WO2016041205A1 - 一种wlan系统中全双工通信的方法及装置 - Google Patents

一种wlan系统中全双工通信的方法及装置 Download PDF

Info

Publication number
WO2016041205A1
WO2016041205A1 PCT/CN2014/086959 CN2014086959W WO2016041205A1 WO 2016041205 A1 WO2016041205 A1 WO 2016041205A1 CN 2014086959 W CN2014086959 W CN 2014086959W WO 2016041205 A1 WO2016041205 A1 WO 2016041205A1
Authority
WO
WIPO (PCT)
Prior art keywords
station
data frame
transmission
sent
scheduling information
Prior art date
Application number
PCT/CN2014/086959
Other languages
English (en)
French (fr)
Inventor
刘晟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP14901975.4A priority Critical patent/EP3188429B1/en
Priority to CN201480081529.9A priority patent/CN106605394B/zh
Priority to PCT/CN2014/086959 priority patent/WO2016041205A1/zh
Publication of WO2016041205A1 publication Critical patent/WO2016041205A1/zh
Priority to US15/462,129 priority patent/US10237049B2/en
Priority to US16/277,509 priority patent/US10880068B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • H04W74/0816Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA carrier sensing with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a method and apparatus for full duplex communication in a WLAN system.
  • the existing Wireless Local Access Network (WLAN) standard based on Orthogonal Frequency Division Multiplexing (OFDM) technology is composed of gradually evolved versions of 802.11a, 802.11n, and 802.11ac.
  • the existing WLAN system is also a half-duplex system at the wireless transmission level, that is, any communication node including an access point (AP) and a station (Station for short) at any time, and cannot simultaneously perform data. Send and receive.
  • High Efficiency WLAN High Efficiency WLAN
  • MU-MIMO Multi-user MIMO
  • OFDMA Orthogonal Frequency Division Multiple Access
  • the full-duplex technology allows users in different transmission directions of uplink and downlink to transmit simultaneously on the same wireless channel.
  • the communication node needs to perform self-interference channel detection before starting communication.
  • Embodiments of the present invention provide a method and apparatus for full duplex communication in a WLAN system, which are used to solve The problem of full duplex communication in WLAN systems.
  • a communication device which is disposed in an access point AP device in a wireless local area network, and the device includes:
  • a channel competition unit for obtaining the right to use the channel
  • a scheduling information determining unit configured to determine scheduling information for a station participating in full-duplex transmission after obtaining channel usage rights, where the scheduling information includes information of a first station that performs uplink transmission on the channel, and simultaneously in the Information of the second station performing downlink transmission on the channel, or the scheduling information includes information of the third station that performs uplink and downlink transmission simultaneously on the channel;
  • a transmission unit configured to send the scheduling information.
  • the transmission unit is further configured to:
  • the downlink data frame is sent to the second station or the third station, where the downlink data frame includes a traditional preamble;
  • the traditional preamble in the downlink data frame of the second station and the traditional preamble of the uplink data frame sent by the first station are simultaneously sent on the channel and the content is the same; or, for the third
  • the traditional preamble in the downlink data frame of the station and the traditional preamble of the uplink data frame sent by the third station are simultaneously transmitted on the channel and the content is the same.
  • the traditional preamble includes a rate field and a length field, and the values of the rate field and the length field are satisfied.
  • the length of the reception duration RXTIME calculated from the values of the rate field and the length field is not less than the duration of the full duplex transmission including the response frame.
  • the scheduling information further includes the first The transmission time duration or upper limit of the uplink data frame of the station or the third station; or the transmission time duration or upper limit of the downlink data frame of the second station or the third station.
  • the transmission time of the uplink data frame sent by the first station or the third station is continued to be long.
  • the scheduling information further includes: the first station or the first part is greater than the transmission time duration of the downlink data frame sent by the access point AP, and the absolute value of the difference between the two is greater than the short inter-frame interval SIFS.
  • the transmission unit is further configured to:
  • the transmission time duration of the downlink data frame sent by the AP to the second station or the third station If the value of the uplink data frame transmission time sent by the first station or the third station is greater than the SIFS, the scheduling information further includes:
  • the transmission unit is further configured to:
  • the measuring unit is further included:
  • the measuring unit is configured to perform measurement of the self-interference channel when the transmitting unit sends the trigger frame.
  • the information of the first site, the The information of the second site or the information of the third site is specifically:
  • the identity of a single site the address of a single site, the group identity, or the group address.
  • the scheduling information further includes information about resource allocation of uplink multi-user multiple input multiple input MU-MIMO or uplink orthogonal frequency division multiple access OFDMA; or
  • the scheduling information includes downlink multi-user multiple input multiple output MU-MIMO or downlink orthogonal frequency division multiple access OFDMA resource allocation. information.
  • an access point AP device comprising the communication device of the first aspect or any one of the first to eighth possible implementations of the first aspect.
  • a communication device which is disposed in a STA in a wireless local area network, and the device includes:
  • a receiving unit configured to receive scheduling information sent by the access point AP
  • a scheduling information acquiring unit configured to parse the scheduling information, where the scheduling information includes information of a first station that performs uplink transmission on the channel, and information of a second station that performs downlink transmission on the channel at the same time, Or the scheduling information includes information of a third station that performs uplink and downlink transmission simultaneously on the channel;
  • a transmitting unit configured to transmit data according to the scheduling information when the station STA where the communication device is located is the first station, the second station, or the third station.
  • the transmitting unit is specifically configured to:
  • the uplink data frame is sent after waiting for the SIFS, the traditional preamble of the uplink data frame, and the AP
  • the traditional preamble of the downlink data frame sent by the second station is simultaneously sent and the content is the same; or
  • the STA where the communication device is located is the third station
  • the uplink data frame is immediately sent, and the traditional preamble of the uplink data frame and the AP are The traditional preamble of the downlink data frame sent by the third station is the same.
  • the traditional preamble includes a rate field and a length field, and the rate field and the length are The value of the degree field satisfies: the length of the reception duration RXTIME calculated from the values of the rate field and the length field is not less than the duration of the full duplex transmission including the response frame.
  • the scheduling information further includes the first The transmission time duration or upper limit of the uplink data frame of the station or the third station; or the transmission time duration or upper limit of the downlink data frame of the second station or the third station.
  • the uplink data frame transmission time sent by the first station or the third station is longer than the AP sending
  • the downlink data frame transmission time duration is long, and the absolute value of the difference between the two is greater than the SIFS
  • the scheduling information further includes:
  • the transmission unit is further configured to:
  • the STA where the communication device is located is the first station or the third station, after the interruption of the uplink data frame transmission, the uplink data frame is stopped, and after the interruption time lasts for a long time, Resume sending the uplink data frame.
  • the downlink data frame transmission time that is sent by the AP is longer than the first station or the third station
  • the uplink data frame transmission time duration is long, and the absolute value of the difference between the two is greater than the SIFS
  • the scheduling information further includes:
  • the transmission unit is further configured to:
  • the second station or the third station stops receiving the downlink data frame sent by the AP at the transmission interruption position of the downlink data frame sent by the AP, and passes the interruption time. After the duration of the length, the downlink data frame sent by the AP is resumed.
  • the measuring unit further includes:
  • the measuring unit is configured to perform measurement of the self-interference channel within a transmission length of the traditional preamble after receiving the trigger frame.
  • a station STA apparatus comprising the communication apparatus of any one of the first to sixth aspects of the third aspect or the third aspect.
  • a fifth aspect provides a method for full-duplex communication in a WLAN system, which is applied to an access point AP in a wireless local area network, where the method includes:
  • the access point AP obtains the right to use the channel
  • the AP determines scheduling information for the station STA participating in the full-duplex transmission, where the scheduling information includes information of the first station that performs uplink transmission on the channel, and simultaneously performs on the channel.
  • Information of the second station downlink transmission, or the scheduling information includes information of a third station that performs uplink and downlink transmission simultaneously on the channel;
  • the AP sends the scheduling information.
  • the method further includes:
  • the AP After the triggering frame is sent and waits for the SIFS, the AP sends a downlink data frame for the second station or the third station, where the downlink data frame includes a traditional preamble;
  • the traditional preamble in the downlink data frame of the second station and the traditional preamble of the uplink data frame sent by the first station are simultaneously sent on the channel and the content is the same; or, for the third
  • the traditional preamble in the downlink data frame of the station and the traditional preamble of the uplink data frame sent by the third station are simultaneously transmitted on the channel and the content is the same.
  • the traditional preamble includes a rate field and a length field, and the values of the rate field and the length field are satisfied.
  • the length of the reception duration RXTIME calculated according to the values of the rate field and the length field is not less than the duration of the full duplex transmission including the response frame.
  • the scheduling information further includes the first The duration or upper limit of the transmission time of the uplink data frame of the station or the third station; or, the pin The transmission time duration or upper limit of the downlink data frame of the second station or the third station.
  • the transmission time of the uplink data frame sent by the first station or the third station is longer than the access point
  • the transmission time duration of the downlink data frame sent by the AP is longer than the short inter-frame interval SIFS
  • the scheduling information further includes: the uplink data of the first station or the third station The interrupt position during the frame transmission and the duration of the interruption time;
  • the method further includes:
  • the scheduling information further includes:
  • the method further includes:
  • the method further includes:
  • the measurement of the self-interference channel is performed.
  • the information of the second site or the information of the third site of the third site is specifically:
  • the identity of a single site the address of a single site, the group identity, or the group address.
  • the scheduling information further includes information about resource allocation of uplink multi-user multiple input multiple input MU-MIMO or uplink orthogonal frequency division multiple access OFDMA; or
  • the scheduling information includes downlink multi-user multiple input multiple output MU-MIMO or downlink orthogonal frequency division multiple access OFDMA resource allocation. information.
  • a sixth aspect provides a method for full duplex communication in a WLAN system, which is applied to a station STA in a wireless local area network, and the method includes:
  • the scheduling information includes information of a first station that performs uplink transmission on the channel, and information of a second station that performs downlink transmission on the channel at the same time, or the scheduling information includes Information of a third station that performs uplink and downlink transmission simultaneously on the channel;
  • the first station, the second station, or the third station transmits data according to the scheduling information.
  • the transmitting data according to the scheduling information includes:
  • the first station waits for the SIFS, and then sends an uplink data frame, the traditional preamble of the uplink data frame, and the downlink sent by the AP to the second station.
  • the traditional preamble of the data frame is sent simultaneously and the content is the same; or,
  • the third station After the triggering frame of the downlink information frame is received, the third station immediately sends an uplink data frame, and the traditional preamble of the uplink data frame and the traditional preamble of the downlink data frame sent by the AP for the third station the same.
  • the traditional preamble includes a rate field and a length field, and the values of the rate field and the length field are satisfied.
  • the length of the reception duration RXTIME calculated according to the values of the rate field and the length field is not less than the duration of the full duplex transmission including the response frame.
  • the scheduling information further includes the first The transmission time duration or upper limit of the uplink data frame of the station or the third station; or the transmission time duration or upper limit of the downlink data frame of the second station or the third station.
  • the uplink data frame transmission time sent by the first station or the third station is longer than the AP sending
  • the downlink data frame transmission time duration is long, and the absolute value of the difference between the two is greater than the SIFS
  • the scheduling information further includes:
  • the transmitting data according to the scheduling information further includes:
  • the first station or the third station stops transmitting the uplink data frame during the interruption of the uplink data frame transmission, and resumes transmitting the uplink data frame after the interruption time lasts for a long time.
  • the downlink data frame transmission time duration sent by the AP is greater than that sent by the first station or the third station.
  • the uplink data frame transmission time duration is long, and the absolute value of the difference between the two is greater than the SIFS, and the scheduling information further includes:
  • the transmitting the data according to the scheduling information further includes:
  • the second station or the third station stops receiving the downlink data frame sent by the AP in the transmission interruption position of the downlink data frame sent by the AP, and resumes receiving the downlink data frame after the duration of the interruption time The downlink data frame sent by the AP.
  • the method further includes:
  • the first station, the second station, or the third station performs measurement of the self-interference channel within a transmission length of the conventional preamble.
  • the seventh aspect provides a network side device, including: a transceiver, a processor, and a memory;
  • the memory is configured to store one or more executable programs, which are used to configure the processor
  • the processor is configured to obtain a usage right of a channel, and configured to determine scheduling information for a station participating in full-duplex transmission after obtaining a channel usage right, where the scheduling information includes a first uplink transmission on the channel.
  • a transceiver for transmitting the scheduling information.
  • the transceiver is further configured to:
  • the downlink data frame is sent to the second station or the third station, where the downlink data frame includes a traditional preamble;
  • the traditional preamble in the downlink data frame of the second station and the traditional preamble of the uplink data frame sent by the first station are simultaneously sent on the channel and the content is the same; or, for the third
  • the traditional preamble in the downlink data frame of the station and the traditional preamble of the uplink data frame sent by the third station are simultaneously transmitted on the channel and the content is the same.
  • the traditional preamble includes a rate field and a length field, and the values of the rate field and the length field are satisfied.
  • the length of the reception duration RXTIME calculated from the values of the rate field and the length field is not less than the duration of the full duplex transmission including the response frame.
  • the scheduling information further includes the first The transmission time duration or upper limit of the uplink data frame of the station or the third station; or the transmission time duration or upper limit of the downlink data frame of the second station or the third station.
  • the transmission time of the uplink data frame sent by the first station or the third station is longer than the access point
  • the transmission time duration of the downlink data frame sent by the AP and the difference between the two
  • the scheduling information further includes: an interruption position of the first station or the third station in the uplink data frame transmission process, and an interruption time duration length, where the absolute value is greater than the short inter-frame interval SIFS;
  • the transceiver is also used to:
  • the scheduling information further includes:
  • the transceiver is also used to:
  • the processor is used to:
  • the measurement of the self-interference channel is performed when the trigger frame is transmitted.
  • the information of the second site or the information of the third site is specifically:
  • the identity of a single site the address of a single site, the group identity, or the group address.
  • the scheduling information further includes information about resource allocation of uplink multi-user multiple input multiple input MU-MIMO or uplink orthogonal frequency division multiple access OFDMA; or
  • the scheduling information includes downlink multi-user multiple input multiple output MU-MIMO or downlink orthogonal frequency division multiple access OFDMA resource allocation. information.
  • an access point AP device comprising the communication device of any one of the first to eighth aspects of the seventh aspect or the seventh aspect.
  • a ninth aspect provides a user equipment, including: a transceiver, a processor, and a memory;
  • the memory is configured to store one or more executable programs, which are used to configure the processor
  • the transceiver is configured to receive scheduling information sent by an access point AP;
  • the processor is configured to parse the scheduling information, where the scheduling information includes information of a first station that performs uplink transmission on the channel, and information of a second station that performs downlink transmission on the channel at the same time, Or the scheduling information includes information of a third station that performs uplink and downlink transmission simultaneously on the channel;
  • the transceiver is configured to transmit data according to the scheduling information when the station STA where the communication device is located is the first station, the second station, or the third station.
  • the transceiver is specifically configured to:
  • the uplink data frame is sent after waiting for the SIFS, the traditional preamble of the uplink data frame, and the AP
  • the traditional preamble of the downlink data frame sent by the second station is simultaneously sent and the content is the same; or
  • the STA where the communication device is located is the third station
  • the uplink data frame is immediately sent, and the traditional preamble of the uplink data frame and the AP are The traditional preamble of the downlink data frame sent by the third station is the same.
  • the traditional preamble includes a rate field and a length field, and the values of the rate field and the length field are satisfied.
  • the length of the reception duration RXTIME calculated from the values of the rate field and the length field is not less than the duration of the full duplex transmission including the response frame.
  • the scheduling information further includes the first The transmission time duration or upper limit of the uplink data frame of the station or the third station; or the transmission time duration or upper limit of the downlink data frame of the second station or the third station.
  • the uplink data frame transmission time sent by the first station or the third station is longer than the AP sending
  • the downlink data frame transmission time duration is long, and the absolute value of the difference between the two is greater than the SIFS
  • the scheduling information further includes:
  • the transceiver is also used to:
  • the STA where the communication device is located is the first station or the third station, after the interruption of the uplink data frame transmission, the uplink data frame is stopped, and after the interruption time lasts for a long time, Resume sending the uplink data frame.
  • the downlink data frame transmission time that is sent by the AP is longer than the first station or the third station
  • the uplink data frame transmission time duration is long, and the absolute value of the difference between the two is greater than the SIFS
  • the scheduling information further includes:
  • the transceiver is also used to:
  • the second station or the third station stops receiving the downlink data frame sent by the AP at the transmission interruption position of the downlink data frame sent by the AP, and passes the interruption time. After the duration of the length, the downlink data frame sent by the AP is resumed.
  • the processor is further configured to:
  • the measurement of the self-interference channel is performed within the transmission length of the conventional preamble.
  • a station STA apparatus comprising the communication apparatus of any one of the first to sixth aspects of the ninth aspect or the ninth aspect.
  • the scheduling information is determined, and the STA participating in the full-duplex transmission is scheduled. Since the scheduling information includes the transmission direction of the STA, full-duplex communication between the AP and the STA can be implemented in the WLAN system.
  • FIG. 1 is a flowchart of a method for full duplex communication in a WLAN system according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a multi-node full-duplex communication process
  • 3 is a schematic diagram of a physical layer grouping structure of 802.11ax
  • FIG. 4 is a schematic structural diagram of an L-SIG field in a conventional preamble
  • FIG. 5 is a flowchart of a method for full duplex communication in another WLAN system according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of multi-node full-duplex transmission
  • FIG. 7 is a schematic diagram of a first single-node full-duplex transmission process according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a second single-node full-duplex transmission process according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a third single-node full-duplex transmission process according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a fourth single-node full-duplex transmission process according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a first dual-node full-duplex transmission process according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a second dual-node full-duplex transmission process according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a third dual-node full-duplex transmission process according to an embodiment of the present invention.
  • FIG. 14 is a structural diagram of a communication apparatus according to an embodiment of the present invention.
  • FIG. 15 is a structural diagram of another communication device according to an embodiment of the present invention.
  • FIG. 16 is a structural diagram of a network side device according to an embodiment of the present disclosure.
  • FIG. 17 is a structural diagram of a user equipment according to an embodiment of the present invention.
  • the STA does not directly contend for the channel, but after the channel obtains the channel usage right, the AP uses a certain scheduling algorithm to centrally schedule and control each STA to perform uplink, downlink, or simultaneous uplink and downlink transmission, including allowing multiple.
  • STAs of the same transmission direction are simultaneously unidirectionally transmitted by means of MU-MIMO and/or OFDMA, that is, the AP simultaneously transmits downlink signals to multiple STAs, or simultaneously receives uplink signals from multiple STAs; and allows multiple different transmissions.
  • the STAs in the direction transmit uplink and downlink simultaneously in full-duplex mode or in combination with MU-MIMO and/or OFDMA, that is, the AP simultaneously transmits downlink signals to multiple STAs, and simultaneously receives uplink signals from multiple STAs.
  • the STA that performs the uplink transmission of the full duplex transmission is simply referred to as the “uplink STA”
  • the STA that participates in the downlink reception of the full duplex transmission is simply referred to as “downlink STA”
  • an STA that supports full duplex transmission may be referred to as “downlink STA”.
  • it is both an uplink STA and a downlink STA, it is called a full-duplex STA.
  • the AP and the multiple STAs can only transmit uplink or downlink data frames in one direction at the same time, and cannot perform uplink and downlink dual-direction transmission at the same time.
  • Full duplex technology In full-duplex technology, a full-duplex communication node can simultaneously perform uplink and downlink transmissions on the same wireless channel. In order to eliminate the strong self-interference of the transmitted signal in the full-duplex communication node to the received signal, the self-interference cancellation operation needs to be performed on the receiver unit such as the antenna, the medium-frequency radio, and the baseband. For this reason, the full-duplex communication node needs to be effective for the self-interference channel. Detection. In the embodiment of the present invention, the AP may perform measurement of the self-interference channel when the trigger frame is sent.
  • the AP has the information of the downlink data volume to be received by the STAs in the downlink direction, and at the same time, the STA actively reports, or the AP checks. After the STA is reported, the AP can obtain the information about the amount of uplink data to be sent by the STAs in the uplink direction. In addition, the AP can obtain the uplink and downlink between the AP and each STA through self-measurement and STA measurement and reporting. Information of the channel, such as channel state information, signal to interference and noise ratio (SINR), and the like. Therefore, based on the above information AP, a plurality of STAs can be scheduled to perform multi-user transmission in a suitable manner such as full-duplex, MU-MIMO, and OFDMA.
  • SINR signal to interference and noise ratio
  • a flowchart of a method for full-duplex communication in a WLAN system is applied to an access point AP in a wireless local area network, and the method includes:
  • Step 101 The access point AP obtains the right to use the channel.
  • the AP may obtain the right to use the channel through channel competition.
  • the AP may obtain the use rights of the channel by using technologies existing in protocols such as 802.11a, 802.11n, and 802.11ac, such as the RTS/CTS (Request To Send/Clear To Send) process or the CTS. -to-Self (issued to your own CTS) and other processes to obtain the right to use the channel.
  • 802.11a, 802.11n, and 802.11ac such as the RTS/CTS (Request To Send/Clear To Send) process or the CTS. -to-Self (issued to your own CTS) and other processes to obtain the right to use the channel.
  • the AP first sends an RTS frame, where the receiving address RA field is set to the address of the STA participating in the full-duplex transmission, and the transmitting address TA field is set to its own address, after the STA responds to the CTS.
  • the AP obtains the channel usage right.
  • the AP may transmit a CTS-to-Self frame with a larger power, where the receiving address RA field is set to the AP's own address, and the time duration length field is set to a value greater than or equal to CTS-to-Self to the end of the response frame.
  • the full-duplex transmission time duration where the response frame is an ACK (Acknowledgement) frame or a BA (Block Acknowledgement) frame, so that the STAs within the AP coverage can receive the CTS-to-Self.
  • the frame is no longer attempting to contend for the channel for the duration of the time, thereby ensuring that the AP obtains channel usage rights for the duration of the time.
  • Step 102 After obtaining the channel usage right, the AP determines scheduling information for the station STA participating in the full-duplex transmission, where the scheduling information includes the first station that performs uplink transmission on the channel. Information and information of a second station that performs downlink transmission on the channel at the same time, or the scheduling information includes information of a third station that performs uplink and downlink transmission simultaneously on the channel;
  • Full duplex in this embodiment refers to the same communication resource used for uplink and downlink transmission at the same time.
  • the embodiment of the present invention can be used in two full-duplex modes, one is a single-node full-duplex transmission mode, that is, only the AP supports full-duplex communication, and the STA still adopts a half-duplex mode, that is, at least one STA receives from the AP.
  • the downlink signal, at least one STA transmits an uplink signal to the AP, as shown in (a) and (b) of FIG.
  • an STA that performs uplink transmission only on a channel is referred to as a first station, and an STA that performs downlink transmission simultaneously on the same channel is referred to as a second station (the first station and the second station are The aforementioned half-duplex mode site).
  • the other mode is a multi-node full-duplex transmission mode, that is, the AP and at least one STA use full-duplex transmission; of course, in addition to the STA with full-duplex function, the AP is allowed to simultaneously with at least one half-duplex.
  • the downlink STA performs downlink transmission, as shown in (c) and (d) of FIG. 2 .
  • an STA that performs uplink and downlink transmission simultaneously on a channel is referred to as a third station (a third station, that is, a STA having a full duplex function).
  • Step 103 The AP sends the scheduling information.
  • step 104 the AP and the first station and the second station, or the AP and the third station complete full-duplex transmission according to the scheduling information.
  • the scheduling information in the foregoing steps 102-104 may include other information.
  • the AP acts as the sender, so it is always possible to determine the length of the downlink data frame to be transmitted to the second station or the third station.
  • the AP can determine the modulation and coding scheme used when the first station or the third station transmits the uplink data frame and the amount of data transmitted by them in the uplink, so that it can be completely determined that each of the first station or the third station is to be The length of the transmitted upstream data frame.
  • the AP may include the uplink data frame transmission time duration of each uplink first station or the third station in the scheduling information, or the STA with the largest uplink data frame transmission time duration in the first station or the third station.
  • the AP cannot accurately determine the modulation and coding scheme used when the first station or the third station transmits the uplink data frame and the amount of data transmitted by the uplink station, and therefore cannot completely determine the uplink first station or the first station. Three sites will be sent The length of the upstream data frame.
  • the AP may include an upper limit of the duration of the uplink data frame transmission time in the scheduling information, and all the first stations or the third station cannot exceed the upper limit when transmitting the uplink data frame.
  • the data transmission time duration is typically in units of milliseconds (ms), microseconds ( ⁇ s), or the like, or in units of OFDM symbol length.
  • all STA data can be sent or received by The AP controls and schedules, and can avoid the waste of resources caused by the addition of useless padding bits.
  • the AP may preferentially set the absolute value of the difference between the duration of the uplink data frame and the duration of the downlink data frame in the SIFS (Short Inter-frame Space).
  • Site scheduling is transmitted in one scheduling cycle.
  • STA1 needs to send an uplink data frame
  • STA2 needs to receive a downlink data frame.
  • STA1's uplink data frame time duration is longer than STA2's downlink data frame time duration, and the difference is smaller than SIFS time.
  • the AP schedules STA1 and STA2 in one scheduling. In the cycle.
  • step 104 after STA2 receives the downlink data frame, STA1 is still transmitting the uplink data frame, and STA2 sends the response frame to the AP after waiting for the SIFS time. Since STA1 has already sent the uplink data frame, STA2 sends The response frame does not collide with the uplink data frame of STA1. At the same time, the AP waits for the SIFS time after receiving the uplink data frame of STA1, and then sends the response frame to STA1. At this time, STA2 has already received the downlink data frame, so the AP sends The response frame does not conflict with the downlink data frame of STA2.
  • the first signaling field of the uplink data frame HEW preamble of the first station or the third station carries The length information of the uplink data frame of the first station or the third station. Therefore, after first receiving the first signaling field of the uplink data frame HEW preamble sent by the first station or the third station, the AP can accurately know the first The length of the uplink data frame of the first station or the third station, and simultaneously transmitting data with the first station or the third station by selecting an appropriate downlink data frame length, so that the uplink data frame of the AP is compared with the first station or the third station.
  • Downstream data frame has approximation
  • the length that is, the length difference between the uplink and downlink data frames is in a SIFS time range, and carries the length information of the downlink data frame through the second signaling field of the subsequent downlink data frame HEW preamble, thereby ensuring the second station or the third station.
  • the downlink data frame is received accordingly.
  • the transmission time duration of the uplink data frame sent by the first station or the third station is longer than the transmission time of the downlink data frame sent by the access point AP.
  • the length, and the absolute value of the difference between the two is greater than the short inter-frame interval SIFS, where the scheduling information further includes: the interruption position and the interruption time of the first station or the third station during the uplink data frame transmission process. Length of duration.
  • the interruption position is for interrupting the transmission of the uplink data frame by the first station or the third station that is transmitting the uplink data frame according to the time or time point indicated by the interruption position.
  • the setting principle of the interrupt location is generally the SIFS time after the downlink data frame transmission of the AP ends.
  • the position of the interruption time is not less than the duration of the response frame.
  • STA1 needs to send an uplink data frame
  • STA2 needs to receive a downlink data frame.
  • STA1's uplink data frame time duration is longer than STA2's downlink data frame time duration, and the difference is greater than SIFS time.
  • the AP schedules STA1 and STA2 in one scheduling. In the cycle. After STA2 receives the downlink data frame, STA1 is still transmitting the uplink data frame. In order not to interfere with the response frame sent by STA2, STA1 will interrupt the uplink data frame transmission at the interrupt position in the scheduling information, and use the uplink channel. Hand over to STA2 to send a response frame. After STA2 sends the response frame, STA1 resumes the transmission of the uplink data frame.
  • the scheduling information further includes: an interruption position of the AP during the downlink data frame transmission and a duration of the interruption time.
  • the AP interrupts the downlink data frame transmission of the AP at the interruption position of the uplink data frame of the AP, and sends a response frame to the AP.
  • the STA corresponding to the uplink data frame is the position where the SIFS time passes after the downlink data frame transmission of the AP ends, and the duration of the interruption time is not less than the duration of the response frame. In this way, the downlink STA can suspend the receiving operation of the AP downlink data frame at the interrupt position indicated by the AP, and resume receiving the remaining portion of the downlink data frame from the AP at the end of the interrupt.
  • step 104 of the foregoing embodiments by interrupting the transmission of the uplink data frame of the first station or the third station, or interrupting the transmission of the downlink data frame of the AP, it is unnecessary to add unnecessary use because the lengths of the uplink and downlink data frames of the sender and the receiver are inconsistent.
  • the padding bits are used to align the upstream and downstream data frames, causing a waste of resources.
  • various embodiments may also implement multi-user shared channel usage rights. If the total number of the first station and the third station is greater than 2, the scheduling information further includes uplink multi-user multiple input and multiple MU-MIMO, or the uplink is positive. The information about the resource allocation of the frequency division multiple access OFDMA; or, wherein the total amount of the second station and the third station is greater than 2, the scheduling information further includes downlink multi-user multiple input multiple output MU-MIMO, Or, information about resource allocation of downlink orthogonal frequency division multiple access OFDMA.
  • the scheduling information may be carried in a trigger frame or may be carried in physical layer signaling of a subsequent downlink data frame.
  • step 103 after obtaining the channel usage right and waiting for the SIFS time, the AP sends scheduling information to the STAs participating in the full duplex transmission.
  • the scheduling information may be sent through a trigger frame.
  • the various information of the above embodiments may take various possible configurations.
  • the triggering frame may send scheduling information to the STA participating in the full-duplex transmission by using physical layer signaling, that is, in the triggering frame preamble, for example, the first or second signaling field, sending scheduling information; or, using the MAC control frame
  • the mode sends scheduling information to STAs participating in full-duplex transmission, that is, sends a MAC control frame including scheduling information in a data field of a trigger frame.
  • the physical layer signaling field usually adopts a lower-order Modulation and Coding Scheme (MCS), such as MCS0 in WLAN, that is, Binary Phase Shift Keying (BPSK) modulation.
  • MCS Modulation and Coding Scheme
  • the STA can decode correctly.
  • the corresponding data field may also be transmitted using a lower order MCS, such as MCS0.
  • FIG. 3 shows a physical layer packet structure of a wireless local area network, which can be applied to 802.11ax.
  • the 802.11ax packet consists of a Legacy Preamble, an 802.11ax packet-specific HEW (High Efficiency WLAN) preamble, and a data field.
  • the traditional preamble is a field of all OFDM-based WLAN protocol packets, and has a length of 20 ⁇ s, including a traditional short training field (L-STF) and a legacy long training field (Legacy Long Training field).
  • L-LTF traditional short training field
  • L-SIG Legacy Signal Field
  • the HEW preamble which may also be referred to as an HE preamble, is hereinafter referred to as a HEW preamble, and is a specific control field of the 802.11ax packet, and may include at least a first signaling field, a training field, and a second signaling field, where the first The signaling field and the second signaling field are used to transmit physical layer signaling, the training field is used for automatic gain control, a reference signal is provided for channel estimation, and the like, and the data field is used to transmit a MAC layer data unit.
  • the contents of the L-STF and L-LTF fields in the conventional preamble are fixed, and the structure of the L-SIG field is as shown in FIG. 4, including a rate field of 4 bits, a reserved bit of 1 bit, and a length field of 12 bits. , 1 bit check digit and 6 bits tail bit.
  • the rate field and the length field are control information mainly carried by the L-SIG, and the check bits and the tail bits are generated according to the contents of the rate, reserved bit and length fields in the L-SIG channel coding process.
  • the length field is the amount of data in units of octets, and the rate field indicates one of the eight rates defined in the 802.11a protocol.
  • a WLAN node if a WLAN node can receive the preamble of a physical layer packet but cannot correctly receive the subsequent field of the legacy preamble, the node will calculate a name in ⁇ s according to the content of the L-SIG rate and length fields.
  • the length information of the uplink data frame in the full-duplex transmission process is carried in the HEW preamble of the uplink data frame, and the full-duplex transmission process is carried in the HEW preamble of the downlink data frame.
  • the length information of the downlink data frame is carried by the first signaling field of the uplink data frame HEW preamble, and the downlink data frame length information is carried by the second signaling field of the downlink data frame HEW preamble.
  • step 104 at the beginning of the full duplex data transmission, all nodes participating in the full duplex transmission will transmit the same legacy preamble.
  • the AP sends a downlink data frame for the second station after the trigger frame is sent and waits for the SIFS, where the downlink data frame includes a traditional preamble;
  • the traditional preamble in the downlink data frame of the second station and the traditional preamble of the uplink data frame sent by the first station are simultaneously transmitted on the channel and the content is the same.
  • the AP sends a downlink data frame for the third station after the trigger frame transmission ends and waits for the SIFS, where the downlink data frame includes a traditional preamble, where The traditional preamble in the downlink data frame of the three stations and the traditional preamble of the uplink data frame sent by the third station are simultaneously transmitted on the channel and the content is the same.
  • the content of the rate field of the traditional preamble is "1101" (indicating rate is 6 Mbps), and the content of the length field should ensure the length of RXTIME calculated according to the rate of 6 Mbps, at least not less than the full duplex transmission including the response frame. The duration of the process lasts.
  • a flowchart of a method for full-duplex communication in another WLAN system includes:
  • Step 601 The station STA receives the scheduling information sent by the access point AP.
  • Step 602 The STA obtains scheduling information, where the scheduling information includes information of a first station that performs uplink transmission on the channel, and information of a second station that performs downlink transmission on the channel at the same time, or The scheduling information includes information of a third station that performs uplink and downlink transmission simultaneously on the channel;
  • the scheduling information may be carried in the trigger frame.
  • the STA may obtain the scheduling information by demodulating the HEW preamble of the trigger frame or the data field of the trigger frame.
  • the information of the first site, the information of the second site, or the information of the third site of the third site is specifically: an identifier of a single site, an address of a single site, a group identifier, or a group address.
  • the STA determines whether it participates in full-duplex transmission through the scheduling information, and participates in full-duplex transmission only when it participates in uplink transmission or downlink transmission only, or simultaneous uplink and downlink transmission (ie, transmission direction in full-duplex transmission).
  • Step 603 The STA transmits data according to the scheduling information.
  • each scheduled STA After receiving the scheduling information carried in the trigger frame, each scheduled STA starts to perform full-duplex data transmission according to the transmission direction of the full-duplex transmission indicated by the AP, or further according to the duration of the uplink data frame transmission time.
  • the first station In a single-node full-duplex transmission, the first station is a traditional half-duplex STA. After receiving the downlink trigger frame of the AP, the first station needs to wait for the SIFS time to change from receiving to transmitting. However, in multi-node full-duplex transmission, both the AP and the third station support full-duplex operation, so the third station does not need to wait for the SIFS time when switching between data transmission and reception, and the third station receives the AP from the AP.
  • the triggering frame for performing full-duplex transmission that is, after the trigger frame ends, the uplink data frame can be started to be sent. Accordingly, after transmitting the trigger frame, the AP can start receiving the uplink data frame from the third station. .
  • the AP does not immediately initiate the transmission of the downlink data frame, but delays the transmission of the downlink data frame after a period of time ⁇ T.
  • ⁇ T is not less than the transmission time length of the conventional preamble, that is, ⁇ T ⁇ 20 ⁇ s. In this way, during this delay time, the STA can perform estimation of the self-interference channel and is not interfered by the downlink signal of the AP.
  • step 601 For other contents of step 601, step 601 and step 603, reference may be made to the foregoing description of steps 102-104, and specific implementations of these steps will not be repeated herein.
  • FIG. 6 is a schematic diagram of multi-node full-duplex transmission.
  • STA2 can receive signals from AP and STA1. Therefore, STA2 can receive STA1 first.
  • the traditional preamble of the transmitted uplink data frame packet (the subsequent field cannot be received because the AP starts to transmit the downlink data frame and interferes with each other); if STA3 can receive the signal of STA1 but cannot receive the signal of the AP, STA3 can receive at least The traditional preamble in the uplink data frame packet from STA1; if STA4 can receive the signal of the AP but cannot receive the signal of STA1, the uplink data frame packet sent by STA1 first does not interfere with STA4 to group the downlink data frame from the AP.
  • the solution of the embodiment of the present invention can enable other nodes to receive the traditional preamble of the data packet sent by the AP or the STA, thereby obtaining the correct RXTIME value and attempting to receive or transmit data after delaying the RXTIME time, thereby effectively avoiding Hidden nodes may cause interference to full-duplex transmissions.
  • FIG. 7 is a schematic diagram of a first single-node full-duplex transmission process according to an embodiment of the present invention, where STA1 is a first station, and STA2 is a second station.
  • the uplink data frame length of STA1 is smaller than the downlink data frame length of the AP, and the difference is smaller than the SIFS time.
  • the AP first obtains the right to use the channel through the channel competition, and then initiates a full-duplex transmission process by sending a trigger frame.
  • the scheduling information at this time includes at least the identifier or address of the STA participating in the full-duplex transmission, and the participating full-duplex transmission The transmission direction of the STA.
  • the AP performs the estimation of the self-interference channel. Since the AP has obtained the right to use the channel, other nodes will not attempt to contend for the channel during this period, so the self-interference channel measurement in the prior art may not occur. The problem of being disturbed by hidden nodes. After sending the trigger frame and waiting for the SIFS time, the AP sends the same traditional preamble to the STA participating in the full-duplex transmission.
  • STA1 sends an uplink data frame to the AP, and the AP sends a downlink data frame to STA2.
  • STA2 After STA1 sends the uplink data frame, STA2 is still receiving the data sent by the AP.
  • the AP sends the response frame to STA1. Since the AP has already sent the uplink data frame, the response frame sent by the AP does not.
  • the STA2 conflicts with the downlink data frame of STA2.
  • STA2 sends the response frame to the AP after receiving the data sent by the AP and waits for the SIFS time. At this time, the AP has received the data sent by STA1, so the response frame sent by STA2 does not. It conflicts with the uplink data frame of STA1.
  • FIG. 8 is a schematic diagram of a second single-node full-duplex transmission process according to an embodiment of the present invention.
  • STA1 and STA3 are the first sites
  • STA2 and STA4 are the second sites.
  • the uplink data frame length of the STA1 is smaller than the downlink data frame length of the AP, and the difference is smaller than the SIFS time.
  • the uplink data frame length of the STA3 is smaller than the downlink data frame length of the AP, and the difference is smaller than the SIFS time.
  • the AP first obtains the right to use the channel through the channel competition, and then initiates a full-duplex transmission process by sending a trigger frame.
  • the scheduling information at this time includes at least the identifier or address of the STA participating in the full-duplex transmission, and the participating full-duplex transmission.
  • the AP performs the estimation of the self-interference channel. Since the AP has obtained the right to use the channel, other nodes will not attempt to contend for the channel during this period, so the self-interference channel measurement in the prior art may not occur. The problem of being disturbed by hidden nodes. After sending the trigger frame and waiting for the SIFS time, the AP sends the same traditional preamble to the STA participating in the full-duplex transmission.
  • STA1 and STA3 simultaneously send uplink data frames to the AP, and the AP sends downlink data frames to STA2 and STA4.
  • STA1 or STA3 sends the uplink data frame
  • STA2 or STA4 is still receiving the data sent by the AP.
  • the AP sends a response frame to STA1 or STA3. Since the AP has already sent the uplink data frame, the AP sends the data frame.
  • the response frame does not conflict with the downlink data frame of STA2 or STA4.
  • STA2 or STA4 sends the response frame to the AP after receiving the data sent by the AP and waits for the SIFS time.
  • the AP has already received STA1 or STA3. Data, so the response frame sent by STA2 or STA4 will not be on STA1 or STA3 Row data frames conflict.
  • FIG. 9 is a schematic diagram of a third single-node full-duplex transmission process according to an embodiment of the present invention.
  • STA1 is the first site
  • STA2 is the second site.
  • the uplink data frame length of the STA1 is smaller than the downlink data frame length of the AP, and the difference is greater than the SIFS time.
  • the AP first obtains the right to use the channel through the channel competition, and then initiates a full-duplex transmission process by sending a trigger frame.
  • the scheduling information at this time includes at least the identifier or address of the STA participating in the full-duplex transmission, and the participating full-duplex transmission The transmission direction of the STA, the interrupt position during the downlink data frame transmission of the AP, and the duration of the interruption time.
  • the AP performs the estimation of the self-interference channel. Since the AP has obtained the right to use the channel, other nodes will not attempt to contend for the channel during this period, so the self-interference channel measurement in the prior art may not occur. The problem of being disturbed by hidden nodes. After sending the trigger frame and waiting for the SIFS time, the AP sends the same traditional preamble to the STA participating in the full-duplex transmission.
  • STA1 sends an uplink data frame to the AP, and the AP sends a downlink data frame to STA2.
  • STA2 is still receiving the data sent by the AP.
  • the AP interrupts the transmission of the AP downlink data frame and sends the response frame to STA1.
  • the AP does not send the downlink data frame, STA2.
  • the interruption position of the AP downlink data frame in the scheduling information and the duration of the interruption time it can be determined that the AP will interrupt the transmission of the data at this time, so STA2 does not send the response frame to the AP after waiting for the SIFS time.
  • the AP continues to send downlink data frames to STA2 after the duration of the interruption time.
  • FIG. 10 is a schematic diagram of a fourth single-node full-duplex transmission process according to an embodiment of the present invention.
  • STA1 is the first site
  • STA2 is the second site.
  • the uplink data frame length of STA1 is greater than the downlink data frame length of the AP, and the difference is greater than the SIFS time.
  • the AP first obtains the right to use the channel through the channel competition, and then initiates a full-duplex transmission process by sending a trigger frame.
  • the scheduling information at this time includes at least the identifier or address of the STA participating in the full-duplex transmission, and the participating full-duplex transmission
  • the transmission direction of the STA, the interrupt position during the uplink data frame transmission of STA1, and the interrupt time The duration is between.
  • the AP performs the estimation of the self-interference channel. Since the AP has obtained the right to use the channel, other nodes will not attempt to contend for the channel during this period, so the self-interference channel measurement in the prior art may not occur. The problem of being disturbed by hidden nodes. After sending the trigger frame and waiting for the SIFS time, the AP sends the same traditional preamble to the STA participating in the full-duplex transmission.
  • STA1 sends an uplink data frame to the AP, and the AP sends a downlink data frame to STA2. After the AP sends the downlink data frame, STA1 still sends data to the AP.
  • STA1 waits for the SIFS time after the end of the downlink data frame of the AP according to the interruption position and the duration of the interruption time in the uplink data frame transmission process of STA1 in the scheduling information, and interrupts the transmission of the uplink data frame of STA1.
  • STA1 uplink data frame transmission interruption starts, STA2 sends a response frame to the AP. Since STA1 does not send the uplink data frame at this time, the AP does not send the response frame to STA1 within the duration of the interruption time.
  • STA1 continues to send uplink data frames to the AP after the end of the interruption time duration.
  • FIG. 11 is a schematic diagram of a first dual-node full-duplex transmission process according to an embodiment of the present invention.
  • STA is the third site.
  • the uplink data frame length of the STA is smaller than the downlink data frame length of the AP, and the difference is smaller than the SIFS time.
  • the AP first obtains the right to use the channel through the channel competition, and then initiates a full-duplex transmission process by sending a trigger frame.
  • the scheduling information at this time includes at least the identifier or address of the STA participating in the full-duplex transmission, and the participating full-duplex transmission The transmission direction of the STA.
  • the AP performs the estimation of the self-interference channel. Since the AP has obtained the right to use the channel, other nodes will not attempt to contend for the channel during this period, so the self-interference channel measurement in the prior art may not occur. The problem of being disturbed by hidden nodes.
  • the AP sends the trigger frame and waits for ⁇ T
  • the AP sends the traditional preamble field.
  • ⁇ T should be no less than the transmission time length of the conventional preamble field, that is, ⁇ T ⁇ 20 ⁇ s. In this way, during this delay time, the STA can perform estimation of the self-interference channel and is not interfered by the downlink signal of the AP.
  • the STA that participates in the full-duplex transmission does not have to wait for the SIFS time to send the uplink data frame to the AP. Instead, the upstream data frame can be sent immediately.
  • the AP starts to receive the uplink data frame from the STA.
  • the AP does not immediately initiate the transmission of the downlink data frame, but waits for at least the length of the traditional preamble transmission before starting to send the downlink data frame to the STA. In this way, during this time, the STA can perform estimation of the self-interference channel without being interfered by the AP downlink data frame.
  • the STA After the uplink data frame of the STA is sent, the STA is still receiving the data sent by the AP, and the AP sends the response frame to the STA after waiting for the SIFS time. Since the AP has already sent the uplink data frame, the AP does not affect the response frame. After the STA receives the data sent by the AP and waits for the SIFS time, it sends a response frame to the AP. At this time, the AP has already received the data sent by the STA, so the STA does not affect the transmission of the response frame.
  • FIG. 12 is a schematic diagram of a second dual-node full-duplex transmission process according to an embodiment of the present invention.
  • STA is the third site.
  • the uplink data frame length of the STA is smaller than the downlink data frame length of the AP, and the difference is greater than the SIFS time.
  • the AP first obtains the right to use the channel through the channel competition, and then initiates a full-duplex transmission process by sending a trigger frame.
  • the scheduling information at this time includes at least the identifier or address of the STA participating in the full-duplex transmission, and the participating full-duplex transmission.
  • the AP performs the estimation of the self-interference channel. Since the AP has obtained the right to use the channel, other nodes will not attempt to contend for the channel during this period, so the self-interference channel measurement in the prior art may not occur. The problem of being disturbed by hidden nodes.
  • the AP sends the trigger frame and waits for ⁇ T
  • the AP sends the traditional preamble field.
  • ⁇ T should be no less than the transmission time length of the conventional preamble field, that is, ⁇ T ⁇ 20 ⁇ s. In this way, during this delay time, the STA can perform estimation of the self-interference channel and is not interfered by the downlink signal of the AP.
  • the STA that participates in the full-duplex transmission does not have to wait for the SIFS time to send the uplink data frame to the AP, but can immediately send the uplink data frame.
  • the AP starts to receive the uplink data frame from the STA.
  • the AP does not immediately initiate the transmission of the downlink data frame, but waits for at least the length of the traditional preamble transmission before starting to send the downlink data frame to the STA. In this way, during this time, the STA can perform estimation of the self-interference channel without being interfered by the AP downlink data frame.
  • the STA After the uplink data frame of the STA is sent, the STA is still receiving the data sent by the AP. After the AP passes the SIFS time after the uplink data frame of the STA is sent, the AP interrupts the sending of the downlink data frame and sends the response frame to the STA. The AP does not affect the transmission of the response frame; at the same time, the STA already knows that the AP will interrupt the data transmission at this moment, so it will wait during the duration of the interruption time and will not send the response frame to the AP. After the interruption duration is over, the AP continues to send downlink data frames to the STA.
  • FIG. 13 is a schematic diagram of a third dual-node full-duplex transmission process according to an embodiment of the present invention.
  • STA is the third site.
  • the uplink data frame length of the STA is smaller than the downlink data frame length of the AP, and the difference is greater than the SIFS time.
  • the AP first obtains the right to use the channel through the channel competition, and then initiates a full-duplex transmission process by sending a trigger frame.
  • the scheduling information at this time includes at least the identifier or address of the STA participating in the full-duplex transmission, and the participating full-duplex transmission.
  • the AP performs the estimation of the self-interference channel. Since the AP has obtained the right to use the channel, other nodes will not attempt to contend for the channel during this period, so the self-interference channel measurement in the prior art may not occur. The problem of being disturbed by hidden nodes.
  • the AP sends the trigger frame and waits for ⁇ T
  • the AP sends the traditional preamble field.
  • ⁇ T should be no less than the transmission time length of the conventional preamble field, that is, ⁇ T ⁇ 20 ⁇ s. In this way, during this delay time, the STA can perform estimation of the self-interference channel and is not interfered by the downlink signal of the AP.
  • the STA that participates in the full-duplex transmission does not have to wait for the SIFS time to send the uplink data frame to the AP, but can immediately send the uplink data frame.
  • the AP starts to receive the uplink data frame from the STA.
  • the AP does not immediately initiate the transmission of the downlink data frame, but waits for at least the length of the traditional preamble transmission before starting to send the downlink data frame to the STA. In this way, during this time, the STA can perform estimation of the self-interference channel without being interfered by the AP downlink data frame.
  • the STA After the downlink data frame of the AP is sent, the STA also sends an uplink data frame to the AP.
  • the STA interrupts the transmission of the uplink data frame and sends the response frame to the AP according to the interruption position and the duration of the interruption time in the uplink data frame transmission process of the STA in the scheduling information.
  • the AP already knows the STA. At this point, the data transmission is interrupted, so it will wait during the duration of the interruption time and will not send an acknowledgment frame to the STA. After the interruption duration continues, the STA continues to send uplink data frames to the AP.
  • the embodiment of the present invention further provides a communication device based on the same inventive concept as the above method.
  • an embodiment of the present invention provides a communication device, which is disposed in an access point AP device in a wireless local area network, and the device includes:
  • a channel competition unit 1401, configured to obtain a right to use the channel
  • the scheduling information determining unit 1402 is configured to determine, after obtaining the channel usage right, scheduling information for the station participating in the full-duplex transmission, where the scheduling information includes information of the first station that performs uplink transmission on the channel, and simultaneously Decoding information of the second station that performs downlink transmission on the channel, or the scheduling information includes information of the third station that performs uplink and downlink transmission simultaneously on the channel;
  • the transmitting unit 1403 is configured to send the scheduling information.
  • the transmission unit 1403 is further configured to:
  • the downlink data frame is sent to the second station or the third station, where the downlink data frame includes a traditional preamble;
  • the traditional preamble in the downlink data frame of the second station and the traditional preamble of the uplink data frame sent by the first station are simultaneously sent on the channel and the content is the same; or, for the third
  • the traditional preamble in the downlink data frame of the station and the traditional preamble of the uplink data frame sent by the third station are simultaneously transmitted on the channel and the content is the same.
  • the traditional preamble includes a rate field and a length field, and the rate field and The value of the length field satisfies: the length of the reception duration RXTIME calculated from the values of the rate field and the length field is not less than the duration of the full duplex transmission including the response frame.
  • the scheduling information further includes a transmission time duration or an upper limit of the uplink data frame of the first station or the third station; or, the transmission time of the downlink data frame of the second station or the third station continues Length or upper limit.
  • the transmission time duration of the uplink data frame sent by the first station or the third station is longer than the transmission time duration of the downlink data frame sent by the access point AP, and the absolute value of the difference between the two is greater than The short inter-frame interval SIFS, the scheduling information further includes: an interruption position of the first station or the third station in the uplink data frame transmission process and a duration of the interruption time;
  • the transmission unit 1403 is further configured to:
  • the transmission time duration of the downlink data frame sent by the AP to the second station or the third station is greater than the duration of the uplink data frame transmission time sent by the first station or the third station, and the foregoing two
  • the scheduling information further includes:
  • the transmission unit 1403 is further configured to:
  • the measuring unit 1404 is further included:
  • the information of the first site, the information of the second site, or the information of the third site is specifically:
  • the identity of a single site the address of a single site, the group identity, or the group address.
  • the scheduling information further includes uplink multi-user multiple input multiple output MU-MIMO, or uplink orthogonal frequency division multiple access OFDMA Information about resource allocation; or,
  • the scheduling information includes downlink multi-user multiple input multiple output MU-MIMO or downlink orthogonal frequency division multiple access OFDMA resource allocation. information.
  • the embodiment of the present invention further provides a communication device based on the same inventive concept as the above method.
  • an embodiment of the present invention provides a communication device, which is disposed in a STA in a wireless local area network, and includes:
  • the receiving unit 1501 is configured to receive scheduling information sent by the access point AP.
  • the scheduling information acquiring unit 1502 is configured to parse the scheduling information, where the scheduling information includes information of a first station that performs uplink transmission on the channel, and information of a second station that performs downlink transmission on the channel at the same time. Or the scheduling information includes information of a third station that performs uplink and downlink transmission simultaneously on the channel;
  • the transmitting unit 1503 is configured to: when the station STA where the communication device is located is the first station, the second station, or the third station, transmit data according to the scheduling information.
  • the transmission unit 1503 is specifically configured to:
  • the uplink data frame is sent after waiting for the SIFS, the traditional preamble of the uplink data frame, and the AP
  • the traditional preamble of the downlink data frame sent by the second station is simultaneously sent and the content is the same; or
  • the STA where the communication device is located is the third station
  • the uplink data frame is immediately sent, and the traditional preamble of the uplink data frame and the AP are The traditional preamble of the downlink data frame sent by the third station is the same.
  • the traditional preamble includes a rate field and a length field, and the values of the rate field and the length field satisfy: the length of the reception duration RXTIME calculated according to the values of the rate field and the length field is not less than The duration of the full duplex transmission, including the response frame.
  • the scheduling information further includes a transmission time duration or an upper limit of the uplink data frame of the first station or the third station; or, the transmission time of the downlink data frame of the second station or the third station continues Length or upper limit.
  • the duration of the uplink data frame transmission time sent by the first station or the third station is greater than the duration of the downlink data frame transmission time sent by the AP, and the absolute value of the difference between the two is greater than the SIFS.
  • the scheduling information further includes:
  • the transmission unit 1503 is further configured to:
  • the STA where the communication device is located is the first station or the third station, after the interruption of the uplink data frame transmission, the uplink data frame is stopped, and after the interruption time lasts for a long time, Resume sending the uplink data frame.
  • the duration of the downlink data frame transmission time sent by the AP is greater than the duration of the uplink data frame transmission time sent by the first station or the third station, and the absolute value of the difference between the two is greater than SIFS.
  • the scheduling information further includes:
  • the transmission unit 1503 is further configured to:
  • the second station or the third station stops receiving the downlink data frame sent by the AP at the transmission interruption position of the downlink data frame sent by the AP, and passes the interruption time. After the duration of the length, the downlink data frame sent by the AP is resumed.
  • the measuring unit 1504 is further included:
  • the embodiment of the present invention further provides a network side device.
  • an embodiment of the present invention provides a network side device, including: a transceiver 1603, a processor 1601, and a memory 1602;
  • the memory 1602 is configured to store one or more executable programs, which are used to configure the location Processor
  • the processor 1601 is configured to obtain a usage right of a channel, and configured to determine scheduling information for a station participating in full-duplex transmission after obtaining a channel usage right, where the scheduling information includes an uplink transmission on the channel.
  • the transceiver 1603 is configured to send the scheduling information.
  • the transceiver 1603 is further configured to:
  • the downlink data frame is sent to the second station or the third station, where the downlink data frame includes a traditional preamble;
  • the traditional preamble in the downlink data frame of the second station and the traditional preamble of the uplink data frame sent by the first station are simultaneously sent on the channel and the content is the same; or, for the third
  • the traditional preamble in the downlink data frame of the station and the traditional preamble of the uplink data frame sent by the third station are simultaneously transmitted on the channel and the content is the same.
  • the traditional preamble includes a rate field and a length field, and the values of the rate field and the length field satisfy: the length of the reception duration RXTIME calculated according to the values of the rate field and the length field is not less than The duration of the full duplex transmission, including the response frame.
  • the scheduling information further includes a transmission time duration or an upper limit of the uplink data frame of the first station or the third station; or, the transmission time of the downlink data frame of the second station or the third station continues Length or upper limit.
  • the transmission time duration of the uplink data frame sent by the first station or the third station is longer than the transmission time duration of the downlink data frame sent by the access point AP, and the absolute value of the difference between the two is greater than The short inter-frame interval SIFS, the scheduling information further includes: an interruption position of the first station or the third station in the uplink data frame transmission process and a duration of the interruption time;
  • the transceiver 1603 is also used to:
  • the transmission time duration of the downlink data frame sent by the AP to the second station or the third station is greater than the duration of the uplink data frame transmission time sent by the first station or the third station, and the foregoing two
  • the scheduling information further includes:
  • the transceiver 1603 is also used to:
  • the processor 1601 is configured to:
  • the measurement of the self-interference channel is performed when the trigger frame is transmitted.
  • the information of the first site, the information of the second site, or the information of the third site is specifically:
  • the identity of a single site the address of a single site, the group identity, or the group address.
  • the scheduling information further includes uplink multi-user multiple input multiple output MU-MIMO, or uplink orthogonal frequency division multiple access OFDMA Information about resource allocation; or,
  • the scheduling information includes downlink multi-user multiple input multiple output MU-MIMO or downlink orthogonal frequency division multiple access OFDMA resource allocation. information.
  • the embodiment of the present invention further provides a user equipment based on the same inventive concept as the above method.
  • an embodiment of the present invention provides a user equipment, including: a transceiver 1703, a processor 1701, and a memory 1702;
  • the memory 1702 is configured to store one or more executable programs, and is used to configure the processor;
  • the transceiver 1703 is configured to receive scheduling information sent by an access point AP.
  • the processor 1701 is configured to parse the scheduling information, where the scheduling information includes information of a first station that performs uplink transmission on the channel, and information of a second station that performs downlink transmission on the channel at the same time. Or the scheduling information includes information of a third station that performs uplink and downlink transmission simultaneously on the channel;
  • the transceiver 1703 is configured to transmit data according to the scheduling information when the station STA where the communication device is located is the first station, the second station, or the third station.
  • the transceiver 1703 is specifically configured to:
  • the uplink data frame is sent after waiting for the SIFS, the traditional preamble of the uplink data frame, and the AP
  • the traditional preamble of the downlink data frame sent by the second station is simultaneously sent and the content is the same; or
  • the STA where the communication device is located is the third station
  • the uplink data frame is immediately sent, and the traditional preamble of the uplink data frame and the AP are The traditional preamble of the downlink data frame sent by the third station is the same.
  • the traditional preamble includes a rate field and a length field, and the values of the rate field and the length field satisfy: the length of the reception duration RXTIME calculated according to the values of the rate field and the length field is not less than The duration of the full duplex transmission, including the response frame.
  • the scheduling information further includes a transmission time duration or an upper limit of the uplink data frame of the first station or the third station; or, the transmission time of the downlink data frame of the second station or the third station continues Length or upper limit.
  • the duration of the uplink data frame transmission time sent by the first station or the third station is greater than the duration of the downlink data frame transmission time sent by the AP, and the absolute value of the difference between the two is greater than the SIFS.
  • the scheduling information further includes:
  • the transceiver 1703 is further configured to:
  • the uplink data is The interrupt position in the frame transmission process stops transmitting the uplink data frame, and after the interruption time lasts for a long period of time, resumes transmitting the uplink data frame.
  • the duration of the downlink data frame transmission time sent by the AP is greater than the duration of the uplink data frame transmission time sent by the first station or the third station, and the absolute value of the difference between the two is greater than SIFS.
  • the scheduling information further includes:
  • the transceiver 1703 is further configured to:
  • the second station or the third station stops receiving the downlink data frame sent by the AP at the transmission interruption position of the downlink data frame sent by the AP, and passes the interruption time. After the duration of the length, the downlink data frame sent by the AP is resumed.
  • the processor 1701 is further configured to:
  • the measurement of the self-interference channel is performed within the transmission length of the conventional preamble.
  • the scheduling information is determined, and the STA participating in the full-duplex transmission is scheduled. Since the scheduling information includes the transmission direction of the STA, full-duplex communication between the AP and the STA can be implemented in the WLAN system.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the device is implemented in a flow chart or Multiple processes and/or block diagrams The functions specified in one or more boxes.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Abstract

本发明公开了一种WLAN系统中全双工通信的方法,该方法包括:接入点AP获得信道的使用权;所述AP在获得信道使用权后,为参与全双工传输的站点STA确定调度信息,所述调度信息包括在所述信道上进行上行传输的第一站点的信息以及同时在所述信道上进行下行传输的第二站点的信息,或者,所述调度信息包括在所述信道上同时进行上行和下行传输的第三站点的信息;所述AP发送触发帧,所述触发帧中包括所述调度信息。

Description

一种WLAN系统中全双工通信的方法及装置 技术领域
本发明涉及无线通信技术领域,尤其涉及一种WLAN系统中全双工通信的方法及装置。
背景技术
现有基于正交频分复用(Orthogonal Frequency Division Multiplexing,简称OFDM)技术的无线局域网(Wireless local Access Network,简称WLAN)标准由逐步演进的802.11a、802.11n、802.11ac等版本组成。现有WLAN系统在无线传输层面还是一个半双工系统,即在任一时刻包括接入点(AccessPoint,简称AP)和站点(Station,简称STA)在内的任一通信节点,不能同时进行数据的发送和接收。
目前,IEEE802.11标准组织已经启动了称之为高效率无线局域网(High Efficiency WLAN,简称HEW)的新一代WLAN标准802.11ax的标准化工作,全双工技术作为其候选技术之一,与上行多用户多入多出(Multi-user MIMO,简称MU-MIMO)和正交频分多址(Orthogonal Frequency Division Multiple Access,简称OFDMA)一起,通过多用户传输方式,减小随机竞争,提高WLAN系统的频谱效率。其中,全双工技术允许上下行不同传输方向的用户,在相同的无线信道上同时进行传输。为了消除一个通信节点内发射信号对接收信号的自干扰,需要在天线、中射频、基带等接收机单元进行自干扰抵消操作,为此,该通信节点需要在开始通信之前进行自干扰信道检测。
目前尚未有WLAN系统中的有效的全双工通信解决方案。
发明内容
本发明实施例提供一种WLAN系统中全双工通信的方法及装置,用以解 决WLAN系统中全双工通信的问题。
第一方面,提供一种通信装置,设置于无线局域网中接入点AP装置,该装置包括:
信道竞争单元,用于获得信道的使用权;
调度信息确定单元,用于在获得信道使用权后,为参与全双工传输的站点确定调度信息,所述调度信息包括在所述信道上进行上行传输的第一站点的信息以及同时在所述信道上进行下行传输的第二站点的信息,或者,所述调度信息包括在所述信道上同时进行上行和下行传输的第三站点的信息;
传输单元,用于发送所述调度信息。
结合第一方面,在第一方面的第一种可能的实现方式中,所述传输单元还用于:
在所述调度信息所在的触发帧发送结束并等待SIFS后,发送针对所述第二站点或者所述第三站点的下行数据帧,所述下行数据帧分别包括传统前导;
其中,针对所述第二站点的所述下行数据帧中的传统前导与所述第一站点发送的上行数据帧的传统前导在所述信道上同时发送且内容相同;或者,针对所述第三站点的所述下行数据帧中的传统前导与所述第三站点发送的上行数据帧的传统前导在所述信道上同时发送且内容相同。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述传统前导中包括速率字段和长度字段,且所述速率字段和长度字段的值满足:根据所述速率字段和长度字段的值计算出的接收持续时间RXTIME的长度不小于包括应答帧在内的全双工传输的持续长度。
结合第一方面或者第一方面的第一种至第二种中的任意一种可能的实现方式,在第一方面的第三种可能的实现方式中,所述调度信息还包括所述第一站点或者第三站点的上行数据帧的传输时间持续长度或者上限;或者,针对所述第二站点或者第三站点下行数据帧的传输时间持续长度或者上限。
结合第一方面的第三种可能的实现方式,在第一方面的第四种可能的实现方式中,所述第一站点或者第三站点发送的上行数据帧的传输时间持续长 度大于接入点AP发送的下行数据帧的传输时间持续长度,且上述两者的差值的绝对值大于短帧间间隔SIFS,则所述调度信息中还包括:所述第一站点或者第三站点在上行数据帧传输过程中的中断位置以及中断时间持续长度;
所述传输单元还用于:
在所述第一站点或者第三站点在上行数据帧传输过程中的中断位置,停止接收所述第一站点或者第三站点发送的上行数据帧,并开始接收所述第二站点或者第三站点发送的应答帧,并经过所述中断时间持续长度的时间后,恢复接收所述第一站点或者第三站点发送的上行数据帧。
结合第一方面的第三种可能的实现方式,在第一方面的第五种可能的实现方式中,所述AP针对所述第二站点或者第三站点发送的下行数据帧的传输时间持续长度大于所述第一站点或者第三站点发送的上行数据帧传输时间持续长度,且上述两者的差值的绝对值大于SIFS,则所述调度信息中还包括:
所述AP在下行数据帧传输过程中的中断位置以及中断时间持续长度;
所述传输单元还用于:
在所述AP的下行数据帧的传输中断位置,停止所述下行数据帧传输,并开始发送应答帧给所述第一站点或者第三站点,并经过所述中断时间持续长度的时间后,恢复所述下行数据帧的发送。
结合第一方面或者第一方面的第一种至第五种中的任意一种可能的实现方式,在第一方面的第六种可能的实现方式中,还包括测量单元:
所述测量单元用于在所述传输单元在发送所述触发帧时,进行自干扰信道的测量。
结合第一方面或者第一方面的第一种至第六种中的任意一种可能的实现方式,在第一方面的第七种可能的实现方式中,所述第一站点的信息、所述第二站点的信息或者所述第三站点的信息具体为:
单个站点的标识,单个站点的地址,组标识,或者,组地址。
结合第一方面或者第一方面的第一种至第七种中的任意一种可能的实现方式,在第一方面的第八种可能的实现方式中,其中,所述第一站点和第三 站点的总量大于2时,所述调度信息中还包括上行多用户多入多出MU-MIMO,或者,上行正交频分多址OFDMA的资源分配的信息;或者,
其中,所述第二站点和第三站点的总量大于2时,所述调度信息中还包括下行多用户多入多出MU-MIMO,或者,下行正交频分多址OFDMA的资源分配的信息。
第二方面,提供一种接入点AP装置,包括第一方面或者第一方面的第一种至第八种中的任意一种可能的实现方式的通信装置。
第三方面,提供一种通信装置,设置于无线局域网中站点STA,该装置包括:
接收单元,用于接收接入点AP发送的调度信息;
调度信息获取单元,用于解析得到所述调度信息,所述调度信息包括在所述信道上进行上行传输的第一站点的信息以及同时在所述信道上进行下行传输的第二站点的信息,或者,所述调度信息包括在所述信道上同时进行上行和下行传输的第三站点的信息;
传输单元,用于所述通信装置所在的站点STA为所述第一站点、第二站点或者第三站点时,根据所述调度信息传输数据。
结合第三方面,在第三方面的第一种可能的实现方式中,所述传输单元具体用于:
在承载所述调度信息的触发帧接收结束后,如果所述通信装置所在的STA为所述第一站点,则等待SIFS后发送上行数据帧,所述上行数据帧的传统前导,与所述AP针对所述第二站点发送的下行数据帧的传统前导同时发送且内容相同;或者,
在承载所述调度信息的触发帧接收结束后,如果所述通信装置所在的STA为所述第三站点,则立即发送上行数据帧,所述上行数据帧的传统前导与所述AP针对所述第三站点发送的下行数据帧的传统前导相同。
结合第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,所述传统前导中包括速率字段和长度字段,且所述速率字段和长 度字段的值满足:根据所述速率字段和长度字段的值计算出的接收持续时间RXTIME的长度不小于包括应答帧在内的全双工传输的持续长度。
结合第三方面或者第三方面的第一种至第二种中的任意一种可能的实现方式,在第三方面的第三种可能的实现方式中,所述调度信息还包括所述第一站点或者第三站点的上行数据帧的传输时间持续长度或者上限;或者,针对所述第二站点或者第三站点下行数据帧的传输时间持续长度或者上限。
结合第三方面的第三种可能的实现方式,在第三方面的第四种可能的实现方式中,所述第一站点或者第三站点发送的上行数据帧传输时间持续长度大于所述AP发送的下行数据帧传输时间持续长度,且上述两者的差值的绝对值大于SIFS,则所述调度信息中还包括:
所述第一站点或者第三站点在上行数据帧传输过程中的中断位置以及中断时间持续长度;
所述传输单元还用于:
所述通信装置所在的STA为所述第一站点或者第三站点时,在上行数据帧传输过程中的中断位置,停止发送所述上行数据帧,并经过所述中断时间持续长度的时间后,恢复发送所述上行数据帧。
结合第三方面的第三种可能的实现方式,在第三方面的第五种可能的实现方式中,所述AP发送的下行数据帧传输时间持续长度大于所述第一站点或者第三站点发送的上行数据帧传输时间持续长度,且上述两者的差值的绝对值大于SIFS,则所述调度信息中还包括:
所述AP在下行数据帧传输过程中的中断位置以及中断时间持续长度;
所述传输单元还用于:
所述通信装置所在的STA为所述第二站点或者第三站点时,在所述AP发送的下行数据帧的传输中断位置,停止接收所述AP发送的下行数据帧,并经过所述中断时间持续长度的时间后,恢复接收所述AP发送的下行数据帧。
结合第三方面或者第三方面的第一种至第五种中的任意一种可能的实现方式,在第三方面的第六种可能的实现方式中,还包括测量单元:
所述测量单元用于在接收完所述触发帧后,在传统前导的传输时间长度内进行自干扰信道的测量。
第四方面,提供一种站点STA装置,包括第三方面或者第三方面的第一种至第六种中的任意一种可能的实现方式的通信装置。
第五方面,提供一种WLAN系统中全双工通信的方法,应用于无线局域网中接入点AP,该方法包括:
接入点AP获得信道的使用权;
所述AP在获得信道使用权后,为参与全双工传输的站点STA确定调度信息,所述调度信息包括在所述信道上进行上行传输的第一站点的信息以及同时在所述信道上进行下行传输的第二站点的信息,或者,所述调度信息包括在所述信道上同时进行上行和下行传输的第三站点的信息;
所述AP发送所述调度信息。
结合第五方面,在第五方面的第一种可能的实现方式中,所述AP发送承载所述调度信息的触发帧之后,还包括:
所述AP在所述触发帧发送结束并等待SIFS后,发送针对所述第二站点或者所述第三站点的下行数据帧,所述下行数据帧分别包括传统前导;
其中,针对所述第二站点的所述下行数据帧中的传统前导与所述第一站点发送的上行数据帧的传统前导在所述信道上同时发送且内容相同;或者,针对所述第三站点的所述下行数据帧中的传统前导与所述第三站点发送的上行数据帧的传统前导在所述信道上同时发送且内容相同。
结合第五方面的第一种可能的实现方式,在第五方面的第二种可能的实现方式中,所述传统前导中包括速率字段和长度字段,且所述速率字段和长度字段的值满足:根据所述速率字段和长度字段的值计算出的接收持续时间RXTIME的长度不小于包括应答帧在内的全双工传输的时间持续长度。
结合第五方面或者第五方面的第一种至第二种中的任意一种可能的实现方式,在第五方面的第三种可能的实现方式中,所述调度信息还包括所述第一站点或者第三站点的上行数据帧的传输时间持续长度或者上限;或者,针 对所述第二站点或者第三站点下行数据帧的传输时间持续长度或者上限。
结合第五方面的第三种可能的实现方式,在第五方面的第四种可能的实现方式中,所述第一站点或者第三站点发送的上行数据帧的传输时间持续长度大于接入点AP发送的下行数据帧的传输时间持续长度,且上述两者的差值的绝对值大于短帧间间隔SIFS,则所述调度信息中还包括:所述第一站点或者第三站点在上行数据帧传输过程中的中断位置以及中断时间持续长度;
所述方法还包括:
在所述第一站点或者第三站点在上行数据帧传输过程中的中断位置,停止接收所述第一站点或者第三站点发送的上行数据帧,并开始接收所述第二站点或者第三站点发送的应答帧,并经过所述中断时间持续长度的时间后,恢复接收所述第一站点或者第三站点发送的上行数据帧。
结合第五方面的第三种可能的实现方式,在第五方面的第五种可能的实现方式中,所述AP针对所述第二站点或者第三站点发送的下行数据帧的传输时间持续长度大于所述第一站点或者第三站点发送的上行数据帧传输时间持续长度,且上述两者的差值的绝对值大于SIFS,则所述调度信息中还包括:
所述AP在下行数据帧传输过程中的中断位置以及中断时间持续长度;
所述方法还包括:
在所述AP的下行数据帧的传输中断位置,停止所述下行数据帧传输,并开始发送应答帧给所述第一站点或者第三站点,并经过所述中断时间持续长度的时间后,恢复所述下行数据帧的发送。
结合第五方面或者第五方面的第一种至第五种中的任意一种可能的实现方式,在第五方面的第六种可能的实现方式中,所述方法还包括:
在发送所述承载所述调度信息的触发帧时,进行自干扰信道的测量。
结合第五方面或者第五方面的第一种至第六种中的任意一种可能的实现方式,在第五方面的第七种可能的实现方式中,所述第一站点的信息、所述第二站点的信息或所述者第三站点的信息具体为:
单个站点的标识,单个站点的地址,组标识,或者,组地址。
结合第五方面或者第五方面的第一种至第七种中的任意一种可能的实现方式,在第五方面的第八种可能的实现方式中,其中,所述第一站点和第三站点的总量大于2时,所述调度信息中还包括上行多用户多入多出MU-MIMO,或者,上行正交频分多址OFDMA的资源分配的信息;或者,
其中,所述第二站点和第三站点的总量大于2时,所述调度信息中还包括下行多用户多入多出MU-MIMO,或者,下行正交频分多址OFDMA的资源分配的信息。
第六方面,提供一种WLAN系统中全双工通信的方法,应用于无线局域网中站点STA,该方法包括:
接收接入点AP发送的调度信息;
解析得到所述调度信息,所述调度信息包括在所述信道上进行上行传输的第一站点的信息以及同时在所述信道上进行下行传输的第二站点的信息,或者,所述调度信息包括在所述信道上同时进行上行和下行传输的第三站点的信息;
所述第一站点、第二站点或者第三站点根据所述调度信息传输数据。
结合第六方面,在第六方面的第一种可能的实现方式中,所述根据所述调度信息传输数据包括:
在所述承载所述调度信息的触发帧接收结束后,所述第一站点等待SIFS后发送上行数据帧,所述上行数据帧的传统前导,与所述AP针对所述第二站点发送的下行数据帧的传统前导同时发送且内容相同;或者,
在承载所述调度信息的触发帧接收结束后,所述第三站点立即发送上行数据帧,所述上行数据帧的传统前导与所述AP针对所述第三站点发送的下行数据帧的传统前导相同。
结合第六方面的第一种可能的实现方式,在第六方面的第二种可能的实现方式中,所述传统前导中包括速率字段和长度字段,且所述速率字段和长度字段的值满足:根据所述速率字段和长度字段的值计算出的接收持续时间RXTIME的长度不小于包括应答帧在内的全双工传输的时间持续长度。
结合第六方面或者第六方面的第一种至第二种中的任意一种可能的实现方式,在第三方面的第三种可能的实现方式中,所述调度信息还包括所述第一站点或者第三站点的上行数据帧的传输时间持续长度或者上限;或者,针对所述第二站点或者第三站点下行数据帧的传输时间持续长度或者上限。
结合第六方面的第三种可能的实现方式,在第六方面的第四种可能的实现方式中,所述第一站点或者第三站点发送的上行数据帧传输时间持续长度大于所述AP发送的下行数据帧传输时间持续长度,且上述两者的差值的绝对值大于SIFS,则所述调度信息中还包括:
所述第一站点或者第三站点在上行数据帧传输过程中的中断位置以及中断时间持续长度;
所述根据所述调度信息传输数据,还包括:
所述第一站点或者第三站点在上行数据帧传输过程中的中断位置,停止发送所述上行数据帧,并经过所述中断时间持续长度的时间后,恢复发送所述上行数据帧。
结合第六方面的第三种可能的实现方式,在第六方面的第五种可能的实现方式中,所述AP发送的下行数据帧传输时间持续长度大于所述第一站点或者第三站点发送的上行数据帧传输时间持续长度,且上述两者的差值的绝对值大于SIFS,则所述调度信息中还包括:
所述AP在下行数据帧传输过程中的中断位置以及中断时间持续长度;
所述根据所述调度信息传输数据还包括:
所述第二站点或者第三站点在所述AP发送的下行数据帧的传输中断位置,停止接收所述AP发送的下行数据帧,并经过所述中断时间持续长度的时间后,恢复接收所述AP发送的下行数据帧。
结合第六方面或者第六方面的第一种至第五种中的任意一种可能的实现方式,在第六方面的第六种可能的实现方式中,所述方法还包括:
所述第一站点、第二站点或者第三站点在传统前导的传输时间长度内进行自干扰信道的测量。
第七方面,提供一种网络侧设备,包括:收发信机、处理器、存储器;
所述存储器,用于存储一个或多个可执行程序,被用于配置所述处理器;
所述处理器,用于获得信道的使用权;用于在获得信道使用权后,为参与全双工传输的站点确定调度信息,所述调度信息包括在所述信道上进行上行传输的第一站点的信息以及同时在所述信道上进行下行传输的第二站点的信息,或者,所述调度信息包括在所述信道上同时进行上行和下行传输的第三站点的信息;
收发信机,用于发送所述调度信息。
结合第七方面,在第七方面的第一种可能的实现方式中,所述收发信机还用于:
在所述调度信息所在的触发帧发送结束并等待SIFS后,发送针对所述第二站点或者所述第三站点的下行数据帧,所述下行数据帧分别包括传统前导;
其中,针对所述第二站点的所述下行数据帧中的传统前导与所述第一站点发送的上行数据帧的传统前导在所述信道上同时发送且内容相同;或者,针对所述第三站点的所述下行数据帧中的传统前导与所述第三站点发送的上行数据帧的传统前导在所述信道上同时发送且内容相同。
结合第七方面的第一种可能的实现方式,在第七方面的第二种可能的实现方式中,所述传统前导中包括速率字段和长度字段,且所述速率字段和长度字段的值满足:根据所述速率字段和长度字段的值计算出的接收持续时间RXTIME的长度不小于包括应答帧在内的全双工传输的持续长度。
结合第七方面或者第七方面的第一种至第二种中的任意一种可能的实现方式,在第七方面的第三种可能的实现方式中,所述调度信息还包括所述第一站点或者第三站点的上行数据帧的传输时间持续长度或者上限;或者,针对所述第二站点或者第三站点下行数据帧的传输时间持续长度或者上限。
结合第七方面的第三种可能的实现方式,在第七方面的第四种可能的实现方式中,所述第一站点或者第三站点发送的上行数据帧的传输时间持续长度大于接入点AP发送的下行数据帧的传输时间持续长度,且上述两者的差值 的绝对值大于短帧间间隔SIFS,则所述调度信息中还包括:所述第一站点或者第三站点在上行数据帧传输过程中的中断位置以及中断时间持续长度;
所述收发信机还用于:
在所述第一站点或者第三站点在上行数据帧传输过程中的中断位置,停止接收所述第一站点或者第三站点发送的上行数据帧,并开始接收所述第二站点或者第三站点发送的应答帧,并经过所述中断时间持续长度的时间后,恢复接收所述第一站点或者第三站点发送的上行数据帧。
结合第七方面的第三种可能的实现方式,在第七方面的第五种可能的实现方式中,所述AP针对所述第二站点或者第三站点发送的下行数据帧的传输时间持续长度大于所述第一站点或者第三站点发送的上行数据帧传输时间持续长度,且上述两者的差值的绝对值大于SIFS,则所述调度信息中还包括:
所述AP在下行数据帧传输过程中的中断位置以及中断时间持续长度;
所述收发信机还用于:
在所述AP的下行数据帧的传输中断位置,停止所述下行数据帧传输,并开始发送应答帧给所述第一站点或者第三站点,并经过所述中断时间持续长度的时间后,恢复所述下行数据帧的发送。
结合第七方面或者第七方面的第一种至第五种中的任意一种可能的实现方式,在第七方面的第六种可能的实现方式中,所述处理器用于:
在发送所述触发帧时,进行自干扰信道的测量。
结合第七方面或者第七方面的第一种至第六种中的任意一种可能的实现方式,在第七方面的第七种可能的实现方式中,所述第一站点的信息、所述第二站点的信息或者所述第三站点的信息具体为:
单个站点的标识,单个站点的地址,组标识,或者,组地址。
结合第七方面或者第七方面的第一种至第七种中的任意一种可能的实现方式,在第七方面的第八种可能的实现方式中,其中,所述第一站点和第三站点的总量大于2时,所述调度信息中还包括上行多用户多入多出MU-MIMO,或者,上行正交频分多址OFDMA的资源分配的信息;或者,
其中,所述第二站点和第三站点的总量大于2时,所述调度信息中还包括下行多用户多入多出MU-MIMO,或者,下行正交频分多址OFDMA的资源分配的信息。
第八方面,提供一种接入点AP装置,包括第七方面或者第七方面的第一种至第八种中的任意一种可能的实现方式的通信装置。
第九方面,提供一种用户设备,包括:收发信机、处理器、存储器;
所述存储器,用于存储一个或多个可执行程序,被用于配置所述处理器;
所述收发信机,用于接收接入点AP发送的调度信息;
所述处理器,用于解析得到所述调度信息,所述调度信息包括在所述信道上进行上行传输的第一站点的信息以及同时在所述信道上进行下行传输的第二站点的信息,或者,所述调度信息包括在所述信道上同时进行上行和下行传输的第三站点的信息;
所述收发信机,用于所述通信装置所在的站点STA为所述第一站点、第二站点或者第三站点时,根据所述调度信息传输数据。
结合第九方面,在第九方面的第一种可能的实现方式中,所述收发信机具体用于:
在承载所述调度信息的触发帧接收结束后,如果所述通信装置所在的STA为所述第一站点,则等待SIFS后发送上行数据帧,所述上行数据帧的传统前导,与所述AP针对所述第二站点发送的下行数据帧的传统前导同时发送且内容相同;或者,
在承载所述调度信息的触发帧接收结束后,如果所述通信装置所在的STA为所述第三站点,则立即发送上行数据帧,所述上行数据帧的传统前导与所述AP针对所述第三站点发送的下行数据帧的传统前导相同。
结合第九方面的第一种可能的实现方式,在第九方面的第二种可能的实现方式中,所述传统前导中包括速率字段和长度字段,且所述速率字段和长度字段的值满足:根据所述速率字段和长度字段的值计算出的接收持续时间RXTIME的长度不小于包括应答帧在内的全双工传输的持续长度。
结合第九方面或者第九方面的第一种至第二种中的任意一种可能的实现方式,在第九方面的第三种可能的实现方式中,所述调度信息还包括所述第一站点或者第三站点的上行数据帧的传输时间持续长度或者上限;或者,针对所述第二站点或者第三站点下行数据帧的传输时间持续长度或者上限。
结合第九方面的第三种可能的实现方式,在第九方面的第四种可能的实现方式中,所述第一站点或者第三站点发送的上行数据帧传输时间持续长度大于所述AP发送的下行数据帧传输时间持续长度,且上述两者的差值的绝对值大于SIFS,则所述调度信息中还包括:
所述第一站点或者第三站点在上行数据帧传输过程中的中断位置以及中断时间持续长度;
所述收发信机还用于:
所述通信装置所在的STA为所述第一站点或者第三站点时,在上行数据帧传输过程中的中断位置,停止发送所述上行数据帧,并经过所述中断时间持续长度的时间后,恢复发送所述上行数据帧。
结合第九方面的第三种可能的实现方式,在第九方面的第五种可能的实现方式中,所述AP发送的下行数据帧传输时间持续长度大于所述第一站点或者第三站点发送的上行数据帧传输时间持续长度,且上述两者的差值的绝对值大于SIFS,则所述调度信息中还包括:
所述AP在下行数据帧传输过程中的中断位置以及中断时间持续长度;
所述收发信机还用于:
所述通信装置所在的STA为所述第二站点或者第三站点时,在所述AP发送的下行数据帧的传输中断位置,停止接收所述AP发送的下行数据帧,并经过所述中断时间持续长度的时间后,恢复接收所述AP发送的下行数据帧。
结合第九方面或者第九方面的第一种至第五种中的任意一种可能的实现方式,在第九方面的第六种可能的实现方式中,所述处理器还用于:
在接收完所述触发帧后,在传统前导的传输时间长度内进行自干扰信道的测量。
第十方面,提供一种站点STA装置,包括第九方面或者第九方面的第一种至第六种中的任意一种可能的实现方式的通信装置。
根据本发明实施提供的方法,通过AP竞争获得信道使用权之后,确定出调度信息,对参与全双工传输的STA进行调度。由于调度信息中包含了STA的传输方向,因此能够在WLAN系统中实现AP和STA的全双工通信。
附图说明
图1为本发明实施例提供的一种WLAN系统中全双工通信的方法流程图;
图2为多节点全双工通信过程示意图;
图3为802.11ax的物理层分组结构示意图;
图4为传统前导中L-SIG字段的结构示意图;
图5为本发明实施例提供的另一种WLAN系统中全双工通信的方法流程图;
图6为多节点全双工传输示意图;
图7为本发明实施例提供的第一种单节点全双工传输过程示意图;
图8为本发明实施例提供的第二种单节点全双工传输过程示意图;
图9为本发明实施例提供的第三种单节点全双工传输过程示意图;
图10为本发明实施例提供的第四种单节点全双工传输过程示意图;
图11为本发明实施例提供的第一种双节点全双工传输过程示意图;
图12为本发明实施例提供的第二种双节点全双工传输过程示意图;
图13为本发明实施例提供的第三种双节点全双工传输过程示意图;
图14为本发明实施例提供的一种通信装置结构图;
图15为本发明实施例提供的另一种通信装置结构图;
图16为本发明实施例提供的一种网络侧设备结构图;
图17为本发明实施例提供的一种用户设备结构图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述,显然,所描述的实施例仅仅是本发明一部份实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
下面结合说明书附图对本发明实施例做详细描述。
本发明实施例中,STA并不直接竞争信道,而是由AP获得信道使用权后,采用一定的调度算法集中调度和控制各STA进行仅上行、仅下行或同时上行和下行传输,包括允许多个相同传输方向的STA通过MU-MIMO和/或OFDMA等的方式同时单向传输,即AP同时向多个STA发送下行信号,或者同时接收来自多个STA的上行信号;以及允许多个不同传输方向的STA通过全双工方式、或结合MU-MIMO和/或OFDMA等方式同时上下行传输,即AP同时向多个STA发送下行信号,并且同时接收来自多个STA的上行信号。在本发明实施例中,参与全双工传输的上行发送的STA简称为“上行STA”,参与全双工传输的下行接收的STA简称为“下行STA”,一个支持全双工传输的STA可以既是上行STA又是下行STA时,称为全双工STA。
在现有MU-MIMO、OFDMA等的多用户传输技术中,AP和多个STA之间,只能同时单方向传输上行或下行数据帧,而不能同时进行上下行双方向传输,为此需要采用全双工技术。在全双工技术中,一个全双工通信节点可以在相同的无线信道上同时进行上行和下行传输。为了消除全双工通信节点内发射信号对接收信号强自干扰,需要在天线、中射频、基带等接收机单元进行自干扰抵消操作,为此,全双工通信节点需要对自干扰信道进行有效的检测。本发明实施例中,所述AP可在发送所述触发帧时,进行自干扰信道的测量。
能够实现上述AP集中调度和控制的原因在于:首先,AP具有下行方向各STA的待接收的下行数据量的信息,同时,通过STA主动上报,或AP查 询STA再上报等方式,AP可以获得上行方向各STA的待发送的上行数据量的信息;另外,AP还可以通过自己测量及STA测量后上报等方式,获得AP与各STA之间上行和下行信道的信息,如信道状态信息、信道的信号与干扰噪声功率比(Signal to Interference and Noise Ratio,简称SINR)等。因此,基于上述信息AP就能调度多个STA采用全双工、MU-MIMO、OFDMA等适合的方式进行多用户传输。
如图1所示,本发明实施例提供的一种WLAN系统中全双工通信的方法流程图,应用于无线局域网中接入点AP,该方法包括:
步骤101:接入点AP获得信道的使用权;
步骤101中,AP在确定有STA需要接收或发送数据后,可通过信道竞争获得信道的使用权。例如,AP可以采用802.11a、802.11n、802.11ac等协议中已有的技术获得信道的使用权,如通过RTS/CTS(Request To Send/Clear To Send,请求发送/清除待发送)过程或CTS-to-Self(发给自己的CTS)等过程,获得信道的使用权。
比如,在多节点全双工传输中,AP首先发送RTS帧,其中接收地址RA字段设置成参与全双工传输的STA的地址,发射地址TA字段设置成自己的地址,在该STA回应CTS后,AP即获得信道使用权。
再比如,AP可以用较大的功率发射CTS-to-Self帧,其中接收地址RA字段设置成AP自己的地址,时间持续长度字段设置的值大于或等于CTS-to-Self之后到应答帧结束的全双工传输时间持续长度,其中应答帧为ACK(Acknowledgement,单个应答)帧或BA(Block Acknowledgement,块应答)帧,这样该AP覆盖范围以内的STA均可接收到该CTS-to-Self帧而不再试图在所述时间持续长度内竞争信道,从而保证AP在所述时间持续长度内获得信道使用权。
步骤102:所述AP在获得信道使用权后,为参与全双工传输的站点STA确定调度信息,所述调度信息包括在所述信道上进行上行传输的第一站点的 信息以及同时在所述信道上进行下行传输的第二站点的信息,或者,所述调度信息包括在所述信道上同时进行上行和下行传输的第三站点的信息;
本实施方式中的全双工指相同的通信资源同时用来进行上行和下行传输。本发明实施例可用于两种全双工方式,一种是单节点全双工传输方式,即只有AP支持全双工通信,而STA仍采用半双工方式,即至少一个STA接收来自该AP的下行信号,至少一个STA向该AP发射上行信号,如图2中的(a)、(b)所示。为描述方便,本发明实施例中将在信道上进行仅上行传输的STA称为第一站点,将在同一信道上同时进行下行传输的STA称为第二站点(第一站点和第二站点为前述半双工方式的站点)。另外一种方式是多节点全双工传输方式,即AP和至少一个STA均采用全双工方式进行传输;当然,除了具有全双工功能的STA以外,还允许AP同时与至少一个半双工的下行STA进行下行传输,如图2中的(c)、(d)所示。为描述方便,将在信道上同时进行上行和下行传输的STA称为第三站点(第三站点即具有全双工功能的STA)。
步骤103:所述AP发送所述调度信息。
可选的,步骤104:所述AP和所述第一站点和第二站点,或者所述AP和所述第三站点根据所述调度信息完成全双工传输。
根据不同的实际情况,前述步骤102-104中的调度信息可以包括其它信息。例如,下行方向,AP作为发送方,因此总是能确定将要向第二站点或第三站点发送的下行数据帧的长度。在上行方向,一种情况是,AP可以确定第一站点或第三站点发送上行数据帧时使用的调制编码方案以及它们上行传输的数据量,因此能完全确定各个第一站点或第三站点将要发送的上行数据帧的长度。在此情况下,AP在调度信息中可以包括每个上行第一站点或第三站点的上行数据帧传输时间持续长度,或者第一站点或第三站点中上行数据帧传输时间持续长度最大的STA的上行数据帧传输时间持续长度及其所述最大上行数据帧传输时间持续长度。在上行方向,另一种情况是,AP不能精确确定第一站点或第三站点发送上行数据帧时使用的调制编码方案以及它们上行传输的数据量,因此不能完全确定各个上行第一站点或第三站点将要发送的 上行数据帧的长度。在此情况下,AP在调度信息中可以包括上行数据帧传输时间持续长度的上限,所有第一站点或第三站点在发送上行数据帧时都不能超过这个上限。其中,数据传输时间持续长度典型地以毫秒(ms)、微秒(μs)等时长为单位,或者以OFDM符号长度为单位。
为了避免由于通信双方无法协调各自的数据帧长度,先结束数据发送的一方需要添加无用的填充比特来对齐,造成资源的浪费,在本发明实施例中,所有STA数据的发送或接收可以均由AP控制和调度,并且可以避免因添加无用的填充比特来对齐所造成资源的浪费。
具体的,较优的,AP可以优先将上行数据帧时间持续长度与下行数据帧时间持续长度之间差值的绝对值在SIFS(Short Inter-frame Space,简称:短帧间间隔)时间内的站点调度在一个调度周期中传输。例如,STA1需要发送上行数据帧,STA2需要接收下行数据帧,STA1的上行数据帧时间持续长度大于STA2的下行数据帧时间持续长度,且差值小于SIFS时间,AP将STA1和STA2调度在一个调度周期中。此时在步骤104中,当STA2接收完下行数据帧后,STA1还在发送上行数据帧,STA2在等待SIFS时间后发送应答帧给AP,由于此时STA1已经发送完上行数据帧,因此STA2发送的应答帧并不会和STA1的上行数据帧发生冲突;同时AP在接收完STA1的上行数据帧后等待SIFS时间后,发送应答帧给STA1,此时STA2早已接收完下行数据帧,因此AP发送的应答帧并不会和STA2的下行数据帧发生冲突。
更具体的,对于AP不能完全确定各个第一站点或者第三站点将要发送的上行数据帧的长度的情况,第一站点或者第三站点的上行数据帧HEW前导的第一信令字段会携带有第一站点或者第三站点的上行数据帧的长度信息,因此,AP在首先接收到第一站点或者第三站点发送的上行数据帧HEW前导的第一信令字段后,就能确切地获知第一站点或者第三站点的上行数据帧的长度,并通过选择合适的下行数据帧长度与该第一站点或者第三站点同时传输数据,使得AP的上行数据帧与第一站点或者第三站点的下行数据帧具有近似 的长度,即上下行数据帧的长度差在一个SIFS时间范围,并通过随后的下行数据帧HEW前导的第二信令字段,携带下行数据帧的长度信息,从而保证第二站点或者第三站点对下行数据帧的进行相应的接收。
可选的,若在一个调度周期中,进行全双工数据传输时,第一站点或者第三站点发送的上行数据帧的传输时间持续长度大于接入点AP发送的下行数据帧的传输时间持续长度,且上述两者的差值的绝对值大于短帧间间隔SIFS,则所述调度信息中还包括:所述第一站点或者第三站点在上行数据帧传输过程中的中断位置以及中断时间持续长度。中断位置是为了让正在发送上行数据帧的第一站点或者第三站点根据中断位置所指示的时刻或者时间点,中断上行数据帧的发送。第一站点或者第三站点的上行数据帧传输时间持续长度大于AP的下行数据帧传输时间持续长度的情况下,中断位置的设置原则一般为在所述AP的下行数据帧传输结束后经过SIFS时间的位置,所述中断时间持续长度不小于应答帧的时间持续长度。那么,在步骤104中,第一站点或者第三站点在上行数据帧传输过程中的中断位置,停止接收所述第一站点或者第三站点发送的上行数据帧,并开始接收所述第二站点或者第三站点发送的应答帧,并经过所述中断时间持续长度的时间后,恢复接收所述第一站点或者第三站点发送的上行数据帧。例如,STA1需要发送上行数据帧,STA2需要接收下行数据帧,STA1的上行数据帧时间持续长度大于STA2的下行数据帧时间持续长度,且差值大于SIFS时间,AP将STA1和STA2调度在一个调度周期中。当STA2接收完下行数据帧后,STA1还在发送上行数据帧,为了不对STA2发送的应答帧造成干扰,STA1会在调度信息中的中断位置处,中断上行数据帧发送,将上行信道的使用权交给STA2发送应答帧。STA2发送完应答帧之后,STA1恢复上行数据帧的发送。
同样的,若AP针对所述第二站点或者第三站点发送的下行数据帧的传输时间持续长度大于所述第一站点或者第三站点发送的上行数据帧传输时间持续长度,且上述两者的差值的绝对值大于SIFS,则所述调度信息中还包括:所述AP在下行数据帧传输过程中的中断位置以及中断时间持续长度。相应 的,在步骤104中,为了不影响应答帧的发送或接收,所述AP在所述AP的上行数据帧的中断位置,中断所述AP的下行数据帧传输,并发送应答帧给所述AP上行数据帧对应的STA,所述中断位置为所述AP的下行数据帧传输结束后经过SIFS时间的位置,所述中断时间持续长度不小于应答帧的时间持续长度。这样,下行STA就能够在AP所指示的中断位置暂停对AP下行数据帧的接收操作,而在中断结束时刻恢复接收来自AP的下行数据帧的剩余部分。
上述各实施方式的步骤104中,通过中断第一站点或者第三站点上行数据帧的发送,或中断AP下行数据帧的发送,避免由于发送方和接收方上下行数据帧长度不一致,需要添加无用的填充比特来对齐上下行数据帧,造成资源的浪费的问题。
在另一方面,各实施方式还可以实现多用户共享信道使用权。若所述参与全双工传输的STA中,所述第一站点和第三站点的总量大于2时,所述调度信息中还包括上行多用户多入多出MU-MIMO,或者,上行正交频分多址OFDMA的资源分配的信息;或者,其中,所述第二站点和第三站点的总量大于2时,所述调度信息中还包括下行多用户多入多出MU-MIMO,或者,下行正交频分多址OFDMA的资源分配的信息。所述调度信息,可以在触发帧中携带,也可以在后续的下行数据帧的物理层信令中携带。
下面结合相关标准中的信令,详细介绍上述步骤的实现过程。
在步骤103中,AP在获得信道使用权并等待SIFS时间之后,发送调度信息给参与全双工传输的STA。调度信息可以是通过触发帧进行发送的。
上述实施方式的各种信息可以采用各种可能的结构。触发帧可以采用物理层信令的方式向参与全双工传输的STA发送调度信息,即在触发帧前导,例如,第一或第二信令字段,发送调度信息;或者,采用MAC控制帧的方式向参与全双工传输的STA发送调度信息,即在触发帧的数据字段发送包含调度信息的MAC控制帧。其中,物理层信令字段通常采用较低阶的编码调制方案(Modulation and Coding Scheme,简称MCS),如采用WLAN中的MCS0,即二进制相移键控(Binary Phase Shift Keying,简称BPSK)调制,以及码率 为1/2的卷积编码,因此,即使信号与干扰噪声功率比(Signal to Interference and Noise Ratio,简称SINR)较低,STA也能正确解码。同样地,为了保证调度信息的可靠传输,当调度信息采用MAC控制帧的方式发送时,其相应的数据字段也可以采用较低阶的MCS,如MCS0进行传输。
一个例子中,如图3所示,图3表示的是一种无线局域网的的物理层分组结构,可以应用于802.11ax。802.11ax分组由传统前导(Legacy Preamble)、802.11ax分组特定的HEW(High Efficiency WLAN,高效率无线局域网)前导以及数据字段三部分组成。其中,传统前导是所有基于OFDM的WLAN协议分组都有的字段,长度为20μs,包括传统短训练字段(英文Legacy Short Training field,简称L-STF)、传统长训练字段(Legacy Long Training field,简称L-LTF)和传统信令字段(Legacy Signal field,简称L-SIG)三个部分。HEW前导,也可以称为HE前导,以下均称为HEW前导,是802.11ax分组特定的控制字段,至少可以包括第一信令字段、训练字段和第二信令字段等部分,其中,第一信令字段和第二信令字段用于传输物理层信令,训练字段用于自动增益控制、为信道估计提供参考信号等功能,数据字段用于传输MAC层数据单元。
具体的,传统前导中的L-STF和L-LTF字段的内容是固定不变的,L-SIG字段的结构如图4所示,包括4bits的速率字段,1bit的保留位,12bits的长度字段,1bit的校验位以及6bits的尾比特。速率字段和长度字段是L-SIG主要携带的控制信息,检验位和尾比特是L-SIG信道编码过程中根据速率、保留位和长度字段的内容生成的。其中,长度字段为以8比特组(octet)为单位的数据量,速率字段指示802.11a协议中定义的8种速率中的一种。根据WLAN的协议,WLAN的节点如果可以接收一个物理层分组的前导但不能正确接收传统前导后续的字段,该节点将根据L-SIG的速率和长度字段的内容计算出一个以μs为单位的名为RXTIME(接收持续时间)的变量,并在延迟RXTIME时间后再试图接收或发送数据。
由于L-SIG中的长度字段已经用于指示包括上行和下行应答帧在内的全双工传输过程的最大时间持续长度,为了指示全双工传输过程中的上行数据帧和下行数据帧的长度,在本发明实施例中,在上行数据帧的HEW前导中,携带全双工传输过程中的上行数据帧的长度信息,而在下行数据帧的HEW前导中,携带全双工传输过程中的下行数据帧的长度信息。优选地,上行数据帧长度信息由上行数据帧HEW前导的第一信令字段携带,而下行数据帧长度信息由下行数据帧HEW前导的第二信令字段携带。
在步骤104,在全双工数据传输开始阶段,所有参与全双工传输的节点会发送相同的传统前导。具体的,单节点全双工传输方式时,AP在所述触发帧发送结束并等待SIFS后,发送针对所述第二站点下行数据帧,所述下行数据帧分别包括传统前导;其中,针对所述第二站点的所述下行数据帧中的传统前导与所述第一站点发送的上行数据帧的传统前导在所述信道上同时发送且内容相同。双节点全双工传输方式时,AP在所述触发帧发送结束并等待SIFS后,发送针对所述第三站点的下行数据帧,所述下行数据帧分别包括传统前导;其中,针对所述第三站点的所述下行数据帧中的传统前导与所述第三站点发送的上行数据帧的传统前导在所述信道上同时发送且内容相同。
优选地,传统前导的速率字段的内容为“1101”(指示速率为6Mbps),长度字段的内容应保证按照速率6Mbps计算出的RXTIME时间长度,至少不小于包括应答帧在内的全双工传输过程的时间持续长度。
前面主要从AP侧提供了WLAN系统中双工通信的方法,下面再主要从站点侧提供WLAN系统中双工通信的方法。如图5所示,本发明实施例提供的另一种WLAN系统中全双工通信的方法流程图,该方法包括:
步骤601:站点STA接收接入点AP发送的调度信息;
步骤602:所述STA获得调度信息,所述调度信息包括在所述信道上进行上行传输的第一站点的信息以及同时在所述信道上进行下行传输的第二站点的信息,或者,所述调度信息包括在所述信道上同时进行上行和下行传输的第三站点的信息;
具体的,步骤602中,调度信息可以承载在触发帧中,STA在接收到AP的触发帧后,可以通过解调触发帧的HEW前导或者所述触发帧的数据字段获得所述调度信息。所述第一站点的信息、所述第二站点的信息或所述者第三站点的信息具体为:单个站点的标识,单个站点的地址,组标识,或者,组地址。STA通过该调度信息确定自己是否参与全双工传输,以及参与全双工传输时,是仅参与上行传输或者仅下行传输,或者同时上行和下行传输(即全双工传输时的传输方向)。
步骤603:所述STA根据所述调度信息传输数据。
各个被调度的STA接收到触发帧中携带的调度信息后,即根据AP指示的全双工传输时的传输方向,或者进一步的根据上行数据帧传输时间持续长度,开始进行全双工数据传输。
在单节点全双工传输中,第一站点是传统的半双工方式的STA,在接收到AP的下行触发帧后,需要等待SIFS的时间才能由接收转为发送状态。但在多节点全双工传输中,AP和第三站点都支持全双工操作,因此第三站点在数据发送和接收之间转换时无需再等待SIFS的时间,第三站点一旦接收到来自AP的调度其进行全双工传输的触发帧,即在触发帧结束后就可以开始发送上行数据帧,相应地,AP在发送完触发帧后,就可以开始接收来自该第三站点的上行数据帧。但是,AP并不立即启动下行数据帧的发送,而是延迟一段时间△T后再开始发送下行数据帧,优选地,△T应不小于传统前导的传输时间长度,即△T≥20μs。这样,在此延迟时间内,STA可以进行自干扰信道的估计,而且不会受到AP下行信号的干扰。
步骤601、步骤601以及步骤603的其他内容可以参看前述针对步骤102-104的描述,在此不再一一赘述这些步骤的具体实施方式。
在全双工传输期间,由于至少有两个节点即AP和一个STA在同时发送不同的数据,因此其它节点将无法正确接收AP正在发送数据的STA的分组,但是,由于所有参与全双工传输的节点同时发送相同的传统前导,因此,其 它节点能够正确接收该传统前导,从而根据其中L-SIG的速率和长度字段的内容,计算出正确的RXTIME值并在延迟RXTIME时间后再试图接收或发送数据,从而避免了隐藏节点可能对全双工传输造成的干扰。例如,如图6所示,图6为多节点全双工传输示意图,AP和STA1进行点到点全双工传输,STA2可以接收到来自AP和STA1的信号,因此,STA2可以首先接收到STA1发送的上行数据帧分组的传统前导(其后的字段由于AP开始发送下行数据帧造成相互干扰而无法接收);如果STA3能接收STA1的信号但接收不到AP的信号,则STA3至少能接收到来自STA1的上行数据帧分组中的传统前导;如果STA4能接收AP的信号但接收不到STA1的信号,则STA1先行发送的上行数据帧分组,并不会干扰STA4对来自AP的下行数据帧分组的接收,从而能保证STA4至少能接收到来自AP的下行数据帧分组中的传统前导。因此,采用本发明实施例的方案可以使得其它节点都能接收到AP或STA发送的数据分组的传统前导,从而获得正确的RXTIME值并在延迟RXTIME时间后再试图接收或发送数据,有效避免了隐藏节点可能对全双工传输造成的干扰。
下面针对WLAN系统中全双工的不同场景,分别通过不同实施例进行详细说明。
实施例一
如图7所示,图7为本发明实施例提供的第一种单节点全双工传输过程示意图,其中,STA1为第一站点,STA2为第二站点。STA1的上行数据帧长度小于AP的下行数据帧长度,且差值小于SIFS时间。AP首先通过信道竞争获得信道的使用权,然后通过发送触发帧发起全双工传输过程,此时的调度信息中至少包括参与全双工传输的STA的标识或地址,所述参与全双工传输的STA的传输方向。
在AP发送触发帧期间,AP进行自干扰信道的估计,由于AP已经获得了信道的使用权,其它节点在此期间均不会试图竞争信道,因此不会出现现有技术中自干扰信道测量可能受到隐藏节点干扰的问题。AP在发完触发帧并等待SIFS时间后,与参与全双工传输的STA同时发送相同的传统前导。
STA1发送上行数据帧给AP,同时AP发送下行数据帧给STA2。当STA1发送完上行数据帧后,STA2还在接收AP发送的数据,AP在等待SIFS时间后发送应答帧给STA1,由于此时AP已经发送完上行数据帧,因此AP发送的应答帧并不会和STA2的下行数据帧发生冲突;同时STA2在接收完AP发送的数据并等待SIFS时间后,发送应答帧给AP,此时AP已接收完STA1发送的数据,因此STA2发送的应答帧并不会和STA1的上行数据帧发生冲突。
实施例二
如图8所示,图8为本发明实施例提供的第二种单节点全双工传输过程示意图。其中,STA1和STA3为第一站点,STA2和STA4为第二站点。STA1的上行数据帧长度小于AP的下行数据帧长度,且差值小于SIFS时间,STA3的上行数据帧长度小于AP的下行数据帧长度,且差值小于SIFS时间。AP首先通过信道竞争获得信道的使用权,然后通过发送触发帧发起全双工传输过程,此时的调度信息中至少包括参与全双工传输的STA的标识或地址,所述参与全双工传输的STA的传输方向,上行MU-MIMO和/或OFDMA的资源分配与STA调度信息,以及下行MU-MIMO和/或下行OFDMA的资源分配与STA调度信息。
在AP发送触发帧期间,AP进行自干扰信道的估计,由于AP已经获得了信道的使用权,其它节点在此期间均不会试图竞争信道,因此不会出现现有技术中自干扰信道测量可能受到隐藏节点干扰的问题。AP在发完触发帧并等待SIFS时间后,与参与全双工传输的STA同时发送相同的传统前导。
STA1和STA3同时发送上行数据帧给AP,同时AP发送下行数据帧给STA2和STA4。当STA1或STA3发送完上行数据帧后,STA2或STA4还在接收AP发送的数据,AP在等待SIFS时间后发送应答帧给STA1或STA3,由于此时AP已经发送完上行数据帧,因此AP发送的应答帧并不会和STA2或STA4的下行数据帧发生冲突;同时STA2或STA4在接收完AP发送的数据并等待SIFS时间后,发送应答帧给AP,此时AP早已接收完STA1或STA3发送的数据,因此STA2或STA4发送的应答帧并不会和STA1或STA3的上 行数据帧发生冲突。
实施例三
如图9所示,图9为本发明实施例提供的第三种单节点全双工传输过程示意图。其中,STA1为第一站点,STA2为第二站点。STA1的上行数据帧长度小于AP的下行数据帧长度,且差值大于SIFS时间。AP首先通过信道竞争获得信道的使用权,然后通过发送触发帧发起全双工传输过程,此时的调度信息中至少包括参与全双工传输的STA的标识或地址,所述参与全双工传输的STA的传输方向,AP下行数据帧传输过程中的中断位置以及中断时间持续长度。
在AP发送触发帧期间,AP进行自干扰信道的估计,由于AP已经获得了信道的使用权,其它节点在此期间均不会试图竞争信道,因此不会出现现有技术中自干扰信道测量可能受到隐藏节点干扰的问题。AP在发完触发帧并等待SIFS时间后,与参与全双工传输的STA同时发送相同的传统前导。
STA1发送上行数据帧给AP,同时AP发送下行数据帧给STA2。当STA1发送完上行数据帧后,STA2还在接收AP发送的数据,AP在等待SIFS时间后中断AP下行数据帧的发送并发送应答帧给STA1,由于此时AP未发送完下行数据帧,STA2根据调度信息中的AP下行数据帧传输过程中的中断位置以及中断时间持续长度能够确定此时AP会中断数据的发送,因此STA2在等待SIFS时间后不会发送应答帧给AP。
同时AP在中断时间持续长度之后继续发送下行数据帧给STA2。
实施例四
如图10所示,图10为本发明实施例提供的第四种单节点全双工传输过程示意图。其中,STA1为第一站点,STA2为第二站点。STA1的上行数据帧长度大于AP的下行数据帧长度,且差值大于SIFS时间。AP首先通过信道竞争获得信道的使用权,然后通过发送触发帧发起全双工传输过程,此时的调度信息中至少包括参与全双工传输的STA的标识或地址,所述参与全双工传输的STA的传输方向,STA1上行数据帧传输过程中的中断位置以及中断时 间持续长度。
在AP发送触发帧期间,AP进行自干扰信道的估计,由于AP已经获得了信道的使用权,其它节点在此期间均不会试图竞争信道,因此不会出现现有技术中自干扰信道测量可能受到隐藏节点干扰的问题。AP在发完触发帧并等待SIFS时间后,与参与全双工传输的STA同时发送相同的传统前导。
STA1发送上行数据帧给AP,同时AP发送下行数据帧给STA2。当AP发送完下行数据帧后,STA1还在发送数据给AP。为了让STA2按时发送应答帧给AP,STA1根据调度信息中的STA1上行数据帧传输过程中的中断位置以及中断时间持续长度,在AP下行数据帧结束之后等待SIFS时间,中断STA1上行数据帧的发送,在STA1上行数据帧传输中断开始时,STA2发送应答帧给AP。由于此时STA1未发送完上行数据帧,在中断时间持续长度内,AP不会发送应答帧给STA1。STA1在中断时间持续长度结束之后继续发送上行数据帧给AP。
实施例五
如图11所示,图11为本发明实施例提供的第一种双节点全双工传输过程示意图。其中,STA为第三站点。STA的上行数据帧长度小于AP的下行数据帧长度,且差值小于SIFS时间。AP首先通过信道竞争获得信道的使用权,然后通过发送触发帧发起全双工传输过程,此时的调度信息中至少包括参与全双工传输的STA的标识或地址,所述参与全双工传输的STA的传输方向。
在AP发送触发帧期间,AP进行自干扰信道的估计,由于AP已经获得了信道的使用权,其它节点在此期间均不会试图竞争信道,因此不会出现现有技术中自干扰信道测量可能受到隐藏节点干扰的问题。AP在发完触发帧并等待△T后,发送所述传统前导字段。优选地,△T应不小于传统前导字段的传输时间长度,即△T≥20μs。这样,在此延迟时间内,STA可以进行自干扰信道的估计,而且不会受到AP下行信号的干扰。而参与全双工传输的STA在接收完AP发送的触发帧之后,不必等待SIFS时间后发送上行数据帧给AP, 而是可以立即发送上行数据帧。
相应地,AP在发送完触发帧后,即开始接收来自该STA的上行数据帧。但是,AP并不立即启动下行数据帧的发送,而是等待至少传统前导传输的时间长度后再开始发送下行数据帧给STA。这样,在这段时间内,STA可以进行自干扰信道的估计,而不会受到AP下行数据帧的干扰。
当STA的上行数据帧发送完后,STA还在接收AP发送的数据,AP在等待SIFS时间后发送应答帧给STA,由于此时AP已经发送完上行数据帧,因此AP不会影响应答帧的发送;同时STA在接收完AP发送的数据并等待SIFS时间后,发送应答帧给AP,此时AP早已接收完STA发送的数据,因此STA不会影响应答帧的发送。
实施例六
如图12所示,图12为本发明实施例提供的第二种双节点全双工传输过程示意图。其中,STA为第三站点。STA的上行数据帧长度小于AP的下行数据帧长度,且差值大于SIFS时间。AP首先通过信道竞争获得信道的使用权,然后通过发送触发帧发起全双工传输过程,此时的调度信息中至少包括参与全双工传输的STA的标识或地址,所述参与全双工传输的STA的传输方向,所述参与全双工传输的STA的传输方向,STA下行数据帧接收过程中的中断位置以及中断时间持续长度。
在AP发送触发帧期间,AP进行自干扰信道的估计,由于AP已经获得了信道的使用权,其它节点在此期间均不会试图竞争信道,因此不会出现现有技术中自干扰信道测量可能受到隐藏节点干扰的问题。AP在发完触发帧并等待△T后,发送所述传统前导字段。优选地,△T应不小于传统前导字段的传输时间长度,即△T≥20μs。这样,在此延迟时间内,STA可以进行自干扰信道的估计,而且不会受到AP下行信号的干扰。而参与全双工传输的STA在接收完AP发送的触发帧之后,不必等待SIFS时间后发送上行数据帧给AP,而是可以立即发送上行数据帧。
相应地,AP在发送完触发帧后,即开始接收来自该STA的上行数据帧。但是,AP并不立即启动下行数据帧的发送,而是等待至少传统前导传输的时间长度后再开始发送下行数据帧给STA。这样,在这段时间内,STA可以进行自干扰信道的估计,而不会受到AP下行数据帧的干扰。
当STA的上行数据帧发送完后,STA还在接收AP发送的数据,AP在STA的上行数据帧发送完之后再经过SIFS时间时,中断下行数据帧的发送并发送应答帧给STA,此时AP不会影响应答帧的发送;同时STA已经知道AP在此刻会中断数据发送,因此会在中断时间持续长度期间等待,不会发送应答帧给AP。中断时间持续长度结束之后,AP继续发送下行数据帧给STA。
实施例七
如图13所示,图13为本发明实施例提供的第三种双节点全双工传输过程示意图。其中,STA为第三站点。STA的上行数据帧长度小于AP的下行数据帧长度,且差值大于SIFS时间。AP首先通过信道竞争获得信道的使用权,然后通过发送触发帧发起全双工传输过程,此时的调度信息中至少包括参与全双工传输的STA的标识或地址,所述参与全双工传输的STA的传输方向,所述参与全双工传输的STA的传输方向,STA下行数据帧接收过程中的中断位置以及中断时间持续长度。
在AP发送触发帧期间,AP进行自干扰信道的估计,由于AP已经获得了信道的使用权,其它节点在此期间均不会试图竞争信道,因此不会出现现有技术中自干扰信道测量可能受到隐藏节点干扰的问题。AP在发完触发帧并等待△T后,发送所述传统前导字段。优选地,△T应不小于传统前导字段的传输时间长度,即△T≥20μs。这样,在此延迟时间内,STA可以进行自干扰信道的估计,而且不会受到AP下行信号的干扰。而参与全双工传输的STA在接收完AP发送的触发帧之后,不必等待SIFS时间后发送上行数据帧给AP,而是可以立即发送上行数据帧。
相应地,AP在发送完触发帧后,即开始接收来自该STA的上行数据帧。 但是,AP并不立即启动下行数据帧的发送,而是等待至少传统前导传输的时间长度后再开始发送下行数据帧给STA。这样,在这段时间内,STA可以进行自干扰信道的估计,而不会受到AP下行数据帧的干扰。
当AP的下行数据帧发送完后,STA还在发送上行数据帧给AP。STA为了及时的发送应答帧给AP,会根据调度信息中的STA上行数据帧发送过程中的中断位置以及中断时间持续长度,中断上行数据帧的发送并发送应答帧给AP;同时AP已经知道STA在此刻会中断数据发送,因此会在中断时间持续长度期间等待,不会发送应答帧给STA。中断时间持续长度结束之后,STA继续发送上行数据帧给AP。
基于与上述方法同样的发明构思,本发明实施例还提供一种通信装置。
如图14所示,本发明实施例提供一种通信装置,设置于无线局域网中接入点AP装置,该装置包括:
信道竞争单元1401,用于获得信道的使用权;
调度信息确定单元1402,用于在获得信道使用权后,为参与全双工传输的站点确定调度信息,所述调度信息包括在所述信道上进行上行传输的第一站点的信息以及同时在所述信道上进行下行传输的第二站点的信息,或者,所述调度信息包括在所述信道上同时进行上行和下行传输的第三站点的信息;
传输单元1403,用于发送所述调度信息。
较佳的,所述传输单元1403还用于:
在所述调度信息所在的触发帧发送结束并等待SIFS后,发送针对所述第二站点或者所述第三站点的下行数据帧,所述下行数据帧分别包括传统前导;
其中,针对所述第二站点的所述下行数据帧中的传统前导与所述第一站点发送的上行数据帧的传统前导在所述信道上同时发送且内容相同;或者,针对所述第三站点的所述下行数据帧中的传统前导与所述第三站点发送的上行数据帧的传统前导在所述信道上同时发送且内容相同。
较佳的,所述传统前导中包括速率字段和长度字段,且所述速率字段和 长度字段的值满足:根据所述速率字段和长度字段的值计算出的接收持续时间RXTIME的长度不小于包括应答帧在内的全双工传输的持续长度。
较佳的,所述调度信息还包括所述第一站点或者第三站点的上行数据帧的传输时间持续长度或者上限;或者,针对所述第二站点或者第三站点下行数据帧的传输时间持续长度或者上限。
较佳的,所述第一站点或者第三站点发送的上行数据帧的传输时间持续长度大于接入点AP发送的下行数据帧的传输时间持续长度,且上述两者的差值的绝对值大于短帧间间隔SIFS,则所述调度信息中还包括:所述第一站点或者第三站点在上行数据帧传输过程中的中断位置以及中断时间持续长度;
所述传输单元1403还用于:
在所述第一站点或者第三站点在上行数据帧传输过程中的中断位置,停止接收所述第一站点或者第三站点发送的上行数据帧,并开始接收所述第二站点或者第三站点发送的应答帧,并经过所述中断时间持续长度的时间后,恢复接收所述第一站点或者第三站点发送的上行数据帧。
较佳的,所述AP针对所述第二站点或者第三站点发送的下行数据帧的传输时间持续长度大于所述第一站点或者第三站点发送的上行数据帧传输时间持续长度,且上述两者的差值的绝对值大于SIFS,则所述调度信息中还包括:
所述AP在下行数据帧传输过程中的中断位置以及中断时间持续长度;
所述传输单元1403还用于:
在所述AP的下行数据帧的传输中断位置,停止所述下行数据帧传输,并开始发送应答帧给所述第一站点或者第三站点,并经过所述中断时间持续长度的时间后,恢复所述下行数据帧的发送。
较佳的,还包括测量单元1404:
用于在所述传输单元1403在发送所述触发帧时,进行自干扰信道的测量。
较佳的,所述第一站点的信息、所述第二站点的信息或者所述第三站点的信息具体为:
单个站点的标识,单个站点的地址,组标识,或者,组地址。
较佳的,其中,所述第一站点和第三站点的总量大于2时,所述调度信息中还包括上行多用户多入多出MU-MIMO,或者,上行正交频分多址OFDMA的资源分配的信息;或者,
其中,所述第二站点和第三站点的总量大于2时,所述调度信息中还包括下行多用户多入多出MU-MIMO,或者,下行正交频分多址OFDMA的资源分配的信息。
基于与上述方法同样的发明构思,本发明实施例还提供一种通信装置。
如图15所示,本发明实施例提供一种通信装置,设置于无线局域网中站点STA,该装置包括:
接收单元1501,用于接收接入点AP发送的调度信息;
调度信息获取单元1502,用于解析得到所述调度信息,所述调度信息包括在所述信道上进行上行传输的第一站点的信息以及同时在所述信道上进行下行传输的第二站点的信息,或者,所述调度信息包括在所述信道上同时进行上行和下行传输的第三站点的信息;
传输单元1503,用于所述通信装置所在的站点STA为所述第一站点、第二站点或者第三站点时,根据所述调度信息传输数据。
较佳的,所述传输单元1503具体用于:
在承载所述调度信息的触发帧接收结束后,如果所述通信装置所在的STA为所述第一站点,则等待SIFS后发送上行数据帧,所述上行数据帧的传统前导,与所述AP针对所述第二站点发送的下行数据帧的传统前导同时发送且内容相同;或者,
在承载所述调度信息的触发帧接收结束后,如果所述通信装置所在的STA为所述第三站点,则立即发送上行数据帧,所述上行数据帧的传统前导与所述AP针对所述第三站点发送的下行数据帧的传统前导相同。
较佳的,所述传统前导中包括速率字段和长度字段,且所述速率字段和长度字段的值满足:根据所述速率字段和长度字段的值计算出的接收持续时间RXTIME的长度不小于包括应答帧在内的全双工传输的持续长度。
较佳的,所述调度信息还包括所述第一站点或者第三站点的上行数据帧的传输时间持续长度或者上限;或者,针对所述第二站点或者第三站点下行数据帧的传输时间持续长度或者上限。
较佳的,所述第一站点或者第三站点发送的上行数据帧传输时间持续长度大于所述AP发送的下行数据帧传输时间持续长度,且上述两者的差值的绝对值大于SIFS,则所述调度信息中还包括:
所述第一站点或者第三站点在上行数据帧传输过程中的中断位置以及中断时间持续长度;
所述传输单元1503还用于:
所述通信装置所在的STA为所述第一站点或者第三站点时,在上行数据帧传输过程中的中断位置,停止发送所述上行数据帧,并经过所述中断时间持续长度的时间后,恢复发送所述上行数据帧。
较佳的,所述AP发送的下行数据帧传输时间持续长度大于所述第一站点或者第三站点发送的上行数据帧传输时间持续长度,且上述两者的差值的绝对值大于SIFS,则所述调度信息中还包括:
所述AP在下行数据帧传输过程中的中断位置以及中断时间持续长度;
所述传输单元1503还用于:
所述通信装置所在的STA为所述第二站点或者第三站点时,在所述AP发送的下行数据帧的传输中断位置,停止接收所述AP发送的下行数据帧,并经过所述中断时间持续长度的时间后,恢复接收所述AP发送的下行数据帧。
较佳的,还包括测量单元1504:
用于在接收完所述触发帧后,在传统前导的传输时间长度内进行自干扰信道的测量。
基于与上述方法同样的发明构思,本发明实施例还提供一种网络侧设备。
如图16所示,本发明实施例提供一种网络侧设备,包括:收发信机1603、处理器1601、存储器1602;
所述存储器1602,用于存储一个或多个可执行程序,被用于配置所述处 理器;
所述处理器1601,用于获得信道的使用权;用于在获得信道使用权后,为参与全双工传输的站点确定调度信息,所述调度信息包括在所述信道上进行上行传输的第一站点的信息以及同时在所述信道上进行下行传输的第二站点的信息,或者,所述调度信息包括在所述信道上同时进行上行和下行传输的第三站点的信息;
收发信机1603,用于发送所述调度信息。
较佳的,所述收发信机1603还用于:
在所述调度信息所在的触发帧发送结束并等待SIFS后,发送针对所述第二站点或者所述第三站点的下行数据帧,所述下行数据帧分别包括传统前导;
其中,针对所述第二站点的所述下行数据帧中的传统前导与所述第一站点发送的上行数据帧的传统前导在所述信道上同时发送且内容相同;或者,针对所述第三站点的所述下行数据帧中的传统前导与所述第三站点发送的上行数据帧的传统前导在所述信道上同时发送且内容相同。
较佳的,所述传统前导中包括速率字段和长度字段,且所述速率字段和长度字段的值满足:根据所述速率字段和长度字段的值计算出的接收持续时间RXTIME的长度不小于包括应答帧在内的全双工传输的持续长度。
较佳的,所述调度信息还包括所述第一站点或者第三站点的上行数据帧的传输时间持续长度或者上限;或者,针对所述第二站点或者第三站点下行数据帧的传输时间持续长度或者上限。
较佳的,所述第一站点或者第三站点发送的上行数据帧的传输时间持续长度大于接入点AP发送的下行数据帧的传输时间持续长度,且上述两者的差值的绝对值大于短帧间间隔SIFS,则所述调度信息中还包括:所述第一站点或者第三站点在上行数据帧传输过程中的中断位置以及中断时间持续长度;
所述收发信机1603还用于:
在所述第一站点或者第三站点在上行数据帧传输过程中的中断位置,停止接收所述第一站点或者第三站点发送的上行数据帧,并开始接收所述第二 站点或者第三站点发送的应答帧,并经过所述中断时间持续长度的时间后,恢复接收所述第一站点或者第三站点发送的上行数据帧。
较佳的,所述AP针对所述第二站点或者第三站点发送的下行数据帧的传输时间持续长度大于所述第一站点或者第三站点发送的上行数据帧传输时间持续长度,且上述两者的差值的绝对值大于SIFS,则所述调度信息中还包括:
所述AP在下行数据帧传输过程中的中断位置以及中断时间持续长度;
所述收发信机1603还用于:
在所述AP的下行数据帧的传输中断位置,停止所述下行数据帧传输,并开始发送应答帧给所述第一站点或者第三站点,并经过所述中断时间持续长度的时间后,恢复所述下行数据帧的发送。
较佳的,所述处理器1601用于:
在发送所述触发帧时,进行自干扰信道的测量。
较佳的,所述第一站点的信息、所述第二站点的信息或者所述第三站点的信息具体为:
单个站点的标识,单个站点的地址,组标识,或者,组地址。
较佳的,其中,所述第一站点和第三站点的总量大于2时,所述调度信息中还包括上行多用户多入多出MU-MIMO,或者,上行正交频分多址OFDMA的资源分配的信息;或者,
其中,所述第二站点和第三站点的总量大于2时,所述调度信息中还包括下行多用户多入多出MU-MIMO,或者,下行正交频分多址OFDMA的资源分配的信息。
基于与上述方法同样的发明构思,本发明实施例还提供一种用户设备。
如图17所示,本发明实施例提供一种用户设备,包括:收发信机1703、处理器1701、存储器1702;
所述存储器1702,用于存储一个或多个可执行程序,被用于配置所述处理器;
所述收发信机1703,用于接收接入点AP发送的调度信息;
所述处理器1701,用于解析得到所述调度信息,所述调度信息包括在所述信道上进行上行传输的第一站点的信息以及同时在所述信道上进行下行传输的第二站点的信息,或者,所述调度信息包括在所述信道上同时进行上行和下行传输的第三站点的信息;
所述收发信机1703,用于所述通信装置所在的站点STA为所述第一站点、第二站点或者第三站点时,根据所述调度信息传输数据。
较佳的,所述收发信机1703具体用于:
在承载所述调度信息的触发帧接收结束后,如果所述通信装置所在的STA为所述第一站点,则等待SIFS后发送上行数据帧,所述上行数据帧的传统前导,与所述AP针对所述第二站点发送的下行数据帧的传统前导同时发送且内容相同;或者,
在承载所述调度信息的触发帧接收结束后,如果所述通信装置所在的STA为所述第三站点,则立即发送上行数据帧,所述上行数据帧的传统前导与所述AP针对所述第三站点发送的下行数据帧的传统前导相同。
较佳的,所述传统前导中包括速率字段和长度字段,且所述速率字段和长度字段的值满足:根据所述速率字段和长度字段的值计算出的接收持续时间RXTIME的长度不小于包括应答帧在内的全双工传输的持续长度。
较佳的,所述调度信息还包括所述第一站点或者第三站点的上行数据帧的传输时间持续长度或者上限;或者,针对所述第二站点或者第三站点下行数据帧的传输时间持续长度或者上限。
较佳的,所述第一站点或者第三站点发送的上行数据帧传输时间持续长度大于所述AP发送的下行数据帧传输时间持续长度,且上述两者的差值的绝对值大于SIFS,则所述调度信息中还包括:
所述第一站点或者第三站点在上行数据帧传输过程中的中断位置以及中断时间持续长度;
所述收发信机1703还用于:
所述通信装置所在的STA为所述第一站点或者第三站点时,在上行数据 帧传输过程中的中断位置,停止发送所述上行数据帧,并经过所述中断时间持续长度的时间后,恢复发送所述上行数据帧。
较佳的,所述AP发送的下行数据帧传输时间持续长度大于所述第一站点或者第三站点发送的上行数据帧传输时间持续长度,且上述两者的差值的绝对值大于SIFS,则所述调度信息中还包括:
所述AP在下行数据帧传输过程中的中断位置以及中断时间持续长度;
所述收发信机1703还用于:
所述通信装置所在的STA为所述第二站点或者第三站点时,在所述AP发送的下行数据帧的传输中断位置,停止接收所述AP发送的下行数据帧,并经过所述中断时间持续长度的时间后,恢复接收所述AP发送的下行数据帧。
较佳的,所述处理器1701还用于:
在接收完所述触发帧后,在传统前导的传输时间长度内进行自干扰信道的测量。
根据本发明实施提供的方法,通过AP竞争获得信道使用权之后,确定出调度信息,对参与全双工传输的STA进行调度。由于调度信息中包含了STA的传输方向,因此能够在WLAN系统中实现AP和STA的全双工通信。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或 多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (34)

  1. 一种通信装置,设置于无线局域网中接入点AP装置,其特征在于,该装置包括:
    信道竞争单元,用于获得信道的使用权;
    调度信息确定单元,用于在获得信道使用权后,为参与全双工传输的站点确定调度信息,所述调度信息包括在所述信道上进行上行传输的第一站点的信息以及同时在所述信道上进行下行传输的第二站点的信息,或者,所述调度信息包括在所述信道上同时进行上行和下行传输的第三站点的信息;
    传输单元,用于发送所述调度信息。
  2. 如权利要求1所述的装置,其特征在于,所述传输单元还用于:
    在所述调度信息所在的触发帧发送结束并等待SIFS后,发送针对所述第二站点或者所述第三站点的下行数据帧,所述下行数据帧分别包括传统前导;
    其中,针对所述第二站点的所述下行数据帧中的传统前导与所述第一站点发送的上行数据帧的传统前导在所述信道上同时发送且内容相同;或者,针对所述第三站点的所述下行数据帧中的传统前导与所述第三站点发送的上行数据帧的传统前导在所述信道上同时发送且内容相同。
  3. 如权利要求2所述的装置,其特征在于,所述传统前导中包括速率字段和长度字段,且所述速率字段和长度字段的值满足:根据所述速率字段和长度字段的值计算出的接收持续时间RXTIME的长度不小于包括应答帧在内的全双工传输的持续长度。
  4. 如权利要求1至3中任一项所述的装置,其特征在于,所述调度信息还包括所述第一站点或者第三站点的上行数据帧的传输时间持续长度或者上限;或者,针对所述第二站点或者第三站点下行数据帧的传输时间持续长度或者上限。
  5. 如权利要求4所述的装置,其特征在于,所述第一站点或者第三站点发送的上行数据帧的传输时间持续长度大于接入点AP发送的下行数据帧的 传输时间持续长度,且上述两者的差值的绝对值大于短帧间间隔SIFS,则所述调度信息中还包括:所述第一站点或者第三站点在上行数据帧传输过程中的中断位置以及中断时间持续长度;
    所述传输单元还用于:
    在所述第一站点或者第三站点在上行数据帧传输过程中的中断位置,停止接收所述第一站点或者第三站点发送的上行数据帧,并开始接收所述第二站点或者第三站点发送的应答帧,并经过所述中断时间持续长度的时间后,恢复接收所述第一站点或者第三站点发送的上行数据帧。
  6. 如权利要求4所述的装置,其特征在于,所述AP针对所述第二站点或者第三站点发送的下行数据帧的传输时间持续长度大于所述第一站点或者第三站点发送的上行数据帧传输时间持续长度,且上述两者的差值的绝对值大于SIFS,则所述调度信息中还包括:
    所述AP在下行数据帧传输过程中的中断位置以及中断时间持续长度;
    所述传输单元还用于:
    在所述AP的下行数据帧的传输中断位置,停止所述下行数据帧传输,并开始发送应答帧给所述第一站点或者第三站点,并经过所述中断时间持续长度的时间后,恢复所述下行数据帧的发送。
  7. 如权利要求1至6中任一项所述的装置,其特征在于,还包括测量单元:
    所述测量单元用于在所述传输单元在发送所述触发帧时,进行自干扰信道的测量。
  8. 如权利要求1至7中任一项所述的装置,其特征在于,所述第一站点的信息、所述第二站点的信息或者所述第三站点的信息具体为:
    单个站点的标识,单个站点的地址,组标识,或者,组地址。
  9. 如权利要求1至8中任一项所述的装置,其特征在于,其中,所述第一站点和第三站点的总量大于2时,所述调度信息中还包括上行多用户多入多出MU-MIMO,或者,上行正交频分多址OFDMA的资源分配的信息;或 者,
    其中,所述第二站点和第三站点的总量大于2时,所述调度信息中还包括下行多用户多入多出MU-MIMO,或者,下行正交频分多址OFDMA的资源分配的信息。
  10. 一种接入点AP装置,包括如权利要求1至9中任一项所述的通信装置。
  11. 一种通信装置,设置于无线局域网中站点STA,其特征在于,该装置包括:
    接收单元,用于接收接入点AP发送的调度信息;
    调度信息获取单元,用于解析得到所述调度信息,所述调度信息包括在所述信道上进行上行传输的第一站点的信息以及同时在所述信道上进行下行传输的第二站点的信息,或者,所述调度信息包括在所述信道上同时进行上行和下行传输的第三站点的信息;
    传输单元,用于所述通信装置所在的站点STA为所述第一站点、第二站点或者第三站点时,根据所述调度信息传输数据。
  12. 如权利要求11所述的装置,其特征在于,所述传输单元具体用于:
    在承载所述调度信息的触发帧接收结束后,如果所述通信装置所在的STA为所述第一站点,则等待SIFS后发送上行数据帧,所述上行数据帧的传统前导,与所述AP针对所述第二站点发送的下行数据帧的传统前导同时发送且内容相同;或者,
    在承载所述调度信息的触发帧接收结束后,如果所述通信装置所在的STA为所述第三站点,则立即发送上行数据帧,所述上行数据帧的传统前导与所述AP针对所述第三站点发送的下行数据帧的传统前导相同。
  13. 如权利要求12所述的装置,其特征在于,所述传统前导中包括速率字段和长度字段,且所述速率字段和长度字段的值满足:根据所述速率字段和长度字段的值计算出的接收持续时间RXTIME的长度不小于包括应答帧在内的全双工传输的持续长度。
  14. 如权利要求11至13中任一述的装置,其特征在于,所述调度信息还包括所述第一站点或者第三站点的上行数据帧的传输时间持续长度或者上限;或者,针对所述第二站点或者第三站点下行数据帧的传输时间持续长度或者上限。
  15. 如权利要求14所述的装置,其特征在于,所述第一站点或者第三站点发送的上行数据帧传输时间持续长度大于所述AP发送的下行数据帧传输时间持续长度,且上述两者的差值的绝对值大于SIFS,则所述调度信息中还包括:
    所述第一站点或者第三站点在上行数据帧传输过程中的中断位置以及中断时间持续长度;
    所述传输单元还用于:
    所述通信装置所在的STA为所述第一站点或者第三站点时,在上行数据帧传输过程中的中断位置,停止发送所述上行数据帧,并经过所述中断时间持续长度的时间后,恢复发送所述上行数据帧。
  16. 如权利要求14所述的装置,其特征在于,所述AP发送的下行数据帧传输时间持续长度大于所述第一站点或者第三站点发送的上行数据帧传输时间持续长度,且上述两者的差值的绝对值大于SIFS,则所述调度信息中还包括:
    所述AP在下行数据帧传输过程中的中断位置以及中断时间持续长度;
    所述传输单元还用于:
    所述通信装置所在的STA为所述第二站点或者第三站点时,在所述AP发送的下行数据帧的传输中断位置,停止接收所述AP发送的下行数据帧,并经过所述中断时间持续长度的时间后,恢复接收所述AP发送的下行数据帧。
  17. 如权利要求11至16中任一项所述的装置,其特征在于,还包括测量单元:
    所述测量单元用于在接收完所述触发帧后,在传统前导的传输时间长度内进行自干扰信道的测量。
  18. 一种站点STA装置,包括如权利要求11至17中任一项所述的通信装置。
  19. 一种WLAN系统中全双工通信的方法,应用于无线局域网中接入点AP,其特征在于,该方法包括:
    接入点AP获得信道的使用权;
    所述AP在获得信道使用权后,为参与全双工传输的站点STA确定调度信息,所述调度信息包括在所述信道上进行上行传输的第一站点的信息以及同时在所述信道上进行下行传输的第二站点的信息,或者,所述调度信息包括在所述信道上同时进行上行和下行传输的第三站点的信息;
    所述AP发送所述调度信息。
  20. 如权利要求19所述的方法,其特征在于,所述AP发送承载所述调度信息的触发帧之后,还包括:
    所述AP在所述触发帧发送结束并等待SIFS后,发送针对所述第二站点或者所述第三站点的下行数据帧,所述下行数据帧分别包括传统前导;
    其中,针对所述第二站点的所述下行数据帧中的传统前导与所述第一站点发送的上行数据帧的传统前导在所述信道上同时发送且内容相同;或者,针对所述第三站点的所述下行数据帧中的传统前导与所述第三站点发送的上行数据帧的传统前导在所述信道上同时发送且内容相同。
  21. 如权利要求20所述的方法,其特征在于,所述传统前导中包括速率字段和长度字段,且所述速率字段和长度字段的值满足:根据所述速率字段和长度字段的值计算出的接收持续时间RXTIME的长度不小于包括应答帧在内的全双工传输的时间持续长度。
  22. 如权利要求19至21中任一项所述的方法,其特征在于,所述调度信息还包括所述第一站点或者第三站点的上行数据帧的传输时间持续长度或者上限;或者,针对所述第二站点或者第三站点下行数据帧的传输时间持续长度或者上限。
  23. 如权利要求22所述的方法,其特征在于,所述第一站点或者第三站 点发送的上行数据帧的传输时间持续长度大于接入点AP发送的下行数据帧的传输时间持续长度,且上述两者的差值的绝对值大于短帧间间隔SIFS,则所述调度信息中还包括:所述第一站点或者第三站点在上行数据帧传输过程中的中断位置以及中断时间持续长度;
    所述方法还包括:
    在所述第一站点或者第三站点在上行数据帧传输过程中的中断位置,停止接收所述第一站点或者第三站点发送的上行数据帧,并开始接收所述第二站点或者第三站点发送的应答帧,并经过所述中断时间持续长度的时间后,恢复接收所述第一站点或者第三站点发送的上行数据帧。
  24. 如权利要求22所述的方法,其特征在于,所述AP针对所述第二站点或者第三站点发送的下行数据帧的传输时间持续长度大于所述第一站点或者第三站点发送的上行数据帧传输时间持续长度,且上述两者的差值的绝对值大于SIFS,则所述调度信息中还包括:
    所述AP在下行数据帧传输过程中的中断位置以及中断时间持续长度;
    所述方法还包括:
    在所述AP的下行数据帧的传输中断位置,停止所述下行数据帧传输,并开始发送应答帧给所述第一站点或者第三站点,并经过所述中断时间持续长度的时间后,恢复所述下行数据帧的发送。
  25. 如权利要求19至24中任一项所述的方法,其特征在于,所述方法还包括:
    在发送所述承载所述调度信息的触发帧时,进行自干扰信道的测量。
  26. 如权利要求19至25中任一项所述的方法,其特征在于,所述第一站点的信息、所述第二站点的信息或所述者第三站点的信息具体为:
    单个站点的标识,单个站点的地址,组标识,或者,组地址。
  27. 如权利要求19至26中任一项所述的方法,其特征在于,其中,所述第一站点和第三站点的总量大于2时,所述调度信息中还包括上行多用户多入多出MU-MIMO,或者,上行正交频分多址OFDMA的资源分配的信息; 或者,
    其中,所述第二站点和第三站点的总量大于2时,所述调度信息中还包括下行多用户多入多出MU-MIMO,或者,下行正交频分多址OFDMA的资源分配的信息。
  28. 一种WLAN系统中全双工通信的方法,应用于无线局域网中站点STA,其特征在于,该方法包括:
    接收接入点AP发送的调度信息;
    解析得到所述调度信息,所述调度信息包括在所述信道上进行上行传输的第一站点的信息以及同时在所述信道上进行下行传输的第二站点的信息,或者,所述调度信息包括在所述信道上同时进行上行和下行传输的第三站点的信息;
    所述第一站点、第二站点或者第三站点根据所述调度信息传输数据。
  29. 如权利要求28所述的方法,其特征在于,所述根据所述调度信息传输数据包括:
    在所述承载所述调度信息的触发帧接收结束后,所述第一站点等待SIFS后发送上行数据帧,所述上行数据帧的传统前导,与所述AP针对所述第二站点发送的下行数据帧的传统前导同时发送且内容相同;或者,
    在承载所述调度信息的触发帧接收结束后,所述第三站点立即发送上行数据帧,所述上行数据帧的传统前导与所述AP针对所述第三站点发送的下行数据帧的传统前导相同。
  30. 如权利要求29所述的方法,其特征在于,所述传统前导中包括速率字段和长度字段,且所述速率字段和长度字段的值满足:根据所述速率字段和长度字段的值计算出的接收持续时间RXTIME的长度不小于包括应答帧在内的全双工传输的时间持续长度。
  31. 如权利要求28至30中任一述的方法,其特征在于,所述调度信息还包括所述第一站点或者第三站点的上行数据帧的传输时间持续长度或者上限;或者,针对所述第二站点或者第三站点下行数据帧的传输时间持续长度 或者上限。
  32. 如权利要求31所述的方法,其特征在于,所述第一站点或者第三站点发送的上行数据帧传输时间持续长度大于所述AP发送的下行数据帧传输时间持续长度,且上述两者的差值的绝对值大于SIFS,则所述调度信息中还包括:
    所述第一站点或者第三站点在上行数据帧传输过程中的中断位置以及中断时间持续长度;
    所述根据所述调度信息传输数据,还包括:
    所述第一站点或者第三站点在上行数据帧传输过程中的中断位置,停止发送所述上行数据帧,并经过所述中断时间持续长度的时间后,恢复发送所述上行数据帧。
  33. 如权利要求31所述的方法,其特征在于,所述AP发送的下行数据帧传输时间持续长度大于所述第一站点或者第三站点发送的上行数据帧传输时间持续长度,且上述两者的差值的绝对值大于SIFS,则所述调度信息中还包括:
    所述AP在下行数据帧传输过程中的中断位置以及中断时间持续长度;
    所述根据所述调度信息传输数据还包括:
    所述第二站点或者第三站点在所述AP发送的下行数据帧的传输中断位置,停止接收所述AP发送的下行数据帧,并经过所述中断时间持续长度的时间后,恢复接收所述AP发送的下行数据帧。
  34. 如权利要求28至33中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一站点、第二站点或者第三站点在传统前导的传输时间长度内进行自干扰信道的测量。
PCT/CN2014/086959 2014-09-19 2014-09-19 一种wlan系统中全双工通信的方法及装置 WO2016041205A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14901975.4A EP3188429B1 (en) 2014-09-19 2014-09-19 Method and apparatus for full-duplex communication in wlan system
CN201480081529.9A CN106605394B (zh) 2014-09-19 2014-09-19 一种wlan系统中全双工通信的方法及装置
PCT/CN2014/086959 WO2016041205A1 (zh) 2014-09-19 2014-09-19 一种wlan系统中全双工通信的方法及装置
US15/462,129 US10237049B2 (en) 2014-09-19 2017-03-17 Full-duplex communication method in WLAN system and apparatus
US16/277,509 US10880068B2 (en) 2014-09-19 2019-02-15 Full-duplex communication method in WLAN system and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/086959 WO2016041205A1 (zh) 2014-09-19 2014-09-19 一种wlan系统中全双工通信的方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/462,129 Continuation US10237049B2 (en) 2014-09-19 2017-03-17 Full-duplex communication method in WLAN system and apparatus

Publications (1)

Publication Number Publication Date
WO2016041205A1 true WO2016041205A1 (zh) 2016-03-24

Family

ID=55532486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/086959 WO2016041205A1 (zh) 2014-09-19 2014-09-19 一种wlan系统中全双工通信的方法及装置

Country Status (4)

Country Link
US (2) US10237049B2 (zh)
EP (1) EP3188429B1 (zh)
CN (1) CN106605394B (zh)
WO (1) WO2016041205A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180109397A1 (en) * 2015-04-16 2018-04-19 Telefonaktiebolaget Lm Ericsson (Publ) Carrier sensing multiple access applied on subcarriers with not full-duplex capable access points
WO2018042253A3 (en) * 2016-09-02 2018-05-03 Marvell World Trade Ltd. Method and apparatus for full-duplex operation in a multipoint-to-multipoint network
EP3343825A1 (en) * 2016-12-30 2018-07-04 INTEL Corporation Communication method for measuring interference
CN109547190A (zh) * 2019-01-28 2019-03-29 展讯通信(上海)有限公司 全双工通信方法及装置和非临时性计算机可读存储介质
CN109586889A (zh) * 2017-09-28 2019-04-05 华为技术有限公司 一种数据处理方法及设备
CN109600856A (zh) * 2017-10-02 2019-04-09 马维尔国际贸易有限公司 用于具有双工媒体访问控制的多用户操作的系统和方法
CN109756256A (zh) * 2017-11-03 2019-05-14 华为技术有限公司 一种信道探测的方法和装置
CN109756978A (zh) * 2017-11-07 2019-05-14 华为技术有限公司 一种全双工ofdma ppdu传输方法及装置
EP3614780A4 (en) * 2017-05-16 2020-04-15 Sony Corporation COMMUNICATION DEVICE AND COMMUNICATION METHOD
CN111886892A (zh) * 2018-03-09 2020-11-03 华为技术有限公司 用于全双工通信的方法和系统
CN114303336A (zh) * 2019-08-23 2022-04-08 思科技术公司 双向和全双工通信

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106464345B (zh) * 2014-06-05 2019-03-12 英特尔Ip公司 用于全双工无线通信的干扰管理技术
EP3188429B1 (en) * 2014-09-19 2020-08-26 Huawei Technologies Co., Ltd. Method and apparatus for full-duplex communication in wlan system
KR101586716B1 (ko) * 2015-01-05 2016-01-19 아주대학교산학협력단 슬롯 기반 채널을 이용한 통신 방법 및 그 장치
CN107223314B (zh) * 2015-02-12 2019-07-19 华为技术有限公司 具有自适应接收功率降低的全双工无线电
EP4277220A3 (en) 2015-08-06 2024-01-10 LG Electronics Inc. Method and apparatus for generating training signal by using predetermined binary sequence in wireless lan system
US10320590B2 (en) 2015-08-06 2019-06-11 Lg Electronics Inc. Method and apparatus for generating STF signal using binary sequence in wireless LAN system
US9924539B2 (en) * 2015-08-21 2018-03-20 Intel Corporation Device, system and method of OFDMA full-duplex communication
WO2017082650A1 (ko) * 2015-11-10 2017-05-18 엘지전자 주식회사 Fdr 시스템에서 tx/rx capability의 변경과 관련된 신호 송수신 방법 및 장치
US9967073B2 (en) * 2016-06-15 2018-05-08 Qualcomm Incorporated Full bandwidth multicast indication to multiple users
US11277863B2 (en) * 2017-05-01 2022-03-15 Qualcomm Incorporated Simultaneous transmission sweep and reception in a full-duplex node
CN109495235B (zh) * 2017-09-11 2020-08-14 华为技术有限公司 一种传输方法及传输节点
JP6878224B2 (ja) * 2017-09-15 2021-05-26 株式会社東芝 無線通信装置および無線通信方法
US10523404B2 (en) * 2017-10-16 2019-12-31 Huawei Technologies Co., Ltd. Media access control for full duplex communications
US11115239B2 (en) * 2017-12-01 2021-09-07 Huawei Technologies Co., Ltd. Preamble structure supporting full duplex communications
US20200396742A1 (en) * 2018-02-23 2020-12-17 Lg Electronics Inc. Method and device for transmitting ppdu on basis of fdr in wireless lan system
WO2019164362A1 (ko) * 2018-02-23 2019-08-29 엘지전자 주식회사 무선랜 시스템에서 fdr을 기반으로 ppdu를 송신하는 방법 및 장치
CN110380746B (zh) 2018-03-12 2021-08-31 苏州速通半导体科技有限公司 高效无线局域网中全双工通信方法及站点设备
US11503613B2 (en) 2018-05-03 2022-11-15 Interdigital Patent Holdings, Inc. Interference discovery and cancellation for WLAN with full duplex radios
EP3788834A1 (en) * 2018-05-03 2021-03-10 Interdigital Patent Holdings, Inc. Channel access schemes for wireless local area network (wlan) with full-duplex radios
WO2020146001A1 (en) * 2019-01-11 2020-07-16 Marvell World Trade Ltd. Wifi multi-band communication
US11895699B2 (en) * 2019-02-11 2024-02-06 Qualcomm Incorporated Listen-before-talk (LBT) type and gap signaling for back-to-back grants and multi-transmission time interval (multi-TTI) grants
CN112217776B (zh) * 2019-07-12 2023-08-22 华为技术有限公司 数据发送和接收方法及装置
CN113543356B (zh) * 2020-04-17 2024-02-09 华为技术有限公司 WiFi通信方法及电子设备
US20230309068A1 (en) * 2022-03-22 2023-09-28 Nxp Usa, Inc. Wireless communications device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2095516A2 (en) * 2006-11-06 2009-09-02 Nokia Corporation Analog signal path modeling for self-interference cancellation
CN102111177A (zh) * 2010-12-24 2011-06-29 重庆大学 一种双天线全双工软件无线电收发机
CN102571675A (zh) * 2012-02-07 2012-07-11 广州市香港科大霍英东研究院 一种基于物理层干扰信息的隐藏终端优化方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007295541A (ja) * 2006-03-28 2007-11-08 Matsushita Electric Ind Co Ltd 無線通信システム
US8031744B2 (en) 2009-03-16 2011-10-04 Microsoft Corporation Full-duplex wireless communications
DE112012002426T5 (de) * 2011-06-15 2014-02-27 Lg Electronics Inc. Verfahren zum Senden und Empfangen einer Dateneinheit auf der Grundlage einer Mehrfacheingabe/Mehrfachausgabesendung mit mehreren Benutzern im Uplink und eine Vorrichtung hierfür
CA2859307C (en) * 2011-12-14 2015-02-10 Redline Communications Inc. Single channel full duplex wireless communication
GB2501898A (en) * 2012-05-09 2013-11-13 Renesas Mobile Corp Simultaneous transmission of uplink and downlink data in a wireless network
EP2891265B1 (en) * 2012-08-28 2023-07-05 InterDigital Patent Holdings, Inc. Full duplex single channel communications
US9094196B2 (en) * 2012-09-07 2015-07-28 At&T Intellectual Property I, L.P. System and method for full duplex MAC designs based on backoff in frequency domain
EP3188429B1 (en) * 2014-09-19 2020-08-26 Huawei Technologies Co., Ltd. Method and apparatus for full-duplex communication in wlan system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2095516A2 (en) * 2006-11-06 2009-09-02 Nokia Corporation Analog signal path modeling for self-interference cancellation
CN102111177A (zh) * 2010-12-24 2011-06-29 重庆大学 一种双天线全双工软件无线电收发机
CN102571675A (zh) * 2012-02-07 2012-07-11 广州市香港科大霍英东研究院 一种基于物理层干扰信息的隐藏终端优化方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3188429A4 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180109397A1 (en) * 2015-04-16 2018-04-19 Telefonaktiebolaget Lm Ericsson (Publ) Carrier sensing multiple access applied on subcarriers with not full-duplex capable access points
US10862705B2 (en) * 2015-04-16 2020-12-08 Telefonaktiebolaget L M Ericsson (Publ) Carrier sense multiple access (CSMA) with frequency division multiplexing for data transmission in wireless communication
WO2018042253A3 (en) * 2016-09-02 2018-05-03 Marvell World Trade Ltd. Method and apparatus for full-duplex operation in a multipoint-to-multipoint network
EP3343825A1 (en) * 2016-12-30 2018-07-04 INTEL Corporation Communication method for measuring interference
US10091796B2 (en) 2016-12-30 2018-10-02 Intel Corporation Communication method and system
EP3614780A4 (en) * 2017-05-16 2020-04-15 Sony Corporation COMMUNICATION DEVICE AND COMMUNICATION METHOD
RU2752260C2 (ru) * 2017-05-16 2021-07-23 Сони Корпорейшн Аппаратура связи и способ связи
US11877279B2 (en) 2017-05-16 2024-01-16 Sony Corporation Communication apparatus and communication method
CN109586889A (zh) * 2017-09-28 2019-04-05 华为技术有限公司 一种数据处理方法及设备
CN109586889B (zh) * 2017-09-28 2021-10-01 华为技术有限公司 一种数据处理方法及设备
CN109600856A (zh) * 2017-10-02 2019-04-09 马维尔国际贸易有限公司 用于具有双工媒体访问控制的多用户操作的系统和方法
CN109600856B (zh) * 2017-10-02 2023-10-13 马维尔亚洲私人有限公司 用于具有双工媒体访问控制的多用户操作的系统和方法
CN109756256A (zh) * 2017-11-03 2019-05-14 华为技术有限公司 一种信道探测的方法和装置
CN109756978B (zh) * 2017-11-07 2022-04-05 华为技术有限公司 一种全双工ofdma ppdu传输方法及装置
CN109756978A (zh) * 2017-11-07 2019-05-14 华为技术有限公司 一种全双工ofdma ppdu传输方法及装置
CN111886892A (zh) * 2018-03-09 2020-11-03 华为技术有限公司 用于全双工通信的方法和系统
CN109547190B (zh) * 2019-01-28 2021-07-23 展讯通信(上海)有限公司 全双工通信方法及装置和非临时性计算机可读存储介质
CN109547190A (zh) * 2019-01-28 2019-03-29 展讯通信(上海)有限公司 全双工通信方法及装置和非临时性计算机可读存储介质
CN114303336A (zh) * 2019-08-23 2022-04-08 思科技术公司 双向和全双工通信
CN114303336B (zh) * 2019-08-23 2024-02-20 思科技术公司 双向和全双工通信

Also Published As

Publication number Publication date
US10237049B2 (en) 2019-03-19
US20190182018A1 (en) 2019-06-13
US20170195107A1 (en) 2017-07-06
CN106605394A (zh) 2017-04-26
EP3188429B1 (en) 2020-08-26
US10880068B2 (en) 2020-12-29
EP3188429A1 (en) 2017-07-05
CN106605394B (zh) 2020-10-09
EP3188429A4 (en) 2017-09-13

Similar Documents

Publication Publication Date Title
US10880068B2 (en) Full-duplex communication method in WLAN system and apparatus
US10623219B2 (en) Multi-user communication in wireless networks
JP7345739B2 (ja) Mu-mimoパケット到着前チャネル競合
JP6424396B2 (ja) D2d通信のための多重アクセススキーム及び信号構造
TWI502944B (zh) 無線通信之方法、利用無線通信系統中之反轉方向授予之裝置、無線通信裝置及電腦可讀取媒體
JP6374533B2 (ja) フレームを送信する方法及び装置
JP2016535953A (ja) 無線lanにおけるマルチユーザアップリンク受信方法及び装置
WO2017041276A1 (zh) 一种数据传输方法、终端及ran设备
JP7284925B2 (ja) パケット到着前チャネル競合
US11431444B2 (en) Communication method and system for joint downlink and uplink transmissions
US20230081745A1 (en) Preemption / interruption of an ongoing low priority ppdu
WO2017084558A1 (zh) 基于信道检测的数据传输方法及装置
JP2018519704A (ja) 省電力トリガ
WO2017049955A1 (zh) 端到端通信站点发现方法、站点及接入点
WO2023044263A1 (en) Preemption / interruption of an ongoing low priority ppdu
CN116803184A (zh) 正在进行的低优先级ppdu的抢占/中断

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14901975

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014901975

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014901975

Country of ref document: EP