JP7185181B2 - Semiconductor device coating glass and semiconductor coating material using the same - Google Patents

Semiconductor device coating glass and semiconductor coating material using the same Download PDF

Info

Publication number
JP7185181B2
JP7185181B2 JP2018189156A JP2018189156A JP7185181B2 JP 7185181 B2 JP7185181 B2 JP 7185181B2 JP 2018189156 A JP2018189156 A JP 2018189156A JP 2018189156 A JP2018189156 A JP 2018189156A JP 7185181 B2 JP7185181 B2 JP 7185181B2
Authority
JP
Japan
Prior art keywords
glass
semiconductor
coating
semiconductor device
semiconductor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018189156A
Other languages
Japanese (ja)
Other versions
JP2020055724A (en
Inventor
将行 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2018189156A priority Critical patent/JP7185181B2/en
Priority to PCT/JP2019/036160 priority patent/WO2020071093A1/en
Priority to CN201980051203.4A priority patent/CN112512982B/en
Priority to TW108135463A priority patent/TWI819109B/en
Publication of JP2020055724A publication Critical patent/JP2020055724A/en
Application granted granted Critical
Publication of JP7185181B2 publication Critical patent/JP7185181B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/04Frit compositions, i.e. in a powdered or comminuted form containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

本発明は、半導体素子被覆用ガラス及びこれを用いた半導体被覆用材料に関する。 TECHNICAL FIELD The present invention relates to a glass for covering semiconductor elements and a material for covering semiconductors using the same.

シリコンダイオード、トランジスタ等の半導体素子は、一般的に、半導体素子のP-N接合部を含む表面がガラスにより被覆される。これにより、半導体素子表面の安定化を図り、経時的な特性劣化を抑制することができる。 Semiconductor devices such as silicon diodes and transistors are generally covered with glass on the surface including the PN junction of the semiconductor device. As a result, the surface of the semiconductor element can be stabilized, and deterioration of characteristics over time can be suppressed.

半導体素子被覆用ガラスに要求される特性として、(1)半導体素子との熱膨張係数差によるクラック等が発生しないように、熱膨張係数が半導体素子の熱膨張係数に適合すること、(2)半導体素子の特性劣化を防止するため、低温(例えば900℃以下)で被覆可能であること、(3)半導体素子表面に悪影響を与えるアルカリ成分等の不純物を含まないこと等が挙げられる。 The properties required of the glass for covering semiconductor devices are (1) that the coefficient of thermal expansion matches the coefficient of thermal expansion of the semiconductor device so that cracks or the like do not occur due to the difference in thermal expansion coefficient from that of the semiconductor device, and (2) In order to prevent deterioration of the characteristics of the semiconductor element, it should be able to be coated at a low temperature (for example, 900° C. or less), and (3) should not contain impurities such as alkaline components that adversely affect the surface of the semiconductor element.

従来から、半導体素子被覆用ガラスとして、ZnO-B-SiO系等の亜鉛系ガラス、PbO-SiO-Al系ガラス、PbO-SiO-Al-B系ガラス等の鉛系ガラスが知られているが、現在では、作業性の観点から、PbO-SiO-Al系ガラス、PbO-SiO-Al-B系ガラス等の鉛系ガラスが主流となっている(例えば、特許文献1~4参照)。 Zinc-based glasses such as ZnO--B 2 O 3 --SiO 2- based glasses, PbO--SiO 2 --Al 2 O 3 -based glasses, and PbO--SiO 2 --Al 2 O 3 --B 2 have been conventionally used as glasses for covering semiconductor devices. Lead-based glasses such as O 3 -based glasses are known, but currently, from the viewpoint of workability, PbO--SiO 2 -Al 2 O 3 -based glasses and PbO--SiO 2 -Al 2 O 3 -B 2 O are used. Lead-based glass such as 3 -based glass has become mainstream (for example, see Patent Documents 1 to 4).

特開昭48-43275号公報JP-A-48-43275 特開昭50-129181号公報JP-A-50-129181 特公平1-49653号公報Japanese Patent Publication No. 1-49653 特開2008-162881号公報JP 2008-162881 A

しかし、鉛系ガラスの鉛成分は、環境に対して有害な成分である。上記の亜鉛系ガラスは、少量の鉛成分やビスマス成分を含むため、環境に対して完全に無害であるとは言い切れない。 However, the lead component of lead-based glass is harmful to the environment. Since the above zinc-based glass contains a small amount of lead and bismuth components, it cannot be said that it is completely harmless to the environment.

また、亜鉛系ガラスは、鉛系ガラスと比較して、化学耐久性に劣り、被覆層を形成した後の酸処理工程で侵食され易いという問題がある。このため、被覆層の表面に更に保護膜を形成して酸処理を行う必要があった。 In addition, zinc-based glass is inferior to lead-based glass in chemical durability, and there is a problem that it is easily eroded in an acid treatment process after forming a coating layer. Therefore, it was necessary to form a protective film on the surface of the coating layer and perform acid treatment.

一方、ガラス組成中のSiOの含有量を多くすると、耐酸性が向上すると共に、半導体素子の逆電圧が向上するが、半導体素子の逆漏れ電流が大きくなるという不具合が生じる。特に、低耐圧用の半導体素子では、逆電圧の向上よりも、逆漏れ電流を抑制して、表面電化密度を低減することが優先されるため、上記不具合がより問題になる。 On the other hand, when the content of SiO 2 in the glass composition is increased, the acid resistance is improved and the reverse voltage of the semiconductor element is improved, but there arises a problem that the reverse leakage current of the semiconductor element is increased. In particular, in a semiconductor device for low breakdown voltage, since suppression of reverse leakage current and reduction of surface electrification density are prioritized over improvement of reverse voltage, the above problem becomes more serious.

そこで、本発明は、上記事情に鑑みなされたものであり、その技術的課題は、環境負荷が小さく、耐酸性に優れ、且つ表面電荷密度が低い半導体素子被覆用ガラスを提供することである。 Accordingly, the present invention has been made in view of the above circumstances, and a technical object thereof is to provide a glass for covering semiconductor elements that has a low environmental load, excellent acid resistance, and a low surface charge density.

本発明者は、鋭意検討した結果、特定のガラス組成を有するSiO-B-Al-ZnO系ガラスを用いることにより、上記技術的課題を解決し得ることを見出し、本発明として提案するものである。すなわち、本発明の半導体素子被覆用ガラスは、ガラス組成として、モル%で、SiO 18~43%、B 5~21%、Al 8~21%、ZnO 10~25%、MgO+CaO 10~25%を含有し、実質的に鉛成分を含有しないことを特徴とする。ここで、「MgO+CaO」は、MgOとCaOの合量を指す。また、「実質的に~を含有しない」とは、ガラス成分として該当成分を意図的に添加しないことを意味し、不可避的に混入する不純物まで完全に排除することを意味するものではない。具体的には、不純物を含めた該当成分の含有量が0.1質量%未満であることを意味する。 As a result of intensive studies, the present inventors found that the above technical problems can be solved by using SiO 2 —B 2 O 3 —Al 2 O 3 —ZnO glass having a specific glass composition. This is proposed as an invention. That is, the glass for covering a semiconductor element of the present invention has a glass composition of 18 to 43% SiO 2 , 5 to 21% B 2 O 3 , 8 to 21% Al 2 O 3 , and 10 to 25% ZnO in terms of mol %. , MgO+CaO 10 to 25%, and substantially free of lead. Here, "MgO+CaO" refers to the total amount of MgO and CaO. In addition, "substantially free from" means that the corresponding component is not intentionally added as a glass component, and does not mean that even impurities that are unavoidably mixed are completely eliminated. Specifically, it means that the content of the corresponding component including impurities is less than 0.1% by mass.

本発明の半導体素子被覆用ガラスは、上記の通り、各成分の含有範囲を規制している、これにより、環境負荷が小さく、耐酸性が向上すると共に、表面電荷密度が低下する。結果として、低耐圧用の半導体素子の被覆に好適に使用可能になる。 As described above, the glass for covering a semiconductor element of the present invention regulates the content range of each component, thereby reducing the environmental load, improving the acid resistance, and lowering the surface charge density. As a result, it can be suitably used for covering semiconductor elements for low breakdown voltage.

また、本発明の半導体素子被覆用材料では、上記の半導体素子被覆用ガラスからなるガラス粉末 75~100質量%、セラミック粉末 0~25%を含有することが好ましい。 Further, the material for coating a semiconductor device of the present invention preferably contains 75 to 100% by mass of glass powder and 0 to 25% by mass of ceramic powder composed of the glass for coating a semiconductor device.

また、本発明の半導体素子被覆用材料では、30~300℃の温度範囲における熱膨張係数が20×10-7/℃以上、且つ55×10-7/℃以下であることが好ましい。ここで、「30~300℃の温度範囲における熱膨張係数」は、押し棒式熱膨張係数測定装置により測定した値を指す。 Further, the semiconductor element coating material of the present invention preferably has a thermal expansion coefficient of 20× 10 -7 /°C. Here, the “thermal expansion coefficient in the temperature range of 30 to 300° C.” refers to the value measured by a push rod type thermal expansion coefficient measuring device.

本発明の半導体素子被覆用ガラスは、ガラス組成として、モル%で、SiO 18~43%、B 5~21%、Al 8~21%、ZnO 10~25%、MgO+CaO 10~25%を含有し、実質的に鉛成分を含有しないことを特徴とする。各成分の含有量を限定した理由を以下に説明する。なお、以下の各成分の含有量の説明において、%表示は、特に断りのない限り、モル%を意味する。 The glass for covering a semiconductor element of the present invention has a glass composition of 18 to 43% SiO 2 , 5 to 21% B 2 O 3 , 8 to 21% Al 2 O 3 , 10 to 21% ZnO, and MgO+CaO in terms of mol %. It is characterized by containing 10 to 25% and being substantially free of lead components. The reason for limiting the content of each component will be explained below. In addition, in the following description of the content of each component, % display means mol % unless otherwise specified.

SiOは、ガラスの網目形成成分であり、耐酸性を高める成分である。SiOの含有量は18~43%であり、好ましくは20~40%、特に22~36%である。SiOの含有量が少な過ぎると、耐酸性が低下する傾向がある。一方、SiOの含有量が多過ぎると、溶融時の失透性が強くなり、均質なガラスが得られ難くなる。 SiO 2 is a network-forming component of glass and a component that enhances acid resistance. The content of SiO 2 is 18-43%, preferably 20-40%, in particular 22-36%. If the content of SiO2 is too low, the acid resistance tends to decrease. On the other hand, if the content of SiO2 is too high, devitrification during melting becomes strong, making it difficult to obtain a homogeneous glass.

は、ガラスの網目形成成分であり、軟化流動性を高める成分である。Bの含有量は5~21%であり、好ましくは5~18%、特に7~15%である。Bの含有量が少な過ぎると、結晶性が強くなるため、被覆時に軟化流動性が損なわれて、半導体素子表面への均一な被覆が困難になる。一方、Bの含有量が多過ぎると、熱膨張係数が不当に高くなったり、耐酸性が低下する傾向がある。 B 2 O 3 is a network-forming component of glass and a component that enhances softening fluidity. The content of B 2 O 3 is 5-21%, preferably 5-18%, especially 7-15%. If the content of B 2 O 3 is too small, the crystallinity will be strong, which will impair softening fluidity during coating, making it difficult to uniformly coat the surface of the semiconductor element. On the other hand, if the content of B 2 O 3 is too high, the coefficient of thermal expansion tends to be unduly high and the acid resistance tends to decrease.

Alは、ガラスを安定化すると共に、表面電荷密度を調整する成分である。Alの含有量は8~21%であり、好ましくは5~20%、特に8~18%である。Alの含有量が少な過ぎると、ガラスが失透し易くなる。一方、Alの含有量が多過ぎると、表面電荷密度が大きくなり過ぎる虞がある。 Al 2 O 3 is a component that stabilizes the glass and adjusts the surface charge density. The content of Al 2 O 3 is 8-21%, preferably 5-20%, especially 8-18%. If the content of Al 2 O 3 is too small, the glass tends to devitrify. On the other hand, if the content of Al 2 O 3 is too high, the surface charge density may become too high.

ZnOは、ガラスを安定化する成分である。ZnOの含有量は10~25%であり、好ましくは12~22%である。ZnOの含有量が少な過ぎると、溶融時の失透性が強くなり、均質なガラスが得られ難くなる。一方、ZnOの含有量が多過ぎると、耐酸性が低下し易くなる。 ZnO is a component that stabilizes glass. The content of ZnO is 10-25%, preferably 12-22%. If the ZnO content is too low, the devitrification property during melting becomes strong, making it difficult to obtain a homogeneous glass. On the other hand, if the ZnO content is too high, the acid resistance tends to decrease.

MgOとCaOは、ガラスの粘性を下げる成分である。MgOとCaOの合量は10~25%であり、好ましくは12~20%である。MgOとCaOの合量が少な過ぎると、ガラスの焼成温度が上昇し易くなる。一方、MgOとCaOの合量が多過ぎると、熱膨張係数が高くなり過ぎたり、耐酸性が低下したり、絶縁性が低下する虞がある。なお、MgOの含有量は、好ましくは0~20%、特に0~5%である。CaOの含有量は、好ましくは1~25%、特に10~20%である。 MgO and CaO are components that reduce the viscosity of glass. The total amount of MgO and CaO is 10-25%, preferably 12-20%. If the total amount of MgO and CaO is too small, the firing temperature of the glass tends to rise. On the other hand, if the total amount of MgO and CaO is too large, the coefficient of thermal expansion may become too high, the acid resistance may deteriorate, and the insulating properties may deteriorate. The content of MgO is preferably 0-20%, particularly 0-5%. The content of CaO is preferably 1-25%, especially 10-20%.

上記成分以外にも、他の成分(例えば、SrO、BaO、MnO、Ta、Nb、CeO、Sb等)を7%まで(好ましくは3%まで)含有してもよい。 In addition to the above components, other components (e.g., SrO, BaO, MnO 2 , Ta 2 O 5 , Nb 2 O 5 , CeO 2 , Sb 2 O 3 etc.) are contained up to 7% (preferably up to 3%) You may

環境面の観点から、実質的に鉛成分(例えばPbO等)を含有せず、実質的にBi、F、Clも含有しないことが好ましい。また、半導体素子表面に悪影響を与えるアルカリ成分(LiO、NaO及びKO)も実質的に含有しないことが好ましい。 From an environmental point of view, it is preferable that substantially no lead component (for example, PbO, etc.) is contained, and substantially no Bi 2 O 3 , F, or Cl is contained. Further, it is preferable that substantially no alkaline components (Li 2 O, Na 2 O, and K 2 O) that adversely affect the surface of the semiconductor element are contained.

本発明の半導体素子被覆用ガラスは、粉末状であること、つまりガラス粉末であることが好ましい。ガラス粉末に加工すれば、例えば、ペースト法、電気泳動塗布法等を用いて半導体素子表面の被覆を容易に行うことができる。 The glass for covering a semiconductor element of the present invention is preferably in the form of powder, ie, glass powder. If processed into glass powder, the surface of the semiconductor element can be easily coated using, for example, a paste method, an electrophoretic coating method, or the like.

ガラス粉末の平均粒子径D50は、好ましくは25μm以下、特に15μm以下である。ガラス粉末の平均粒子径D50が大き過ぎると、ペースト化が困難になる。また、電気泳動法による粉末付着も困難になる。なお、ガラス粉末の平均粒子径D50の下限は特に限定されないが、現実的には0.1μm以上である。なお、「平均粒子径D50」は、体積基準で測定した値であり、レーザー回折法で測定した値を指す。 The average particle size D50 of the glass powder is preferably 25 μm or less, in particular 15 μm or less. If the average particle diameter D50 of the glass powder is too large, it becomes difficult to form a paste. In addition, powder adhesion by electrophoresis also becomes difficult. Although the lower limit of the average particle diameter D50 of the glass powder is not particularly limited, it is practically 0.1 μm or more. In addition, "average particle diameter D50 " is a value measured on a volume basis, and refers to a value measured by a laser diffraction method.

本発明の半導体素子被覆用ガラスは、例えば、各酸化物成分の原料粉末を調合してバッチとし、1500℃程度で約1時間溶融してガラス化した後、成形(その後、必要に応じて粉砕、分級)することによって得ることができる。 The glass for coating a semiconductor device of the present invention is prepared by, for example, preparing a batch of raw material powders of each oxide component, melting at about 1500° C. for about 1 hour to vitrify the glass, and then molding (and then pulverizing if necessary). , classification).

本発明の半導体素子被覆用材料は、前記半導体素子被覆用ガラスからなるガラス粉末を含むが、必要に応じて、セラミック粉末と混合し、複合粉末としてもよい。セラミック粉末を添加すれば、熱膨張係数を調整し易くなる。 The material for covering a semiconductor element of the present invention contains a glass powder composed of the glass for covering a semiconductor element, and if necessary, it may be mixed with a ceramic powder to form a composite powder. Addition of ceramic powder facilitates adjustment of the coefficient of thermal expansion.

セラミック粉末は、ガラス粉末100質量部に対して、25%未満、特に20%未満であることが好ましい。セラミック粉末の含有量が多過ぎると、ガラスの軟化流動性が損なわれて、半導体素子表面の被覆が困難になる。 Ceramic powder is preferably less than 25%, particularly less than 20%, relative to 100 parts by mass of glass powder. If the content of the ceramic powder is too high, the softening fluidity of the glass is impaired, making it difficult to coat the surface of the semiconductor element.

セラミック粉末の平均粒子径D50は、好ましくは30μm以下、特に20μm以下である。セラミック粉末の平均粒子径D50が大き過ぎると、被覆層の表面平滑性が低下し易くなる。セラミック粉末の平均粒子径D50の下限は特に限定されないが、現実的には0.1μm以上である。 The average particle size D50 of the ceramic powder is preferably 30 μm or less, in particular 20 μm or less. If the average particle diameter D50 of the ceramic powder is too large, the surface smoothness of the coating layer tends to deteriorate. Although the lower limit of the average particle diameter D50 of the ceramic powder is not particularly limited, it is practically 0.1 μm or more.

本発明の半導体素子被覆用材料において、30~300℃の温度範囲における熱膨張係数は、好ましくは20×10-7/℃以上、55×10-7/℃以下、特に30×10-7/℃以上、50×10-7/℃以下である。熱膨張係数が上記範囲外になると、半導体素子との熱膨張係数差によるクラック、反り等が発生し易くなる。 In the semiconductor device coating material of the present invention, the thermal expansion coefficient in the temperature range of 30 to 300° C. is preferably 20×10 −7 /° C. or more and 55×10 −7 /° C. or less, particularly 30×10 −7 /° C. ° C. or more and 50×10 −7 /° C. or less. If the coefficient of thermal expansion is out of the above range, cracks, warping, etc. are likely to occur due to the difference in coefficient of thermal expansion from the semiconductor element.

本発明の半導体素子被覆用材料において、表面電荷密度は、例えば1000V以下の半導体素子表面を被覆する場合、好ましくは6×1011/cm以下、特に5×1011/cm以下である。表面電荷密度が高過ぎると、耐圧が高くなるが、同時に漏れ電流も大きくなる傾向がある。なお、「表面電荷密度」は、後述する実施例の欄に記載の方法によって測定した値を指す。 In the semiconductor device coating material of the present invention, the surface charge density is preferably 6×10 11 /cm 2 or less, particularly 5×10 11 /cm 2 or less when coating a semiconductor device surface of 1000 V or less, for example. If the surface charge density is too high, the breakdown voltage will be high, but at the same time the leakage current will tend to be large. "Surface charge density" refers to a value measured by the method described in the Examples section below.

以下、実施例に基づいて、本発明を詳細に説明する。なお、以下の実施例は、単なる例示である。本発明は、以下の実施例に何ら限定されない。 The present invention will be described in detail below based on examples. It should be noted that the following examples are merely illustrative. The present invention is by no means limited to the following examples.

表1は、本発明の実施例(試料No.1~4)と比較例(試料No.5、6)を示している。 Table 1 shows examples of the present invention (samples Nos. 1 to 4) and comparative examples (samples Nos. 5 and 6).

Figure 0007185181000001
Figure 0007185181000001

各試料は、以下のようにして作製した。まず表中のガラス組成となるように原料粉末を調合してバッチとし、1500℃で1時間溶融してガラス化した。続いて、溶融ガラスをフィルム状に成形した後、ボールミルにて粉砕し、350メッシュの篩を用いて分級し、平均粒子径D50が12μmとなるガラス粉末を得た。なお、試料No.4では、得られたガラス粉末に対して、コーディエライト粉末(平均粒子径D50:12μm)を15質量%添加して、複合粉末とした。 Each sample was produced as follows. First, raw material powders were mixed so as to have the glass composition shown in the table to form a batch, which was then melted at 1500° C. for 1 hour to be vitrified. Subsequently, the molten glass was formed into a film, pulverized with a ball mill, and classified using a 350-mesh sieve to obtain a glass powder having an average particle diameter D50 of 12 μm. In addition, sample no. In 4, 15% by mass of cordierite powder (average particle diameter D 50 : 12 μm) was added to the obtained glass powder to obtain a composite powder.

各試料について、熱膨張係数、表面電荷密度及び耐酸性を評価した。その結果を表1に示す。 Each sample was evaluated for thermal expansion coefficient, surface charge density and acid resistance. Table 1 shows the results.

熱膨張係数は、押し棒式熱膨張係数測定装置を用いて、30~300℃の温度範囲にて測定した値である。 The coefficient of thermal expansion is a value measured in a temperature range of 30 to 300° C. using a push rod type thermal expansion coefficient measuring device.

表面電荷密度は、次のようにして測定した。まず、各試料を有機溶媒中に分散し、電気泳動によってシリコン基板表面に一定の膜厚になるように付着させた後、焼成して被覆層を形成した。次に、被覆層の表面にアルミニウム電極を形成した後、被覆層中の電気容量の変化をC-Vメータを用いて測定し、表面電荷密度を算出した。 The surface charge density was measured as follows. First, each sample was dispersed in an organic solvent, adhered to the surface of a silicon substrate by electrophoresis so as to have a certain thickness, and then baked to form a coating layer. Next, after forming an aluminum electrode on the surface of the coating layer, the change in capacitance in the coating layer was measured using a CV meter to calculate the surface charge density.

耐酸性は次のようにして評価した。各試料を直径20mm、厚み4mm程度の大きさにプレス成型した後、焼成してペレット状試料を作製し、この試料を30%硝酸中に25℃、1分浸漬した後の質量減から単位面積当たりの質量変化を算出し、耐酸性の指標とした。なお、単位面積当たりの質量変化が1.0mg/cm未満を「○」、1.0mg/cm以上を「×」とした。 Acid resistance was evaluated as follows. After pressing each sample to a size of about 20 mm in diameter and 4 mm in thickness, it was fired to prepare a pellet-shaped sample. The change in mass per unit was calculated and used as an index of acid resistance. A change in mass per unit area of less than 1.0 mg/cm 2 was evaluated as “◯”, and a change of 1.0 mg/cm 2 or more was evaluated as “X”.

表1から明らかなように、試料No.1~4は、表面電荷密度が6×1011/cm以下であり、且つ耐酸性の評価も良好であった。よって、試料No.1~4は、低耐圧用半導体素子の被覆に用いる半導体素子被覆用材料として好適であると考えられる。 As is clear from Table 1, sample no. Nos. 1 to 4 had a surface charge density of 6×10 11 /cm 2 or less and were also evaluated as good in acid resistance. Therefore, sample no. Nos. 1 to 4 are considered to be suitable as semiconductor element covering materials used for covering low voltage semiconductor elements.

一方、試料No.5、6は、耐酸性試験の評価が不良であった。更に、試料No.6は、熱膨張係数が高く、また表面電荷密度も高かった。 On the other hand, sample no. 5 and 6 were unsatisfactory in the acid resistance test. Furthermore, sample no. 6 had a high coefficient of thermal expansion and a high surface charge density.

Claims (3)

ガラス組成として、モル%で、SiO 18~43%、B 13~21%、Al 8~21%、ZnO 10~25%、MgO+CaO 10~25%を含有し、実質的に鉛成分を含有しないことを特徴とする半導体素子被覆用ガラス。 The glass composition contains 18 to 43% SiO 2 , 13 to 21% B 2 O 3 , 8 to 21% Al 2 O 3 , 10 to 25% ZnO, and 10 to 25% MgO+CaO in terms of mol %, and substantially A glass for covering a semiconductor element, characterized in that it does not contain a lead component. 請求項1に記載の半導体素子被覆用ガラスからなるガラス粉末 75~100質量%、セラミック粉末 0~25%を含有することを特徴とする半導体素子被覆用材料。 A material for coating a semiconductor device, comprising: 75 to 100% by mass of a glass powder made of the glass for coating a semiconductor device according to claim 1; and 0 to 25% by mass of a ceramic powder. 30~300℃の温度範囲における熱膨張係数が20×10-7/℃以上、且つ55×10-7/℃以下であることを特徴とする請求項2に記載の半導体素子被覆用材料。 3. The semiconductor element coating material according to claim 2, wherein the thermal expansion coefficient in a temperature range of 30 to 300° C. is 20×10 −7 /° C. or more and 55×10 −7 /° C. or less.
JP2018189156A 2018-10-04 2018-10-04 Semiconductor device coating glass and semiconductor coating material using the same Active JP7185181B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018189156A JP7185181B2 (en) 2018-10-04 2018-10-04 Semiconductor device coating glass and semiconductor coating material using the same
PCT/JP2019/036160 WO2020071093A1 (en) 2018-10-04 2019-09-13 Semiconductor element coating glass and semiconductor coating material using same
CN201980051203.4A CN112512982B (en) 2018-10-04 2019-09-13 Glass for coating semiconductor element and material for coating semiconductor using same
TW108135463A TWI819109B (en) 2018-10-04 2019-10-01 Glass for covering semiconductor elements and materials for semiconductor covering using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018189156A JP7185181B2 (en) 2018-10-04 2018-10-04 Semiconductor device coating glass and semiconductor coating material using the same

Publications (2)

Publication Number Publication Date
JP2020055724A JP2020055724A (en) 2020-04-09
JP7185181B2 true JP7185181B2 (en) 2022-12-07

Family

ID=70055866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018189156A Active JP7185181B2 (en) 2018-10-04 2018-10-04 Semiconductor device coating glass and semiconductor coating material using the same

Country Status (4)

Country Link
JP (1) JP7185181B2 (en)
CN (1) CN112512982B (en)
TW (1) TWI819109B (en)
WO (1) WO2020071093A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114450257A (en) * 2019-09-24 2022-05-06 日本电气硝子株式会社 Glass for semiconductor element coating and semiconductor coating material using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4319215A (en) 1979-07-13 1982-03-09 Hitachi, Ltd. Non-linear resistor and process for producing same
WO2012160704A1 (en) 2011-05-26 2012-11-29 新電元工業株式会社 Glass composition for semiconductor junction protection, production method for semiconductor device, and semiconductor device
WO2013168236A1 (en) 2012-05-08 2013-11-14 新電元工業株式会社 Resin-sealed semiconductor device and production method for resin-sealed semiconductor device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55113641A (en) * 1979-02-22 1980-09-02 Asahi Glass Co Ltd Insulating glass composition
US5216207A (en) * 1991-02-27 1993-06-01 David Sarnoff Research Center, Inc. Low temperature co-fired multilayer ceramic circuit boards with silver conductors
JPH08188446A (en) * 1995-01-11 1996-07-23 Sumitomo Metal Mining Co Ltd Glass ceramic substrate
JP2004039355A (en) * 2002-07-02 2004-02-05 Sumitomo Metal Mining Co Ltd Conductive composition
WO2009119433A1 (en) * 2008-03-25 2009-10-01 日本山村硝子株式会社 Lead-free glass and composition for lead-free glass ceramics
CN102471137B (en) * 2009-07-31 2014-07-02 旭硝子株式会社 Sealing glass, sealing material and sealing material paste for semiconductor devices, and semiconductor device and process for production thereof
JP6064298B2 (en) * 2011-08-25 2017-01-25 日本電気硝子株式会社 Glass for semiconductor element coating
JP5184717B1 (en) * 2012-01-31 2013-04-17 新電元工業株式会社 Semiconductor junction protecting glass composition, semiconductor device manufacturing method, and semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4319215A (en) 1979-07-13 1982-03-09 Hitachi, Ltd. Non-linear resistor and process for producing same
WO2012160704A1 (en) 2011-05-26 2012-11-29 新電元工業株式会社 Glass composition for semiconductor junction protection, production method for semiconductor device, and semiconductor device
WO2013168236A1 (en) 2012-05-08 2013-11-14 新電元工業株式会社 Resin-sealed semiconductor device and production method for resin-sealed semiconductor device

Also Published As

Publication number Publication date
TW202028143A (en) 2020-08-01
WO2020071093A1 (en) 2020-04-09
TWI819109B (en) 2023-10-21
JP2020055724A (en) 2020-04-09
CN112512982B (en) 2023-02-24
CN112512982A (en) 2021-03-16

Similar Documents

Publication Publication Date Title
TWI501933B (en) A semiconductor coated glass, and a semiconductor coated material using the same
JP6064298B2 (en) Glass for semiconductor element coating
TWI821422B (en) Glass for covering semiconductor elements and materials for semiconductor covering using the same
JP7185181B2 (en) Semiconductor device coating glass and semiconductor coating material using the same
JP5773327B2 (en) Glass for semiconductor coating
JP7216323B2 (en) Semiconductor device coating glass and semiconductor coating material using the same
JP5565747B2 (en) Semiconductor coating glass and semiconductor coating material using the same
JP7491020B2 (en) Glass for covering semiconductor elements and semiconductor covering material using the same
JP6410089B2 (en) Glass for semiconductor element coating
TWI850460B (en) Glass for semiconductor element encapsulation and semiconductor element encapsulation material using the same
WO2021060001A1 (en) Glass for semiconductor element coating and material for semiconductor coating using same
WO2022264853A1 (en) Semiconductor element coating glass, and semiconductor element coating material using same
WO2024004711A1 (en) Glass for covering semiconductor element, material for covering semiconductor element, and sintered body for covering semiconductor element
JP2022064270A (en) Semiconductor element coating glass and semiconductor element coating material using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221108

R150 Certificate of patent or registration of utility model

Ref document number: 7185181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150