WO2016039442A1 - Sealing-layer-covered photosemiconductor element production method and photosemiconductor device production method - Google Patents

Sealing-layer-covered photosemiconductor element production method and photosemiconductor device production method Download PDF

Info

Publication number
WO2016039442A1
WO2016039442A1 PCT/JP2015/075837 JP2015075837W WO2016039442A1 WO 2016039442 A1 WO2016039442 A1 WO 2016039442A1 JP 2015075837 W JP2015075837 W JP 2015075837W WO 2016039442 A1 WO2016039442 A1 WO 2016039442A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing layer
optical semiconductor
semiconductor element
layer
sealing
Prior art date
Application number
PCT/JP2015/075837
Other languages
French (fr)
Japanese (ja)
Inventor
亮太 三田
広和 松田
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2016039442A1 publication Critical patent/WO2016039442A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a method for manufacturing a sealing layer-covered optical semiconductor element and a method for manufacturing an optical semiconductor device, and more particularly to a method for manufacturing a sealing layer-covered optical semiconductor element, and a method for manufacturing an optical semiconductor device using the same.
  • an optical semiconductor device including an optical semiconductor element and a sealing layer sealed by the optical semiconductor element is known.
  • the sealing region has a predetermined thickness.
  • the sealing layer formed from has a thickness corresponding to the sealing region.
  • the compression molding machine includes a clamper, an upper clamp stopper, and a lower clamp stopper.
  • the sealing layer in the sealing region is required to have an accurate dimension capable of setting the thickness to a desired thickness.
  • the method described in Patent Document 1 has a problem in that the above-described requirement cannot be satisfied. .
  • An object of the present invention is to provide a method for manufacturing a sealing layer-covered optical semiconductor element including a sealing layer having excellent dimensional accuracy even with a small press.
  • the present invention is a method for producing a sealing layer-covered optical semiconductor element comprising an optical semiconductor element and a sealing layer that covers the optical semiconductor element, the first mold having a flat plate shape, A step of preparing a press provided with a flat plate-like second die to be disposed opposite to one die, and the first die in the press direction of the press exceeding a press position corresponding to a design thickness of the sealing layer.
  • a restricting member for restricting movement of the second mold in the press, a release layer, and a sealing provided with the sealing layer of the B stage disposed on the surface of the release layer
  • An element member comprising a base material and the optical semiconductor element disposed on the surface of the base material is between the first mold and the second mold, and the first member with respect to the sealing member
  • cover optical semiconductor element characterized by including the process of positioning the said 2nd metal mold
  • the optical semiconductor element can be sealed with a sealing layer while the configuration of the press can be simplified. Can be coated.
  • the weir member is disposed so as to surround the sealing layer when projected in the press direction, and the first mold and the second mold are brought close to each other. Therefore, in the pressing of the first mold and the second mold, it is possible to suppress the sealing layer from leaking in the direction orthogonal to the pressing direction.
  • the regulating member is disposed in the press, when the first mold and / or the second mold is positioned at the press position, the press position corresponding to the design thickness of the sealing layer is exceeded.
  • the movement of the first mold and / or the second mold in the pressing direction of the press can be restricted. Therefore, the thickness of the sealing layer can be accurately adjusted to the design thickness.
  • the weir member, the release layer, and the base material 100% or more and 120% or less with respect to the sealing layer accommodation volume obtained by subtracting the volume of the optical semiconductor element from the volume of the space partitioned by the sealing according to [1] It is a manufacturing method of a layer covering optical semiconductor element.
  • the volume ratio of the sealing layer is in a specific range, it is possible to obtain a sealing layer having excellent dimensional accuracy.
  • the present invention is characterized in that, in the step of disposing the dam member, the thickness of the dam member exceeds 100% and is 120% or less with respect to the design thickness of the sealing layer.
  • the thickness of the dam member is in a specific range, it is possible to prevent the sealing layer from leaking in the orthogonal direction while reliably compressing the dam member in the vertical direction.
  • the present invention according to any one of [1] to [3], wherein the weir member has a tensile elastic modulus at 23 ° C. of 0.3 MPa or more and 1000 MPa or less. It is a manufacturing method of a sealing layer covering optical semiconductor element.
  • the handling property of the dam member can be secured satisfactorily, while the sealing layer can be prevented from leaking in the orthogonal direction while pressing the dam member together with the sealing layer.
  • the present invention is the method for manufacturing an encapsulating layer-covered optical semiconductor element according to any one of [1] to [4], wherein the weir member contains a resin. .
  • the dam member contains a resin, a flexible dam member can be easily formed. Therefore, such a dam member can surely suppress the sealing layer from leaking from the dam member.
  • the present invention is the method for producing an encapsulating layer coated optical semiconductor element according to the above [5], wherein the resin is a silicone resin and / or a urethane resin.
  • the resin is a silicone resin and / or a urethane resin, it is possible to more reliably suppress the sealing layer from leaking from the weir member.
  • the sealing member according to the present invention a peripheral end portion of the peeling layer is exposed from the sealing layer, and in the step of disposing the dam member, the dam member is disposed on the peeling layer.
  • the dam member in the step of disposing the dam member, the dam member is placed on the peripheral end portion of the release layer, so that the first mold and the second mold are brought close to each other to seal the optical semiconductor element.
  • the weir member in the step of covering with a layer, the weir member can be easily and reliably disposed on the surface of the release layer so as to surround the sealing layer.
  • the present invention is characterized in that, in the step of arranging the dam member, an area of the sealing layer is smaller than a cross-sectional area along a direction perpendicular to the press direction of a space surrounded by the dam member.
  • the method for producing a sealing layer-coated optical semiconductor element according to any one of [1] to [7] above.
  • the dam member surrounding the space having a larger cross-sectional area than the area of the sealing layer can be easily and reliably arranged so as to surround the sealing layer.
  • the area of the sealing layer is the area of the region where the single optical semiconductor element is arranged on the substrate.
  • the optical semiconductor element is arranged such that the area of the sealing layer is disposed on the outermost side of the plurality of optical semiconductor elements in the base material.
  • the press includes a heat source, the sealing layer of the B stage has both thermoplasticity and thermosetting property, and the optical semiconductor element is covered with the sealing layer.
  • the sealing layer according to any one of the above [1] to [9], wherein the sealing layer is plasticized by heating, and then the plasticized sealing layer is thermally cured. It is a manufacturing method of a covering optical semiconductor element.
  • the sealing layer of the B stage has both thermoplasticity and thermosetting property
  • the sealing layer in the step of covering the optical semiconductor element with the sealing layer, the sealing layer is heated to be plasticized and sealed. While reliably covering the optical semiconductor element with the stop layer, the plasticized sealing layer can be thermally cured to improve the reliability of the optical semiconductor element.
  • the sealing layer contains an alkenyl group-containing polysiloxane containing two or more alkenyl groups and / or cycloalkenyl groups in the molecule, and two or more hydrosilyl groups in the molecule.
  • the alkenyl group-containing polysiloxane is represented by the following average composition formula (1): Average composition formula (1): R 1 a R 2 b SiO (4-ab) / 2 (In the formula, R 1 represents an alkenyl group having 2 to 10 carbon atoms and / or a cycloalkenyl group having 3 to 10 carbon atoms. R 2 represents an unsubstituted or substituted monovalent carbon atom having 1 to 10 carbon atoms.
  • a hydrogen group (excluding an alkenyl group and a cycloalkenyl group); a is from 0.05 to 0.50, and b is from 0.80 to 1.80.
  • the hydrosilyl group-containing polysiloxane is represented by the following average composition formula (2): Average composition formula (2): H c R 3 d SiO (4-cd) / 2 (Wherein R 3 represents an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms (excluding an alkenyl group and / or a cycloalkenyl group), and c is 0.30 or more) 1.0, and d is 0.90 or more and 2.0 or less.)
  • at least one of R 2 and R 3 includes a phenyl group
  • the product obtained by reacting the phenyl silicone resin composition is represented by the following average composition formula (3): Average composition formula (3): R 5 e SiO (4-e) / 2 (In the formula, R 5 represents an unsubstitute
  • the content ratio of the phenyl group in R 5 of the average composition formula (3) is 30 mol% or more and 55 mol% or less, according to any one of the above [1] to [10], It is a manufacturing method of this sealing layer covering optical semiconductor element.
  • the optical semiconductor The element can be securely embedded and covered.
  • the present invention is the method for producing an encapsulating layer coated optical semiconductor element according to the above [1] to [11], wherein the encapsulating layer contains a phosphor.
  • the light emitted from the optical semiconductor element has excellent dimensional accuracy, and can be wavelength-converted by the sealing layer containing the phosphor, so that the sealing layer-coated light with excellent color uniformity A semiconductor element can be obtained.
  • the present invention provides a sealing layer-covered optical semiconductor device disposed on the surface of a substrate by the method for manufacturing a sealing layer-covered optical semiconductor device according to any one of [1] to [12].
  • the substrate is a second release layer, and after the step of preparing the sealing layer-covered optical semiconductor element, the sealing layer-covered optical semiconductor element is peeled from the second release layer. And a step of mounting the optical semiconductor element of the peeled sealing layer-covered optical semiconductor element on a substrate.
  • the present invention provides an encapsulating layer-covered optical semiconductor element disposed on the surface of a substrate by the method for producing an encapsulating layer-coated optical semiconductor element according to any one of [1] to [12].
  • the base material is a substrate on which the optical semiconductor element is mounted.
  • the optical semiconductor element can be covered with the sealing layer while the configuration of the press can be simplified. Moreover, it can suppress that a sealing layer leaks in the orthogonal direction with respect to a press direction. Furthermore, the thickness of the sealing layer can be accurately adjusted to the design thickness.
  • an optical semiconductor device having excellent light emission characteristics and durability can be obtained.
  • FIG. 1A to 1C are process diagrams illustrating a method for manufacturing an optical semiconductor device according to the present invention.
  • FIG. 1A illustrates a preparation process, a spacer arrangement process, a sealing member arrangement process, a dam arrangement process, and an element member arrangement process.
  • FIG. 1B shows a covering step
  • FIG. 1C shows a step of lifting the sealing layer-covered optical semiconductor element with a dam / release layer.
  • 2D to FIG. 2F are process diagrams for explaining the method of manufacturing the optical semiconductor device of the present invention, following FIG. 1C.
  • FIG. 2D is a process of peeling the first release layer.
  • FIG. 2E is a process of peeling.
  • 2F shows a mounting process.
  • FIG. 3 shows an exploded perspective view of the press shown in FIG. 1A.
  • FIG. 4A and 4B are a bottom view and a plan view of the press shown in FIG. 1A, FIG. 4A is a bottom view of the upper mold, and FIG. 4B is a plan view of the lower mold.
  • FIG. 5 shows an enlarged cross-sectional view of the press shown in FIG. 1A.
  • FIG. 6 shows a preparation step, a spacer arrangement step, a sealing member arrangement step, a dam arrangement step, and an element member arrangement step in a modification of the method for manufacturing an optical semiconductor device of the present invention.
  • FIG. 7 shows a coating process of a modification of the method for manufacturing an optical semiconductor device of the present invention.
  • FIG. 8 shows a preparation step, a spacer arrangement step, a sealing member arrangement step, a dam arrangement step, and an element member arrangement step in a modification of the method for manufacturing an optical semiconductor device of the present invention.
  • FIG. 9 is a process diagram for explaining a modification of the manufacturing method of the optical semiconductor device.
  • FIG. 9A shows a preparation process, a spacer arrangement process, a sealing member arrangement process, a dam arrangement process, and an element member arrangement process.
  • 9C shows a step of pulling up the optical semiconductor device with a dam / peeling layer
  • FIG. 9D shows a step of separating the optical semiconductor element.
  • the up and down direction on the paper surface is the up and down direction (an example of a press direction and a thickness direction, which will be described later, the first direction), and the upper side on the paper surface is the upper side (upstream in the press direction, one side in the first direction). Is the lower side (downstream in the pressing direction, the other side in the first direction).
  • the left and right direction on the paper is the left and right direction (second direction orthogonal to the pressing direction)
  • the left side on the paper is the left side (one side in the second direction)
  • the right side on the paper is the right side (the other side in the second direction).
  • the paper thickness direction is the front-rear direction (the third direction orthogonal to the press direction and the second direction), the left side of the paper is the left side (one side in the third direction), and the right side of the paper is the right side (third).
  • Direction other side Specifically, it conforms to the direction arrow in each figure.
  • an example of the manufacturing method of the sealing layer-covered optical semiconductor element of the present invention includes an optical semiconductor element 16 and a sealing layer 13 that is covered and sealed by the optical semiconductor element 16.
  • the manufacturing method of the sealing layer-covered optical semiconductor element 10 includes a preparation process, a spacer arrangement process, a sealing member arrangement process, an element member arrangement process, a dam arrangement process, and a covering process.
  • each step will be described in detail with reference to FIGS. 1A to 5.
  • the press 1 includes a lower mold 2 as a first mold and an upper mold 3 as a second mold. Further, the press 1 includes a heater 7 as a heat source and a plurality (four) of springs 22.
  • the lower mold 2 is disposed at the lower part of the press 1 and is formed in a substantially rectangular flat plate shape extending in the left-right direction and the front-rear direction.
  • the lower mold 2 is made of a metal such as iron, stainless steel, or aluminum. As shown in FIGS. 3 and 4B, the lower mold 2 is provided with a plurality (four) of first recesses 23.
  • the plurality of (four) first recesses 23 are formed such that the upper surface of the lower mold 2 is recessed downward.
  • the plurality of (four) first recesses 23 are arranged at intervals in the front-rear direction and the left-right direction.
  • Each of the plurality (four) of first recesses 23 is arranged at each corner of the lower mold 2.
  • the upper mold 3 is configured so as to be opposed to the upper side of the lower mold 2 in the press 1.
  • the upper mold 3 is formed in the same shape as the outer shape of the lower mold 2.
  • the upper mold 3 is formed in a substantially rectangular flat plate shape extending in the left-right direction and the front-rear direction.
  • the upper mold 3 is made of the metal exemplified in the lower mold 2.
  • the upper mold 3 is provided with a plurality of (four) second recesses 25.
  • the plurality of (four) second recesses 25 are formed at the corners of the upper mold 3 so as to correspond to the plurality (four) first recesses 23 provided on the lower flat plate 4 on the lower surface of the upper mold 3. Is arranged. Specifically, the plurality (four) of the second recesses 25 are arranged so as to overlap with the plurality of (four) first recesses 23 when projected in the vertical direction. Each of the multiple (four) second recesses 25 is formed such that the lower surface of the upper mold 3 is recessed upward.
  • the upper mold 3 is configured to be pressable against the lower mold 2. Specifically, the upper mold 3 is connected to a drive unit (not shown) that can apply pressure to the lower mold 2.
  • the heater 7 is disposed on each of the lower surface of the lower mold 2 and the upper surface of the upper mold 3.
  • the heater 7 is configured to heat the lower mold 2 and the upper mold 3.
  • each of the plurality of (four) springs 22 is a pressing spring that extends in the vertical direction and is configured to be contractible in the vertical direction and has a pressing force in the vertical direction.
  • the lower end portion of the spring 22 is accommodated and fixed in the first recess 23, while the upper end portion of the spring 22 is accommodated and fixed in the second recess 25.
  • a lower mold 2 provided with a heater 7 and an upper mold 3 provided with a heater 7 are prepared.
  • the upper mold 3 is not yet arranged opposite to the upper side of the lower mold 2 and will be arranged opposite to the upper side of the lower mold 2 in the covering step as will be described later.
  • the spring 22 is not arranged in the lower mold 2 but is arranged in the lower mold 2 in the covering step.
  • Spacer placement process (Preparation of spacer)
  • a plurality (two) of spacers 4 as regulating members are prepared.
  • the plurality of (two) spacers 4 are formed in a substantially square bar (rectangular column) shape extending in the front-rear direction. As shown in FIG. 4B, each of the plurality (two) of spacers 4 is formed in a substantially rectangular shape in plan view that is long in the front-rear direction. As shown in FIGS. 3 and 5, each of the plurality (two) of spacers 4 has a cross-sectional shape when cut in the left-right direction and the vertical direction, and a cross-sectional shape when cut in the front-rear direction and the vertical direction. It is formed in a substantially rectangular shape.
  • the spacer 4 is made of a material having mechanical strength, wear resistance, and heat resistance.
  • a material having mechanical strength, wear resistance, and heat resistance.
  • a material include metals such as iron, stainless steel, and aluminum, such as polyphenylene sulfide (PPS).
  • PPS polyphenylene sulfide
  • PAR Polyarylate
  • PAI Polyamideimide
  • PEI Polyetherimide
  • PEEK Polyetheretherketone
  • PSF Polysulfone
  • PES Polyethersulfone
  • a metal specifically, a metal of the lower mold 2 and the upper mold 3 is used.
  • the length in the front-rear direction of each of the plurality (two) of spacers 4 is adjusted to the length over the front end portion and the rear end portion of the lower mold 2.
  • the length (width) of each of the plurality (two) of spacers 4 is, for example, 3 mm or more, preferably 10 mm or more, and for example, 100 mm or less, preferably 50 mm or less.
  • the vertical length T1 (thickness T1) of each of the plurality (two) of spacers 4 is a thickness corresponding to a design thickness T0 (see FIG. 1B) of a sealing layer 13 to be described later. Specifically, the thickness is appropriately set according to the design thickness T0 of the sealing layer 13 (see FIG.
  • the thickness T1 of each of the plurality (two) of spacers 4 is, for example, 50 ⁇ m or more, preferably 100 ⁇ m or more, and for example, 5000 ⁇ m or less, preferably 1000 ⁇ m or less.
  • the prepared plural (two) spacers 4 are arranged on the upper surface of the lower mold 2. Specifically, each of the plurality (two) of spacers 4 is placed on each of both ends of the upper die 2 in the left-right direction.
  • Sealing member placement process> (Preparation of sealing member) In the sealing member arranging step, as shown in FIG. 3, first, the sealing member 11 is prepared.
  • the sealing member 11 is formed in a substantially rectangular flat plate shape extending in the front-rear direction and the left-right direction.
  • the sealing member 11 includes a first release layer 12 as a release layer and a B-stage seal layer 13 disposed on the upper surface (surface) of the first release layer 13.
  • the sealing member 11 preferably includes only the first release layer 12 and the sealing layer 13.
  • the back surface of the sealing layer 13 (the bottom surface in FIG. The upper surface in 2D is detachably attached. That is, the first release layer 12 covers the back surface (the lower surface in FIG. 1A and the upper surface in FIG. 2D) of the sealing layer 13 when the sealing member 11 is shipped, transported, and stored.
  • the 1st peeling layer 12 consists only of a flexible film. Moreover, the sticking surface (the lower surface in FIG. 1A) of the first release layer 12, that is, the contact surface with respect to the sealing layer 13 is subjected to a release treatment such as a fluorine treatment if necessary.
  • the first release layer 12 has a flat plate shape along the left-right direction and the front-rear direction, and specifically, is formed in a substantially rectangular shape in plan view that is long in the left-right direction.
  • Examples of the material for forming the first release layer 12 include a thermoplastic resin.
  • the thermoplastic resin include a styrene resin such as polystyrene, an olefin resin such as polyethylene and polypropylene, a polyester resin such as PET, an acrylic resin such as an acrylic resin, such as a fluorine resin, and the like.
  • examples thereof include thermoplastic silicone resins.
  • a polyester resin is used.
  • the softening temperature of the 1st peeling layer 12 is 40 degreeC or more, for example, Preferably, it is 60 degreeC or more, for example, is 150 degrees C or less, Preferably, it is 100 degrees C or less.
  • the area S2 of the first release layer 12 is formed larger than the area S1 of the sealing layer 13.
  • the thickness T2 of the first release layer 12 is, for example, 20 ⁇ m or more, preferably 30 ⁇ m or more, more preferably 50 ⁇ m or more, from the viewpoint of rigidity, flexibility, handling properties, and cost reduction. In addition, for example, it is 200 ⁇ m or less, preferably 100 ⁇ m or less.
  • the sealing layer 13 has a flat plate shape, specifically, has a predetermined thickness, extends in the front-rear direction and the left-right direction, and has a flat upper surface and a flat lower surface. Yes.
  • the outer shape of the sealing layer 13 is smaller than the outer shape of the first release layer 12, and the peripheral ends (front end, rear end, left end, and right end of the upper surface of the first release layer 12 are formed. ) In the front-rear direction and the center in the left-right direction of the upper surface of the first release layer 12 so as to be exposed.
  • the sealing layer 13 is not a sealing layer-covered optical semiconductor element 10 (see FIG. 2E) and an optical semiconductor device 30 (see FIG. 2F), which will be described later, but the sealing layer-covered optical semiconductor element 10 and the optical semiconductor device 30.
  • One component that is, a component for producing the sealing layer-covered optical semiconductor element 10 and the optical semiconductor device 30, and is configured without including the optical semiconductor element 16 and the substrate 20 on which the optical semiconductor element 16 is mounted. .
  • the sealing member 11 including the first release layer 12 and the sealing layer 13 is a device that can be used industrially by distributing components alone.
  • the sealing layer 13 is formed in a sheet form from a B-stage sealing composition.
  • the sealing composition contains, for example, a sealing resin as an essential component.
  • the sealing resin is a transparent resin, and specifically includes a curable resin such as a thermosetting resin or a photocurable resin, and preferably includes a thermosetting resin.
  • thermosetting resin examples include a two-stage reaction curable resin and a one-stage reaction curable resin.
  • the two-stage reaction curable resin has two reaction mechanisms.
  • the A stage state is changed to the B stage (semi-cured), and then in the second stage reaction, the B stage state is obtained.
  • C-stage complete curing
  • the two-stage reaction curable resin is a thermosetting resin that can be in a B-stage state under appropriate heating conditions.
  • the B stage state is a state between the A stage state in which the thermosetting resin is in a liquid state and the C stage state in which the thermosetting resin is completely cured, and curing and gelation proceed slightly, and the elastic modulus is C.
  • a semi-solid or solid state smaller than the elastic modulus in the stage state.
  • the first-stage reaction curable resin has one reaction mechanism, and can be C-staged (completely cured) from the A-stage state by the first-stage reaction. However, in the first stage reaction curable resin, the reaction stops in the middle of the first stage reaction, and can be changed from the A stage state to the B stage state. Is resumed, and includes a thermosetting resin that can be converted into a C stage (completely cured) from the B stage state. That is, such a thermosetting resin is a thermosetting resin that can be in a B-stage state.
  • sealing resin examples include silicone resin, urethane resin, epoxy resin, polyimide resin, phenol resin, urea resin, melamine resin, and unsaturated polyester resin.
  • a silicone resin is used.
  • silicone resin examples include addition reaction curable silicone resin compositions, condensation reaction / addition reaction curable silicone resins, and the like. Silicone resins may be used alone or in combination.
  • the addition reaction curable silicone resin composition is a one-step reaction curable resin and contains, for example, an alkenyl group-containing polysiloxane, a hydrosilyl group-containing polysiloxane, and a hydrosilylation catalyst.
  • the alkenyl group-containing polysiloxane contains two or more alkenyl groups and / or cycloalkenyl groups in the molecule.
  • the alkenyl group-containing polysiloxane is specifically represented by the following average composition formula (1).
  • R 1 a R 2 b SiO (4-ab) / 2 (In the formula, R 1 represents an alkenyl group having 2 to 10 carbon atoms and / or a cycloalkenyl group having 3 to 10 carbon atoms. R 2 represents an unsubstituted or substituted monovalent carbon atom having 1 to 10 carbon atoms.
  • a hydrogen group (excluding an alkenyl group and a cycloalkenyl group); a is from 0.05 to 0.50, and b is from 0.80 to 1.80.
  • examples of the alkenyl group represented by R 1 include alkenyl having 2 to 10 carbon atoms such as vinyl, allyl, propenyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl and the like. Groups.
  • examples of the cycloalkenyl group represented by R 1 include a cycloalkenyl group having 3 to 10 carbon atoms such as a cyclohexenyl group and a norbornenyl group.
  • R 1 is preferably an alkenyl group, more preferably an alkenyl group having 2 to 4 carbon atoms, and still more preferably a vinyl group.
  • the alkenyl groups represented by R 1 may be the same type or a plurality of types.
  • the monovalent hydrocarbon group represented by R 2 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms other than an alkenyl group and a cycloalkenyl group.
  • Examples of the unsubstituted monovalent hydrocarbon group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, a hexyl group, and a pentyl group.
  • Alkyl groups having 1 to 10 carbon atoms such as heptyl group, octyl group, 2-ethylhexyl group, nonyl group and decyl group, for example, cyclohexane having 3 to 6 carbon atoms such as cyclopropyl, cyclobutyl group, cyclopentyl group and cyclohexyl group.
  • alkyl groups such as aryl groups having 6 to 10 carbon atoms such as phenyl, tolyl and naphthyl groups, and aralkyl groups having 7 to 8 carbon atoms such as benzyl and benzylethyl groups.
  • Preferred examples include an alkyl group having 1 to 3 carbon atoms and an aryl group having 6 to 10 carbon atoms, and more preferred examples include a methyl group and / or a phenyl group.
  • examples of the substituted monovalent hydrocarbon group include those obtained by substituting a hydrogen atom in the above-mentioned unsubstituted monovalent hydrocarbon group with a substituent.
  • substituents examples include a halogen atom such as a chlorine atom, such as a glycidyl ether group.
  • substituted monovalent hydrocarbon group examples include a 3-chloropropyl group and a glycidoxypropyl group.
  • the monovalent hydrocarbon group may be unsubstituted or substituted, and is preferably unsubstituted.
  • the monovalent hydrocarbon groups represented by R 2 may be of the same type or a plurality of types.
  • a methyl group and / or a phenyl group are mentioned, More preferably, combined use of a methyl group and a phenyl group is mentioned.
  • A is preferably 0.10 or more and 0.40 or less.
  • B is preferably 1.5 or more and 1.75 or less.
  • the weight average molecular weight of the alkenyl group-containing polysiloxane is, for example, 100 or more, preferably 500 or more, and for example, 10,000 or less, preferably 5000 or less.
  • the weight average molecular weight of the alkenyl group-containing polysiloxane is a conversion value based on standard polystyrene measured by gel permeation chromatography.
  • the alkenyl group-containing polysiloxane is prepared by an appropriate method, and a commercially available product can also be used.
  • alkenyl group-containing polysiloxane may be of the same type or a plurality of types.
  • the hydrosilyl group-containing polysiloxane contains, for example, two or more hydrosilyl groups (SiH groups) in the molecule.
  • the hydrosilyl group-containing polysiloxane is represented by the following average composition formula (2).
  • composition formula (2) H c R 3 d SiO (4-cd) / 2 (Wherein R 3 represents an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms (excluding an alkenyl group and / or a cycloalkenyl group), and c is 0.30 or more) 1.0, and d is 0.90 or more and 2.0 or less.)
  • R 3 represents an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms (excluding an alkenyl group and / or a cycloalkenyl group), and c is 0.30 or more) 1.0, and d is 0.90 or more and 2.0 or less.
  • R 3 represents an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms (excluding an alkenyl group and / or a cycloalkenyl group), and c is 0.30 or more) 1.0, and d is 0.90 or more and 2.0 or less.)
  • an unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms more preferably an alkyl group having 1 to 10 carbon atoms, and an aryl group having 6 to 10 carbon atoms, more preferably a methyl group. And / or a phenyl group.
  • C is preferably 0.5 or less.
  • D is preferably 1.3 or more and 1.7 or less.
  • the weight average molecular weight of the hydrosilyl group-containing polysiloxane is, for example, 100 or more, preferably 500 or more, and for example, 10,000 or less, preferably 5000 or less.
  • the weight average molecular weight of the hydrosilyl group-containing polysiloxane is a conversion value based on standard polystyrene measured by gel permeation chromatography.
  • the hydrosilyl group-containing polysiloxane is prepared by an appropriate method, and a commercially available product can also be used.
  • hydrosilyl group-containing polysiloxane may be of the same type or a plurality of types.
  • At least one of the hydrocarbon groups R 2 and R 3 include a phenyl group, preferably a carbide in both R 2 and R 3 Hydrogen contains a phenyl group.
  • the addition reaction curable silicone resin composition is a phenyl silicone resin composition.
  • the blending ratio of the hydrosilyl group-containing polysiloxane is the ratio of the number of moles of alkenyl groups and cycloalkenyl groups of the alkenyl group-containing polysiloxane to the number of moles of hydrosilyl groups of the hydrosilyl group-containing polysiloxane (number of moles of alkenyl groups and cycloalkenyl groups). / Number of moles of hydrosilyl group) is adjusted to be, for example, 1/30 or more, preferably 1/3 or more, and for example, 30/1 or less, preferably 3/1 or less.
  • the hydrosilylation catalyst is a substance (addition catalyst) that improves the reaction rate of the hydrosilylation reaction (hydrosilyl addition) between the alkenyl group and / or cycloalkenyl group of the alkenyl group-containing polysiloxane and the hydrosilyl group of the hydrosilyl group-containing polysiloxane. If it exists, it will not specifically limit, For example, a metal catalyst is mentioned. Examples of the metal catalyst include platinum catalysts such as platinum black, platinum chloride, chloroplatinic acid, platinum-olefin complexes, platinum-carbonyl complexes, and platinum-acetyl acetate, such as palladium catalysts such as rhodium catalyst.
  • the blending ratio of the hydrosilylation catalyst is, for example, 1.0 ppm or more on a mass basis with respect to the alkenyl group-containing polysiloxane and the hydrosilyl group-containing polysiloxane as the metal amount of the metal catalyst (specifically, metal atom).
  • Yes for example, 10000 ppm or less, preferably 1000 ppm or less, and more preferably 500 ppm or less.
  • the addition reaction curable silicone resin composition is prepared by blending an alkenyl group-containing polysiloxane, a hydrosilyl group-containing polysiloxane, and a hydrosilylation catalyst in the above-described proportions.
  • the above addition reaction curable silicone resin composition is prepared as an A stage (liquid) state by blending an alkenyl group-containing polysiloxane, a hydrosilyl group-containing polysiloxane, and a hydrosilylation catalyst, and then the reaction is stopped midway. By doing so, it is prepared as a B stage (liquid) state.
  • the addition reaction curable silicone resin composition can be obtained by hydrosilylation of an alkenyl group and / or cycloalkenyl group of an alkenyl group-containing polysiloxane with a hydrosilyl group of a hydrosilyl group-containing polysiloxane by heating under desired conditions. Then, the hydrosilylation addition reaction is once stopped. As a result, the A stage state can be changed to the B stage (semi-cured) state. Thereafter, the above-described hydrosilylation addition reaction is resumed and completed by heating under further desired conditions. As a result, the B stage state can be changed to the C stage (fully cured) state.
  • addition reaction curable silicone resin composition when in a B stage (semi-cured) state, it is solid.
  • the B-stage addition reaction curable silicone resin composition can have both thermoplasticity and thermosetting properties. That is, the B-stage addition reaction curable silicone resin composition is once plasticized by heating and then completely cured.
  • the condensation / addition reaction curable silicone resin composition is a two-stage reaction curable resin, and specifically, for example, those described in JP 2010-265436 A, JP 2013-187227 A, and the like. 1 to 8 condensation / addition reaction curable silicone resin compositions, for example, JP 2013-091705 A, JP 2013-001815 A, JP 2013-001814 A, JP 2013-001813 A, Examples thereof include a cage-type octasilsesquioxane-containing silicone resin composition described in JP2012-102167A.
  • the condensation / addition reaction curable silicone resin composition is solid and has both thermoplasticity and thermosetting properties.
  • a methyl silicone resin composition in which all alkyl groups directly bonded to silicon atoms are methyl groups two-stage reaction curable methyl silicone resin composition
  • Specific examples include a methyl silicone resin composition prepared from silanol-type polydimethylsiloxane at both ends, dimethylpolysiloxane-CO-methylhydrogensiloxane, and an alkenyl group-containing silicon compound.
  • the condensation / addition reaction curable silicone resin composition is prepared from a stage A state to a stage B (semi-cured) state by causing a condensation reaction by heating.
  • the condensation / addition reaction curable silicone resin composition in the B stage state can then undergo an addition reaction by further heating to be in the C stage (fully cured) state.
  • thermosetting resin from the viewpoint of durability and optical properties, a one-step reaction curable resin, specifically, an addition reaction curable silicone resin composition can be mentioned, and more preferably, a phenyl silicone resin composition. Is mentioned.
  • the refractive index of the sealing resin is, for example, 1.50 or more and, for example, 1.60 or less.
  • the refractive index of the sealing resin is calculated by an Abbe refractometer.
  • the refractive index of the sealing resin is the refraction between the curable resin of the B stage and the curable resin of the C stage (corresponding to a product described later) when the sealing resin is a curable resin of the B stage. Since the rate is substantially the same, it is calculated as the refractive index of the C-stage curable resin.
  • the blending ratio of the sealing resin is, for example, 20% by mass or more, preferably 25% by mass or more, and, for example, 70% by mass or less, preferably 50% by mass or less, with respect to the sealing composition. More preferably, it is less than 50 mass%, More preferably, it is 40 mass% or less, Most preferably, it is 30 mass% or less. If the compounding ratio of the sealing resin is within the above range, the moldability of the sealing layer 13 can be ensured.
  • the sealing composition can also contain, for example, a filler and / or a phosphor.
  • the filler is blended in the sealing composition as necessary in order to improve the moldability of the sealing layer 13 (see FIG. 1A). Specifically, the filler is blended in the sealing resin before the reaction (specifically, the A stage). It does not specifically limit as a filler, For example, an inorganic filler and an organic filler are mentioned. These can be used alone or in combination.
  • the inorganic filler examples include silica (SiO 2 ), talc (Mg 3 (Si 4 O 10 ) (HO) 2 ), alumina (Al 2 O 3 ), boron oxide (B 2 O 3 ), calcium oxide (CaO). ), Zinc oxide (ZnO), strontium oxide (SrO), magnesium oxide (MgO), zirconium oxide (ZrO 2 ), barium oxide (BaO), antimony oxide (Sb 2 O 3 ), and other oxides such as aluminum nitride Examples thereof include inorganic particles (inorganic materials) such as nitrides such as (AlN) and silicon nitride (Si 3 N 4 ). Moreover, as an inorganic filler, the composite inorganic particle prepared from the inorganic substance illustrated above is mentioned, for example, Preferably, the composite inorganic oxide particle (specifically glass particle etc.) prepared from an oxide is mentioned. .
  • the composite inorganic oxide particles include, for example, silica, or silica and boron oxide as main components, and alumina, calcium oxide, zinc oxide, strontium oxide, magnesium oxide, zirconium oxide, barium oxide, antimony oxide, and the like. Is contained as a minor component.
  • the content ratio of the main component in the composite inorganic oxide particles is, for example, more than 40% by mass, preferably 50% by mass or more, and for example, 90% by mass or less, preferably with respect to the composite inorganic oxide particles. Is 80 mass% or less.
  • the content ratio of the subcomponent is the remainder of the content ratio of the main component described above.
  • the composite oxide particles are blended with the main component and subcomponents described above, heated and melted, rapidly cooled, and then pulverized by, for example, a ball mill or the like. It is obtained by applying surface processing (specifically, spheroidization, etc.).
  • organic fillers examples include silicone resins, acrylic resins, styrene resins, acrylic-styrene resins, silicone resins, polycarbonate resins, benzoguanamine resins, polyolefin resins, polyester resins, polyamide resins, and polyimides.
  • resin particles made of a resin Preferably, silicone particles made of a silicone resin are used.
  • the silicone particles are fine particles of polysiloxane (after curing) having a crosslinked structure, and the refractive index thereof approximates the refractive index of the curable resin after curing in the sealing composition.
  • the filler is preferably an inorganic filler.
  • the shape of the filler is not particularly limited, and examples thereof include a spherical shape, a plate shape, and a needle shape.
  • spherical shape is mentioned from a fluid viewpoint.
  • the average particle diameter of the filler is, for example, 10 ⁇ m or more, preferably 15 ⁇ m or more, and for example, 50 ⁇ m or less, preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less, and further preferably 25 ⁇ m or less.
  • the average particle diameter of the filler is calculated as a D50 value. Specifically, it is measured by a laser diffraction particle size distribution meter.
  • the refractive index of the filler is, for example, 1.40 or more, preferably 1.50 or more, more preferably 1.52 or more, and for example, 1.60 or less, preferably 1.58. It is as follows. If the refractive index of the filler is within the above range, the difference from the refractive index of the sealing resin described above can be made within the desired range. That is, the absolute value of the difference in refractive index between the sealing resin and the filler can be reduced, and therefore the transparency of the sealing layer 13 can be improved.
  • the refractive index of the filler is calculated by an Abbe refractometer.
  • the blending ratio of the filler is, for example, 20% by mass or more, preferably 25% by mass or more, more preferably 30% by mass or more, and further preferably 40% by mass or more with respect to the sealing composition. For example, it is 80 mass% or less, Preferably, it is 60 mass% or less. Further, the blending ratio of the filler is, for example, 25 parts by mass or more, preferably 33.3 parts by mass or more, more preferably 42.8 parts by mass or more with respect to 100 parts by mass of the sealing resin. For example, it is 400 parts by mass or less, preferably 150 parts by mass or less.
  • the blending ratio of the filler is within the above range, excellent moldability of the sealing layer 13 with the filler can be ensured.
  • the phosphor has a wavelength conversion function, and examples thereof include a yellow phosphor capable of converting blue light into yellow light, and a red phosphor capable of converting blue light into red light.
  • yellow phosphor examples include silicate phosphors such as (Ba, Sr, Ca) 2 SiO 4 : Eu, (Sr, Ba) 2 SiO 4 : Eu (barium orthosilicate (BOS)), for example, Y 3 Al Garnet-type phosphors having a garnet-type crystal structure such as 5 O 12 : Ce (YAG (yttrium, aluminum, garnet): Ce), Tb 3 Al 3 O 12 : Ce (TAG (terbium, aluminum, garnet): Ce) Examples thereof include oxynitride phosphors such as Ca- ⁇ -SiAlON.
  • silicate phosphors such as (Ba, Sr, Ca) 2 SiO 4 : Eu, (Sr, Ba) 2 SiO 4 : Eu (barium orthosilicate (BOS)
  • Y 3 Al Garnet-type phosphors having a garnet-type crystal structure such as 5 O 12 : Ce (YAG (yttrium, aluminum, garnet): Ce
  • red phosphor examples include nitride phosphors such as CaAlSiN 3 : Eu and CaSiN 2 : Eu.
  • Examples of the shape of the phosphor include a spherical shape, a plate shape, and a needle shape.
  • spherical shape is mentioned from a fluid viewpoint.
  • the average value of the maximum length of the phosphor (in the case of a sphere, the average particle diameter) is, for example, 0.1 ⁇ m or more, preferably 1 ⁇ m or more, and for example, 200 ⁇ m or less, preferably 100 ⁇ m or less. But there is.
  • the specific gravity of the phosphor is, for example, 2.0 or more, and, for example, 9.0 or less.
  • Fluorescent substances can be used alone or in combination.
  • the blending ratio of the phosphor is, for example, 0.1 parts by mass or more, preferably 0.5 parts by mass or more, for example, 80 parts by mass or less, preferably 50 parts by mass with respect to 100 parts by mass of the sealing resin. Or less.
  • a sealing composition containing the above-described sealing resin and, if necessary, a filler and / or a phosphor is prepared. Specifically, a sealing composition containing an A-stage sealing resin and, if necessary, a filler and / or a phosphor is prepared.
  • a sealing resin and, if necessary, a filler and / or a phosphor are mixed at the above-described blending ratio.
  • a sealing composition in which a filler is dispersed in a sealing resin is prepared as a varnish.
  • the viscosity of the varnish at 25 ° C. is, for example, 1,000 mPa ⁇ s or more, preferably 4,000 mPa ⁇ s or more, and, for example, 1,000,000 mPa ⁇ s or less, preferably 200,000 mPa ⁇ s. It is as follows. The viscosity is measured by adjusting the temperature of the varnish to 25 ° C. and using an E-type cone.
  • varnish is applied to the surface (upper surface) of the first release layer 12.
  • a coating device such as a dispenser, an applicator, or a slit die coater is used.
  • the varnish is applied in a pattern that exposes the peripheral edge of the upper surface of the first release layer 12.
  • a coating film is formed by applying the varnish to the first release layer 12.
  • the coating film is semi-cured. That is, the A stage coating film is changed to the B stage.
  • the curable resin is a thermosetting resin
  • the coating film is heated.
  • the heating temperature is 70 ° C. or higher, preferably 80 ° C. or higher, and 120 ° C. or lower, preferably 100 ° C. or lower. If heating temperature is the said range, curable resin can be reliably made into B stage.
  • the heating time is, for example, 5 minutes or more, preferably 8 minutes or more, and for example, 30 minutes or less, preferably 20 minutes or less.
  • the coating film is irradiated with ultraviolet rays.
  • the coating film is irradiated with ultraviolet rays using a UV lamp or the like.
  • the hydrosilylation reaction (addition reaction) between the alkenyl group and / or cycloalkenyl group and the hydrosilyl group proceeds halfway and is temporarily stopped. To do.
  • the condensation reaction is completed.
  • the sealing layer 13 (or coating film) is repelled from the first release layer 12, and therefore the sealing layer 13 aggregates in a plan view, and in a plan view. The area becomes smaller. As a result, the sealing layer 13 tends to increase in thickness. On the other hand, when the sealing layer 13 becomes a B stage by heating, the sealing layer 13 tends to shrink with heating, and in particular, tends to become thinner in the thickness direction. For this reason, the increase in thickness due to repelling of the sealing layer 13 from the first release layer 12 cancels out the decrease in thickness due to heat shrinkage, and the thickness of the sealing layer 13 does not change substantially. .
  • the sealing member 11 including the first peeling layer 12 and the sealing layer 13 laminated on the first peeling layer 12 is obtained.
  • fillers and / or phosphors blended as necessary are uniformly dispersed in the silicone resin composition as a matrix.
  • the sealing layer 13 in a semi-cured (B stage) state has flexibility, and after being in a semi-cured (B stage) state, it is in a fully cured (C stage) state to be described later (that is, A C stage product) is possible.
  • the B-stage sealing layer 13 preferably has both plasticity and curability when having both plasticity and curability. More preferably, the B-stage sealing layer 13 has both thermoplasticity and thermosetting properties. That is, the sealing layer 13 of the B stage can be cured after being plasticized once by heating.
  • the thermoplastic temperature of the sealing layer 13 is, for example, 40 ° C. or more, preferably 60 ° C. or more, and for example, 120 ° C. or less, preferably 100 ° C. or less.
  • the thermoplastic temperature is a temperature at which the sealing layer 13 exhibits thermoplasticity. Specifically, it is a temperature at which the sealing resin of the B stage is softened by heating, and is substantially the same as the softening temperature. .
  • the thermosetting temperature of the sealing layer 13 is, for example, 100 ° C. or more, preferably 120 ° C. or more, and for example, 150 ° C. or less.
  • the thermosetting temperature is a temperature at which the B-stage sealing layer 13 exhibits thermosetting properties, and specifically, a temperature at which the plasticized sealing layer 13 is completely cured by heating to become a solid state. .
  • the B-stage sealing layer 13 (the sealing layer 13 formed from the sealing composition containing the B-stage sealing resin) has a shear storage elastic modulus G ′ of 80 ° C., for example, 3 Pa or more, preferably 12 Pa or more, and for example, 140 Pa or less, preferably 70 Pa or less. If the shear storage modulus G ′ at 80 ° C. of the sealing layer 13 is not more than the above upper limit, it is possible to effectively prevent the optical semiconductor element 16 from being damaged when the optical semiconductor element 16 described below is sealed. it can. On the other hand, if the shear storage elastic modulus G ′ at 80 ° C.
  • the sealing layer 13 is equal to or higher than the lower limit, good shape retention of the sealing layer 13 when sealing the optical semiconductor element 16 is ensured, and the sealing layer 13 is sealed.
  • the handleability of the stop layer 13 can be improved.
  • the 80 degreeC shear storage elastic modulus G 'of the sealing layer 13 is more than the said minimum, the thickness uniformity of the sealing layer 13 can be ensured, and it can adjust to desired thickness.
  • the shear storage modulus G ′ at 80 ° C. of the sealing layer 13 is obtained by dynamic viscoelasticity measurement under the conditions of a frequency of 1 Hz, a temperature rising rate of 20 ° C./min, and a temperature range of 20 to 150 ° C.
  • the transmittance of the sealing layer 13 with respect to light having a wavelength of 460 nm when the thickness is 600 ⁇ m is, for example, 70% or more, preferably 80% or more, more preferably 90% or more, and still more preferably 95% or more. For example, it is 100% or less. If the transmittance is equal to or higher than the lower limit, the light emitted from the optical semiconductor element 16 can be sufficiently transmitted after the optical semiconductor element 16 is sealed.
  • the transmittance of the sealing layer 13 is measured using, for example, an integrating sphere.
  • the dimension of the sealing layer 13 is adjusted so that the volume ratio of the sealing layer 13 described later falls within a desired range.
  • the length in the front-rear direction and the length in the left-right direction of the sealing layer 13 are appropriately set depending on the number, dimensions, arrangement, and the like of the optical semiconductor elements 16.
  • the area S1 of the sealing layer 13 is, for example, 95% or less, preferably 90% or less, and more preferably 85% or less, with respect to the area S2 of the first release layer 12. For example, it is 10% or more.
  • the thickness T4 of the sealing layer 13 is thicker (ie, T4 than the thickness T1 of the spacer 4 minus the thickness T2 of the first release layer 12 (T1-T2)). > (T1-T2)). Therefore, the sealing layer 13 can be reliably compressed in the up-down direction in the press of the next coating process.
  • the thickness T4 of the sealing layer 13 is, for example, more than 100%, preferably 102%, of the thickness T1 of the spacer 4 minus the thickness T2 of the first release layer 12 (T1-T2). As mentioned above, More preferably, it is 105% or more, for example, 120% or less.
  • the thickness T4 of the sealing layer 13 is, for example, 50 ⁇ m or more, preferably 100 ⁇ m or more, and for example, 1500 ⁇ m or less, preferably 800 ⁇ m or less.
  • the sealing layer 13 is accurately compressed in the vertical direction by pressing in the covering step, and the thickness T6 of the sealing layer 13 is adjusted to the design thickness T0 with accuracy. can do.
  • the prepared sealing member 11 is arranged on the upper surface of the lower mold 2 so that the sealing layer 13 faces upward.
  • the first release layer 12 is disposed on the upper surface of the lower mold 2 between the plural (two) spacers 4.
  • the sealing member 11 is disposed so as to be sandwiched between a plurality (two) of spacers 4.
  • the sealing member 11 is disposed such that the right end portion of the first release layer 12 is spaced apart on the left side of the left side surface of the spacer 4 disposed on the right side, and the left end of the first release layer 12 The portion is disposed on the upper surface of the lower mold 2 so as to be disposed at a right interval on the right side of the right side surface of the spacer 4 disposed on the left side.
  • Dam placement process (Preparation of dam)
  • a dam 5 as a dam member is prepared as shown in FIG.
  • the dam 5 is formed in a substantially rectangular frame shape in plan view corresponding to the outer shape of the sealing layer 13. Specifically, as shown in FIG. 4B, the outer shape of the dam 5 is formed to be slightly smaller than the outer shape of the first release layer 12. An opening 8 that penetrates the dam 5 in the vertical direction is formed at the center of the dam 5. The opening 8 is formed in a substantially rectangular shape in plan view corresponding to the outer shape of the sealing layer 13.
  • the dam 5 extends in the left-right direction and is disposed opposite to each other with an interval in the front-rear direction, and the two second dam parts connecting the two left-right ends of the two first dam parts 5A. 5B in an integrated manner.
  • Examples of the material of the dam 5 include resin, resin-impregnated glass cloth, metal, and the like. These can be used alone or in combination.
  • the resin examples include a thermosetting resin and a thermoplastic resin.
  • a thermosetting resin is used.
  • thermosetting resin is exemplified by a thermosetting resin that can be in the B-stage state exemplified in the sealing layer 13, and preferably a condensation reaction / addition reaction curing type described in JP 2010-265436 A
  • thermosetting resin composition two-stage reaction curable resin
  • phenyl-based silicone resin composition additional reaction curable silicone resin composition, one-stage reaction curable resin
  • thermosetting resin a one-stage reaction curable resin that cannot be in a B-stage state is also exemplified.
  • the one-stage reaction curable resin preferably, it cannot be controlled to stop in the middle of the one-stage reaction, that is, cannot enter the B stage state, and is changed from the A stage state to the C stage at once (completely An addition reaction curable silicone resin that cures) may be mentioned.
  • an addition reaction curable silicone resin for example, an alkenyl group-containing polysiloxane represented by the above average composition formula (1), a hydrosilyl group-containing polysiloxane represented by the above average composition formula (2), and One-step reaction-curable methyl silicone resin composition containing the hydrosilylation catalyst described above can be mentioned.
  • an alkenyl group-containing polysiloxane represented by the above average composition formula (1) a hydrosilyl group-containing polysiloxane represented by the above average composition formula (2)
  • One-step reaction-curable methyl silicone resin composition containing the hydrosilylation catalyst described above can be mentioned.
  • both the hydrocarbons of R 2 and R 3 are methyl groups.
  • a commercially available product is used for the one-step reaction-curable methyl silicone resin composition.
  • ELASTOSIL series manufactured by Asahi Kasei Wacker Silicone Co., specifically, methyl silicone resin compositions such as ELASTOSIL LR7665
  • KER series manufactured by Shin-Etsu Silicone Co., Ltd.
  • the resin may be prepared as a resin composition in which a filler is blended.
  • the resin may be prepared as a silicone resin composition in which an organic filler is blended in a silicone resin.
  • glass cloth is impregnated with the above-described resin, and examples thereof include glass / epoxy resin in which glass cloth is impregnated with epoxy resin.
  • Examples of the metal include iron, stainless steel, and aluminum.
  • the material of the dam 5 is preferably a resin and a resin-impregnated glass cloth from the viewpoint of imparting flexibility to the dam 5, more preferably a resin, and still more preferably a silicone resin and a urethane resin. Particularly preferred is a silicone resin.
  • the tensile elastic modulus at 23 ° C. of the dam 5 is, for example, 0.3 MPa or more, preferably 1 MPa or more, more preferably 2 MPa or more, and 1000 MPa or less, preferably 500 MPa or less.
  • the handling property of the dam 5 can be secured satisfactorily.
  • the thickness T6 of the sealing layer 13 can be accurately adjusted to the design thickness T0 while the dam 5 is compressed (pressed) together with the sealing layer 13. .
  • the tensile elastic modulus at 23 ° C. of the dam 5 is measured based on JIS K7161-1994.
  • the breaking elongation of the dam 5 is, for example, 1% or more, preferably 10% or more, more preferably 100% or more, still more preferably 200% or more, and 1000% or less, preferably 500% or less. More preferably, it is 400% or less.
  • the thickness T6 of the sealing layer 13 can be adjusted to the design thickness T0. If the breaking elongation of the dam 5 is not less than the above lower limit, the handling property of the dam 5 can be ensured satisfactorily.
  • the breaking elongation of the dam 5 is measured based on JIS K7161-1994.
  • the width (length in the front-rear direction) of the first dam part 5A and the width (length in the left-right direction) of the second dam part 5B are, for example, 1 mm or more, preferably 2 mm or more, and for example, 10 mm or less, preferably Is 5 mm or less.
  • Each of the front-rear direction length and the left-right direction length of the opening 8 is, for example, more than 100%, preferably 102% or more, with respect to each of the front-rear direction length and the left-right direction length of the sealing layer 13. More preferably, it is 105% or more, for example, 200% or less.
  • the opening cross-sectional area S8 along the front-rear direction and the left-right direction in the opening 8 of the dam 5 is formed larger than the area S1 of the sealing layer 13.
  • the area S1 of the sealing layer 13 is smaller than the opening cross-sectional area S8 of the opening 8 of the dam 5, and is, for example, less than 100% with respect to the opening cross-sectional area S8 of the opening 8 of the dam 5.
  • it is 95% or less, more preferably 90% or less, and for example, 50% or more.
  • the thickness T3 of the dam 5 is thicker than the thickness T4 of the sealing layer 13 (that is, T3> T4), and exceeds 100% of the thickness T4 of the sealing layer 13, for example, Preferably, it is 102% or more, more preferably 105% or more, and for example, 120% or less. As will be described later, the thickness T3 of the dam 5 is formed to be thicker than the design thickness T0 (see FIG. 1B) of the sealing layer 13 (T3> T0).
  • the thickness T3 of the dam 5 is, for example, 100 ⁇ m or more, preferably 200 ⁇ m or more, more preferably 400 ⁇ m or more, and for example, 1500 ⁇ m or less.
  • dam 5 is placed on the upper surface of the first release layer 12 so that the sealing layer 13 is inserted into the opening 8 of the dam 5.
  • dam 5 is disposed on the peripheral edge of the upper surface of the first release layer 12.
  • the dam 5 can be directly formed on the upper surface of the first release layer 12 by directly applying the varnish to the upper surface of the peripheral end portion of the first release layer 12 in the pattern described above.
  • the dam 5 is disposed so as to surround the sealing layer 13 because it is disposed at the peripheral end portion of the first release layer 12.
  • the inner surface of the dam 5 is disposed with a distance from the outer surface of the sealing layer 13.
  • the rear side surface of the front first dam portion 5 ⁇ / b> A is disposed to face the front side of the front side surface of the sealing layer 13 with a gap.
  • the front side surface of the first dam portion 5A on the rear side is disposed to face the rear side of the rear side surface of the sealing layer 13 with a space therebetween.
  • the left side surface of the right second dam part 5B is disposed to face the right side of the right side surface of the sealing layer 13 with an interval.
  • the right side surface of the second dam part 5B on the left side is disposed opposite to the left side of the left side surface of the sealing layer 13 with an interval.
  • the distance L1 between the inner surface of the dam 5 and the outer surface of the sealing layer 13 is, for example, more than 0 mm, preferably 1 mm or more, and for example, 10 mm or less. Preferably, it is 5 mm or less.
  • the dam 5 is disposed on the same plane as the sealing layer 13 (that is, the upper surface of the first release layer 12).
  • Element member arrangement process> (Preparation of element members) In the element member arranging step, as shown in FIG. 3, first, the element member 15 is prepared.
  • the element member 15 includes a second release layer 17 as a base material and an optical semiconductor element 16 disposed on the surface (lower surface) of the second release layer 17.
  • the second release layer 17 covers and seals the optical semiconductor element 16 with the sealing layer 13 until the sealing layer-covered optical semiconductor element 10 is obtained, and then the sealing layer-covered optical semiconductor element 10 is peeled off.
  • the exposed surface of the optical semiconductor element 16 in the sealing layer-covered optical semiconductor element 10 (the lower surface in FIG. 2E) is protected. It is stuck so that it can be peeled off. That is, the second release layer 17 supports the optical semiconductor element 16 and covers the exposed surface of the optical semiconductor element 16 (the lower surface in FIG. 2E) when the sealing layer-covered optical semiconductor element 10 is shipped, transported, and stored.
  • the sealing layer-covered optical semiconductor element 10 can be peeled off as shown by the phantom line in FIG. 2E immediately before the optical semiconductor element 16 is stacked on the exposed surface of the optical semiconductor element 16 and mounted on the substrate 20. It is a flexible film. That is, the 2nd peeling layer 17 consists only of a flexible film.
  • the second release layer 17 is made of the same material as the first release layer 12 described above. Moreover, the 2nd peeling layer 17 can also be formed from the heat peeling sheet from which the sealing layer covering optical semiconductor element 10 can peel easily by heating.
  • the second release layer 17 is formed in a substantially rectangular plate shape in plan view including a plurality (two) of spacers 4 when projected in the vertical direction. Specifically, as shown in FIG. 5, the area of the second release layer 17 is set to be larger than the area S ⁇ b> 2 of the first release layer 12, for example.
  • a plurality (nine) of optical semiconductor elements 16 are placed at the center of the surface (lower surface) of the second release layer 17.
  • the plurality of optical semiconductor elements 16 are aligned in the left-right direction and spaced apart in the front-rear direction.
  • Each of the plurality of optical semiconductor elements 16 is formed in a substantially flat plate shape along the front-rear direction and the left-right direction.
  • Each of the plurality of optical semiconductor elements 16 has a substantially rectangular shape in plan view, and a cross-sectional shape along the vertical direction and the front-rear direction and a cross-sectional shape along the vertical direction and the left-right direction are formed in a substantially rectangular shape. Yes.
  • the front-rear direction length and the left-right direction length of the optical semiconductor element 16 are, for example, 50 ⁇ m or more, preferably 500 ⁇ m or more, and, for example, 2000 ⁇ m or less, preferably 1000 ⁇ m or less.
  • each optical semiconductor element 16 is, for example, 0.1 ⁇ m or more, preferably 0.2 ⁇ m or more, and, for example, 500 ⁇ m or less, preferably 200 ⁇ m or less.
  • the volume (total volume) of the plurality of optical semiconductor elements 16 is, for example, 1 mm 3 or more, preferably 10 mm 3 or more, and for example, 5000 mm 3 or less, preferably 3000 mm 3 or less.
  • the region where the optical semiconductor element 16 is arranged in the central portion of the second release layer 17 is partitioned as an element arrangement region 18 (see a virtual line).
  • the element arrangement region 18 is a region surrounded by a line segment connecting the outer edges of the optical semiconductor elements 16 arranged on the outermost side among the plurality of optical semiconductor elements 16.
  • the element arrangement region 18 has a line segment A connecting a plurality of front end edges (specifically, a front left end edge and a front right end edge) of the optical semiconductor element 16A arranged on the foremost side, and on the rear side.
  • the area S3 of the element arrangement region 18 described above is appropriately set depending on the number, size, arrangement, and the like of the optical semiconductor element 16, and is smaller than the area S1 of the sealing layer 13 as shown in FIG. ⁇ S1).
  • the area S1 of the sealing layer 13 is larger than the area S3 of the element arrangement region 18 (S1> S3), and exceeds, for example, 100% of the area S3 of the element arrangement region 18, preferably 105% or more, more preferably 110% or more, and for example, 150% or less.
  • the second release layer 17 of the element member 15 is disposed on the lower surface of the carrier 32.
  • the carrier 32 is a support plate for positioning the element member 15 below the upper mold 3 while supporting the second release layer 17.
  • the carrier 32 is formed in a substantially flat plate shape extending in the front-rear direction and the left-right direction.
  • the carrier 32 is formed in a shape and size that are included in the upper mold 3 and include the second release layer 17 when projected in the vertical direction. Further, the carrier 32 is formed in a shape and size overlapping with the spacer 4 as shown in FIG. 1A when projected in the vertical direction.
  • the thickness of the carrier 32 is, for example, 50 ⁇ m or more, preferably 300 ⁇ m or more, and for example, 2000 ⁇ m or less, preferably 1000 ⁇ m or less.
  • the carrier 32 is made of, for example, glass, ceramic, stainless steel, or the like.
  • the carrier 32 is disposed on the lower surface of the upper mold 3 such that the optical semiconductor element 16 of the element member 15 disposed on the lower surface thereof faces downward.
  • the element member 15 By disposing the element member 15 on the lower surface of the carrier 32, the element member 15 is disposed above the sealing member 11, the spacer 4, and the dam 5 as shown in FIG. 1A.
  • the element member 15 is disposed on the upper side of the spacer 4 with an interval so that both ends of the second peeling layer 17 in the left-right direction overlap the spacer 4 when projected in the vertical direction.
  • the element member 15 is disposed on the upper side of the dam 5 with an interval therebetween so that the peripheral end portion of the second release layer 17 and the dam 5 overlap when projected in the vertical direction.
  • the element member 15 is located above the sealing member 11 so that the optical semiconductor element 16 (element arrangement region 18) and the sealing layer 13 overlap when projected in the vertical direction. Are opposed to each other with a gap therebetween.
  • the element arrangement region 18 is included in the sealing layer 13 when projected in the vertical direction.
  • the covering step is performed after the spacer arranging step, the sealing member arranging step, the dam arranging step, and the element member arranging step.
  • the upper mold 3 is disposed opposite to the upper side of the lower mold 2.
  • the upper mold 3 In order to arrange the upper mold 3, first, as shown in FIG. 3, the lower ends of the plural (four) springs 22 are inserted into the first recesses 23. Subsequently, the upper end of the spring 22 is accommodated in the second recess 25 of the upper mold 3.
  • the upper mold 3 is arranged opposite to the upper side of the lower mold 2.
  • the sealing member 11 and the dam 5 are disposed between the lower mold 2 and the upper mold 3.
  • the element member 15 is disposed between the lower mold 2 and the upper mold 3 and on the upper mold 3 side with respect to the sealing member 11 and the dam 5.
  • the sealing layer 13 contains a thermosetting resin having thermoplasticity and thermosetting property
  • the temperature of the lower mold 2 and the upper mold 3 is equal to or higher than the thermoplastic temperature of the thermosetting resin.
  • it is a thermosetting temperature or higher, specifically, for example, 50 ° C. or higher, preferably 80
  • it is 200 ° C. or lower, preferably 150 ° C. or lower.
  • the lower mold 2 and the upper mold 3 are brought close to each other. Specifically, the upper mold 3 is pressed toward the lower mold 2 (pressed down, specifically, hot pressed). That is, the upper mold 3 is lowered. Then, the upper mold 3 is brought close to the lower mold 2 until the lower surfaces of both ends in the left-right direction of the carrier 32 reach the press position where they contact the upper surface of the spacer 4.
  • the thickness T6 of the sealing layer 13 is adjusted to be substantially the same as the design thickness T0 or within a predetermined tolerance range (described later) with respect to the design thickness T0.
  • the design thickness T0 of the sealing layer 13 is thinner than the thickness T4 (see FIG. 5) of the sealing layer 13 before sealing (T0 ⁇ T4).
  • the thickness T4 (see FIG. 5) of the sealing layer 13 is thicker than the design thickness T0 of the sealing layer 13 (T4> T0).
  • the thickness T4 (see FIG. 5) of the sealing layer 13 is, for example, more than 100%, preferably 105% or more with respect to the design thickness T0 of the sealing layer 13, and for example, 150% or less, preferably Is 120% or less.
  • the design thickness T0 of the sealing layer 13 is formed thinner than the thickness T3 of the dam 5 before sealing (T0 ⁇ T3).
  • the thickness T3 of the dam 5 before sealing is thicker than the designed thickness T0 of the sealing layer 13 (T3> T0).
  • the thickness T3 of the dam 5 before sealing exceeds, for example, 100%, preferably 105% or more with respect to the design thickness T0 of the sealing layer 13, and for example, 120 % Or less, more preferably 110% or less.
  • the sealing layer is accommodated by subtracting the volume of the plurality of optical semiconductor elements 16 from the volume of the space defined by the dam 5, the first release layer 12, and the second release layer 17.
  • the volume 19 is set smaller or the same as the volume of the sealing layer 13 before sealing shown in FIG. 1A.
  • the volume of the sealing layer 13 before sealing shown in FIG. 1A is larger or the same as the sealing layer accommodation volume 19, specifically, for example, 100% or more, preferably 100%, more preferably 102% or more, still more preferably 105% or more, and for example, 120% or less, preferably 110%. If the volume ratio of the sealing layer 13 before sealing shown in FIG. 1A is not less than the above lower limit (or more than the above lower limit) and not more than the above upper limit, the thickness of the sealing layer 13 in the sealing layer-covered optical semiconductor element 10 T6 can be accurately set to the design thickness T0.
  • the upper die 3 does not move down beyond the press position and stays at the press position. That is, the spacer 4 restricts the upper die 3 from descending beyond the press position. Further, the upper mold 3 continues to press the lower mold 2 at the press position.
  • the press pressure is, for example, 0.5 MPa or more, preferably 1 MPa or more, and for example, 1000 MPa or less, preferably 300 MPa or less.
  • the sealing layer 13 contains a thermosetting resin having thermoplasticity and thermosetting property due to the heating of the lower mold 2 and the upper mold 3 by the heater 7, the lower mold 2 and the upper mold The heat of the mold 3 is conducted to the sealing layer 13 and plasticized. Subsequently, the semiconductor element 16 is embedded in the plasticized sealing layer 13 by pressing the upper mold 3 against the lower mold 2.
  • the sealing layer 13 in which the optical semiconductor element 16 is embedded has both the left and right side surfaces and the front and rear direction side surfaces on the outer side (the left and right direction and the front and rear direction).
  • the left and right side surfaces and the front and rear side surfaces of the sealing layer 13 contact the inner surface of the dam 5 and press the dam 5 outward.
  • the upper surface of the dam 5 is compressed to the lower surface of the upper die 3 by pressing the lower die 2 of the upper die 3. Therefore, the dam 5 is compressed in the vertical direction and is sandwiched between the first peeling layer 12 and the second peeling layer 17 and thus bulges in the left-right direction and the front-back direction.
  • the outer part of the dam 5 bulges outward in the left-right direction and outward in the front-rear direction.
  • the first dam part 5A on the front side is on the front side
  • the first dam part 5A on the rear side is on the rear side
  • the second dam part 5B on the right side is on the right side
  • the left side The second dam portion 5B bulges to the left side.
  • the inner surface of the dam 5 is pressed outward by the sealing layer 13, and the dam 5 is compressed in the vertical direction by the upper mold 3.
  • the expansion output substantially cancels. Therefore, the position (the position in the front-rear direction and the left-right direction) of the inner portion of the dam 5 does not substantially vary depending on before and after pressing.
  • a part of the sealing composition constituting the sealing layer 13 (upper part of the outer portion) reaches the upper surface of the dam 5. Specifically, a part of the sealing layer 13 is disposed between the dam 5 and the second release layer 17.
  • the heating temperature is, for example, in the same range as the above temperature, and the pressing time is, for example, 3 minutes or more, preferably 5 minutes or more, and for example, 30 minutes or less, preferably 15 minutes or less. It is.
  • thermoset when the sealing layer 13 contains a thermosetting resin having plasticity and thermosetting property, it is thermoset (C stage).
  • the reaction of the phenyl silicone resin composition contains an alkenyl group and / or cycloalkenyl group of the alkenyl group-containing polysiloxane and a hydrosilyl group.
  • the hydrosilyl addition reaction with the hydrosilyl group of the polysiloxane is further accelerated.
  • the alkenyl group and / or cycloalkenyl group or the hydrosilyl group of the hydrosilyl group-containing polysiloxane disappears, and the hydrosilyl addition reaction is completed, whereby the product of the C-stage phenyl-based silicone resin composition, A cured product is obtained. That is, by completing the hydrosilyl addition reaction, curability (specifically, thermosetting) is exhibited in the phenyl silicone resin composition.
  • R 5 represents an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms (excluding an alkenyl group and a cycloalkenyl group) including a phenyl group. .5 or more and 2.0 or less.)
  • the unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms represented by R 5 includes an unsubstituted or substituted monovalent carbon group having 1 to 10 carbon atoms represented by R 2 in the formula (1). Examples thereof are the same as the hydrogen group and the unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms represented by R 3 in the formula (2).
  • an unsubstituted monovalent hydrocarbon group more preferably an alkyl group having 1 to 10 carbon atoms, and an aryl group having 6 to 10 carbon atoms, and more preferably a combined use of a phenyl group and a methyl group is used.
  • an unsubstituted monovalent hydrocarbon group more preferably an alkyl group having 1 to 10 carbon atoms, and an aryl group having 6 to 10 carbon atoms, and more preferably a combined use of a phenyl group and a methyl group.
  • E is preferably 0.7 or more and 1.0 or less.
  • the proportion of the phenyl groups in R 5 in the average composition formula of the product (3) is, for example, 30 mol% or more, preferably is 35 mol% or more, and is, for example, 55 mol% or less, preferably 50 mol% or less.
  • thermoplasticity of the B-stage sealing layer 13 (see FIG. 1A) can be ensured. That is, since the 80 ° C. shear storage modulus G ′ of the sealing layer 13 described later exceeds the desired range, the optical semiconductor element 16 may not be securely embedded and sealed.
  • the content ratio of the phenyl group in R 5 of the average composition formula (3) of the product is a monovalent hydrocarbon group directly bonded to the silicon atom of the product (indicated by R 5 in the average composition formula (3)). This is the phenyl group concentration.
  • the content ratio of the phenyl group in R 5 of the average composition formula (3) of the product is calculated by 1 H-NMR and 29 Si-NMR. Details of the calculation method of the content ratio of the phenyl group in R 5 are described in Examples described later, and are calculated by 1 H-NMR and 29 Si-NMR, for example, based on the description of WO2011 / 125463 and the like. .
  • the plurality of optical semiconductor elements 16, the sealing layer 13 covering and embedding them, and the upper surface of the optical semiconductor element 16 and the upper surface of the sealing layer 13 are covered by the above-described hot pressing.
  • a dam / release layer-attached seal comprising a second release layer 17, a first release layer 12 covering the lower surface of the sealing layer 13 (excluding the side surface of the bulging portion 14), and a dam 5 surrounding the sealing layer 13.
  • a stop layer coated optical semiconductor element 60 is obtained.
  • the sealing layer-covered optical semiconductor element 60 with a dam / peeling layer is a part for producing the sealing layer-covered optical semiconductor element 10 and the optical semiconductor device 30, and is a device that circulates by itself and can be used industrially. is there.
  • the sealing layer-covered optical semiconductor element 60 with a dam / release layer follows the carrier 32 and the upper mold 3. That is, the sealing layer-covered optical semiconductor element 60 with a dam / release layer is pulled up. Specifically, in the state where the second release layer 17 in the sealing layer-covered optical semiconductor element 60 with a dam / release layer is supported (contacted) with the carrier 32, the sealing layer-covered optical semiconductor element 60 with a dam / release layer. Are raised together with the upper mold 3 and the carrier 32.
  • the sealing layer-covered optical semiconductor element 60 with a dam / release layer is peeled off from the carrier 32. Thereby, the sealing layer-covered optical semiconductor element 60 with a dam / release layer is taken out from the press 1. Thereafter, the sealing layer-covered optical semiconductor element 60 with a dam / release layer is turned upside down.
  • the sealing layer-covered optical semiconductor element 60 with a dam / peeling layer includes the sealing layer-covered optical semiconductor element 10 including the optical semiconductor element 16 and the sealing layer 13 that embeds and covers the optical semiconductor element 16.
  • the sealing layer-covered optical semiconductor element 10 preferably includes only the optical semiconductor element 16 and the sealing layer 13.
  • the thickness T6 of the sealing layer 13 in the sealing layer-covered optical semiconductor element 60 with the dam / release layer (sealing layer-covered optical semiconductor element 10) is the upper surface of the sealing layer 13 and the optical semiconductor element 16 in FIG.
  • the thickness T6 of the sealing layer 13 in the sealing layer-covered optical semiconductor element 60 with the dam / peeling layer is thinner than the thickness T4 (see FIG. 5) of the sealing layer 13 before covering the optical semiconductor element 16 (see FIG. 5).
  • T6 ⁇ T4 specifically, for example, less than 100%, preferably 95% or less, more preferably 90%, with respect to the thickness T4 of the sealing layer 13 before covering the optical semiconductor element 16.
  • the thickness T6 of the sealing layer 13 in the dam / release layer-containing sealing layer-covered optical semiconductor element 60 is, for example, 50 ⁇ m or more, preferably 100 ⁇ m or more, and for example, 1500 ⁇ m or less, preferably 800 ⁇ m or less.
  • the thickness T7 of the dam 5 (the thickness T7 of the dam 5 after sealing) in the sealing layer-covered optical semiconductor element 60 with the dam / peeling layer is the thickness T3 of the dam 5 before sealing. (Refer to FIG. 5), it is thin or formed with the same thickness (that is, T7 ⁇ T3), for example, 100% or less, preferably less than 100%, more preferably 98% or less, and still more preferably 95 % Or less, for example, 80% or more.
  • the thickness T7 of the dam 5 in the dam / separation layer-coated optical semiconductor element 60 with a release layer is, for example, 100 ⁇ m or more, preferably 300 ⁇ m or more, and, for example, 1500 ⁇ m or less, preferably 1000 ⁇ m. It is as follows.
  • the sealing layer 13 is disposed in the vicinity of the optical semiconductor element 16 and serves to seal (cover) the optical semiconductor element 16.
  • a sealing portion 33 to be formed, and a bulging portion 14 which is formed in a thin film from the sealing portion 33 outside the sealing portion 33 and is disposed on the lower surface of the dam 5 and does not serve for sealing (covering) the optical semiconductor element 16.
  • the bulging portion 14 is removed together with the dam 5 in the subsequent cutting step and is not included in the sealing layer-covered optical semiconductor element 10, while the sealing portion 33 is included in the sealing layer-covered optical semiconductor element 10. It is.
  • the first release layer 12 is peeled off from the sealing layer 13 and the dam 5 so as to be bent in a substantially U shape.
  • the sealing layer 13 corresponding to each optical semiconductor element 16 is cut along the front-rear direction and the left-right direction (cutting step). That is, the plurality of optical semiconductor elements 16 are singulated. Further, the sealing layer 13 is cut so that the bulging portion 14 is removed together with the dam 5.
  • the sealing layer-covered optical semiconductor element 10 including one optical semiconductor element 16 and the sealing layer 13 that embeds and covers the optical semiconductor element 16 is obtained in a state of being supported by the second release layer 17.
  • the sealing layer-covered optical semiconductor element 10 does not include the second release layer 17 and the substrate 20, and preferably includes only the optical semiconductor element 16 and the sealing layer 13.
  • This method includes a step of preparing the above-described sealing layer-covered optical semiconductor element 10 (see FIG. 2E), a peeling step of peeling the sealing layer-covered optical semiconductor element 10 from the second release layer 17 (see the arrow in FIG. 2E), And the mounting process (refer FIG. 2F) which mounts the optical semiconductor element 16 of the peeling sealing layer covering optical semiconductor element 10 on the board
  • peeling process As shown by the arrow in FIG. 2E, in the peeling step, the sealing layer-covered optical semiconductor element 10 obtained by the above-described manufacturing method is peeled from the second peeling layer 17. Specifically, the sealing layer-covered optical semiconductor element 10 is pulled upward.
  • the plurality of sealing layer-covered optical semiconductor elements 10 are sorted according to the emission wavelength and the emission efficiency.
  • a substrate 20 having terminals (not shown) provided on the upper surface is prepared.
  • the substrate 20 has a substantially rectangular plate shape extending in the front-rear direction and the left-right direction, and is, for example, an insulating substrate. Moreover, the board
  • the selected sealing layer-covered optical semiconductor element 10 is mounted on the substrate 20.
  • a terminal (not shown) of the optical semiconductor element 16 in the sealing layer-covered optical semiconductor element 10 is brought into contact with a terminal (not shown) of the substrate 20. And make an electrical connection. That is, the optical semiconductor element 16 of the sealing layer-covered optical semiconductor element 10 is flip-chip mounted on the substrate 20.
  • the optical semiconductor device 30 including the substrate 20 and the sealing layer-covered optical semiconductor element 10 mounted on the substrate 20 is obtained.
  • the optical semiconductor device 30 includes only the substrate 20 and the sealing layer-covered optical semiconductor element 10. That is, the optical semiconductor device 30 preferably includes only the substrate 20, the optical semiconductor element 16, and the sealing layer 13.
  • the dam 5 is disposed so as to surround the sealing layer 13, and the upper mold 3 is brought close to the lower mold 2. Therefore, in the press with respect to the lower mold 2 of the upper mold 3, it is possible to suppress the sealing layer 13 from leaking in the front-rear direction and the left-right direction.
  • this sealing layer covering optical semiconductor element 10 since the spacer 4 is arrange
  • the volume ratio of the sealing layer 13 is specified with respect to the sealing layer accommodation volume 19 when the upper mold 3 is located at the press position. Since it exists in the range, the sealing layer 13 which is excellent in dimensional accuracy can be obtained.
  • the thickness T3 of the dam 5 is in the said range with respect to the design thickness T0 of the sealing layer 13. If so, it is possible to suppress the sealing layer 13 from leaking outside the dam 5 while reliably compressing the dam 5 in the vertical direction.
  • this sealing layer covering optical semiconductor element 10 if the tensile elastic modulus in 23 degreeC of a dam member is in the said range, while the handling property of the dam 5 can be ensured favorable, While pressing together with the sealing layer 13, the sealing layer 13 can be prevented from leaking outside the dam 5.
  • the dam 5 contains a resin
  • the flexible dam 5 can be easily formed. Therefore, the dam 5 can reliably suppress the sealing layer 13 from leaking outside the dam 5. Therefore, the contamination with respect to the press 1 by the sealing composition of the sealing layer 13 can be suppressed effectively.
  • this sealing layer covering optical semiconductor element 10 in the dam arrangement
  • the outer shape of the sealing layer 13 can be formed corresponding to the dam 5.
  • this sealing layer covering optical semiconductor element 10 if the sealing layer 13 of B stage has both thermoplasticity and thermosetting property, as shown to FIG.
  • the sealing layer 13 is heated and plasticized, and the plurality of optical semiconductor elements 16 are surely covered and sealed with the sealing layer 13.
  • the plasticized sealing layer 13 can be thermoset to improve the reliability of the plurality of optical semiconductor elements 16.
  • the sealing layer 13 a phenyl group in R 5 in the average composition formula of the product obtained by reacting a silicone resin composition (3) If the content ratio is within a specific range, the plurality of optical semiconductor elements 16 can be reliably embedded, covered and sealed.
  • the sealing layer-covered optical semiconductor element 10 if the sealing layer 13 contains a phosphor, the light emitted from the plurality of optical semiconductor elements 16 is excellent in dimensional accuracy, and the phosphor. Since the wavelength can be converted by the sealing layer 13 containing, the sealing layer-coated optical semiconductor element 10 having excellent color uniformity can be obtained.
  • the optical semiconductor device 30 including the sealing layer 13 having excellent dimensional accuracy is prepared, so that the light emitting characteristics and durability are excellent.
  • the optical semiconductor device 30 can be obtained.
  • the upper mold 3 is pressed toward the lower mold 2.
  • the lower mold 2 is turned into the upper mold 3. You can also press it. That is, the lower mold 2 is pushed up.
  • the lower mold 2 and the upper mold 3 can be moved together. That is, the upper mold 3 is pushed down while the lower mold 2 is pushed up.
  • Dam placement step> and ⁇ 5. The element member arranging step> is sequentially performed, but the order is not particularly limited, and ⁇ 5. Element member arranging step> and ⁇ 4. Dam placement step> or ⁇ 4. Dam placement step> and ⁇ 5. The element member arranging step> can be performed simultaneously.
  • the spacer 4 as an example of the restricting member is disposed between the lower mold 2 and the upper mold 3, but instead of the spacer 4, the upper mold A stopper that restricts the descent exceeding the press position of 3 can be integrally arranged with the press 1 on the side or upper side of the press 1.
  • the spring 22 is used as shown in FIG. 1A.
  • the present invention is not limited to this, and although not shown, for example, an elastic body such as a sponge can be used instead of the spring 22. .
  • the inner surface of the dam 5 is arranged with a distance from the outer surface of the sealing layer 13.
  • they can also be brought into contact with each other as shown in FIG.
  • the outer shape of the sealing layer 13 is the same as the shape of the opening 8.
  • This modification can also provide the same operational effects as the above-described embodiment.
  • the inner surface of the dam 5 is arranged with a space from the outer surface of the sealing layer 13. That is, the area S 1 of the sealing layer 13 is smaller than the opening cross-sectional area S 8 of the opening 8. Therefore, the dam 5 having the opening cross-sectional area S ⁇ b> 8 that is larger than the area S ⁇ b> 1 of the sealing layer 13 can be easily and reliably disposed so as to surround the sealing layer 13. Specifically, the dam 5 and the sealing layer 13 can be prevented from overlapping in the vertical direction. Therefore, the dam 5 can reliably surround the sealing layer 13 in the front-rear direction and the left-right direction, that is, the dam 5 and the sealing layer 13 can be easily and reliably disposed relative to each other.
  • the bulging portion 14 is formed as shown in FIG. 1B.
  • the sealing layer 13 is formed without forming the bulging portion 14 as shown in FIG. You can also
  • the sealing layer accommodation volume 19 obtained by subtracting the volumes of the plurality of optical semiconductor elements 16 from the sealing layer accommodation volume 19 and the sealing before sealing The volume of the layer 13 is the same.
  • the bulging portion 14 is formed.
  • the sealing layer accommodation volume 19 obtained by subtracting the volumes of the plurality of optical semiconductor elements 16 from the sealing layer accommodation volume 19 is sealed. It is set smaller than the volume of the sealing layer 13 before stopping. If it does so, the sealing layer 13 which is excellent in the dimension, specifically the accuracy of thickness T6, can be obtained. That is, the thickness T6 of the sealing layer 13 can be adjusted with an accuracy (tolerance) of, for example, 95% or more and 105% or less with respect to the design thickness T0.
  • the sealing layer 13 can form the bulging part 14 as shown in FIG. 1B, the sealing layer 13 with excellent accuracy of the thickness T6 can be obtained even if the tolerance described above is greatly allowed. be able to.
  • the area S1 of the sealing layer 13 is formed larger than the area S3 of the element arrangement region 18 (S1> S3). As shown in FIG. 3, the area S1 of the sealing layer 13 can be made smaller or the same size as the area S3 of the element arrangement region 18 (S1 ⁇ S3).
  • the area S1 of the sealing layer 13 is formed larger than the area S3 of the element arrangement region 18 (S1> S3).
  • the accuracy of the thickness T6 of the sealing layer 13 is improved while reliably covering the plurality of optical semiconductor elements 16 with the sealing layer 13 having an area S1 larger than the area S3 of the element arrangement region 18. be able to.
  • the second release layer 17 is described as an example of the base material in the method for manufacturing an optical semiconductor device of the present invention.
  • the optical semiconductor device 30 may be manufactured without using the second peeling layer 17 as the substrate 20 and performing the peeling process using the second peeling layer 17 (see FIG. 2E). it can.
  • a mounting substrate 29 including the optical semiconductor element 16 and the substrate 20 on which the optical semiconductor element 16 is mounted first, a mounting substrate 29 including the optical semiconductor element 16 and the substrate 20 on which the optical semiconductor element 16 is mounted. Prepare. The optical semiconductor element 16 is flip-chip mounted on the lower surface of the substrate 20 or connected by wire bonding.
  • the mounting substrate 29 is disposed opposite to the upper side of the sealing member 11 and the dam 5. Specifically, the mounting substrate 29 is disposed on the lower surface of the carrier 32 so that the optical semiconductor element 16 faces downward.
  • FIG. 9B a covering process is performed, and the optical semiconductor element 16, the substrate 20 on which the optical semiconductor element 16 is mounted, the sealing layer 13 for sealing the optical semiconductor element 16, and the sealing An optical semiconductor device 50 with a dam / peeling layer including the first peeling layer 12 disposed on the surface (lower surface and side surfaces) of the stopper layer 13 and the dam 5 surrounding the sealing layer 13 is obtained.
  • FIG. 9C the optical semiconductor device 50 with a dam / release layer is pulled up from the lower mold 2.
  • the first release layer 12 is peeled from the sealing layer 13.
  • the sealing layer 13 and the substrate 20 corresponding to each optical semiconductor element 16 are cut along the front-rear direction and the left-right direction so that the plurality of optical semiconductor elements 16 are separated into pieces. Turn into. As a result, the dam 5, the bulging portion 14 and the substrate 20 corresponding to the dam 5 are removed.
  • an optical semiconductor device 30 including one optical semiconductor element 16, a substrate 20 on which the optical semiconductor element 16 is mounted, and a sealing layer 13 (sealing portion 33) that seals the optical semiconductor element 16 is obtained. It is done.
  • the optical semiconductor device 30 includes only the optical semiconductor element 16, the substrate 20, and the sealing layer 13.
  • the sealing layer-covered optical semiconductor element 10 is mounted on the substrate 20.
  • the sealing layer-covered optical semiconductor element 10 including the plurality of optical semiconductor elements 16 is not cut on the substrate 20 without cutting the sealing layer 13, that is, without separating the optical semiconductor elements 16 into individual pieces. It can also be implemented. In that case, first, the sealing layer-covered optical semiconductor element 10 provided with the second peeling layer 17 is mounted on the substrate 20, and then the second peeling layer 17 is peeled from the sealing layer 13. Alternatively, first, after the second release layer 17 is peeled from the sealing layer 13, the sealing layer-covered optical semiconductor element 10 including the sealing layer 13 from which the second release layer 17 is peeled can be mounted on the substrate 20. .
  • a plurality of optical semiconductor elements 16 are arranged on the second release layer 17, and then, as shown in FIG. It is sealed by.
  • the present invention is not limited to this.
  • a single optical semiconductor element 16 is disposed on the second release layer 17, and then the single optical semiconductor element 16 is sealed with the single sealing layer 13. You can also.
  • the element arrangement region 18 is a region in which the single optical semiconductor element 16 is arranged in the second release layer 17, and more specifically, the optical semiconductor element 16 may have a substantially rectangular shape in plan view. For example, it is a substantially rectangular region surrounded by the front edge, the rear edge, the right edge, and the left edge.
  • This modification can also provide the same operational effects as the above-described embodiment.
  • Example 1 (corresponding to FIGS. 1A to 4) ⁇ 1. Preparation process> As shown in FIGS. 1A and 3, a lower mold 2 and an upper mold 3 were prepared.
  • a sealing member 11 including a first release layer 12 and a B-stage sealing layer 13 was prepared.
  • the method for preparing the sealing member 11 is described in the following synthesis examples, preparation examples, and production examples.
  • the weight average molecular weight in terms of polystyrene of the alkenyl group-containing polysiloxane A was measured by gel permeation chromatography and found to be 2300.
  • polystyrene equivalent weight average molecular weight of the alkenyl group-containing polysiloxane B was measured by gel permeation chromatography and found to be 1000.
  • the average unit formula and average composition formula of the hydrosilyl group-containing polysiloxane C are as follows.
  • polystyrene equivalent weight average molecular weight of the hydrosilyl group-containing polysiloxane C was measured by gel permeation chromatography and found to be 1000.
  • the prepared varnish is exposed so that the peripheral edge of the first release layer 12 is exposed on the surface of the first release layer 12 (PTE sheet, softening temperature 70 ° C.) having a thickness T2 of 50 ⁇ m. It was applied in a rectangular shape in plan view. Thereafter, the phenyl-based silicone resin composition in the varnish was B-staged (semi-cured) by heating at 90 ° C. for 9.5 minutes. Thereby, the sealing layer 13 was manufactured.
  • the thickness T4 of the sealing layer 13 was 630 ⁇ m
  • the area S1 of the sealing layer 13 was 400 mm 2
  • the volume of the sealing layer 13 before sealing was 252 mm 3 .
  • a varnish comprising a silicone resin composition was prepared. That is, a condensation reaction / addition reaction curable silicone resin described in Example 1 of JP 2010-265436 A was prepared. Specifically, both terminal silanol type polydimethylsiloxane, vinyltrimethoxysilane, (3-glycidoxypropyl) trimethoxysilane, tetramethylammonium hydroxide (condensation catalyst), dimethylpolysiloxane-CO A two-stage reaction-curable methyl silicone resin composition was prepared from methylhydrogensiloxane and platinum-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex (addition catalyst).
  • an organic filler (trade name “Tospearl 2000B”, silicone particles, refractive index 1.42, average particle diameter 6.0 ⁇ m, momentary performance) (Made by Materials Japan) 30 parts by mass were mixed to prepare a varnish.
  • the prepared varnish was applied to the surface of the release sheet, and then heated with a hot air dryer at 150 ° C. for 2 hours to prepare a sheet-like cured product. Thereafter, the cured product is externally processed into a frame shape to produce a dam 5, and then the produced dam 5 is disposed at the peripheral end portion of the upper surface of the first release layer 12 so as to surround the sealing layer 13. did.
  • the thickness T3 of the dam 5 is 660 ⁇ m
  • the width of the dam 5 (the length in the front-rear direction of the first dam portion 5A and the length in the left-right direction of the second dam portion 5B) is 3 mm
  • the opening cross-sectional area of the dam 5 is It was 400 mm 2 .
  • the tensile elastic modulus of the dam 5 at 25 ° C. was 0.5 MPa
  • the elongation at break was 500%.
  • Element member arrangement process An element member 15 including a second release layer 17 (thermal release sheet) and nine optical semiconductor elements 16 disposed on the lower surface of the second release layer 17 was prepared.
  • the thickness T5 of the second release layer 17 was 50 ⁇ m, and the total volume of the nine optical semiconductor elements 16 was 30 mm 3 .
  • the element member 15 was attached to the lower surface of the carrier 32 (glass plate). Thereafter, the element member 15 and the carrier 32 were disposed opposite to the upper side of the sealing member 11 and the dam 5.
  • the upper mold 3 is positioned relative to the lower mold 2 by bringing the upper mold 3 into a pressing position by bringing the lower surfaces of both ends in the left-right direction of the carrier 32 into contact with the upper surface of the spacer 4. And hot pressed.
  • the lower mold 2 and the upper mold 3 are heated at 90 ° C. by the heater 7 while pressing the upper mold 3 against the lower mold 2 at 3 MPa (2 kN). Heated for 10 minutes.
  • the upper mold 3 and the carrier 32 are pulled up from the press 1 to provide the first release layer 12, the second release layer 17, the optical semiconductor element 16, the sealing layer 13, and the dam 5.
  • the sealing layer-covered optical semiconductor element 60 with a dam / release layer was pulled up from the lower mold 2 so as to follow the upper mold 3 and the carrier 32.
  • the thickness T7 of the dam 5 is 600 ⁇ m, and the width of the dam 5 (the length in the front-rear direction of the first dam portion 5A) The length of the second dam portion 5B in the left-right direction) was 3 mm, and the opening cross-sectional area of the dam 5 was 400 mm 2 .
  • the sealing layer 13 had a thickness T6 of 600 ⁇ m and the sealing layer 13 had an area of 400 mm 2 .
  • the sealing layer accommodating volume 19 was 210 mm 3 ([sealing layer accommodating volume 19] ⁇ [total volume of nine optical semiconductor elements 16]).
  • the sealing layer 13 corresponding to each optical semiconductor element 16 was cut to separate the plurality of optical semiconductor elements 16 into pieces.
  • the sealing layer-covered optical semiconductor element 10 including the optical semiconductor element 16 and the sealing layer 13 was obtained while being supported by the second release layer 17.
  • the sealing layer-covered optical semiconductor element 10 is peeled off from the second release layer 17 as shown by the arrow in FIG. 2E, and then the peeled optical semiconductor element 16 is mounted on the substrate 20 as shown in FIG. 2F. did. Thereby, the optical semiconductor device 30 was obtained.
  • Examples 2 to 11 (corresponding to FIGS. 1A to 3) The treatment was performed in the same manner as in Example 1 except that the formulation and dimensions of the dam 5 and the dimensions of the sealing layer 13 were changed according to Table 1.
  • dam 5 formulation instead of the two-stage reaction curable methyl silicone resin composition, the one-stage reaction curable methyl silicone resin composition (trade name “ELASTOSIL LR7665”, addition reaction curing) Type silicone resin composition, thermosetting resin that cannot be in a B-stage state, manufactured by Asahi Kasei Wacker Silicone).
  • ELASTOSIL LR7665 addition reaction curing
  • Type silicone resin composition thermosetting resin that cannot be in a B-stage state, manufactured by Asahi Kasei Wacker Silicone.
  • Example 6 ⁇ 4.
  • a one-step reaction curable phenyl silicone resin composition was used instead of the two-step reaction curable methyl silicone resin composition.
  • the one-step reaction-curable phenyl-based silicone resin composition is ⁇ 3.
  • the one-step reaction-curable phenyl silicone resin composition described in the sealing member arranging step> was used.
  • Example 11 The dam 5 was processed in the same manner as in Example 1 except that the dam 5 was formed only from an epoxy resin.
  • JER828 epoxy resin, manufactured by Mitsubishi Chemical Corporation
  • a film was formed and cured to a target thickness by coating, and then punched into a frame shape by a cutting machine.
  • Example 12 The dam 5 was treated in the same manner as in Example 1 except that the dam 5 was formed only from urethane resin.
  • the product name “polyurethane elastomer (TPU) sheet” (manufactured by Telmax Co., Ltd.) was used to punch into a frame shape with a cutting machine.
  • Example 13 The dam member was processed in the same manner as in Example 1 except that the dam member was formed only from the glass / epoxy substrate.
  • the product name “FR-4” (glass / epoxy resin, manufactured by Panasonic Corporation) was punched into a frame shape with a cutting machine.
  • Example 14 The dam member was processed in the same manner as in Example 1 except that it was made of stainless steel.
  • a stainless steel plate (model number SUS304) was punched into a frame shape with a cutting machine.
  • Comparative Example 1 The treatment was performed in the same manner as in Example 1 except that the dam 5 was not used.
  • the A-stage phenyl-based silicone resin composition A was reacted (completely cured, C-staged) at 100 ° C. for 1 hour without adding a filler to obtain a product.
  • the manufacturing method of a sealing layer covering optical semiconductor element is used for the manufacturing method of an optical semiconductor device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Led Device Packages (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

This sealing-layer-covered photosemiconductor element production method is a method for producing a sealing-layer-covered photosemiconductor element comprising a photosemiconductor element and a sealing layer covering the photosemiconductor element. This sealing-layer-covered photosemiconductor element production method comprises: the step of preparing a press equipped with a first mold shaped as a flat plate, and a second mold shaped as a flat plate, which is to be disposed opposite to the first mold; the step of disposing in the press a control member for controlling the movement of the first mold and/or the second mold in the pressing direction of the press beyond the pressing position corresponding to the designed thickness of the sealing layer; the step of disposing between the first mold and the second mold a sealing member comprising a release layer and a sealing layer in the B stage disposed on the release layer surface, in such a manner that the sealing layer faces the second mold; the step of disposing a barrier member corresponding to the external shape of the sealing layer, in such a manner as to surround the sealing layer when projected in the pressing direction; the step of disposing, between the first mold and the second mold, on the second mold side with respect to the sealing member, an element member comprising a substrate and a photosemiconductor element disposed on the substrate surface, in such a manner that the photosemiconductor element faces the first mold; and the step of bringing the first mold and the second mold close to one another to position the first mold and/or the second mold at the pressing position and cover the photosemiconductor element with the sealing layer.

Description

封止層被覆光半導体素子の製造方法および光半導体装置の製造方法Method for manufacturing sealing layer-coated optical semiconductor element and method for manufacturing optical semiconductor device
 本発明は、封止層被覆光半導体素子の製造方法および光半導体装置の製造方法、詳しくは、封止層被覆光半導体素子の製造方法、および、それを用いる光半導体装置の製造方法に関する。 The present invention relates to a method for manufacturing a sealing layer-covered optical semiconductor element and a method for manufacturing an optical semiconductor device, and more particularly to a method for manufacturing a sealing layer-covered optical semiconductor element, and a method for manufacturing an optical semiconductor device using the same.
 従来、光半導体素子と、光半導体素子により封止される封止層とを備える光半導体装置が知られている。 Conventionally, an optical semiconductor device including an optical semiconductor element and a sealing layer sealed by the optical semiconductor element is known.
 そのような光半導体装置の製造方法として、例えば、下型と、上型と、上型の下面より下端面が下方に位置し、上型の周囲に配置されるクランパと、クランパおよび下型のそれぞれの側方に配置される上クランプストッパおよび下クランプストッパとを備える圧縮成形機を用いる方法が提案されている(例えば、特許文献1参照。)。 As a method for manufacturing such an optical semiconductor device, for example, a lower mold, an upper mold, a clamper that is positioned around the upper mold, with a lower end surface positioned below the lower surface of the upper mold, and a clamper and a lower mold A method using a compression molding machine provided with an upper clamp stopper and a lower clamp stopper arranged on each side has been proposed (see, for example, Patent Document 1).
 すなわち、特許文献1に記載の方法では、下型に、光半導体素子と、それが実装される回路基板とを備える封止前の光半導体装置を載置し、次いで、上型と光半導体装置との間に、封止樹脂を塗布した後、上型およびクランパを下降させて、封止樹脂および光半導体装置を挟持(型締め)して、クランパの内側面と上型の下面によって包囲された封止領域において封止樹脂を圧縮成形する方法が提案されている。 That is, in the method described in Patent Document 1, an unsealed optical semiconductor device including an optical semiconductor element and a circuit board on which the optical semiconductor element is mounted is placed on the lower mold, and then the upper mold and the optical semiconductor device are mounted. After the sealing resin is applied between them, the upper mold and the clamper are lowered, and the sealing resin and the optical semiconductor device are sandwiched (clamped) to be surrounded by the inner surface of the clamper and the lower surface of the upper mold There has been proposed a method of compression molding a sealing resin in a sealed region.
 さらに、特許文献1に記載の圧縮成形機を用いる方法では、上クランプストッパおよび下クランプストッパが互いに当接する型締め位置にあるときに、封止領域が所定の厚さとなり、そのため、封止樹脂から形成される封止層は、封止領域に対応する厚さを有する。 Further, in the method using the compression molding machine described in Patent Document 1, when the upper clamp stopper and the lower clamp stopper are in the mold clamping position where they are in contact with each other, the sealing region has a predetermined thickness. The sealing layer formed from has a thickness corresponding to the sealing region.
特開2006-93354号公報JP 2006-93354 A
 しかしながら、特許文献1に記載の方法では、圧縮成形機が、クランパ、上クランプストッパおよび下クランプストッパを備えるので、大型化するという不具合がある。 However, in the method described in Patent Document 1, the compression molding machine includes a clamper, an upper clamp stopper, and a lower clamp stopper.
 また、封止領域における封止層には、その厚みを所望の厚みに設定できる寸法の精確性が要求されるところ、特許文献1に記載の方法では、上記した要求を満足できないという不具合がある。 Further, the sealing layer in the sealing region is required to have an accurate dimension capable of setting the thickness to a desired thickness. However, the method described in Patent Document 1 has a problem in that the above-described requirement cannot be satisfied. .
 本発明の目的は、小型のプレスによっても、寸法の精確性に優れる封止層を備える封止層被覆光半導体素子を製造する方法を提供することにある。 An object of the present invention is to provide a method for manufacturing a sealing layer-covered optical semiconductor element including a sealing layer having excellent dimensional accuracy even with a small press.
 [1] 本発明は、光半導体素子と、前記光半導体素子を被覆する封止層とを備える封止層被覆光半導体素子の製造方法であって、平板状の第1金型と、前記第1金型に対向配置するための平板状の第2金型とを備えるプレスを準備する工程、前記封止層の設計厚みに対応するプレス位置を超える前記プレスのプレス方向における前記第1金型および/または前記第2金型の移動を規制するための規制部材を前記プレスに配置する工程、剥離層と、前記剥離層の表面に配置されるBステージの前記封止層とを備える封止部材を、前記第1金型および前記第2金型の間に、前記封止層が第2金型に向かうように、配置する工程、前記封止層の外形形状に対応する堰部材を、前記プレス方向に投影したときに前記封止層を囲むように、配置する工程、基材と、前記基材の表面に配置される前記光半導体素子とを備える素子部材を、前記第1金型および前記第2金型の間であって、前記封止部材に対する前記第2金型側に、前記光半導体素子が前記第1金型に向かうように、配置する工程、および、前記第1金型および前記第2金型を近接させて、前記第1金型および/または前記第2金型を前記プレス位置に位置させて、前記光半導体素子を前記封止層により被覆する工程を備えることを特徴とする、封止層被覆光半導体素子の製造方法である。 [1] The present invention is a method for producing a sealing layer-covered optical semiconductor element comprising an optical semiconductor element and a sealing layer that covers the optical semiconductor element, the first mold having a flat plate shape, A step of preparing a press provided with a flat plate-like second die to be disposed opposite to one die, and the first die in the press direction of the press exceeding a press position corresponding to a design thickness of the sealing layer. And / or a step of disposing a restricting member for restricting movement of the second mold in the press, a release layer, and a sealing provided with the sealing layer of the B stage disposed on the surface of the release layer A step of disposing a member between the first mold and the second mold such that the sealing layer faces the second mold, and a dam member corresponding to the outer shape of the sealing layer, Arrange so as to surround the sealing layer when projected in the pressing direction An element member comprising a base material and the optical semiconductor element disposed on the surface of the base material is between the first mold and the second mold, and the first member with respect to the sealing member A step of disposing the optical semiconductor element toward the first mold on the side of the two molds, and bringing the first mold and the second mold close to each other so that the first mold and / Or it is the manufacturing method of the sealing layer coating | cover optical semiconductor element characterized by including the process of positioning the said 2nd metal mold | die in the said press position, and coat | covering the said optical semiconductor element with the said sealing layer.
 この方法によれば、平板状の第1金型と、平板状の第2金型とを備えるプレスを準備するので、プレスの構成を簡単にすることができながら、光半導体素子を封止層により被覆することができる。 According to this method, since a press having a flat plate-shaped first mold and a flat plate-shaped second mold is prepared, the optical semiconductor element can be sealed with a sealing layer while the configuration of the press can be simplified. Can be coated.
 また、この方法によれば、堰部材を、プレス方向に投影したときに封止層を囲むように配置し、そして、第1金型および第2金型を近接させる。そのため、第1金型および第2金型のプレスにおいて、封止層がプレス方向に対する直交方向に漏れることを抑制することができる。 Further, according to this method, the weir member is disposed so as to surround the sealing layer when projected in the press direction, and the first mold and the second mold are brought close to each other. Therefore, in the pressing of the first mold and the second mold, it is possible to suppress the sealing layer from leaking in the direction orthogonal to the pressing direction.
 さらに、この方法によれば、規制部材をプレスに配置するので、第1金型および/または第2金型をプレス位置に位置させるときに、封止層の設計厚みに対応するプレス位置を超えるプレスのプレス方向における第1金型および/または第2金型の移動を規制することができる。そのため、封止層の厚みを設計厚みに精確に調整することができる。 Further, according to this method, since the regulating member is disposed in the press, when the first mold and / or the second mold is positioned at the press position, the press position corresponding to the design thickness of the sealing layer is exceeded. The movement of the first mold and / or the second mold in the pressing direction of the press can be restricted. Therefore, the thickness of the sealing layer can be accurately adjusted to the design thickness.
 [2] 本発明は、前記封止層の体積割合が、前記第1金型および/または前記第2金型が前記プレス位置に位置するときに、前記堰部材、前記剥離層および前記基材によって区画される空間の体積から前記光半導体素子の体積を差し引いた封止層収容体積に対して、100%以上、120%以下であることを特徴とする、上記[1]に記載の封止層被覆光半導体素子の製造方法である。 [2] In the present invention, when the volume ratio of the sealing layer is such that the first mold and / or the second mold is located at the press position, the weir member, the release layer, and the base material 100% or more and 120% or less with respect to the sealing layer accommodation volume obtained by subtracting the volume of the optical semiconductor element from the volume of the space partitioned by the sealing according to [1] It is a manufacturing method of a layer covering optical semiconductor element.
 この方法によれば、封止層の体積割合が特定範囲にあるので、寸法の精確性に優れる封止層を得ることができる。 According to this method, since the volume ratio of the sealing layer is in a specific range, it is possible to obtain a sealing layer having excellent dimensional accuracy.
 [3] 本発明は、前記堰部材を配置する工程において、前記堰部材の厚みが、前記封止層の前記設計厚みに対して、100%を超過し、120%以下であることを特徴とする、上記[1]または[2]に記載の封止層被覆光半導体素子の製造方法である。 [3] The present invention is characterized in that, in the step of disposing the dam member, the thickness of the dam member exceeds 100% and is 120% or less with respect to the design thickness of the sealing layer. The method for producing an encapsulating layer-covered optical semiconductor element according to the above [1] or [2].
 この方法によれば、堰部材の厚みが特定範囲にあるので、堰部材を上下方向に確実に圧縮しながら、封止層が直交方向に漏れることを抑制することができる。 According to this method, since the thickness of the dam member is in a specific range, it is possible to prevent the sealing layer from leaking in the orthogonal direction while reliably compressing the dam member in the vertical direction.
 [4]本発明は、前記堰部材の23℃における引張弾性率が、0.3MPa以上、1000MPa以下であることを特徴とする、上記[1]~[3]のいずれか一項に記載の封止層被覆光半導体素子の製造方法である。 [4] The present invention according to any one of [1] to [3], wherein the weir member has a tensile elastic modulus at 23 ° C. of 0.3 MPa or more and 1000 MPa or less. It is a manufacturing method of a sealing layer covering optical semiconductor element.
 この方法によれば、堰部材のハンドリング性を良好に確保できる一方、堰部材を封止層とともにプレスしながら、封止層が直交方向に漏れることを抑制することができる。 According to this method, the handling property of the dam member can be secured satisfactorily, while the sealing layer can be prevented from leaking in the orthogonal direction while pressing the dam member together with the sealing layer.
 [5]本発明は、 前記堰部材が、樹脂を含有することを特徴とする、上記[1]~[4]のいずれか一項に記載の封止層被覆光半導体素子の製造方法である。 [5] The present invention is the method for manufacturing an encapsulating layer-covered optical semiconductor element according to any one of [1] to [4], wherein the weir member contains a resin. .
 この方法によれば、堰部材が、樹脂を含有するので、柔軟な堰部材を容易に形成することができる。そのため、かかる堰部材によって、封止層が堰部材から漏れることを確実に抑制することができる。 According to this method, since the dam member contains a resin, a flexible dam member can be easily formed. Therefore, such a dam member can surely suppress the sealing layer from leaking from the dam member.
 [6] 本発明は、前記樹脂が、シリコーン樹脂および/またはウレタン樹脂であることを特徴とする、上記[5]に記載の封止層被覆光半導体素子の製造方法である。 [6] The present invention is the method for producing an encapsulating layer coated optical semiconductor element according to the above [5], wherein the resin is a silicone resin and / or a urethane resin.
 この方法によれば、樹脂が、シリコーン樹脂および/またはウレタン樹脂であるので、封止層が堰部材から漏れることをより一層確実に抑制することができる。 According to this method, since the resin is a silicone resin and / or a urethane resin, it is possible to more reliably suppress the sealing layer from leaking from the weir member.
 [7]本発明は、前記封止部材において、前記剥離層の周端部は、前記封止層から露出しており、前記堰部材を配置する工程では、前記堰部材を、前記剥離層の前記周端部に載置することを特徴とする、上記[1]~[6]のいずれか一項に記載の封止層被覆光半導体素子の製造方法である。 [7] In the sealing member according to the present invention, a peripheral end portion of the peeling layer is exposed from the sealing layer, and in the step of disposing the dam member, the dam member is disposed on the peeling layer. The method for producing an encapsulating layer coated optical semiconductor element according to any one of [1] to [6], wherein the encapsulating layer coated optical semiconductor element is mounted on the peripheral end portion.
 この方法によれば、堰部材を配置する工程では、堰部材を、剥離層の周端部に載置するので、第1金型および第2金型を近接させて、光半導体素子を封止層により被覆する工程では、剥離層の表面において、堰部材を、封止層を囲むように、容易かつ確実に相対配置することができる。 According to this method, in the step of disposing the dam member, the dam member is placed on the peripheral end portion of the release layer, so that the first mold and the second mold are brought close to each other to seal the optical semiconductor element. In the step of covering with a layer, the weir member can be easily and reliably disposed on the surface of the release layer so as to surround the sealing layer.
 [8] 本発明は、前記堰部材を配置する工程において、前記封止層の面積が、前記堰部材によって囲まれる空間の前記プレス方向に対する直交方向に沿う断面積に比べて、小さいことを特徴とする、上記[1]~[7]のいずれか一項に記載の封止層被覆光半導体素子の製造方法である。 [8] The present invention is characterized in that, in the step of arranging the dam member, an area of the sealing layer is smaller than a cross-sectional area along a direction perpendicular to the press direction of a space surrounded by the dam member. The method for producing a sealing layer-coated optical semiconductor element according to any one of [1] to [7] above.
 この方法によれば、封止層の面積に比べて大きい断面積の空間を囲む堰部材を、封止層を囲むように、容易かつ確実に配置することができる。 According to this method, the dam member surrounding the space having a larger cross-sectional area than the area of the sealing layer can be easily and reliably arranged so as to surround the sealing layer.
 [9] 本発明は、前記光半導体素子が前記基材に単数配置される場合には、前記封止層の面積が、前記基材において前記単数の光半導体素子が配置される領域の面積に比べて大きく、前記光半導体素子が前記基材に複数設けられる場合には、前記封止層の面積が、前記基材において前記複数の光半導体素子のうち最外側に配置される前記光半導体素子の外側端縁を結ぶ線分で囲まれる領域の面積に比べて、大きいことを特徴とする、上記[1]~[8]のいずれか一項に記載の封止層被覆光半導体素子の製造方法である。 [9] In the present invention, when the single optical semiconductor element is arranged on the substrate, the area of the sealing layer is the area of the region where the single optical semiconductor element is arranged on the substrate. When the plurality of optical semiconductor elements are provided on the base material, the optical semiconductor element is arranged such that the area of the sealing layer is disposed on the outermost side of the plurality of optical semiconductor elements in the base material. The manufacturing method of an encapsulating layer-covered optical semiconductor element according to any one of [1] to [8], wherein the area is larger than an area surrounded by a line segment connecting the outer edges of Is the method.
 この方法によれば、上記した領域の面積に比べて大きい面積を有する封止層により確実に光半導体素子を被覆しつつ、封止層の厚み精確性を向上させることができる。 According to this method, it is possible to improve the thickness accuracy of the sealing layer while reliably covering the optical semiconductor element with the sealing layer having an area larger than the area of the region described above.
 [10] 本発明は、前記プレスは、熱源を備え、前記Bステージの封止層は、熱可塑性および熱硬化性を併有し、前記光半導体素子を前記封止層により被覆する工程では、前記封止層を加熱して可塑化し、続いて、可塑化した前記封止層を熱硬化させることを特徴とする、上記[1]~[9]のいずれか一項に記載の封止層被覆光半導体素子の製造方法である。 [10] In the present invention, the press includes a heat source, the sealing layer of the B stage has both thermoplasticity and thermosetting property, and the optical semiconductor element is covered with the sealing layer. The sealing layer according to any one of the above [1] to [9], wherein the sealing layer is plasticized by heating, and then the plasticized sealing layer is thermally cured. It is a manufacturing method of a covering optical semiconductor element.
 この方法によれば、Bステージの封止層が、熱可塑性および熱硬化性を併有するので、光半導体素子を封止層により被覆する工程において、封止層を加熱して可塑化して、封止層によって光半導体素子を確実に被覆しつつ、その後、可塑化した封止層を熱硬化させて、光半導体素子の信頼性を向上させることができる。 According to this method, since the sealing layer of the B stage has both thermoplasticity and thermosetting property, in the step of covering the optical semiconductor element with the sealing layer, the sealing layer is heated to be plasticized and sealed. While reliably covering the optical semiconductor element with the stop layer, the plasticized sealing layer can be thermally cured to improve the reliability of the optical semiconductor element.
 [11] 本発明は、前記封止層が、分子内に2個以上のアルケニル基および/またはシクロアルケニル基を含有するアルケニル基含有ポリシロキサンと、分子内に2個以上のヒドロシリル基を含有するヒドロシリル基含有ポリシロキサンと、ヒドロシリル化触媒とを含有するフェニル系シリコーン樹脂組成物を含有する封止組成物からシート状に形成され、
 前記アルケニル基含有ポリシロキサンは、下記平均組成式(1)で示され、
 平均組成式(1):
 R SiO(4-a-b)/2
(式中、Rは、炭素数2~10のアルケニル基および/または炭素数3~10のシクロアルケニル基を示す。Rは、非置換または置換の炭素数1~10の1価の炭化水素基(ただし、アルケニル基およびシクロアルケニル基を除く。)を示す。aは、0.05以上、0.50以下であり、bは、0.80以上、1.80以下である。)
 前記ヒドロシリル基含有ポリシロキサンは、下記平均組成式(2)で示され、
 平均組成式(2):
 H SiO(4-c-d)/2
(式中、Rは、非置換または置換の炭素数1~10の1価の炭化水素基(ただし、アルケニル基および/またはシクロアルケニル基を除く。)を示す。cは、0.30以上、1.0以下であり、dは、0.90以上、2.0以下である。)
 前記平均組成式(1)および前記平均組成式(2)中、RおよびRの少なくともいずれか一方は、フェニル基を含み、
 前記フェニル系シリコーン樹脂組成物を反応させることにより得られる生成物は、下記平均組成式(3)で示され、
 平均組成式(3):
 R SiO(4-e)/2
(式中、Rは、フェニル基を含む、非置換または置換の炭素数1~10の1価の炭化水素基(ただし、アルケニル基およびシクロアルケニル基を除く。)を示す。eは、0.5以上2.0以下である。)
 前記平均組成式(3)のRにおけるフェニル基の含有割合が、30モル%以上、55モル%以下であることを特徴とする、上記[1]~[10]のいずれか一項に記載の封止層被覆光半導体素子の製造方法である。
[11] In the present invention, the sealing layer contains an alkenyl group-containing polysiloxane containing two or more alkenyl groups and / or cycloalkenyl groups in the molecule, and two or more hydrosilyl groups in the molecule. Formed into a sheet form from a sealing composition containing a phenyl silicone resin composition containing a hydrosilyl group-containing polysiloxane and a hydrosilylation catalyst,
The alkenyl group-containing polysiloxane is represented by the following average composition formula (1):
Average composition formula (1):
R 1 a R 2 b SiO (4-ab) / 2
(In the formula, R 1 represents an alkenyl group having 2 to 10 carbon atoms and / or a cycloalkenyl group having 3 to 10 carbon atoms. R 2 represents an unsubstituted or substituted monovalent carbon atom having 1 to 10 carbon atoms. A hydrogen group (excluding an alkenyl group and a cycloalkenyl group); a is from 0.05 to 0.50, and b is from 0.80 to 1.80.
The hydrosilyl group-containing polysiloxane is represented by the following average composition formula (2):
Average composition formula (2):
H c R 3 d SiO (4-cd) / 2
(Wherein R 3 represents an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms (excluding an alkenyl group and / or a cycloalkenyl group), and c is 0.30 or more) 1.0, and d is 0.90 or more and 2.0 or less.)
In the average composition formula (1) and the average composition formula (2), at least one of R 2 and R 3 includes a phenyl group,
The product obtained by reacting the phenyl silicone resin composition is represented by the following average composition formula (3):
Average composition formula (3):
R 5 e SiO (4-e) / 2
(In the formula, R 5 represents an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms (excluding an alkenyl group and a cycloalkenyl group) including a phenyl group. .5 or more and 2.0 or less.)
The content ratio of the phenyl group in R 5 of the average composition formula (3) is 30 mol% or more and 55 mol% or less, according to any one of the above [1] to [10], It is a manufacturing method of this sealing layer covering optical semiconductor element.
 この方法によれば、封止層において、シリコーン樹脂組成物を反応させることにより得られる生成物の平均組成式(3)のRにおけるフェニル基の含有割合が特定の範囲にあるので、光半導体素子を確実に埋設して被覆することができる。 According to this method, since the content ratio of the phenyl group in R 5 in the average composition formula (3) of the product obtained by reacting the silicone resin composition in the sealing layer is in a specific range, the optical semiconductor The element can be securely embedded and covered.
 [12] 本発明は、前記封止層は、蛍光体を含有していることを特徴とする、上記[1]~[11]に記載の封止層被覆光半導体素子の製造方法である。 [12] The present invention is the method for producing an encapsulating layer coated optical semiconductor element according to the above [1] to [11], wherein the encapsulating layer contains a phosphor.
 この方法によれば、光半導体素子から発光された光を、寸法の精確性に優れ、蛍光体を含有する封止層によって波長変換することができるので、色均一性に優れる封止層被覆光半導体素子を得ることができる。 According to this method, the light emitted from the optical semiconductor element has excellent dimensional accuracy, and can be wavelength-converted by the sealing layer containing the phosphor, so that the sealing layer-coated light with excellent color uniformity A semiconductor element can be obtained.
 [13] 本発明は、上記[1]~[12]のいずれか一項に記載の封止層被覆光半導体素子の製造方法により、基材の表面に配置された封止層被覆光半導体素子を用意する工程を備え、前記基材は、第2剥離層であり、前記封止層被覆光半導体素子を用意する工程の後に、前記封止層被覆光半導体素子を前記第2剥離層から剥離する工程、および、剥離した前記封止層被覆光半導体素子の前記光半導体素子を基板に実装する工程をさらに備えていることを特徴とする、光半導体装置の製造方法である。 [13] The present invention provides a sealing layer-covered optical semiconductor device disposed on the surface of a substrate by the method for manufacturing a sealing layer-covered optical semiconductor device according to any one of [1] to [12]. The substrate is a second release layer, and after the step of preparing the sealing layer-covered optical semiconductor element, the sealing layer-covered optical semiconductor element is peeled from the second release layer. And a step of mounting the optical semiconductor element of the peeled sealing layer-covered optical semiconductor element on a substrate.
 この方法によれば、設計厚みに精確に調整された厚みを有する封止層を備える封止層被覆光半導体素子を用意するので、発光特性および耐久性に優れる光半導体装置を得ることができる。 According to this method, since an encapsulating layer-covered optical semiconductor element having an encapsulating layer having a thickness accurately adjusted to the design thickness is prepared, an optical semiconductor device having excellent light emission characteristics and durability can be obtained.
 [14] 本発明は、上記[1]~[12]のいずれか一項に記載の封止層被覆光半導体素子の製造方法により、基材の表面に配置された封止層被覆光半導体素子を用意する工程を備え、前記基材は、前記光半導体素子が実装された基板であることを特徴とする、光半導体装置の製造方法である。 [14] The present invention provides an encapsulating layer-covered optical semiconductor element disposed on the surface of a substrate by the method for producing an encapsulating layer-coated optical semiconductor element according to any one of [1] to [12]. And the base material is a substrate on which the optical semiconductor element is mounted.
 この方法によれば、設計厚みに精確に調整された厚みを有する封止層を備える封止層被覆光半導体素子を用意するので、発光特性および耐久性に優れる光半導体装置を得ることができる。 According to this method, since an encapsulating layer-covered optical semiconductor element having an encapsulating layer having a thickness accurately adjusted to the design thickness is prepared, an optical semiconductor device having excellent light emission characteristics and durability can be obtained.
 本発明の封止層被覆光半導体素子の製造方法によれば、プレスの構成を簡単にすることができながら、光半導体素子を封止層により被覆することができる。また、封止層がプレス方向に対する直交方向に漏れることを抑制することができる。さらに、封止層の厚みを設計厚みに精確に調整することができる。 According to the method for producing a sealing layer-covered optical semiconductor element of the present invention, the optical semiconductor element can be covered with the sealing layer while the configuration of the press can be simplified. Moreover, it can suppress that a sealing layer leaks in the orthogonal direction with respect to a press direction. Furthermore, the thickness of the sealing layer can be accurately adjusted to the design thickness.
 本発明の光半導体装置の製造方法によれば、発光特性および耐久性に優れる光半導体装置を得ることができる。 According to the method for manufacturing an optical semiconductor device of the present invention, an optical semiconductor device having excellent light emission characteristics and durability can be obtained.
図1A~図1Cは、本発明の光半導体装置の製造方法を説明する工程図であり、図1Aは、準備工程、スペーサ配置工程、封止部材配置工程、ダム配置工程および素子部材配置工程、図1Bは、被覆工程、図1Cは、ダム/剥離層付封止層被覆光半導体素子を引き上げる工程を示す。1A to 1C are process diagrams illustrating a method for manufacturing an optical semiconductor device according to the present invention. FIG. 1A illustrates a preparation process, a spacer arrangement process, a sealing member arrangement process, a dam arrangement process, and an element member arrangement process. FIG. 1B shows a covering step, and FIG. 1C shows a step of lifting the sealing layer-covered optical semiconductor element with a dam / release layer. 図2D~図2Fは、図1Cに引き続き、本発明の光半導体装置の製造方法を説明する工程図であり、図2Dは、第1剥離層を剥離する工程、図2Eは、剥離工程、図2Fは、実装工程を示す。2D to FIG. 2F are process diagrams for explaining the method of manufacturing the optical semiconductor device of the present invention, following FIG. 1C. FIG. 2D is a process of peeling the first release layer. FIG. 2E is a process of peeling. 2F shows a mounting process. 図3は、図1Aに示すプレスの分解斜視図を示す。FIG. 3 shows an exploded perspective view of the press shown in FIG. 1A. 図4Aおよび図4Bは、図1Aに示すプレスの底面図および平面図であり、図4Aは、上金型の底面図、図4Bは、下金型の平面図を示す。4A and 4B are a bottom view and a plan view of the press shown in FIG. 1A, FIG. 4A is a bottom view of the upper mold, and FIG. 4B is a plan view of the lower mold. 図5は、図1Aに示すプレスの拡大断面図を示す。FIG. 5 shows an enlarged cross-sectional view of the press shown in FIG. 1A. 図6は、本発明の光半導体装置の製造方法の変形例の準備工程、スペーサ配置工程、封止部材配置工程、ダム配置工程および素子部材配置工程を示す。FIG. 6 shows a preparation step, a spacer arrangement step, a sealing member arrangement step, a dam arrangement step, and an element member arrangement step in a modification of the method for manufacturing an optical semiconductor device of the present invention. 図7は、本発明の光半導体装置の製造方法の変形例の被覆工程を示す。FIG. 7 shows a coating process of a modification of the method for manufacturing an optical semiconductor device of the present invention. 図8は、本発明の光半導体装置の製造方法の変形例の準備工程、スペーサ配置工程、封止部材配置工程、ダム配置工程および素子部材配置工程を示す。FIG. 8 shows a preparation step, a spacer arrangement step, a sealing member arrangement step, a dam arrangement step, and an element member arrangement step in a modification of the method for manufacturing an optical semiconductor device of the present invention. 図9は、光半導体装置の製造方法の変形例を説明する工程図であり、図9Aは、準備工程、スペーサ配置工程、封止部材配置工程、ダム配置工程および素子部材配置工程、図9Bは、被覆工程、図9Cは、ダム/剥離層付光半導体装置を引き上げる工程、図9Dは、光半導体素子を個片化する工程を示す。FIG. 9 is a process diagram for explaining a modification of the manufacturing method of the optical semiconductor device. FIG. 9A shows a preparation process, a spacer arrangement process, a sealing member arrangement process, a dam arrangement process, and an element member arrangement process. 9C shows a step of pulling up the optical semiconductor device with a dam / peeling layer, and FIG. 9D shows a step of separating the optical semiconductor element.
 図1において、紙面上下方向は、上下方向(後述するプレス方向および厚み方向の一例、第1方向)であり、紙面上側は、上側(プレス方向上流側、第1方向一方側)、紙面下側は、下側(プレス方向下流側、第1方向他方側)である。図1において、紙面左右方向は、左右方向(プレス方向に直交する第2方向)であり、紙面左側は、左側(第2方向一方側)、紙面右側は、右側(第2方向他方側)である。図1において、紙面紙厚方向は、前後方向(プレス方向および第2方向に直交する第3方向)であり、紙面左側は、左側(第3方向一方側)、紙面右側は、右側(第3方向他方側)である。具体的には、各図の方向矢印に準拠する。 In FIG. 1, the up and down direction on the paper surface is the up and down direction (an example of a press direction and a thickness direction, which will be described later, the first direction), and the upper side on the paper surface is the upper side (upstream in the press direction, one side in the first direction). Is the lower side (downstream in the pressing direction, the other side in the first direction). In FIG. 1, the left and right direction on the paper is the left and right direction (second direction orthogonal to the pressing direction), the left side on the paper is the left side (one side in the second direction), and the right side on the paper is the right side (the other side in the second direction). is there. In FIG. 1, the paper thickness direction is the front-rear direction (the third direction orthogonal to the press direction and the second direction), the left side of the paper is the left side (one side in the third direction), and the right side of the paper is the right side (third). Direction other side). Specifically, it conforms to the direction arrow in each figure.
 本発明の封止層被覆光半導体素子の製造方法の一例は、図2Eに示されるように、光半導体素子16と、光半導体素子16により被覆されて封止される封止層13とを備える封止層被覆光半導体素子10の製造方法である。この封止層被覆光半導体素子10の製造方法は、準備工程、スペーサ配置工程、封止部材配置工程、素子部材配置工程、ダム配置工程および被覆工程を備える。以下、各工程を図1A~図5を参照して詳述する。 As shown in FIG. 2E, an example of the manufacturing method of the sealing layer-covered optical semiconductor element of the present invention includes an optical semiconductor element 16 and a sealing layer 13 that is covered and sealed by the optical semiconductor element 16. This is a manufacturing method of the sealing layer-covered optical semiconductor element 10. The manufacturing method of the sealing layer-covered optical semiconductor element 10 includes a preparation process, a spacer arrangement process, a sealing member arrangement process, an element member arrangement process, a dam arrangement process, and a covering process. Hereinafter, each step will be described in detail with reference to FIGS. 1A to 5.
  <1.準備工程>
 準備工程では、プレス1を準備する。
<1. Preparation process>
In the preparation step, the press 1 is prepared.
 図1Aおよび図3に示すように、プレス1は、第1金型としての下金型2と、第2金型としての上金型3とを備える。さらに、プレス1は、熱源としてのヒータ7と、複数(4つ)のバネ22とを備える。 As shown in FIGS. 1A and 3, the press 1 includes a lower mold 2 as a first mold and an upper mold 3 as a second mold. Further, the press 1 includes a heater 7 as a heat source and a plurality (four) of springs 22.
 下金型2は、プレス1の下部に配置されており、左右方向および前後方向に延びる略矩形平板状に形成されている。下金型2は、例えば、鉄、ステンレス、アルミニウムなどの金属からなる。また、図3および図4Bに示すように、下金型2には、複数(4つ)の第1凹部23が、設けられている。 The lower mold 2 is disposed at the lower part of the press 1 and is formed in a substantially rectangular flat plate shape extending in the left-right direction and the front-rear direction. The lower mold 2 is made of a metal such as iron, stainless steel, or aluminum. As shown in FIGS. 3 and 4B, the lower mold 2 is provided with a plurality (four) of first recesses 23.
 複数(4つ)の第1凹部23は、下金型2の上面が下側に向かって凹むように形成されている。複数(4つ)の第1凹部23は、前後方向および左右方向に互いに間隔を隔てて配置されている。複数(4つ)の第1凹部23のそれぞれは、下金型2の各隅部において、1つ、配置されている。 The plurality of (four) first recesses 23 are formed such that the upper surface of the lower mold 2 is recessed downward. The plurality of (four) first recesses 23 are arranged at intervals in the front-rear direction and the left-right direction. Each of the plurality (four) of first recesses 23 is arranged at each corner of the lower mold 2.
 図3に示すように、上金型3は、プレス1において下金型2の上側に対向配置できるように構成されている。上金型3は、下金型2の外形形状と同一形状に形成されている。具体的には、上金型3は、左右方向および前後方向に延びる略矩形平板状に形成されている。図3および図4Aに示すように、上金型3は、下金型2で例示した金属からなる。また、上金型3には、複数(4つ)の第2凹部25が設けられている。 As shown in FIG. 3, the upper mold 3 is configured so as to be opposed to the upper side of the lower mold 2 in the press 1. The upper mold 3 is formed in the same shape as the outer shape of the lower mold 2. Specifically, the upper mold 3 is formed in a substantially rectangular flat plate shape extending in the left-right direction and the front-rear direction. As shown in FIG. 3 and FIG. 4A, the upper mold 3 is made of the metal exemplified in the lower mold 2. The upper mold 3 is provided with a plurality of (four) second recesses 25.
 複数(4つ)の第2凹部25は、上金型3の下面において、下平板4に設けられる複数(4つ)の第1凹部23に対応するように、上金型3の隅部に配置されている。具体的には、複数(4つ)の第2凹部25は、上下方向に投影したときに、複数(4つ)の第1凹部23と重複するように配置されている。複数(4つ)の第2凹部25のそれぞれは、上金型3の下面が上側に向かって凹むように形成されている。 The plurality of (four) second recesses 25 are formed at the corners of the upper mold 3 so as to correspond to the plurality (four) first recesses 23 provided on the lower flat plate 4 on the lower surface of the upper mold 3. Is arranged. Specifically, the plurality (four) of the second recesses 25 are arranged so as to overlap with the plurality of (four) first recesses 23 when projected in the vertical direction. Each of the multiple (four) second recesses 25 is formed such that the lower surface of the upper mold 3 is recessed upward.
 また、上金型3は、下金型2に対してプレス可能に構成されている。具体的には、上金型3には、下金型2に対する圧力を付与できる駆動部(図示せず)が接続される。 Further, the upper mold 3 is configured to be pressable against the lower mold 2. Specifically, the upper mold 3 is connected to a drive unit (not shown) that can apply pressure to the lower mold 2.
 ヒータ7は、図1Aに示すように、下金型2の下面、および、上金型3の上面のそれぞれに配置されている。ヒータ7は、下金型2および上金型3を加熱可能に構成されている。 As shown in FIG. 1A, the heater 7 is disposed on each of the lower surface of the lower mold 2 and the upper surface of the upper mold 3. The heater 7 is configured to heat the lower mold 2 and the upper mold 3.
 バネ22は、図1Aにおいて全て図示していないが、複数(4つ)設けられている。複数(4つ)のバネ22のそれぞれは、上下方向に延び、上下方向に収縮可能に構成されており、上下方向に押圧力を有する押しバネである。図3が参照されるように、バネ22の下端部は、第1凹部23に収容されて固定される一方、バネ22の上端部は、第2凹部25に収容されて固定される。 Although the springs 22 are not shown in FIG. 1A, a plurality of (four) springs 22 are provided. Each of the plurality of (four) springs 22 is a pressing spring that extends in the vertical direction and is configured to be contractible in the vertical direction and has a pressing force in the vertical direction. As shown in FIG. 3, the lower end portion of the spring 22 is accommodated and fixed in the first recess 23, while the upper end portion of the spring 22 is accommodated and fixed in the second recess 25.
 プレス1を準備するには、図1Aに示すように、ヒータ7が設けられた下金型2と、ヒータ7が設けられた上金型3とをそれぞれ用意する。 To prepare the press 1, as shown in FIG. 1A, a lower mold 2 provided with a heater 7 and an upper mold 3 provided with a heater 7 are prepared.
 なお、この時点において、上金型3は、下金型2の上側にまだ対向配置されず、後述するが、被覆工程において、下金型2の上側に対向配置される。また、バネ22も、下金型2に配置されておらず、被覆工程において、下金型2に配置される。 At this time, the upper mold 3 is not yet arranged opposite to the upper side of the lower mold 2 and will be arranged opposite to the upper side of the lower mold 2 in the covering step as will be described later. Further, the spring 22 is not arranged in the lower mold 2 but is arranged in the lower mold 2 in the covering step.
  <2.スペーサ配置工程>
  (スペーサの用意)
 スペーサ配置工程では、図3に示すように、まず、規制部材としてのスペーサ4を複数(2つ)用意する。
<2. Spacer placement process>
(Preparation of spacer)
In the spacer arranging step, as shown in FIG. 3, first, a plurality (two) of spacers 4 as regulating members are prepared.
 複数(2つ)のスペーサ4は、前後方向に延びる略角棒(角柱)形状に形成されている。図4Bに示すように、複数(2つ)のスペーサ4のそれぞれは、前後方向に長い平面視略矩形状に形成されている。図3および図5に示すように、複数(2つ)のスペーサ4のそれぞれは、左右方向および上下方向に切断したときの断面形状、および、前後方向および上下方向に切断したときの断面形状が、略矩形状に形成されている。 The plurality of (two) spacers 4 are formed in a substantially square bar (rectangular column) shape extending in the front-rear direction. As shown in FIG. 4B, each of the plurality (two) of spacers 4 is formed in a substantially rectangular shape in plan view that is long in the front-rear direction. As shown in FIGS. 3 and 5, each of the plurality (two) of spacers 4 has a cross-sectional shape when cut in the left-right direction and the vertical direction, and a cross-sectional shape when cut in the front-rear direction and the vertical direction. It is formed in a substantially rectangular shape.
 スペーサ4は、機械的強度、耐摩耗性および耐熱性を有する材料からなり、そのような材料としては、具体的には、例えば、鉄、ステンレス、アルミニウムなどの金属、例えば、ポリフェニレンサルファイド(PPS)ポリアリレート(PAR)ポリアミドイミド(PAI)ポリエーテルイミド(PEI)ポリエーテルエーテルケトン(PEEK)ポリサルホン(PSF)ポリエーテルサルホン(PES)などの樹脂(具体的には、エンジニアリング-プラスチック)などが挙げられる。好ましくは、金属、具体的には、下金型2および上金型3の金属が挙げられる。 The spacer 4 is made of a material having mechanical strength, wear resistance, and heat resistance. Specific examples of such a material include metals such as iron, stainless steel, and aluminum, such as polyphenylene sulfide (PPS). Polyarylate (PAR) Polyamideimide (PAI) Polyetherimide (PEI) Polyetheretherketone (PEEK) Polysulfone (PSF) Polyethersulfone (PES) and other resins (specifically engineering-plastic) It is done. Preferably, a metal, specifically, a metal of the lower mold 2 and the upper mold 3 is used.
 複数(2つ)のスペーサ4のそれぞれの前後方向長さは、下金型2の前端部および後端部にわたる長さに調整されている。複数(2つ)のスペーサ4のそれぞれの左右方向長さ(幅)は、例えば、3mm以上、好ましくは、10mm以上であり、また、例えば、100mm以下、好ましくは、50mm以下である。図5に示すように、複数(2つ)のスペーサ4のそれぞれの上下方向長さT1(厚みT1)は、後述する封止層13の設計厚みT0(図1B参照)に対応する厚みであって、詳しくは、封止層13の設計厚みT0(図1B参照)、第1剥離層12の厚みT2(図5参照)に応じて適宜設定される。具体的には、複数(2つ)のスペーサ4のそれぞれの厚みT1は、例えば、50μm以上、好ましくは、100μm以上であり、また、例えば、5000μm以下、好ましくは、1000μm以下である。 The length in the front-rear direction of each of the plurality (two) of spacers 4 is adjusted to the length over the front end portion and the rear end portion of the lower mold 2. The length (width) of each of the plurality (two) of spacers 4 is, for example, 3 mm or more, preferably 10 mm or more, and for example, 100 mm or less, preferably 50 mm or less. As shown in FIG. 5, the vertical length T1 (thickness T1) of each of the plurality (two) of spacers 4 is a thickness corresponding to a design thickness T0 (see FIG. 1B) of a sealing layer 13 to be described later. Specifically, the thickness is appropriately set according to the design thickness T0 of the sealing layer 13 (see FIG. 1B) and the thickness T2 of the first release layer 12 (see FIG. 5). Specifically, the thickness T1 of each of the plurality (two) of spacers 4 is, for example, 50 μm or more, preferably 100 μm or more, and for example, 5000 μm or less, preferably 1000 μm or less.
  (スペーサの配置)
 次いで、用意した複数(2つ)のスペーサ4を、下金型2の上面に配置する。具体的には、複数(2つ)のスペーサ4のそれぞれを、下金型2の上面左右方向両端部のそれぞれに載置する。
(Spacer arrangement)
Next, the prepared plural (two) spacers 4 are arranged on the upper surface of the lower mold 2. Specifically, each of the plurality (two) of spacers 4 is placed on each of both ends of the upper die 2 in the left-right direction.
  <3.封止部材配置工程>
  (封止部材の用意)
 封止部材配置工程では、図3に示すように、まず、封止部材11を用意する。
<3. Sealing member placement process>
(Preparation of sealing member)
In the sealing member arranging step, as shown in FIG. 3, first, the sealing member 11 is prepared.
  (封止部材)
 封止部材11は、前後方向および左右方向に延びる略矩形平板状に形成されている。封止部材11は、剥離層としての第1剥離層12と、第1剥離層13の上面(表面)に配置されるBステージの封止層13とを備える。封止部材11は、好ましくは、第1剥離層12と、封止層13とのみからなる。
(Sealing member)
The sealing member 11 is formed in a substantially rectangular flat plate shape extending in the front-rear direction and the left-right direction. The sealing member 11 includes a first release layer 12 as a release layer and a B-stage seal layer 13 disposed on the upper surface (surface) of the first release layer 13. The sealing member 11 preferably includes only the first release layer 12 and the sealing layer 13.
 第1剥離層12は、封止層13によって光半導体素子16(後述)を封止するまでの間、封止層13を保護するために、封止層13の裏面(図1Aにおける下面、図2Dにおける上面)に剥離可能に貼着されている。つまり、第1剥離層12は、封止部材11の出荷・搬送・保管時において、封止層13の裏面(図1Aにおける下面、図2Dにおける上面)を被覆するように、封止層13の裏面に積層され、封止層13の使用直前において、図2Dに示すように、封止層13の裏面(図2Dにおける上面)から略U字状に湾曲するように引き剥がすことができる可撓性フィルムである。つまり、第1剥離層12は、可撓性フィルムのみからなる。また、第1剥離層12の貼着面(図1Aにおける下面)、つまり、封止層13に対する接触面は、必要によりフッ素処理などの剥離処理されている。 In order to protect the sealing layer 13 until the first release layer 12 seals the optical semiconductor element 16 (described later) with the sealing layer 13, the back surface of the sealing layer 13 (the bottom surface in FIG. The upper surface in 2D is detachably attached. That is, the first release layer 12 covers the back surface (the lower surface in FIG. 1A and the upper surface in FIG. 2D) of the sealing layer 13 when the sealing member 11 is shipped, transported, and stored. A flexible material that is laminated on the back surface and can be peeled off from the back surface (upper surface in FIG. 2D) of the sealing layer 13 so as to be curved in a substantially U shape immediately before use of the sealing layer 13 as shown in FIG. 2D. It is a sex film. That is, the 1st peeling layer 12 consists only of a flexible film. Moreover, the sticking surface (the lower surface in FIG. 1A) of the first release layer 12, that is, the contact surface with respect to the sealing layer 13 is subjected to a release treatment such as a fluorine treatment if necessary.
 図3に示すように、第1剥離層12は、左右方向および前後方向に沿う平板状をなし、具体的には、左右方向に長い平面視略矩形状に形成されている。 As shown in FIG. 3, the first release layer 12 has a flat plate shape along the left-right direction and the front-rear direction, and specifically, is formed in a substantially rectangular shape in plan view that is long in the left-right direction.
 第1剥離層12を形成する材料として、例えば、熱可塑性樹脂が挙げられる。熱可塑性樹脂としては、例えば、ポリスチレンなどのスチレン系樹脂、例えば、ポリエチレン、ポリプロピレンなどのオレフィン系樹脂、例えば、PETなどのポリエステル系樹脂、例えば、アクリル樹脂などのアクリル系樹脂、例えば、フッ素系樹脂、例えば、熱可塑性シリコーン樹脂などが挙げられる。好ましくは、ポリエステル系樹脂が挙げられる。第1剥離層12の軟化温度は、例えば、40℃以上、好ましくは、60℃以上であり、また、例えば、150℃以下、好ましくは、100℃以下である。 Examples of the material for forming the first release layer 12 include a thermoplastic resin. Examples of the thermoplastic resin include a styrene resin such as polystyrene, an olefin resin such as polyethylene and polypropylene, a polyester resin such as PET, an acrylic resin such as an acrylic resin, such as a fluorine resin, and the like. Examples thereof include thermoplastic silicone resins. Preferably, a polyester resin is used. The softening temperature of the 1st peeling layer 12 is 40 degreeC or more, for example, Preferably, it is 60 degreeC or more, for example, is 150 degrees C or less, Preferably, it is 100 degrees C or less.
 図4Bに示すように、第1剥離層12の面積S2は、封止層13の面積S1より大きく形成されている。 As shown in FIG. 4B, the area S2 of the first release layer 12 is formed larger than the area S1 of the sealing layer 13.
 図5に示すように、第1剥離層12の厚みT2は、剛性、可撓性、ハンドリング性および低コスト化の観点から、例えば、20μm以上、好ましくは、30μm以上、より好ましくは、50μm以上であり、また、例えば、200μm以下、好ましくは、100μm以下である。 As shown in FIG. 5, the thickness T2 of the first release layer 12 is, for example, 20 μm or more, preferably 30 μm or more, more preferably 50 μm or more, from the viewpoint of rigidity, flexibility, handling properties, and cost reduction. In addition, for example, it is 200 μm or less, preferably 100 μm or less.
 図3に示すように、封止層13は、平板状を有し、具体的には、所定の厚みを有し、前後方向および左右方向に延び、平坦な上面および平坦な下面を有している。封止層13は、その外形形状が第1剥離層12の外形形状よりも小さく形成されており、第1剥離層12の上面の周端部(前端部、後端部、左端部および右端部)を露出するように、第1剥離層12の上面の前後方向および左右方向中央部に載置されている。 As shown in FIG. 3, the sealing layer 13 has a flat plate shape, specifically, has a predetermined thickness, extends in the front-rear direction and the left-right direction, and has a flat upper surface and a flat lower surface. Yes. The outer shape of the sealing layer 13 is smaller than the outer shape of the first release layer 12, and the peripheral ends (front end, rear end, left end, and right end of the upper surface of the first release layer 12 are formed. ) In the front-rear direction and the center in the left-right direction of the upper surface of the first release layer 12 so as to be exposed.
 また、封止層13は、後述する封止層被覆光半導体素子10(図2E参照)および光半導体装置30(図2F参照)ではなく、封止層被覆光半導体素子10および光半導体装置30の一部品、すなわち、封止層被覆光半導体素子10および光半導体装置30を作製するための部品であり、光半導体素子16および光半導体素子16を搭載する基板20を含むことなく、構成されている。 Further, the sealing layer 13 is not a sealing layer-covered optical semiconductor element 10 (see FIG. 2E) and an optical semiconductor device 30 (see FIG. 2F), which will be described later, but the sealing layer-covered optical semiconductor element 10 and the optical semiconductor device 30. One component, that is, a component for producing the sealing layer-covered optical semiconductor element 10 and the optical semiconductor device 30, and is configured without including the optical semiconductor element 16 and the substrate 20 on which the optical semiconductor element 16 is mounted. .
 そのため、第1剥離層12および封止層13を備える封止部材11は、部品単独で流通し、産業上利用可能なデバイスである。 Therefore, the sealing member 11 including the first release layer 12 and the sealing layer 13 is a device that can be used industrially by distributing components alone.
 封止層13は、Bステージの封止組成物からシート状に形成されている。封止組成物は、例えば、封止樹脂を必須成分として含有している。封止樹脂は、透明樹脂であって、具体的には、熱硬化性樹脂、光硬化性樹脂などの硬化性樹脂が挙げられ、好ましくは、熱硬化性樹脂が挙げられる。 The sealing layer 13 is formed in a sheet form from a B-stage sealing composition. The sealing composition contains, for example, a sealing resin as an essential component. The sealing resin is a transparent resin, and specifically includes a curable resin such as a thermosetting resin or a photocurable resin, and preferably includes a thermosetting resin.
 熱硬化性樹脂としては、例えば、2段反応硬化性樹脂、1段反応硬化性樹脂が挙げられる。 Examples of the thermosetting resin include a two-stage reaction curable resin and a one-stage reaction curable resin.
 2段反応硬化性樹脂は、2つの反応機構を有しており、第1段の反応で、Aステージ状態からBステージ化(半硬化)し、次いで、第2段の反応で、Bステージ状態からCステージ化(完全硬化)することができる。つまり、2段反応硬化性樹脂は、適度の加熱条件によりBステージ状態となることができる熱硬化性樹脂である。なお、Bステージ状態は、熱硬化性樹脂が、液状であるAステージ状態と、完全硬化したCステージ状態との間の状態であって、硬化およびゲル化がわずかに進行し、弾性率がCステージ状態の弾性率よりも小さい半固体または固体状態である。 The two-stage reaction curable resin has two reaction mechanisms. In the first stage reaction, the A stage state is changed to the B stage (semi-cured), and then in the second stage reaction, the B stage state is obtained. To C-stage (complete curing). That is, the two-stage reaction curable resin is a thermosetting resin that can be in a B-stage state under appropriate heating conditions. The B stage state is a state between the A stage state in which the thermosetting resin is in a liquid state and the C stage state in which the thermosetting resin is completely cured, and curing and gelation proceed slightly, and the elastic modulus is C. A semi-solid or solid state smaller than the elastic modulus in the stage state.
 1段反応硬化性樹脂は、1つの反応機構を有しており、第1段の反応で、Aステージ状態からCステージ化(完全硬化)することができる。ただし、1段反応硬化性樹脂は、第1段の反応の途中で、その反応が停止して、Aステージ状態からBステージ状態となることができ、その後のさらなる加熱によって、第1段の反応が再開されて、Bステージ状態からCステージ化(完全硬化)することができる熱硬化性樹脂を含む。つまり、かかる熱硬化性樹脂は、Bステージ状態となることができる熱硬化性樹脂である。 The first-stage reaction curable resin has one reaction mechanism, and can be C-staged (completely cured) from the A-stage state by the first-stage reaction. However, in the first stage reaction curable resin, the reaction stops in the middle of the first stage reaction, and can be changed from the A stage state to the B stage state. Is resumed, and includes a thermosetting resin that can be converted into a C stage (completely cured) from the B stage state. That is, such a thermosetting resin is a thermosetting resin that can be in a B-stage state.
 封止樹脂としては、例えば、シリコーン樹脂、ウレタン樹脂、エポキシ樹脂、ポリイミド樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、不飽和ポリエステル樹脂などが挙げられる。好ましくは、シリコーン樹脂が挙げられる。 Examples of the sealing resin include silicone resin, urethane resin, epoxy resin, polyimide resin, phenol resin, urea resin, melamine resin, and unsaturated polyester resin. Preferably, a silicone resin is used.
 シリコーン樹脂としては、例えば、付加反応硬化型シリコーン樹脂組成物、縮合反応・付加反応硬化型シリコーン樹脂などが挙げられる。シリコーン樹脂は、単独で使用してもよく、あるいは、併用することもできる。 Examples of the silicone resin include addition reaction curable silicone resin compositions, condensation reaction / addition reaction curable silicone resins, and the like. Silicone resins may be used alone or in combination.
 付加反応硬化型シリコーン樹脂組成物は、1段反応硬化性樹脂であって、例えば、アルケニル基含有ポリシロキサンと、ヒドロシリル基含有ポリシロキサンと、ヒドロシリル化触媒とを含有する。 The addition reaction curable silicone resin composition is a one-step reaction curable resin and contains, for example, an alkenyl group-containing polysiloxane, a hydrosilyl group-containing polysiloxane, and a hydrosilylation catalyst.
 アルケニル基含有ポリシロキサンは、分子内に2個以上のアルケニル基および/またはシクロアルケニル基を含有する。アルケニル基含有ポリシロキサンは、具体的には、下記平均組成式(1)で示される。 The alkenyl group-containing polysiloxane contains two or more alkenyl groups and / or cycloalkenyl groups in the molecule. The alkenyl group-containing polysiloxane is specifically represented by the following average composition formula (1).
 平均組成式(1):
 R SiO(4-a-b)/2
(式中、Rは、炭素数2~10のアルケニル基および/または炭素数3~10のシクロアルケニル基を示す。Rは、非置換または置換の炭素数1~10の1価の炭化水素基(ただし、アルケニル基およびシクロアルケニル基を除く。)を示す。aは、0.05以上、0.50以下であり、bは、0.80以上、1.80以下である。)
 式(1)中、Rで示されるアルケニル基としては、例えば、ビニル基、アリル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基などの炭素数2~10のアルケニル基が挙げられる。Rで示されるシクロアルケニル基としては、例えば、シクロヘキセニル基、ノルボルネニル基などの炭素数3~10のシクロアルケニル基が挙げられる。
Average composition formula (1):
R 1 a R 2 b SiO (4-ab) / 2
(In the formula, R 1 represents an alkenyl group having 2 to 10 carbon atoms and / or a cycloalkenyl group having 3 to 10 carbon atoms. R 2 represents an unsubstituted or substituted monovalent carbon atom having 1 to 10 carbon atoms. A hydrogen group (excluding an alkenyl group and a cycloalkenyl group); a is from 0.05 to 0.50, and b is from 0.80 to 1.80.
In the formula (1), examples of the alkenyl group represented by R 1 include alkenyl having 2 to 10 carbon atoms such as vinyl, allyl, propenyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl and the like. Groups. Examples of the cycloalkenyl group represented by R 1 include a cycloalkenyl group having 3 to 10 carbon atoms such as a cyclohexenyl group and a norbornenyl group.
 Rとして、好ましくは、アルケニル基、より好ましくは、炭素数2~4のアルケニル基、さらに好ましくは、ビニル基が挙げられる。 R 1 is preferably an alkenyl group, more preferably an alkenyl group having 2 to 4 carbon atoms, and still more preferably a vinyl group.
 Rで示されるアルケニル基は、同一種類または複数種類のいずれでもよい。 The alkenyl groups represented by R 1 may be the same type or a plurality of types.
 Rで示される1価の炭化水素基は、アルケニル基およびシクロアルケニル基以外の非置換または置換の炭素原子数1~10の1価の炭化水素基である。 The monovalent hydrocarbon group represented by R 2 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms other than an alkenyl group and a cycloalkenyl group.
 非置換の1価の炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ペンチル基、ヘプチル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基などの炭素数1~10のアルキル基、例えば、シクロプロピル、シクロブチル基、シクロペンチル基、シクロヘキシル基などの炭素数3~6のシクロアルキル基、例えば、フェニル基、トリル基、ナフチル基などの炭素数6~10のアリール基、例えば、ベンジル基、ベンジルエチル基などの炭素数7~8のアラルキル基が挙げられる。好ましくは、炭素数1~3のアルキル基、炭素数6~10のアリール基が挙げられ、より好ましくは、メチル基および/またはフェニル基が挙げられる。 Examples of the unsubstituted monovalent hydrocarbon group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, a hexyl group, and a pentyl group. Alkyl groups having 1 to 10 carbon atoms such as heptyl group, octyl group, 2-ethylhexyl group, nonyl group and decyl group, for example, cyclohexane having 3 to 6 carbon atoms such as cyclopropyl, cyclobutyl group, cyclopentyl group and cyclohexyl group. Examples thereof include alkyl groups such as aryl groups having 6 to 10 carbon atoms such as phenyl, tolyl and naphthyl groups, and aralkyl groups having 7 to 8 carbon atoms such as benzyl and benzylethyl groups. Preferred examples include an alkyl group having 1 to 3 carbon atoms and an aryl group having 6 to 10 carbon atoms, and more preferred examples include a methyl group and / or a phenyl group.
 一方、置換の1価の炭化水素基は、上記した非置換の1価の炭化水素基における水素原子を置換基で置換したものが挙げられる。 On the other hand, examples of the substituted monovalent hydrocarbon group include those obtained by substituting a hydrogen atom in the above-mentioned unsubstituted monovalent hydrocarbon group with a substituent.
 置換基としては、例えば、塩素原子などのハロゲン原子、例えば、グリシジルエーテル基などが挙げられる。 Examples of the substituent include a halogen atom such as a chlorine atom, such as a glycidyl ether group.
 置換の1価の炭化水素基としては、具体的には、3-クロロプロピル基、グリシドキシプロピル基などが挙げられる。 Specific examples of the substituted monovalent hydrocarbon group include a 3-chloropropyl group and a glycidoxypropyl group.
 1価の炭化水素基は、非置換および置換のいずれであってもよく、好ましくは、非置換である。 The monovalent hydrocarbon group may be unsubstituted or substituted, and is preferably unsubstituted.
 Rで示される1価の炭化水素基は、同一種類または複数種類であってもよい。好ましくは、メチル基および/またはフェニル基が挙げられ、より好ましくは、メチル基およびフェニル基の併用が挙げられる。 The monovalent hydrocarbon groups represented by R 2 may be of the same type or a plurality of types. Preferably, a methyl group and / or a phenyl group are mentioned, More preferably, combined use of a methyl group and a phenyl group is mentioned.
 aは、好ましくは、0.10以上、0.40以下である。 A is preferably 0.10 or more and 0.40 or less.
 bは、好ましくは、1.5以上、1.75以下である。 B is preferably 1.5 or more and 1.75 or less.
 アルケニル基含有ポリシロキサンの重量平均分子量は、例えば、100以上、好ましくは、500以上であり、また、例えば、10000以下、好ましくは、5000以下である。アルケニル基含有ポリシロキサンの重量平均分子量は、ゲル透過クロマトグラフィーによって測定される標準ポリスチレンによる換算値である。 The weight average molecular weight of the alkenyl group-containing polysiloxane is, for example, 100 or more, preferably 500 or more, and for example, 10,000 or less, preferably 5000 or less. The weight average molecular weight of the alkenyl group-containing polysiloxane is a conversion value based on standard polystyrene measured by gel permeation chromatography.
 アルケニル基含有ポリシロキサンは、適宜の方法によって調製され、また、市販品を用いることもできる。 The alkenyl group-containing polysiloxane is prepared by an appropriate method, and a commercially available product can also be used.
 また、アルケニル基含有ポリシロキサンは、同一種類または複数種類であってもよい。 Further, the alkenyl group-containing polysiloxane may be of the same type or a plurality of types.
 ヒドロシリル基含有ポリシロキサンは、例えば、分子内に2個以上のヒドロシリル基(SiH基)を含有する。ヒドロシリル基含有ポリシロキサンは、具体的には、下記平均組成式(2)で示される。 The hydrosilyl group-containing polysiloxane contains, for example, two or more hydrosilyl groups (SiH groups) in the molecule. Specifically, the hydrosilyl group-containing polysiloxane is represented by the following average composition formula (2).
 平均組成式(2):
 H SiO(4-c-d)/2
(式中、Rは、非置換または置換の炭素数1~10の1価の炭化水素基(ただし、アルケニル基および/またはシクロアルケニル基を除く。)を示す。cは、0.30以上、1.0以下であり、dは、0.90以上、2.0以下である。)
 式(2)中、Rで示される非置換または置換の炭素数1~10の1価の炭化水素基は、式(1)のRで示される非置換または置換の炭素数1~10の1価の炭化水素基と同一のものが例示される。好ましくは、非置換の炭素数1~10の1価の炭化水素基、より好ましくは、炭素数1~10のアルキル基、炭素数6~10のアリール基が挙げられ、さらに好ましくは、メチル基および/またはフェニル基が挙げられる。
Average composition formula (2):
H c R 3 d SiO (4-cd) / 2
(Wherein R 3 represents an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms (excluding an alkenyl group and / or a cycloalkenyl group), and c is 0.30 or more) 1.0, and d is 0.90 or more and 2.0 or less.)
In formula (2), an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms represented by R 3 is an unsubstituted or substituted carbon group having 1 to 10 carbon atoms represented by R 2 in formula (1). The same thing as the monovalent hydrocarbon group of is illustrated. Preferably, an unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 10 carbon atoms, and an aryl group having 6 to 10 carbon atoms, more preferably a methyl group. And / or a phenyl group.
 cは、好ましくは、0.5以下である。 C is preferably 0.5 or less.
 dは、好ましくは、1.3以上、1.7以下である。 D is preferably 1.3 or more and 1.7 or less.
 ヒドロシリル基含有ポリシロキサンの重量平均分子量は、例えば、100以上、好ましくは、500以上であり、また、例えば、10000以下、好ましくは、5000以下である。ヒドロシリル基含有ポリシロキサンの重量平均分子量は、ゲル透過クロマトグラフィーによって測定される標準ポリスチレンによる換算値である。 The weight average molecular weight of the hydrosilyl group-containing polysiloxane is, for example, 100 or more, preferably 500 or more, and for example, 10,000 or less, preferably 5000 or less. The weight average molecular weight of the hydrosilyl group-containing polysiloxane is a conversion value based on standard polystyrene measured by gel permeation chromatography.
 ヒドロシリル基含有ポリシロキサンは、適宜の方法によって調製され、また、市販品を用いることもできる。 The hydrosilyl group-containing polysiloxane is prepared by an appropriate method, and a commercially available product can also be used.
 また、ヒドロシリル基含有ポリシロキサンは、同一種類または複数種類であってもよい。 Also, the hydrosilyl group-containing polysiloxane may be of the same type or a plurality of types.
 上記した平均組成式(1)および平均組成式(2)中、RおよびRの少なくともいずれか一方の炭化水素基は、フェニル基を含み、好ましくは、RおよびRの両方の炭化水素が、フェニル基を含む。なお、RおよびRの少なくともいずれか一方の炭化水素基がフェニル基を含むので、付加反応硬化型シリコーン樹脂組成物は、フェニル系シリコーン樹脂組成物とされる。 Average composition formula described above (1) and the average compositional formula (2), at least one of the hydrocarbon groups R 2 and R 3 include a phenyl group, preferably a carbide in both R 2 and R 3 Hydrogen contains a phenyl group. In addition, since at least one of the hydrocarbon groups of R 2 and R 3 contains a phenyl group, the addition reaction curable silicone resin composition is a phenyl silicone resin composition.
 ヒドロシリル基含有ポリシロキサンの配合割合は、アルケニル基含有ポリシロキサンのアルケニル基およびシクロアルケニル基のモル数の、ヒドロシリル基含有ポリシロキサンのヒドロシリル基のモル数に対する割合(アルケニル基およびシクロアルケニル基のモル数/ヒドロシリル基のモル数)が、例えば、1/30以上、好ましくは、1/3以上、また、例えば、30/1以下、好ましくは、3/1以下となるように、調整される。 The blending ratio of the hydrosilyl group-containing polysiloxane is the ratio of the number of moles of alkenyl groups and cycloalkenyl groups of the alkenyl group-containing polysiloxane to the number of moles of hydrosilyl groups of the hydrosilyl group-containing polysiloxane (number of moles of alkenyl groups and cycloalkenyl groups). / Number of moles of hydrosilyl group) is adjusted to be, for example, 1/30 or more, preferably 1/3 or more, and for example, 30/1 or less, preferably 3/1 or less.
 ヒドロシリル化触媒は、アルケニル基含有ポリシロキサンのアルケニル基および/またはシクロアルケニル基と、ヒドロシリル基含有ポリシロキサンのヒドロシリル基とのヒドロシリル化反応(ヒドロシリル付加)の反応速度を向上させる物質(付加触媒)であれば、特に限定されず、例えば、金属触媒が挙げられる。金属触媒としては、例えば、白金黒、塩化白金、塩化白金酸、白金-オレフィン錯体、白金-カルボニル錯体、白金-アセチルアセテートなどの白金触媒、例えば、パラジウム触媒、例えば、ロジウム触媒などが挙げられる。 The hydrosilylation catalyst is a substance (addition catalyst) that improves the reaction rate of the hydrosilylation reaction (hydrosilyl addition) between the alkenyl group and / or cycloalkenyl group of the alkenyl group-containing polysiloxane and the hydrosilyl group of the hydrosilyl group-containing polysiloxane. If it exists, it will not specifically limit, For example, a metal catalyst is mentioned. Examples of the metal catalyst include platinum catalysts such as platinum black, platinum chloride, chloroplatinic acid, platinum-olefin complexes, platinum-carbonyl complexes, and platinum-acetyl acetate, such as palladium catalysts such as rhodium catalyst.
 ヒドロシリル化触媒の配合割合は、金属触媒の金属量(具体的には、金属原子)として、アルケニル基含有ポリシロキサンおよびヒドロシリル基含有ポリシロキサンに対して、質量基準で、例えば、1.0ppm以上であり、また、例えば、10000ppm以下、好ましくは、1000ppm以下、より好ましくは、500ppm以下である。 The blending ratio of the hydrosilylation catalyst is, for example, 1.0 ppm or more on a mass basis with respect to the alkenyl group-containing polysiloxane and the hydrosilyl group-containing polysiloxane as the metal amount of the metal catalyst (specifically, metal atom). Yes, for example, 10000 ppm or less, preferably 1000 ppm or less, and more preferably 500 ppm or less.
 付加反応硬化型シリコーン樹脂組成物は、アルケニル基含有ポリシロキサン、ヒドロシリル基含有ポリシロキサンおよびヒドロシリル化触媒を、上記した割合で配合することにより、調製される。 The addition reaction curable silicone resin composition is prepared by blending an alkenyl group-containing polysiloxane, a hydrosilyl group-containing polysiloxane, and a hydrosilylation catalyst in the above-described proportions.
 上記した付加反応硬化型シリコーン樹脂組成物は、アルケニル基含有ポリシロキサン、ヒドロシリル基含有ポリシロキサンおよびヒドロシリル化触媒を配合することによって、Aステージ(液体)状態として調製され、その後、反応が途中で停止することにより、Bステージ(液体)状態として調製される。 The above addition reaction curable silicone resin composition is prepared as an A stage (liquid) state by blending an alkenyl group-containing polysiloxane, a hydrosilyl group-containing polysiloxane, and a hydrosilylation catalyst, and then the reaction is stopped midway. By doing so, it is prepared as a B stage (liquid) state.
 つまり、上記したように、付加反応硬化型シリコーン樹脂組成物は、所望条件の加熱により、アルケニル基含有ポリシロキサンのアルケニル基および/またはシクロアルケニル基と、ヒドロシリル基含有ポリシロキサンのヒドロシリル基とのヒドロシリル化付加反応を生じ、その後、ヒドロシリル化付加反応が、一旦、停止する。これによって、Aステージ状態からBステージ(半硬化)状態となることができる。その後、さらなる所望条件の加熱により、上記したヒドロシリル化付加反応が再開されて、完結する。これによって、Bステージ状態からCステージ(完全硬化)状態となることができる。 That is, as described above, the addition reaction curable silicone resin composition can be obtained by hydrosilylation of an alkenyl group and / or cycloalkenyl group of an alkenyl group-containing polysiloxane with a hydrosilyl group of a hydrosilyl group-containing polysiloxane by heating under desired conditions. Then, the hydrosilylation addition reaction is once stopped. As a result, the A stage state can be changed to the B stage (semi-cured) state. Thereafter, the above-described hydrosilylation addition reaction is resumed and completed by heating under further desired conditions. As a result, the B stage state can be changed to the C stage (fully cured) state.
 なお、付加反応硬化型シリコーン樹脂組成物がBステージ(半硬化)状態にあるときには、固体状である。そして、このBステージ状態の付加反応硬化型シリコーン樹脂組成物は、熱可塑性および熱硬化性を併有することができる。つまり、Bステージの付加反応硬化型シリコーン樹脂組成物は、加熱により、一旦、可塑化した後、完全硬化する。 In addition, when the addition reaction curable silicone resin composition is in a B stage (semi-cured) state, it is solid. The B-stage addition reaction curable silicone resin composition can have both thermoplasticity and thermosetting properties. That is, the B-stage addition reaction curable silicone resin composition is once plasticized by heating and then completely cured.
 縮合・付加反応硬化型シリコーン樹脂組成物は、2段反応硬化性樹脂であって、具体的には、例えば、特開2010-265436号公報、特開2013-187227号公報などに記載される第1~第8の縮合・付加反応硬化型シリコーン樹脂組成物、例えば、特開2013-091705号公報、特開2013-001815号公報、特開2013-001814号公報、特開2013-001813号公報、特開2012-102167号公報などに記載されるかご型オクタシルセスキオキサン含有シリコーン樹脂組成物などが挙げられる。なお、縮合・付加反応硬化型シリコーン樹脂組成物は、固体状であって、熱可塑性および熱硬化性を併有する。 The condensation / addition reaction curable silicone resin composition is a two-stage reaction curable resin, and specifically, for example, those described in JP 2010-265436 A, JP 2013-187227 A, and the like. 1 to 8 condensation / addition reaction curable silicone resin compositions, for example, JP 2013-091705 A, JP 2013-001815 A, JP 2013-001814 A, JP 2013-001813 A, Examples thereof include a cage-type octasilsesquioxane-containing silicone resin composition described in JP2012-102167A. The condensation / addition reaction curable silicone resin composition is solid and has both thermoplasticity and thermosetting properties.
 縮合・付加反応硬化型シリコーン樹脂組成物としては、好ましくは、ケイ素原子に直接結合するアルキル基がすべてメチル基であるメチル系シリコーン樹脂組成物(2段反応硬化性のメチル系シリコーン樹脂組成物、具体的には、両末端シラノール型ポリジメチルシロキサンと、ジメチルポリシロキサン-CO-メチルハイドロジェンシロキサンと、アルケニル基含有ケイ素化合物とから調製されるメチル系シリコーン樹脂組成物などが挙げられる。 As the condensation / addition reaction curable silicone resin composition, a methyl silicone resin composition in which all alkyl groups directly bonded to silicon atoms are methyl groups (two-stage reaction curable methyl silicone resin composition, Specific examples include a methyl silicone resin composition prepared from silanol-type polydimethylsiloxane at both ends, dimethylpolysiloxane-CO-methylhydrogensiloxane, and an alkenyl group-containing silicon compound.
 縮合・付加反応硬化型シリコーン樹脂組成物は、加熱により、縮合反応を生じて、Aステージ状態からBステージ(半硬化)状態として調製される。Bステージ状態の縮合・付加反応硬化型シリコーン樹脂組成物は、その後、さらなる加熱により、付加反応を生じて、Cステージ(完全硬化)状態となることができる。 The condensation / addition reaction curable silicone resin composition is prepared from a stage A state to a stage B (semi-cured) state by causing a condensation reaction by heating. The condensation / addition reaction curable silicone resin composition in the B stage state can then undergo an addition reaction by further heating to be in the C stage (fully cured) state.
 熱硬化性樹脂としては、耐久性および光学特性の観点から、1段反応硬化性樹脂、具体的には、付加反応硬化型シリコーン樹脂組成物が挙げられ、より好ましくは、フェニル系シリコーン樹脂組成物が挙げられる。 As the thermosetting resin, from the viewpoint of durability and optical properties, a one-step reaction curable resin, specifically, an addition reaction curable silicone resin composition can be mentioned, and more preferably, a phenyl silicone resin composition. Is mentioned.
 封止樹脂の屈折率は、例えば、1.50以上であり、また、例えば、1.60以下である。封止樹脂の屈折率は、アッベ屈折率計によって算出される。なお、封止樹脂の屈折率は、封止樹脂がBステージの硬化性樹脂である場合には、Bステージの硬化性樹脂とCステージの硬化性樹脂(後述する生成物に相当)との屈折率が実質的に同一であることから、Cステージの硬化性樹脂の屈折率として算出される。 The refractive index of the sealing resin is, for example, 1.50 or more and, for example, 1.60 or less. The refractive index of the sealing resin is calculated by an Abbe refractometer. The refractive index of the sealing resin is the refraction between the curable resin of the B stage and the curable resin of the C stage (corresponding to a product described later) when the sealing resin is a curable resin of the B stage. Since the rate is substantially the same, it is calculated as the refractive index of the C-stage curable resin.
 封止樹脂の配合割合は、封止組成物に対して、例えば、20質量%以上、好ましくは、25質量%以上であり、また、例えば、70質量%以下、好ましくは、50質量%以下、より好ましくは、50質量%未満、さらに好ましくは、40質量%以下、とりわけ好ましくは、30質量%以下である。封止樹脂の配合割合が上記範囲内であれば、封止層13の成形性を確保することができる。 The blending ratio of the sealing resin is, for example, 20% by mass or more, preferably 25% by mass or more, and, for example, 70% by mass or less, preferably 50% by mass or less, with respect to the sealing composition. More preferably, it is less than 50 mass%, More preferably, it is 40 mass% or less, Most preferably, it is 30 mass% or less. If the compounding ratio of the sealing resin is within the above range, the moldability of the sealing layer 13 can be ensured.
  (フィラー、蛍光体)
 封止組成物は、上記した封止樹脂の他に、例えば、フィラーおよび/または蛍光体を含有することもできる。
(Filler, phosphor)
In addition to the above-described sealing resin, the sealing composition can also contain, for example, a filler and / or a phosphor.
 フィラーは、封止層13(図1A参照)の成形性を向上させるために、封止組成物に必要により配合される。具体的には、フィラーは、反応前(具体的には、Aステージ)の封止樹脂に配合される。フィラーとしては、特に限定されず、例えば、無機フィラー、有機フィラーが挙げられる。これらは、単独使用または併用することができる。 The filler is blended in the sealing composition as necessary in order to improve the moldability of the sealing layer 13 (see FIG. 1A). Specifically, the filler is blended in the sealing resin before the reaction (specifically, the A stage). It does not specifically limit as a filler, For example, an inorganic filler and an organic filler are mentioned. These can be used alone or in combination.
 無機フィラーとしては、例えば、シリカ(SiO)、タルク(Mg(Si10)(HO))、アルミナ(Al)、酸化ホウ素(B)、酸化カルシウム(CaO)、酸化亜鉛(ZnO)、酸化ストロンチウム(SrO)、酸化マグネシウム(MgO)、酸化ジルコニウム(ZrO)、酸化バリウム(BaO)、酸化アンチモン(Sb)などの酸化物、例えば、窒化アルミニウム(AlN)、窒化ケイ素(Si)などの窒化物などの無機物粒子(無機物)が挙げられる。また、無機フィラーとして、例えば、上記例示の無機物から調製される複合無機物粒子が挙げられ、好ましくは、酸化物から調製される複合無機酸化物粒子(具体的には、ガラス粒子など)が挙げられる。 Examples of the inorganic filler include silica (SiO 2 ), talc (Mg 3 (Si 4 O 10 ) (HO) 2 ), alumina (Al 2 O 3 ), boron oxide (B 2 O 3 ), calcium oxide (CaO). ), Zinc oxide (ZnO), strontium oxide (SrO), magnesium oxide (MgO), zirconium oxide (ZrO 2 ), barium oxide (BaO), antimony oxide (Sb 2 O 3 ), and other oxides such as aluminum nitride Examples thereof include inorganic particles (inorganic materials) such as nitrides such as (AlN) and silicon nitride (Si 3 N 4 ). Moreover, as an inorganic filler, the composite inorganic particle prepared from the inorganic substance illustrated above is mentioned, for example, Preferably, the composite inorganic oxide particle (specifically glass particle etc.) prepared from an oxide is mentioned. .
 複合無機酸化物粒子としては、例えば、シリカ、あるいは、シリカおよび酸化ホウ素を主成分として含有し、また、アルミナ、酸化カルシウム、酸化亜鉛、酸化ストロンチウム、酸化マグネシウム、酸化ジルコニウム、酸化バリウム、酸化アンチモンなどを副成分として含有する。複合無機酸化物粒子における主成分の含有割合は、複合無機酸化物粒子に対して、例えば、40質量%を超え、好ましくは、50質量%以上であり、また、例えば、90質量%以下、好ましくは、80質量%以下である。副成分の含有割合は、上記した主成分の含有割合の残部である。 The composite inorganic oxide particles include, for example, silica, or silica and boron oxide as main components, and alumina, calcium oxide, zinc oxide, strontium oxide, magnesium oxide, zirconium oxide, barium oxide, antimony oxide, and the like. Is contained as a minor component. The content ratio of the main component in the composite inorganic oxide particles is, for example, more than 40% by mass, preferably 50% by mass or more, and for example, 90% by mass or less, preferably with respect to the composite inorganic oxide particles. Is 80 mass% or less. The content ratio of the subcomponent is the remainder of the content ratio of the main component described above.
 複合酸化物粒子は、上記した主成分および副成分を配合して、加熱して溶融させて、それらの溶融物を急冷し、その後、例えば、ボールミルなどによって粉砕し、その後、必要により、適宜の表面加工(具体的には、球体化など)を施して、得られる。 The composite oxide particles are blended with the main component and subcomponents described above, heated and melted, rapidly cooled, and then pulverized by, for example, a ball mill or the like. It is obtained by applying surface processing (specifically, spheroidization, etc.).
 有機フィラーとしては、例えば、シリコーン系樹脂、アクリル系樹脂、スチレン系樹脂、アクリル-スチレン系樹脂、シリコーン系樹脂、ポリカーボネート系樹脂、ベンゾグアナミン系樹脂、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂などからなる樹脂粒子などが挙げられる。好ましくは、シリコーン系樹脂からなるシリコーン粒子が挙げられる。 Examples of organic fillers include silicone resins, acrylic resins, styrene resins, acrylic-styrene resins, silicone resins, polycarbonate resins, benzoguanamine resins, polyolefin resins, polyester resins, polyamide resins, and polyimides. Examples thereof include resin particles made of a resin. Preferably, silicone particles made of a silicone resin are used.
 シリコーン粒子は、架橋構造を有するポリシロキサン(硬化後)の微粒子であって、その屈折率が、封止組成物における硬化後の硬化性樹脂の屈折率と近似する。 The silicone particles are fine particles of polysiloxane (after curing) having a crosslinked structure, and the refractive index thereof approximates the refractive index of the curable resin after curing in the sealing composition.
 フィラーとして、好ましくは、無機フィラーが挙げられる。 The filler is preferably an inorganic filler.
 フィラーの形状は、特に限定されず、例えば、球状、板状、針状などが挙げられる。好ましくは、流動性の観点から、球状が挙げられる。フィラーの平均粒子径は、例えば、10μm以上、好ましくは、15μm以上であり、また、例えば、50μm以下、好ましくは、40μm以下、より好ましくは、30μm以下、さらに好ましくは、25μm以下である。フィラーの平均粒子径が上記上限を超える場合には、封止組成物(後述するワニス)においてフィラーが沈降する傾向がある。一方、フィラーの平均粒子径が上記下限に満たない場合には、封止組成物のシート成形性が低下したり、あるいは、封止層13(図1A参照)の透明性が低下する傾向がある。フィラーの平均粒子径は、D50値として算出される。具体的には、レーザー回折式粒度分布計により測定される。 The shape of the filler is not particularly limited, and examples thereof include a spherical shape, a plate shape, and a needle shape. Preferably, spherical shape is mentioned from a fluid viewpoint. The average particle diameter of the filler is, for example, 10 μm or more, preferably 15 μm or more, and for example, 50 μm or less, preferably 40 μm or less, more preferably 30 μm or less, and further preferably 25 μm or less. When the average particle diameter of a filler exceeds the said upper limit, there exists a tendency for a filler to precipitate in a sealing composition (varnish mentioned later). On the other hand, when the average particle diameter of the filler is less than the lower limit, the sheet formability of the sealing composition tends to decrease, or the transparency of the sealing layer 13 (see FIG. 1A) tends to decrease. . The average particle diameter of the filler is calculated as a D50 value. Specifically, it is measured by a laser diffraction particle size distribution meter.
 フィラーの屈折率は、例えば、1.40以上、好ましくは、1.50以上、好ましくは、より好ましくは、1.52以上であり、また、例えば、1.60以下、好ましくは、1.58以下である。フィラーの屈折率が上記範囲内にあれば、上記した封止樹脂の屈折率との差を所望範囲内にすることができる。つまり、封止樹脂およびフィラーの屈折率の差の絶対値を小さくすることができ、そのため、封止層13の透明性を向上させることができる。フィラーの屈折率は、アッベ屈折率計によって算出される。 The refractive index of the filler is, for example, 1.40 or more, preferably 1.50 or more, more preferably 1.52 or more, and for example, 1.60 or less, preferably 1.58. It is as follows. If the refractive index of the filler is within the above range, the difference from the refractive index of the sealing resin described above can be made within the desired range. That is, the absolute value of the difference in refractive index between the sealing resin and the filler can be reduced, and therefore the transparency of the sealing layer 13 can be improved. The refractive index of the filler is calculated by an Abbe refractometer.
 フィラーの配合割合は、封止組成物に対して、例えば、20質量%以上、好ましくは、25質量%以上、より好ましくは、30質量%以上、さらに好ましくは、40質量%以上であり、また、例えば、80質量%以下、好ましくは、60質量%以下である。また、フィラーの配合割合は、封止樹脂100質量部に対して、例えば、25質量部以上、好ましくは、33.3質量部以上、より好ましくは、42.8質量部以上であり、また、例えば、400質量部以下、好ましくは、150質量部以下である。 The blending ratio of the filler is, for example, 20% by mass or more, preferably 25% by mass or more, more preferably 30% by mass or more, and further preferably 40% by mass or more with respect to the sealing composition. For example, it is 80 mass% or less, Preferably, it is 60 mass% or less. Further, the blending ratio of the filler is, for example, 25 parts by mass or more, preferably 33.3 parts by mass or more, more preferably 42.8 parts by mass or more with respect to 100 parts by mass of the sealing resin. For example, it is 400 parts by mass or less, preferably 150 parts by mass or less.
 フィラーの配合割合が上記範囲内であれば、フィラーによる封止層13の優れた成形性を確保することができる。 If the blending ratio of the filler is within the above range, excellent moldability of the sealing layer 13 with the filler can be ensured.
 蛍光体は、波長変換機能を有しており、例えば、青色光を黄色光に変換することのできる黄色蛍光体、青色光を赤色光に変換することのできる赤色蛍光体などが挙げられる。 The phosphor has a wavelength conversion function, and examples thereof include a yellow phosphor capable of converting blue light into yellow light, and a red phosphor capable of converting blue light into red light.
 黄色蛍光体としては、例えば、(Ba,Sr,Ca)SiO:Eu、(Sr,Ba)SiO:Eu(バリウムオルソシリケート(BOS))などのシリケート蛍光体、例えば、YAl12:Ce(YAG(イットリウム・アルミニウム・ガーネット):Ce)、TbAl12:Ce(TAG(テルビウム・アルミニウム・ガーネット):Ce)などのガーネット型結晶構造を有するガーネット型蛍光体、例えば、Ca-α-SiAlONなどの酸窒化物蛍光体などが挙げられる。 Examples of the yellow phosphor include silicate phosphors such as (Ba, Sr, Ca) 2 SiO 4 : Eu, (Sr, Ba) 2 SiO 4 : Eu (barium orthosilicate (BOS)), for example, Y 3 Al Garnet-type phosphors having a garnet-type crystal structure such as 5 O 12 : Ce (YAG (yttrium, aluminum, garnet): Ce), Tb 3 Al 3 O 12 : Ce (TAG (terbium, aluminum, garnet): Ce) Examples thereof include oxynitride phosphors such as Ca-α-SiAlON.
 赤色蛍光体としては、例えば、CaAlSiN:Eu、CaSiN:Euなどの窒化物蛍光体などが挙げられる。 Examples of the red phosphor include nitride phosphors such as CaAlSiN 3 : Eu and CaSiN 2 : Eu.
 蛍光体の形状としては、例えば、球状、板状、針状などが挙げられる。好ましくは、流動性の観点から、球状が挙げられる。 Examples of the shape of the phosphor include a spherical shape, a plate shape, and a needle shape. Preferably, spherical shape is mentioned from a fluid viewpoint.
 蛍光体の最大長さの平均値(球状である場合には、平均粒子径)は、例えば、0.1μm以上、好ましくは、1μm以上であり、また、例えば、200μm以下、好ましくは、100μm以下でもある。 The average value of the maximum length of the phosphor (in the case of a sphere, the average particle diameter) is, for example, 0.1 μm or more, preferably 1 μm or more, and for example, 200 μm or less, preferably 100 μm or less. But there is.
 蛍光体の比重は、例えば、2.0以上であり、また、例えば、9.0以下である。 The specific gravity of the phosphor is, for example, 2.0 or more, and, for example, 9.0 or less.
 蛍光体は、単独使用または併用することができる。 Fluorescent substances can be used alone or in combination.
 蛍光体の配合割合は、封止樹脂100質量部に対して、例えば、0.1質量部以上、好ましくは、0.5質量部以上であり、例えば、80質量部以下、好ましくは、50質量部以下である。 The blending ratio of the phosphor is, for example, 0.1 parts by mass or more, preferably 0.5 parts by mass or more, for example, 80 parts by mass or less, preferably 50 parts by mass with respect to 100 parts by mass of the sealing resin. Or less.
  (封止層の製造)
 封止層13を製造するには、まず、上記した封止樹脂と、必要によりフィラーおよび/または蛍光体とを含有する封止組成物を調製する。具体的には、Aステージの封止樹脂と、必要によりフィラーおよび/または蛍光体とを含有する封止組成物を調製する。
(Manufacture of sealing layer)
In order to manufacture the sealing layer 13, first, a sealing composition containing the above-described sealing resin and, if necessary, a filler and / or a phosphor is prepared. Specifically, a sealing composition containing an A-stage sealing resin and, if necessary, a filler and / or a phosphor is prepared.
 例えば、封止樹脂と、必要によりフィラーおよび/または蛍光体とを上記した配合割合で混合する。 For example, a sealing resin and, if necessary, a filler and / or a phosphor are mixed at the above-described blending ratio.
 これによって、フィラーが封止樹脂中に分散された封止組成物を、ワニスとして調製する。 Thereby, a sealing composition in which a filler is dispersed in a sealing resin is prepared as a varnish.
 ワニスの25℃における粘度は、例えば、1,000mPa・s以上、好ましくは、4,000mPa・s以上であり、また、例えば、1,000,000mPa・s以下、好ましくは、200,000mPa・s以下である。なお、粘度は、ワニスを25℃に温度調節し、E型コーンを用いて測定される。 The viscosity of the varnish at 25 ° C. is, for example, 1,000 mPa · s or more, preferably 4,000 mPa · s or more, and, for example, 1,000,000 mPa · s or less, preferably 200,000 mPa · s. It is as follows. The viscosity is measured by adjusting the temperature of the varnish to 25 ° C. and using an E-type cone.
 次いで、調製したワニスを塗布する。具体的には、図1Aに示すように、ワニスを、第1剥離層12の表面(上面)に塗布する。 Next, the prepared varnish is applied. Specifically, as shown in FIG. 1A, varnish is applied to the surface (upper surface) of the first release layer 12.
 ワニスを第1剥離層12の表面に塗布するには、例えば、ディスペンサ、アプリケータ、スリットダイコータなどの塗布装置が用いられる。また、上記した塗布では、ワニスを、第1剥離層12の上面の周端部を露出するパターンで塗布する。 In order to apply the varnish to the surface of the first release layer 12, for example, a coating device such as a dispenser, an applicator, or a slit die coater is used. In the above application, the varnish is applied in a pattern that exposes the peripheral edge of the upper surface of the first release layer 12.
 ワニスの第1剥離層12への塗布によって、塗膜が形成される。 A coating film is formed by applying the varnish to the first release layer 12.
 その後、封止樹脂が硬化性樹脂である場合には、塗膜を半硬化させる。つまり、Aステージの塗膜をBステージ化させる。具体的には、硬化性樹脂が熱硬化性樹脂であれば、塗膜を加熱する。加熱条件として、加熱温度が、70℃以上、好ましくは、80℃以上であり、また、120℃以下、好ましくは、100℃以下である。加熱温度が上記範囲であれば、硬化性樹脂を確実にBステージにすることができる。また、加熱時間が、例えば、5分以上、好ましくは、8分以上であり、また、例えば、30分以下、好ましくは、20分以下である。 Thereafter, when the sealing resin is a curable resin, the coating film is semi-cured. That is, the A stage coating film is changed to the B stage. Specifically, if the curable resin is a thermosetting resin, the coating film is heated. As heating conditions, the heating temperature is 70 ° C. or higher, preferably 80 ° C. or higher, and 120 ° C. or lower, preferably 100 ° C. or lower. If heating temperature is the said range, curable resin can be reliably made into B stage. The heating time is, for example, 5 minutes or more, preferably 8 minutes or more, and for example, 30 minutes or less, preferably 20 minutes or less.
 あるいは、硬化性樹脂が光硬化性樹脂であれば、塗膜に紫外線を照射する。具体的には、UVランプなどを用いて、塗膜に紫外線を照射する。 Or, if the curable resin is a photocurable resin, the coating film is irradiated with ultraviolet rays. Specifically, the coating film is irradiated with ultraviolet rays using a UV lamp or the like.
 これによって、塗膜におけるAステージの硬化性樹脂をBステージにする。 This makes the A stage curable resin in the coating film a B stage.
 硬化性樹脂が付加反応硬化型シリコーン樹脂組成物を含有する場合には、アルケニル基および/またはシクロアルケニル基と、ヒドロシリル基とのヒドロシリル化反応(付加反応)が途中まで進行して、一旦、停止する。 When the curable resin contains an addition reaction curable silicone resin composition, the hydrosilylation reaction (addition reaction) between the alkenyl group and / or cycloalkenyl group and the hydrosilyl group proceeds halfway and is temporarily stopped. To do.
 一方、硬化性樹脂樹脂が縮合反応・付加反応硬化型シリコーン樹脂を含有する場合には、縮合反応が完結する。 On the other hand, when the curable resin resin contains a condensation reaction / addition reaction curable silicone resin, the condensation reaction is completed.
 封止樹脂がBステージとなる際には、封止層13(あるいは塗膜)は、第1剥離層12からはじかれ、そのため、封止層13は、平面視において凝集して、平面視における面積が小さくなる。その結果、封止層13は、厚みが厚くなる傾向となる。一方、封止層13は、加熱によりBステージとなる場合には、加熱に伴い収縮する傾向、とりわけ、厚み方向に薄くなる傾向にある。そのため、封止層13の第1剥離層12からはじかれることによる厚みの増加分と、加熱収縮に伴う厚みの減少分とが、相殺して、封止層13は厚みが実質的に変化しない。 When the sealing resin becomes the B stage, the sealing layer 13 (or coating film) is repelled from the first release layer 12, and therefore the sealing layer 13 aggregates in a plan view, and in a plan view. The area becomes smaller. As a result, the sealing layer 13 tends to increase in thickness. On the other hand, when the sealing layer 13 becomes a B stage by heating, the sealing layer 13 tends to shrink with heating, and in particular, tends to become thinner in the thickness direction. For this reason, the increase in thickness due to repelling of the sealing layer 13 from the first release layer 12 cancels out the decrease in thickness due to heat shrinkage, and the thickness of the sealing layer 13 does not change substantially. .
 これによって、図1Aに示すように、第1剥離層12と、第1剥離層12に積層された封止層13とを備える封止部材11を得る。 Thereby, as shown in FIG. 1A, the sealing member 11 including the first peeling layer 12 and the sealing layer 13 laminated on the first peeling layer 12 is obtained.
 封止層13では、必要により配合されるフィラーおよび/または蛍光体が、マトリクスとしてのシリコーン樹脂組成物中に均一に分散されている。 In the sealing layer 13, fillers and / or phosphors blended as necessary are uniformly dispersed in the silicone resin composition as a matrix.
 半硬化(Bステージ)状態の封止層13は、可撓性を有しており、半硬化(Bステージ)状態となった後、後述する完全硬化(Cステージ)状態となること(つまり、Cステージの生成物を生成すること)が可能な状態である。 The sealing layer 13 in a semi-cured (B stage) state has flexibility, and after being in a semi-cured (B stage) state, it is in a fully cured (C stage) state to be described later (that is, A C stage product) is possible.
  (封止層の物性)
 また、Bステージの封止層13は、好ましくは、可塑性および硬化性を併有する場合には、可塑性および硬化性を併有する。Bステージの封止層13は、より好ましくは、熱可塑性および熱硬化性を併有する。つまり、Bステージの封止層13は、加熱により、一旦、可塑化した後、硬化することができる。
(Physical properties of the sealing layer)
In addition, the B-stage sealing layer 13 preferably has both plasticity and curability when having both plasticity and curability. More preferably, the B-stage sealing layer 13 has both thermoplasticity and thermosetting properties. That is, the sealing layer 13 of the B stage can be cured after being plasticized once by heating.
 封止層13の熱可塑温度は、例えば、40℃以上、好ましくは、60℃以上であり、また、例えば、120℃以下、好ましくは、100℃以下である。なお、熱可塑温度は、封止層13が熱可塑性を示す温度であり、具体的には、Bステージの封止樹脂が加熱によって軟化する温度であって、軟化温度と実質的に同一である。 The thermoplastic temperature of the sealing layer 13 is, for example, 40 ° C. or more, preferably 60 ° C. or more, and for example, 120 ° C. or less, preferably 100 ° C. or less. The thermoplastic temperature is a temperature at which the sealing layer 13 exhibits thermoplasticity. Specifically, it is a temperature at which the sealing resin of the B stage is softened by heating, and is substantially the same as the softening temperature. .
 封止層13の熱硬化温度は、例えば、100℃以上、好ましくは、120℃以上であり、また、例えば、150℃以下である。熱硬化温度は、Bステージの封止層13が熱硬化性を示す温度であり、具体的には、可塑化した封止層13が加熱によって完全に硬化して、固体状となる温度である。 The thermosetting temperature of the sealing layer 13 is, for example, 100 ° C. or more, preferably 120 ° C. or more, and for example, 150 ° C. or less. The thermosetting temperature is a temperature at which the B-stage sealing layer 13 exhibits thermosetting properties, and specifically, a temperature at which the plasticized sealing layer 13 is completely cured by heating to become a solid state. .
 Bステージの封止層13(Bステージの封止樹脂を含有する封止組成物から形成される封止層13)は、80℃の剪断貯蔵弾性率G’が、例えば、3Pa以上、好ましくは、12Pa以上であり、また、例えば、140Pa以下、好ましくは、70Pa以下である。封止層13の80℃の剪断貯蔵弾性率G’が上記上限以下であれば、次に説明する光半導体素子16の封止時に、光半導体素子16が損傷することを有効に防止することができる。一方、封止層13の80℃の剪断貯蔵弾性率G’が上記下限以上であれば、光半導体素子16を封止する際の封止層13の良好な保形性を確保して、封止層13の取扱性を向上させることができる。また、封止層13の80℃の剪断貯蔵弾性率G’が上記下限以上であれば、封止層13の厚みの均一性を確保でき、また、所望の厚みにする調節することができる。 The B-stage sealing layer 13 (the sealing layer 13 formed from the sealing composition containing the B-stage sealing resin) has a shear storage elastic modulus G ′ of 80 ° C., for example, 3 Pa or more, preferably 12 Pa or more, and for example, 140 Pa or less, preferably 70 Pa or less. If the shear storage modulus G ′ at 80 ° C. of the sealing layer 13 is not more than the above upper limit, it is possible to effectively prevent the optical semiconductor element 16 from being damaged when the optical semiconductor element 16 described below is sealed. it can. On the other hand, if the shear storage elastic modulus G ′ at 80 ° C. of the sealing layer 13 is equal to or higher than the lower limit, good shape retention of the sealing layer 13 when sealing the optical semiconductor element 16 is ensured, and the sealing layer 13 is sealed. The handleability of the stop layer 13 can be improved. Moreover, if the 80 degreeC shear storage elastic modulus G 'of the sealing layer 13 is more than the said minimum, the thickness uniformity of the sealing layer 13 can be ensured, and it can adjust to desired thickness.
 封止層13の80℃の剪断貯蔵弾性率G’は、周波数1Hz、昇温速度20℃/分、温度範囲20~150℃の条件における動的粘弾性測定で得られる。 The shear storage modulus G ′ at 80 ° C. of the sealing layer 13 is obtained by dynamic viscoelasticity measurement under the conditions of a frequency of 1 Hz, a temperature rising rate of 20 ° C./min, and a temperature range of 20 to 150 ° C.
 また、厚み600μmのときにおける、波長460nmの光に対する封止層13の透過率が、例えば、70%以上、好ましくは、80%以上、より好ましくは、90%以上、さらに好ましくは、95%以上であり、また、例えば、100%以下である。透過率が上記下限以上であれば、光半導体素子16を封止した後、光半導体素子16から発光される光を十分に透過させることができる。封止層13の透過率は、例えば、積分球を用いて測定される。 Further, the transmittance of the sealing layer 13 with respect to light having a wavelength of 460 nm when the thickness is 600 μm is, for example, 70% or more, preferably 80% or more, more preferably 90% or more, and still more preferably 95% or more. For example, it is 100% or less. If the transmittance is equal to or higher than the lower limit, the light emitted from the optical semiconductor element 16 can be sufficiently transmitted after the optical semiconductor element 16 is sealed. The transmittance of the sealing layer 13 is measured using, for example, an integrating sphere.
  (封止層の寸法)
 封止層13の寸法は、後述する封止層13の体積割合が所望の範囲となるように、調整される。
(Dimension of sealing layer)
The dimension of the sealing layer 13 is adjusted so that the volume ratio of the sealing layer 13 described later falls within a desired range.
 封止層13の前後方向長さおよび左右方向長さは、光半導体素子16の個数、寸法、配置などによって適宜設定される。 The length in the front-rear direction and the length in the left-right direction of the sealing layer 13 are appropriately set depending on the number, dimensions, arrangement, and the like of the optical semiconductor elements 16.
 図4Bに示すように、封止層13の面積S1は、第1剥離層12の面積S2に対して、例えば、95%以下、好ましくは、90%以下、さらに好ましくは、85%以下であり、例えば、10%以上である。 As shown in FIG. 4B, the area S1 of the sealing layer 13 is, for example, 95% or less, preferably 90% or less, and more preferably 85% or less, with respect to the area S2 of the first release layer 12. For example, it is 10% or more.
 図5に示すように、封止層13の厚みT4は、例えば、スペーサ4の厚みT1から第1剥離層12の厚みT2を差し引いた厚み(T1-T2)に比べて、厚い(つまり、T4>(T1-T2))。そのため、次の被覆工程のプレスにおいて、封止層13を上下方向に確実に圧縮することができる。 As shown in FIG. 5, the thickness T4 of the sealing layer 13 is thicker (ie, T4 than the thickness T1 of the spacer 4 minus the thickness T2 of the first release layer 12 (T1-T2)). > (T1-T2)). Therefore, the sealing layer 13 can be reliably compressed in the up-down direction in the press of the next coating process.
 詳しくは、封止層13の厚みT4は、スペーサ4の厚みT1から第1剥離層12の厚みT2を差し引いた厚み(T1-T2)に対して、例えば、100%超過、好ましくは、102%以上、さらに好ましくは、105%以上であり、例えば、120%以下である。 Specifically, the thickness T4 of the sealing layer 13 is, for example, more than 100%, preferably 102%, of the thickness T1 of the spacer 4 minus the thickness T2 of the first release layer 12 (T1-T2). As mentioned above, More preferably, it is 105% or more, for example, 120% or less.
 具体的には、封止層13の厚みT4は、例えば、50μm以上、好ましくは、100μm以上であり、また、例えば、1500μm以下、好ましくは、800μm以下である。 Specifically, the thickness T4 of the sealing layer 13 is, for example, 50 μm or more, preferably 100 μm or more, and for example, 1500 μm or less, preferably 800 μm or less.
 封止層13の厚みT4が上記範囲にあれば、被覆工程のプレスによって、封止層13を上下方向に精確に圧縮して、封止層13の厚みT6を設計厚みT0に精確性に調整することができる。 If the thickness T4 of the sealing layer 13 is within the above range, the sealing layer 13 is accurately compressed in the vertical direction by pressing in the covering step, and the thickness T6 of the sealing layer 13 is adjusted to the design thickness T0 with accuracy. can do.
  (封止部材の配置)
 次いで、図3に示すように、用意した封止部材11を、下金型2の上面に、封止層13が上側に向かうように、配置する。
(Arrangement of sealing member)
Next, as shown in FIG. 3, the prepared sealing member 11 is arranged on the upper surface of the lower mold 2 so that the sealing layer 13 faces upward.
 具体的には、第1剥離層12を、複数(2つ)のスペーサ4の間における下金型2の上面に配置する。図1Aに示すように、封止部材11を、複数(2つ)のスペーサ4に挟まれるように、配置する。具体的には、封止部材11を、第1剥離層12の右端部が、右側に配置されるスペーサ4の左側面の左側に間隔を隔てて配置され、かつ、第1剥離層12の左端部が、左側に配置されるスペーサ4の右側面の右側に間隔を隔てて配置されるように、下金型2の上面に配置する。 Specifically, the first release layer 12 is disposed on the upper surface of the lower mold 2 between the plural (two) spacers 4. As shown in FIG. 1A, the sealing member 11 is disposed so as to be sandwiched between a plurality (two) of spacers 4. Specifically, the sealing member 11 is disposed such that the right end portion of the first release layer 12 is spaced apart on the left side of the left side surface of the spacer 4 disposed on the right side, and the left end of the first release layer 12 The portion is disposed on the upper surface of the lower mold 2 so as to be disposed at a right interval on the right side of the right side surface of the spacer 4 disposed on the left side.
  <4.ダム配置工程>
  (ダムの用意)
 ダム配置工程では、図3に示すように、まず、堰部材としてのダム5を用意する。
<4. Dam placement process>
(Preparation of dam)
In the dam arrangement step, first, a dam 5 as a dam member is prepared as shown in FIG.
 ダム5は、封止層13の外形形状に対応する平面視略矩形枠形状に形成されている。詳しくは、ダム5は、図4Bに示すように、その外形形状が第1剥離層12の外形形状よりもわずかに小さく形成されている。また、ダム5の中央部には、ダム5を上下方向に貫通する開口部8が形成されている。開口部8は、封止層13の外形形状に対応する平面視略矩形状に形成されている。ダム5は、左右方向に延び、前後方向に間隔を隔てて対向配置される2つの第1ダム部5Aと、2つの第1ダム部5Aの左右方向両端部を連結する2つの第2ダム部5Bとを一体的に有している。 The dam 5 is formed in a substantially rectangular frame shape in plan view corresponding to the outer shape of the sealing layer 13. Specifically, as shown in FIG. 4B, the outer shape of the dam 5 is formed to be slightly smaller than the outer shape of the first release layer 12. An opening 8 that penetrates the dam 5 in the vertical direction is formed at the center of the dam 5. The opening 8 is formed in a substantially rectangular shape in plan view corresponding to the outer shape of the sealing layer 13. The dam 5 extends in the left-right direction and is disposed opposite to each other with an interval in the front-rear direction, and the two second dam parts connecting the two left-right ends of the two first dam parts 5A. 5B in an integrated manner.
 ダム5の材料としては、例えば、樹脂、樹脂含浸ガラスクロス、金属などが挙げられる。これらは、単独使用または併用することができる。 Examples of the material of the dam 5 include resin, resin-impregnated glass cloth, metal, and the like. These can be used alone or in combination.
 樹脂としては、熱硬化性樹脂、熱可塑性樹脂が挙げられる。好ましくは、熱硬化性樹脂が挙げられる。 Examples of the resin include a thermosetting resin and a thermoplastic resin. Preferably, a thermosetting resin is used.
 熱硬化性樹脂は、封止層13で例示したBステージ状態となることができる熱硬化性樹脂が例示され、好ましくは、特開2010-265436号公報に記載される縮合反応・付加反応硬化型シリコーン樹脂組成物(2段反応硬化性樹脂)、フェニル系シリコーン樹脂組成物(付加反応硬化型シリコーン樹脂組成物、1段反応硬化性樹脂)が例示される。 The thermosetting resin is exemplified by a thermosetting resin that can be in the B-stage state exemplified in the sealing layer 13, and preferably a condensation reaction / addition reaction curing type described in JP 2010-265436 A Examples thereof include a silicone resin composition (two-stage reaction curable resin) and a phenyl-based silicone resin composition (addition reaction curable silicone resin composition, one-stage reaction curable resin).
 さらに、熱硬化樹脂として、Bステージ状態となることができない1段反応硬化性樹脂も挙げられる。1段反応硬化性樹脂として、好ましくは、1段の反応の途中で停止するように制御できず、つまり、Bステージ状態となることができず、一度に、Aステージ状態からCステージ化(完全硬化)する付加反応硬化型シリコーン樹脂が挙げられる。そのような付加反応硬化型シリコーン樹脂としては、例えば、上記した平均組成式(1)で示されるアルケニル基含有ポリシロキサンと、上記した平均組成式(2)で示されるヒドロシリル基含有ポリシロキサンと、上記したヒドロシリル化触媒とを含有する、1段反応硬化性のメチル系シリコーン樹脂組成物が挙げられる。上記した平均組成式(1)および(2)中、RおよびRの両方の炭化水素がメチル基である。1段反応硬化性のメチル系シリコーン樹脂組成物には、市販品が用いられる。市販品として、例えば、ELASTOSILシリーズ(旭化成ワッカーシリコーン社製、具体的には、ELASTOSIL LR7665などのメチル系シリコーン樹脂組成物)、KERシリーズ(信越シリコーン社製)などが挙げられる。 Furthermore, as the thermosetting resin, a one-stage reaction curable resin that cannot be in a B-stage state is also exemplified. As the one-stage reaction curable resin, preferably, it cannot be controlled to stop in the middle of the one-stage reaction, that is, cannot enter the B stage state, and is changed from the A stage state to the C stage at once (completely An addition reaction curable silicone resin that cures) may be mentioned. As such an addition reaction curable silicone resin, for example, an alkenyl group-containing polysiloxane represented by the above average composition formula (1), a hydrosilyl group-containing polysiloxane represented by the above average composition formula (2), and One-step reaction-curable methyl silicone resin composition containing the hydrosilylation catalyst described above can be mentioned. In the above average composition formulas (1) and (2), both the hydrocarbons of R 2 and R 3 are methyl groups. A commercially available product is used for the one-step reaction-curable methyl silicone resin composition. Examples of commercially available products include ELASTOSIL series (manufactured by Asahi Kasei Wacker Silicone Co., specifically, methyl silicone resin compositions such as ELASTOSIL LR7665), KER series (manufactured by Shin-Etsu Silicone Co., Ltd.), and the like.
 また、樹脂は、フィラーを配合した樹脂組成物として調製されていてもよく、好ましくは、有機フィラーがシリコーン樹脂に配合されたシリコーン樹脂組成物として調製されていてもよい。 Further, the resin may be prepared as a resin composition in which a filler is blended. Preferably, the resin may be prepared as a silicone resin composition in which an organic filler is blended in a silicone resin.
 樹脂含浸ガラスクロスとしては、ガラスクロスに、上記した樹脂が含浸処理されており、例えば、ガラスクロスにエポキシ樹脂が含浸処理されたガラス・エポキシ樹脂などが挙げられる。 As the resin-impregnated glass cloth, glass cloth is impregnated with the above-described resin, and examples thereof include glass / epoxy resin in which glass cloth is impregnated with epoxy resin.
 金属としては、例えば、鉄、ステンレス、アルミニウムなどが挙げられる。 Examples of the metal include iron, stainless steel, and aluminum.
 ダム5の材料としては、好ましくは、ダム5に柔軟性を付与する観点から、樹脂、樹脂含浸ガラスクロスが挙げられ、より好ましくは、樹脂が挙げられ、さらに好ましくは、シリコーン樹脂、ウレタン樹脂が挙げられ、とりわけ好ましくは、シリコーン樹脂が挙げられる。 The material of the dam 5 is preferably a resin and a resin-impregnated glass cloth from the viewpoint of imparting flexibility to the dam 5, more preferably a resin, and still more preferably a silicone resin and a urethane resin. Particularly preferred is a silicone resin.
  (ダムの物性)
 ダム5の23℃における引張弾性率は、例えば、0.3MPa以上、好ましくは、1MPa以上、より好ましくは、2MPa以上であり、また、1000MPa以下、好ましくは、500MPa以下である。
(Physical properties of the dam)
The tensile elastic modulus at 23 ° C. of the dam 5 is, for example, 0.3 MPa or more, preferably 1 MPa or more, more preferably 2 MPa or more, and 1000 MPa or less, preferably 500 MPa or less.
 ダム5の引張弾性率が上記下限以上であれば、ダム5のハンドリング性を良好に確保できる。一方、ダム5の引張弾性率が上記上限以下であれば、ダム5を封止層13とともに圧縮(プレス)しながら、封止層13の厚みT6を設計厚みT0に精確に調整することができる。 If the tensile elastic modulus of the dam 5 is equal to or greater than the above lower limit, the handling property of the dam 5 can be secured satisfactorily. On the other hand, if the tensile elastic modulus of the dam 5 is not more than the above upper limit, the thickness T6 of the sealing layer 13 can be accurately adjusted to the design thickness T0 while the dam 5 is compressed (pressed) together with the sealing layer 13. .
 ダム5の23℃における引張弾性率は、JIS K7161-1994に基づいて測定される。 The tensile elastic modulus at 23 ° C. of the dam 5 is measured based on JIS K7161-1994.
 ダム5の破断伸びは、例えば、1%以上、好ましくは、10%以上、より好ましくは、100%以上、さらに好ましくは、200%以上であり、また、1000%以下、好ましくは、500%以下、より好ましくは、400%以下である。 The breaking elongation of the dam 5 is, for example, 1% or more, preferably 10% or more, more preferably 100% or more, still more preferably 200% or more, and 1000% or less, preferably 500% or less. More preferably, it is 400% or less.
 ダム5の破断伸びが上記上限以下であれば、封止層13の厚みT6を設計厚みT0に調整することができる。ダム5の破断伸びが上記下限以上であれば、ダム5のハンドリング性を良好に確保できる。 If the breaking elongation of the dam 5 is not more than the above upper limit, the thickness T6 of the sealing layer 13 can be adjusted to the design thickness T0. If the breaking elongation of the dam 5 is not less than the above lower limit, the handling property of the dam 5 can be ensured satisfactorily.
 ダム5の破断伸びは、JIS K7161-1994に基づいて測定される。 The breaking elongation of the dam 5 is measured based on JIS K7161-1994.
  (ダムの寸法)
 第1ダム部5Aの幅(前後方向長さ)および第2ダム部5Bの幅(左右方向長さ)は、例えば、1mm以上、好ましくは、2mm以上であり、また、例えば、10mm以下、好ましくは、5mm以下である。2つの第1ダム部5A間の前後方向長さ、つまり、開口部8の前後方向長さ、および、2つの第2ダム部5B間の左右方向長さ、つまり、開口部8の左右方向長さは、それぞれ、封止層13の前後方向長さおよび左右方向長さに対して、長い。開口部8の前後方向長さおよび左右方向長さのそれぞれは、封止層13の前後方向長さおよび左右方向長さのそれぞれに対して、例えば、100%超過、好ましくは、102%以上、より好ましくは、105%以上であり、また、例えば、200%以下である。
(Dam dimensions)
The width (length in the front-rear direction) of the first dam part 5A and the width (length in the left-right direction) of the second dam part 5B are, for example, 1 mm or more, preferably 2 mm or more, and for example, 10 mm or less, preferably Is 5 mm or less. The longitudinal length between the two first dam portions 5A, that is, the longitudinal length of the opening 8, and the lateral length between the two second dam portions 5B, that is, the lateral length of the opening 8. The length is longer than the length of the sealing layer 13 in the front-rear direction and the length in the left-right direction. Each of the front-rear direction length and the left-right direction length of the opening 8 is, for example, more than 100%, preferably 102% or more, with respect to each of the front-rear direction length and the left-right direction length of the sealing layer 13. More preferably, it is 105% or more, for example, 200% or less.
 また、図4Bおよび図5に示すように、ダム5の開口部8における前後方向および左右方向に沿う開口断面積S8は、封止層13の面積S1に対して大きく形成されている。換言すれば、封止層13の面積S1は、ダム5の開口部8の開口断面積S8に比べて小さく、ダム5の開口部8の開口断面積S8に対して、例えば、100%未満、好ましくは、95%以下、より好ましくは、90%以下であり、また、例えば、50%以上である。 Further, as shown in FIGS. 4B and 5, the opening cross-sectional area S8 along the front-rear direction and the left-right direction in the opening 8 of the dam 5 is formed larger than the area S1 of the sealing layer 13. In other words, the area S1 of the sealing layer 13 is smaller than the opening cross-sectional area S8 of the opening 8 of the dam 5, and is, for example, less than 100% with respect to the opening cross-sectional area S8 of the opening 8 of the dam 5. Preferably, it is 95% or less, more preferably 90% or less, and for example, 50% or more.
 図5に示すように、ダム5の厚みT3は、封止層13の厚みT4に比べて厚く(つまり、T3>T4)、封止層13の厚みT4に対して、例えば、100%超過、好ましくは、102%以上、より好ましくは、105%以上であり、また、例えば、120%以下である。後述するが、ダム5の厚みT3は、その厚みが、封止層13の設計厚みT0(図1B参照)に対しても厚く形成されている(T3>T0)。 As shown in FIG. 5, the thickness T3 of the dam 5 is thicker than the thickness T4 of the sealing layer 13 (that is, T3> T4), and exceeds 100% of the thickness T4 of the sealing layer 13, for example, Preferably, it is 102% or more, more preferably 105% or more, and for example, 120% or less. As will be described later, the thickness T3 of the dam 5 is formed to be thicker than the design thickness T0 (see FIG. 1B) of the sealing layer 13 (T3> T0).
 具体的には、ダム5の厚みT3は、例えば、100μm以上、好ましくは、200μm以上、より好ましくは、400μm以上であり、また、例えば、1500μm以下である。 Specifically, the thickness T3 of the dam 5 is, for example, 100 μm or more, preferably 200 μm or more, more preferably 400 μm or more, and for example, 1500 μm or less.
  (ダムの配置)
 ダム5を配置するには、まず、ダム5の材料が樹脂である場合には、樹脂を含むワニスを調製し、次いで、ワニスを図示しない剥離シートの表面に塗布する。その後、材料が熱硬化性樹脂を含有する場合には、ワニスを加熱して、硬化させる。その後、硬化物を、上記したパターンに外形加工する。一方、ダム5の材料が樹脂含浸ガラスクロスおよび/または金属である場合には、シート状に予め成形された樹脂含浸ガラスクロスおよび/または金属板を上記したパターンに外形加工する。
(Placement of dam)
In order to arrange the dam 5, first, when the material of the dam 5 is a resin, a varnish containing the resin is prepared, and then the varnish is applied to the surface of a release sheet (not shown). Thereafter, when the material contains a thermosetting resin, the varnish is heated and cured. Thereafter, the cured product is externally processed into the above-described pattern. On the other hand, when the material of the dam 5 is a resin-impregnated glass cloth and / or metal, the resin-impregnated glass cloth and / or metal plate preliminarily formed into a sheet shape is processed into the above-described pattern.
 その後、ダム5を、ダム5の開口部8に封止層13が挿入されるように、第1剥離層12の上面に載置する。 Thereafter, the dam 5 is placed on the upper surface of the first release layer 12 so that the sealing layer 13 is inserted into the opening 8 of the dam 5.
 これによって、ダム5を第1剥離層12の上面の周端部に配置する。 Thereby, the dam 5 is disposed on the peripheral edge of the upper surface of the first release layer 12.
 あるいは、ワニスを第1剥離層12の周端部の上面に上記したパターンで直接塗布して、ダム5を第1剥離層12の上面に直接形成することもできる。 Alternatively, the dam 5 can be directly formed on the upper surface of the first release layer 12 by directly applying the varnish to the upper surface of the peripheral end portion of the first release layer 12 in the pattern described above.
 図4Bに示すように、ダム5は、第1剥離層12の周端部に配置されるため、封止層13を囲むように配置される。具体的には、ダム5の内側面は、封止層13の外側面と間隔を隔てて配置されている。より具体的には、前側の第1ダム部5Aの後側面は、封止層13の前側面の前側に間隔を隔てて対向配置されている。後側の第1ダム部5Aの前側面は、封止層13の後側面の後側に間隔を隔てて対向配置されている。右側の第2ダム部5Bの左側面は、封止層13の右側面の右側に間隔を隔てて対向配置されている。左側の第2ダム部5Bの右側面は、封止層13の左側面の左側に間隔を隔てて対向配置されている。 As shown in FIG. 4B, the dam 5 is disposed so as to surround the sealing layer 13 because it is disposed at the peripheral end portion of the first release layer 12. Specifically, the inner surface of the dam 5 is disposed with a distance from the outer surface of the sealing layer 13. More specifically, the rear side surface of the front first dam portion 5 </ b> A is disposed to face the front side of the front side surface of the sealing layer 13 with a gap. The front side surface of the first dam portion 5A on the rear side is disposed to face the rear side of the rear side surface of the sealing layer 13 with a space therebetween. The left side surface of the right second dam part 5B is disposed to face the right side of the right side surface of the sealing layer 13 with an interval. The right side surface of the second dam part 5B on the left side is disposed opposite to the left side of the left side surface of the sealing layer 13 with an interval.
 図4Bおよび図5に示すように、ダム5の内側面と、封止層13の外側面との間隔L1は、例えば、0mm超過、好ましくは、1mm以上であり、また、例えば、10mm以下、好ましくは、5mm以下である。 As shown in FIGS. 4B and 5, the distance L1 between the inner surface of the dam 5 and the outer surface of the sealing layer 13 is, for example, more than 0 mm, preferably 1 mm or more, and for example, 10 mm or less. Preferably, it is 5 mm or less.
 また、ダム5は、図5に示すように、封止層13と同一平面(つまり、第1剥離層12の上面)上に、配置されている。 Further, as shown in FIG. 5, the dam 5 is disposed on the same plane as the sealing layer 13 (that is, the upper surface of the first release layer 12).
  <5.素子部材配置工程>
  (素子部材の用意)
 素子部材配置工程では、図3に示すように、まず、素子部材15を用意する。
<5. Element member arrangement process>
(Preparation of element members)
In the element member arranging step, as shown in FIG. 3, first, the element member 15 is prepared.
 素子部材15は、基材としての第2剥離層17と、第2剥離層17の表面(下面)に配置される光半導体素子16とを備える。 The element member 15 includes a second release layer 17 as a base material and an optical semiconductor element 16 disposed on the surface (lower surface) of the second release layer 17.
 第2剥離層17は、封止層13によって光半導体素子16を被覆して封止して、封止層被覆光半導体素子10を得た後、封止層被覆光半導体素子10を剥離するまでの間、封止層被覆光半導体素子10の光半導体素子16(図2E参照)を保護するために、封止層被覆光半導体素子10における光半導体素子16の露出面(図2Eにおける下面)に剥離可能に貼着されている。つまり、第2剥離層17は、封止層被覆光半導体素子10の出荷・搬送・保管時において、光半導体素子16を支持し、光半導体素子16の露出面(図2Eにおける下面)を被覆するように、光半導体素子16の露出面に積層され、光半導体素子16の基板20に対する実装直前において、図2Eの仮想線で示すように、封止層被覆光半導体素子10を引き剥がすことができる可撓性フィルムである。つまり、第2剥離層17は、可撓性フィルムのみからなる。 The second release layer 17 covers and seals the optical semiconductor element 16 with the sealing layer 13 until the sealing layer-covered optical semiconductor element 10 is obtained, and then the sealing layer-covered optical semiconductor element 10 is peeled off. In order to protect the optical semiconductor element 16 (see FIG. 2E) of the sealing layer-covered optical semiconductor element 10, the exposed surface of the optical semiconductor element 16 in the sealing layer-covered optical semiconductor element 10 (the lower surface in FIG. 2E) is protected. It is stuck so that it can be peeled off. That is, the second release layer 17 supports the optical semiconductor element 16 and covers the exposed surface of the optical semiconductor element 16 (the lower surface in FIG. 2E) when the sealing layer-covered optical semiconductor element 10 is shipped, transported, and stored. As described above, the sealing layer-covered optical semiconductor element 10 can be peeled off as shown by the phantom line in FIG. 2E immediately before the optical semiconductor element 16 is stacked on the exposed surface of the optical semiconductor element 16 and mounted on the substrate 20. It is a flexible film. That is, the 2nd peeling layer 17 consists only of a flexible film.
 第2剥離層17は、上記した第1剥離層12と同様の材料から形成されている。また、第2剥離層17を、加熱により封止層被覆光半導体素子10が容易に剥離できる熱剥離シートから形成することもできる。 The second release layer 17 is made of the same material as the first release layer 12 described above. Moreover, the 2nd peeling layer 17 can also be formed from the heat peeling sheet from which the sealing layer covering optical semiconductor element 10 can peel easily by heating.
 図3に示すように、第2剥離層17は、上下方向に投影したときに、複数(2つ)のスペーサ4を含む平面視略矩形板状に形成されている。詳しくは、図5が参照されるように、第2剥離層17の面積は、例えば、第1剥離層12の面積S2より大きくなるように設定されている。 3, the second release layer 17 is formed in a substantially rectangular plate shape in plan view including a plurality (two) of spacers 4 when projected in the vertical direction. Specifically, as shown in FIG. 5, the area of the second release layer 17 is set to be larger than the area S <b> 2 of the first release layer 12, for example.
 図3に示すように、光半導体素子16は、第2剥離層17の表面(下面)の中央部に複数(9つ)載置されている。複数の光半導体素子16は、左右方向におよび前後方向間隔を隔てて整列配置されている。複数の光半導体素子16のそれぞれは、前後方向および左右方向に沿う略平板状に形成されている。また、複数の光半導体素子16のそれぞれは、平面視略矩状をなし、上下方向および前後方向に沿う断面形状、および、上下方向および左右方向に沿う断面形状が、略矩形状に形成されている。 As shown in FIG. 3, a plurality (nine) of optical semiconductor elements 16 are placed at the center of the surface (lower surface) of the second release layer 17. The plurality of optical semiconductor elements 16 are aligned in the left-right direction and spaced apart in the front-rear direction. Each of the plurality of optical semiconductor elements 16 is formed in a substantially flat plate shape along the front-rear direction and the left-right direction. Each of the plurality of optical semiconductor elements 16 has a substantially rectangular shape in plan view, and a cross-sectional shape along the vertical direction and the front-rear direction and a cross-sectional shape along the vertical direction and the left-right direction are formed in a substantially rectangular shape. Yes.
 光半導体素子16の前後方向長さおよび左右方向長さは、例えば、50μm以上、好ましくは、500μm以上であり、また、例えば、2000μm以下、好ましくは、1000μm以下である。 The front-rear direction length and the left-right direction length of the optical semiconductor element 16 are, for example, 50 μm or more, preferably 500 μm or more, and, for example, 2000 μm or less, preferably 1000 μm or less.
 各光半導体素子16の厚み(上下方向長さ)は、例えば、0.1μm以上、好ましくは、0.2μm以上であり、また、例えば、500μm以下、好ましくは、200μm以下である。 The thickness (length in the vertical direction) of each optical semiconductor element 16 is, for example, 0.1 μm or more, preferably 0.2 μm or more, and, for example, 500 μm or less, preferably 200 μm or less.
 複数の光半導体素子16の体積(総体積)は、例えば、1mm以上、好ましくは、10mm以上であり、また、例えば、5000mm以下、好ましくは、3000mm以下である。 The volume (total volume) of the plurality of optical semiconductor elements 16 is, for example, 1 mm 3 or more, preferably 10 mm 3 or more, and for example, 5000 mm 3 or less, preferably 3000 mm 3 or less.
 そして、図4Aに示すように、第2剥離層17の中央部において光半導体素子16が配置される領域が、素子配置領域18(仮想線参照)として区画される。詳しくは、素子配置領域18は、複数の光半導体素子16のうち、最外側に配置される光半導体素子16の外側端縁を結ぶ線分で囲まれる領域である。具体的には、素子配置領域18は、最前側に配置される光半導体素子16Aの複数の前端縁(具体的には、前左端縁および前右端縁)を結ぶ線分Aと、最後側に配置される光半導体素子16Bの複数の後端縁(具体的には、後左端縁および後右端縁)を結ぶ線分Bと、最左側に配置される光半導体素子16Cの複数の左端縁(具体的には、前左端縁および後左端縁)を結ぶ線分Cと、最右側に配置される光半導体素子16Dの複数の右端縁(具体的には、前右端縁および後右端縁)を結ぶ線分Dとによって囲まれる底面視矩形状の領域である。 Then, as shown in FIG. 4A, the region where the optical semiconductor element 16 is arranged in the central portion of the second release layer 17 is partitioned as an element arrangement region 18 (see a virtual line). Specifically, the element arrangement region 18 is a region surrounded by a line segment connecting the outer edges of the optical semiconductor elements 16 arranged on the outermost side among the plurality of optical semiconductor elements 16. Specifically, the element arrangement region 18 has a line segment A connecting a plurality of front end edges (specifically, a front left end edge and a front right end edge) of the optical semiconductor element 16A arranged on the foremost side, and on the rear side. A line segment B connecting a plurality of rear end edges (specifically, a rear left end edge and a rear right end edge) of the optical semiconductor element 16B to be disposed, and a plurality of left end edges of the optical semiconductor element 16C disposed on the leftmost side ( Specifically, a line segment C connecting the front left end edge and the rear left end edge) and a plurality of right end edges (specifically, the front right end edge and the rear right end edge) of the optical semiconductor element 16D disposed on the rightmost side This is a bottom-view rectangular region surrounded by the connecting line segment D.
 上記した素子配置領域18の面積S3は、光半導体素子16の個数、寸法、配置などによって適宜設定され、例えば、図5に示すように、封止層13の面積S1に比べて、小さい(S3<S1)。換言すれば、封止層13の面積S1は、素子配置領域18の面積S3に比べて、大きく(S1>S3)、素子配置領域18の面積S3に対して、例えば、100%超過、好ましくは、105%以上、より好ましくは、110%以上であり、また、例えば、150%以下である。 The area S3 of the element arrangement region 18 described above is appropriately set depending on the number, size, arrangement, and the like of the optical semiconductor element 16, and is smaller than the area S1 of the sealing layer 13 as shown in FIG. <S1). In other words, the area S1 of the sealing layer 13 is larger than the area S3 of the element arrangement region 18 (S1> S3), and exceeds, for example, 100% of the area S3 of the element arrangement region 18, preferably 105% or more, more preferably 110% or more, and for example, 150% or less.
  (素子部材の配置)
 次いで、図1Aおよび図3に示すように、用意した素子部材15を、封止部材11の上側に配置する。
(Arrangement of element members)
Next, as shown in FIGS. 1A and 3, the prepared element member 15 is arranged on the upper side of the sealing member 11.
 具体的には、素子部材15の第2剥離層17をキャリア32の下面に配置する。 Specifically, the second release layer 17 of the element member 15 is disposed on the lower surface of the carrier 32.
 キャリア32は、第2剥離層17を支持しつつ、素子部材15を上金型3の下側に位置させるための支持板である。キャリア32は、前後方向および左右方向に延びる略平板状に形成されている。キャリア32は、上下方向に投影したときに、上金型3に含まれ、かつ、第2剥離層17を含む形状および大きさに形成されている。また、キャリア32は、上下方向に投影したときに、図1Aに示すように、スペーサ4と重複する形状および大きさに形成されている。キャリア32の厚みは、例えば、50μm以上、好ましくは、300μm以上であり、また、例えば、2000μm以下、好ましくは、1000μm以下である。キャリア32は、例えば、ガラス、セラミック、ステンレスなどから形成されている。 The carrier 32 is a support plate for positioning the element member 15 below the upper mold 3 while supporting the second release layer 17. The carrier 32 is formed in a substantially flat plate shape extending in the front-rear direction and the left-right direction. The carrier 32 is formed in a shape and size that are included in the upper mold 3 and include the second release layer 17 when projected in the vertical direction. Further, the carrier 32 is formed in a shape and size overlapping with the spacer 4 as shown in FIG. 1A when projected in the vertical direction. The thickness of the carrier 32 is, for example, 50 μm or more, preferably 300 μm or more, and for example, 2000 μm or less, preferably 1000 μm or less. The carrier 32 is made of, for example, glass, ceramic, stainless steel, or the like.
 キャリア32は、その下面に配置された素子部材15の光半導体素子16が下側に向かうように、上金型3の下面に配置される。 The carrier 32 is disposed on the lower surface of the upper mold 3 such that the optical semiconductor element 16 of the element member 15 disposed on the lower surface thereof faces downward.
 素子部材15をキャリア32の下面に配置することによって、図1Aに示すように、素子部材15は、封止部材11、スペーサ4およびダム5の上側に配置される。 By disposing the element member 15 on the lower surface of the carrier 32, the element member 15 is disposed above the sealing member 11, the spacer 4, and the dam 5 as shown in FIG. 1A.
 具体的には、上下方向に投影したときに、第2剥離層17の左右方向両端部と、スペーサ4とが重複するように、素子部材15がスペーサ4の上側に間隔を隔てて対向配置される。また、上下方向方向に投影したときに、第2剥離層17の周端部と、ダム5とが重複するように、素子部材15がダム5の上側に間隔を隔てて対向配置される。また、図5に示すように、上下方向に投影したときに、光半導体素子16(素子配置領域18)と、封止層13とが重複するように、素子部材15が封止部材11の上側に間隔を隔てて対向配置される。なお、素子配置領域18は、上下方向に投影したときに、封止層13に含まれる。 Specifically, the element member 15 is disposed on the upper side of the spacer 4 with an interval so that both ends of the second peeling layer 17 in the left-right direction overlap the spacer 4 when projected in the vertical direction. The In addition, the element member 15 is disposed on the upper side of the dam 5 with an interval therebetween so that the peripheral end portion of the second release layer 17 and the dam 5 overlap when projected in the vertical direction. Further, as shown in FIG. 5, the element member 15 is located above the sealing member 11 so that the optical semiconductor element 16 (element arrangement region 18) and the sealing layer 13 overlap when projected in the vertical direction. Are opposed to each other with a gap therebetween. The element arrangement region 18 is included in the sealing layer 13 when projected in the vertical direction.
  <6.被覆工程>
 被覆工程を、スペーサ配置工程、封止部材配置工程、ダム配置工程および素子部材配置工程の後に、実施する。
<6. Coating process>
The covering step is performed after the spacer arranging step, the sealing member arranging step, the dam arranging step, and the element member arranging step.
 被覆工程では、まず、上金型3を、下金型2の上側に対向配置する。 In the covering step, first, the upper mold 3 is disposed opposite to the upper side of the lower mold 2.
 上金型3を配置するには、まず、図3が参照されるように、複数(4つ)のバネ22の下端部を第1凹部23に差し込む。続いて、上金型3の第2凹部25にバネ22の上端部を収容する。 In order to arrange the upper mold 3, first, as shown in FIG. 3, the lower ends of the plural (four) springs 22 are inserted into the first recesses 23. Subsequently, the upper end of the spring 22 is accommodated in the second recess 25 of the upper mold 3.
 これによって、上金型3を下金型2の上側に対向配置する。封止部材11およびダム5は、下金型2および上金型3の間に配置される。また、素子部材15は、下金型2および上金型3の間であって、封止部材11およびダム5に対する上金型3側に配置される。 Thus, the upper mold 3 is arranged opposite to the upper side of the lower mold 2. The sealing member 11 and the dam 5 are disposed between the lower mold 2 and the upper mold 3. The element member 15 is disposed between the lower mold 2 and the upper mold 3 and on the upper mold 3 side with respect to the sealing member 11 and the dam 5.
 続いて、図1Aに示すように、ヒータ7によって下金型2および上金型3を加熱する。下金型2および上金型3の温度は、封止層13が、熱可塑性および熱硬化性を有する熱硬化性樹脂を含有する場合には、かかる熱硬化性樹脂の熱可塑温度またはそれ以上であって、好ましくは、熱硬化性樹脂の熱可塑および熱硬化を一度に実施する観点から、熱硬化温度またはそれ以上であって、具体的には、例えば、50℃以上、好ましくは、80℃以上であり、また、例えば、200℃以下、好ましくは、150℃以下である。 Subsequently, as shown in FIG. 1A, the lower mold 2 and the upper mold 3 are heated by the heater 7. When the sealing layer 13 contains a thermosetting resin having thermoplasticity and thermosetting property, the temperature of the lower mold 2 and the upper mold 3 is equal to or higher than the thermoplastic temperature of the thermosetting resin. Preferably, from the viewpoint of carrying out the thermoplastic and thermosetting of the thermosetting resin at a time, it is a thermosetting temperature or higher, specifically, for example, 50 ° C. or higher, preferably 80 For example, it is 200 ° C. or lower, preferably 150 ° C. or lower.
 続いて、図1Bの矢印で示すように、下金型2および上金型3を近接させる。具体的には、上金型3を下金型2に向けてプレスする(押し下げる、具体的には、熱プレスする)。つまり、上金型3を降下させる。そして、キャリア32の左右方向両端部の下面が、スペーサ4の上面に接触するプレス位置に至るまで、上金型3を下金型2に向けて近接させる。 Subsequently, as shown by the arrow in FIG. 1B, the lower mold 2 and the upper mold 3 are brought close to each other. Specifically, the upper mold 3 is pressed toward the lower mold 2 (pressed down, specifically, hot pressed). That is, the upper mold 3 is lowered. Then, the upper mold 3 is brought close to the lower mold 2 until the lower surfaces of both ends in the left-right direction of the carrier 32 reach the press position where they contact the upper surface of the spacer 4.
 図1Bに示すように、上金型3がプレス位置に位置すると、つまり、第2剥離層17の左右方向両端部の下面と、スペーサ4の上面とが接触(当接)する。上金型3がプレス位置に位置するときに、封止層13は、ダム5、第1剥離層12および第2剥離層17に区画される空間に充填されるとともに、図2Dに示すように、厚みT6を有する。 As shown in FIG. 1B, when the upper mold 3 is located at the press position, that is, the lower surface of both end portions of the second peeling layer 17 and the upper surface of the spacer 4 come into contact (contact). When the upper mold 3 is located at the press position, the sealing layer 13 is filled in a space defined by the dam 5, the first release layer 12, and the second release layer 17, and as shown in FIG. 2D. And a thickness T6.
 封止層13の厚みT6は、設計厚みT0と実質的に同一あるいは設計厚みT0に対する所定の公差の範囲(後述)に調整される。 The thickness T6 of the sealing layer 13 is adjusted to be substantially the same as the design thickness T0 or within a predetermined tolerance range (described later) with respect to the design thickness T0.
 図1Bに示すように、封止層13の設計厚みT0は、スペーサ4の厚みT1から剥離層12の厚みT2を差し引いた厚みである(T0=T1-T2))。換言すれば、スペーサ4の厚みT1は、剥離層12の厚みT2と、封止層13の設計厚みT0との合計厚みとして設定されている(T1=T2+T0)。 As shown in FIG. 1B, the design thickness T0 of the sealing layer 13 is a thickness obtained by subtracting the thickness T2 of the release layer 12 from the thickness T1 of the spacer 4 (T0 = T1-T2)). In other words, the thickness T1 of the spacer 4 is set as the total thickness of the thickness T2 of the release layer 12 and the design thickness T0 of the sealing layer 13 (T1 = T2 + T0).
 また、封止層13の設計厚みT0は、封止前の封止層13の厚みT4(図5参照)に対して、薄い(T0<T4)。換言すれば、封止層13の厚みT4(図5参照)は、封止層13の設計厚みT0に対して、厚い(T4>T0)。封止層13の厚みT4(図5参照)は、封止層13の設計厚みT0に対して、例えば、100%超過、好ましくは、105%以上であり、また、例えば、150%以下、好ましくは、120%以下である。 Moreover, the design thickness T0 of the sealing layer 13 is thinner than the thickness T4 (see FIG. 5) of the sealing layer 13 before sealing (T0 <T4). In other words, the thickness T4 (see FIG. 5) of the sealing layer 13 is thicker than the design thickness T0 of the sealing layer 13 (T4> T0). The thickness T4 (see FIG. 5) of the sealing layer 13 is, for example, more than 100%, preferably 105% or more with respect to the design thickness T0 of the sealing layer 13, and for example, 150% or less, preferably Is 120% or less.
 さらに、封止層13の設計厚みT0は、封止前のダム5の厚みT3に対しても、薄く形成されている(T0<T3)。換言すれば、封止前のダム5の厚みT3は、封止層13の設計厚みT0に対して厚く形成されている(T3>T0)。具体的には、封止前のダム5の厚みT3は、封止層13の設計厚みT0に対して、例えば、100%を超過し、好ましくは、105%以上であり、また、例えば、120%以下、より好ましくは、110%以下である。 Furthermore, the design thickness T0 of the sealing layer 13 is formed thinner than the thickness T3 of the dam 5 before sealing (T0 <T3). In other words, the thickness T3 of the dam 5 before sealing is thicker than the designed thickness T0 of the sealing layer 13 (T3> T0). Specifically, the thickness T3 of the dam 5 before sealing exceeds, for example, 100%, preferably 105% or more with respect to the design thickness T0 of the sealing layer 13, and for example, 120 % Or less, more preferably 110% or less.
 上金型3がプレス位置に位置するときに、ダム5、第1剥離層12、第2剥離層17によって区画される空間の体積から複数の光半導体素子16の体積を差し引いた封止層収容体積19は、図1Aに示される封止前の封止層13の体積より、小さくまたは同一に設定されている。換言すれば、図1Aに示される封止前の封止層13の体積は、封止層収容体積19に対して、大きくまたは同一であり、具体的には、例えば、100%以上、好ましくは、100%を超過し、より好ましくは、102%以上、さらに好ましくは、105%以上であり、また、例えば、120%以下、好ましくは、110%である。図1Aに示される封止前の封止層13の体積割合が、上記下限以上(あるいは上記下限超過)、上記上限以下であれば、封止層被覆光半導体素子10における封止層13の厚みT6を設計厚みT0に精確に設定することができる。 When the upper mold 3 is located at the press position, the sealing layer is accommodated by subtracting the volume of the plurality of optical semiconductor elements 16 from the volume of the space defined by the dam 5, the first release layer 12, and the second release layer 17. The volume 19 is set smaller or the same as the volume of the sealing layer 13 before sealing shown in FIG. 1A. In other words, the volume of the sealing layer 13 before sealing shown in FIG. 1A is larger or the same as the sealing layer accommodation volume 19, specifically, for example, 100% or more, preferably 100%, more preferably 102% or more, still more preferably 105% or more, and for example, 120% or less, preferably 110%. If the volume ratio of the sealing layer 13 before sealing shown in FIG. 1A is not less than the above lower limit (or more than the above lower limit) and not more than the above upper limit, the thickness of the sealing layer 13 in the sealing layer-covered optical semiconductor element 10 T6 can be accurately set to the design thickness T0.
 そして、上金型3は、プレス位置を超える降下をせず、プレス位置で留まる。つまり、スペーサ4によって、上金型3は、プレス位置を超える降下が規制される。また、上金型3は、プレス位置において下金型2へのプレスを継続する。 And the upper die 3 does not move down beyond the press position and stays at the press position. That is, the spacer 4 restricts the upper die 3 from descending beyond the press position. Further, the upper mold 3 continues to press the lower mold 2 at the press position.
 プレス圧は、例えば、0.5MPa以上、好ましくは、1MPa以上であり、また、例えば、1000MPa以下、好ましくは、300MPa以下である。 The press pressure is, for example, 0.5 MPa or more, preferably 1 MPa or more, and for example, 1000 MPa or less, preferably 300 MPa or less.
 そうすると、ヒータ7による下金型2および上金型3の加熱によって、封止層13が、熱可塑性および熱硬化性を有する熱硬化性樹脂を含有する場合には、下金型2および上金型3の熱が封止層13に伝導して可塑化する。引き続き、上金型3の下金型2に対するプレスによって、半導体素子16が、可塑化した封止層13に埋設される。 Then, when the sealing layer 13 contains a thermosetting resin having thermoplasticity and thermosetting property due to the heating of the lower mold 2 and the upper mold 3 by the heater 7, the lower mold 2 and the upper mold The heat of the mold 3 is conducted to the sealing layer 13 and plasticized. Subsequently, the semiconductor element 16 is embedded in the plasticized sealing layer 13 by pressing the upper mold 3 against the lower mold 2.
 そうすると、光半導体素子16が埋設された封止層13は、光半導体素子16が埋設される前の状態に比べて、その左右方向両側面および前後方向両側面が、外側(左右方向および前後方向)に膨出し、これによって、封止層13の左右方向両側面および前後方向両側面は、ダム5の内側面に接触して、ダム5を外側に押圧する。 Then, as compared with the state before the optical semiconductor element 16 is embedded, the sealing layer 13 in which the optical semiconductor element 16 is embedded has both the left and right side surfaces and the front and rear direction side surfaces on the outer side (the left and right direction and the front and rear direction). Thus, the left and right side surfaces and the front and rear side surfaces of the sealing layer 13 contact the inner surface of the dam 5 and press the dam 5 outward.
 また、ダム5は、上金型3の下金型2に対するプレスによって、ダム5の上面が上金型3の下面に圧縮される。そのため、ダム5は、上下方向に圧縮されて、第1剥離層12および第2剥離層17に挟まれるので、左右方向および前後方向に膨出する。 In the dam 5, the upper surface of the dam 5 is compressed to the lower surface of the upper die 3 by pressing the lower die 2 of the upper die 3. Therefore, the dam 5 is compressed in the vertical direction and is sandwiched between the first peeling layer 12 and the second peeling layer 17 and thus bulges in the left-right direction and the front-back direction.
 とりわけ、ダム5の外側部分は、左右方向外側および前後方向外側に向かって膨出する。具体的には、図4Bが参照されるように、前側の第1ダム部5Aが前側に、後側の第1ダム部5Aが後側に、右側の第2ダム部5Bが右側に、左側の第2ダム部5Bが左側に、膨出する。 Especially, the outer part of the dam 5 bulges outward in the left-right direction and outward in the front-rear direction. Specifically, as shown in FIG. 4B, the first dam part 5A on the front side is on the front side, the first dam part 5A on the rear side is on the rear side, the second dam part 5B on the right side is on the right side, and the left side The second dam portion 5B bulges to the left side.
 一方、ダム5の内側部分では、ダム5の内側面が封止層13によって外側に押圧される押圧力と、ダム5が上金型3によって上下方向に圧縮されることに起因する内側への膨出力とが実質的に相殺する。そのため、ダム5の内側部分は、プレスの前後によって、位置(前後方向および左右方向における位置)が実質的に変動しない。 On the other hand, in the inner part of the dam 5, the inner surface of the dam 5 is pressed outward by the sealing layer 13, and the dam 5 is compressed in the vertical direction by the upper mold 3. The expansion output substantially cancels. Therefore, the position (the position in the front-rear direction and the left-right direction) of the inner portion of the dam 5 does not substantially vary depending on before and after pressing.
 なお、図1Bに示すように、封止層13を構成する封止組成物の一部(外側部分の上部)は、ダム5の上面に至る。詳しくは、封止層13の一部は、ダム5と、第2剥離層17との間に配置される。 In addition, as shown in FIG. 1B, a part of the sealing composition constituting the sealing layer 13 (upper part of the outer portion) reaches the upper surface of the dam 5. Specifically, a part of the sealing layer 13 is disposed between the dam 5 and the second release layer 17.
 その後、引き続き、プレス1による熱プレスとを継続する。 After that, the hot press by press 1 is continued.
 加熱温度は、例えば、上記した温度と同一範囲であり、また、プレス時間は、例えば、3分間以上、好ましくは、5分間以上であり、また、例えば、30分間以下、好ましくは、15分間以下である。 The heating temperature is, for example, in the same range as the above temperature, and the pressing time is, for example, 3 minutes or more, preferably 5 minutes or more, and for example, 30 minutes or less, preferably 15 minutes or less. It is.
 これによって、封止層13は、可塑性および熱硬化性を有する熱硬化性樹脂を含有する場合には、熱硬化する(Cステージ化する)。 Thus, when the sealing layer 13 contains a thermosetting resin having plasticity and thermosetting property, it is thermoset (C stage).
 (生成物)
 封止樹脂がフェニル系シリコーン樹脂組成物を含む場合において、フェニル系シリコーン樹脂組成物の反応(Cステージ化反応)では、アルケニル基含有ポリシロキサンのアルケニル基および/またはシクロアルケニル基と、ヒドロシリル基含有ポリシロキサンのヒドロシリル基とのヒドロシリル付加反応がさらに促進される。その後、アルケニル基および/またはシクロアルケニル基、あるいは、ヒドロシリル基含有ポリシロキサンのヒドロシリル基が消失して、ヒドロシリル付加反応が完結することによって、Cステージのフェニル系シリコーン樹脂組成物の生成物、つまり、硬化物が得られる。つまり、ヒドロシリル付加反応の完結により、フェニル系シリコーン樹脂組成物において、硬化性(具体的には、熱硬化性)が発現する。
(Product)
In the case where the sealing resin contains a phenyl silicone resin composition, the reaction of the phenyl silicone resin composition (C-staging reaction) contains an alkenyl group and / or cycloalkenyl group of the alkenyl group-containing polysiloxane and a hydrosilyl group. The hydrosilyl addition reaction with the hydrosilyl group of the polysiloxane is further accelerated. Thereafter, the alkenyl group and / or cycloalkenyl group or the hydrosilyl group of the hydrosilyl group-containing polysiloxane disappears, and the hydrosilyl addition reaction is completed, whereby the product of the C-stage phenyl-based silicone resin composition, A cured product is obtained. That is, by completing the hydrosilyl addition reaction, curability (specifically, thermosetting) is exhibited in the phenyl silicone resin composition.
 上記した生成物は、下記平均組成式(3)で示される。 The product described above is represented by the following average composition formula (3).
 平均組成式(3):
 R SiO(4-e)/2
(式中、Rは、フェニル基を含む、非置換または置換の炭素数1~10の1価の炭化水素基(ただし、アルケニル基およびシクロアルケニル基を除く。)を示す。eは、0.5以上2.0以下である。)
 Rで示される非置換または置換の炭素数1~10の1価の炭化水素基としては、式(1)のRで示される非置換または置換の炭素数1~10の1価の炭化水素基、および、式(2)のRで示される非置換または置換の炭素数1~10の1価の炭化水素基と同一のものが例示される。好ましくは、非置換の1価の炭化水素基、より好ましくは、炭素数1~10のアルキル基、炭素数6~10のアリール基が挙げられ、さらに好ましくは、フェニル基およびメチル基の併用が挙げられる。
Average composition formula (3):
R 5 e SiO (4-e) / 2
(In the formula, R 5 represents an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms (excluding an alkenyl group and a cycloalkenyl group) including a phenyl group. .5 or more and 2.0 or less.)
The unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms represented by R 5 includes an unsubstituted or substituted monovalent carbon group having 1 to 10 carbon atoms represented by R 2 in the formula (1). Examples thereof are the same as the hydrogen group and the unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms represented by R 3 in the formula (2). Preferably, an unsubstituted monovalent hydrocarbon group, more preferably an alkyl group having 1 to 10 carbon atoms, and an aryl group having 6 to 10 carbon atoms, and more preferably a combined use of a phenyl group and a methyl group is used. Can be mentioned.
 eは、好ましくは、0.7以上、1.0以下である。 E is preferably 0.7 or more and 1.0 or less.
 そして、生成物の平均組成式(3)のRにおけるフェニル基の含有割合は、例えば、30モル%以上、好ましくは、35モル%以上であり、また、例えば、55モル%以下、好ましくは、50モル%以下である。 The proportion of the phenyl groups in R 5 in the average composition formula of the product (3) is, for example, 30 mol% or more, preferably is 35 mol% or more, and is, for example, 55 mol% or less, preferably 50 mol% or less.
 生成物の平均組成式(3)のRにおけるフェニル基の含有割合が上記した下限に満たない場合には、Bステージの封止層13(図1A参照)の熱可塑性を確保することができず、つまり、後述する封止層13の80℃の剪断貯蔵弾性率G’が所望範囲を超えるため、光半導体素子16を確実に埋設して封止することができない場合がある。 When the content ratio of the phenyl group in R 5 of the average composition formula (3) of the product is less than the lower limit described above, the thermoplasticity of the B-stage sealing layer 13 (see FIG. 1A) can be ensured. That is, since the 80 ° C. shear storage modulus G ′ of the sealing layer 13 described later exceeds the desired range, the optical semiconductor element 16 may not be securely embedded and sealed.
 一方、生成物の平均組成式(3)のRにおけるフェニル基の含有割合が上記した上限以下であれば、Cステージの封止層13(図1A参照)の可撓性の低下を防止することができる。 On the other hand, if the content ratio of the phenyl group in R 5 of the average composition formula (3) of the product is equal to or less than the above-described upper limit, a decrease in flexibility of the sealing layer 13 (see FIG. 1A) of the C stage is prevented. be able to.
 生成物の平均組成式(3)のRにおけるフェニル基の含有割合は、生成物のケイ素原子に直接結合する1価の炭化水素基(平均組成式(3)においてRで示される)におけるフェニル基濃度である。 The content ratio of the phenyl group in R 5 of the average composition formula (3) of the product is a monovalent hydrocarbon group directly bonded to the silicon atom of the product (indicated by R 5 in the average composition formula (3)). This is the phenyl group concentration.
 生成物の平均組成式(3)のRにおけるフェニル基の含有割合は、H-NMRおよび29Si-NMRにより算出される。Rにおけるフェニル基の含有割合の算出方法の詳細は、後述する実施例において記載され、また、例えば、WO2011/125463などの記載に基づいて、H-NMRおよび29Si-NMRにより算出される。 The content ratio of the phenyl group in R 5 of the average composition formula (3) of the product is calculated by 1 H-NMR and 29 Si-NMR. Details of the calculation method of the content ratio of the phenyl group in R 5 are described in Examples described later, and are calculated by 1 H-NMR and 29 Si-NMR, for example, based on the description of WO2011 / 125463 and the like. .
 図1Bに示すように、上記した熱プレスによって、複数の光半導体素子16と、それらを被覆して埋設する封止層13と、光半導体素子16の上面および封止層13の上面を被覆する第2剥離層17と、封止層13(膨出部14の側面を除く)の下面を被覆する第1剥離層12と、封止層13を囲むダム5とを備えるダム/剥離層付封止層被覆光半導体素子60が得られる。 As shown in FIG. 1B, the plurality of optical semiconductor elements 16, the sealing layer 13 covering and embedding them, and the upper surface of the optical semiconductor element 16 and the upper surface of the sealing layer 13 are covered by the above-described hot pressing. A dam / release layer-attached seal comprising a second release layer 17, a first release layer 12 covering the lower surface of the sealing layer 13 (excluding the side surface of the bulging portion 14), and a dam 5 surrounding the sealing layer 13. A stop layer coated optical semiconductor element 60 is obtained.
 ダム/剥離層付封止層被覆光半導体素子60は、封止層被覆光半導体素子10および光半導体装置30を作製するための部品であり、部品単独で流通し、産業上利用可能なデバイスである。 The sealing layer-covered optical semiconductor element 60 with a dam / peeling layer is a part for producing the sealing layer-covered optical semiconductor element 10 and the optical semiconductor device 30, and is a device that circulates by itself and can be used industrially. is there.
 その後、上金型3の下金型2に対するプレスを解除する。つまり、上金型3およびキャリア32を下金型2に対して離間する方向に移動させる。すなわち、上金型3を上側に移動させる。この際、図1Cに示すように、上金型3の第2凹部25をバネ22の上端部から離脱させる。 After that, the press on the lower mold 2 of the upper mold 3 is released. That is, the upper mold 3 and the carrier 32 are moved away from the lower mold 2. That is, the upper mold 3 is moved upward. At this time, as shown in FIG. 1C, the second concave portion 25 of the upper mold 3 is detached from the upper end portion of the spring 22.
 これとともに、ダム/剥離層付封止層被覆光半導体素子60が、キャリア32および上金型3に追従する。つまり、ダム/剥離層付封止層被覆光半導体素子60を引き上げる。具体的には、ダム/剥離層付封止層被覆光半導体素子60における第2剥離層17をキャリア32に支持(接触)させた状態で、ダム/剥離層付封止層被覆光半導体素子60を、上金型3およびキャリア32とともに、上昇させる。 At the same time, the sealing layer-covered optical semiconductor element 60 with a dam / release layer follows the carrier 32 and the upper mold 3. That is, the sealing layer-covered optical semiconductor element 60 with a dam / release layer is pulled up. Specifically, in the state where the second release layer 17 in the sealing layer-covered optical semiconductor element 60 with a dam / release layer is supported (contacted) with the carrier 32, the sealing layer-covered optical semiconductor element 60 with a dam / release layer. Are raised together with the upper mold 3 and the carrier 32.
 その後、図1Cおよび図2Dに示すように、キャリア32からダム/剥離層付封止層被覆光半導体素子60を引き剥がす。これによって、ダム/剥離層付封止層被覆光半導体素子60をプレス1から取り出す。その後、ダム/剥離層付封止層被覆光半導体素子60を上下反転する。 Thereafter, as shown in FIGS. 1C and 2D, the sealing layer-covered optical semiconductor element 60 with a dam / release layer is peeled off from the carrier 32. Thereby, the sealing layer-covered optical semiconductor element 60 with a dam / release layer is taken out from the press 1. Thereafter, the sealing layer-covered optical semiconductor element 60 with a dam / release layer is turned upside down.
 ダム/剥離層付封止層被覆光半導体素子60は、光半導体素子16と、それを埋設して被覆する封止層13とを備える封止層被覆光半導体素子10を含む。封止層被覆光半導体素子10は、好ましくは、光半導体素子16と、封止層13とのみからなる。 The sealing layer-covered optical semiconductor element 60 with a dam / peeling layer includes the sealing layer-covered optical semiconductor element 10 including the optical semiconductor element 16 and the sealing layer 13 that embeds and covers the optical semiconductor element 16. The sealing layer-covered optical semiconductor element 10 preferably includes only the optical semiconductor element 16 and the sealing layer 13.
 ダム/剥離層付封止層被覆光半導体素子60(封止層被覆光半導体素子10)における封止層13の厚みT6は、図2Dにおいて、封止層13の上面と、光半導体素子16の側方に位置する封止層13の下面との間の上下方向長さであって、封止層13の設計厚みT0(図1B参照)と実質的に同一であり、例えば、図1Bに示すように、スペーサ4の厚みT1から、第1剥離層12の厚みT2を差し引いた厚みである(T6=T1-T2)。 The thickness T6 of the sealing layer 13 in the sealing layer-covered optical semiconductor element 60 with the dam / release layer (sealing layer-covered optical semiconductor element 10) is the upper surface of the sealing layer 13 and the optical semiconductor element 16 in FIG. The length in the vertical direction between the lower surface of the sealing layer 13 positioned on the side and substantially the same as the design thickness T0 (see FIG. 1B) of the sealing layer 13, for example, as shown in FIG. 1B Thus, the thickness is obtained by subtracting the thickness T2 of the first release layer 12 from the thickness T1 of the spacer 4 (T6 = T1-T2).
 ダム/剥離層付封止層被覆光半導体素子60における封止層13の厚みT6は、光半導体素子16を被覆する前の封止層13の厚みT4(図5参照)に比べて、薄く(つまり、T6<T4)、具体的には、光半導体素子16を被覆する前の封止層13の厚みT4に対して、例えば、100%未満、好ましくは、95%以下、より好ましくは、90%以下であり、また、例えば60%以上、好ましくは、70%以上である。具体的には、ダム/剥離層付封止層被覆光半導体素子60における封止層13の厚みT6は、例えば、50μm以上、好ましくは、100μm以上であり、また、例えば、1500μm以下、好ましくは、800μm以下である。 The thickness T6 of the sealing layer 13 in the sealing layer-covered optical semiconductor element 60 with the dam / peeling layer is thinner than the thickness T4 (see FIG. 5) of the sealing layer 13 before covering the optical semiconductor element 16 (see FIG. 5). In other words, T6 <T4), specifically, for example, less than 100%, preferably 95% or less, more preferably 90%, with respect to the thickness T4 of the sealing layer 13 before covering the optical semiconductor element 16. % Or less, for example, 60% or more, preferably 70% or more. Specifically, the thickness T6 of the sealing layer 13 in the dam / release layer-containing sealing layer-covered optical semiconductor element 60 is, for example, 50 μm or more, preferably 100 μm or more, and for example, 1500 μm or less, preferably 800 μm or less.
 また、図2Dに示すように、ダム/剥離層付封止層被覆光半導体素子60におけるダム5の厚みT7(封止後のダム5の厚みT7)は、封止前のダム5の厚みT3(図5参照)に対して、薄くあるいは同一厚みで形成され(つまり、T7≦T3)、例えば、100%以下、好ましくは、100%未満、より好ましくは、98%以下、さらに好ましくは、95%以下であり、また、例えば、80%以上である。具体的には、ダム/剥離層付封止層被覆光半導体素子60におけるダム5の厚みT7は、例えば、100μm以上、好ましくは、300μm以上であり、また、例えば、1500μm以下、好ましくは、1000μm以下である。 2D, the thickness T7 of the dam 5 (the thickness T7 of the dam 5 after sealing) in the sealing layer-covered optical semiconductor element 60 with the dam / peeling layer is the thickness T3 of the dam 5 before sealing. (Refer to FIG. 5), it is thin or formed with the same thickness (that is, T7 ≦ T3), for example, 100% or less, preferably less than 100%, more preferably 98% or less, and still more preferably 95 % Or less, for example, 80% or more. Specifically, the thickness T7 of the dam 5 in the dam / separation layer-coated optical semiconductor element 60 with a release layer is, for example, 100 μm or more, preferably 300 μm or more, and, for example, 1500 μm or less, preferably 1000 μm. It is as follows.
 図2Dに示すように、ダム/剥離層付封止層被覆光半導体素子60において、封止層13は、光半導体素子16の近傍に配置され、光半導体素子16の封止(被覆)に役する封止部33と、封止部33の外側において、封止部33より薄膜で形成され、ダム5の下面に配置され、光半導体素子16の封止(被覆)に役しない膨出部14とを一体的に備えている。なお、膨出部14は、その後の切断工程において、ダム5とともに除去され、封止層被覆光半導体素子10に含まれない一方、封止部33は、封止層被覆光半導体素子10に含まれる。 As shown in FIG. 2D, in the sealing layer-covered optical semiconductor element 60 with a dam / release layer, the sealing layer 13 is disposed in the vicinity of the optical semiconductor element 16 and serves to seal (cover) the optical semiconductor element 16. A sealing portion 33 to be formed, and a bulging portion 14 which is formed in a thin film from the sealing portion 33 outside the sealing portion 33 and is disposed on the lower surface of the dam 5 and does not serve for sealing (covering) the optical semiconductor element 16. And integrated. The bulging portion 14 is removed together with the dam 5 in the subsequent cutting step and is not included in the sealing layer-covered optical semiconductor element 10, while the sealing portion 33 is included in the sealing layer-covered optical semiconductor element 10. It is.
 その後、図2Dの矢印で示すように、第1剥離層12を封止層13およびダム5から略U字状に湾曲するように引き剥がす。 Thereafter, as shown by an arrow in FIG. 2D, the first release layer 12 is peeled off from the sealing layer 13 and the dam 5 so as to be bent in a substantially U shape.
 続いて、図2Eの太1点鎖線で示すように、各光半導体素子16に対応する封止層13を前後方向および左右方向に沿って切断する(切断工程)。つまり、複数の光半導体素子16を個片化する。また、膨出部14がダム5とともに除去されるように、封止層13を切断する。これによって、1つの光半導体素子16と、光半導体素子16を埋設して被覆する封止層13とを備える封止層被覆光半導体素子10を、第2剥離層17に支持される状態で得る。なお、封止層被覆光半導体素子10は、第2剥離層17および基板20を含まず、好ましくは、光半導体素子16と、封止層13とのみからなる。 Subsequently, as shown by the thick dashed line in FIG. 2E, the sealing layer 13 corresponding to each optical semiconductor element 16 is cut along the front-rear direction and the left-right direction (cutting step). That is, the plurality of optical semiconductor elements 16 are singulated. Further, the sealing layer 13 is cut so that the bulging portion 14 is removed together with the dam 5. Thus, the sealing layer-covered optical semiconductor element 10 including one optical semiconductor element 16 and the sealing layer 13 that embeds and covers the optical semiconductor element 16 is obtained in a state of being supported by the second release layer 17. . The sealing layer-covered optical semiconductor element 10 does not include the second release layer 17 and the substrate 20, and preferably includes only the optical semiconductor element 16 and the sealing layer 13.
  <光半導体装置の製造方法>
 次に、上記した封止層被覆光半導体素子10によって、光半導体装置30を製造する方法について説明する。
<Method for Manufacturing Optical Semiconductor Device>
Next, a method for manufacturing the optical semiconductor device 30 using the sealing layer-covered optical semiconductor element 10 will be described.
 この方法は、上記した封止層被覆光半導体素子10を用意する工程(図2E参照)、封止層被覆光半導体素子10を第2剥離層17から剥離する剥離工程(図2E矢印参照)、および、剥離した封止層被覆光半導体素子10の光半導体素子16を基板20に実装する実装工程(図2F参照)を備える。 This method includes a step of preparing the above-described sealing layer-covered optical semiconductor element 10 (see FIG. 2E), a peeling step of peeling the sealing layer-covered optical semiconductor element 10 from the second release layer 17 (see the arrow in FIG. 2E), And the mounting process (refer FIG. 2F) which mounts the optical semiconductor element 16 of the peeling sealing layer covering optical semiconductor element 10 on the board | substrate 20 is provided.
  <7.剥離工程>
 図2Eの矢印で示すように、剥離工程では、上記した製造方法により得られた封止層被覆光半導体素子10を第2剥離層17から剥離する。具体的には、封止層被覆光半導体素子10を上側に引っ張る。
<7. Peeling process>
As shown by the arrow in FIG. 2E, in the peeling step, the sealing layer-covered optical semiconductor element 10 obtained by the above-described manufacturing method is peeled from the second peeling layer 17. Specifically, the sealing layer-covered optical semiconductor element 10 is pulled upward.
 これにより、封止層被覆光半導体素子10を複数得る。 Thereby, a plurality of sealing layer-covered optical semiconductor elements 10 are obtained.
 続いて、複数の封止層被覆光半導体素子10を発光波長や発光効率に応じて選別する。 Subsequently, the plurality of sealing layer-covered optical semiconductor elements 10 are sorted according to the emission wavelength and the emission efficiency.
  <8.実装工程>
 実装工程では、まず、上面に端子(図示せず)が設けられた基板20を用意する。
<8. Mounting process>
In the mounting process, first, a substrate 20 having terminals (not shown) provided on the upper surface is prepared.
 基板20は、図2Fに示すように、前後方向および左右方向に延びる略矩形平板状をなし、例えば、絶縁基板である。また、基板20は、上面に配置される端子(図示せず)を備えている。 As shown in FIG. 2F, the substrate 20 has a substantially rectangular plate shape extending in the front-rear direction and the left-right direction, and is, for example, an insulating substrate. Moreover, the board | substrate 20 is equipped with the terminal (not shown) arrange | positioned on the upper surface.
 次いで、実装工程では、選別された封止層被覆光半導体素子10を基板20に実装する。 Next, in the mounting process, the selected sealing layer-covered optical semiconductor element 10 is mounted on the substrate 20.
 封止層被覆光半導体素子10を基板20に実装するには、封止層被覆光半導体素子10における光半導体素子16の端子(図示せず)を、基板20の端子(図示せず)と接触させて、電気的に接続させる。つまり、封止層被覆光半導体素子10の光半導体素子16を基板20にフリップチップ実装する。 In order to mount the sealing layer-covered optical semiconductor element 10 on the substrate 20, a terminal (not shown) of the optical semiconductor element 16 in the sealing layer-covered optical semiconductor element 10 is brought into contact with a terminal (not shown) of the substrate 20. And make an electrical connection. That is, the optical semiconductor element 16 of the sealing layer-covered optical semiconductor element 10 is flip-chip mounted on the substrate 20.
 これにより、基板20と、基板20に実装される封止層被覆光半導体素子10とを備える光半導体装置30を得る。好ましくは、光半導体装置30は、基板20と、封止層被覆光半導体素子10とのみからなる。つまり、光半導体装置30は、好ましくは、基板20と、光半導体素子16と、封止層13とのみからなる。 Thereby, the optical semiconductor device 30 including the substrate 20 and the sealing layer-covered optical semiconductor element 10 mounted on the substrate 20 is obtained. Preferably, the optical semiconductor device 30 includes only the substrate 20 and the sealing layer-covered optical semiconductor element 10. That is, the optical semiconductor device 30 preferably includes only the substrate 20, the optical semiconductor element 16, and the sealing layer 13.
  (作用効果)
 そして、この封止層被覆光半導体素子10の製造方法によれば、平板状の下金型2と、平板状の上金型3とを備えるプレス1を準備するので、プレス1の構成を簡単にすることができながら、複数の光半導体素子16を封止層13により被覆することができる。
(Function and effect)
And according to the manufacturing method of this sealing layer covering optical semiconductor element 10, since the press 1 provided with the flat lower mold 2 and the flat upper mold 3 is prepared, the structure of the press 1 is simplified. The plurality of optical semiconductor elements 16 can be covered with the sealing layer 13.
 また、この封止層被覆光半導体素子10の製造方法によれば、ダム5を、封止層13を囲むように配置し、そして、上金型3を下金型2に近接させる。そのため、上金型3の下金型2に対するプレスにおいて、封止層13が、前後方向および左右方向に漏れることを抑制することができる。 Further, according to the method for manufacturing the sealing layer-covered optical semiconductor element 10, the dam 5 is disposed so as to surround the sealing layer 13, and the upper mold 3 is brought close to the lower mold 2. Therefore, in the press with respect to the lower mold 2 of the upper mold 3, it is possible to suppress the sealing layer 13 from leaking in the front-rear direction and the left-right direction.
 さらに、この封止層被覆光半導体素子10の製造方法によれば、スペーサ4をプレス1に配置するので、上金型3をプレス位置に位置させるときに、封止層13の設計厚みT0(図1B参照)に対応するプレス位置を超える上金型3の降下を規制することができる。そのため、封止層13の厚みT6(図2D参照)を設計厚みT0に精確に調整することができる。 Furthermore, according to the manufacturing method of this sealing layer covering optical semiconductor element 10, since the spacer 4 is arrange | positioned in the press 1, when the upper metal mold | die 3 is located in a press position, design thickness T0 ( The lowering of the upper die 3 beyond the press position corresponding to FIG. 1B) can be regulated. Therefore, the thickness T6 (see FIG. 2D) of the sealing layer 13 can be accurately adjusted to the design thickness T0.
 また、この封止層被覆光半導体素子10の製造方法によれば、封止層13の体積割合が、上金型3がプレス位置に位置するときに、封止層収容体積19に対して特定範囲にあるので、寸法の精確性に優れる封止層13を得ることができる。 Further, according to the method for manufacturing the sealing layer-covered optical semiconductor element 10, the volume ratio of the sealing layer 13 is specified with respect to the sealing layer accommodation volume 19 when the upper mold 3 is located at the press position. Since it exists in the range, the sealing layer 13 which is excellent in dimensional accuracy can be obtained.
 また、この封止層被覆光半導体素子10の製造方法によれば、ダム5を配置するダム配置工程において、ダム5の厚みT3が、封止層13の設計厚みT0に対して、上記範囲内であれば、被覆工程において、ダム5を上下方向に確実に圧縮しながら、封止層13がダム5の外側に漏れることを抑制することができる。 Moreover, according to the manufacturing method of this sealing layer covering optical semiconductor element 10, in the dam arrangement | positioning process which arrange | positions the dam 5, the thickness T3 of the dam 5 is in the said range with respect to the design thickness T0 of the sealing layer 13. If so, it is possible to suppress the sealing layer 13 from leaking outside the dam 5 while reliably compressing the dam 5 in the vertical direction.
 また、この封止層被覆光半導体素子10の製造方法によれば、堰部材の23℃における引張弾性率が上記範囲内にあれば、ダム5のハンドリング性を良好に確保できる一方、ダム5を封止層13とともにプレスしながら、封止層13がダム5の外側に漏れることを抑制することができる。 Moreover, according to the manufacturing method of this sealing layer covering optical semiconductor element 10, if the tensile elastic modulus in 23 degreeC of a dam member is in the said range, while the handling property of the dam 5 can be ensured favorable, While pressing together with the sealing layer 13, the sealing layer 13 can be prevented from leaking outside the dam 5.
 また、この封止層被覆光半導体素子10の製造方法によれば、ダム5が樹脂を含有すれば、柔軟なダム5を容易に形成することができる。そのため、かかるダム5によって、封止層13がダム5の外側に漏れることを確実に抑制することができる。そのため、封止層13の封止組成物によるプレス1に対する汚染を有効に抑制することができる。 Further, according to the method for manufacturing the sealing layer-covered optical semiconductor element 10, if the dam 5 contains a resin, the flexible dam 5 can be easily formed. Therefore, the dam 5 can reliably suppress the sealing layer 13 from leaking outside the dam 5. Therefore, the contamination with respect to the press 1 by the sealing composition of the sealing layer 13 can be suppressed effectively.
 また、この封止層被覆光半導体素子10の製造方法によれば、樹脂が、シリコーン樹脂および/またはウレタン樹脂であれば、封止層13がダム5の外側に漏れることを確実に抑制することができる。 Moreover, according to the manufacturing method of this sealing layer covering optical semiconductor element 10, if resin is silicone resin and / or urethane resin, it will suppress reliably that the sealing layer 13 leaks outside the dam 5. FIG. Can do.
 また、この封止層被覆光半導体素子10の製造方法によれば、図1Aに示すダム5を配置するダム配置工程では、ダム5を、第1剥離層12の周端部に載置するので、図1Bに示すように、上金型3を下金型2に対してプレスして、複数の光半導体素子16を封止層13により被覆する被覆工程では、第1剥離層12の上面において、封止層13の外形形状を、ダム5に対応して成形することができる。 Moreover, according to the manufacturing method of this sealing layer covering optical semiconductor element 10, in the dam arrangement | positioning process which arrange | positions the dam 5 shown to FIG. 1A, since the dam 5 is mounted in the peripheral edge part of the 1st peeling layer 12, As shown in FIG. 1B, in the covering step of pressing the upper mold 3 against the lower mold 2 and covering the plurality of optical semiconductor elements 16 with the sealing layer 13, on the upper surface of the first release layer 12. The outer shape of the sealing layer 13 can be formed corresponding to the dam 5.
 また、この封止層被覆光半導体素子10の製造方法によれば、Bステージの封止層13が、熱可塑性および熱硬化性を併有すれば、図1Bに示すように、複数の光半導体素子16を封止層13により被覆する被覆工程において、封止層13を加熱して可塑化して、封止層13によって複数の光半導体素子16を確実に被覆して封止しつつ、その後、可塑化した封止層13を熱硬化させて、複数の光半導体素子16の信頼性を向上させることができる。 Moreover, according to the manufacturing method of this sealing layer covering optical semiconductor element 10, if the sealing layer 13 of B stage has both thermoplasticity and thermosetting property, as shown to FIG. In the covering step of covering the element 16 with the sealing layer 13, the sealing layer 13 is heated and plasticized, and the plurality of optical semiconductor elements 16 are surely covered and sealed with the sealing layer 13. The plasticized sealing layer 13 can be thermoset to improve the reliability of the plurality of optical semiconductor elements 16.
 また、この封止層被覆光半導体素子10の製造方法によれば、封止層13において、シリコーン樹脂組成物を反応させることにより得られる生成物の平均組成式(3)のRにおけるフェニル基の含有割合が特定の範囲にあれば、複数の光半導体素子16を確実に埋設して被覆して封止することができる。 Further, according to the manufacturing method of the sealing layer covered optical semiconductor element 10, the sealing layer 13, a phenyl group in R 5 in the average composition formula of the product obtained by reacting a silicone resin composition (3) If the content ratio is within a specific range, the plurality of optical semiconductor elements 16 can be reliably embedded, covered and sealed.
 また、この封止層被覆光半導体素子10の製造方法において、封止層13が蛍光体を含有すれば、複数の光半導体素子16から発光された光を、寸法の精確性に優れ、蛍光体を含有する封止層13によって波長変換することができるので、色均一性に優れる封止層被覆光半導体素子10を得ることができる。 Further, in this method of manufacturing the sealing layer-covered optical semiconductor element 10, if the sealing layer 13 contains a phosphor, the light emitted from the plurality of optical semiconductor elements 16 is excellent in dimensional accuracy, and the phosphor. Since the wavelength can be converted by the sealing layer 13 containing, the sealing layer-coated optical semiconductor element 10 having excellent color uniformity can be obtained.
 また、上記の光半導体装置30の製造方法によれば、図2Dに示すように、寸法の精確性に優れる封止層13を備える光半導体装置30を用意するので、発光特性および耐久性に優れる光半導体装置30を得ることができる。 In addition, according to the method for manufacturing the optical semiconductor device 30 described above, as shown in FIG. 2D, the optical semiconductor device 30 including the sealing layer 13 having excellent dimensional accuracy is prepared, so that the light emitting characteristics and durability are excellent. The optical semiconductor device 30 can be obtained.
  (変形例)
 変形例において、上記した一実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。
(Modification)
In the modification, members and processes similar to those in the above-described embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 上記した一実施形態では、図1Bの矢印で示すように、上金型3を下金型2に向けてプレスしているが、例えば、図示しないが、下金型2を上金型3に向けてプレスすることもできる。つまり、下金型2を押し上げる。 In the above-described embodiment, as shown by the arrow in FIG. 1B, the upper mold 3 is pressed toward the lower mold 2. For example, although not shown, the lower mold 2 is turned into the upper mold 3. You can also press it. That is, the lower mold 2 is pushed up.
 あるいは、下金型2および上金型3をともに移動させることもできる。つまり、下金型2を押し上げながら、上金型3を押し下げる。 Alternatively, the lower mold 2 and the upper mold 3 can be moved together. That is, the upper mold 3 is pushed down while the lower mold 2 is pushed up.
 上記した一実施形態では、<4.ダム配置工程>および<5.素子部材配置工程>を順次実施しているが、その順序は特に限定されず、<5.素子部材配置工程>および<4.ダム配置工程>の順序で実施することができ、あるいは、<4.ダム配置工程>および<5.素子部材配置工程>を同時に実施することもできる。 In the above-described embodiment, <4. Dam placement step> and <5. The element member arranging step> is sequentially performed, but the order is not particularly limited, and <5. Element member arranging step> and <4. Dam placement step> or <4. Dam placement step> and <5. The element member arranging step> can be performed simultaneously.
 上記した一実施形態では、図1Aに示すように、規制部材の一例としてのスペーサ4を下金型2および上金型3の間に配置しているが、スペーサ4に代えて、上金型3のプレス位置を超える降下を規制するストッパを、プレス1の側方または上側にプレス1と一体的に配置することもできる。 In the above-described embodiment, as shown in FIG. 1A, the spacer 4 as an example of the restricting member is disposed between the lower mold 2 and the upper mold 3, but instead of the spacer 4, the upper mold A stopper that restricts the descent exceeding the press position of 3 can be integrally arranged with the press 1 on the side or upper side of the press 1.
 上記した一実施形態では、図1Aに示すように、バネ22を用いているが、これに限定されず、図示しないが、例えば、バネ22に代えて、スポンジなどの弾性体を用いることもできる。 In the above-described embodiment, the spring 22 is used as shown in FIG. 1A. However, the present invention is not limited to this, and although not shown, for example, an elastic body such as a sponge can be used instead of the spring 22. .
 上記した一実施形態では、図4Bおよび図5に示すように、封止部材配置工程およびダム配置工程において、ダム5の内側面を、封止層13の外側面と間隔を隔てて配置しているが、図6に示すように、互いに接触させることもできる。 In the above-described embodiment, as shown in FIGS. 4B and 5, in the sealing member arranging step and the dam arranging step, the inner surface of the dam 5 is arranged with a distance from the outer surface of the sealing layer 13. However, they can also be brought into contact with each other as shown in FIG.
 図6に示すように、封止層13の外形形状は、開口部8の形状と同一に形成されている。 As shown in FIG. 6, the outer shape of the sealing layer 13 is the same as the shape of the opening 8.
 この変形例によっても、上記した一実施形態と同様の作用効果を奏することができる。 This modification can also provide the same operational effects as the above-described embodiment.
 好ましくは、図4Bおよび図5に示すように、封止部材配置工程およびダム配置工程において、ダム5の内側面を、封止層13の外側面と間隔を隔てて配置する。すなわち、封止層13の面積S1が、開口部8の開口断面積S8に比べて、小さい。そのため、封止層13の面積S1に比べて大きい開口断面積S8を有するダム5を、封止層13を囲むように、容易かつ確実に配置することができる。具体的には、ダム5と封止層13とが上下方向に重複することを防止することができる。そのため、ダム5が、封止層13を、前後方向および左右方向に確実に囲むことができ、つまり、ダム5および封止層13を容易かつ確実に相対配置させることができる。 Preferably, as shown in FIGS. 4B and 5, in the sealing member arranging step and the dam arranging step, the inner surface of the dam 5 is arranged with a space from the outer surface of the sealing layer 13. That is, the area S 1 of the sealing layer 13 is smaller than the opening cross-sectional area S 8 of the opening 8. Therefore, the dam 5 having the opening cross-sectional area S <b> 8 that is larger than the area S <b> 1 of the sealing layer 13 can be easily and reliably disposed so as to surround the sealing layer 13. Specifically, the dam 5 and the sealing layer 13 can be prevented from overlapping in the vertical direction. Therefore, the dam 5 can reliably surround the sealing layer 13 in the front-rear direction and the left-right direction, that is, the dam 5 and the sealing layer 13 can be easily and reliably disposed relative to each other.
 上記した一実施形態では、図1Bに示すように、膨出部14を形成しているが、例えば、図7に示すように、膨出部14を形成することなく、封止層13を形成することもできる。 In the above-described embodiment, the bulging portion 14 is formed as shown in FIG. 1B. For example, the sealing layer 13 is formed without forming the bulging portion 14 as shown in FIG. You can also
 その場合には、上金型3がプレス位置に位置するときに、封止層収容体積19から複数の光半導体素子16の体積を差し引いた封止層収容体積19と、封止前の封止層13の体積と同一である。 In that case, when the upper mold 3 is positioned at the press position, the sealing layer accommodation volume 19 obtained by subtracting the volumes of the plurality of optical semiconductor elements 16 from the sealing layer accommodation volume 19 and the sealing before sealing The volume of the layer 13 is the same.
 好ましくは、図1Bに示すように、膨出部14を形成する。膨出部14を形成するには、上金型3がプレス位置に位置するときに、封止層収容体積19から複数の光半導体素子16の体積を差し引いた封止層収容体積19を、封止前の封止層13の体積より小さく設定する。そうすると、寸法、具体的には、厚みT6の精確性に優れる封止層13を得ることができる。つまり、封止層13の厚みT6を、設計厚みT0に対して、例えば、95%以上、105%以下の精度(公差)で調整することができる。 Preferably, as shown in FIG. 1B, the bulging portion 14 is formed. In order to form the bulging portion 14, when the upper mold 3 is located at the press position, the sealing layer accommodation volume 19 obtained by subtracting the volumes of the plurality of optical semiconductor elements 16 from the sealing layer accommodation volume 19 is sealed. It is set smaller than the volume of the sealing layer 13 before stopping. If it does so, the sealing layer 13 which is excellent in the dimension, specifically the accuracy of thickness T6, can be obtained. That is, the thickness T6 of the sealing layer 13 can be adjusted with an accuracy (tolerance) of, for example, 95% or more and 105% or less with respect to the design thickness T0.
 さらに、封止層13は、図1Bに示すように、膨出部14を形成することができるので、上記した公差を大きく許容しても、厚みT6の精確性に優れる封止層13を得ることができる。 Furthermore, since the sealing layer 13 can form the bulging part 14 as shown in FIG. 1B, the sealing layer 13 with excellent accuracy of the thickness T6 can be obtained even if the tolerance described above is greatly allowed. be able to.
 上記した一実施形態では、図5に示すように、封止層13の面積S1を、素子配置領域18の面積S3に比べて、大きく形成している(S1>S3)が、例えば、図8に示すように、封止層13の面積S1を、素子配置領域18の面積S3に比べて、小さくあるいは同じ大きさに形成することもできる(S1≦S3)。 In the above-described embodiment, as shown in FIG. 5, the area S1 of the sealing layer 13 is formed larger than the area S3 of the element arrangement region 18 (S1> S3). As shown in FIG. 3, the area S1 of the sealing layer 13 can be made smaller or the same size as the area S3 of the element arrangement region 18 (S1 ≦ S3).
 好ましくは、図5に示すように、封止層13の面積S1を、素子配置領域18の面積S3に比べて、大きく形成する(S1>S3)。そうすれば、素子配置領域18の面積S3に比べて大きい面積S1を有する封止層13により確実に複数の光半導体素子16を被覆しつつ、封止層13の厚みT6の精確性を向上させることができる。 Preferably, as shown in FIG. 5, the area S1 of the sealing layer 13 is formed larger than the area S3 of the element arrangement region 18 (S1> S3). By doing so, the accuracy of the thickness T6 of the sealing layer 13 is improved while reliably covering the plurality of optical semiconductor elements 16 with the sealing layer 13 having an area S1 larger than the area S3 of the element arrangement region 18. be able to.
 上記した一実施形態では、図1A~図2Fに示すように、本発明の光半導体装置の製造方法における基材の一例として、第2剥離層17を挙げて説明しているが、例えば、図9A~図9Dに示すように、第2剥離層17を基板20とし、そして、第2剥離層17を用いる剥離工程(図2E参照)を実施することなく、光半導体装置30を製造することもできる。 In the above-described embodiment, as shown in FIGS. 1A to 2F, the second release layer 17 is described as an example of the base material in the method for manufacturing an optical semiconductor device of the present invention. As shown in FIGS. 9A to 9D, the optical semiconductor device 30 may be manufactured without using the second peeling layer 17 as the substrate 20 and performing the peeling process using the second peeling layer 17 (see FIG. 2E). it can.
 この実施形態の光半導体装置30の製造方法では、図9Aに示すように、素子部材配置工程において、まず、光半導体素子16と、光半導体素子16が実装された基板20とを備える実装基板29を用意する。光半導体素子16は、基板20の下面に対してフリップチップ実装され、あるいは、ワイヤボンディング接続されている。 In the manufacturing method of the optical semiconductor device 30 of this embodiment, as shown in FIG. 9A, in the element member arranging step, first, a mounting substrate 29 including the optical semiconductor element 16 and the substrate 20 on which the optical semiconductor element 16 is mounted. Prepare. The optical semiconductor element 16 is flip-chip mounted on the lower surface of the substrate 20 or connected by wire bonding.
 その後、図9Aに示すように、実装基板29を、封止部材11およびダム5の上側に対向配置する。具体的には、実装基板29を、光半導体素子16が下側に向かうように、キャリア32の下面に配置する。 Thereafter, as shown in FIG. 9A, the mounting substrate 29 is disposed opposite to the upper side of the sealing member 11 and the dam 5. Specifically, the mounting substrate 29 is disposed on the lower surface of the carrier 32 so that the optical semiconductor element 16 faces downward.
 続いて、図9Bに示すように、被覆工程を実施して、光半導体素子16と、光半導体素子16が実装された基板20と、光半導体素子16を封止する封止層13と、封止層13の表面(下面および側面)に配置される第1剥離層12と、封止層13を囲むダム5とを備えるダム/剥離層付光半導体装置50を得る。その後、図9Cに示すように、ダム/剥離層付光半導体装置50を下金型2から引き上げる。 Subsequently, as shown in FIG. 9B, a covering process is performed, and the optical semiconductor element 16, the substrate 20 on which the optical semiconductor element 16 is mounted, the sealing layer 13 for sealing the optical semiconductor element 16, and the sealing An optical semiconductor device 50 with a dam / peeling layer including the first peeling layer 12 disposed on the surface (lower surface and side surfaces) of the stopper layer 13 and the dam 5 surrounding the sealing layer 13 is obtained. Thereafter, as shown in FIG. 9C, the optical semiconductor device 50 with a dam / release layer is pulled up from the lower mold 2.
 その後、図9Dの矢印で示すように、ダム/剥離層付光半導体装置50において、第1剥離層12を封止層13から剥離する。 Thereafter, as shown by an arrow in FIG. 9D, in the optical semiconductor device 50 with a dam / release layer, the first release layer 12 is peeled from the sealing layer 13.
 続いて、図9Dの太鎖線で示すように、各光半導体素子16に対応する封止層13および基板20を前後方向および左右方向に沿って切断して、複数の光半導体素子16を個片化する。これによって、ダム5、ダム5に対応する膨出部14および基板20を除去する。 9D, the sealing layer 13 and the substrate 20 corresponding to each optical semiconductor element 16 are cut along the front-rear direction and the left-right direction so that the plurality of optical semiconductor elements 16 are separated into pieces. Turn into. As a result, the dam 5, the bulging portion 14 and the substrate 20 corresponding to the dam 5 are removed.
 これによって、1つの光半導体素子16と、光半導体素子16が実装される基板20と、光半導体素子16を封止する封止層13(封止部33)とを備える光半導体装置30が得られる。好ましくは、光半導体装置30は、光半導体素子16と、基板20と、封止層13とのみからなる。 Thus, an optical semiconductor device 30 including one optical semiconductor element 16, a substrate 20 on which the optical semiconductor element 16 is mounted, and a sealing layer 13 (sealing portion 33) that seals the optical semiconductor element 16 is obtained. It is done. Preferably, the optical semiconductor device 30 includes only the optical semiconductor element 16, the substrate 20, and the sealing layer 13.
 図9A~図9Dに示される方法によっても、上記した一実施形態と同様の作用効果を奏することができる。さらに、第2剥離層17を用いないので、その分、簡便に、光半導体装置30を得ることができる。 Also by the method shown in FIGS. 9A to 9D, the same operational effects as those of the above-described embodiment can be obtained. Furthermore, since the second release layer 17 is not used, the optical semiconductor device 30 can be easily obtained accordingly.
 また、上記した一実施形態では、図2Eに示すように、封止層被覆光半導体素子10における封止層13を切断して、光半導体素子16を個片化した後、図2Fに示すように、封止層被覆光半導体素子10を基板20に実装している。しかし、図示しないが、封止層13を切断せず、つまり、光半導体素子16を個片化することなく、複数の光半導体素子16を備える封止層被覆光半導体素子10を、基板20に実装することもできる。その場合には、まず、第2剥離層17が設けられた封止層被覆光半導体素子10を基板20に実装し、その後、第2剥離層17を封止層13から剥離する。あるいは、まず、第2剥離層17を封止層13から剥離した後、第2剥離層17が剥離された封止層13を備える封止層被覆光半導体素子10を基板20に実装こともできる。 Further, in the above-described embodiment, as shown in FIG. 2E, after the sealing layer 13 in the sealing layer-covered optical semiconductor element 10 is cut and the optical semiconductor element 16 is separated into pieces, as shown in FIG. 2F. Further, the sealing layer-covered optical semiconductor element 10 is mounted on the substrate 20. However, although not illustrated, the sealing layer-covered optical semiconductor element 10 including the plurality of optical semiconductor elements 16 is not cut on the substrate 20 without cutting the sealing layer 13, that is, without separating the optical semiconductor elements 16 into individual pieces. It can also be implemented. In that case, first, the sealing layer-covered optical semiconductor element 10 provided with the second peeling layer 17 is mounted on the substrate 20, and then the second peeling layer 17 is peeled from the sealing layer 13. Alternatively, first, after the second release layer 17 is peeled from the sealing layer 13, the sealing layer-covered optical semiconductor element 10 including the sealing layer 13 from which the second release layer 17 is peeled can be mounted on the substrate 20. .
 また、上記した一実施形態では、図1Aに示すように、複数の光半導体素子16を第2剥離層17に配置し、その後、図1Bに示すように、これを、単数の封止層13によって封止している。しかし、これに限定されず、例えば、図示しないが、単数の光半導体素子16を第2剥離層17に配置し、その後、単数の光半導体素子16を単数の封止層13によって封止することもできる。 In the above-described embodiment, as shown in FIG. 1A, a plurality of optical semiconductor elements 16 are arranged on the second release layer 17, and then, as shown in FIG. It is sealed by. However, the present invention is not limited to this. For example, although not shown, a single optical semiconductor element 16 is disposed on the second release layer 17, and then the single optical semiconductor element 16 is sealed with the single sealing layer 13. You can also.
 その場合には、素子配置領域18は、第2剥離層17において単数の光半導体素子16が配置される領域であって、より具体的には、光半導体素子16が平面視略矩形状であれば、前端縁、後端縁、右端縁および左端縁によって囲まれる略矩形状の領域である。 In that case, the element arrangement region 18 is a region in which the single optical semiconductor element 16 is arranged in the second release layer 17, and more specifically, the optical semiconductor element 16 may have a substantially rectangular shape in plan view. For example, it is a substantially rectangular region surrounded by the front edge, the rear edge, the right edge, and the left edge.
 この変形例によっても、上記した一実施形態と同様の作用効果を奏することができる。 This modification can also provide the same operational effects as the above-described embodiment.
 以下に示す合成例、調製例、作製例および実施例の数値は、上記の実施形態において記載される数値(すなわち、上限値または下限値)に代替することができる。 The numerical values in the following synthesis examples, preparation examples, preparation examples, and examples can be replaced with the numerical values (that is, the upper limit value or the lower limit value) described in the above embodiment.
  実施例1 (図1A~図4に対応)
  <1.準備工程>
 図1Aおよび図3に示すように、下金型2および上金型3を用意した。
Example 1 (corresponding to FIGS. 1A to 4)
<1. Preparation process>
As shown in FIGS. 1A and 3, a lower mold 2 and an upper mold 3 were prepared.
  <2.スペーサ配置工程>
 図5に示すように、厚みT1が650μmである2つのスペーサ4を用意し、それらを、下金型2の上面の配置した。
<2. Spacer placement process>
As shown in FIG. 5, two spacers 4 having a thickness T <b> 1 of 650 μm were prepared, and they were arranged on the upper surface of the lower mold 2.
  <3.封止部材配置工程>
 第1剥離層12と、Bステージの封止層13とを備える封止部材11を用意した。
<3. Sealing member placement process>
A sealing member 11 including a first release layer 12 and a B-stage sealing layer 13 was prepared.
 封止部材11を用意する方法を以下の各合成例、調製例および作製例に記載する。 The method for preparing the sealing member 11 is described in the following synthesis examples, preparation examples, and production examples.
  (合成例1)
 撹拌機、還流冷却管、投入口および温度計が装備された四ツ口フラスコに、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン93.2g、水140g、トリフルオロメタンスルホン酸0.38gおよびトルエン500gを投入して混合し、撹拌しつつメチルフェニルジメトキシシラン729.2gとフェニルトリメトキシシラン330.5gの混合物1時間かけて滴下し、その後、1時間加熱還流した。その後、冷却し、下層(水層)を分離して除去し、上層(トルエン溶液)を3回水洗した。水洗したトルエン溶液に水酸化カリウム0.40gを加え、水分離管から水を除去しながら還流した。水の除去完了後、さらに5時間還流し、冷却した。その後、酢酸0.6gを投入して中和した後、ろ過して得られたトルエン溶液を3回水洗した。その後、減圧濃縮することにより、液体状のアルケニル基含有ポリシロキサンAを得た。アルケニル基含有ポリシロキサンAの平均単位式および平均組成式は、以下の通りである。
(Synthesis Example 1)
In a four-necked flask equipped with a stirrer, reflux condenser, charging port and thermometer, 93.2 g of 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 140 g of water, trifluoromethanesulfone 0.38 g of acid and 500 g of toluene were added and mixed. While stirring, a mixture of 729.2 g of methylphenyldimethoxysilane and 330.5 g of phenyltrimethoxysilane was added dropwise over 1 hour, and then heated under reflux for 1 hour. Then, it cooled, the lower layer (water layer) was isolate | separated and removed, and the upper layer (toluene solution) was washed with water 3 times. 0.40 g of potassium hydroxide was added to the toluene solution washed with water, and the mixture was refluxed while removing water from the water separation tube. After completion of water removal, the mixture was further refluxed for 5 hours and cooled. Thereafter, 0.6 g of acetic acid was added for neutralization, and then the toluene solution obtained by filtration was washed with water three times. Then, liquid alkenyl group containing polysiloxane A was obtained by concentrating under reduced pressure. The average unit formula and average composition formula of the alkenyl group-containing polysiloxane A are as follows.
 平均単位式:
((CH=CH)(CHSiO1/20.15(CHSiO2/20.60(CSiO3/20.25
 平均組成式:
(CH=CH)0.15(CH0.90(C0.85SiO1.05
 つまり、アルケニル基含有ポリシロキサンAは、Rがビニル基、Rがメチル基およびフェニル基であり、a=0.15、b=1.75である上記平均組成式(1)で示される。
Average unit formula:
((CH 2 = CH) (CH 3 ) 2 SiO 1/2 ) 0.15 (CH 3 C 6 H 5 SiO 2/2 ) 0.60 (C 6 H 5 SiO 3/2 ) 0.25
Average composition formula:
(CH 2 = CH) 0.15 (CH 3 ) 0.90 (C 6 H 5 ) 0.85 SiO 1.05
That is, the alkenyl group-containing polysiloxane A is represented by the above average composition formula (1) in which R 1 is a vinyl group, R 2 is a methyl group and a phenyl group, and a = 0.15 and b = 1.75. .
 また、ゲル透過クロマトグラフィーによって、アルケニル基含有ポリシロキサンAのポリスチレン換算の重量平均分子量を測定したところ、2300であった。 The weight average molecular weight in terms of polystyrene of the alkenyl group-containing polysiloxane A was measured by gel permeation chromatography and found to be 2300.
  (合成例2)
 撹拌機、還流冷却管、投入口および温度計が装備された四ツ口フラスコに、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン93.2g、水140g、トリフルオロメタンスルホン酸0.38gおよびトルエン500gを投入して混合し、撹拌しつつジフェニルジメトキシシラン173.4gとフェニルトリメトキシシラン300.6gの混合物1時間かけて滴下し、滴下終了後、1時間加熱還流した。その後、冷却し、下層(水層)を分離して除去し、上層(トルエン溶液)を3回水洗した。水洗したトルエン溶液に水酸化カリウム0.40gを加え、水分離管から水を除去しながら還流した。水の除去完了後、さらに5時間還流し、冷却した。酢酸0.6gを投入して中和した後、ろ過して得られたトルエン溶液を3回水洗した。その後、減圧濃縮することにより、液体状のアルケニル基含有ポリシロキサンBを得た。アルケニル基含有ポリシロキサンBの平均単位式および平均組成式は、以下の通りである。
(Synthesis Example 2)
In a four-necked flask equipped with a stirrer, reflux condenser, charging port and thermometer, 93.2 g of 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 140 g of water, trifluoromethanesulfone 0.38 g of acid and 500 g of toluene were added and mixed. While stirring, a mixture of 173.4 g of diphenyldimethoxysilane and 300.6 g of phenyltrimethoxysilane was added dropwise over 1 hour. After completion of the addition, the mixture was heated to reflux for 1 hour. Then, it cooled, the lower layer (water layer) was isolate | separated and removed, and the upper layer (toluene solution) was washed with water 3 times. 0.40 g of potassium hydroxide was added to the toluene solution washed with water, and the mixture was refluxed while removing water from the water separation tube. After completion of water removal, the mixture was further refluxed for 5 hours and cooled. After neutralizing by adding 0.6 g of acetic acid, the toluene solution obtained by filtration was washed with water three times. Then, liquid alkenyl group containing polysiloxane B was obtained by concentrating under reduced pressure. The average unit formula and average composition formula of the alkenyl group-containing polysiloxane B are as follows.
 平均単位式:
(CH=CH(CHSiO1/20.31((CSiO2/20.22(CSiO3/20.47
 平均組成式:
(CH=CH)0.31(CH0.62(C0.91SiO1.08
 つまり、アルケニル基含有ポリシロキサンBは、Rがビニル基、Rがメチル基およびフェニル基であり、a=0.31、b=1.53である上記平均組成式(1)で示される。
Average unit formula:
(CH 2 = CH (CH 3 ) 2 SiO 1/2 ) 0.31 ((C 6 H 5 ) 2 SiO 2/2 ) 0.22 (C 6 H 5 SiO 3/2 ) 0.47
Average composition formula:
(CH 2 = CH) 0.31 (CH 3 ) 0.62 (C 6 H 5 ) 0.91 SiO 1.08
That is, the alkenyl group-containing polysiloxane B is represented by the above average composition formula (1) in which R 1 is a vinyl group, R 2 is a methyl group and a phenyl group, and a = 0.31 and b = 1.53. .
 また、ゲル透過クロマトグラフィーによって、アルケニル基含有ポリシロキサンBのポリスチレン換算の重量平均分子量を測定したところ、1000であった。 Further, the polystyrene equivalent weight average molecular weight of the alkenyl group-containing polysiloxane B was measured by gel permeation chromatography and found to be 1000.
  (合成例3)
 撹拌機、還流冷却管、投入口および温度計が装備された四ツ口フラスコに、ジフェニルジメトキシシラン325.9g、フェニルトリメトキシシラン564.9g、およびトリフルオロメタンスルホン酸2.36gを投入して混合し、1,1,3,3-テトラメチルジシロキサン134.3gを加え、撹拌しつつ酢酸432gを30分かけて滴下した。滴下終了後、混合物を撹拌しつつ50℃に昇温して3時間反応させた。室温まで冷却した後、トルエンと水を加え、良く混合して静置し、下層(水層)を分離して除去した。その後、上層(トルエン溶液)を3回水洗した後、減圧濃縮することにより、ヒドロシリル基含有ポリシロキサンC(架橋剤C)を得た。
(Synthesis Example 3)
Diphenyldimethoxysilane (325.9 g), phenyltrimethoxysilane (564.9 g), and trifluoromethanesulfonic acid (2.36 g) were added to a four-necked flask equipped with a stirrer, reflux condenser, inlet, and thermometer. Then, 134.3 g of 1,1,3,3-tetramethyldisiloxane was added, and 432 g of acetic acid was added dropwise over 30 minutes while stirring. After completion of dropping, the mixture was heated to 50 ° C. with stirring and reacted for 3 hours. After cooling to room temperature, toluene and water were added, mixed well and allowed to stand, and the lower layer (aqueous layer) was separated and removed. Thereafter, the upper layer (toluene solution) was washed with water three times and then concentrated under reduced pressure to obtain hydrosilyl group-containing polysiloxane C (crosslinking agent C).
 ヒドロシリル基含有ポリシロキサンCの平均単位式および平均組成式は、以下の通りである。 The average unit formula and average composition formula of the hydrosilyl group-containing polysiloxane C are as follows.
 平均単位式:
(H(CHSiO1/20.33((CSiO2/20.22(CPhSiO3/20.45
 平均組成式:
 H0.33(CH0.66(C0.89SiO1.06
 つまり、ヒドロシリル基含有ポリシロキサンCは、Rがメチル基およびフェニル基であり、c=0.33、d=1.55である上記平均組成式(2)で示される。
Average unit formula:
(H (CH 3 ) 2 SiO 1/2 ) 0.33 ((C 6 H 5 ) 2 SiO 2/2 ) 0.22 (C 6 H 5 PhSiO 3/2 ) 0.45
Average composition formula:
H 0.33 (CH 3 ) 0.66 (C 6 H 5 ) 0.89 SiO 1.06
That is, the hydrosilyl group-containing polysiloxane C is represented by the above average composition formula (2) in which R 3 is a methyl group and a phenyl group, and c = 0.33 and d = 1.55.
 また、ゲル透過クロマトグラフィーによって、ヒドロシリル基含有ポリシロキサンCのポリスチレン換算の重量平均分子量を測定したところ、1000であった。 Further, the polystyrene equivalent weight average molecular weight of the hydrosilyl group-containing polysiloxane C was measured by gel permeation chromatography and found to be 1000.
  (調製例1)
 アルケニル基含有ポリシロキサンA(合成例1)20g、アルケニル基含有ポリシロキサンB(合成例2)25g、ヒドロシリル基含有ポリシロキサンC(合成例3、架橋剤C)25g、および、白金カルボニル錯体(商品名「SIP6829.2」、Gelest社製、白金濃度2.0質量%)5mgを混合して、フェニル系シリコーン樹脂組成物Aを調製した。
(Preparation Example 1)
20 g of alkenyl group-containing polysiloxane A (Synthesis Example 1), 25 g of alkenyl group-containing polysiloxane B (Synthesis Example 2), 25 g of hydrosilyl group-containing polysiloxane C (Synthesis Example 3, cross-linking agent C), and platinum carbonyl complex (product) The name “SIP6829.2” (manufactured by Gelest, platinum concentration 2.0 mass%) 5 mg was mixed to prepare a phenyl silicone resin composition A.
  (作製例1)
 調製例1のフェニル系シリコーン樹脂組成物Aに対して、無機フィラー(屈折率1.55、組成および組成比率(質量%):SiO/Al/CaO/MgO=60/20/15/5、平均粒子径:15μm(分級品))を、それらの総量に対して、50質量%となるように、混合して、封止組成物のワニスを調製した。つまり、封止組成物において、フェニル系シリコーン樹脂組成物Aの配合割合が50質量%、無機フィラーAの配合割合が50質量%である。
(Production Example 1)
Inorganic filler (refractive index 1.55, composition and composition ratio (mass%): SiO 2 / Al 2 O 3 / CaO / MgO = 60/20/15 with respect to the phenyl silicone resin composition A of Preparation Example 1. / 5, average particle diameter: 15 μm (classified product)) was mixed so as to be 50% by mass with respect to the total amount thereof to prepare a varnish of the sealing composition. That is, in the sealing composition, the blending ratio of the phenyl-based silicone resin composition A is 50 mass%, and the blending ratio of the inorganic filler A is 50 mass%.
 次いで、調製したワニスを、アプリケータにて、厚みT2が50μmである第1剥離層12(PTEシート、軟化温度70℃)の表面に、第1剥離層12の周端部が露出するように、平面視矩形状に塗布した。その後、90℃で9.5分、加熱することにより、ワニスにおけるフェニル系シリコーン樹脂組成物をBステージ化(半硬化)させた。これにより、封止層13を製造した。 Next, with the applicator, the prepared varnish is exposed so that the peripheral edge of the first release layer 12 is exposed on the surface of the first release layer 12 (PTE sheet, softening temperature 70 ° C.) having a thickness T2 of 50 μm. It was applied in a rectangular shape in plan view. Thereafter, the phenyl-based silicone resin composition in the varnish was B-staged (semi-cured) by heating at 90 ° C. for 9.5 minutes. Thereby, the sealing layer 13 was manufactured.
 図5に示すように、封止層13の厚みT4は、630μm、封止層13の面積S1は、400mm、封止前の封止層13の体積は、252mmであった。 As shown in FIG. 5, the thickness T4 of the sealing layer 13 was 630 μm, the area S1 of the sealing layer 13 was 400 mm 2 , and the volume of the sealing layer 13 before sealing was 252 mm 3 .
 その後、封止部材11を、下金型2の上面に配置した。 Thereafter, the sealing member 11 was disposed on the upper surface of the lower mold 2.
  <4.ダム配置工程>
 シリコーン樹脂組成物からなるワニスを作製した。すなわち、特開2010-265436号公報の実施例1に記載の縮合反応・付加反応硬化型シリコーン樹脂を調製した。具体的には、具体的には、両末端シラノール型ポリジメチルシロキサン、ビニルトリメトキシシラン、(3-グリシドキシプロピル)トリメトキシシラン、水酸化テトラメチルアンモニウム(縮合触媒)、ジメチルポリシロキサン-CO-メチルハイドロジェンシロキサン、および白金-1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体(付加触媒)から、2段反応硬化性のメチル系シリコーン樹脂組成物を調製した。
<4. Dam placement process>
A varnish comprising a silicone resin composition was prepared. That is, a condensation reaction / addition reaction curable silicone resin described in Example 1 of JP 2010-265436 A was prepared. Specifically, both terminal silanol type polydimethylsiloxane, vinyltrimethoxysilane, (3-glycidoxypropyl) trimethoxysilane, tetramethylammonium hydroxide (condensation catalyst), dimethylpolysiloxane-CO A two-stage reaction-curable methyl silicone resin composition was prepared from methylhydrogensiloxane and platinum-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex (addition catalyst).
 次いで、2段反応硬化性のメチル系シリコーン樹脂組成物100質量部に対して、有機フィラー(商品名「トスパール2000B」、シリコーン粒子、屈折率1.42、平均粒子径6.0μm、モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製)30質量部を混合して、ワニスを調製した。 Next, with respect to 100 parts by mass of the two-stage reaction curable methyl silicone resin composition, an organic filler (trade name “Tospearl 2000B”, silicone particles, refractive index 1.42, average particle diameter 6.0 μm, momentary performance) (Made by Materials Japan) 30 parts by mass were mixed to prepare a varnish.
 次いで、調製したワニスを、剥離シートの表面に塗布した後、熱風乾燥機にて、150℃、2時間加熱して、シート状の硬化物を作製した.その後、硬化物を、枠形状に外形加工して、ダム5を作製し、その後、作製したダム5を、封止層13を囲むように、第1剥離層12の上面の周端部に配置した。ダム5の厚みT3は、660μm、ダム5の幅(第1ダム部5Aの前後方向長さ、および、第2ダム部5Bの左右方向長さ)は、3mm、ダム5の開口断面積は、400mmであった。また、ダム5の25℃における引張弾性率は、0.5MPaであり、破断伸びは、500%であった。 Next, the prepared varnish was applied to the surface of the release sheet, and then heated with a hot air dryer at 150 ° C. for 2 hours to prepare a sheet-like cured product. Thereafter, the cured product is externally processed into a frame shape to produce a dam 5, and then the produced dam 5 is disposed at the peripheral end portion of the upper surface of the first release layer 12 so as to surround the sealing layer 13. did. The thickness T3 of the dam 5 is 660 μm, the width of the dam 5 (the length in the front-rear direction of the first dam portion 5A and the length in the left-right direction of the second dam portion 5B) is 3 mm, and the opening cross-sectional area of the dam 5 is It was 400 mm 2 . Further, the tensile elastic modulus of the dam 5 at 25 ° C. was 0.5 MPa, and the elongation at break was 500%.
  <5.素子部材配置工程>
 第2剥離層17(熱剥離シート)と、第2剥離層17の下面に配置される9つの光半導体素子16とを備える素子部材15を用意した。第2剥離層17の厚みT5は、50μmであり、9つの光半導体素子16の総体積は、30mmであった。
<5. Element member arrangement process>
An element member 15 including a second release layer 17 (thermal release sheet) and nine optical semiconductor elements 16 disposed on the lower surface of the second release layer 17 was prepared. The thickness T5 of the second release layer 17 was 50 μm, and the total volume of the nine optical semiconductor elements 16 was 30 mm 3 .
 また、[封止層13の設計厚みT0]=[スペーサ4の厚みT1]-[第1剥離層12の厚みT2]であることから、封止層13の設計厚みT0は、600μm(650μm(T1)-50μm(T2))であった。 Further, since [design thickness T0 of the sealing layer 13] = [thickness T1 of the spacer 4] − [thickness T2 of the first release layer 12], the design thickness T0 of the sealing layer 13 is 600 μm (650 μm ( T1) -50 μm (T2)).
 続いて、素子部材15を、キャリア32(ガラス板)の下面に貼着した。その後、素子部材15およびキャリア32を、封止部材11およびダム5の上側に対向配置した。 Subsequently, the element member 15 was attached to the lower surface of the carrier 32 (glass plate). Thereafter, the element member 15 and the carrier 32 were disposed opposite to the upper side of the sealing member 11 and the dam 5.
  <6.被覆工程>
 図1Bに示すように、キャリア32の左右方向両端部の下面をスペーサ4の上面と接触させて、上金型3をプレス位置に位置させることによって、上金型3を下金型2に対して熱プレスした。
<6. Coating process>
As shown in FIG. 1B, the upper mold 3 is positioned relative to the lower mold 2 by bringing the upper mold 3 into a pressing position by bringing the lower surfaces of both ends in the left-right direction of the carrier 32 into contact with the upper surface of the spacer 4. And hot pressed.
 具体的には、図1Bに示すように、上金型3を下金型2に対して、3MPa(2kN)でプレスしながら、ヒータ7により下金型2および上金型3を90℃で10分間加熱した。 Specifically, as shown in FIG. 1B, the lower mold 2 and the upper mold 3 are heated at 90 ° C. by the heater 7 while pressing the upper mold 3 against the lower mold 2 at 3 MPa (2 kN). Heated for 10 minutes.
 その後、図1Cに示すように、上金型3およびキャリア32をプレス1から引き上げることにより、第1剥離層12、第2剥離層17、光半導体素子16、封止層13およびダム5を備えるダム/剥離層付封止層被覆光半導体素子60を、上金型3およびキャリア32に追従させるように、下金型2から引き上げた。 Thereafter, as shown in FIG. 1C, the upper mold 3 and the carrier 32 are pulled up from the press 1 to provide the first release layer 12, the second release layer 17, the optical semiconductor element 16, the sealing layer 13, and the dam 5. The sealing layer-covered optical semiconductor element 60 with a dam / release layer was pulled up from the lower mold 2 so as to follow the upper mold 3 and the carrier 32.
 ダム/剥離層付封止層被覆光半導体素子60において、図2Dに示すように、ダム5の厚みT7は、600μmであり、ダム5の幅(第1ダム部5Aの前後方向長さ、および、第2ダム部5Bの左右方向長さ)は、3mmであり、ダム5の開口断面積は、400mmであった。 In the dam / separation layer-covered optical semiconductor element 60 with release layer, as shown in FIG. 2D, the thickness T7 of the dam 5 is 600 μm, and the width of the dam 5 (the length in the front-rear direction of the first dam portion 5A) The length of the second dam portion 5B in the left-right direction) was 3 mm, and the opening cross-sectional area of the dam 5 was 400 mm 2 .
 また、ダム/剥離層付封止層被覆光半導体素子60において、図2Dに示すように、封止層13の厚みT6は、600μm、封止層13の面積は、400mmであった。また、封止層収容体積19は、210mmであった([封止層収容体積19]-[9つの光半導体素子16の総体積])。 In the sealing layer-covered optical semiconductor element 60 with a dam / release layer, as shown in FIG. 2D, the sealing layer 13 had a thickness T6 of 600 μm and the sealing layer 13 had an area of 400 mm 2 . In addition, the sealing layer accommodating volume 19 was 210 mm 3 ([sealing layer accommodating volume 19] − [total volume of nine optical semiconductor elements 16]).
  <7.剥離工程>
 その後、図2Dの矢印で示すように、第1剥離層12を封止層13およびダム5から引き剥がした。
<7. Peeling process>
Thereafter, the first release layer 12 was peeled off from the sealing layer 13 and the dam 5 as indicated by an arrow in FIG. 2D.
 続いて、図2Eの太鎖線で示すように、各光半導体素子16に対応する封止層13を切断して、複数の光半導体素子16を個片化した。これによって、光半導体素子16および封止層13からなる封止層被覆光半導体素子10を第2剥離層17により支持された状態で得た。 Subsequently, as shown by the thick chain lines in FIG. 2E, the sealing layer 13 corresponding to each optical semiconductor element 16 was cut to separate the plurality of optical semiconductor elements 16 into pieces. Thus, the sealing layer-covered optical semiconductor element 10 including the optical semiconductor element 16 and the sealing layer 13 was obtained while being supported by the second release layer 17.
  <8.実装工程>
 その後、図2Eの矢印で示すように、封止層被覆光半導体素子10を第2剥離層17から引き剥がし、次いで、図2Fに示すように、引き剥がした光半導体素子16を基板20に実装した。これにより、光半導体装置30を得た。
<8. Mounting process>
Thereafter, the sealing layer-covered optical semiconductor element 10 is peeled off from the second release layer 17 as shown by the arrow in FIG. 2E, and then the peeled optical semiconductor element 16 is mounted on the substrate 20 as shown in FIG. 2F. did. Thereby, the optical semiconductor device 30 was obtained.
  実施例2~11 (図1A~図3に対応)
 ダム5の処方および寸法と、封止層13の寸法とを表1に従って変更した以外は、実施例1と同様に処理した。
Examples 2 to 11 (corresponding to FIGS. 1A to 3)
The treatment was performed in the same manner as in Example 1 except that the formulation and dimensions of the dam 5 and the dimensions of the sealing layer 13 were changed according to Table 1.
 また、実施例2~5および7~10では、<4.ダム配置工程>のダム5の処方では、2段反応硬化性のメチル系シリコーン樹脂組成物に代えて、1段反応硬化性のメチル系シリコーン樹脂組成物(商品名「ELASTOSIL LR7665」、付加反応硬化型シリコーン樹脂組成物、Bステージ状態となることができない熱硬化性樹脂、旭化成ワッカーシリコーン社製)を用いた。 In Examples 2 to 5 and 7 to 10, <4. In the dam arrangement process> dam 5 formulation, instead of the two-stage reaction curable methyl silicone resin composition, the one-stage reaction curable methyl silicone resin composition (trade name “ELASTOSIL LR7665”, addition reaction curing) Type silicone resin composition, thermosetting resin that cannot be in a B-stage state, manufactured by Asahi Kasei Wacker Silicone).
 また、実施例6では、<4.ダム配置工程>のダム5の処方では、2段反応硬化性のメチル系シリコーン樹脂組成物に代えて、1段反応硬化性のフェニル系シリコーン樹脂組成物を用いた。1段反応硬化性のフェニル系シリコーン樹脂組成物は、実施例1における<3.封止部材配置工程>に記載の1段反応硬化性のフェニル系シリコーン樹脂組成物を用いた。 In Example 6, <4. In the formulation of dam 5 in the dam arrangement step>, a one-step reaction curable phenyl silicone resin composition was used instead of the two-step reaction curable methyl silicone resin composition. The one-step reaction-curable phenyl-based silicone resin composition is <3. The one-step reaction-curable phenyl silicone resin composition described in the sealing member arranging step> was used.
  実施例11
 ダム5を、エポキシ樹脂のみから形成した以外は、実施例1と同様に処理した。
Example 11
The dam 5 was processed in the same manner as in Example 1 except that the dam 5 was formed only from an epoxy resin.
 具体的には、商品名「JER828」(エポキシ樹脂、三菱化学社製)を用いて、塗工にて狙いの厚みに成膜、硬化させた後、裁断機にて枠形状に打ち抜いた。 Specifically, using the product name “JER828” (epoxy resin, manufactured by Mitsubishi Chemical Corporation), a film was formed and cured to a target thickness by coating, and then punched into a frame shape by a cutting machine.
  実施例12
 ダム5を、ウレタン樹脂のみから形成した以外は、実施例1と同様に処理した。
Example 12
The dam 5 was treated in the same manner as in Example 1 except that the dam 5 was formed only from urethane resin.
 具体的には、商品名「ポリウレタンエラストマー(TPU)シート」(株式会社テルマックス社製)を用いて、裁断機にて枠形状に打ち抜いた。 Specifically, the product name “polyurethane elastomer (TPU) sheet” (manufactured by Telmax Co., Ltd.) was used to punch into a frame shape with a cutting machine.
  実施例13
 堰部材を、ガラス・エポキシ基板のみから形成した以外は、実施例1と同様に処理した。
Example 13
The dam member was processed in the same manner as in Example 1 except that the dam member was formed only from the glass / epoxy substrate.
 具体的には、商品名「FR-4」(ガラス・エポキシ樹脂、パナソニック社製)を、裁断機にて枠形状に打ち抜いた。 Specifically, the product name “FR-4” (glass / epoxy resin, manufactured by Panasonic Corporation) was punched into a frame shape with a cutting machine.
  実施例14
 堰部材を、ステンレスから形成した以外は、実施例1と同様に処理した。
Example 14
The dam member was processed in the same manner as in Example 1 except that it was made of stainless steel.
 具体的には、ステンレス板(型番SUS304)を、裁断機にて枠形状に打ち抜いた。 Specifically, a stainless steel plate (model number SUS304) was punched into a frame shape with a cutting machine.
  比較例1
 ダム5を用いなかった以外は、実施例1と同様に処理した。
Comparative Example 1
The treatment was performed in the same manner as in Example 1 except that the dam 5 was not used.
  (評価)
  [光半導体素子16の封止の状態]
 封止層13による光半導体素子16の封止状態を観察し、以下に基準に従って光半導体素子16の封止状態を評価した。
◎:封止層13によって光半導体素子16を完全に封止した
○:封止層13によって光半導体素子16を封止した
△※A:ダム5のわずかな損傷によって封止組成物のダム5の外側への漏れがあったものの、封止層13によって光半導体素子16を封止した
△※B:封止層収容体積19において未充填部分が散見されたものの、封止層13によって光半導体素子16を封止した
△※C:ダム5と第2剥離層17との界面の密着不足によって、封止組成物のダム5の外側への漏れがあったものの、封止層13によって光半導体素子16を封止できた。
×:封止層13によって光半導体素子16を封止できなかった。
(Evaluation)
[State of sealing of optical semiconductor element 16]
The sealing state of the optical semiconductor element 16 by the sealing layer 13 was observed, and the sealing state of the optical semiconductor element 16 was evaluated according to the following criteria.
A: The optical semiconductor element 16 is completely sealed with the sealing layer 13; A: The optical semiconductor element 16 is sealed with the sealing layer 13; * A: Dam 5 of the sealing composition due to slight damage of the dam 5 The optical semiconductor element 16 was sealed with the sealing layer 13 .DELTA. * B: Although an unfilled portion was scattered in the sealing layer accommodation volume 19, the optical semiconductor was removed with the sealing layer 13. Δ * C in which the element 16 is sealed: Although the sealing composition 13 leaks to the outside of the dam 5 due to insufficient adhesion at the interface between the dam 5 and the second release layer 17, the optical semiconductor is formed by the sealing layer 13. The element 16 could be sealed.
X: The optical semiconductor element 16 could not be sealed by the sealing layer 13.
  [封止層13の平均厚みT6および厚みT6のばらつき]
 剥離層付封止層被覆光半導体素子40における封止層13の平均厚みT6、および、T6のばらつきを算出した。なお、表中、Rは、封止層13の厚みのばらつきの指標であって、具体的には、封止層13の最大厚みから封止層13の最小厚みを差し引いた値を示す。
[Variation in average thickness T6 and thickness T6 of sealing layer 13]
The average thickness T6 of the sealing layer 13 and the variation of T6 in the sealing layer-covered optical semiconductor element 40 with the release layer were calculated. In the table, R is an index of variation in the thickness of the sealing layer 13, and specifically indicates a value obtained by subtracting the minimum thickness of the sealing layer 13 from the maximum thickness of the sealing layer 13.
  [フェニル系シリコーン樹脂組成物Aの反応により得られる生成物の炭化水素基(R)におけるフェニル基の含有割合の測定]
 フェニル系シリコーン樹脂組成物A(つまり、フィラーが含まれていないフェニル系シリコーン樹脂組成物A)の反応により得られる生成物中、ケイ素原子に直接結合する炭化水素基(平均組成式(3)のR)におけるフェニル基の含有割合(モル%)を、H-NMRおよび29Si-NMRにより算出した。
[Measurement of Phenyl Group Content in Hydrocarbon Group (R 5 ) of Product Obtained by Reaction of Phenyl Silicone Resin Composition A]
In the product obtained by the reaction of the phenyl-based silicone resin composition A (that is, the phenyl-based silicone resin composition A containing no filler), a hydrocarbon group directly bonded to a silicon atom (average composition formula (3)) The content (mol%) of the phenyl group in R 5 ) was calculated by 1 H-NMR and 29 Si-NMR.
 具体的には、Aステージのフェニル系シリコーン樹脂組成物Aを、フィラーを添加せずに、100℃1時間で、反応(完全硬化、Cステージ化)させて、生成物を得た。 Specifically, the A-stage phenyl-based silicone resin composition A was reacted (completely cured, C-staged) at 100 ° C. for 1 hour without adding a filler to obtain a product.
 次いで、得られた生成物のH-NMRおよび29Si-NMRを測定することで、ケイ素原子に直接結合している炭化水素基(R)におけるフェニル基が占める割合(モル%)を算出した。 Next, by measuring 1 H-NMR and 29 Si-NMR of the obtained product, the proportion (mol%) of the phenyl group in the hydrocarbon group (R 5 ) directly bonded to the silicon atom was calculated. did.
 その結果、48%であった。 As a result, it was 48%.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。 Although the above invention has been provided as an exemplary embodiment of the present invention, this is merely an example and should not be interpreted in a limited manner. Variations of the present invention that are apparent to one of ordinary skill in the art are within the scope of the following claims.
 封止層被覆光半導体素子の製造方法は、光半導体装置の製造方法に用いられる。 The manufacturing method of a sealing layer covering optical semiconductor element is used for the manufacturing method of an optical semiconductor device.
1     プレス
2     下金型
3     上金型
4     スペーサ
5     ダム
7     ヒータ
10   封止層被覆光半導体素子
11   封止部材
12   第1剥離層
13   封止層
15   素子部材
16   光半導体素子
17   第2剥離層
18   素子配置領域
19   封止層収容体積
20   基板
30   光半導体装置
S1   封止層の面積
S3   素子配置領域の面積
S8   ダム(開口部)の開口断面積
T0   封止層の設計厚み
T3   封止前のダムの厚み
T4   封止前の封止層の厚み
DESCRIPTION OF SYMBOLS 1 Press 2 Lower die 3 Upper die 4 Spacer 5 Dam 7 Heater 10 Sealing layer coating | cover optical semiconductor element 11 Sealing member 12 1st peeling layer 13 Sealing layer 15 Element member 16 Optical semiconductor element 17 2nd peeling layer 18 Element placement region 19 Sealing layer accommodation volume 20 Substrate 30 Optical semiconductor device S1 Sealing layer area S3 Element placement region area S8 Open sectional area T0 of dam (opening) Design thickness T3 of sealing layer Dam before sealing Thickness T4 thickness of the sealing layer before sealing

Claims (14)

  1.  光半導体素子と、前記光半導体素子を被覆する封止層とを備える封止層被覆光半導体素子の製造方法であって、
     平板状の第1金型と、前記第1金型に対向配置するための平板状の第2金型とを備えるプレスを準備する工程、
     前記封止層の設計厚みに対応するプレス位置を超える前記プレスのプレス方向における前記第1金型および/または前記第2金型の移動を規制するための規制部材を前記プレスに配置する工程、
     剥離層と、前記剥離層の表面に配置されるBステージの前記封止層とを備える封止部材を、前記第1金型および前記第2金型の間に、前記封止層が第2金型に向かうように、配置する工程、
     前記封止層の外形形状に対応する堰部材を、前記プレス方向に投影したときに前記封止層を囲むように、配置する工程、
     基材と、前記基材の表面に配置される前記光半導体素子とを備える素子部材を、前記第1金型および前記第2金型の間であって、前記封止部材に対する前記第2金型側に、前記光半導体素子が前記第1金型に向かうように、配置する工程、および、
     前記第1金型および前記第2金型を近接させて、前記第1金型および/または前記第2金型を前記プレス位置に位置させて、前記光半導体素子を前記封止層により被覆する工程
    を備えることを特徴とする、封止層被覆光半導体素子の製造方法。
    A method for producing a sealing layer-covered optical semiconductor element comprising: an optical semiconductor element; and a sealing layer that covers the optical semiconductor element,
    Preparing a press comprising a flat plate-shaped first mold and a flat plate-shaped second mold for opposingly arranging the first mold;
    Disposing a restricting member on the press for restricting movement of the first die and / or the second die in the pressing direction of the press exceeding a press position corresponding to a design thickness of the sealing layer;
    A sealing member including a release layer and a B-stage sealing layer disposed on the surface of the release layer is provided between the first mold and the second mold, and the sealing layer is second. The process of arranging to go to the mold,
    Arranging a weir member corresponding to the outer shape of the sealing layer so as to surround the sealing layer when projected in the pressing direction;
    An element member comprising a base material and the optical semiconductor element disposed on the surface of the base material is between the first mold and the second mold, and the second mold with respect to the sealing member Arranging on the mold side such that the optical semiconductor element faces the first mold, and
    The first die and / or the second die are brought close to each other, the first die and / or the second die are positioned at the press position, and the optical semiconductor element is covered with the sealing layer. The manufacturing method of the sealing layer coating | cover optical semiconductor element characterized by including a process.
  2.  前記封止層の体積割合が、前記第1金型および/または前記第2金型が前記プレス位置に位置するときに、前記堰部材、前記剥離層および前記基材によって区画される空間の体積から前記光半導体素子の体積を差し引いた封止層収容体積に対して、100%以上、120%以下であることを特徴とする、請求項1に記載の封止層被覆光半導体素子の製造方法。 The volume ratio of the sealing layer is a volume of a space defined by the weir member, the release layer, and the base material when the first mold and / or the second mold is located at the press position. 2. The method for producing an encapsulating layer-covered optical semiconductor element according to claim 1, wherein the encapsulating layer covering volume is obtained by subtracting the volume of the optical semiconductor element from 100% to 120%. .
  3.  前記堰部材を配置する工程において、前記堰部材の厚みが、前記封止層の前記設計厚みに対して、100%を超過し、120%以下であることを特徴とする、請求項1に記載の封止層被覆光半導体素子の製造方法。 The step of disposing the dam member, wherein the thickness of the dam member is more than 100% and 120% or less with respect to the design thickness of the sealing layer. Manufacturing method of a sealing layer covering optical semiconductor element.
  4.  前記堰部材の23℃における引張弾性率が、0.3MPa以上、1000MPa以下であることを特徴とする、請求項1に記載の封止層被覆光半導体素子の製造方法。 The method for producing an encapsulating layer coated optical semiconductor element according to claim 1, wherein the weir member has a tensile elastic modulus at 23 ° C of 0.3 MPa or more and 1000 MPa or less.
  5.  前記堰部材が、樹脂を含有することを特徴とする、請求項1に記載の封止層被覆光半導体素子の製造方法。 The method for producing an encapsulating layer-covered optical semiconductor element according to claim 1, wherein the weir member contains a resin.
  6.  前記樹脂が、シリコーン樹脂および/またはウレタン樹脂であることを特徴とする、請求項5に記載の封止層被覆光半導体素子の製造方法。 The method for producing an encapsulating layer coated optical semiconductor element according to claim 5, wherein the resin is a silicone resin and / or a urethane resin.
  7.  前記封止部材において、前記剥離層の周端部は、前記封止層から露出しており、
     前記堰部材を配置する工程では、前記堰部材を、前記剥離層の前記周端部に載置することを特徴とする、請求項1に記載の封止層被覆光半導体素子の製造方法。
    In the sealing member, a peripheral end portion of the release layer is exposed from the sealing layer,
    2. The method for manufacturing an encapsulating layer-covered optical semiconductor element according to claim 1, wherein in the step of disposing the dam member, the dam member is placed on the peripheral end portion of the release layer.
  8.  前記堰部材を配置する工程において、前記封止層の面積が、前記堰部材によって囲まれる空間の前記プレス方向に対する直交方向に沿う断面積に比べて、小さいことを特徴とする、請求項1に記載の封止層被覆光半導体素子の製造方法。 In the step of disposing the dam member, an area of the sealing layer is smaller than a cross-sectional area along a direction orthogonal to the press direction of a space surrounded by the dam member. The manufacturing method of the sealing layer covering optical semiconductor element of description.
  9.  前記光半導体素子が前記基材に単数配置される場合には、前記封止層の面積が、前記基材において前記単数の光半導体素子が配置される領域の面積に比べて大きく、
     前記光半導体素子が前記基材に複数設けられる場合には、前記封止層の面積が、前記基材において前記複数の光半導体素子のうち最外側に配置される前記光半導体素子の外側端縁を結ぶ線分で囲まれる領域の面積に比べて、大きいことを特徴とする、請求項1に記載の封止層被覆光半導体素子の製造方法。
    When the single optical semiconductor element is disposed on the base material, the area of the sealing layer is larger than the area of the region where the single optical semiconductor element is disposed on the base material,
    When a plurality of the optical semiconductor elements are provided on the base material, an outer edge of the optical semiconductor element in which the area of the sealing layer is arranged on the outermost side among the plurality of optical semiconductor elements in the base material 2. The method for manufacturing an encapsulating layer-covered optical semiconductor element according to claim 1, wherein the area is larger than an area of a region surrounded by a line segment connecting the two.
  10.  前記プレスは、熱源を備え、
     前記Bステージの封止層は、熱可塑性および熱硬化性を併有し、
     前記光半導体素子を前記封止層により被覆する工程では、前記封止層を加熱して可塑化し、続いて、可塑化した前記封止層を熱硬化させることを特徴とする、請求項1に記載の封止層被覆光半導体素子の製造方法。
    The press comprises a heat source;
    The sealing layer of the B stage has both thermoplasticity and thermosetting property,
    The step of covering the optical semiconductor element with the sealing layer is characterized in that the sealing layer is heated and plasticized, and then the plasticized sealing layer is thermally cured. The manufacturing method of the sealing layer covering optical semiconductor element of description.
  11.  前記封止層は、
      分子内に2個以上のアルケニル基および/またはシクロアルケニル基を含有するアルケニル基含有ポリシロキサンと、分子内に2個以上のヒドロシリル基を含有するヒドロシリル基含有ポリシロキサンと、ヒドロシリル化触媒とを含有するフェニル系シリコーン樹脂組成物を含有する封止組成物からシート状に形成され、
     前記アルケニル基含有ポリシロキサンは、下記平均組成式(1)で示され、
     平均組成式(1):
     R SiO(4-a-b)/2
    (式中、Rは、炭素数2~10のアルケニル基および/または炭素数3~10のシクロアルケニル基を示す。Rは、非置換または置換の炭素数1~10の1価の炭化水素基(ただし、アルケニル基およびシクロアルケニル基を除く。)を示す。aは、0.05以上、0.50以下であり、bは、0.80以上、1.80以下である。)
     前記ヒドロシリル基含有ポリシロキサンは、下記平均組成式(2)で示され、
     平均組成式(2):
     H SiO(4-c-d)/2
    (式中、Rは、非置換または置換の炭素数1~10の1価の炭化水素基(ただし、アルケニル基および/またはシクロアルケニル基を除く。)を示す。cは、0.30以上、1.0以下であり、dは、0.90以上、2.0以下である。)
     前記平均組成式(1)および前記平均組成式(2)中、RおよびRの少なくともいずれか一方は、フェニル基を含み、
     前記フェニル系シリコーン樹脂組成物を反応させることにより得られる生成物は、下記平均組成式(3)で示され、
     平均組成式(3):
     R SiO(4-e)/2
    (式中、Rは、フェニル基を含む、非置換または置換の炭素数1~10の1価の炭化水素基(ただし、アルケニル基およびシクロアルケニル基を除く。)を示す。eは、0.5以上2.0以下である。)
     前記平均組成式(3)のRにおけるフェニル基の含有割合が、30モル%以上、55モル%以下であることを特徴とする、請求項1に記載の封止層被覆光半導体素子の製造方法。
    The sealing layer is
    Contains an alkenyl group-containing polysiloxane containing two or more alkenyl groups and / or cycloalkenyl groups in the molecule, a hydrosilyl group-containing polysiloxane containing two or more hydrosilyl groups in the molecule, and a hydrosilylation catalyst Formed into a sheet from a sealing composition containing a phenyl-based silicone resin composition,
    The alkenyl group-containing polysiloxane is represented by the following average composition formula (1):
    Average composition formula (1):
    R 1 a R 2 b SiO (4-ab) / 2
    (In the formula, R 1 represents an alkenyl group having 2 to 10 carbon atoms and / or a cycloalkenyl group having 3 to 10 carbon atoms. R 2 represents an unsubstituted or substituted monovalent carbon atom having 1 to 10 carbon atoms. A hydrogen group (excluding an alkenyl group and a cycloalkenyl group); a is from 0.05 to 0.50, and b is from 0.80 to 1.80.
    The hydrosilyl group-containing polysiloxane is represented by the following average composition formula (2):
    Average composition formula (2):
    H c R 3 d SiO (4-cd) / 2
    (Wherein R 3 represents an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms (excluding an alkenyl group and / or a cycloalkenyl group), and c is 0.30 or more) 1.0, and d is 0.90 or more and 2.0 or less.)
    In the average composition formula (1) and the average composition formula (2), at least one of R 2 and R 3 includes a phenyl group,
    The product obtained by reacting the phenyl silicone resin composition is represented by the following average composition formula (3):
    Average composition formula (3):
    R 5 e SiO (4-e) / 2
    (In the formula, R 5 represents an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms (excluding an alkenyl group and a cycloalkenyl group) including a phenyl group. .5 or more and 2.0 or less.)
    2. The sealing layer-coated optical semiconductor element according to claim 1, wherein the content ratio of the phenyl group in R 5 of the average composition formula (3) is 30 mol% or more and 55 mol% or less. Method.
  12.  前記封止層は、蛍光体を含有していることを特徴とする、請求項1に記載の封止層被覆光半導体素子の製造方法。 The method for manufacturing an encapsulating layer-covered optical semiconductor element according to claim 1, wherein the encapsulating layer contains a phosphor.
  13.  請求項1に記載の封止層被覆光半導体素子の製造方法により、基材の表面に配置された封止層被覆光半導体素子を用意する工程を備え、
     前記基材は、第2剥離層であり、
     前記封止層被覆光半導体素子を用意する工程の後に、前記封止層被覆光半導体素子を前記第2剥離層から剥離する工程、および、
     剥離した前記封止層被覆光半導体素子の前記光半導体素子を基板に実装する工程
    をさらに備えていることを特徴とする、光半導体装置の製造方法。
    The method for producing a sealing layer-covered optical semiconductor element according to claim 1 comprises a step of preparing a sealing layer-covered optical semiconductor element disposed on the surface of a substrate,
    The substrate is a second release layer;
    After the step of preparing the sealing layer-covered optical semiconductor element, the step of peeling the sealing layer-covered optical semiconductor element from the second release layer; and
    A method of manufacturing an optical semiconductor device, further comprising a step of mounting the optical semiconductor element of the peeled sealing layer-covered optical semiconductor element on a substrate.
  14.  請求項1に記載の封止層被覆光半導体素子の製造方法により、基材の表面に配置された封止層被覆光半導体素子を用意する工程を備え、
     前記基材は、前記光半導体素子が実装された基板であることを特徴とする、光半導体装置の製造方法。
    The method for producing a sealing layer-covered optical semiconductor element according to claim 1 comprises a step of preparing a sealing layer-covered optical semiconductor element disposed on the surface of a substrate,
    The method for manufacturing an optical semiconductor device, wherein the base material is a substrate on which the optical semiconductor element is mounted.
PCT/JP2015/075837 2014-09-12 2015-09-11 Sealing-layer-covered photosemiconductor element production method and photosemiconductor device production method WO2016039442A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014186815A JP2016062908A (en) 2014-09-12 2014-09-12 Method for manufacturing sealing layer-covered optical semiconductor element, and method for manufacturing optical semiconductor device
JP2014-186815 2014-09-12

Publications (1)

Publication Number Publication Date
WO2016039442A1 true WO2016039442A1 (en) 2016-03-17

Family

ID=55459185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075837 WO2016039442A1 (en) 2014-09-12 2015-09-11 Sealing-layer-covered photosemiconductor element production method and photosemiconductor device production method

Country Status (3)

Country Link
JP (1) JP2016062908A (en)
TW (1) TW201622184A (en)
WO (1) WO2016039442A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022163763A1 (en) * 2021-02-01 2022-08-04 ナガセケムテックス株式会社 Method for sealing electronic component mounting substrate, and heat-curable sheet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013214716A (en) * 2012-03-06 2013-10-17 Nitto Denko Corp Fluorescent sealing sheet, light emitting diode device, and manufacturing method of light emitting diode device
JP2014039017A (en) * 2012-07-17 2014-02-27 Nitto Denko Corp Semiconductor device manufacturing method
JP2014150221A (en) * 2013-02-04 2014-08-21 Nitto Denko Corp Sheet for optical semiconductor and optical semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013214716A (en) * 2012-03-06 2013-10-17 Nitto Denko Corp Fluorescent sealing sheet, light emitting diode device, and manufacturing method of light emitting diode device
JP2014039017A (en) * 2012-07-17 2014-02-27 Nitto Denko Corp Semiconductor device manufacturing method
JP2014150221A (en) * 2013-02-04 2014-08-21 Nitto Denko Corp Sheet for optical semiconductor and optical semiconductor device

Also Published As

Publication number Publication date
TW201622184A (en) 2016-06-16
JP2016062908A (en) 2016-04-25

Similar Documents

Publication Publication Date Title
JP7256745B2 (en) CURABLE SILICONE COMPOSITION, RESIN SHEET FOR OPTICAL MEMBER AND LIGHT-EMITTING DEVICE COMPOSITION
KR102303310B1 (en) Hot-melt type curable silicone composition for compression molding or laminating
US8802506B2 (en) Method of manufacturing a semiconductor device and a semiconductor device produced thereby
KR20160075495A (en) Phosphor composition, phosphor sheet, phosphor sheet laminate, led chip and led package each using said phosphor composition, phosphor sheet or phosphor sheet laminate, and method for manufacturing led package
WO2015033824A1 (en) Wavelength conversion sheet, sealed optical semiconductor element and optical semiconductor element device
WO2014014008A1 (en) Production method for sealing layer-coated semiconductor element and semiconductor device
WO2015033890A1 (en) Optical-semiconductor-element sealing composition, optical-semiconductor-element sealing molded article, optical-semiconductor-element sealing sheet, optical semiconductor device, and sealed optical semiconductor element
JP2017163105A (en) Optical semiconductor device covering sheet, adhesion layer-covering layer-attached optical semiconductor device and manufacturing method thereof, and method for manufacturing adhesion layer-attached optical semiconductor device
TW202027302A (en) Optical semiconductor element covered with phosphor layer and manufacturing method thereof
JP2016171315A (en) Adhesive sheet, method for manufacturing adhesive optical semiconductor element and method for manufacturing optical semiconductor device
JP7032052B2 (en) Silicone resin film and its manufacturing method, and semiconductor device manufacturing method
JP6018608B2 (en) Sealing sheet, manufacturing method thereof, optical semiconductor device, and sealing optical semiconductor element
WO2016039442A1 (en) Sealing-layer-covered photosemiconductor element production method and photosemiconductor device production method
JP2016171314A (en) Sealing sheet, method for manufacturing sealed optical semiconductor element and method for manufacturing optical semiconductor device
JP5882729B2 (en) Silicone resin sheet, cured sheet, light-emitting diode device, and manufacturing method thereof
WO2016039443A1 (en) Sealing-layer-covered photosemiconductor element production method and photosemiconductor device production method
JP2021107149A (en) Laminate and electronic part formed of the same
JP2017163104A (en) Optical semiconductor element with coating layer and manufacturing method thereof
WO2016143627A1 (en) Sealing sheet, method for manufacturing sealed optical semiconductor element and method for manufacturing optical semiconductor device
WO2016143623A1 (en) Adhesive sheet, adhesive light semiconductor element production method and optical semiconductor device production method
WO2016194947A1 (en) Fluorescent resin sheet, adhesive optical semiconductor element, and method for producing same
JP2016048764A (en) Optical semiconductor element sealing composition, optical semiconductor element sealing mold, optical semiconductor element sealing sheet, optical semiconductor device and sealed optical semiconductor element
JP2017213641A (en) Manufacturing method of phosphor resin sheet
JP2017215459A (en) Phosphor resin sheet, adhesive optical semiconductor element, and manufacturing method thereof
JP2018041859A (en) Laminate, method for manufacturing the same, and method for manufacturing adhesive optical semiconductor element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15840514

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15840514

Country of ref document: EP

Kind code of ref document: A1