WO2016039101A1 - Semiconductor element-coating glass - Google Patents

Semiconductor element-coating glass Download PDF

Info

Publication number
WO2016039101A1
WO2016039101A1 PCT/JP2015/073312 JP2015073312W WO2016039101A1 WO 2016039101 A1 WO2016039101 A1 WO 2016039101A1 JP 2015073312 W JP2015073312 W JP 2015073312W WO 2016039101 A1 WO2016039101 A1 WO 2016039101A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor element
glass
coating
sio
mass
Prior art date
Application number
PCT/JP2015/073312
Other languages
French (fr)
Japanese (ja)
Inventor
欣克 西川
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to CN201580048466.1A priority Critical patent/CN107074617A/en
Publication of WO2016039101A1 publication Critical patent/WO2016039101A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/066Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/20Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions containing titanium compounds; containing zirconium compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to glass used for coating a semiconductor element including a PN junction.
  • a semiconductor element such as a silicon diode or a transistor is covered with glass on the surface including the PN junction of the semiconductor element from the viewpoint of preventing contamination by outside air.
  • the surface of the semiconductor element can be stabilized and deterioration of characteristics over time can be suppressed.
  • the characteristics required for glass for semiconductor element coating are as follows: (1) The thermal expansion coefficient matches the thermal expansion coefficient of the semiconductor element so that cracks do not occur due to the difference in thermal expansion coefficient with the semiconductor element during coating. (2) To prevent deterioration of the characteristics of the semiconductor element, it can be coated at a relatively low temperature (for example, 900 ° C. or less), and (3) It does not contain impurities such as alkali metal components that adversely affect the characteristics of the semiconductor element. (4) The electrical characteristics after the semiconductor element surface coating includes high reliability such as high reverse breakdown voltage and low leakage current.
  • zinc-based glass such as ZnO—B 2 O 3 —SiO 2 , PbO—SiO 2 —Al 2 O 3 or PbO—SiO 2 —Al 2 O 3 —B 2 is used.
  • Lead glass such as O 3 system is known, and lead glass such as PbO—SiO 2 —Al 2 O 3 system and PbO—SiO 2 —Al 2 O 3 —B 2 O 3 system from the viewpoint of workability.
  • Patent Documents 1 to 4 has become the mainstream (see, for example, Patent Documents 1 to 4).
  • lead components such as PbO are components with a large environmental load, in recent years, their use in electrical and electronic devices is being regulated, and lead-free materials are being developed.
  • Some of the above-described zinc-based glasses such as ZnO—B 2 O 3 —SiO 2 include a small amount of a lead component, and some of them are restricted in view of the environment.
  • glass containing no lead component has a low surface charge density, and it is difficult to deal with medium to high withstand voltage semiconductor elements.
  • a semiconductor element coating material having a high surface charge density a material made of glass containing Bi 2 O 3 has also been proposed.
  • Bi 2 O 3 is concerned about the burden on the environment like lead.
  • an object of the present invention is to provide a glass for coating a semiconductor element that has a low environmental burden and a high surface charge density.
  • the glass for covering a semiconductor element of the present invention is 50% to 62% ZnO (excluding 62%), 19 to 28% B 2 O 3 , and 8 to 15% SiO 2 (however, 8% by mass). Not containing), Al 2 O 3 3 to 12%, and containing substantially no alkali metal component, lead component, Bi 2 O 3 , Sb 2 O 3 and As 2 O 3 .
  • substantially not containing means not intentionally added as a glass component, and does not mean that impurities inevitably mixed are completely excluded. Objectively, it means that the content of the relevant components including impurities is less than 0.1% by mass.
  • the glass for covering a semiconductor element of the present invention preferably further contains MnO 2 0 to 5%, Nb 2 O 5 0 to 5%, and CeO 2 0 to 3% by mass.
  • the semiconductor element coating glass powder of the present invention is characterized by comprising the above semiconductor element coating glass.
  • the semiconductor element coating material of the present invention is selected from 100 parts by mass of the above semiconductor element coating glass powder, TiO 2 , ZrO 2 , ZnO, ⁇ ZnO ⁇ B 2 O 3 , 2ZnO ⁇ SiO 2 , cordierite and quartz. It is characterized by containing 0.01 to 5 parts by mass of at least one inorganic powder.
  • the thermal expansion coefficients of the semiconductor element and the covering glass are close in order to suppress the occurrence of cracks and the like.
  • the thermal expansion coefficient of the glass for coating can be adjusted by the crystal component contained in the glass, it is very difficult to appropriately control the amount of precipitated crystals. Therefore, if the above inorganic powder is appropriately added to the glass powder for covering a semiconductor element, these inorganic powders serve as a nucleating agent, so that the amount of precipitated crystals can be controlled relatively easily. As a result, a desired thermal expansion coefficient can be easily achieved.
  • the glass for coating a semiconductor element of the present invention is ZnO 50 to 62% (excluding 62%), B 2 O 3 19 to 28%, SiO 2 8 to 15% (excluding 8%) by mass%. ), Al 2 O 3 3 to 12%, and substantially free of alkali metal component, lead component, Bi 2 O 3 , Sb 2 O 3 and As 2 O 3 .
  • % means “% by mass” unless otherwise specified.
  • ZnO is a component that stabilizes glass.
  • the content of ZnO is 50 to 62% ZnO (excluding 62%), preferably 55 to 61%. If the ZnO content is too small, the above effect is difficult to obtain. In addition, the coefficient of thermal expansion tends to increase, and as a result, the difference in thermal expansion between the glass and the semiconductor element increases, and there is a risk of cracks occurring in the glass. On the other hand, if the ZnO content is too large, crystallization proceeds rapidly due to the heat treatment during coating, so that it tends to be difficult to coat the surface of the semiconductor element due to insufficient fluidity.
  • B 2 O 3 is a network forming component and has an effect of improving fluidity.
  • the content of B 2 O 3 is 19 to 28%, preferably 20 to 25%. If the content of B 2 O 3 is too small, fluidity crystallinity becomes strong is impaired, it tends to be difficult to coat the semiconductor element surface. On the other hand, when the content of B 2 O 3 is too large, the thermal expansion coefficient tends to be large. As a result, the difference in thermal expansion between the glass and the semiconductor element increases, and there is a risk that cracks will occur in the glass.
  • SiO 2 is a network forming component and has an effect of increasing acid resistance.
  • the content of SiO 2 is 8 to 15% (excluding 8%), and preferably 9 to 14%.
  • chemical durability tends to decrease.
  • coefficient of thermal expansion tends to increase, and as a result, the difference in thermal expansion between the glass and the semiconductor element increases, and there is a risk of cracks occurring in the glass.
  • homogeneity tends to lower.
  • Al 2 O 3 is a component that increases the surface charge density.
  • the content of Al 2 O 3 is 3 to 12%, preferably 5 to 10%, more preferably 5.5 to 9.5%.
  • the content of Al 2 O 3 is too small, the effect is difficult to obtain.
  • the content of Al 2 O 3 is too large, it tends to be devitrified.
  • the glass for covering a semiconductor element of the present invention does not substantially contain an alkali metal component.
  • the semiconductor element for covering glass of the present invention from the viewpoint of reducing the load on the environment, is substantially free of lead component, Sb 2 O 3 and As 2 O 3.
  • Bi 2 O 3 is also a component that is feared to be burdened with the environment. Therefore, the glass for covering a semiconductor element of the present invention does not substantially contain Bi 2 O 3 .
  • Bi 2 O 3 is contained, the surface charge density can be easily increased, so that the breakdown voltage is easily increased, but at the same time, the leakage current tends to increase. Therefore, it is effective not to contain Bi 2 O 3 substantially from the viewpoint of reducing the leakage current.
  • the glass for covering a semiconductor element of the present invention can contain MnO 2 , Nb 2 O 5 or CeO 2 in addition to the above components. These components have the effect of reducing the leakage current of the semiconductor element.
  • the MnO 2 content is preferably 0 to 5%, more preferably 0.1 to 3%. When the content of MnO 2 is too large, there is a tendency that the melting is lowered.
  • the content of Nb 2 O 5 is preferably 0 to 5%, more preferably 0.1 to 3%. When the content of Nb 2 O 5 is too large, there is a tendency that the melting is lowered.
  • the CeO 2 content is preferably 0 to 3%, more preferably 0.1 to 2%. When the CeO 2 is too much, too strong crystallinity, the fluidity tends to decrease.
  • the glass for coating a semiconductor element of the present invention is preferably in the form of a powder (a glass powder for coating a semiconductor element) from the viewpoint of easily covering the surface of the semiconductor element.
  • a powder a glass powder for coating a semiconductor element
  • the glass for coating a semiconductor element of the present invention preferably has an average particle diameter D 50 of the glass powder is 25 ⁇ m or less, more preferably 15 ⁇ m or less.
  • the lower limit of the average particle diameter D 50 of the glass powder is not particularly limited, in practice it is 0.1 ⁇ m or more.
  • the glass for coating a semiconductor element of the present invention can be obtained by preparing a batch by mixing raw material powders such as oxides, and molding after melting at around 1400 ° C. for about 1 hour.
  • cover can be obtained by further grind
  • the semiconductor element coating material of the present invention is selected from TiO 2 , ZrO 2 , ZnO, ⁇ ZnO ⁇ B 2 O 3 , 2ZnO ⁇ SiO 2 , cordierite and quartz with respect to the glass powder for coating a semiconductor element. It contains at least one inorganic powder as a nucleating agent.
  • the content of the inorganic powder is preferably 0.01 to 5 parts by mass, more preferably 0.1 to 3 parts by mass with respect to 100 parts by mass of the semiconductor element coating glass powder.
  • the content of the inorganic powder is too small, the amount of precipitated crystals decreases, making it difficult to achieve a desired thermal expansion coefficient.
  • the content of the inorganic powder is too large, the amount of precipitated crystals increases so that the fluidity is impaired and the semiconductor element surface tends to be difficult to coat.
  • the average particle diameter D 50 of the inorganic powder is 5 ⁇ m or less, more preferably 3 ⁇ m or less.
  • the lower limit of the average particle diameter D 50 of the inorganic powder is not particularly limited, in practice it is 0.1 ⁇ m or more.
  • the surface charge density of the glass for covering a semiconductor element and the material for covering a semiconductor element of the present invention is 4 ⁇ 10 11 / cm 2 or more for a semiconductor device having a voltage of 1000V and 9 ⁇ 10 for a semiconductor device having a voltage of 1500V or more. It is preferable that it is 11 / cm 2 or more. As the surface charge density increases, the breakdown voltage increases, but at the same time, the leakage current tends to increase. Therefore, when applied to a semiconductor element of about 1000 to 1500 V, the surface charge density is, for example, 12 ⁇ 10 11 / cm 2 or less, further 10 ⁇ 10 11 / cm 2 in order to suppress the leakage current and balance the breakdown voltage. It is preferable to adjust to cm 2 or less.
  • the coefficient of thermal expansion (30 to 300 ° C.) of the glass for covering a semiconductor element and the material for covering a semiconductor element of the present invention is, for example, 20 to 60 ⁇ 10 ⁇ 7 / ° C., further 30 according to the coefficient of thermal expansion of the semiconductor element. It is appropriately adjusted in the range of ⁇ 50 ⁇ 10 ⁇ 7 / ° C.
  • Table 1 shows examples and comparative examples of the present invention.
  • Each sample was produced as follows. First, a raw material powder was prepared so as to have the glass composition shown in Table 1 to prepare a batch, and melted at 1400 ° C. for 1 hour. After the molten glass was formed into a film, it was pulverized with a ball mill and classified using a 350 mesh sieve to obtain a glass powder for covering a semiconductor element (average particle diameter D 50 : 12 ⁇ m).
  • Example 6 The thermal expansion coefficient and surface charge density of the obtained glass powder for coating a semiconductor element were measured.
  • Example 6 measurement was performed on a semiconductor element coating glass powder added with 0.1 part by mass of ZnO powder to 100 parts by mass. The results are shown in Table 1.
  • the thermal expansion coefficient was measured in a temperature range of 30 to 300 ° C. using a dilatometer.
  • the surface charge density was measured as follows. First, glass powder was dispersed in an organic solvent, adhered to the silicon plate surface by electrophoresis so as to have a constant film thickness, and then fired to form a glass layer. After forming an aluminum electrode on the glass layer, the change in electric capacity in the glass was measured using a CV meter, and the surface charge density was calculated.
  • the samples of Examples 1 to 5 had a high surface charge density of 5 ⁇ 10 11 / cm 2 or more. This is a surface charge density equivalent to that of a lead glass such as a conventional PbO—SiO 2 —Al 2 O 3 system or PbO—SiO 2 —Al 2 O 3 —B 2 O 3 system. Therefore, the glass for semiconductor element coating (semiconductor element coating material) of Examples 1 to 6 is suitable for coating semiconductor elements for medium to high breakdown voltage.
  • the sample of Comparative Example 1 has a low surface charge density of 1 ⁇ 10 11 / cm 2 , indicating that it is not suitable for coating a medium to high breakdown voltage semiconductor device.

Abstract

Provided is a semiconductor element-coating glass which is environmentally friendly and has a large surface charge density. This semiconductor element coating glass comprises, in mass%, 50-62% (excluding 62%) of ZnO, 19-28% of B2O3, 8-15% (excluding 8%) of SiO2, and 3-12% of Al2O3, and substantially not comprising an alkali metal component, lead component, Bi2O3, Sb2O3, and As2O3.

Description

半導体素子被覆用ガラスGlass for semiconductor element coating
 本発明はP-N接合を含む半導体素子の被覆用として用いられるガラスに関するものである。 The present invention relates to glass used for coating a semiconductor element including a PN junction.
 一般に、シリコンダイオードやトランジスタ等の半導体素子は、外気による汚染を防止する観点から半導体素子のP-N接合部を含む表面がガラスにより被覆される。これにより半導体素子表面の安定化を図り、経時的な特性劣化を抑制することができる。 Generally, a semiconductor element such as a silicon diode or a transistor is covered with glass on the surface including the PN junction of the semiconductor element from the viewpoint of preventing contamination by outside air. As a result, the surface of the semiconductor element can be stabilized and deterioration of characteristics over time can be suppressed.
 半導体素子被覆用ガラスに要求される特性として、(1)被覆時に半導体素子との熱膨張係数差が原因となってクラック等が発生しないように、熱膨張係数が半導体素子の熱膨張係数に適合すること、(2)半導体素子の特性劣化を防止するため、比較的低温(例えば900℃以下)で被覆できること、(3)半導体素子の特性に悪影響を与えるアルカリ金属成分等の不純物を含まないこと、(4)半導体素子表面被覆後の電気特性として、逆耐圧が高く、漏れ電流が少ない等の高い信頼性を有すること、等が挙げられる。 The characteristics required for glass for semiconductor element coating are as follows: (1) The thermal expansion coefficient matches the thermal expansion coefficient of the semiconductor element so that cracks do not occur due to the difference in thermal expansion coefficient with the semiconductor element during coating. (2) To prevent deterioration of the characteristics of the semiconductor element, it can be coated at a relatively low temperature (for example, 900 ° C. or less), and (3) It does not contain impurities such as alkali metal components that adversely affect the characteristics of the semiconductor element. (4) The electrical characteristics after the semiconductor element surface coating includes high reliability such as high reverse breakdown voltage and low leakage current.
 従来、半導体素子被覆用ガラスとしては、ZnO-B-SiO系等の亜鉛系ガラスや、PbO-SiO-Al系或いはPbO-SiO-Al-B系等の鉛系ガラスが知られており、作業性の観点からPbO-SiO-Al系およびPbO-SiO-Al-B系等の鉛系ガラスが主流となっている(例えば、特許文献1~4参照)。 Conventionally, as glass for covering semiconductor elements, zinc-based glass such as ZnO—B 2 O 3 —SiO 2 , PbO—SiO 2 —Al 2 O 3 or PbO—SiO 2 —Al 2 O 3 —B 2 is used. Lead glass such as O 3 system is known, and lead glass such as PbO—SiO 2 —Al 2 O 3 system and PbO—SiO 2 —Al 2 O 3 —B 2 O 3 system from the viewpoint of workability. Has become the mainstream (see, for example, Patent Documents 1 to 4).
特公平1-49653号公報Japanese Examined Patent Publication No. 1-49653 特開昭50-129181号公報JP 50-129181 A 特開昭48-43275号公報JP-A-48-43275 特開2008-162881号公報JP 2008-162881 A
 PbO等の鉛成分は環境負荷が大きい成分であることから、近年、電気及び電子機器での使用が規制されつつあり、各種材料の無鉛化が進んでいる。既述のZnO-B-SiO系等の亜鉛系ガラスにも、少量の鉛成分を含有しており環境の面から使用が制限されるものもある。 Since lead components such as PbO are components with a large environmental load, in recent years, their use in electrical and electronic devices is being regulated, and lead-free materials are being developed. Some of the above-described zinc-based glasses such as ZnO—B 2 O 3 —SiO 2 include a small amount of a lead component, and some of them are restricted in view of the environment.
 一方で、鉛成分を含有しないガラスは表面電荷密度が低いものが主流であり、中~高耐圧用の半導体素子に対応するのが困難である。高表面電荷密度を有する半導体素子被覆材料として、Biを含有するガラスからなる材料も提案されているが、Biは鉛と同様に環境への負荷が懸念されている。 On the other hand, glass containing no lead component has a low surface charge density, and it is difficult to deal with medium to high withstand voltage semiconductor elements. As a semiconductor element coating material having a high surface charge density, a material made of glass containing Bi 2 O 3 has also been proposed. However, Bi 2 O 3 is concerned about the burden on the environment like lead.
 以上に鑑み、本発明は、環境への負担が小さく、かつ表面電荷密度が大きい半導体素子被覆用ガラスを提供することを目的とする。 In view of the above, an object of the present invention is to provide a glass for coating a semiconductor element that has a low environmental burden and a high surface charge density.
 本発明者は、鋭意検討した結果、特性組成を有するZnO-B-SiO系ガラスにより前記課題を解決できることを見出し、本発明として提案するものである。 As a result of intensive studies, the present inventors have found that the above problems can be solved by using a ZnO—B 2 O 3 —SiO 2 based glass having a characteristic composition, and propose the present invention.
 即ち、本発明の半導体素子被覆用ガラスは、質量%で、ZnO 50~62%(ただし62%を含まない)、B 19~28%、SiO 8~15%(ただし8%を含まない)、Al 3~12%を含有し、アルカリ金属成分、鉛成分、Bi、Sb及びAsを実質的に含有しないことを特徴とする。 That is, the glass for covering a semiconductor element of the present invention is 50% to 62% ZnO (excluding 62%), 19 to 28% B 2 O 3 , and 8 to 15% SiO 2 (however, 8% by mass). Not containing), Al 2 O 3 3 to 12%, and containing substantially no alkali metal component, lead component, Bi 2 O 3 , Sb 2 O 3 and As 2 O 3 .
 なお本発明において、「実質的に含有しない」とはガラス成分として意図的に添加しないことを意味し、不可避的に混入する不純物まで完全に排除することを意味するものではない。客観的には、不純物を含めた該当成分の含有量が、質量%で0.1%未満であることを意味する。 In the present invention, “substantially not containing” means not intentionally added as a glass component, and does not mean that impurities inevitably mixed are completely excluded. Objectively, it means that the content of the relevant components including impurities is less than 0.1% by mass.
 本発明の半導体素子被覆用ガラスは、さらに、質量%で、MnO 0~5%、Nb 0~5%、及びCeO 0~3%を含有することが好ましい。 The glass for covering a semiconductor element of the present invention preferably further contains MnO 2 0 to 5%, Nb 2 O 5 0 to 5%, and CeO 2 0 to 3% by mass.
 本発明の半導体素子被覆用ガラス粉末は、上記の半導体素子被覆用ガラスからなることを特徴とする。 The semiconductor element coating glass powder of the present invention is characterized by comprising the above semiconductor element coating glass.
 本発明の半導体素子被覆用材料は、上記の半導体素子被覆用ガラス粉末100質量部と、TiO、ZrO、ZnO、αZnO・B、2ZnO・SiO、コーディエライト及び石英から選択される少なくとも1種の無機粉末0.01~5質量部を含有することを特徴とする。 The semiconductor element coating material of the present invention is selected from 100 parts by mass of the above semiconductor element coating glass powder, TiO 2 , ZrO 2 , ZnO, αZnO · B 2 O 3 , 2ZnO · SiO 2 , cordierite and quartz. It is characterized by containing 0.01 to 5 parts by mass of at least one inorganic powder.
 特に、Si等の半導体素子と被覆用ガラスの接触面積が非常に大きい場合には、クラック等の発生を抑制するため、半導体素子と被覆用ガラスとの熱膨張係数が近いことが望ましい。被覆用ガラスの熱膨張係数は、ガラス中に含まれる結晶成分により調整することができるが、析出結晶量を適切に制御することは非常に困難である。そこで、半導体素子被覆用ガラス粉末に対して、上記の無機粉末を適宜添加すれば、これらの無機粉末が核形成剤の役割を果たすため、析出結晶量を比較的容易に制御できる。結果として、所望の熱膨張係数を容易に達成することが可能となる。 In particular, when the contact area between the semiconductor element such as Si and the covering glass is very large, it is desirable that the thermal expansion coefficients of the semiconductor element and the covering glass are close in order to suppress the occurrence of cracks and the like. Although the thermal expansion coefficient of the glass for coating can be adjusted by the crystal component contained in the glass, it is very difficult to appropriately control the amount of precipitated crystals. Therefore, if the above inorganic powder is appropriately added to the glass powder for covering a semiconductor element, these inorganic powders serve as a nucleating agent, so that the amount of precipitated crystals can be controlled relatively easily. As a result, a desired thermal expansion coefficient can be easily achieved.
 本発明の半導体素子被覆用ガラスは、質量%で、ZnO 50~62%(ただし62%を含まない)、B 19~28%、SiO 8~15%(ただし8%を含まない)、Al 3~12%を含有し、アルカリ金属成分、鉛成分、Bi、Sb及びAsを実質的に含有しないことを特徴とする。以下、本発明の半導体素子被覆用ガラスにおいて、各成分の含有量を上記の通り規定した理由を説明する。なお、以下の各成分の含有量に関する説明において、特に断りのない限り「%」は「質量%」を意味する。 The glass for coating a semiconductor element of the present invention is ZnO 50 to 62% (excluding 62%), B 2 O 3 19 to 28%, SiO 2 8 to 15% (excluding 8%) by mass%. ), Al 2 O 3 3 to 12%, and substantially free of alkali metal component, lead component, Bi 2 O 3 , Sb 2 O 3 and As 2 O 3 . Hereinafter, the reason why the content of each component is defined as described above in the glass for coating a semiconductor element of the present invention will be described. In the following description regarding the content of each component, “%” means “% by mass” unless otherwise specified.
 ZnOはガラスを安定化する成分である。ZnOの含有量はZnO 50~62%(ただし62%を含まない)であり、55~61%であることが好ましい。ZnOの含有量が少なすぎると、上記効果が得られにくくなる。また、熱膨張係数が大きくなりやすく、結果として、ガラスと半導体素子との熱膨張差が大きくなり、ガラスにクラックが発生するおそれがある。一方、ZnOの含有量が多すぎると、被覆時における熱処理により結晶化が急速に進行するため、流動性不足により半導体素子表面を被覆することが困難になる傾向がある。 ZnO is a component that stabilizes glass. The content of ZnO is 50 to 62% ZnO (excluding 62%), preferably 55 to 61%. If the ZnO content is too small, the above effect is difficult to obtain. In addition, the coefficient of thermal expansion tends to increase, and as a result, the difference in thermal expansion between the glass and the semiconductor element increases, and there is a risk of cracks occurring in the glass. On the other hand, if the ZnO content is too large, crystallization proceeds rapidly due to the heat treatment during coating, so that it tends to be difficult to coat the surface of the semiconductor element due to insufficient fluidity.
 Bは網目形成成分であり、流動性を高める効果がある。Bの含有量は19~28%であり、20~25%であることが好ましい。Bの含有量が少なすぎると、結晶性が強くなって流動性が損なわれ、半導体素子表面を被覆することが困難になる傾向がある。一方、Bの含有量が多すぎると、熱膨張係数が大きくなりやすい。結果として、ガラスと半導体素子との熱膨張差が大きくなり、ガラスにクラックが発生するおそれがある。 B 2 O 3 is a network forming component and has an effect of improving fluidity. The content of B 2 O 3 is 19 to 28%, preferably 20 to 25%. If the content of B 2 O 3 is too small, fluidity crystallinity becomes strong is impaired, it tends to be difficult to coat the semiconductor element surface. On the other hand, when the content of B 2 O 3 is too large, the thermal expansion coefficient tends to be large. As a result, the difference in thermal expansion between the glass and the semiconductor element increases, and there is a risk that cracks will occur in the glass.
 SiOは網目形成成分であり、耐酸性を高める効果がある。SiOの含有量は8~15%(ただし8%を含まない)であり、9~14%であることが好ましい。SiOの含有量が少なすぎると、化学的耐久性が低下しやすくなる。また、熱膨張係数が大きくなりやすく、結果として、ガラスと半導体素子との熱膨張差が大きくなり、ガラスにクラックが発生するおそれがある。SiOの含有量が多すぎると、均質性が低下しやすくなる。 SiO 2 is a network forming component and has an effect of increasing acid resistance. The content of SiO 2 is 8 to 15% (excluding 8%), and preferably 9 to 14%. When the content of SiO 2 is too small, chemical durability tends to decrease. In addition, the coefficient of thermal expansion tends to increase, and as a result, the difference in thermal expansion between the glass and the semiconductor element increases, and there is a risk of cracks occurring in the glass. When the content of SiO 2 is too large, homogeneity tends to lower.
 Alは表面電荷密度を高める成分である。Alの含有量は3~12%であり、5~10%であることが好ましく、5.5~9.5%であることがより好ましい。Alの含有量が少なすぎると、前記効果が得られにくくなる。一方、Alの含有量が多すぎると、失透しやすくなる。 Al 2 O 3 is a component that increases the surface charge density. The content of Al 2 O 3 is 3 to 12%, preferably 5 to 10%, more preferably 5.5 to 9.5%. When the content of Al 2 O 3 is too small, the effect is difficult to obtain. On the other hand, when the content of Al 2 O 3 is too large, it tends to be devitrified.
 アルカリ金属成分(LiO、NaO及びKO等)は、半導体素子の特性に悪影響を与える傾向がある。よって、本発明の半導体素子被覆用ガラスはアルカリ金属成分を実質的に含有しない。また、本発明の半導体素子被覆用ガラスは、環境への負荷を低減する観点から、鉛成分、Sb及びAsを実質的に含有しない。さらに、既述の通り、Biも環境への負荷が懸念される成分であるため、本発明の半導体素子被覆用ガラスはBiを実質的に含有しない。なお、Biを含有させると表面電荷密度を容易に大きくできるため、耐圧を高くしやすいが、同時に漏れ電流も大きくなる傾向がある。よって、漏れ電流を低減する観点からも、Biを実質的に含有しないことは有効である。 Alkali metal components (such as Li 2 O, Na 2 O and K 2 O) tend to adversely affect the characteristics of the semiconductor element. Therefore, the glass for covering a semiconductor element of the present invention does not substantially contain an alkali metal component. The semiconductor element for covering glass of the present invention, from the viewpoint of reducing the load on the environment, is substantially free of lead component, Sb 2 O 3 and As 2 O 3. Furthermore, as described above, Bi 2 O 3 is also a component that is feared to be burdened with the environment. Therefore, the glass for covering a semiconductor element of the present invention does not substantially contain Bi 2 O 3 . When Bi 2 O 3 is contained, the surface charge density can be easily increased, so that the breakdown voltage is easily increased, but at the same time, the leakage current tends to increase. Therefore, it is effective not to contain Bi 2 O 3 substantially from the viewpoint of reducing the leakage current.
 本発明の半導体素子被覆用ガラスは、上記成分以外にMnO、NbまたはCeOを含有することができる。これらの成分は半導体素子の漏れ電流を低下させる効果がある。 The glass for covering a semiconductor element of the present invention can contain MnO 2 , Nb 2 O 5 or CeO 2 in addition to the above components. These components have the effect of reducing the leakage current of the semiconductor element.
 MnOの含有量は0~5%であることが好ましく、0.1~3%であることがより好ましい。MnOの含有量が多すぎると、溶融性が低下する傾向がある。 The MnO 2 content is preferably 0 to 5%, more preferably 0.1 to 3%. When the content of MnO 2 is too large, there is a tendency that the melting is lowered.
 Nbの含有量は0~5%であることが好ましく、0.1~3%であることがより好ましい。Nbの含有量が多すぎると、溶融性が低下する傾向がある。 The content of Nb 2 O 5 is preferably 0 to 5%, more preferably 0.1 to 3%. When the content of Nb 2 O 5 is too large, there is a tendency that the melting is lowered.
 CeOの含有量は0~3%であることが好ましく、0.1~2%であることがより好ましい。CeOが多すぎると、結晶性が強くなりすぎて、流動性が低下する傾向がある。 The CeO 2 content is preferably 0 to 3%, more preferably 0.1 to 2%. When the CeO 2 is too much, too strong crystallinity, the fluidity tends to decrease.
 本発明の半導体素子被覆用ガラスは、半導体素子表面の被覆を容易に行える観点から、粉末状(半導体素子被覆用ガラス粉末)であることが好ましい。この場合、ガラス粉末の平均粒子径D50は25μm以下であることが好ましく、15μm以下であることがより好ましい。ガラス粉末の平均粒子径D50が大きすぎると、ペースト化が困難になったり、或いは電気泳動塗布が困難になる傾向がある。なお、ガラス粉末の平均粒子径D50の下限は特に限定されないが、現実的には0.1μm以上である。 The glass for coating a semiconductor element of the present invention is preferably in the form of a powder (a glass powder for coating a semiconductor element) from the viewpoint of easily covering the surface of the semiconductor element. In this case, preferably has an average particle diameter D 50 of the glass powder is 25μm or less, more preferably 15μm or less. When the average particle diameter D 50 of the glass powder is too large, or become difficult to paste, or electrophoretic coating tends to become difficult. The lower limit of the average particle diameter D 50 of the glass powder is not particularly limited, in practice it is 0.1μm or more.
 本発明の半導体素子被覆用ガラスは、酸化物等の原料粉末を調合してバッチを作製し、1400℃前後で約1時間溶融した後に成形することによって得ることができる。また、成形後のガラスに対し、さらに粉砕及び分級することによって半導体素子被覆用ガラス粉末を得ることができる。 The glass for coating a semiconductor element of the present invention can be obtained by preparing a batch by mixing raw material powders such as oxides, and molding after melting at around 1400 ° C. for about 1 hour. Moreover, the glass powder for semiconductor element coating | cover can be obtained by further grind | pulverizing and classifying with respect to the glass after shaping | molding.
 本発明の半導体素子被覆用材料は、上記の半導体素子被覆用ガラス粉末に対し、TiO、ZrO、ZnO、αZnO・B、2ZnO・SiO、コーディエライト及び石英から選択される少なくとも1種の無機粉末を核形成剤として含有してなるものである。無機粉末の含有量は、半導体素子被覆用ガラス粉末100質量部に対して0.01~5質量部であることが好ましく、0.1~3質量部であることがより好ましい。無機粉末の含有量が少なすぎると、析出結晶量が少なくなり、所望の熱膨張係数を達成しにくくなる。無機粉末の含有量が多すぎると、析出結晶量が多くなりすぎて流動性が損なわれ、半導体素子表面の被覆が困難となる傾向がある。 The semiconductor element coating material of the present invention is selected from TiO 2 , ZrO 2 , ZnO, αZnO · B 2 O 3 , 2ZnO · SiO 2 , cordierite and quartz with respect to the glass powder for coating a semiconductor element. It contains at least one inorganic powder as a nucleating agent. The content of the inorganic powder is preferably 0.01 to 5 parts by mass, more preferably 0.1 to 3 parts by mass with respect to 100 parts by mass of the semiconductor element coating glass powder. When the content of the inorganic powder is too small, the amount of precipitated crystals decreases, making it difficult to achieve a desired thermal expansion coefficient. When the content of the inorganic powder is too large, the amount of precipitated crystals increases so that the fluidity is impaired and the semiconductor element surface tends to be difficult to coat.
 なお、無機粉末の粒子径が小さいほど、析出結晶の粒子径が小さくなって被覆用材料の構造が密になることから、機械的強度が大きくなる傾向がある。したがって、無機粉末の平均粒子径D50は5μm以下であることが好ましく、3μm以下であることがより好ましい。なお、無機粉末の平均粒子径D50の下限は特に限定されないが、現実的には0.1μm以上である。 Note that the smaller the particle size of the inorganic powder, the smaller the particle size of the precipitated crystals and the denser the structure of the coating material, so that the mechanical strength tends to increase. Therefore, it is preferable that the average particle diameter D 50 of the inorganic powder is 5μm or less, more preferably 3μm or less. The lower limit of the average particle diameter D 50 of the inorganic powder is not particularly limited, in practice it is 0.1μm or more.
 本発明の半導体素子被覆用ガラスおよび半導体素子被覆用材料の表面電荷密度は、電圧1000Vの半導体装置に対しては4×1011/cm以上、1500V以上の半導体装置に対しては9×1011/cm以上であることが好ましい。なお、表面電荷密度が大きくなると耐圧が高くなるが、同時に漏れ電流も大きくなる傾向がある。よって、1000~1500V程度の半導体素子に適用する場合は、漏れ電流を抑制し、耐圧とのバランスを取るため、表面電荷密度は例えば12×1011/cm以下、さらには10×1011/cm以下に調整することが好ましい。 The surface charge density of the glass for covering a semiconductor element and the material for covering a semiconductor element of the present invention is 4 × 10 11 / cm 2 or more for a semiconductor device having a voltage of 1000V and 9 × 10 for a semiconductor device having a voltage of 1500V or more. It is preferable that it is 11 / cm 2 or more. As the surface charge density increases, the breakdown voltage increases, but at the same time, the leakage current tends to increase. Therefore, when applied to a semiconductor element of about 1000 to 1500 V, the surface charge density is, for example, 12 × 10 11 / cm 2 or less, further 10 × 10 11 / cm 2 in order to suppress the leakage current and balance the breakdown voltage. It is preferable to adjust to cm 2 or less.
 本発明の半導体素子被覆用ガラスおよび半導体素子被覆用材料の熱膨張係数(30~300℃)は、半導体素子の熱膨張係数に応じて、例えば20~60×10-7/℃、さらには30~50×10-7/℃の範囲で適宜調整される。 The coefficient of thermal expansion (30 to 300 ° C.) of the glass for covering a semiconductor element and the material for covering a semiconductor element of the present invention is, for example, 20 to 60 × 10 −7 / ° C., further 30 according to the coefficient of thermal expansion of the semiconductor element. It is appropriately adjusted in the range of ˜50 × 10 −7 / ° C.
 以下、実施例に基づいて本発明を説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described based on examples, but the present invention is not limited to these examples.
 表1は本発明の実施例および比較例を示している。 Table 1 shows examples and comparative examples of the present invention.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 各試料は以下のようにして作製した。まず表1中のガラス組成となるように原料粉末を調合してバッチを作製し、1400℃で1時間溶融した。溶融ガラスをフィルム状に成形した後、ボールミルにて粉砕し、350メッシュの篩を用いて分級し、半導体素子被覆用ガラス粉末を得た(平均粒子径D50:12μm)。 Each sample was produced as follows. First, a raw material powder was prepared so as to have the glass composition shown in Table 1 to prepare a batch, and melted at 1400 ° C. for 1 hour. After the molten glass was formed into a film, it was pulverized with a ball mill and classified using a 350 mesh sieve to obtain a glass powder for covering a semiconductor element (average particle diameter D 50 : 12 μm).
 得られた半導体素子被覆用ガラス粉末について熱膨張係数と表面電荷密度を測定した。なお、実施例6では、半導体素子被覆用ガラス粉末100質量部に対してZnO粉末を0.1質量部添加したものについて測定した。結果を表1に示す。 The thermal expansion coefficient and surface charge density of the obtained glass powder for coating a semiconductor element were measured. In Example 6, measurement was performed on a semiconductor element coating glass powder added with 0.1 part by mass of ZnO powder to 100 parts by mass. The results are shown in Table 1.
 熱膨張係数はディラトメーターを用いて30~300℃の温度範囲にて測定した。 The thermal expansion coefficient was measured in a temperature range of 30 to 300 ° C. using a dilatometer.
 表面電荷密度は次のようにして測定した。まず、ガラス粉末を有機溶媒中に分散し、電気泳動によってシリコン板表面に一定の膜厚になるように付着させ、次いで焼成してガラス層を形成した。ガラス層の上にアルミニウム電極を形成後、ガラス中の電気容量の変化をC-Vメータを用いて測定し、表面電荷密度を算出した。 The surface charge density was measured as follows. First, glass powder was dispersed in an organic solvent, adhered to the silicon plate surface by electrophoresis so as to have a constant film thickness, and then fired to form a glass layer. After forming an aluminum electrode on the glass layer, the change in electric capacity in the glass was measured using a CV meter, and the surface charge density was calculated.
 表1から明らかなように、実施例1~5の試料は表面電荷密度が5×1011/cm以上と高かった。これは、従来のPbO-SiO-Al系或いはPbO-SiO-Al-B系等の鉛系ガラスと同等の表面電荷密度である。したがって、実施例1~6の半導体素子被覆用ガラス(半導体素子被覆用材料)は中~高耐圧用の半導体素子の被覆に適したものである。 As is apparent from Table 1, the samples of Examples 1 to 5 had a high surface charge density of 5 × 10 11 / cm 2 or more. This is a surface charge density equivalent to that of a lead glass such as a conventional PbO—SiO 2 —Al 2 O 3 system or PbO—SiO 2 —Al 2 O 3 —B 2 O 3 system. Therefore, the glass for semiconductor element coating (semiconductor element coating material) of Examples 1 to 6 is suitable for coating semiconductor elements for medium to high breakdown voltage.
 一方、比較例1の試料は表面電荷密度が1×1011/cmと低く、中~高耐圧用の半導体素子の被覆に適さないことがわかる。 On the other hand, the sample of Comparative Example 1 has a low surface charge density of 1 × 10 11 / cm 2 , indicating that it is not suitable for coating a medium to high breakdown voltage semiconductor device.

Claims (4)

  1.  質量%で、ZnO 50~62%(ただし62%を含まない)、B 19~28%、SiO 8~15%(ただし8%を含まない)、Al 3~12%を含有し、アルカリ金属成分、鉛成分、Bi、Sb及びAsを実質的に含有しないことを特徴とする半導体素子被覆用ガラス。 By mass%, ZnO 50-62% (excluding 62%), B 2 O 3 19-28%, SiO 2 8-15% (excluding 8%), Al 2 O 3 3-12% A glass for covering semiconductor elements, characterized by containing an alkali metal component, a lead component, Bi 2 O 3 , Sb 2 O 3 and As 2 O 3 .
  2.  さらに、質量%で、MnO 0~5%、Nb 0~5%、及びCeO 0~3%を含有することを特徴とする請求項1に記載の半導体素子被覆用ガラス。 2. The glass for coating a semiconductor element according to claim 1, further comprising, by mass%, MnO 2 0 to 5%, Nb 2 O 5 0 to 5%, and CeO 2 0 to 3%.
  3.  請求項1または2に記載の半導体素子被覆用ガラスからなる半導体素子被覆用ガラス粉末。 A glass powder for covering a semiconductor element, comprising the glass for covering a semiconductor element according to claim 1 or 2.
  4.  請求項3に記載の半導体素子被覆用ガラス粉末100質量部と、TiO、ZrO、ZnO、αZnO・B、2ZnO・SiO、コーディエライト及び石英から選択される少なくとも1種の無機粉末0.01~5質量部を含有することを特徴とする半導体素子被覆用材料。 100 parts by mass of the glass powder for coating a semiconductor element according to claim 3, and at least one selected from TiO 2 , ZrO 2 , ZnO, αZnO · B 2 O 3 , 2ZnO · SiO 2 , cordierite and quartz. A semiconductor element coating material comprising 0.01 to 5 parts by mass of an inorganic powder.
PCT/JP2015/073312 2014-09-09 2015-08-20 Semiconductor element-coating glass WO2016039101A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580048466.1A CN107074617A (en) 2014-09-09 2015-08-20 Semiconductor element glass for covering

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-182838 2014-09-09
JP2014182838A JP6410089B2 (en) 2014-09-09 2014-09-09 Glass for semiconductor element coating

Publications (1)

Publication Number Publication Date
WO2016039101A1 true WO2016039101A1 (en) 2016-03-17

Family

ID=55458857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073312 WO2016039101A1 (en) 2014-09-09 2015-08-20 Semiconductor element-coating glass

Country Status (4)

Country Link
JP (1) JP6410089B2 (en)
CN (1) CN107074617A (en)
TW (1) TWI657543B (en)
WO (1) WO2016039101A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110642519B (en) * 2019-09-25 2022-06-14 湖南利德电子浆料股份有限公司 Encapsulation slurry for aluminum nitride substrate and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54119513A (en) * 1978-03-10 1979-09-17 Asahi Glass Co Ltd Glass for coating semiconductor
JPH02311330A (en) * 1989-05-26 1990-12-26 Nippon Electric Glass Co Ltd Binder glass for ceramic capacitor
WO2011093177A1 (en) * 2010-01-28 2011-08-04 日本電気硝子株式会社 Glass for semiconductor coating and material for semiconductor coating using the same
WO2013027636A1 (en) * 2011-08-25 2013-02-28 日本電気硝子株式会社 Glass for covering semiconductor element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006062428B4 (en) * 2006-12-27 2012-10-18 Schott Ag A method of manufacturing a lead-free glass passivated electronic component and an electronic component with lead-free glass applied and the use thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54119513A (en) * 1978-03-10 1979-09-17 Asahi Glass Co Ltd Glass for coating semiconductor
JPH02311330A (en) * 1989-05-26 1990-12-26 Nippon Electric Glass Co Ltd Binder glass for ceramic capacitor
WO2011093177A1 (en) * 2010-01-28 2011-08-04 日本電気硝子株式会社 Glass for semiconductor coating and material for semiconductor coating using the same
WO2013027636A1 (en) * 2011-08-25 2013-02-28 日本電気硝子株式会社 Glass for covering semiconductor element

Also Published As

Publication number Publication date
TW201618242A (en) 2016-05-16
CN107074617A (en) 2017-08-18
JP6410089B2 (en) 2018-10-24
JP2016056052A (en) 2016-04-21
TWI657543B (en) 2019-04-21

Similar Documents

Publication Publication Date Title
TWI501933B (en) A semiconductor coated glass, and a semiconductor coated material using the same
TWI615370B (en) Semiconductor component coated glass
TWI821422B (en) Glass for covering semiconductor elements and materials for semiconductor covering using the same
JP6852961B2 (en) Glass for coating semiconductor devices
JP5565747B2 (en) Semiconductor coating glass and semiconductor coating material using the same
JP5773327B2 (en) Glass for semiconductor coating
JP6410089B2 (en) Glass for semiconductor element coating
JP7185181B2 (en) Semiconductor device coating glass and semiconductor coating material using the same
JP7216323B2 (en) Semiconductor device coating glass and semiconductor coating material using the same
TWI830068B (en) Glass for covering semiconductor elements and semiconductor covering materials using the same
WO2024004711A1 (en) Glass for covering semiconductor element, material for covering semiconductor element, and sintered body for covering semiconductor element
TW202411171A (en) Glass for semiconductor element covering, material for semiconductor element covering, and sintered body for semiconductor element covering
WO2021060001A1 (en) Glass for semiconductor element coating and material for semiconductor coating using same
US20230365454A1 (en) Semiconductor element coating glass and semiconductor element coating material using same
JP2022064270A (en) Semiconductor element coating glass and semiconductor element coating material using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15840638

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15840638

Country of ref document: EP

Kind code of ref document: A1