° C, and the titanium dioxide anode electrode is immersed in The heat-stable, complete phycobilisome (1.7 mg.mL -1 , uncrosslinked) from thermophilic cyanobacteria isolated in Example 1 above, 0.75 mol.L -1 phosphate buffer solution having a pH of 7.0 It was adsorbed in the dark at room temperature for 24 hours. After the adsorption, the sensitized photoanode was rinsed with a 0.75 mol.L -1 phosphate buffer to remove the weak adsorption, and then vacuum dried at room temperature.
  • the construction of the biomimetic solar energy conversion device and the parameter measurement were performed.
  • Example 2 The difference from Example 2 is that after the anode electrode is prepared, it is heated in a muffle furnace at 350 ° C (Yamato, Japan, Since 1889 model muffle furnace) for 30 minutes, then cooled to 50 ° C, and the titanium dioxide anode electrode is immersed in The thermally stable, lyophilized phycobilisome (1.7 mg.mL -1 , uncrosslinked) 0.75 mol.L -1 phosphate buffer (pH 7.0) obtained from the above Example 1 was isolated. Chlorodium e6 powder (purchased from Frontier Scientific, purity >95%) at a final concentration of 2 mg.mL -1 was added to the solution and uniformly mixed, and adsorbed in the dark at room temperature for 24 hours.
  • the sensitized photoanode was rinsed with a 0.75 mol.L -1 phosphate buffer to remove the weak adsorption, and then vacuum dried at room temperature. A photoanode sensitized by phycobilisome coupling to Chlorin e6 was obtained.
  • the construction of the biomimetic solar energy conversion device and the parameter measurement were performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Hybrid Cells (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明属于生物技术,具体涉及一种热稳定的光学敏化材料及其应用。光学敏化材料为嗜热蓝藻天然提取的完整藻胆体。所述光学敏化材料为交联处理后、置换于低盐缓冲液中的嗜热蓝藻的完整藻胆体。本发明敏化材料,敏化TiO2颗粒电极的方式处理半导体电极,而后采用室温抽真空干燥,依赖静电力吸附和氢键相互作用完成电极对敏化材料的吸附,而后组装为染料敏化太阳能电池,敏化半导体电极使之在光照条件下可以直接完成太阳能到电能的转化,实现其作为新型光学敏化材料的功能。由于长期处于光照产生的热环境中,光学敏化材料的热稳定特性大大延长组装后的电池的使用寿命。将在太阳能利用,转换和存储方面具有应用广阔的前景,并且在转化太阳能作为新一代的替代能源,为人类提供充足的电力和社会可持续发展方面有着广泛的应用。

Description

一种热稳定的光学敏化材料及其应用 技术领域
本发明属于生物技术,具体涉及一种热稳定的光学敏化材料及其应用。
背景技术
面临全球能源消耗问题,太阳能越来越引起人们利用的兴趣。作为最丰富的可持续的能源,太阳能每年照射到地球表面的有100 000TW,每小时就相当于人类利用一年的能量总和,估计现今的光合作用每年能量储存率为100TW,仅仅利用千分之一。
太阳能是一切能源的根本,也是我们可利用的、最直接最环保的能源。地球上光合作用是大自然进化出来的、高效利用和转化太阳能的装置,是规模最大的光子能量转换成化学能的过程;光合生物通过“光生物作用”氧化水释放氧气,大量埋藏有机物,在百万年尺度上保证了大气中游离态的氧气O2含量增加,足够生物大爆发和进化所必需(Falkowski and Isozaki 2008)。化石燃料(煤炭、石油和其他生物燃料)的化学能起源于几百万年前的光合作用,它们作能源,大的地质历史时期的尺度上,瞬时逆转了亿年过程。在地球氧气含量降低的同时,碳排放量升高还造成了温室效应(Barber 2009)。因此提倡“减少直接燃烧光合作用产物(化石燃料)的燃烧”、和开发“基于光合作用成功理论的新技术”。
捕光复合物捕获和传递光能作为自然光合作用的起始步骤。相比于高等植物的只含叶绿素的捕光复合物,蓝藻的和红藻的捕光复合物藻胆体的捕获和传递光能的效率接近100%;在叶绿素捕光范围较弱的黄绿光区也有较强的吸收;并且嗜热蓝藻Thermosynechococcus vulcanus NIES 2134(以下简称2134)生存于55℃的淡水中;提取到其光合作用捕光复合物——完整藻胆体,耐热实验验证其对比于嗜温蓝藻而言具有更好的热稳定性。根据其高的捕获传递光能的效率、广谱吸收范围和好的热稳定性,我们尝试将其应用于光电转换器件的光学敏化材料。
光电转换器考虑到的两个因素是效率和成本。我们已有光电系统的效率以及稳定性在日渐提高;将来的化石燃料价格升高,光电系统价格优势将逐渐显现。在“光电系统原理、天然光合作用的概念、利用类似天然色素的人工色素来模拟人工光合作用的人工系统”方面的技术进展,将提供最终的解决方案。
近二十年来,染料敏化太阳能电池由于成本低且潜力巨大而值得大力推广,尤其是基于叶绿素的人工光伏设备和超分子光合蛋白复合物的发现,促成了很多先进仿生太阳能光伏设备的开发。类似天然色素的人工色素的研究主要集中在利用细菌视紫红质(BR),光系统I(PSI),光系统II(PSII)和光捕获复合体(LHCII)创造直接转换太阳能的光伏设备。后来也有尝试用嗜温蓝藻的藻胆体耦合Chlorin e6染料敏化太阳能电池的研究(于道永,2010),效率达到0.47%;也有来自嗜温蓝藻的重组别藻 蓝蛋白三聚体(rAPC)敏化太阳能电池,效率达到0.26%(Pu Y,2013)。但是考虑提高组装的太阳能电池器件的热稳定性和使用寿命长这一重要性能,我们尝试将嗜热蓝藻的完整藻胆体应用作光学敏化材料。
染料敏化太阳能电池最重要的组成部件是半导体氧化物组成的光电极和敏化剂。敏化剂也由最初的多联吡啶钌发展为后来的有机染料、天然色素等,以及几种染料协同敏化。光敏电池的工作原理主要是敏化电极上的染料分子吸收太阳光后光电效应产生电子,自身变为氧化态;电子注入到半导体光电极的导带,电子瞬间富集到导电玻璃上,产生光电流;电子经过外电路循环后回到阴极导电玻璃,与电解质中的电子受体Ox作用使其转化为电子供体Red,后者与染料氧化态作用促使其再生,这样完成一个光电化学循环。(杨宏训,2006)敏化剂必备的三要素是:吸收系数高、响应范围宽、稳定(安佰超,乔庆东,2007)。藻胆体作为蓝藻和红藻的天然捕光装置,必然具有捕光蛋白的“吸光系数高、吸收波长范围宽”等特性;而Themosynechococcus vulcanus NIES 2134(以下简称2134)作为嗜热蓝藻,其藻胆体经过我们的实验验证,具有热稳定性好的特性,这是我们考虑用这种藻胆体作光敏电池敏化剂,构建了基于藻胆体的生物染料敏化太阳能电池(Bio-DSSC)的因素之一。
用嗜热蓝藻的热稳定的藻胆体敏化的DSSC,其最初的最高短路电流比嗜温蓝藻藻胆体敏化的高17%,其效率比后者高3%。他们的开路电压几乎一致,但是嗜温蓝藻藻胆体敏化的DSSC的填充因子比嗜热蓝藻热稳定的藻胆体敏化的DSSC高14%。我们比较了这两种DSSC在70℃下的参数改变,发现嗜温蓝藻敏化的DSSC的短路电流在50h之内降低至0.2mA/cm2以下,然而2134敏化的DSSC的短路电流在50h之内仍然接近0.4mA/cm2,直至103h之后才降低至如此水平。
根据交联处理后的2134完整藻胆体敏化的DSSC的0.269%的光电转换效率,得出其在体外能高效捕捉和传递能量,利用其作为捕捉可见光子的光敏化剂材料,体现了很好地开发前景。
发明内容
本发明目的在于提供一种热稳定的光学敏化材料的应用。
为实现上述目的,本发明采用的技术方案为:
一种热稳定的光学敏化材料,光学敏化材料为嗜热蓝藻天然提取的完整藻胆体。该光学敏化材料比对嗜温蓝藻天然提取的的完整藻胆体而言,具有更高的热稳定性。
所述光学敏化材料为交联处理后、置换于低盐缓冲液中的嗜热蓝藻的完整藻胆体。该光学敏化材料仍旧保持嗜热蓝藻的完整藻胆体的热稳定性。
所述将从嗜热蓝藻中提取的完整藻胆体加入至含有不同浓度交联剂和蔗糖的密度梯度溶液C上层,200000-239000g超速离心0.67-1h,收集0.6M-0.75M蔗糖密度层之间的蓝色溶液;蓝色溶液用缓冲液A反复超滤,得纯化的交联处理过的藻胆体, 交联后的藻胆体加入至低盐缓冲液B配置的蔗糖密度梯度上层超速离心分离纯化,得到在低盐缓冲液的条件下仍旧保持完整并且没有交联过度为多个分子的完整藻胆体(交联过程基于GraFix的方法进行改进获得,步骤与(David,Prado et al.2014)类似,但是关键条件有所改动)。
所述含有不同浓度交联剂和蔗糖的密度梯度溶液C是由用缓冲液A,依次配置的含0-0.25%的交联剂和0.15M-1.5M的蔗糖的溶液;
所述缓冲液B成分为50mM的Tris-HCl,PH 8.0;
所述缓冲液A成分为0.75mol.L-1磷酸氢二钠-磷酸二氢钾缓冲液,含10mmol.L-1EDTA·Na2,pH 7.0。
所述嗜热蓝藻的完整藻胆体:将培养至对数生长后期的嗜热蓝藻的藻体培养液离心得到天然藻体,按照每克藻体湿重加入3.33-5.00ml的缓冲液将藻体重悬,重悬后加入100mmol.L-1的PMSF至终浓度为1.0-2.0mmol.L-1;藻体重悬液破碎,获得藻体细胞蓝色匀浆;之后向匀浆中加入体积分数20%(v/v)的Triton X-100至终浓度为体积分数2%-3%(v/v),再加入100mmol.L-1浓度的PMSF至终浓度为1.0-2.0mmol.L-1,轻微摇晃的条件下,溶膜30-40min;然后离心收集中间的蓝色水溶性液体,而后取蓝色水溶性液体约1ml,小心的添加到事先铺设的15%-45%的连续蔗糖密度梯度的上层,超速离心后在约0.5M-0.75M蔗糖密度层之间收集的深蓝色层,深蓝色层溶液经浓缩后用缓冲液A对浓缩后蛋白反复超滤,即为天然完整的藻胆体。
具体是:首先将培养至对数生长后期的嗜热蓝藻的藻体培养液离心得到天然藻体,按照每克藻体湿重加入3.33ml的0.75mol.L-1磷酸氢二钠-磷酸二氢钾(含10mmol.L-1EDTA·Na2,pH 7.0)的缓冲液将藻体重悬,加入100mmol.L-1的PMSF至终浓度为1.0mmol.L-1;其次French Press方法,4000p.s.i.压力过两遍,将藻体重悬液充分破碎,获得破碎的藻体细胞蓝色匀浆;之后向匀浆中加入体积分数20%(v/v)的Triton X-100至终浓度为体积分数2%(v/v),再加入100mmol.L-1的PMSF至终浓度为1.0mmol.L-1,轻微摇晃的条件下,溶膜30-40min;然后20000g离心0.5h,收集中间的蓝色水溶性液体,即为含有藻胆体的粗体液;而后再在“Beckman超速离心机专用12.5mL离心管”里,注射器依次向管底注入“含15%、45%质量分数(m/V)蔗糖的0.75mol.L-1磷酸氢二钠-磷酸二氢钾(含10mmol.L-1EDTA·Na2,pH 7.0)的缓冲液,参照Biocomp全自动密度梯度制备仪说明书和所存储的已设程序,适度混合得到15%-45%的连续蔗糖密度梯度;再在每离心管管铺设好的蔗糖梯度层的上层小心的添加约1ml藻胆体粗提液,120000g超速离心4h;最后超速离心后在约0.5M-0.75M蔗糖密度层之间收集的深蓝色层,深蓝色层溶液经浓缩后用缓冲液A对浓缩后蛋白反复超滤,即为天然完整的藻胆体。
一种光学敏化材料的应用,以嗜热蓝藻天然提取的完整藻胆体作为光学敏化材料。所述溶液为1.7毫克/毫升。
以热稳定的、交联处理过的来自嗜热蓝藻的完整藻胆体作为光学敏化材料。所述溶液为1.04毫克/毫升。
以嗜热蓝藻藻胆体或交联处理后的嗜热蓝藻藻胆作为吸附在半导体光阳极表面的敏化剂。
所述交联处理过的嗜热蓝藻的完整藻胆体分子,通过静电力吸附和氢键相互作用于半导体光阳极表面,完成电极对敏化材料的吸附,吸附有完整藻胆体层的电极在光照条件下完成太阳能到电能的转化。
所述吸附有热稳定的、交联处理过的来自嗜热蓝藻的完整藻胆体层的电极,可作为太阳能电池或光学传感器的电极使用。并且电极组装成染料敏化太阳能电池的耐热测试实验结果表明,对照交联处理过的嗜温蓝藻的完整藻胆体而言,该电极组装成染料敏化太阳能电池后的结果更高的热稳定性。
所述电极组装过程是:首先完成光阳极的敏化:阳极电极于马弗炉(日本Yamato公司,Since 1889型号马弗炉)中在350℃下加热30分钟,然后室温下自然迅速冷却至50℃。立刻将二氧化钛阳极电极浸泡在热稳定的、交联处理过的来自嗜热蓝藻的完整藻胆体(1.04毫克/毫升)的PH为8.0的Tris-HCl缓冲液中,于室温下在黑暗中吸附24小时。吸附后,用PH为8.0的Tris-HCl的缓冲液漂洗敏化后的光阳极,除去不牢固的吸附,然后在室温下抽真空干燥。
之后完成仿生太阳能转换装置的构建:敏化的光阳极和镀铂的对电极,通过直径为7mm的激光切割Surlyn热封膜(预切割内孔尺寸7mm×7mm,厚25微米,购自大连七色光科技DHS-SN1725-200)进行组装,中央形成密闭的空腔,二者错开便于夹电夹。将液体电解质溶液(自己配置,将0.5M的LiI,0.05M I2,0.3M DMPII,0.5M的4-TBP和0.1M GNCS共同溶于乙腈,褐色透明液体)大约2微升注入此空腔,毛细原理,电解液会扩散至整个TiO2电极。用封膜(购自大连七色光科技DHS-SN1725-200,DSC密封用薄膜,规格为厚度25微米)封住对电极的小孔,夹上电夹,而后立即进行测量。
本发明与现有技术相比,具有以下优点:
1.来自嗜热蓝藻的藻胆体,具有较高的量子效率,捕获和传递光能的效率接近100%;对黄绿可见光波谱区也有较强吸收,拓宽了捕获光能的范围;
2.本发明光阳极的光学敏化材料来自天然培养的嗜热蓝藻,无毒,而且不必担心基因工程造成的环境污染问题;
3.天然提取完整藻胆体的流程简单,节约能源,提取效率高(每10g湿重藻体,能够得到1.7mg.ml-1的完整藻胆体溶液5-10ml);
4.其次对蛋白通过戊二醛在最佳的浓度和时间条件下交联后、更换缓冲液为低盐溶液,最大程度维持蛋白原有结构,也保持了原有的热稳定性;同时蛋白所在溶液置换为低盐,避免了在光敏材料敏化电极后室温真空干燥后,高浓度的磷酸盐形成的 结晶,有可能影响电解液、光敏剂材料层之间的接触问题;
5.通过合适浓度的交联后的蛋白溶液处理电极,而后采用室温真空干燥的方法,依赖静电力吸附和氢键相互作用在电极表面形成定向或非定向的单层或多层吸附;组装后,敏化半导体电极使之在光照条件下可以直接完成太阳能到电能的转化;利用纳米尺度的光阳极能更好的收集和传输电子,并且可以使用模块化技术降低成本,具有较高的光伏特性;
6.且相较于来自嗜温蓝藻的藻胆体、藻胆蛋白而言,能在光照产生热的环境中保持较高的热稳定性;
7.本发明以热稳定的、交联处理过的来自嗜热蓝藻的完整藻胆体作为敏化染料的生物大分子太阳能敏化电池,具有效率高、无毒、环境友好、制作工艺简单节能、高的热稳定性等特点,而且成本低,可以进一步降低成本,开发潜力大;
8.本发明敏化材料,敏化TiO2颗粒电极的方式处理半导体电极,而后采用室温抽真空干燥,依赖静电力吸附和氢键相互作用完成电极对敏化材料的吸附,而后组装为染料敏化太阳能电池,敏化半导体电极使之在光照条件下可以直接完成太阳能到电能的转化,实现其作为新型光学敏化材料的功能。由于长期处于光照产生的热环境中,光学敏化材料的热稳定特性大大延长组装后的电池的使用寿命。将在太阳能利用,转换和存储方面具有应用广阔的前景,并且在转化太阳能作为新一代的替代能源,为人类提供充足的电力和社会可持续发展方面有着广泛的应用。
附图说明
图1为本发明实施例提供的敏化材料以及利用敏化材料进行热处理测定方法的流程图。
图2为本发明实施例提供的利用较高热稳定性的2134(上图)和6803(下图)藻胆体作为敏化材料敏化的太阳能电池的电流-电压特征曲线图;在组装后经过28℃室温10h之后(-10h标示),进行的耐热性实验。其中55℃处理0-8h、65℃处理8h-120h之后的电流-电压特征曲线的对比。曲线中可以看出,2134比6803热稳定性要高。因为77h时,6803的光电流活性受到破坏,但是2134的光电流活性仍旧保持稳定;直至103h时2134的光电流活性才降低至6803在50h的水平。(水平轴为电压V(V),纵轴为电流I(mA/cm2))。
图3为本发明实施例提供的利用较高热稳定性的2134(上图)和6803(下图)藻胆体作为敏化材料敏化的太阳能电池的电流-电压特征曲线;其中,在经过55℃处理8h、65℃处理8h-120h之后的电流-电压特征曲线的对比。50h时,6803敏化太阳能电池的效率降低至0.1%,50h to 77h一直处于0.1%的低效率水平。但是2134的光电流活性仍旧保持稳定;直至103h时2134的光电流活性才降低至6803在50h的水平。(水平轴为时间(h),纵轴分别为电流I(mA/cm2)、电压V(V)、填充因子FF 和效率η(%))。
具体实施方式
下面通过实施例具体说明本发明:
本发明之前,对光敏材料的体外耐热实验表明,对照提取的嗜温蓝藻的完整藻胆体,提取的嗜热蓝藻的完整藻胆体的热稳定性更高。进一步分子改造后,热稳定性得以保持。本专利验证了热稳定的、交联处理过的来自嗜热蓝藻的完整藻胆体作为光学敏化材料,敏化电极之后组装的染料敏化太阳能电池器件也具有更高的热稳定性。
本发明选择的光阳极的敏化材料来自天然培养的嗜热蓝藻,不必担心基因工程造成的环境污染问题,提取完整藻胆体的流程简单节约能源;同时将嗜热蓝藻蛋白通过加入至含有不同浓度交联剂和蔗糖的密度梯度溶液C上层,200000-239000g超速离心0.67-1h,收集交联处理过的藻胆体加入至低盐缓冲液B配置的蔗糖密度梯度上层超速离心分离纯化,最大维持蛋白原有结构的程度上,增强了藻胆体的稳定性;再通过浓度为1.04mg/ml的交联处理后的蛋白溶液进行处理电极,而后采用室温真空干燥的方法,依赖静电力吸附和氢键相互作用在电极表面形成定向或非定向的单层或多层吸附;组装后,敏化半导体电极使之在光照条件下可以直接完成太阳能到电能的转化。
实施例1:
敏化材料嗜热蓝藻藻胆体的获得:
按照体积比为1%接种量,将嗜热蓝藻无菌接种于5ml液体无菌BG-11培养基中,45℃通入空气培养14天左右,使藻体生长至对数生长后期。
其中,嗜热蓝藻选自Thermosynechococcus vulcanus NIES 2134(以下简称2134),购自日本NIES藻种库。嗜温蓝藻选自Synechocystis sp.6803。
藻胆体的分离纯化:所述嗜热蓝藻的完整藻胆体的提取方法,为首先将培养至对数生长后期的嗜热蓝藻的藻体培养液离心得到天然藻体,按照每克藻体湿重加入3.33ml的缓冲液A将藻体重悬,加入100mmol.L-1的PMSF至终浓度为1.0mmol.L-1;其次在4℃下,采用French Press方法,用4000p.s.i.压力下,破碎藻体2遍使之充分破碎,获得藻体细胞蓝色匀浆;之后向匀浆中加入体积分数20%(v/v)的Triton X-100至终浓度为体积分数2%(v/v),再加入100mmol.L-1的PMSF至终浓度为1.0mmol.L-1,轻微摇晃的条件下,溶膜30-40min;然后20000g离心0.5h,去掉上层蓝色的油状液体,收集中间的蓝色水溶性液体,即为含有藻胆体的粗体液;而后再在“Beckman超速离心机专用12.5mL离心管”里,注射器依次向管底注入“含15%、45%质量分数(m/V)蔗糖的0.75mol.L-1磷酸氢二钠-磷酸二氢钾(含10mmol.L-1EDTA·Na2,pH 7.0)的缓冲液,参照Biocomp全自动密度梯度制备仪说明书和所存储的已设程序,适度混合得到15%-45%的连续蔗糖密度梯度;再在每离心管管铺设好的蔗糖梯度层的上层小心的添加约1ml藻胆体粗提液,120000g超速离心4h;最后在约0.5M-0.75M 蔗糖密度层之间收集的深蓝色层。将天然完整的藻胆体用30KDa的Millipore超滤管浓缩蛋白,浓缩后用不含蔗糖的缓冲液A(缓冲液A成分为0.75mol.L-1磷酸氢二钠-磷酸二氢钾缓冲液,含10mmol.L-1EDTA·Na2,pH 7.0)对浓缩后蛋白多次超滤,该步骤通过对蔗糖逐渐稀释后去掉蔗糖,即得到天然完整的藻胆体。
接着进行化学交联分子改造:采用改进的GraFix方法进行处理,将上述从嗜热蓝藻中提取的完整藻胆体溶于含有不同浓度交联剂和蔗糖的密度梯度溶液C中,200000g超速离心1h,收集0.6M-0.75M蔗糖密度层之间的蓝色溶液;蓝色溶液用缓冲液A反复超滤,得纯化的交联处理过的藻胆体,交联后的藻胆体溶于低盐缓冲液B中超速离心分离纯化,得到在低盐缓冲液的条件下仍旧保持完整并且没有交联过度为多个分子的完整藻胆体。
所述含有不同浓度交联剂和蔗糖的密度梯度溶液C是由用缓冲液A,依次配置的含0-0.25%的交联剂和0.15M-1.5M的蔗糖的溶液;
具体是,用缓冲液A,依次配置下述8种不同浓度的蔗糖溶液C,即为:0.15M蔗糖、含有体积分数0.075%戊二醛的0.3M蔗糖、含有体积分数0.125%戊二醛的0.45M蔗糖、含有体积分数0.25%戊二醛的0.6M蔗糖、0.75M蔗糖、1.0M蔗糖、1.25M蔗糖、1.5M蔗糖。
所述缓冲液B成分为50mM的Tris-HCl,PH 8.0;
所述缓冲液A成分为0.75mol.L-1磷酸氢二钠-磷酸二氢钾缓冲液,含10mmol.L-1EDTA·Na2,pH 7.0。
具体操作是:在“Beckman超速离心机专用12.5mL离心管”里,注射器依次向管底注入上述8个浓度的溶液C(上述8个浓度的溶液C依次按照上述顺序加入1.5ml、1.5ml、1.5ml、1.5ml、1.5ml、1ml、1ml、1ml)(向下层注射高浓度的蔗糖时,由于密度大会将密度小的蔗糖层推至上层,二者中间由于折光率不同存在明显界限)。再将上述获得天然完整的藻胆体也小心加入1ml至离心管铺设好的不连续蔗糖密度梯度上层(切勿震动界面),200000g超速离心1h,收集0.6M-0.75M蔗糖密度层之间的蓝色溶液;同上用30KDa的Millipore超滤管,用缓冲液A多次超滤,对蔗糖逐渐稀释后去掉蔗糖,得到待进一步纯化的交联处理过的藻胆体。之后用低盐缓冲液B配置不同浓度的蔗糖溶液(蔗糖浓度依次为:1.25M、1.5M、1.75M、2M、2.25M),将配置好的溶液通过注射器依次向管底注入按照上述顺序加入不同浓度的蔗糖2ml、2ml、2ml、2ml、2ml,配置低盐缓冲液B中的不连续蔗糖密度梯度。将上述不含蔗糖的待进一步纯化的交联处理过的藻胆体小心加入1ml至铺设好的低盐缓冲液B中的不连续蔗糖密度梯度上层,200000g超速离心4h,收集低盐缓冲液B中的1.75M弥散的蔗糖密度层的蓝色溶液,即为交联处理之后的完整的2134藻胆体。同上去掉蔗糖,同时通过超滤浓缩,控制藻胆体的浓度为1.04mg.mL-1,即得到交联处理过的嗜热蓝藻2134的完整的藻胆体。对照组嗜温蓝藻6803也是这样处理,不过最后一步 收集的是低盐缓冲液B中的1.5M-1.75M之间的蔗糖密度层的蓝色溶液。
经过580nm激发光下、测量600nm-800nm之间荧光发射峰,得到交联处理之后的完整的2134藻胆体的荧光发射光峰669.6nm,交联处理之后的完整的6803藻胆体的荧光发射光峰666.2nm,二者能量传递末端都基本完整。
经过透射电子显微镜验证结构完整性,与天然藻胆体相比得知,形状略有改变,而且内部结构不清晰。二者聚集状态略有大团的聚集过度,提示这种方法的缺点可能是第一步短时高速离心,超速离心力还不够时间还不够缩短。单个藻胆体分子大小:6803藻胆体长43nm宽36nm,2134藻胆体大小长49宽26nm,藻胆体大小比天然的略小显示,这种方法在高速离心时导致结构略有破坏和改变。
此步骤的目的是:为了获得交联处理过的来自嗜热蓝藻的藻胆体,保持藻胆体完整性的同时,使得敏化剂处于低盐缓冲液中,抽真空干燥后不至于形成磷酸盐沉淀,覆盖在敏化剂的表面,影响电池性能。
所得电极在光照条件下可直接完成太阳能到电能的转化,即可作为太阳能电池或光学传感器的电极使用。
实施例2
光阳极的构建:光阳极是TiO2电极,通过大连七色光科技定做TiO2半导体膜厚度为1:1的“20nm TiO2单层膜(2μm)+200nmTiO2单层散射层(2μm)”。以上光阳极通过丝网印刷法制做,存在于FTO(掺杂氟的氧化锡)玻璃基板,单片电极玻璃尺寸为12×18mm,厚2.2mm。TiO2半导体膜尺寸6×6mm(有效面积0.36cm2),是纳米多孔结构,孔径1-1000纳米。
光阳极的敏化:阳极电极于马弗炉(日本Yamato公司,Since 1889型号马弗炉)中在350℃下加热30分钟,然后室温下自然迅速冷却至50℃。立刻将二氧化钛阳极电极浸泡在热稳定的、交联处理过的来自嗜热蓝藻的完整藻胆体(1.04毫克/毫升)的PH为8.0的Tris-HCl缓冲液中,于室温下在黑暗中吸附24小时。吸附后,用PH为8.0的Tris-HCl的缓冲液漂洗敏化后的光阳极,除去不牢固的吸附,然后在室温下抽真空干燥。
最终藻胆体通过静电力吸附和氢键相互作用于半导体光阳极表面,形成定向或非定向、单层或多层吸附层的电极。
对电极是“有孔Pt电极”。购自大连七色光科技(DHS-Ed03),每片电极玻璃尺寸为12×18mm,使用Pt浆料(PtSP)制做,Pt有效尺寸为8×8mm;预打孔,孔直径为1mm,用于电解质灌注;Pt印刷边缘距离玻璃边缘分别为2mm、2mm、2mm、8mm,孔距离12mm边的距离为2.5mm。以上对电极也存在于(FTO)玻璃基板。
仿生太阳能转换装置的构建:敏化的光阳极和镀铂的对电极,通过直径为7mm的激光切割Surlyn热封膜(预切割内孔尺寸7mm×7mm,厚25微米,购自大连七色光科技DHS-SN1725-200)进行组装,中央形成密闭的空腔,二者错开便于夹电夹。 将液体电解质溶液(自己配置,将0.5M的LiI,0.05M I2,0.3M DMPII,0.5M的4-TBP和0.1M GNCS共同溶于乙腈,褐色透明液体)大约2微升注入此空腔,毛细原理,电解液会扩散至整个TiO2电极。用封膜(购自大连七色光科技DHS-SN1725-200,DSC密封用薄膜,规格为厚度25微米)封住对电极的小孔,夹上电夹,而后立立即进行测量。
仿生太阳能转换装置的参数测量:在标准光照条件下(100mW/cm-2),使用I-V太阳能电池测试系统(颐光CrownTech,美国)对太阳能电池的光伏特性进行了测试,包括短路电流,开路电压,填充因子和转换效率(参见表1)。
表10h时,嗜热蓝藻2134和室温蓝藻6803敏化太阳能电池的最大太阳能电池参数。
Figure PCTCN2015080861-appb-000001
实施例3:
组装之后的电池热稳定性测试:热处理设置为55℃处理8h、65℃处理8h-120h。电池静置放于密闭容器中,于容器内加少量水,使得电池处于饱和蒸汽中,减少组装后的电池的电解液的挥发(每次测量时,发现电解液挥发需要补充电解液至能充斥到整个0.36cm2大小的敏化面积)。
组装后但未热处理之前的10h时间记为-10h,热处理之后的取样时间点设置为0h、0.667h,2h,3h,5h,8h,13h,21h,36h,44h,50h,77h,103h,120h,每次使用I-V太阳能电池测试系统(颐光CrownTech,美国)对太阳能电池的光伏特性进行了测试,包括短路电流,开路电压,填充因子和转换效率,汇总结果(参见图3,右)显示了随着热处理的时间增长,电池性能逐渐降低的趋势。
为了显示该嗜热蛋白复合物作为敏化剂的染料敏化太阳能电池的性能,设置了对照——来自嗜温蓝藻、交联处理的完整藻胆体敏化的太阳能电池,对其光伏特性进行了测试,包括短路电流,开路电压,填充因子和转换效率,汇总嗜温蓝藻6803的结 果(参见图3,下)显示了随着热处理的时间增长,电池性能逐渐降低的趋势。而且比来自嗜热蓝藻2134(参见图3,上)、交联处理的完整藻胆体敏化的太阳能电池性能逐渐降低的速度快。
汇总、对比分别来自嗜热蓝藻2134(参见图2上)和嗜温蓝藻6803(参见图2下)、交联处理的完整藻胆体敏化的太阳能电池光伏特性测试数据:显示,电池组装后,随着热处理时间的增长,二者的I-V特性曲线逐渐向I、V都缩小的趋势下改变;且嗜温蓝藻的改变的速度更快(参见图2下)测量后将电池放入原容器,继续热处理。收集之后的测量数据,评价组装后的电池的热稳定程度。
实施例4:
与实施例1不同之处在于:天然完整藻胆体提取之后,接着进行化学交联分子改造的步骤是:
之后在玻璃小试管中,加入25%的戊二醛至终浓度为0.2%,化学交联20min;之后用30KDa的Millipore超滤管,逐次加入与蛋白等体积的不含戊二醛的缓冲液B(缓冲液B成分为50mM的Tris-HCl,PH 8.0),每次在10℃下2000g离心6min,经过不少于7次超滤处理后,将含有戊二醛的高浓度磷酸盐缓冲液A逐渐更换为不含戊二醛的低盐缓冲液B。
此步骤的目的是:为了获得交联处理过的来自嗜热蓝藻的藻胆体,保持藻胆体完整性的同时,使得敏化剂处于低盐缓冲液中,抽真空干燥后不至于形成磷酸盐沉淀,覆盖在敏化剂的表面,影响电池性能。
所得电极在光照条件下可直接完成太阳能到电能的转化,即可作为太阳能电池或光学传感器的电极使用。
实施例5
与实施例2不同之处在于:阳极电极制备后,于马弗炉中在350℃(日本Yamato公司,Since 1889型号马弗炉)下加热30分钟,然后冷却至50℃,二氧化钛阳极电极浸泡在上述实施例1分离获得的热稳定的、来自嗜热蓝藻的完整藻胆体(1.7mg.mL-1,未交联的),PH为7.0的0.75mol.L-1的磷酸盐缓冲液溶液中,于室温下在黑暗中吸附24小时。吸附后,用0.75mol.L-1的磷酸盐缓冲液漂洗敏化后的光阳极,除去不牢固的吸附,然后在室温下抽真空干燥。
用该敏化之后的阳极电极,进行仿生太阳能转换装置的构建以及参数测量。
为了验证该热稳定的敏化剂组装的染料敏化太阳能电池的性能,设置了对照——来自嗜温蓝藻的完整藻胆体(1.7mg.mL-1,未交联的)作为敏化剂组装的染料敏化太阳能电池,对其光伏特性进行了测试,并对结果进行了比较。比较结果显示:2134藻胆体单独敏化太阳能电池的最高电池参数效率依次是(表1,编号2);6803藻胆体单独敏化太阳能电池的最高电池参数依次是(表1,编号1)。2134比6803的者填充因子和效率分别要高20.5%、58.9%;除了填充因子和效率之外的其他参数,二者 差别不是很大。
实施例6
与实施例2不同之处在于:阳极电极制备后,于马弗炉中在350℃(日本Yamato公司,Since 1889型号马弗炉)下加热30分钟,然后冷却至50℃,二氧化钛阳极电极浸泡在上述实施例1分离获得的热稳定的、来自嗜热蓝藻的完整藻胆体(1.7mg.mL-1,未交联的)的0.75mol.L-1的磷酸盐缓冲液(PH 7.0),溶液中加入终浓度为2mg.mL-1的Chlorin e6粉末(购自Frontier Scientific公司,纯度>95%)混合均匀,于室温下在黑暗中吸附24小时。吸附后,用0.75mol.L-1的磷酸盐缓冲液漂洗敏化后的光阳极,除去不牢固的吸附,然后在室温下抽真空干燥。得到藻胆体耦合Chlorin e6敏化的光阳极。
用该敏化之后的阳极电极,进行仿生太阳能转换装置的构建以及参数测量。
为了验证该热稳定的藻胆体耦合Chlorin e6作为敏化剂的染料敏化太阳能电池的性能,设置了对照——来自嗜温蓝藻的完整藻胆体(1.7mg.mL-1,未交联的)耦合2mg.mL-1的Chlorin e6作为敏化剂的染料敏化太阳能电池,对其光伏特性进行了测试,并对结果进行了比较。比较结果显示:耦合Chlorin e6的嗜温蓝藻6803藻胆体(表1,编号3)的短路电流比嗜热蓝藻2134藻胆体(表1,编号4)的短路电流要高,并且6803藻胆体单独敏化电池的短路电流比2134藻胆体的短路电流要高,印证了二者形状差异决定了组装之后的电池的性质。耦合色素后的电池整体性能大幅提升。两种藻胆体耦合chlorin e6之后,最大的电池传递效率提高到0.22%,仍低于(于道永,2010)的0.47%。原因可能是采用的光敏电极的材料不同。2134比6803的填充因子要高0.1%,唯一区别的是吸附的蛋白分子数目不同,导致的电阻差异。

Claims (10)

  1. 一种热稳定的光学敏化材料,其特征在于:光学敏化材料为嗜热蓝藻天然提取的完整藻胆体。
  2. 按权利要求1所述的热稳定的光学敏化材料进行分子改造,其特征在于:所述光学敏化材料为交联处理后、置换于低盐缓冲液中的嗜热蓝藻的完整藻胆体。
  3. 按权利要求2所述的交联处理后的嗜热蓝藻的完整藻胆体,其特征在于:所述将从嗜热蓝藻中提取的完整藻胆体加入至含有不同浓度交联剂和蔗糖的密度梯度溶液C上层,200000-239000g超速离心0.67-1h,收集0.6M-0.75M蔗糖密度层之间的蓝色溶液;蓝色溶液用缓冲液A反复超滤,得纯化的交联处理过的藻胆体,交联后的藻胆体加入至配置的蔗糖密度梯度上层超速离心分离纯化,得到在低盐缓冲液的条件下仍旧保持完整并且没有交联过度为多个分子的完整藻胆体。
  4. 按权利要求3所述的热稳定的光学敏化材料,其特征在于:
    所述含有不同浓度交联剂和蔗糖的密度梯度溶液C是由用缓冲液A,依次配置的含0-0.25%的交联剂和0.15M-1.5M的蔗糖的溶液;
    所述缓冲液B成分为50mM的Tris-HCl,PH 8.0;
    所述缓冲液A成分为0.75mol.L-1磷酸氢二钠-磷酸二氢钾缓冲液,含10mmol.L-1EDTA·Na2,pH 7.0。
  5. 按权利要求1或2所述的交联处理后的嗜热蓝藻的完整藻胆体,其特征在于:所述嗜热蓝藻的完整藻胆体:将培养至对数生长后期的嗜热蓝藻的藻体培养液离心得到天然藻体,按照每克藻体湿重加入3.33-5.00ml的缓冲液将藻体重悬,重悬后加入100mmol.L-1的PMSF至终浓度为1.0-2.0mmol.L-1;藻体重悬液破碎,获得藻体细胞蓝色匀浆;之后向匀浆中加入体积分数20%(v/v)的Triton X-100至终浓度为体积分数2%-3%(v/v),再加入100mmol.L-1浓度的PMSF至终浓度为1.0-2.0mmol.L-1,轻微摇晃的条件下,溶膜30-40min;然后离心收集中间的蓝色水溶性液体,而后取蓝色水溶性液体约1ml,小心的添加到事先铺设的15%-45%的连续蔗糖密度梯度的上层,超速离心后在约0.5M-0.75M蔗糖密度层之间收集的深蓝色层,深蓝色层溶液经浓缩后用缓冲液A对浓缩后蛋白反复超滤,即为天然完整的藻胆体。
  6. 一种权利要求1所述的光学敏化材料的应用,其特征在于:以嗜热蓝藻天然提取的完整藻胆体作为光学敏化材料。
  7. 一种权利要求6所述的光学敏化材料的应用,其特征在于:以热稳定的、交联处理过的来自嗜热蓝藻的完整藻胆体作为光学敏化材料。
  8. 按权利要求6或7所述的光学敏化材料的应用,其特征在于:以嗜热蓝藻藻胆体或交联处理后的嗜热蓝藻藻胆体作为吸附在半导体光阳极表面的敏化剂。
  9. 按权利要求8所述的光学敏化材料的应用,其特征在于:所述交联处理过的 嗜热蓝藻的完整藻胆体分子,通过静电力吸附和氢键相互作用于半导体光阳极表面,形成定向或非定向、单层或多层吸附层的电极,吸附有完整藻胆体层的电极在光照条件下完成太阳能到电能的转化。
  10. 按权利要求8所述的光学敏化材料的应用,其特征在于:所述吸附有热稳定的、交联处理过的来自嗜热蓝藻的完整藻胆体层的电极,可作为太阳能电池或光学传感器的电极使用。
PCT/CN2015/080861 2014-09-16 2015-06-05 一种热稳定的光学敏化材料及其应用 WO2016041383A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410471450.9A CN104240959B (zh) 2014-09-16 2014-09-16 一种热稳定的光学敏化材料及其应用
CN201410471450.9 2014-09-16

Publications (1)

Publication Number Publication Date
WO2016041383A1 true WO2016041383A1 (zh) 2016-03-24

Family

ID=52228853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/080861 WO2016041383A1 (zh) 2014-09-16 2015-06-05 一种热稳定的光学敏化材料及其应用

Country Status (3)

Country Link
CN (1) CN104240959B (zh)
LU (1) LU93017B1 (zh)
WO (1) WO2016041383A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112014366A (zh) * 2020-08-11 2020-12-01 国联汽车动力电池研究院有限责任公司 一种鉴定正极材料稳定性的方法
CN114878289A (zh) * 2022-07-12 2022-08-09 北京大学 一种耐低温低盐的蓝藻藻胆体样品的制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104240959B (zh) * 2014-09-16 2017-04-12 中国科学院烟台海岸带研究所 一种热稳定的光学敏化材料及其应用
CN105742069A (zh) * 2016-02-24 2016-07-06 中国石油大学(华东) 一种基因重组藻蓝胆素作为光学敏化材料及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201708038U (zh) * 2010-06-13 2011-01-12 曾日辉 染料敏化太阳能电池
CN104240959A (zh) * 2014-09-16 2014-12-24 中国科学院烟台海岸带研究所 一种热稳定的光学敏化材料及其应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103680971B (zh) * 2012-09-07 2016-12-21 中国科学院烟台海岸带研究所 一种定向重组别藻蓝蛋白三聚体作为光学敏化材料的应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201708038U (zh) * 2010-06-13 2011-01-12 曾日辉 染料敏化太阳能电池
CN104240959A (zh) * 2014-09-16 2014-12-24 中国科学院烟台海岸带研究所 一种热稳定的光学敏化材料及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LU , RONGZHAO ET AL.: "Fluorescence Emission and Energy Transfer of Phycobilisomes from Thermophilic Cyanobacterium Mastigocladus Laminosus During Dissociation", BIOPHYSICS REPORTS, vol. 12, no. 3, 30 September 1996 (1996-09-30), pages 494 - 495, ISSN: 1000-6737 *
YU , DAOYONG ET AL.: "Phycobilisomes Coupled Chlorin e6 Sensitized Solar Cells", JOURNAL OF TAIYUAN UNIVERSITY OF TECHNOLOGY, VOL., vol. 41, no. 5, 30 September 2010 (2010-09-30), pages 496 - 497, ISSN: 1007-9432 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112014366A (zh) * 2020-08-11 2020-12-01 国联汽车动力电池研究院有限责任公司 一种鉴定正极材料稳定性的方法
CN112014366B (zh) * 2020-08-11 2024-01-02 国联汽车动力电池研究院有限责任公司 一种鉴定正极材料稳定性的方法
CN114878289A (zh) * 2022-07-12 2022-08-09 北京大学 一种耐低温低盐的蓝藻藻胆体样品的制备方法
CN114878289B (zh) * 2022-07-12 2022-09-27 北京大学 一种耐低温低盐的蓝藻藻胆体样品的制备方法

Also Published As

Publication number Publication date
CN104240959B (zh) 2017-04-12
LU93017B1 (en) 2016-08-07
CN104240959A (zh) 2014-12-24

Similar Documents

Publication Publication Date Title
Musazade et al. Biohybrid solar cells: Fundamentals, progress, and challenges
Yu et al. Enhanced photocurrent production by bio-dyes of photosynthetic macromolecules on designed TiO2 film
Koo et al. Aqueous soft matter based photovoltaic devices
WO2016041383A1 (zh) 一种热稳定的光学敏化材料及其应用
Mansa et al. Hibiscus flower extract as a natural dye sensitiser for a dye-sensitised solar cell
Yu et al. Photocurrent activity of light-harvesting complex II isolated from spinach and its pigments in dye-sensitized TiO2 solar cell
Arof et al. Chlorophyll as photosensitizer in dye-sensitized solar cells
CN103824697A (zh) 一种染料敏化太阳能电池光阳极活性膜及其制备方法
Woronowicz et al. Near‐IR Absorbing Solar Cell Sensitized With Bacterial Photosynthetic Membranes
Orona-Navar et al. Dye sensitized solar cell (DSSC) by using a natural pigment from microalgae
CN103680971B (zh) 一种定向重组别藻蓝蛋白三聚体作为光学敏化材料的应用
Kanekar et al. A novel approach for the development of bio-sensitized solar cell using cell lysate of a haloarchaeon Halostagnicola larsenii RG2. 14 (MCC 2809) containing bacteriorhodopsin
Bhuiyan et al. Effect of Combination of Natural Dyes and the Blocking Layer on the Performance of DSSC
Huang et al. Green carbon dots based ultraviolet photovoltaic window with high transparence to visible light
CN105374939A (zh) 一种钙钛矿型太阳能电池及其制备方法
Han et al. A high efficiency dye-sensitized solar cell with a UV-cured polymer gel electrolyte and a nano-gel electrolyte double layer
CN105742069A (zh) 一种基因重组藻蓝胆素作为光学敏化材料及其应用
He et al. High efficient perovskite solar cells enhancement via photosystem I proteins
Enciso et al. Phycocyanin as potential natural dye for its use in photovoltaic cells
CN106847518B (zh) 一种染料敏化太阳能电池光阳极及其制备方法
CN105869894B (zh) 一种能在白天和夜晚发电的全天候染料敏化太阳能电池及其制备方法和应用
CN102760585A (zh) 一种设有外加磁场的染料敏化太阳能电池及其制备方法
KR101082987B1 (ko) 염료감응형 태양전지의 제조 방법
Widhiyanuriyawan et al. Zwitterion Effect of Cow Brain Protein towards Efficiency Improvement of Dye‐Sensitized Solar Cell (DSSC)
CN206076058U (zh) 一种电子点和钌染料复合敏化的太阳能电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15841212

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15841212

Country of ref document: EP

Kind code of ref document: A1