WO2016038691A1 - Method for manufacturing pipe joint and pipe joint - Google Patents

Method for manufacturing pipe joint and pipe joint Download PDF

Info

Publication number
WO2016038691A1
WO2016038691A1 PCT/JP2014/073837 JP2014073837W WO2016038691A1 WO 2016038691 A1 WO2016038691 A1 WO 2016038691A1 JP 2014073837 W JP2014073837 W JP 2014073837W WO 2016038691 A1 WO2016038691 A1 WO 2016038691A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
metal pipe
metal
joined body
manufacturing
Prior art date
Application number
PCT/JP2014/073837
Other languages
French (fr)
Japanese (ja)
Inventor
章 原田
和愛 原田
野末 明
Original Assignee
株式会社ミヤタ
株式会社 テーケー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミヤタ, 株式会社 テーケー filed Critical 株式会社ミヤタ
Priority to PCT/JP2014/073837 priority Critical patent/WO2016038691A1/en
Priority to JP2015506026A priority patent/JP5860995B1/en
Publication of WO2016038691A1 publication Critical patent/WO2016038691A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/02Pressure butt welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating

Definitions

  • the present invention relates to a method for manufacturing a pipe joined body and a pipe joined body.
  • the “pipe joined body” means “the second metal pipe is joined to the outside of the side surface of the first metal pipe along a predetermined connection axis, and the inner space of the first metal pipe and the first metal pipe are joined. It means that the internal space of two metal pipes is connected.
  • a first metal pipe and a second metal pipe joined in a T shape can be given.
  • the above-described pipe joined body is used in various fields as a part of piping in order to mainly divide or join fluids.
  • an airbag system mainly used for automobiles.
  • the airbag system described above is the core technology of passive safety technology together with the seat belt.
  • the types of airbags include driver and passenger airbags corresponding to frontal collisions, side airbags and curtain shield airbags corresponding to side collisions, knee airbags protecting the lower limbs, and rear passengers.
  • the gunpowder When the airbag system is in operation, the gunpowder is burned with an inflator (a filling machine or a type of air pump) to generate gas, and the airbag is inflated with the gas in units of 0.05 seconds. Therefore, in order to withstand the high pressure caused by gas, the piping used in the airbag system is required to have high strength.
  • an inflator a filling machine or a type of air pump
  • FIGS. 13A and 13B are process diagrams of a method using fusion welding
  • FIGS. 14A and 14B are process diagrams of a method using brazing in a furnace.
  • the manufacturing method of the pipe joined body using fusion welding includes a first metal pipe 910 (for example, made of carbon steel) including a through hole 912 formed on the side surface of the first metal pipe 910, A step of preparing a second metal pipe 920 (for example, made of carbon steel) provided with a connecting end 922 corresponding to the shape in the vicinity of the through-hole 912 (see FIG. 13A), the second metal.
  • the pipe 920 is combined with the first metal pipe 910 along a predetermined connection axis (in FIG. 13, the same as the axis ax2 of the second metal pipe 920), the first metal pipe 910 and the second metal pipe 910 and the second metal pipe 910 are joined by fusion welding.
  • the process of joining the metal pipes 920 is performed in this order, and the pipe joined body 900 is manufactured.
  • symbol 930 of FIG.13 (b) is the part which performed the fusion welding.
  • the method for manufacturing a pipe assembly using brazing in the furnace has a first metal pipe 910 having a through hole 912 formed on the side surface of the first metal pipe 910 and a shape in the vicinity of the through hole 912.
  • a step of preparing a second metal pipe 920 having a corresponding connection end 922 and a metal ring 940 for brazing (for example, made of pure copper) (see FIG. 14A), and the second metal pipe 920
  • the metal ring 940 is combined with the first metal pipe 910 so as to be along a predetermined connection axis (same as the axis ax2 of the second metal pipe 920 in FIG. 14), and then heated in a furnace to thereby form the metal ring.
  • reference numeral 942 in FIG. 14B indicates a portion made of brazing metal.
  • the conventional method for manufacturing a pipe joined body has the following problems.
  • the metal structure of the portion where the fusion welding is performed is referred to as a molten solidification phase due to melting of the metal material constituting each metal pipe at the time of fusion welding. It becomes a heterogeneous structure (a kind of cast structure).
  • the manufacturing method of a pipe joined body using fusion welding has a problem that durability against corrosion and metal fatigue of the produced pipe joined body is lowered due to deterioration of mechanical properties.
  • the brazing atmosphere temperature is 1120 ° C.
  • the total process time is 40 minutes.
  • the temperature of 1120 ° C. is a temperature higher than the austenitizing temperature of steel material (about 800 ° C.), and when it is cooled slowly after being held at the temperature, the metal material constituting each metal pipe is annealed. Therefore, there is a problem in that there is a concern about strength reduction in the manufactured pipe joined body.
  • a brazing metal is set between the first metal pipe and the second metal pipe, and the brazing metal is put into the furnace.
  • metal pipes are temporarily joined by a method such as welding.
  • the manufacturing method of the pipe joined body using brazing in the furnace has a problem that the number of processing steps increases, and the productivity is lowered from the viewpoint of the number of steps and the cost.
  • the above problem is serious because pipe assemblies are mass-produced (for example, producing tens of thousands or more per month).
  • the present invention has been made to solve the above problems, and compared with the conventional method for manufacturing a pipe joined body, the durability of the manufactured pipe joined body against corrosion and the durability against metal fatigue are increased. It is an object of the present invention to provide a method for manufacturing a pipe joined body that can be reduced, can suppress a decrease in strength in the produced pipe joined body, and can increase productivity. Moreover, it aims at providing the pipe joined body manufactured by the said manufacturing method.
  • the second metal pipe is joined along the predetermined connection axis to the outside of the side surface of the first metal pipe, and the internal space of the first metal pipe and the A method of manufacturing a pipe joined body in which an internal space of a second metal pipe is connected, wherein a through-hole formed in a side surface of the first metal pipe, and "formed so as to surround the through-hole; and
  • the first metal pipe having an inclined outer surface inclined at a predetermined angle with respect to the predetermined connection axis, and including a protruding portion protruding outward from a side surface of the first metal pipe;
  • a first step of preparing the second metal pipe having an inner surface end portion in contact with the inclined outer surface of the projecting portion when combining the first metal pipe and the second metal pipe; and the first metal pipe and the first metal pipe 2 metal pipes with the predetermined contact
  • the first metal pipe and the second metal are applied by solid phase diffusion bonding using electrical resistance heat generated by
  • the fluid is divided or separated by joining the second metal pipe to the outside of the side surface of the first metal pipe, as in the conventional method for producing a pipe joined body. It is possible to manufacture a pipe assembly to be joined.
  • the pipe joined body is manufactured using solid-phase diffusion bonding that uses electrical resistance heat generated by energization instead of melt joining, a melt-solidified phase is not generated. Since deterioration of mechanical properties can be prevented, it becomes possible to increase durability against corrosion and durability against metal fatigue in the manufactured pipe joined body, as compared with a method of manufacturing a pipe joined body using fusion joining. .
  • each metal pipe since the pipe assembly is manufactured using the solid phase diffusion bonding, each metal pipe does not need to be exposed to a high temperature for a long time, and each metal pipe is configured. Since it is possible to prevent the metal material from being annealed, it is possible to suppress a decrease in strength in the manufactured pipe joined body as compared with a method for producing a pipe joined body using brazing in the furnace.
  • the manufacturing method of the pipe joined body of the present invention can increase the durability against corrosion and the durability against metal fatigue in the manufactured pipe joined body, as compared with the manufacturing method of the conventional pipe joined body. And it becomes possible to suppress the strength fall in the manufactured pipe joined body, and it becomes the manufacturing method of the pipe joined body which can make productivity high.
  • the manufacturing method of the pipe joined body of the present invention since the first metal pipe having the projecting portion is used, it is possible to easily align when the first metal pipe and the second metal pipe are combined. In addition, it is possible to manufacture a pipe joined body that is relatively strong against a force in a direction orthogonal to a predetermined connection axis.
  • the cleanliness of the bonding surface determines the quality of bonding.
  • the method for manufacturing a pipe joined body of the present invention since pressure is applied between the protrusion and the inner surface end, the surface of the protrusion and the inner end surface can be scraped to clean the bonding surface. It is possible to perform solid phase diffusion bonding under favorable conditions.
  • the method for manufacturing a pipe joined body according to the present invention is highly safe in a harsh environment exposed to vibration and stress for a long period of time, such as automobile parts (airbag system piping). This is a method suitable for the manufacture of parts (pipe joints) used in fields requiring the above.
  • the “side surface” refers to a “side surface” when the side of the first metal pipe having the opening is the front when the central axis of the first metal pipe is a straight line (described later). (See FIG. 1).
  • the central axis of the first metal pipe is not a straight line
  • the tangent of the central axis of the first metal pipe closest to the joint portion between the first metal pipe and the second metal pipe or the place where the joint portion is to be joined is used as a reference. Think about the “side”.
  • connection axis in this specification refers to an attachment axis for the second metal pipe when the central axis of the second metal pipe is a straight line.
  • a “predetermined connection axis” is considered with reference to the tangent line of the center axis of the second metal pipe closest to the inner surface end. Since the “projection” in the present specification is formed so as to surround the through-hole, particularly when the through-hole has a circular shape or a shape close to a circle (for example, an ellipse), it is referred to as an “annular projection”. You can also
  • a through-hole formed in the side surface of the first metal pipe “having an inclined outer surface formed so as to surround the through-hole and inclined at a predetermined angle with respect to the predetermined connection axis; "The first metal pipe having a protrusion protruding outward from the side surface of the first metal pipe” is “formed so as to surround a through-hole opened in the side surface of the first metal pipe; and , "The first metal pipe having an inclined outer surface that is inclined at a predetermined angle with respect to the predetermined connection shaft and having a protruding portion protruding outward from the side surface of the first metal pipe”.
  • any metal material can be used as long as solid phase diffusion bonding using electrical resistance heat generation by energization as an energy source is possible.
  • pipes having a central axis that is a straight line can be suitably used, but pipes having a central axis that is not a straight line (the central axis is a curve, a broken line, or the like) are used. You can also
  • first metal pipe and the second metal pipe those having a circular cross-sectional shape can be suitably used.
  • the cross-sectional shape is other than circular.
  • the present invention can also be applied to (having an elliptical shape, polygonal shape, etc.).
  • the predetermined connection axis may be orthogonal to the central axis of the first metal pipe, may be crossed obliquely, or may not cross.
  • the manufacturing method of the pipe joined body of the present invention may be carried out by preparing one first metal pipe and one second metal pipe (see the embodiment described later).
  • one first metal pipe and a plurality of second metal pipes may be prepared and implemented (see Modification 1 and FIG. 11 described below as an example), or a plurality of first metal pipes.
  • One first metal pipe may be prepared and carried out, or a plurality of first metal pipes and a plurality of second metal pipes may be prepared and carried out.
  • the pipe joined body is formed by joining three or more metal pipes at a time (that is, in one second step). It may be manufactured. However, in this case, from the viewpoint of bonding reliability, the bonding of one first metal pipe and one second metal pipe is sequentially performed (that is, a total of n first metal pipes and second metal pipes). If there is a pipe, it is preferable to manufacture the pipe assembly by repeating the present invention n-1 times).
  • the second step is after combining the first metal pipe and the second metal pipe along the predetermined connection axis and before performing the solid phase diffusion joining,
  • a pressure (preload pressure) smaller than the “pressure applied between the protrusion and the inner surface edge when performing solid phase diffusion bonding” (main pressure) is applied between the protrusion and the inner surface edge (preload). Is more preferable.
  • the preload pressure can be an arbitrary pressure depending on the type of metal pipe used.
  • the energization time is 1 second or less in the second step.
  • the heating time can be sufficiently shortened to prevent the metal material constituting the protruding portion and the inner surface end from being annealed, and as a result, the strength reduction in the vicinity of the joint portion can be sufficiently prevented. Can be suppressed.
  • initial pressurization is performed immediately before energization for the solid phase diffusion bonding, and pressurization is continued from the initial pressurization. It is preferable that the first metal pipe and the second metal pipe are bonded together by the solid phase diffusion bonding.
  • the contact between the protruding portion and the inner surface end can be made good before solid phase diffusion bonding is performed, and a uniform current can flow through the protruding portion and the inner surface end.
  • the pressure applied in the initial pressurization may be the same as, for example, “the pressure applied between the protrusion and the inner surface end when performing solid phase diffusion bonding” (the main pressurization pressure). it can.
  • the initial pressurizing pressure is “When the initial pressurization is performed, the protrusion layer surface and the inner surface end surface are substantially free from scraping of the impurity layer on the surface of the protruding portion and the inner surface end surface. It is preferable that the impurity layer is scraped.
  • the inclined outer surface has an inclination angle with respect to the predetermined connecting axis within a range of 5 to 80 °.
  • the contact angle between the inclined outer surface and the inner surface end can be made appropriate, the scraping of the impurity layer on the surface of the protrusion and the inner surface end can be promoted, and the bonding surface can be further cleaned. Therefore, solid phase diffusion bonding can be performed under better conditions.
  • the reason why the inclination angle of the inclined outer surface with respect to the predetermined connecting axis is in the range of 5 to 80 ° is as follows. That is, when the inclination angle of the inclined outer surface with respect to the predetermined connection axis is smaller than 5 °, the contact angle between the protrusion and the inner surface end is too small, and the joint surface may not be cleaned well. In addition, with respect to the inclined outer surface, when the inclination angle with respect to the predetermined connection axis is larger than 80 °, the contact angle between the protruding portion and the inner surface end is too large, and the joint surface may not be cleaned well. .
  • the lower limit of the tilt angle is more preferably 10 °, and further preferably 15 °. Further, the upper limit of the tilt angle is more preferably 50 °, and further preferably 30 °.
  • the predetermined connection axis is orthogonal to the central axis of the first metal pipe at the position where the through hole is located.
  • the first metal pipe and the second metal pipe can be combined relatively easily and firmly, and a stable pressure can be applied.
  • the first step includes a step of preparing a material pipe that is a material of the first metal pipe, and a step of forming the through hole in the material pipe.
  • various processing methods can be used as long as they can be applied to metal pipes.
  • insert a jig with a slope that matches the inner diameter from one opening of a metal pipe with a through hole insert a sphere larger than the through hole from the other opening, and press-fit the sphere with a rod-shaped body.
  • a method of processing to push up the periphery of the through-hole or a jig with an inclination matching the inner diameter is inserted from one opening of the metal pipe having the through-hole, and the tip can be bent from the other opening
  • die can be mentioned.
  • step of forming the inclined outer surface on the outer surface of the wall-shaped portion and using the wall-shaped portion as the protruding portion various processing methods can be used as long as the inclined outer surface can be formed. For example, pressing using a mold, cutting, and rolling can be mentioned. In addition, when mass production is considered, it is preferable to use press working for the above-mentioned process from the relationship between processing accuracy and processing cost reduction.
  • the “wall-shaped portion” in this specification is “formed so as to surround the through hole and protrudes outward from the side surface of the first metal pipe”. That is, a wall-shaped part does not have an inclined outer surface among the requirements with which a protrusion part is provided.
  • a wall-shaped part does not have an inclined outer surface among the requirements with which a protrusion part is provided.
  • the part which a protrusion part and an inner surface edge part should contact exists on the same plane.
  • a pressing device including a servo motor driven ball screw or an air cylinder can be suitably used.
  • the second step is performed using a pressurizing device including an electrode for performing the solid phase diffusion bonding as the pressurizing device.
  • the pressurizing device is fixed to the housing, a power supply device, a pressing device, a pair of electrodes connected to the power supply device, and the housing.
  • a lower platen connected to one electrode of the pair of electrodes, and an upper platen connected to the other electrode of the pair of electrodes and capable of being pushed down toward the lower platen by the pressing device.
  • the one electrode has a function of fixing the first metal pipe, and the other electrode has a function of fixing the second metal pipe.
  • the second step can be carried out continuously and stably, and as a result, the productivity of the pipe joined body can be further increased.
  • the second metal pipe is uniformly fixed over the entire circumference by the other electrode.
  • the pressurizing device may include the other electrode of the collet chuck shape or the other electrode of the mold shape (on the inner surface side of the separable main body, It is preferable that a recess corresponding to the outer periphery of the two metal pipes is provided.
  • the outer end portion of the first metal pipe is uniformly fixed over the entire circumference by one electrode rather than the presence of the protruding portion.
  • the first metal pipe can be stably fixed, and a relatively uniform current can be passed through the entire first metal pipe, so that solid phase diffusion bonding can be performed more stably.
  • the pressurizing device is, for example, one electrode in the form of a collet chuck (both ends of the first metal pipe). A pair of two electrodes is preferable.) A recess corresponding to the outer periphery of the first metal pipe is provided on one of the mold-like electrodes (the inner surface side of the separable main body). Preferably).
  • the pipe joined body of the present invention is a pipe joined body manufactured by the method for manufacturing a pipe joined body of the present invention, and the second metal pipe has a predetermined connecting shaft outside the side surface of the first metal pipe.
  • the internal space of the first metal pipe and the internal space of the second metal pipe are connected together, and the residual stress at the joint between the first metal pipe and the second metal pipe Is a compressive stress.
  • the pipe joined body of the present invention is a pipe joined body manufactured by the method for manufacturing a pipe joined body of the present invention, the durability against corrosion and the durability against metal fatigue are higher than those of conventional pipe joined bodies. It is possible to achieve this, and it is possible to suppress a decrease in strength, and it is possible to obtain a pipe joined body capable of increasing productivity.
  • the pipe joined body of the present invention is suitable for parts used in fields that require a high degree of safety under severe environments exposed to long-term vibration and stress, such as automobile parts. It will be a thing.
  • the pipe joined body 100 has a tensile strength of the joint portion larger than that of the base metal of the first metal pipe 10 and the second metal pipe 20, and a deformation strength of the joint portion is the first metal pipe 10. And it is larger than the deformation strength of the base material of the second metal pipe 20 (refer to the experimental example described later).
  • the first metal pipe 10 includes a through hole 12 and a protruding portion 14.
  • the first metal pipe 10 is a pipe whose central axis ax1 is a straight line and whose section is circular.
  • the predetermined connection axis ax is orthogonal to the central axis ax1 of the first metal pipe 10.
  • a steel material such as carbon steel can be used.
  • any metal material can be used as long as solid-phase diffusion bonding using electrical resistance heat generation by energization as an energy source is possible.
  • the metal material can be used.
  • the through hole 12 is a hole formed on the side surface of the first metal pipe 10.
  • the protrusion 14 is formed so as to surround the through-hole 12, has an inclined outer surface 16 that is inclined at a predetermined angle with respect to a predetermined connection axis ax, and extends outward from the side surface of the first metal pipe 10. Protruding. A portion where the protruding portion 14 and an inner surface end portion 22 to be described later should contact is on the same plane.
  • the inclined outer surface 16 has an inclination angle with respect to the predetermined connection axis ax within a range of 5 to 80 °, for example, 22 °.
  • the second metal pipe 20 includes an inner surface end 22 that contacts the inclined outer surface 16 of the protrusion 14 when the first metal pipe 10 and the second metal pipe 20 are combined.
  • the second metal pipe 20 is a pipe whose central axis ax2 is a straight line and whose section is circular.
  • a steel material such as carbon steel can be used.
  • any metal material can be used as long as solid phase diffusion bonding using electrical resistance heat generation by energization as an energy source is possible.
  • the metal material can be used.
  • the second step S2 is performed using the pressure device 1000.
  • the pressurizing apparatus 1000 fixes the first metal pipe 10 and the second metal pipe 20 (see FIG. 4), and combines the first metal pipe 10 and the second metal pipe 20 with the projecting portion 14. It is possible to apply pressure between the inner surface end portion 22 (see FIG. 5).
  • the pressurizing apparatus 1000 includes an electrode for performing solid phase diffusion bonding.
  • the pressure device 1000 includes a housing (not shown), a power supply device (not shown), a pressing device (not shown), and a pair of electrodes 1010 connected to the power supply device. , 1012, a lower platen 1020 fixed to the casing and connected to one electrode 1010 of the pair of electrodes 1010, 1012, and connected to the other electrode 1012 of the pair of electrodes 1010, 1012 by a pressing device And an upper platen 1022 that can be pushed down toward the lower platen 1020.
  • One electrode 1010 has a function of fixing the first metal pipe 10
  • the other electrode 1012 has a function of fixing the second metal pipe 20.
  • the pressurizing apparatus 1000 includes one electrode 1010 having a mold shape (a concave portion corresponding to the outer periphery of the first metal pipe is provided on the inner surface side of the separable main body) as one electrode 1010. Further, the pressurizing apparatus 1000 includes the other electrode in a collet chuck shape as the other electrode 1012.
  • the pressurizing device 1000 includes a ball screw or an air cylinder driven by a servo motor as a pressing device.
  • the second step S2 will be described in more detail as follows.
  • the first metal pipe 10 is fixed to one electrode 1010, and the second metal pipe 20 is fixed to the other electrode 1012 (see FIG. 4).
  • the second metal pipe 20 and the other electrode 1012 are pushed down together with the upper platen 1022 by a pressing device, and the second metal pipe 20 is combined with the first metal pipe 10 (see FIG. 5).
  • a pressure (preload pressure) smaller than the “pressure applied between the protrusion 14 and the inner surface end 22 when performing solid phase diffusion bonding” (main pressure) is applied between the protrusion and the inner surface end. Hang in between (preload).
  • initial pressurization is performed immediately before energization for solid phase diffusion bonding. After that, the first metal pipe 10 and the second metal pipe 20 are joined by solid phase diffusion joining using electric resistance heat generated by energization as an energy source while continuing the pressurization from the initial pressurization.
  • one electrode 1010 fixes the outer end portion of the first metal pipe 10 more uniformly over the entire circumference than the protruding portion 14 exists, and the other electrode 1012 The second metal pipe 20 is fixed uniformly over the entire circumference.
  • the preload pressure can be set to an arbitrary pressure depending on the type of metal pipe to be used, and can be, for example, about 1/3 to 1/4 of the main pressure.
  • the pressure applied by the initial pressurization can be the same as the main pressurization pressure, for example.
  • the initial pressurization pressure is “when the initial pressurization is performed, the surface of the protrusion 14 and the inner surface 22 are substantially free from scraping of the impurity layer and the surface of the protrusion 14 and the inner surface after energization.
  • the pressure at which the impurity layer on the surface of the end 22 is scraped occurs.
  • the initial pressurization time can be, for example, about 0.5 seconds.
  • the energization time is set to 1 second or less.
  • the energization time can be set to 0.25 seconds.
  • the fluid is divided by joining the second metal pipe to the outside of the side surface of the first metal pipe, as in the conventional method for producing a pipe joined body.
  • the pipe joined body 100 is manufactured using solid-phase diffusion joining that uses electrical resistance heat generation by energization instead of melt joining, Since it does not occur and the deterioration of mechanical properties can be prevented, it is possible to increase the durability against corrosion and the durability against metal fatigue in the manufactured pipe joint compared to the method of manufacturing a pipe joint using fusion bonding. It becomes.
  • the manufacturing method of the pipe joined body according to the embodiment can increase the durability against corrosion and the durability against metal fatigue in the manufactured pipe joined body, compared to the manufacturing method of the conventional pipe joined body.
  • heating time is shortened enough and a protrusion part and an inner surface edge part are comprised. It is also possible to prevent the metal material from being annealed, and as a result, it is possible to sufficiently suppress a decrease in strength near the joint.
  • the inclined outer surface 16 has an inclination angle with respect to the predetermined connection axis ax within a range of 5 to 80 °, so that the contact between the inclined outer surface and the inner surface end portion is achieved. Since the angle is appropriate, the removal of the impurity layer on the surface of the protruding portion and the inner surface end portion is promoted, and the bonding surface can be further cleaned, so that solid phase diffusion bonding can be performed under better conditions. .
  • 1st process S1 includes the process of preparing the raw material pipe used as the raw material of the 1st metal pipe 10, and the process of forming the through-hole 12 in a raw material pipe. , By performing burring from the inside of the material pipe to the outside, forming a wall-like portion that is the base of the protruding portion 14 around the through-hole 12, and forming the inclined outer surface 16 on the outer surface of the wall-like portion Then, since the step of forming the wall-shaped portion as the protruding portion 14 is included in this order, the protruding portion can be formed on an arbitrary metal pipe to prepare the first metal pipe.
  • the protrusion 14 to be formed has a portion where the protrusion 14 and the inner surface end 22 should be in contact with each other on the same plane. It becomes possible to save the trouble of processing the first metal pipe in accordance with the side surface.
  • 2nd process S2 combines the 1st metal pipe 10 and the 2nd metal pipe 20, and applies a pressure between the protrusion part 14 and the inner surface edge part 22.
  • FIG. Since it is performed using the pressurizing apparatus 1000 that can be applied, solid phase diffusion bonding can be performed while maintaining a stable state in which pressure is applied between the first metal pipe and the second metal pipe.
  • the pressurizing device 1000 includes a housing, a power supply device, a pressing device, a pair of electrodes 1010 and 1012, a lower platen, and an upper platen.
  • One electrode 1010 has a function of fixing the first metal pipe 10
  • the other electrode 1012 has a function of fixing the second metal pipe 20. Therefore, the second process is continuously and stably performed. As a result, it becomes possible to further increase the productivity of the pipe joined body.
  • the second metal pipe 20 is uniformly fixed over the entire circumference by the other electrode 1012, so that the second metal pipe is stably fixed, In addition, a relatively uniform current is allowed to flow through the entire second metal pipe, so that more stable solid phase diffusion bonding can be performed.
  • the method for manufacturing a pipe assembly according to the embodiment is highly safe in a harsh environment exposed to vibration and stress for a long period of time, such as automobile parts (airbag system piping). This is a method suitable for manufacturing parts (pipe joints) used in fields that require high performance.
  • the pipe joined body 100 according to the embodiment is a pipe joined body manufactured by the method for manufacturing a pipe joined body according to the embodiment, and the stress remaining in the joint portion between the first metal pipe 10 and the second metal pipe 20. Because of the compressive stress, it is possible to increase the durability against corrosion and the durability against metal fatigue as compared with the conventional pipe joined body, and it is possible to suppress the strength reduction and to produce It becomes a pipe joined body which can raise the property.
  • the tensile strength of the joint portion is larger than the tensile strength of the base metal of the first metal pipe 10 and the second metal pipe 20, and the deformation strength of the joint portion is the first. Since it is larger than the deformation strength of the base metal of the first metal pipe 10 and the second metal pipe 20, it is possible to sufficiently increase the reliability in a harsh environment exposed to long-term vibration and stress.
  • FIG. 7 is a photograph showing a pipe joined body 100a according to an experimental example.
  • Fig.7 (a) is the photograph which copied the pipe joined body 100a from the side surface side
  • FIG.7 (b) is the photograph which copied the pipe joined body 100a from the diagonal.
  • FIG. 8 is a diagram for explaining the state of the joint portion of the pipe joined body 100a according to the experimental example.
  • FIG. 8 (a) is a photograph of the pipe joined body 100a cut and the vicinity of the joint portion is copied.
  • FIG. 8 (b) is an enlarged view of a part within the range indicated by the symbol A in FIG. 8 (a).
  • FIG. 8C is a cross-sectional view for explaining FIG. 8B.
  • FIG. 8B is a photograph created by combining a plurality of photographs.
  • FIG. 9 is a diagram for explaining a result of an experiment regarding a tensile strength of the pipe joined body 100a according to the experimental example.
  • FIG. 9A is a photograph of the pipe joined body 100a after the tensile test
  • FIG. 9B is a graph (stress strain diagram) showing the result of the tensile test.
  • the vertical axis of the graph shown in FIG. 9B indicates the tensile load (unit: kN), and the horizontal axis indicates the displacement (unit: mm).
  • FIG. 10 is a diagram for explaining the result of the experiment regarding the residual stress of the pipe joined body 100a according to the experimental example.
  • FIG. 10A is a diagram for explaining a method for measuring residual stress
  • FIG. 10B is a graph showing the result of the residual stress test.
  • the vertical axis of the graph shown in FIG. 10B indicates the residual stress (unit: MPa), and the horizontal axis indicates the measurement position.
  • the pipe joined body of the present invention (pipe joined body 100a according to the experimental example) was actually manufactured by the method for manufacturing a pipe joined body of the present invention, and the effect of the present invention was confirmed.
  • a method for manufacturing a pipe joined body according to an experimental example will be described.
  • the manufacturing method of the pipe joined body according to the experimental example is basically the same as the manufacturing method of the pipe joined body according to the embodiment. For this reason, only specific items are described in the experimental examples.
  • the pipe joined body 100a is manufactured from the first metal pipe 10a and the second metal pipe 20a.
  • STKM-12 was used as the metal material constituting the first metal pipe 10a and the second metal pipe 20a.
  • the metal pipe (material pipe) and the second metal pipe 20a that are the basis of the first metal pipe 10a those having an outer diameter of 18.0 mm and an inner diameter of 14.8 mm were used.
  • the maximum diameter of the protrusion in the first metal pipe 10a was 17.4 mm, and the inclination angle of the inclined outer surface with respect to the predetermined connection axis was 22 °.
  • the length of each metal pipe is not important in this experiment and is not strictly aligned, it is about 200 mm for the first metal pipe 10a and about 60 mm for the second metal pipe 20a.
  • the pipe joined body can be produced by the method for producing a pipe joined body of the present invention.
  • the fine gaps shown in FIG. 8B are the protrusions when the first metal pipe 10a and the second metal pipe 20a are assembled. This is a gap remaining in a place where the inner surface end portion is not in contact (a place where the joining is not originally intended; see reference numerals B and D in FIG. 8C). For this reason, the strength or the like of the joint is not impaired by the fine gap.
  • the coordinate system was set with the second metal pipe side (upper side) positive from the reference point and the first metal pipe side (lower side) negative.
  • the stress toward the second metal pipe remains on the first metal pipe side
  • the stress toward the first metal pipe side remains on the second metal pipe side. It was confirmed that That is, it was confirmed that the stress remaining in the joint portion of the pipe joined body 100a (the pipe joined body according to the present invention) is a compressive stress.
  • first metal pipes and a single first metal pipe may be prepared and executed, or a plurality of first metal pipes and a plurality of second metal pipes may be prepared and executed.
  • the pipe joined body is formed by joining three or more metal pipes at a time (that is, in one second step). It may be manufactured. However, in this case, from the viewpoint of bonding reliability, the bonding of one first metal pipe and one second metal pipe is sequentially performed (that is, a total of n first metal pipes and second metal pipes). If there is a pipe, it is preferable to manufacture the pipe assembly by repeating the present invention n-1 times).
  • FIG. 12 is a view for explaining the pipe joined body 104 according to the second modification.
  • 12A is a perspective view of the pipe joined body 104
  • FIG. 12B is a cross-sectional view corresponding to FIG. 1D of the pipe joined body 104
  • FIG. 12C is a first metal pipe.
  • FIG. 12D is a cross-sectional view corresponding to FIG. 1D of the first metal pipe 50.
  • the manufacturing method of the pipe joined body according to Modification 2 is basically the same as the manufacturing method of the pipe joined body according to the embodiment, but the configuration of the first metal pipe prepared in the preparation process is different.
  • the 1st metal pipe 50 in the modification 2 is provided with the receiving surface 58 which receives the end surface of the side with the inner surface edge part 22 of the 2nd metal pipe 20, as shown in FIG.12 (c) and (d).
  • Reference numeral 50i denotes an internal space of the first metal pipe 50
  • reference numeral 52 denotes a through hole
  • reference numeral 54 denotes a protruding portion
  • reference numeral 56 denotes an inclined outer surface. is there.
  • the receiving surface 58 has a gap between the receiving surface 58 and the end surface of the second metal pipe 20 when the first metal pipe 50 and the second metal pipe 20 are combined.
  • the surface 58 is formed at a position where the end surface is in contact.

Abstract

This method for manufacturing a pipe joint is a method for manufacturing a pipe joint wherein a second metal pipe (20) is joined to an outside side surface of a first metal pipe (10). The method includes, in this order, a first step for preparing the first metal pipe (10), which is provided with a through hole (12) and a protruding part that "is formed so as to surround the through hole (12), has an inclined outer surface, and protrudes toward the outside from the side surface of the first metal pipe (10)", and the second metal pipe (20), which is provided with an inside surface end part, and a second step for solid state diffusion bonding of the metal pipes by electrifying while applying pressure between the protruding part and the inside surface end part. Thereby, a pipe joint with residual compressive stress in the joint part can be manufactured. Thus, it is possible to increase the durability for corrosion and the durability for metal fatigue of the pipe joint that is manufactured, suppress reductions in strength of the manufactured pipe joint, and increase productivity.

Description

パイプ接合体の製造方法及びパイプ接合体Method for manufacturing pipe joined body and pipe joined body
 本発明は、パイプ接合体の製造方法及びパイプ接合体に関する。 The present invention relates to a method for manufacturing a pipe joined body and a pipe joined body.
 本明細書において、「パイプ接合体」とは「第1金属パイプの側面外方に対して第2金属パイプが所定の接続軸に沿って接合され、かつ、第1金属パイプの内部空間と第2金属パイプの内部空間とが連結されているもの」のことをいう。代表例として、後述する実施形態に示すように、第1金属パイプと第2金属パイプとをT字型に接合したもの(図1参照。)を挙げることができる。 In this specification, the “pipe joined body” means “the second metal pipe is joined to the outside of the side surface of the first metal pipe along a predetermined connection axis, and the inner space of the first metal pipe and the first metal pipe are joined. It means that the internal space of two metal pipes is connected. As a typical example, as shown in an embodiment to be described later, a first metal pipe and a second metal pipe joined in a T shape (see FIG. 1) can be given.
 上記したパイプ接合体は、主に流体を分流又は合流させるため、配管の一部として様々な分野で用いられている。具体例としては、主に自動車に用いられるエアバッグシステムを挙げることができる。 The above-described pipe joined body is used in various fields as a part of piping in order to mainly divide or join fluids. As a specific example, there can be mentioned an airbag system mainly used for automobiles.
 自動車の安全技術の1つとして、衝突事故発生時に乗員の被害を軽減することを目的とするパッシブセーフティー技術がある。上記したエアバッグシステムは、シートベルトともにパッシブセーフティー技術の中核をなす技術である。エアバッグの種類としては、前方衝突に対応する運転席及び助手席エアバッグの他、側面衝突に対応するサイドエアバッグ及びカーテンシールドエアバッグや、下肢部を保護するニーエアバッグ、後席の乗員のための後席エアバッグ、追突に対応するリアウィンドーカーテンシールドエアバッグ等があり、その進歩は目覚しいものがある。 As one of the safety technologies for automobiles, there is passive safety technology that aims to reduce the damage to passengers when a collision occurs. The airbag system described above is the core technology of passive safety technology together with the seat belt. The types of airbags include driver and passenger airbags corresponding to frontal collisions, side airbags and curtain shield airbags corresponding to side collisions, knee airbags protecting the lower limbs, and rear passengers. There are rear seat airbags, rear window curtain shield airbags for rear-end collisions, etc., and the progress is remarkable.
 エアバッグシステム作動時には、インフレーター(充填機、エアポンプの一種)で火薬を燃焼させてガスを発生させ、当該ガスによりエアバッグを0.05秒単位で膨らませる。したがって、ガスによる高い圧力に耐えるため、エアバッグシステムに用いる配管には高い強度が要求される。 When the airbag system is in operation, the gunpowder is burned with an inflator (a filling machine or a type of air pump) to generate gas, and the airbag is inflated with the gas in units of 0.05 seconds. Therefore, in order to withstand the high pressure caused by gas, the piping used in the airbag system is required to have high strength.
 配管に用いるパイプを高い強度で接合するための方法としては、例えば、固相拡散接合を用いるものが知られている(例えば、特許文献1参照。)。しかしながら、当該方法はある金属パイプの側面外方に他の金属パイプを接合することは想定していないため、当該方法を用いて本明細書でいうパイプ接合体を製造することは困難である。 As a method for joining pipes used for piping with high strength, for example, a method using solid phase diffusion joining is known (see, for example, Patent Document 1). However, since this method does not assume that another metal pipe is joined to the outside of the side surface of a certain metal pipe, it is difficult to manufacture a pipe joined body as used in this specification by using this method.
 そこで、従来、パイプ接合体の製造方法として、溶融溶接を用いる方法や炉中ロウ付けを用いる方法が広く用いられている。
 図13及び図14は、従来のパイプ接合体の製造方法を説明するために示す図である。図13(a)及び図13(b)は溶融溶接を用いる方法の各工程図であり、図14(a)及び図14(b)は炉中ロウ付けを用いる方法の各工程図である。
Therefore, conventionally, a method using melt welding or a method using brazing in a furnace is widely used as a method for manufacturing a pipe joined body.
13 and 14 are views for explaining a conventional method of manufacturing a pipe joined body. FIGS. 13A and 13B are process diagrams of a method using fusion welding, and FIGS. 14A and 14B are process diagrams of a method using brazing in a furnace.
 溶融溶接を用いるパイプ接合体の製造方法は、図13に示すように、第1金属パイプ910側面に形成された貫通孔912を備える第1金属パイプ910(例えば、炭素鋼からなるもの)と、貫通孔912近辺の形状に対応した接続端部922を備える第2金属パイプ920(例えば、炭素鋼からなるからなるもの)とを準備する工程と(図13(a)参照。)、第2金属パイプ920を所定の接続軸(図13においては、第2金属パイプ920の軸ax2と同じ。)に沿うように第1金属パイプ910と組み合わせた後、溶融溶接により第1金属パイプ910及び第2金属パイプ920を接合する工程(図13(b)参照。)とをこの順序で含み、パイプ接合体900を製造する。なお、図13(b)の符号930で示すのは、溶融溶接を行った部分である。 As shown in FIG. 13, the manufacturing method of the pipe joined body using fusion welding includes a first metal pipe 910 (for example, made of carbon steel) including a through hole 912 formed on the side surface of the first metal pipe 910, A step of preparing a second metal pipe 920 (for example, made of carbon steel) provided with a connecting end 922 corresponding to the shape in the vicinity of the through-hole 912 (see FIG. 13A), the second metal. After the pipe 920 is combined with the first metal pipe 910 along a predetermined connection axis (in FIG. 13, the same as the axis ax2 of the second metal pipe 920), the first metal pipe 910 and the second metal pipe 910 and the second metal pipe 910 are joined by fusion welding. The process of joining the metal pipes 920 (see FIG. 13B) is performed in this order, and the pipe joined body 900 is manufactured. In addition, what is shown with the code | symbol 930 of FIG.13 (b) is the part which performed the fusion welding.
 炉中ロウ付けを用いるパイプ接合体の製造方法は、図14に示すように、第1金属パイプ910側面に形成された貫通孔912を備える第1金属パイプ910と、貫通孔912近辺の形状に対応した接続端部922を備える第2金属パイプ920と、ロウ付け用の金属リング940(例えば、純銅からなるもの)を準備する工程(図14(a)参照。)と、第2金属パイプ920及び金属リング940を所定の接続軸(図14においても、第2金属パイプ920の軸ax2と同じ。)に沿うように第1金属パイプ910と組み合わせた後、炉中で加熱することにより金属リング940を熔かし、第1金属パイプ910及び第2金属パイプ920を接合する工程とをこの順序で含み、パイプ接合体902を製造する。なお、図14(b)の符号942で示すのは、ロウ付け用の金属からなる部分である。 As shown in FIG. 14, the method for manufacturing a pipe assembly using brazing in the furnace has a first metal pipe 910 having a through hole 912 formed on the side surface of the first metal pipe 910 and a shape in the vicinity of the through hole 912. A step of preparing a second metal pipe 920 having a corresponding connection end 922 and a metal ring 940 for brazing (for example, made of pure copper) (see FIG. 14A), and the second metal pipe 920 In addition, the metal ring 940 is combined with the first metal pipe 910 so as to be along a predetermined connection axis (same as the axis ax2 of the second metal pipe 920 in FIG. 14), and then heated in a furnace to thereby form the metal ring. 940 is melted, and the process of joining the 1st metal pipe 910 and the 2nd metal pipe 920 in this order is included, and the pipe joined body 902 is manufactured. Note that reference numeral 942 in FIG. 14B indicates a portion made of brazing metal.
 従来のパイプ接合体の製造方法によれば、第1金属パイプの側面外方に第2金属パイプを接合することにより、流体を分流又は合流させるパイプ接合体を製造することが可能となる。 According to the conventional method of manufacturing a pipe joined body, it is possible to produce a pipe joined body that splits or joins fluids by joining the second metal pipe to the outside of the side surface of the first metal pipe.
特許第4440229号公報Japanese Patent No. 4440229
 しかし、従来のパイプ接合体の製造方法には、以下のような問題がある。
 まず、溶融溶接を用いるパイプ接合体の製造方法では、溶融溶接の際に各金属パイプを構成する金属材料を溶融させることに起因して、溶融溶接を行った部分の金属組織が溶融凝固相といわれる不均質な組織(一種の鋳造組織)となってしまう。このため、溶融溶接を用いるパイプ接合体の製造方法には、機械的性質の劣化により、製造したパイプ接合体の腐食に対する耐久性及び金属疲労に対する耐久性が低くなってしまうという問題がある。
However, the conventional method for manufacturing a pipe joined body has the following problems.
First, in the manufacturing method of a pipe joined body using fusion welding, the metal structure of the portion where the fusion welding is performed is referred to as a molten solidification phase due to melting of the metal material constituting each metal pipe at the time of fusion welding. It becomes a heterogeneous structure (a kind of cast structure). For this reason, the manufacturing method of a pipe joined body using fusion welding has a problem that durability against corrosion and metal fatigue of the produced pipe joined body is lowered due to deterioration of mechanical properties.
 また、溶融溶接を用いるパイプ接合体の製造方法では、溶融溶接を行った部分に引張応力が残留するため、この観点からも、製造したパイプ接合体の腐食に対する耐久性及び金属疲労に対する耐久性が低くなってしまうという問題がある。パイプ接合体を、自動車部品のように長期間の振動及び応力にさらされる過酷な環境下で、かつ、高度な安全性を要求される分野に用いる場合、上記の問題は一層深刻となる。 In addition, in the method for manufacturing a pipe joined body using fusion welding, tensile stress remains in the portion where the fusion welding is performed. From this point of view, the durability of the produced pipe joined body against corrosion and durability against metal fatigue can be obtained. There is a problem of being lowered. The above problem becomes more serious when the pipe joint is used in a severe environment exposed to long-term vibration and stress such as automobile parts and in a field requiring high safety.
 次に、炉中ロウ付けを用いるパイプ接合体の製造方法では、ロウ付け用の金属を熔かすために各金属パイプの全体を長時間高温にさらす必要がある。具体的には、ロウ付け用の金属が銅である場合には、ロウ付雰囲気温度を1120℃とし、工程時間合計を40分とすることを例示できる。1120℃という温度は、鉄鋼材料のオーステナイト化温度(約800℃)よりも高い温度であり、当該温度に保持された後ゆっくり冷却された場合には各金属パイプを構成する金属材料が焼き鈍し状態となってしまい、製造したパイプ接合体における強度低下の懸念があるという問題がある。 Next, in the method of manufacturing a pipe assembly using brazing in a furnace, it is necessary to expose each metal pipe to a high temperature for a long time in order to melt the brazing metal. Specifically, when the brazing metal is copper, the brazing atmosphere temperature is 1120 ° C., and the total process time is 40 minutes. The temperature of 1120 ° C. is a temperature higher than the austenitizing temperature of steel material (about 800 ° C.), and when it is cooled slowly after being held at the temperature, the metal material constituting each metal pipe is annealed. Therefore, there is a problem in that there is a concern about strength reduction in the manufactured pipe joined body.
 また、炉中ロウ付けを用いるパイプ接合体の製造方法では、第1金属パイプと第2金属パイプとの間にロウ付け用の金属をセットした状態で炉に投入するが、ロウ付け前にディグ溶接等の方法で金属パイプを仮接合することが多い。このため、炉中ロウ付けを用いるパイプ接合体の製造方法には、加工工数が多くなってしまい、工程数の観点及びコストの観点から、生産性が低下するという問題もある。パイプ接合体は大量生産(例えば、月に数万点以上生産)するものであるため、上記の問題は深刻である。 In addition, in the method of manufacturing a pipe assembly using brazing in the furnace, a brazing metal is set between the first metal pipe and the second metal pipe, and the brazing metal is put into the furnace. In many cases, metal pipes are temporarily joined by a method such as welding. For this reason, the manufacturing method of the pipe joined body using brazing in the furnace has a problem that the number of processing steps increases, and the productivity is lowered from the viewpoint of the number of steps and the cost. The above problem is serious because pipe assemblies are mass-produced (for example, producing tens of thousands or more per month).
 そこで、本発明は上記の問題を解決するためになされたものであり、従来のパイプ接合体の製造方法と比較して、製造したパイプ接合体における腐食に対する耐久性及び金属疲労に対する耐久性を高くすることが可能となり、かつ、製造したパイプ接合体における強度低下を抑制することが可能となり、かつ、生産性を高くすることが可能なパイプ接合体の製造方法を提供することを目的とする。また、上記製造方法により製造されたパイプ接合体を提供することを目的とする。 Therefore, the present invention has been made to solve the above problems, and compared with the conventional method for manufacturing a pipe joined body, the durability of the manufactured pipe joined body against corrosion and the durability against metal fatigue are increased. It is an object of the present invention to provide a method for manufacturing a pipe joined body that can be reduced, can suppress a decrease in strength in the produced pipe joined body, and can increase productivity. Moreover, it aims at providing the pipe joined body manufactured by the said manufacturing method.
[1]本発明のパイプ接合体の製造方法は、第1金属パイプの側面外方に第2金属パイプが所定の接続軸に沿って接合され、かつ、前記第1金属パイプの内部空間と前記第2金属パイプの内部空間とが連結されているパイプ接合体の製造方法であって、前記第1金属パイプ側面に形成された貫通孔と、「前記貫通孔を囲うように形成され、かつ、前記所定の接続軸に対して所定の角度で傾斜する傾斜外面を有し、かつ、前記第1金属パイプ側面から外側に向かって突出する」突出部とを備える前記第1金属パイプと、前記第1金属パイプと前記第2金属パイプとを組み合わせたとき前記突出部の前記傾斜外面に接する内面端部を備える前記第2金属パイプとを準備する第1工程と、前記第1金属パイプと前記第2金属パイプとを前記所定の接続軸に沿って組み合わせた後、前記突出部と前記内面端部との間に圧力を掛けながら、通電による電気抵抗発熱をエネルギー源とする固相拡散接合により前記第1金属パイプ及び前記第2金属パイプを接合する第2工程とをこの順序で含むことを特徴とする。 [1] In the method for manufacturing a pipe joined body according to the present invention, the second metal pipe is joined along the predetermined connection axis to the outside of the side surface of the first metal pipe, and the internal space of the first metal pipe and the A method of manufacturing a pipe joined body in which an internal space of a second metal pipe is connected, wherein a through-hole formed in a side surface of the first metal pipe, and "formed so as to surround the through-hole; and The first metal pipe having an inclined outer surface inclined at a predetermined angle with respect to the predetermined connection axis, and including a protruding portion protruding outward from a side surface of the first metal pipe; A first step of preparing the second metal pipe having an inner surface end portion in contact with the inclined outer surface of the projecting portion when combining the first metal pipe and the second metal pipe; and the first metal pipe and the first metal pipe 2 metal pipes with the predetermined contact After being combined along the axis, the first metal pipe and the second metal are applied by solid phase diffusion bonding using electrical resistance heat generated by energization as an energy source while applying pressure between the protrusion and the inner surface end. And a second step of joining the pipes in this order.
 本発明のパイプ接合体の製造方法によれば、従来のパイプ接合体の製造方法と同様に、第1金属パイプの側面外方に対して第2金属パイプを接合することにより、流体を分流又は合流させるパイプ接合体を製造することが可能となる。 According to the method for manufacturing a pipe joined body of the present invention, the fluid is divided or separated by joining the second metal pipe to the outside of the side surface of the first metal pipe, as in the conventional method for producing a pipe joined body. It is possible to manufacture a pipe assembly to be joined.
 また、本発明のパイプ接合体の製造方法によれば、溶融接合ではなく通電による電気抵抗発熱をエネルギー源とする固相拡散接合を用いてパイプ接合体を製造するため、溶融凝固相が発生せず機械的性質の劣化を防止できることから、溶融接合を用いるパイプ接合体の製造方法と比較して、製造したパイプ接合体における腐食に対する耐久性及び金属疲労に対する耐久性を高くすることが可能となる。 In addition, according to the method for manufacturing a pipe joined body of the present invention, since the pipe joined body is manufactured using solid-phase diffusion bonding that uses electrical resistance heat generated by energization instead of melt joining, a melt-solidified phase is not generated. Since deterioration of mechanical properties can be prevented, it becomes possible to increase durability against corrosion and durability against metal fatigue in the manufactured pipe joined body, as compared with a method of manufacturing a pipe joined body using fusion joining. .
 また、本発明のパイプ接合体の製造方法によれば、上記固相拡散接合を用いてパイプ接合体を製造するため、接合部には圧縮応力が残留することとなり(後述する実験例参照。)、この観点からも、溶融接合を用いるパイプ接合体の製造方法と比較して、製造したパイプ接合体における腐食に対する耐久性及び金属疲労に対する耐久性を高くすることが可能となる。 Further, according to the method for manufacturing a pipe joined body of the present invention, since the pipe joined body is manufactured using the solid phase diffusion joining, compressive stress remains in the joined portion (see the experimental example described later). Also from this viewpoint, it is possible to increase the durability against corrosion and the durability against metal fatigue in the manufactured pipe joined body, as compared with the method for producing a pipe joined body using fusion joining.
 また、本発明のパイプ接合体の製造方法によれば、上記固相拡散接合を用いてパイプ接合体を製造するため、各金属パイプを長時間高温にさらす必要がなく、各金属パイプを構成する金属材料が焼き鈍し状態となることを防止できることから、炉中ロウ付けを用いるパイプ接合体の製造方法と比較して、製造したパイプ接合体における強度低下を抑制することが可能となる。 In addition, according to the method for manufacturing a pipe assembly of the present invention, since the pipe assembly is manufactured using the solid phase diffusion bonding, each metal pipe does not need to be exposed to a high temperature for a long time, and each metal pipe is configured. Since it is possible to prevent the metal material from being annealed, it is possible to suppress a decrease in strength in the manufactured pipe joined body as compared with a method for producing a pipe joined body using brazing in the furnace.
 また、本発明のパイプ接合体の製造方法によれば、ロウ付け用の金属の準備や金属パイプの仮接合の必要がないため、炉中ロウ付けを用いるパイプ接合体と比較して、工程数の観点及びコストの観点から、生産性を高くすることが可能となる。 In addition, according to the method of manufacturing a pipe joined body of the present invention, since there is no need to prepare a metal for brazing or temporary joining of a metal pipe, the number of processes is compared with a pipe joined body using brazing in a furnace. From the viewpoint of the above and the cost, it becomes possible to increase the productivity.
 このため、本発明のパイプ接合体の製造方法は、従来のパイプ接合体の製造方法と比較して、製造したパイプ接合体における腐食に対する耐久性及び金属疲労に対する耐久性を高くすることが可能となり、かつ、製造したパイプ接合体における強度低下を抑制することが可能となり、かつ、生産性を高くすることが可能なパイプ接合体の製造方法となる。 For this reason, the manufacturing method of the pipe joined body of the present invention can increase the durability against corrosion and the durability against metal fatigue in the manufactured pipe joined body, as compared with the manufacturing method of the conventional pipe joined body. And it becomes possible to suppress the strength fall in the manufactured pipe joined body, and it becomes the manufacturing method of the pipe joined body which can make productivity high.
 また、本発明のパイプ接合体の製造方法によれば、突出部を備える第1金属パイプを用いるため、第1金属パイプと第2金属パイプとを組み合わせるときに容易に位置合わせすることが可能となり、かつ、所定の接続軸と直交する方向の力に対して比較的強いパイプ接合体を製造することが可能となる。 Moreover, according to the manufacturing method of the pipe joined body of the present invention, since the first metal pipe having the projecting portion is used, it is possible to easily align when the first metal pipe and the second metal pipe are combined. In addition, it is possible to manufacture a pipe joined body that is relatively strong against a force in a direction orthogonal to a predetermined connection axis.
 ところで、固相拡散接合においては、接合面の清浄さが接合の良否を左右する。本発明のパイプ接合体の製造方法によれば、突出部と内面端部との間に圧力を掛けるため、突出部表面及び内面端部表面の不純物質層を削って接合面を清浄化できることから、良好な条件で固相拡散接合を行うことが可能となる。 Incidentally, in solid phase diffusion bonding, the cleanliness of the bonding surface determines the quality of bonding. According to the method for manufacturing a pipe joined body of the present invention, since pressure is applied between the protrusion and the inner surface end, the surface of the protrusion and the inner end surface can be scraped to clean the bonding surface. It is possible to perform solid phase diffusion bonding under favorable conditions.
 以上の効果により、本発明のパイプ接合体の製造方法は、自動車部品(エアバッグシステムの配管)のように、長期間の振動及び応力にさらされる過酷な環境下で、かつ、高度な安全性を要求される分野に用いる部品(パイプ接合体)の製造に適する方法となる。 Due to the above effects, the method for manufacturing a pipe joined body according to the present invention is highly safe in a harsh environment exposed to vibration and stress for a long period of time, such as automobile parts (airbag system piping). This is a method suitable for the manufacture of parts (pipe joints) used in fields requiring the above.
 本明細書における「側面」とは、第1金属パイプの中心軸が直線であるとしたとき、第1金属パイプの開口部がある側を正面とした場合における「側面」のことをいう(後述する図1参照。)。第1金属パイプの中心軸が直線でない場合には、第1金属パイプと第2金属パイプとの接合部又はこれから接合部となるべき場所に最も近い第1金属パイプの中心軸の接線を基準として「側面」を考える。 In the present specification, the “side surface” refers to a “side surface” when the side of the first metal pipe having the opening is the front when the central axis of the first metal pipe is a straight line (described later). (See FIG. 1). When the central axis of the first metal pipe is not a straight line, the tangent of the central axis of the first metal pipe closest to the joint portion between the first metal pipe and the second metal pipe or the place where the joint portion is to be joined is used as a reference. Think about the “side”.
 本明細書における「所定の接続軸」とは、第2金属パイプの中心軸が直線であるとしたときの第2金属パイプの取り付け軸のことをいう。第2金属パイプの中心軸が直線でない場合には、内面端部に最も近い第2金属パイプの中心軸の接線を基準として「所定の接続軸」を考える。
 本明細書における「突出部」は、貫通孔を囲うように形成されているため、特に貫通孔が円形又は円形に近い形(例えば、楕円形)からなる場合には、「環状突出部」ということもできる。
The “predetermined connection axis” in this specification refers to an attachment axis for the second metal pipe when the central axis of the second metal pipe is a straight line. When the center axis of the second metal pipe is not a straight line, a “predetermined connection axis” is considered with reference to the tangent line of the center axis of the second metal pipe closest to the inner surface end.
Since the “projection” in the present specification is formed so as to surround the through-hole, particularly when the through-hole has a circular shape or a shape close to a circle (for example, an ellipse), it is referred to as an “annular projection”. You can also
 「前記第1金属パイプ側面に形成された貫通孔と、『前記貫通孔を囲うように形成され、かつ、前記所定の接続軸に対して所定の角度で傾斜する傾斜外面を有し、かつ、前記第1金属パイプ側面から外側に向かって突出する』突出部とを備える前記第1金属パイプ」は、「『前記第1金属パイプの側面に開口された貫通孔を囲うように形成され、かつ、前記所定の接続軸に対して所定の角度で傾斜する傾斜外面を有し、かつ、前記第1金属パイプ側面から外側に向かって突出する』突出部を備える前記第1金属パイプ」と表現することもできる。 “A through-hole formed in the side surface of the first metal pipe,” “having an inclined outer surface formed so as to surround the through-hole and inclined at a predetermined angle with respect to the predetermined connection axis; "The first metal pipe having a protrusion protruding outward from the side surface of the first metal pipe" is "formed so as to surround a through-hole opened in the side surface of the first metal pipe; and , "The first metal pipe having an inclined outer surface that is inclined at a predetermined angle with respect to the predetermined connection shaft and having a protruding portion protruding outward from the side surface of the first metal pipe". You can also
 「電気抵抗発熱」は、「ジュール熱」と同じ意味である。
 「エネルギー源」は、「熱源」と同じ意味である。
“Electric resistance heat generation” has the same meaning as “Joule heat”.
“Energy source” has the same meaning as “heat source”.
 第1金属パイプ及び第2金属パイプを構成する金属材料としては、通電による電気抵抗発熱をエネルギー源とする固相拡散接合が可能であれば、任意の金属材料を用いることができる。
 第1金属パイプ及び第2金属パイプとしては、中心軸が直線であるものを好適に用いることができるが、中心軸が直線でないもの(中心軸が曲線や折れ線等になっているもの)を用いることもできる。
As a metal material constituting the first metal pipe and the second metal pipe, any metal material can be used as long as solid phase diffusion bonding using electrical resistance heat generation by energization as an energy source is possible.
As the first metal pipe and the second metal pipe, pipes having a central axis that is a straight line can be suitably used, but pipes having a central axis that is not a straight line (the central axis is a curve, a broken line, or the like) are used. You can also
 第1金属パイプ及び第2金属パイプとしては、断面形状が円形のものを好適に用いることができるが、適切な形状の突出部を形成することが可能であれば、断面形状が円形以外のもの(断面形状が楕円形や多角形等のもの)にも本発明を適用することができる。
 所定の接続軸は、第1金属パイプの中心軸と直交していてもよいし、斜めに交わっていてもよいし、交わっていなくてもよい。
As the first metal pipe and the second metal pipe, those having a circular cross-sectional shape can be suitably used. However, as long as it is possible to form a protrusion having an appropriate shape, the cross-sectional shape is other than circular. The present invention can also be applied to (having an elliptical shape, polygonal shape, etc.).
The predetermined connection axis may be orthogonal to the central axis of the first metal pipe, may be crossed obliquely, or may not cross.
 本発明のパイプ接合体の製造方法は、1本の第1金属パイプと1本の第2金属パイプとを準備して実施してもよい(後述する実施形態参照。)。また、1本の第1金属パイプと複数の第2金属パイプとを準備して実施してもよいし(一例として、後述する変形例1及び図11参照。)、複数の第1金属パイプと1本の第1金属パイプとを準備して実施してもよいし、複数の第1金属パイプと複数の第2金属パイプとを準備して実施してもよい。 The manufacturing method of the pipe joined body of the present invention may be carried out by preparing one first metal pipe and one second metal pipe (see the embodiment described later). In addition, one first metal pipe and a plurality of second metal pipes may be prepared and implemented (see Modification 1 and FIG. 11 described below as an example), or a plurality of first metal pipes. One first metal pipe may be prepared and carried out, or a plurality of first metal pipes and a plurality of second metal pipes may be prepared and carried out.
 第1金属パイプ及び第2金属パイプの一方又は両方が複数である場合には、3本以上の金属パイプの接合を一度に(つまり、1回の第2工程で)行うことによりパイプ接合体を製造してもよい。しかし、当該場合には、接合の確実性の観点から、1本の第1金属パイプと1本の第2金属パイプとの接合を順次(つまり、合計n本の第1金属パイプ及び第2金属パイプがある場合には、本発明をn-1回繰り返して)行うことによりパイプ接合体を製造することが好ましい。 When one or both of the first metal pipe and the second metal pipe are plural, the pipe joined body is formed by joining three or more metal pipes at a time (that is, in one second step). It may be manufactured. However, in this case, from the viewpoint of bonding reliability, the bonding of one first metal pipe and one second metal pipe is sequentially performed (that is, a total of n first metal pipes and second metal pipes). If there is a pipe, it is preferable to manufacture the pipe assembly by repeating the present invention n-1 times).
 本発明のパイプ接合体の製造方法においては、第2工程は、第1金属パイプと第2金属パイプとを所定の接続軸に沿って組み合わせた後であって固相拡散接合を行う前に、「固相拡散接合を行うときに突出部と内面端部との間に掛ける圧力」(本加圧圧力)よりも小さい圧力(予圧圧力)を突出部と内面端部との間に掛ける(予圧する)ことが一層好ましい。このような方法とすることにより、第1金属パイプと第2金属パイプとを一層安定して組み合わせることが可能となる。
 予圧圧力は、用いる金属パイプの種類等により任意の圧力とすることができる。
In the manufacturing method of the pipe joined body of the present invention, the second step is after combining the first metal pipe and the second metal pipe along the predetermined connection axis and before performing the solid phase diffusion joining, A pressure (preload pressure) smaller than the “pressure applied between the protrusion and the inner surface edge when performing solid phase diffusion bonding” (main pressure) is applied between the protrusion and the inner surface edge (preload). Is more preferable. By setting it as such a method, it becomes possible to combine a 1st metal pipe and a 2nd metal pipe more stably.
The preload pressure can be an arbitrary pressure depending on the type of metal pipe used.
[2]本発明のパイプ接合体の製造方法においては、前記第2工程では、通電時間を1秒以下とすることが好ましい。 [2] In the method for manufacturing a pipe joined body of the present invention, it is preferable that the energization time is 1 second or less in the second step.
 このような方法とすることにより、加熱時間を十分に短くして、突出部及び内面端部を構成する金属材料が焼き鈍し状態となることも防止でき、その結果、接合部付近の強度低下を十分に抑制することが可能となる。 By adopting such a method, the heating time can be sufficiently shortened to prevent the metal material constituting the protruding portion and the inner surface end from being annealed, and as a result, the strength reduction in the vicinity of the joint portion can be sufficiently prevented. Can be suppressed.
[3]本発明のパイプ接合体の製造方法においては、前記第2工程においては、前記固相拡散接合のための通電の直前に初期加圧を行い、前記初期加圧から加圧を継続したまま前記固相拡散接合により前記第1金属パイプ及び前記第2金属パイプを接合することが好ましい。 [3] In the method for producing a pipe joined body of the present invention, in the second step, initial pressurization is performed immediately before energization for the solid phase diffusion bonding, and pressurization is continued from the initial pressurization. It is preferable that the first metal pipe and the second metal pipe are bonded together by the solid phase diffusion bonding.
 このような方法とすることにより、固相拡散接合を行う前に突出部と内面端部との接触を良好な状態とし、突出部及び内面端部に均一な電流を流すことが可能となる。 By adopting such a method, the contact between the protruding portion and the inner surface end can be made good before solid phase diffusion bonding is performed, and a uniform current can flow through the protruding portion and the inner surface end.
 初期加圧で掛ける圧力(初期加圧圧力)は、例えば、「固相拡散接合を行うときに突出部と内面端部との間に掛ける圧力」(本加圧圧力)と同様とすることができる。
 具体的には、初期加圧圧力は、「初期加圧を行うときには突出部表面及び内面端部表面の不純物質層の削れが実質的に発生せず、通電後に突出部表面及び内面端部表面の不純物質層の削れが発生する」とすることが好ましい。このような方法とすることにより、初期加圧圧力の掛けすぎによる各金属パイプの損傷を抑制することが可能となり、かつ、十分に良好な条件で固相拡散接合を行うことが可能となる。
The pressure applied in the initial pressurization (initial pressurization pressure) may be the same as, for example, “the pressure applied between the protrusion and the inner surface end when performing solid phase diffusion bonding” (the main pressurization pressure). it can.
Specifically, the initial pressurizing pressure is “When the initial pressurization is performed, the protrusion layer surface and the inner surface end surface are substantially free from scraping of the impurity layer on the surface of the protruding portion and the inner surface end surface. It is preferable that the impurity layer is scraped. By adopting such a method, it is possible to suppress damage to each metal pipe due to excessive application of initial pressurizing pressure, and it is possible to perform solid phase diffusion bonding under sufficiently good conditions.
[4]本発明のパイプ接合体の製造方法においては、前記傾斜外面は、前記所定の接続軸に対する傾斜角度が5~80°の範囲内にあることが好ましい。 [4] In the method for manufacturing a pipe joined body according to the present invention, it is preferable that the inclined outer surface has an inclination angle with respect to the predetermined connecting axis within a range of 5 to 80 °.
 このような方法とすることにより、傾斜外面と内面端部との接触角度を適切なものとして、突出部及び内面端部の表面の不純物質層の削れを促進し、接合面を一層清浄化できることから、一層良好な条件で固相拡散接合を行うことが可能となる。 By adopting such a method, the contact angle between the inclined outer surface and the inner surface end can be made appropriate, the scraping of the impurity layer on the surface of the protrusion and the inner surface end can be promoted, and the bonding surface can be further cleaned. Therefore, solid phase diffusion bonding can be performed under better conditions.
 なお、傾斜外面について、所定の接続軸に対する傾斜角度が5~80°の範囲内にあることとしたのは、以下の理由による。すなわち、傾斜外面について、所定の接続軸に対する傾斜角度が5°よりも小さい場合には突出部と内面端部との接触角が小さすぎ、接合面をうまく清浄化できない場合があるためである。また、傾斜外面について、所定の接続軸に対する傾斜角度が80°よりも大きい場合には突出部と内面端部との接触角が大きすぎ、やはり接合面をうまく清浄化できない場合があるためである。上記傾斜角度の下限は10°であることがより一層好ましく、15°であることがさらに好ましい。また、上記傾斜角度の上限は50°であることがより一層好ましく、30°であることがさらに好ましい。
 なお、詳細の記載はしないが、これらの数値は本発明の発明者の実験により導き出されたものである。
The reason why the inclination angle of the inclined outer surface with respect to the predetermined connecting axis is in the range of 5 to 80 ° is as follows. That is, when the inclination angle of the inclined outer surface with respect to the predetermined connection axis is smaller than 5 °, the contact angle between the protrusion and the inner surface end is too small, and the joint surface may not be cleaned well. In addition, with respect to the inclined outer surface, when the inclination angle with respect to the predetermined connection axis is larger than 80 °, the contact angle between the protruding portion and the inner surface end is too large, and the joint surface may not be cleaned well. . The lower limit of the tilt angle is more preferably 10 °, and further preferably 15 °. Further, the upper limit of the tilt angle is more preferably 50 °, and further preferably 30 °.
Although not described in detail, these numerical values are derived from experiments by the inventors of the present invention.
[5]本発明のパイプ接合体の製造方法においては、前記所定の接続軸は、前記貫通孔がある位置の第1金属パイプの中心軸と直交することが好ましい。 [5] In the method for manufacturing a pipe joined body according to the present invention, it is preferable that the predetermined connection axis is orthogonal to the central axis of the first metal pipe at the position where the through hole is located.
 このような方法とすることにより、第1金属パイプと第2金属パイプとを比較的容易にかつしっかりと組み合わせ、安定した圧力を掛けることが可能となる。 By adopting such a method, the first metal pipe and the second metal pipe can be combined relatively easily and firmly, and a stable pressure can be applied.
[6]本発明のパイプ接合体の製造方法においては、前記第1工程は、前記第1金属パイプの素材となる素材パイプを準備する工程と、前記素材パイプに前記貫通孔を形成する工程と、前記素材パイプの内部から外部に向けてバーリング加工を行うことにより、前記貫通孔の周囲に前記突出部の元となる壁状部を形成する工程と、前記壁状部の外面に前記傾斜外面を形成して、前記壁状部を前記突出部とする工程とをこの順序で含むことが好ましい。 [6] In the method for manufacturing a pipe joined body according to the present invention, the first step includes a step of preparing a material pipe that is a material of the first metal pipe, and a step of forming the through hole in the material pipe. A step of forming a wall-like portion that is a source of the protruding portion around the through-hole by performing burring processing from the inside of the material pipe toward the outside, and the inclined outer surface on the outer surface of the wall-like portion And forming the wall-like portion as the protruding portion in this order.
 このような方法とすることにより、任意の金属パイプに突出部を形成し、第1金属パイプを準備することが可能となる。 By adopting such a method, it is possible to form a protrusion on an arbitrary metal pipe and prepare the first metal pipe.
 バーリング加工としては、金属パイプに適用可能である限り、種々の加工法を用いることができる。例を挙げると、貫通孔を形成した金属パイプの一方の開口部から内径に合った傾斜付き治具を差し込み、他方の開口部から貫通孔よりも大きい球を入れ、当該球を棒状体で圧入して貫通孔の周囲を押し上げるように加工する方法や、貫通孔を形成した金属パイプの一方の開口部から内径に合った傾斜付き治具を差し込み、他方の開口部から先端部が屈曲可能な棒状体を圧入して貫通孔の周囲を押し上げるように加工する方法や、貫通孔から差し入れた棒状体に貫通孔よりも大きい加工具を結合し、棒状体ごと加工具を引き上げて加工する方法や、金型を用いて形成する方法を挙げることができる。 As the burring process, various processing methods can be used as long as they can be applied to metal pipes. As an example, insert a jig with a slope that matches the inner diameter from one opening of a metal pipe with a through hole, insert a sphere larger than the through hole from the other opening, and press-fit the sphere with a rod-shaped body. Then, a method of processing to push up the periphery of the through-hole or a jig with an inclination matching the inner diameter is inserted from one opening of the metal pipe having the through-hole, and the tip can be bent from the other opening A method of processing by pressing the rod-shaped body and pushing up the periphery of the through-hole, a method of connecting a processing tool larger than the through-hole to the rod-shaped body inserted from the through-hole, and a method of processing by lifting the processing tool together with the rod-shaped body, The method of forming using a metal mold | die can be mentioned.
 「壁状部の外面に傾斜外面を形成して、壁状部を突出部とする工程」には、傾斜外面を形成可能である限り、種々の加工法を用いることができる。例を挙げると、金型を用いるプレス加工、切削加工、ローリング加工を挙げることができる。なお、大量生産を考慮した場合、加工の精度と加工コストの低減の関係から、上記工程にはプレス加工を用いることが好ましい。 In the “step of forming the inclined outer surface on the outer surface of the wall-shaped portion and using the wall-shaped portion as the protruding portion”, various processing methods can be used as long as the inclined outer surface can be formed. For example, pressing using a mold, cutting, and rolling can be mentioned. In addition, when mass production is considered, it is preferable to use press working for the above-mentioned process from the relationship between processing accuracy and processing cost reduction.
 本明細書における「壁状部」は、「貫通孔を囲うように形成され、かつ、第1金属パイプ側面から外側に向かって突出する」ものである。つまり、壁状部は、突出部が備える要件のうち傾斜外面を有しないものである。
 形成する突出部については、突出部と内面端部とが接触すべき部分が同一平面上にあることが好ましい。このような方法とすることにより、第2金属パイプの内面端部を第1金属パイプの側面に合わせて加工する手間を省くことが可能となる。
The “wall-shaped portion” in this specification is “formed so as to surround the through hole and protrudes outward from the side surface of the first metal pipe”. That is, a wall-shaped part does not have an inclined outer surface among the requirements with which a protrusion part is provided.
About the protrusion part to form, it is preferable that the part which a protrusion part and an inner surface edge part should contact exists on the same plane. By setting it as such a method, it becomes possible to save the effort which processes the inner surface edge part of a 2nd metal pipe according to the side surface of a 1st metal pipe.
[7]本発明のパイプ接合体の製造方法においては、前記第2工程は、前記第1金属パイプ及び前記第2金属パイプを組み合わせて前記突出部と前記内面端部との間に圧力を掛けることが可能な加圧装置を用いて行うことが好ましい。 [7] In the method for manufacturing a pipe joined body according to the present invention, in the second step, the first metal pipe and the second metal pipe are combined and pressure is applied between the protruding portion and the inner surface end portion. It is preferable to carry out using a pressurizing apparatus capable of performing the above.
 このような方法とすることにより、第1金属パイプと第2金属パイプとの間に圧力を掛けた状態を安定に保ったまま固相拡散接合を行うことが可能となる。 By adopting such a method, it is possible to perform solid phase diffusion bonding while maintaining a stable state in which pressure is applied between the first metal pipe and the second metal pipe.
 加圧装置としては、例えば、押圧装置としてサーボモーター駆動のボールネジ又はエアーシリンダーを備えるものを好適に用いることができる。 As the pressurizing device, for example, a pressing device including a servo motor driven ball screw or an air cylinder can be suitably used.
[8]本発明のパイプ接合体の製造方法においては、前記第2工程は、前記加圧装置として、前記固相拡散接合を行うための電極を備える加圧装置を用いて行うことが好ましい。 [8] In the method for manufacturing a pipe joined body according to the present invention, it is preferable that the second step is performed using a pressurizing device including an electrode for performing the solid phase diffusion bonding as the pressurizing device.
 このような方法とすることにより、電極を別途用意することなく固相拡散接合を行うことが可能となる。 By adopting such a method, it is possible to perform solid phase diffusion bonding without separately preparing an electrode.
[9]本発明のパイプ接合体の製造方法においては、前記加圧装置は、筐体と、電源装置と、押圧装置と、前記電源装置と接続された一対の電極と、前記筐体に固定され、前記一対の電極のうち一方の電極に接続された下部プラテンと、前記一対の電極のうち他方の電極に接続され、前記押圧装置により前記下部プラテンに向けて押し下げ可能な上部プラテンとを備え、前記一方の電極は前記第1金属パイプを固定する機能を有し、前記他方の電極は前記第2金属パイプを固定する機能を有することが好ましい。 [9] In the method for manufacturing a pipe joined body according to the present invention, the pressurizing device is fixed to the housing, a power supply device, a pressing device, a pair of electrodes connected to the power supply device, and the housing. A lower platen connected to one electrode of the pair of electrodes, and an upper platen connected to the other electrode of the pair of electrodes and capable of being pushed down toward the lower platen by the pressing device. It is preferable that the one electrode has a function of fixing the first metal pipe, and the other electrode has a function of fixing the second metal pipe.
 このような方法とすることにより、第2工程を連続的に、かつ、安定して実施することが可能となり、その結果、パイプ接合体の生産性を一層高くすることが可能となる。 By adopting such a method, the second step can be carried out continuously and stably, and as a result, the productivity of the pipe joined body can be further increased.
[10]本発明のパイプ接合体の製造方法においては、前記他方の電極により、前記第2金属パイプを全周に渡って均一に固定することが好ましい。 [10] In the method for manufacturing a pipe joined body according to the present invention, it is preferable that the second metal pipe is uniformly fixed over the entire circumference by the other electrode.
 このような方法とすることにより、第2金属パイプを安定して固定し、かつ、第2金属パイプ全体に比較的均一な電流を流し、一層安定した固相拡散接合を行うことが可能となる。 By adopting such a method, it is possible to stably fix the second metal pipe, and to flow a relatively uniform current through the entire second metal pipe, thereby performing more stable solid phase diffusion bonding. .
 第2金属パイプを全周に渡って均一に固定するために、加圧装置は、例えば、コレットチャック状の他方の電極又は金型状の他方の電極(分割可能な本体の内面側に、第2金属パイプの外周に相当する凹部が設けられているもの)を備えることが好ましい。 In order to uniformly fix the second metal pipe over the entire circumference, for example, the pressurizing device may include the other electrode of the collet chuck shape or the other electrode of the mold shape (on the inner surface side of the separable main body, It is preferable that a recess corresponding to the outer periphery of the two metal pipes is provided.
 上記[10]においては、一方の電極により、第1金属パイプのうち突出部が存在するよりも外端の部分を全周に渡って均一に固定することが好ましい。 [10] In the above [10], it is preferable that the outer end portion of the first metal pipe is uniformly fixed over the entire circumference by one electrode rather than the presence of the protruding portion.
 このような方法とすることにより、第1金属パイプも安定して固定し、かつ、第1金属パイプ全体に比較的均一な電流を流し、より一層安定した固相拡散接合を行うことが可能となる。 By adopting such a method, the first metal pipe can be stably fixed, and a relatively uniform current can be passed through the entire first metal pipe, so that solid phase diffusion bonding can be performed more stably. Become.
 第1金属パイプのうち突出部が存在するよりも外端の部分を全周に渡って均一に固定するため、加圧装置は、例えば、コレットチャック状の一方の電極(第1金属パイプの両端を把持するため、2個一対となっていることが好ましい。)又は金型状の一方の電極(分割可能な本体の内面側に、第1金属パイプの外周に相当する凹部が設けられているもの)を備えることが好ましい。 In order to uniformly fix the outer end portion of the first metal pipe over the entire circumference rather than the presence of the protruding portion, the pressurizing device is, for example, one electrode in the form of a collet chuck (both ends of the first metal pipe). A pair of two electrodes is preferable.) A recess corresponding to the outer periphery of the first metal pipe is provided on one of the mold-like electrodes (the inner surface side of the separable main body). Preferably).
[11]本発明のパイプ接合体は、本発明のパイプ接合体の製造方法により製造されたパイプ接合体であって、第1金属パイプの側面外方に第2金属パイプが所定の接続軸に沿って接合され、かつ、前記第1金属パイプの内部空間と前記第2金属パイプの内部空間とが連結されており、前記第1金属パイプと前記第2金属パイプとの接合部に残留する応力が圧縮応力であることを特徴とする。 [11] The pipe joined body of the present invention is a pipe joined body manufactured by the method for manufacturing a pipe joined body of the present invention, and the second metal pipe has a predetermined connecting shaft outside the side surface of the first metal pipe. The internal space of the first metal pipe and the internal space of the second metal pipe are connected together, and the residual stress at the joint between the first metal pipe and the second metal pipe Is a compressive stress.
 本発明のパイプ接合体は、本発明のパイプ接合体の製造方法により製造されたパイプ接合体であるため、従来のパイプ接合体と比較して、腐食に対する耐久性及び金属疲労に対する耐久性を高くすることが可能となり、かつ、強度低下を抑制することが可能となり、かつ、生産性を高くすることが可能なパイプ接合体となる。 Since the pipe joined body of the present invention is a pipe joined body manufactured by the method for manufacturing a pipe joined body of the present invention, the durability against corrosion and the durability against metal fatigue are higher than those of conventional pipe joined bodies. It is possible to achieve this, and it is possible to suppress a decrease in strength, and it is possible to obtain a pipe joined body capable of increasing productivity.
 上記の効果により、本発明のパイプ接合体は、自動車部品のように、長期間の振動及び応力にさらされる過酷な環境下で、かつ、高度な安全性を要求される分野に用いる部品に適するものとなる。 Due to the above-described effects, the pipe joined body of the present invention is suitable for parts used in fields that require a high degree of safety under severe environments exposed to long-term vibration and stress, such as automobile parts. It will be a thing.
[12]本発明のパイプ接合体においては、前記接合部の引張強度が、前記第1金属パイプ及び前記第2金属パイプの母材の引張強度よりも大きく、かつ、前記接合部の変形強度が、前記第1金属パイプ及び前記第2金属パイプの母材の変形強度よりも大きいことが好ましい。 [12] In the pipe joined body of the present invention, the joint has a tensile strength greater than the tensile strength of the base metal of the first metal pipe and the second metal pipe, and the joint has a deformation strength. The deformation strength of the base metal of the first metal pipe and the second metal pipe is preferably larger.
 このような構成とすることにより、長期間の振動及び応力にさらされる過酷な環境下での信頼性を十分に高くすることが可能となる。 By adopting such a configuration, it becomes possible to sufficiently increase the reliability in a harsh environment exposed to long-term vibration and stress.
 本明細書における「引張強度」とは、ある物体を一次元的に(パイプ接合体の場合には第1金属パイプと第2金属パイプとを引き離す方向に)引っ張ったときの強度である。
 本明細書における「変形強度」とは、衝撃等の外力に対する変形のしにくさである。
The “tensile strength” in the present specification is the strength when a certain object is pulled one-dimensionally (in the case of a pipe joined body, in the direction of separating the first metal pipe and the second metal pipe).
The “deformation strength” in this specification is the difficulty of deformation against external force such as impact.
実施形態に係るパイプ接合体100を示す図である。It is a figure showing pipe zygote 100 concerning an embodiment. 実施形態における第1金属パイプ10を示す図である。It is a figure showing the 1st metal pipe 10 in an embodiment. 実施形態における第2金属パイプ20を示す図である。It is a figure which shows the 2nd metal pipe 20 in embodiment. 実施形態における第2工程を説明するために示す図である。It is a figure shown in order to demonstrate the 2nd process in an embodiment. 実施形態における第2工程を説明するために示す図である。It is a figure shown in order to demonstrate the 2nd process in an embodiment. 実施形態における第2工程を説明するために示す図である。It is a figure shown in order to demonstrate the 2nd process in an embodiment. 実験例に係るパイプ接合体100aを示す写真である。It is a photograph which shows the pipe joined body 100a which concerns on an experiment example. 実験例に係るパイプ接合体100aの接合部の様子を説明するために示す図である。It is a figure shown in order to demonstrate the mode of the junction part of the pipe conjugate | zygote 100a which concerns on an experiment example. 実験例に係るパイプ接合体100aの引張強度に関する実験を行った結果を説明するために示す図である。It is a figure shown in order to demonstrate the result of having conducted the experiment regarding the tensile strength of the pipe joined body 100a which concerns on an experiment example. 実験例に係るパイプ接合体100aの接合部付近における残留応力に関する実験を行った結果を説明するために示す図である。It is a figure shown in order to demonstrate the result of having conducted the experiment regarding the residual stress in the joint part vicinity of the pipe joined body 100a which concerns on an experiment example. 変形例1に係るパイプ接合体102の図である。It is a figure of the pipe zygote 102 concerning modification 1. 変形例2に係るパイプ接合体104を説明するために示す図である。It is a figure shown in order to explain the pipe zygote 104 concerning modification 2. 従来のパイプ接合体の製造方法を説明するために示す図である。It is a figure shown in order to demonstrate the manufacturing method of the conventional pipe zygote. 従来のパイプ接合体の製造方法を説明するために示す図である。It is a figure shown in order to demonstrate the manufacturing method of the conventional pipe zygote.
 以下、本発明に係るパイプ接合体の製造方法及びパイプ接合体の実施形態について説明する。 Hereinafter, a method for manufacturing a pipe joined body and an embodiment of the pipe joined body according to the present invention will be described.
[実施形態]
 まず、実施形態に係るパイプ接合体100について説明する。
 図1は、実施形態に係るパイプ接合体100を示す図である。図1(a)はパイプ接合体100の斜視図であり、図1(b)はパイプ接合体100の上面図であり、図1(c)は図1(b)のA1-A1断面図であり、図1(d)は図1(b)のA2-A2断面図である。
[Embodiment]
First, the pipe joined body 100 according to the embodiment will be described.
Drawing 1 is a figure showing pipe zygote 100 concerning an embodiment. 1A is a perspective view of the pipe joined body 100, FIG. 1B is a top view of the pipe joined body 100, and FIG. 1C is a cross-sectional view taken along line A1-A1 of FIG. 1B. FIG. 1 (d) is a cross-sectional view taken along the line A2-A2 of FIG. 1 (b).
 図1においては、第1金属パイプ10の中心軸ax1と平行な軸をx軸とし、x軸と垂直な一方の軸をy軸とし、x軸及びy軸と垂直な軸をz軸として表示している。実施形態においては、第1金属パイプ10の中心軸ax1は第2金属パイプ20の中心軸ax2と垂直に交わるため、z軸は中心軸ax2と平行な軸であるともいえる。x軸、y軸及びz軸の表示をする他の図面においても、各軸は図1の対応する各軸と同様のものである。 In FIG. 1, an axis parallel to the central axis ax1 of the first metal pipe 10 is an x axis, one axis perpendicular to the x axis is a y axis, and an axis perpendicular to the x axis and the y axis is a z axis. is doing. In the embodiment, since the central axis ax1 of the first metal pipe 10 intersects the central axis ax2 of the second metal pipe 20 perpendicularly, it can be said that the z-axis is an axis parallel to the central axis ax2. In other drawings displaying the x-axis, y-axis, and z-axis, each axis is the same as the corresponding axis in FIG.
 実施形態に係るパイプ接合体100は、後述する「実施形態に係るパイプ接合体の製造方法」により製造されたものである。
 パイプ接合体100は、図1に示すように、第1金属パイプ10の側面外方に対して第2金属パイプ20が所定の接続軸に沿って接合され、かつ、第1金属パイプ10の内部空間10iと第2金属パイプ20の内部空間20iとが連結されており、第1金属パイプ10と第2金属パイプ20との接合部に残留する応力が圧縮応力(後述する実験例参照。)である。
The pipe joined body 100 according to the embodiment is manufactured by the “method for manufacturing a pipe joined body according to the embodiment” described later.
As shown in FIG. 1, the pipe joined body 100 includes a second metal pipe 20 joined to the outside of the side surface of the first metal pipe 10 along a predetermined connection axis, and the inside of the first metal pipe 10. The space 10i and the internal space 20i of the second metal pipe 20 are connected, and the stress remaining at the joint between the first metal pipe 10 and the second metal pipe 20 is a compressive stress (see an experimental example described later). is there.
 また、パイプ接合体100は、接合部の引張強度が、第1金属パイプ10及び第2金属パイプ20の母材の引張強度よりも大きく、かつ、接合部の変形強度が、第1金属パイプ10及び第2金属パイプ20の母材の変形強度よりも大きい(後述する実験例参照。)。 In addition, the pipe joined body 100 has a tensile strength of the joint portion larger than that of the base metal of the first metal pipe 10 and the second metal pipe 20, and a deformation strength of the joint portion is the first metal pipe 10. And it is larger than the deformation strength of the base material of the second metal pipe 20 (refer to the experimental example described later).
 パイプ接合体100は、自動車部品のように、長期間の振動及び応力にさらされる過酷な環境下で、かつ、高度な安全性を要求される分野に用いる部品に適するものである。 The pipe joined body 100 is suitable for a part used in a field where a high level of safety is required under a severe environment exposed to vibration and stress for a long time such as an automobile part.
 次に、実施形態に係るパイプ接合体の製造方法について説明する。
 図2は、実施形態における第1金属パイプ10を示す図である。図2(a)は第1金属パイプ10の斜視図であり、図2(b)は第1金属パイプ10の図1(c)に対応する断面図であり、図2(c)は第2金属パイプ20の図1(d)に対応する断面図である。
 図3は、実施形態における第2金属パイプ20を示す図である。図3(a)は第2金属パイプ20の斜視図であり、図3(b)は第2金属パイプ20の図1(c)に対応する断面図である。
Next, the manufacturing method of the pipe joined body concerning an embodiment is explained.
FIG. 2 is a diagram illustrating the first metal pipe 10 according to the embodiment. 2A is a perspective view of the first metal pipe 10, FIG. 2B is a cross-sectional view of the first metal pipe 10 corresponding to FIG. 1C, and FIG. It is sectional drawing corresponding to FIG.1 (d) of the metal pipe 20. FIG.
Drawing 3 is a figure showing the 2nd metal pipe 20 in an embodiment. FIG. 3A is a perspective view of the second metal pipe 20, and FIG. 3B is a cross-sectional view of the second metal pipe 20 corresponding to FIG.
 図4~図6は、実施形態における第2工程を説明するために示す図である。なお、図4~図6は、符号Wで示す線を境界として、左半分は側面図、右半分は断面図として示している。また、図4~図6では、本発明との関係性が薄い一般的な構成要素については図示をしていない。 FIGS. 4 to 6 are diagrams for explaining the second step in the embodiment. 4 to 6, the left half is shown as a side view, and the right half as a cross-sectional view, with the line indicated by the symbol W as a boundary. Also, in FIG. 4 to FIG. 6, general components that are not related to the present invention are not shown.
 実施形態に係るパイプ接合体の製造方法は、第1金属パイプ10の側面外方に対して第2金属パイプ20が所定の接続軸axに沿って接合され、かつ、第1金属パイプ10の内部空間10iと第2金属パイプ20の内部空間20iとが連結されているパイプ接合体100を製造するための方法である。
 実施形態に係るパイプ接合体の製造方法は、第1工程S1及び第2工程S2をこの順序で含む。以下、各工程について説明する。
In the manufacturing method of the pipe joined body according to the embodiment, the second metal pipe 20 is joined along the predetermined connection axis ax to the outside of the side surface of the first metal pipe 10, and the inside of the first metal pipe 10. This is a method for manufacturing the pipe joined body 100 in which the space 10 i and the internal space 20 i of the second metal pipe 20 are connected.
The method for manufacturing a pipe joined body according to the embodiment includes the first step S1 and the second step S2 in this order. Hereinafter, each step will be described.
 まず、第1工程S1について説明する。
 第1工程S1は、第1金属パイプ10と第2金属パイプ20とを準備する工程である。実施形態に係るパイプ接合体の製造方法においては、1本の第1金属パイプ10と1本の第2金属パイプ20とを準備する。
 第1工程S1は、図示は省略するが、第1金属パイプ10の素材となる素材パイプを準備する工程と、素材パイプに貫通孔12を形成する工程と、素材パイプの内部から外部に向けてバーリング加工を行うことにより、貫通孔12の周囲に突出部14の元となる壁状部を形成する工程と、壁状部の外面に傾斜外面16を形成して、壁状部を突出部14とする工程とをこの順序で含む。
First, the first step S1 will be described.
The first step S1 is a step of preparing the first metal pipe 10 and the second metal pipe 20. In the method for manufacturing a pipe joined body according to the embodiment, one first metal pipe 10 and one second metal pipe 20 are prepared.
Although not shown, the first step S1 is a step of preparing a material pipe as a material of the first metal pipe 10, a step of forming a through hole 12 in the material pipe, and from the inside of the material pipe to the outside. By performing the burring process, a step of forming a wall-like portion that is the basis of the protruding portion 14 around the through-hole 12, and an inclined outer surface 16 is formed on the outer surface of the wall-like portion, and the wall-like portion is formed into the protruding portion 14. Are included in this order.
 バーリング加工としては、金属パイプに適用可能である限り、種々の加工法を用いることができる。
 「壁状部の外面に傾斜外面を形成して、壁状部を突出部とする工程」には、傾斜外面を形成可能である限り、種々の加工法を用いることができる。なお、大量生産を考慮した場合、加工の精度と加工コストの低減の関係から、上記工程にはプレス加工を用いることが好ましい。
As a burring process, various processing methods can be used as long as it is applicable to a metal pipe.
As long as the inclined outer surface can be formed, various processing methods can be used in the “step of forming the inclined outer surface on the outer surface of the wall-shaped portion and using the wall-shaped portion as the protruding portion”. In addition, when mass production is considered, it is preferable to use press working for the above-mentioned process from the relationship between processing accuracy and processing cost reduction.
 第1金属パイプ10は、図2に示すように、貫通孔12と突出部14とを備える。第1金属パイプ10は、中心軸ax1が直線であり、断面が円形のパイプである。
 所定の接続軸axは、第1金属パイプ10の中心軸ax1と直交する。
 第1金属パイプ10を構成する金属材料としては、例えば、炭素鋼のような鉄鋼材料を用いることができるが、通電による電気抵抗発熱をエネルギー源とする固相拡散接合が可能であれば、任意の金属材料を用いることができる。
As shown in FIG. 2, the first metal pipe 10 includes a through hole 12 and a protruding portion 14. The first metal pipe 10 is a pipe whose central axis ax1 is a straight line and whose section is circular.
The predetermined connection axis ax is orthogonal to the central axis ax1 of the first metal pipe 10.
As the metal material constituting the first metal pipe 10, for example, a steel material such as carbon steel can be used. However, any metal material can be used as long as solid-phase diffusion bonding using electrical resistance heat generation by energization as an energy source is possible. The metal material can be used.
 貫通孔12は、第1金属パイプ10側面に形成された孔である。
 突出部14は、貫通孔12を囲うように形成され、かつ、所定の接続軸axに対して所定の角度で傾斜する傾斜外面16を有し、かつ、第1金属パイプ10側面から外側に向かって突出する。突出部14と後述する内面端部22とが接触すべき部分は、同一平面上にある。
 傾斜外面16は、所定の接続軸axに対する傾斜角度が5~80°の範囲内にあり、例えば、22°である。
The through hole 12 is a hole formed on the side surface of the first metal pipe 10.
The protrusion 14 is formed so as to surround the through-hole 12, has an inclined outer surface 16 that is inclined at a predetermined angle with respect to a predetermined connection axis ax, and extends outward from the side surface of the first metal pipe 10. Protruding. A portion where the protruding portion 14 and an inner surface end portion 22 to be described later should contact is on the same plane.
The inclined outer surface 16 has an inclination angle with respect to the predetermined connection axis ax within a range of 5 to 80 °, for example, 22 °.
 第2金属パイプ20は、図3に示すように、第1金属パイプ10と第2金属パイプ20とを組み合わせたとき突出部14の傾斜外面16に接する内面端部22を備える。第2金属パイプ20は、中心軸ax2が直線であり、断面が円形のパイプである。
 第2金属パイプ20を構成する金属材料としては、例えば、炭素鋼のような鉄鋼材料を用いることができるが、通電による電気抵抗発熱をエネルギー源とする固相拡散接合が可能であれば、任意の金属材料を用いることができる。
As shown in FIG. 3, the second metal pipe 20 includes an inner surface end 22 that contacts the inclined outer surface 16 of the protrusion 14 when the first metal pipe 10 and the second metal pipe 20 are combined. The second metal pipe 20 is a pipe whose central axis ax2 is a straight line and whose section is circular.
As the metal material constituting the second metal pipe 20, for example, a steel material such as carbon steel can be used. However, any metal material can be used as long as solid phase diffusion bonding using electrical resistance heat generation by energization as an energy source is possible. The metal material can be used.
 次に、第2工程S2について説明する。
 第2工程S2は、加圧装置1000を用いて行う。
Next, the second step S2 will be described.
The second step S2 is performed using the pressure device 1000.
 ここで、加圧装置1000について簡単に説明する。
 加圧装置1000は、第1金属パイプ10及び第2金属パイプ20のそれぞれを固定すること(図4参照。)、及び、第1金属パイプ10及び第2金属パイプ20を組み合わせて突出部14と内面端部22との間に圧力を掛けること(図5参照。)が可能である。また、加圧装置1000は、固相拡散接合を行うための電極を備える。
Here, the pressurizing apparatus 1000 will be briefly described.
The pressurizing device 1000 fixes the first metal pipe 10 and the second metal pipe 20 (see FIG. 4), and combines the first metal pipe 10 and the second metal pipe 20 with the projecting portion 14. It is possible to apply pressure between the inner surface end portion 22 (see FIG. 5). The pressurizing apparatus 1000 includes an electrode for performing solid phase diffusion bonding.
 さらにいえば、加圧装置1000は、筐体(図示せず。)と、電源装置(図示せず。)と、押圧装置(図示せず。)と、電源装置と接続された一対の電極1010,1012と、筐体に固定され、一対の電極1010,1012のうち一方の電極1010に接続された下部プラテン1020と、一対の電極1010,1012のうち他方の電極1012に接続され、押圧装置により下部プラテン1020に向けて押し下げ可能な上部プラテン1022とを備える。一方の電極1010は、第1金属パイプ10を固定する機能を有し、他方の電極1012は第2金属パイプ20を固定する機能を有する。 More specifically, the pressure device 1000 includes a housing (not shown), a power supply device (not shown), a pressing device (not shown), and a pair of electrodes 1010 connected to the power supply device. , 1012, a lower platen 1020 fixed to the casing and connected to one electrode 1010 of the pair of electrodes 1010, 1012, and connected to the other electrode 1012 of the pair of electrodes 1010, 1012 by a pressing device And an upper platen 1022 that can be pushed down toward the lower platen 1020. One electrode 1010 has a function of fixing the first metal pipe 10, and the other electrode 1012 has a function of fixing the second metal pipe 20.
 加圧装置1000は、一方の電極1010として、金型状の一方の電極(分割可能な本体の内面側に、第1金属パイプの外周に相当する凹部が設けられているもの)を備える。また、加圧装置1000は、他方の電極1012として、コレットチャック状の他方の電極を備える。
 加圧装置1000は、押圧装置として、サーボモーター駆動のボールネジ又はエアーシリンダーを備える。
The pressurizing apparatus 1000 includes one electrode 1010 having a mold shape (a concave portion corresponding to the outer periphery of the first metal pipe is provided on the inner surface side of the separable main body) as one electrode 1010. Further, the pressurizing apparatus 1000 includes the other electrode in a collet chuck shape as the other electrode 1012.
The pressurizing device 1000 includes a ball screw or an air cylinder driven by a servo motor as a pressing device.
 以下、加圧装置1000を用いる第2工程S2について説明する。
 第2工程S2は、図4~図6に示すように、第2金属パイプ20を所定の接続軸axに沿うように第1金属パイプ10と組み合わせた後、突出部14と内面端部22との間に圧力を掛けながら、通電による電気抵抗発熱をエネルギー源とする固相拡散接合により第1金属パイプ10及び第2金属パイプ20を接合する工程である。
Hereinafter, 2nd process S2 using the pressurization apparatus 1000 is demonstrated.
In the second step S2, as shown in FIGS. 4 to 6, after the second metal pipe 20 is combined with the first metal pipe 10 along the predetermined connection axis ax, the projecting portion 14, the inner surface end portion 22, In this step, the first metal pipe 10 and the second metal pipe 20 are joined by solid phase diffusion joining using an electric resistance heat generated by energization as an energy source while pressure is applied between them.
 第2工程S2をさらに詳しく説明すると、以下のようになる。
 第2工程S2においては、まず、一方の電極1010に第1金属パイプ10を固定し、他方の電極1012に第2金属パイプ20を固定する(図4参照。)。次に、押圧装置により上部プラテン1022ごと第2金属パイプ20及び他方の電極1012を押し下げ、第2金属パイプ20を第1金属パイプ10と組み合わせる(図5参照)。次に、「固相拡散接合を行うときに突出部14と内面端部22との間に掛ける圧力」(本加圧圧力)よりも小さい圧力(予圧圧力)を突出部と内面端部との間に掛ける(予圧する)。次に、固相拡散接合のための通電の直前に初期加圧を行う。その後、初期加圧から加圧を継続したまま、通電による電気抵抗発熱をエネルギー源とする固相拡散接合により第1金属パイプ10及び第2金属パイプ20を接合する。
The second step S2 will be described in more detail as follows.
In the second step S2, first, the first metal pipe 10 is fixed to one electrode 1010, and the second metal pipe 20 is fixed to the other electrode 1012 (see FIG. 4). Next, the second metal pipe 20 and the other electrode 1012 are pushed down together with the upper platen 1022 by a pressing device, and the second metal pipe 20 is combined with the first metal pipe 10 (see FIG. 5). Next, a pressure (preload pressure) smaller than the “pressure applied between the protrusion 14 and the inner surface end 22 when performing solid phase diffusion bonding” (main pressure) is applied between the protrusion and the inner surface end. Hang in between (preload). Next, initial pressurization is performed immediately before energization for solid phase diffusion bonding. After that, the first metal pipe 10 and the second metal pipe 20 are joined by solid phase diffusion joining using electric resistance heat generated by energization as an energy source while continuing the pressurization from the initial pressurization.
 実施形態1においては、一方の電極1010により、第1金属パイプ10のうち突出部14が存在するよりも外端の部分を全周に渡って均一に固定し、また、他方の電極1012により、第2金属パイプ20の全周に渡って均一に固定する。 In the first embodiment, one electrode 1010 fixes the outer end portion of the first metal pipe 10 more uniformly over the entire circumference than the protruding portion 14 exists, and the other electrode 1012 The second metal pipe 20 is fixed uniformly over the entire circumference.
 予圧圧力は、用いる金属パイプの種類等により任意の圧力とすることができるが、例えば、本加圧圧力の1/3~1/4程度とすることができる。 The preload pressure can be set to an arbitrary pressure depending on the type of metal pipe to be used, and can be, for example, about 1/3 to 1/4 of the main pressure.
 初期加圧で掛ける圧力(初期加圧圧力)は、例えば、本加圧圧力と同様とすることができる。
 具体的には、初期加圧圧力は、「初期加圧を行うときには突出部14表面及び内面端部22表面の不純物質層の削れが実質的に発生せず、通電後に突出部14表面及び内面端部22表面の不純物質層の削れが発生する」圧力とする。
 初期加圧の時間は、例えば、0.5秒程度とすることができる。
The pressure applied by the initial pressurization (initial pressurization pressure) can be the same as the main pressurization pressure, for example.
Specifically, the initial pressurization pressure is “when the initial pressurization is performed, the surface of the protrusion 14 and the inner surface 22 are substantially free from scraping of the impurity layer and the surface of the protrusion 14 and the inner surface after energization. The pressure at which the impurity layer on the surface of the end 22 is scraped occurs.
The initial pressurization time can be, for example, about 0.5 seconds.
 第2工程S2では、通電時間を1秒以下とする。具体例として、通電時間を0.25秒とすることができる。
 第2工程S2の完了により、パイプ接合体100を製造することができる。
In the second step S2, the energization time is set to 1 second or less. As a specific example, the energization time can be set to 0.25 seconds.
By completing the second step S2, the pipe joined body 100 can be manufactured.
 以下、実施形態に係るパイプ接合体の製造方法及びパイプ接合体の効果を説明する。 Hereinafter, the manufacturing method of the pipe joined body and the effect of the pipe joined body according to the embodiment will be described.
 実施形態に係るパイプ接合体の製造方法によれば、従来のパイプ接合体の製造方法と同様に、第1金属パイプの側面外方に対して第2金属パイプを接合することにより、流体を分流又は合流させるパイプ接合体を製造することが可能となる。 According to the method for manufacturing a pipe joined body according to the embodiment, the fluid is divided by joining the second metal pipe to the outside of the side surface of the first metal pipe, as in the conventional method for producing a pipe joined body. Alternatively, it is possible to manufacture a pipe assembly to be joined.
 また、実施形態に係るパイプ接合体の製造方法によれば、溶融接合ではなく通電による電気抵抗発熱をエネルギー源とする固相拡散接合を用いてパイプ接合体100を製造するため、溶融凝固相が発生せず機械的性質の劣化を防止できることから、溶融接合を用いるパイプ接合体の製造方法と比較して、製造したパイプ接合体における腐食に対する耐久性及び金属疲労に対する耐久性を高くすることが可能となる。 In addition, according to the method for manufacturing a pipe joined body according to the embodiment, since the pipe joined body 100 is manufactured using solid-phase diffusion joining that uses electrical resistance heat generation by energization instead of melt joining, Since it does not occur and the deterioration of mechanical properties can be prevented, it is possible to increase the durability against corrosion and the durability against metal fatigue in the manufactured pipe joint compared to the method of manufacturing a pipe joint using fusion bonding. It becomes.
 また、実施形態に係るパイプ接合体の製造方法によれば、上記固相拡散接合を用いてパイプ接合体100を製造するため、接合部には圧縮応力が残留することとなり(後述する実験例参照。)、この観点からも、溶融接合を用いるパイプ接合体の製造方法と比較して、製造したパイプ接合体における腐食に対する耐久性及び金属疲労に対する耐久性を高くすることが可能となる。 In addition, according to the method for manufacturing a pipe joined body according to the embodiment, since the pipe joined body 100 is manufactured using the solid phase diffusion joining, compressive stress remains in the joined portion (see an experimental example described later). From this point of view, it is possible to increase the durability against corrosion and the durability against metal fatigue in the manufactured pipe joined body as compared with the method for producing a pipe joined body using fusion joining.
 また、実施形態に係るパイプ接合体の製造方法によれば、上記固相拡散接合を用いてパイプ接合体100を製造するため、各金属パイプを長時間高温にさらす必要がなく、各金属パイプを構成する金属材料が焼き鈍し状態となることを防止できることから、炉中ロウ付けを用いるパイプ接合体の製造方法と比較して、製造したパイプ接合体における強度低下を抑制することが可能となる。 Further, according to the method for manufacturing a pipe assembly according to the embodiment, since the pipe assembly 100 is manufactured using the solid phase diffusion bonding, it is not necessary to expose each metal pipe to a high temperature for a long time. Since it can prevent that the metal material which comprises comprises an annealing state, compared with the manufacturing method of the pipe joined body which uses brazing in a furnace, it becomes possible to suppress the strength fall in the manufactured pipe joined body.
 また、実施形態に係るパイプ接合体の製造方法によれば、ロウ付け用の金属の準備や金属パイプの仮接合の必要がないため、炉中ロウ付けを用いるパイプ接合体と比較して、工程数の観点及びコストの観点から、生産性を高くすることが可能となる。 In addition, according to the method for manufacturing a pipe joined body according to the embodiment, since there is no need to prepare a brazing metal or temporarily join a metal pipe, the process is compared with a pipe joined body using brazing in a furnace. Productivity can be increased from the viewpoint of number and cost.
 このため、実施形態に係るパイプ接合体の製造方法は、従来のパイプ接合体の製造方法と比較して、製造したパイプ接合体における腐食に対する耐久性及び金属疲労に対する耐久性を高くすることが可能となり、かつ、製造したパイプ接合体における強度低下を抑制することが可能となり、かつ、生産性を高くすることが可能なパイプ接合体の製造方法となる。 For this reason, the manufacturing method of the pipe joined body according to the embodiment can increase the durability against corrosion and the durability against metal fatigue in the manufactured pipe joined body, compared to the manufacturing method of the conventional pipe joined body. In addition, it is possible to suppress a decrease in strength in the manufactured pipe joined body, and to provide a method for producing a pipe joined body capable of increasing productivity.
 また、実施形態に係るパイプ接合体の製造方法によれば、突出部14を備える第1金属パイプ10を用いるため、第1金属パイプと第2金属パイプとを組み合わせるときに容易に位置合わせすることが可能となり、かつ、所定の接続軸と直交する方向の力に対して比較的強いパイプ接合体を製造することが可能となる。 Moreover, according to the manufacturing method of the pipe joined body which concerns on embodiment, since the 1st metal pipe 10 provided with the protrusion part 14 is used, when aligning a 1st metal pipe and a 2nd metal pipe, it aligns easily. In addition, it is possible to manufacture a pipe joined body that is relatively strong against a force in a direction orthogonal to a predetermined connection axis.
 また、実施形態に係るパイプ接合体の製造方法によれば、突出部14と内面端部22との間に圧力を掛けるため、突出部表面及び内面端部表面の不純物質層を削って接合面を清浄化できることから、良好な条件で固相拡散接合を行うことが可能となる。 In addition, according to the method for manufacturing a pipe joined body according to the embodiment, in order to apply pressure between the protruding portion 14 and the inner surface end portion 22, the impurity surfaces on the protruding portion surface and the inner surface end portion surface are shaved to join the bonding surface. Therefore, solid phase diffusion bonding can be performed under favorable conditions.
 また、実施形態に係るパイプ接合体の製造方法においては、第2工程S2は、第1金属パイプ10と第2金属パイプ20とを所定の接続軸axに沿って組み合わせた後であって固相拡散接合を行う前に、予圧圧力を突出部14と内面端部22との間に掛ける(予圧する)ため、第1金属パイプと第2金属パイプとを一層安定して組み合わせることが可能となる。 In the method for manufacturing a pipe joined body according to the embodiment, the second step S2 is after the first metal pipe 10 and the second metal pipe 20 are combined along the predetermined connection axis ax and the solid phase. Since the preload pressure is applied (preloaded) between the protruding portion 14 and the inner surface end 22 before the diffusion bonding is performed, the first metal pipe and the second metal pipe can be combined more stably. .
 また、実施形態に係るパイプ接合体の製造方法によれば、第2工程S2では、通電時間を1秒以下とするため、加熱時間を十分に短くして、突出部及び内面端部を構成する金属材料が焼き鈍し状態となることも防止でき、その結果、接合部付近の強度低下を十分に抑制することが可能となる。 Moreover, according to the manufacturing method of the pipe joined body which concerns on embodiment, in 2nd process S2, in order to make electricity supply time into 1 second or less, heating time is shortened enough and a protrusion part and an inner surface edge part are comprised. It is also possible to prevent the metal material from being annealed, and as a result, it is possible to sufficiently suppress a decrease in strength near the joint.
 また、実施形態に係るパイプ接合体の製造方法によれば、第2工程S2においては、固相拡散接合のための通電の直前に初期加圧を行い、初期加圧から加圧を継続したまま固相拡散接合により第1金属パイプ10及び第2金属パイプ20を接合するため、固相拡散接合を行う前に突出部と内面端部との接触を良好な状態とし、突出部及び内面端部に均一な電流を流すことが可能となる。 Moreover, according to the manufacturing method of the pipe joined body according to the embodiment, in the second step S2, initial pressurization is performed immediately before energization for solid phase diffusion bonding, and pressurization is continued from the initial pressurization. Since the first metal pipe 10 and the second metal pipe 20 are joined by solid phase diffusion bonding, the contact between the protruding portion and the inner surface end portion is made good before the solid phase diffusion bonding is performed, and the protruding portion and inner surface end portion are formed. It is possible to allow a uniform current to flow.
 また、実施形態に係るパイプ接合体の製造方法によれば、初期加圧圧力を「初期加圧を行うときには突出部14表面及び内面端部22表面の不純物質層の削れが実質的に発生せず、通電後に突出部14表面及び内面端部22表面の不純物質層の削れが発生する」圧力とするため、初期加圧圧力の掛けすぎによる各金属パイプの損傷を抑制することが可能となり、かつ、十分に良好な条件で固相拡散接合を行うことが可能となる。 Further, according to the method for manufacturing a pipe joined body according to the embodiment, the initial pressurization pressure is set to “when the initial pressurization is performed, the surface of the protrusion 14 and the inner surface end 22 is substantially free from abrasion. Therefore, it is possible to suppress damage to each metal pipe due to excessive application of the initial pressurizing pressure. In addition, solid phase diffusion bonding can be performed under sufficiently good conditions.
 また、実施形態に係るパイプ接合体の製造方法によれば、傾斜外面16は、所定の接続軸axに対する傾斜角度が5~80°の範囲内にあるため、傾斜外面と内面端部との接触角度を適切なものとして、突出部及び内面端部の表面の不純物質層の削れを促進し、接合面を一層清浄化できることから、一層良好な条件で固相拡散接合を行うことが可能となる。 Further, according to the method for manufacturing a pipe joined body according to the embodiment, the inclined outer surface 16 has an inclination angle with respect to the predetermined connection axis ax within a range of 5 to 80 °, so that the contact between the inclined outer surface and the inner surface end portion is achieved. Since the angle is appropriate, the removal of the impurity layer on the surface of the protruding portion and the inner surface end portion is promoted, and the bonding surface can be further cleaned, so that solid phase diffusion bonding can be performed under better conditions. .
 また、実施形態に係るパイプ接合体の製造方法によれば、所定の接続軸axは、貫通孔12がある位置の第1金属パイプ10の中心軸ax1と直交するため、第1金属パイプと第2金属パイプとを比較的容易にかつしっかりと組み合わせ、安定した圧力を掛けることが可能となる。 In addition, according to the method for manufacturing a pipe joined body according to the embodiment, the predetermined connection axis ax is orthogonal to the central axis ax1 of the first metal pipe 10 at the position where the through hole 12 is located. The two metal pipes can be relatively easily and firmly combined to apply a stable pressure.
 また、実施形態に係るパイプ接合体の製造方法によれば、第1工程S1は、第1金属パイプ10の素材となる素材パイプを準備する工程と、素材パイプに貫通孔12を形成する工程と、素材パイプの内部から外部に向けてバーリング加工を行うことにより、貫通孔12の周囲に突出部14の元となる壁状部を形成する工程と、壁状部の外面に傾斜外面16を形成して、壁状部を突出部14とする工程とをこの順序で含むため、任意の金属パイプに突出部を形成し、第1金属パイプを準備することが可能となる。 Moreover, according to the manufacturing method of the pipe joined body which concerns on embodiment, 1st process S1 includes the process of preparing the raw material pipe used as the raw material of the 1st metal pipe 10, and the process of forming the through-hole 12 in a raw material pipe. , By performing burring from the inside of the material pipe to the outside, forming a wall-like portion that is the base of the protruding portion 14 around the through-hole 12, and forming the inclined outer surface 16 on the outer surface of the wall-like portion Then, since the step of forming the wall-shaped portion as the protruding portion 14 is included in this order, the protruding portion can be formed on an arbitrary metal pipe to prepare the first metal pipe.
 また、実施形態に係るパイプ接合方法によれば、形成する突出部14について、突出部14と内面端部22とが接触すべき部分が同一平面上にあるため、第2金属パイプの内面端部を第1金属パイプの側面に合わせて加工する手間を省くことが可能となる。 In addition, according to the pipe joining method according to the embodiment, the protrusion 14 to be formed has a portion where the protrusion 14 and the inner surface end 22 should be in contact with each other on the same plane. It becomes possible to save the trouble of processing the first metal pipe in accordance with the side surface.
 また、実施形態に係るパイプ接合体の製造方法によれば、第2工程S2は、第1金属パイプ10及び第2金属パイプ20を組み合わせて突出部14と内面端部22との間に圧力を掛けることが可能な加圧装置1000を用いて行うため、第1金属パイプと第2金属パイプとの間に圧力を掛ける状態を安定に保ったまま固相拡散接合を行うことが可能となる。 Moreover, according to the manufacturing method of the pipe joined body which concerns on embodiment, 2nd process S2 combines the 1st metal pipe 10 and the 2nd metal pipe 20, and applies a pressure between the protrusion part 14 and the inner surface edge part 22. FIG. Since it is performed using the pressurizing apparatus 1000 that can be applied, solid phase diffusion bonding can be performed while maintaining a stable state in which pressure is applied between the first metal pipe and the second metal pipe.
 また、実施形態に係るパイプ接合体の製造方法によれば、第2工程S2は、加圧装置1000として、固相拡散接合を行うための電極を備える加圧装置を用いて行うため、電極を別途用意することなく固相拡散接合を行うことが可能となる。 Moreover, according to the manufacturing method of the pipe joined body which concerns on embodiment, since 2nd process S2 is performed using the pressurization apparatus provided with the electrode for performing solid phase diffusion bonding as the pressurization apparatus 1000, an electrode is used. Solid phase diffusion bonding can be performed without preparing separately.
 また、実施形態に係るパイプ接合体の製造方法によれば、加圧装置1000は、筐体と、電源装置と、押圧装置と、一対の電極1010,1012と、下部プラテンと、上部プラテンとを備え、一方の電極1010は第1金属パイプ10を固定する機能を有し、他方の電極1012は第2金属パイプ20を固定する機能を有するため、第2工程を連続的に、かつ、安定して実施することが可能となり、その結果、パイプ接合体の生産性を一層高くすることが可能となる。 Moreover, according to the manufacturing method of the pipe joined body according to the embodiment, the pressurizing device 1000 includes a housing, a power supply device, a pressing device, a pair of electrodes 1010 and 1012, a lower platen, and an upper platen. One electrode 1010 has a function of fixing the first metal pipe 10, and the other electrode 1012 has a function of fixing the second metal pipe 20. Therefore, the second process is continuously and stably performed. As a result, it becomes possible to further increase the productivity of the pipe joined body.
 また、実施形態に係るパイプ接合体の製造方法によれば、他方の電極1012により、第2金属パイプ20を全周に渡って均一に固定するため、第2金属パイプを安定して固定し、かつ、第2金属パイプ全体に比較的均一な電流を流し、一層安定した固相拡散接合を行うことが可能となる。 In addition, according to the method of manufacturing a pipe assembly according to the embodiment, the second metal pipe 20 is uniformly fixed over the entire circumference by the other electrode 1012, so that the second metal pipe is stably fixed, In addition, a relatively uniform current is allowed to flow through the entire second metal pipe, so that more stable solid phase diffusion bonding can be performed.
 また、実施形態に係るパイプ接合体の製造方法によれば、一方の電極1010により、第1金属パイプ10のうち突出部14が存在するよりも外端の部分を全周に渡って均一に固定するため、第1金属パイプも安定して固定し、かつ、第1金属パイプ全体に比較的均一な電流を流し、より一層安定した固相拡散接合を行うことが可能となる。 Further, according to the method for manufacturing a pipe joined body according to the embodiment, one electrode 1010 fixes the outer end portion of the first metal pipe 10 uniformly over the entire circumference rather than the presence of the protruding portion 14. Therefore, the first metal pipe can also be stably fixed, and a relatively uniform current can be passed through the entire first metal pipe, so that solid phase diffusion bonding can be performed more stably.
 以上の効果により、実施形態に係るパイプ接合体の製造方法は、自動車部品(エアバッグシステムの配管)のように、長期間の振動及び応力にさらされる過酷な環境下で、かつ、高度な安全性を要求される分野に用いる部品(パイプ接合体)の製造に適する方法となる。 Due to the above-described effects, the method for manufacturing a pipe assembly according to the embodiment is highly safe in a harsh environment exposed to vibration and stress for a long period of time, such as automobile parts (airbag system piping). This is a method suitable for manufacturing parts (pipe joints) used in fields that require high performance.
 実施形態に係るパイプ接合体100は、実施形態に係るパイプ接合体の製造方法により製造されたパイプ接合体であって、第1金属パイプ10と第2金属パイプ20との接合部に残留する応力が圧縮応力であるため、従来のパイプ接合体と比較して、腐食に対する耐久性及び金属疲労に対する耐久性を高くすることが可能となり、かつ、強度低下を抑制することが可能となり、かつ、生産性を高くすることが可能なパイプ接合体となる。 The pipe joined body 100 according to the embodiment is a pipe joined body manufactured by the method for manufacturing a pipe joined body according to the embodiment, and the stress remaining in the joint portion between the first metal pipe 10 and the second metal pipe 20. Because of the compressive stress, it is possible to increase the durability against corrosion and the durability against metal fatigue as compared with the conventional pipe joined body, and it is possible to suppress the strength reduction and to produce It becomes a pipe joined body which can raise the property.
 また、実施形態に係るパイプ接合体100によれば、接合部の引張強度が、第1金属パイプ10及び第2金属パイプ20の母材の引張強度よりも大きく、接合部の変形強度が、第1金属パイプ10及び第2金属パイプ20の母材の変形強度よりも大きいため、長期間の振動及び応力にさらされる過酷な環境下での信頼性を十分に高くすることが可能となる。 Moreover, according to the pipe joined body 100 according to the embodiment, the tensile strength of the joint portion is larger than the tensile strength of the base metal of the first metal pipe 10 and the second metal pipe 20, and the deformation strength of the joint portion is the first. Since it is larger than the deformation strength of the base metal of the first metal pipe 10 and the second metal pipe 20, it is possible to sufficiently increase the reliability in a harsh environment exposed to long-term vibration and stress.
 上記の効果により、実施形態に係るパイプ接合体100は、自動車部品のように、長期間の振動及び応力にさらされる過酷な環境下で、かつ、高度な安全性を要求される分野に用いる部品に適するものとなる。 Due to the above-described effects, the pipe joined body 100 according to the embodiment is a part used in a field where a high level of safety is required under a severe environment exposed to vibration and stress for a long time, such as an automobile part. It will be suitable for.
[実験例]
 図7は、実験例に係るパイプ接合体100aを示す写真である。図7(a)はパイプ接合体100aを側面側から写した写真であり、図7(b)はパイプ接合体100aを斜めから写した写真である。
 図8は、実験例に係るパイプ接合体100aの接合部の様子を説明するために示す図である。図8(a)はパイプ接合体100aを切断し、その結合部付近を写した写真であり、図8(b)は図8(a)の符号Aで示す範囲内の一部を拡大して示す写真であり、図8(c)は図8(b)を説明するために示す断面図である。なお、図8(a)の結合部にある黒点は、結合界面の目印としてパイプ接合体100aの切断後に付けた印である。また、図8(b)は複数枚の写真を結合して作成した写真である。
[Experimental example]
FIG. 7 is a photograph showing a pipe joined body 100a according to an experimental example. Fig.7 (a) is the photograph which copied the pipe joined body 100a from the side surface side, and FIG.7 (b) is the photograph which copied the pipe joined body 100a from the diagonal.
FIG. 8 is a diagram for explaining the state of the joint portion of the pipe joined body 100a according to the experimental example. FIG. 8 (a) is a photograph of the pipe joined body 100a cut and the vicinity of the joint portion is copied. FIG. 8 (b) is an enlarged view of a part within the range indicated by the symbol A in FIG. 8 (a). FIG. 8C is a cross-sectional view for explaining FIG. 8B. In addition, the black dot in the coupling | bond part of Fig.8 (a) is the mark given after the cutting | disconnection of the pipe joined body 100a as a mark of a coupling | bonding interface. FIG. 8B is a photograph created by combining a plurality of photographs.
 図9は、実験例に係るパイプ接合体100aの引張強度に関する実験を行った結果を説明するために示す図である。図9(a)は引張試験の後のパイプ接合体100aの写真であり、図9(b)は引張試験の結果を示すグラフ(応力歪線図)である。図9(b)に示すグラフの縦軸は引張荷重(単位:kN)を示し、横軸は変位(単位:mm)を示す。
 図10は、実験例に係るパイプ接合体100aの残留応力に関する実験を行った結果を説明するために示す図である。図10(a)は残留応力の測定方法について説明するための図であり、図10(b)は残留応力試験の結果を示すグラフである。図10(b)に示すグラフの縦軸は残留応力(単位:MPa)を示し、横軸は測定位置を示す。
FIG. 9 is a diagram for explaining a result of an experiment regarding a tensile strength of the pipe joined body 100a according to the experimental example. FIG. 9A is a photograph of the pipe joined body 100a after the tensile test, and FIG. 9B is a graph (stress strain diagram) showing the result of the tensile test. The vertical axis of the graph shown in FIG. 9B indicates the tensile load (unit: kN), and the horizontal axis indicates the displacement (unit: mm).
FIG. 10 is a diagram for explaining the result of the experiment regarding the residual stress of the pipe joined body 100a according to the experimental example. FIG. 10A is a diagram for explaining a method for measuring residual stress, and FIG. 10B is a graph showing the result of the residual stress test. The vertical axis of the graph shown in FIG. 10B indicates the residual stress (unit: MPa), and the horizontal axis indicates the measurement position.
 実験例においては、本発明のパイプ接合体の製造方法により本発明のパイプ接合体(実験例に係るパイプ接合体100a)を実際に製造し、本発明の効果を確認した。
 まず、実験例に係るパイプ接合体の製造方法について説明する。
 実験例に係るパイプ接合体の製造方法は、基本的には実施形態に係るパイプ接合体の製造方法と同様である。このため、実験例においては、具体的な事項についてのみ記載する。
In the experimental example, the pipe joined body of the present invention (pipe joined body 100a according to the experimental example) was actually manufactured by the method for manufacturing a pipe joined body of the present invention, and the effect of the present invention was confirmed.
First, a method for manufacturing a pipe joined body according to an experimental example will be described.
The manufacturing method of the pipe joined body according to the experimental example is basically the same as the manufacturing method of the pipe joined body according to the embodiment. For this reason, only specific items are described in the experimental examples.
 実施例に係るパイプ接合体100a(符号を図示せず。図7参照。)は、第1金属パイプ10a及び第2金属パイプ20aから製造した。
 第1金属パイプ10a及び第2金属パイプ20aを構成する金属材料としては、STKM-12を用いた。
 第1金属パイプ10aの元となった金属パイプ(素材パイプ)及び第2金属パイプ20aとしては、外直径が18.0mm、内直径が14.8mmのものを用いた。第1金属パイプ10aにおける突出部の最大直径は17.4mmであり、傾斜外面の所定の接続軸に対する傾斜角度は22°とした。
 なお、各金属パイプの長さについては、今回の実験においては重要ではないため厳密には揃えていないが、第1金属パイプ10aについては200mm程度、第2金属パイプ20aについては60mm程度とした。
The pipe joined body 100a according to the example (not shown) is manufactured from the first metal pipe 10a and the second metal pipe 20a.
STKM-12 was used as the metal material constituting the first metal pipe 10a and the second metal pipe 20a.
As the metal pipe (material pipe) and the second metal pipe 20a that are the basis of the first metal pipe 10a, those having an outer diameter of 18.0 mm and an inner diameter of 14.8 mm were used. The maximum diameter of the protrusion in the first metal pipe 10a was 17.4 mm, and the inclination angle of the inclined outer surface with respect to the predetermined connection axis was 22 °.
Although the length of each metal pipe is not important in this experiment and is not strictly aligned, it is about 200 mm for the first metal pipe 10a and about 60 mm for the second metal pipe 20a.
 実験例においては、実施形態における加圧装置1000に準じる加圧装置を用いてパイプ接合体100aを製造した。
 初期加圧圧力及び本加圧圧力は、3.92kNとした。予圧圧力は本加圧圧力の1/3とした。
 初期加圧の時間は0.5秒とした。
 通電による電気抵抗発熱をエネルギー源とする固相拡散接合においては、溶接電流を15kAとし、通電時間を0.25秒(60Hzでの15サイクル)とした。
 このようにすることで、図7に示すように、実験例に係るパイプ接合体100aを得た。
In the experimental example, the pipe joined body 100a was manufactured using a pressurizing apparatus according to the pressurizing apparatus 1000 in the embodiment.
The initial pressurizing pressure and the main pressurizing pressure were 3.92 kN. The preload pressure was 1/3 of this pressurization pressure.
The initial pressurization time was 0.5 seconds.
In solid phase diffusion bonding using electrical resistance heat generation by energization as an energy source, the welding current was 15 kA, and the energization time was 0.25 seconds (15 cycles at 60 Hz).
By doing in this way, as shown in FIG. 7, the pipe joined body 100a which concerns on an experiment example was obtained.
 まず、接合界面の様子を光学的に観察するため、パイプ接合体100aを切断して観察を行った。当該切断は、ちょうど図1(c)に示す断面のようになるようにして行った。切断面は定法により研磨した後、5%硝酸エタノール(ナイタル液)でエッチングし(図8(a)参照。なお、符号12aで示すのは貫通孔である。)、その後、顕微鏡で拡大して観察を行った。その結果、図8(b)に示すように、第1金属パイプ10aと第2金属パイプ20aとが一体化し、突出部と内面端部とが接していた部分(図8(b)中符号Cで示す部分)の接合界面が消失していることが観察できた。当該観察により、本発明のパイプ接合体の製造方法でパイプ接合体を製造することができることが確認できた。なお、図8(b)に写っている微細間隙(図8(b)の符号B及び符号D参照。)は、第1金属パイプ10aと第2金属パイプ20aとを組み立てたときに突出部と内面端部とが接していなかった場所(もともと接合を企図していない場所。図8(c)の符号B及び符号D参照。)に残った間隙である。このため、当該微細間隙によって接合部の強度等が損なわれることはない。 First, in order to optically observe the state of the joining interface, the pipe joined body 100a was cut and observed. The cutting was performed so as to have the cross section shown in FIG. The cut surface is polished by a conventional method and then etched with 5% ethanol nitrate (nitral liquid) (see FIG. 8A. Note that reference numeral 12a indicates a through hole), and then magnified with a microscope. Observations were made. As a result, as shown in FIG. 8B, the portion where the first metal pipe 10a and the second metal pipe 20a are integrated and the projecting portion is in contact with the inner surface end (reference symbol C in FIG. 8B). It was observed that the bonding interface of the part indicated by From this observation, it was confirmed that the pipe joined body can be produced by the method for producing a pipe joined body of the present invention. Note that the fine gaps shown in FIG. 8B (see reference numerals B and D in FIG. 8B) are the protrusions when the first metal pipe 10a and the second metal pipe 20a are assembled. This is a gap remaining in a place where the inner surface end portion is not in contact (a place where the joining is not originally intended; see reference numerals B and D in FIG. 8C). For this reason, the strength or the like of the joint is not impaired by the fine gap.
 次に、引張強度に関する実験を行った。当該実験は、引張圧縮試験機(オートグラフ)であるSDW-9103(株式会社今田製作所製。最大荷重100kN。)を用いて行った。
 当該実験には、接合界面の様子を観察したパイプ接合体100aの同ロット品を用い、第1金属パイプ10aと第2金属パイプ20aとを引き離す方向に荷重を掛けた。その結果、接合部が破断することはなかった。また、接合部よりも各金属パイプの母材からなる部分の方が引張による伸びが大きいことを目視により確認できた(図9(a)参照。実験後のため、パイプ接合体100aの一部が変形している。)。応力歪線図は、図9(b)のグラフに示す通りである。当該実験により、接合部の引張強度が母材よりも大きいことが確認できた。なお、変形強度についても引張強度と同じ傾向が存在するため、上記実験結果から、接合部の変形強度が母材よりも大きいことも確認できた。
Next, an experiment on tensile strength was performed. The experiment was conducted using SDW-9103 (manufactured by Imada Manufacturing Co., Ltd., maximum load 100 kN) which is a tensile / compression tester (autograph).
In the experiment, a load was applied in the direction of separating the first metal pipe 10a and the second metal pipe 20a using the same lot product of the pipe joined body 100a in which the appearance of the joining interface was observed. As a result, the joint did not break. Moreover, it has confirmed visually that the part which consists of a base material of each metal pipe has larger elongation by tension than a junction part (refer to Drawing 9 (a). Because it is after an experiment, a part of pipe joined body 100a) Is deformed.) The stress strain diagram is as shown in the graph of FIG. From this experiment, it was confirmed that the tensile strength of the joint was greater than that of the base material. In addition, since the same tendency as tensile strength exists also about deformation strength, it has also confirmed from the said experimental result that the deformation strength of a junction part is larger than a base material.
 次に、残留応力に関する実験を行った。当該実験は、X線応力測定装置であるiXRD(プロトマニュファクチュアリング株式会社製)を用いて行った。
 当該実験は、接合界面の様子を観察したパイプ接合体100aから採取したサンプルを用いて行った。図10(a)の写真の上に示す十字線の交点を基準点(接合界面上の点。さらにいえば、接合前に突出部と内面端部とが接していたと考えられる点。)として、所定の接続軸に沿う方向(紙面上下方向)に0.5mm間隔で測定位置を設定した。なお、基準点よりも第2金属パイプ側(上側)を正、第1金属パイプ側(下側)を負として座標系を設定した。その結果、図10(b)に示すように、第1金属パイプ側では第2金属パイプ側向きの応力が残留しており、第2金属パイプ側では第1金属パイプ側向きの応力が残存していることが確認できた。つまり、パイプ接合体100a(本発明に係るパイプ接合体)の接合部に残留する応力が圧縮応力であることが確認できた。
Next, an experiment on residual stress was performed. The experiment was performed using iXRD (produced by Proto Manufacturing Co., Ltd.) which is an X-ray stress measurement apparatus.
The experiment was performed using a sample collected from the pipe joined body 100a in which the appearance of the joining interface was observed. As a reference point (a point on the joining interface. More specifically, a point where the protruding portion and the inner surface end portion were in contact before joining) as a reference point (a point on the joining interface) as shown in the photograph of FIG. Measurement positions were set at intervals of 0.5 mm in the direction along the predetermined connection axis (up and down direction on the paper surface). The coordinate system was set with the second metal pipe side (upper side) positive from the reference point and the first metal pipe side (lower side) negative. As a result, as shown in FIG. 10B, the stress toward the second metal pipe remains on the first metal pipe side, and the stress toward the first metal pipe side remains on the second metal pipe side. It was confirmed that That is, it was confirmed that the stress remaining in the joint portion of the pipe joined body 100a (the pipe joined body according to the present invention) is a compressive stress.
 以上、本発明を上記の各実施形態に基づいて説明したが、本発明は上記の実施形態及び実験例に限定されるものではない。その趣旨を逸脱しない範囲において種々の様態において実施することが可能であり、例えば、次のような変形も可能である。 As mentioned above, although this invention was demonstrated based on said each embodiment, this invention is not limited to said embodiment and experiment example. The present invention can be carried out in various modes without departing from the spirit thereof, and for example, the following modifications are possible.
(1)上記実施形態及び実験例において記載し、各図面において図示した各構成要素の寸法、個数、材質及び形状は例示であり、本発明の効果を損なわない範囲において変更することが可能である。 (1) The dimensions, the number, the material, and the shape of each component described in the above-described embodiment and experimental example and illustrated in each drawing are exemplifications, and can be changed within a range that does not impair the effects of the present invention. .
(2)上記実施形態においては、1本の第1金属パイプ10と1本の第2金属パイプ20とを準備して実施してパイプ接合体の製造方法を実施したが、本発明はこれに限定されるものではない。図11は、変形例1に係るパイプ接合体102の図である。図11(a)はパイプ接合体102の斜視図であり、図11(b)はパイプ接合体102の図1(d)に対応する断面図である。例えば、図11に示すように、1本の第1金属パイプ(変形例1では第1金属パイプ10)と複数の第2金属パイプ(変形例2では第2金属パイプ20,40)とを準備してパイプ接合体の製造方法を実施してもよい。また、複数の第1金属パイプと1本の第1金属パイプとを準備して実施してもよいし、複数の第1金属パイプと複数の第2金属パイプとを準備して実施してもよい。
 第1金属パイプ及び第2金属パイプの一方又は両方が複数である場合には、3本以上の金属パイプの接合を一度に(つまり、1回の第2工程で)行うことによりパイプ接合体を製造してもよい。しかし、当該場合には、接合の確実性の観点から、1本の第1金属パイプと1本の第2金属パイプとの接合を順次(つまり、合計n本の第1金属パイプ及び第2金属パイプがある場合には、本発明をn-1回繰り返して)行うことによりパイプ接合体を製造することが好ましい。
(2) In the above embodiment, one first metal pipe 10 and one second metal pipe 20 are prepared and implemented, and the method for manufacturing a pipe assembly is implemented. It is not limited. FIG. 11 is a view of a pipe joined body 102 according to the first modification. 11A is a perspective view of the pipe joined body 102, and FIG. 11B is a cross-sectional view of the pipe joined body 102 corresponding to FIG. 1D. For example, as shown in FIG. 11, one first metal pipe (first metal pipe 10 in Modification 1) and a plurality of second metal pipes ( second metal pipes 20 and 40 in Modification 2) are prepared. And you may implement the manufacturing method of a pipe joined body. Further, a plurality of first metal pipes and a single first metal pipe may be prepared and executed, or a plurality of first metal pipes and a plurality of second metal pipes may be prepared and executed. Good.
When one or both of the first metal pipe and the second metal pipe are plural, the pipe joined body is formed by joining three or more metal pipes at a time (that is, in one second step). It may be manufactured. However, in this case, from the viewpoint of bonding reliability, the bonding of one first metal pipe and one second metal pipe is sequentially performed (that is, a total of n first metal pipes and second metal pipes). If there is a pipe, it is preferable to manufacture the pipe assembly by repeating the present invention n-1 times).
(3)本発明に係るパイプ接合体の製造方法は、以下に示す変形例2のようにしてもよい。図12は、変形例2に係るパイプ接合体104を説明するために示す図である。図12(a)はパイプ接合体104の斜視図であり、図12(b)はパイプ接合体104の図1(d)に相当する断面図であり、図12(c)は第1金属パイプ50の斜視図であり、図12(d)は第1金属パイプ50の図1(d)に相当する断面図である。変形例2に係るパイプ接合体の製造方法は、基本的には実施形態に係るパイプ接合体の製造方法と同様であるが、準備工程で準備する第1金属パイプの構成が異なる。変形例2における第1金属パイプ50は、図12(c)及び(d)に示すように、第2金属パイプ20の内面端部22がある側の端面を受ける受け面58を備える。なお、符号50iで示すのは第1金属パイプ50の内部空間であり、符号52で示すのは貫通孔であり、符号54で示すのは突出部であり、符号56で示すのは傾斜外面である。受け面58は、第1金属パイプ50と第2金属パイプ20とを組み合わせたときに受け面58と第2金属パイプ20の端面との間に間隙ができ、固相拡散接合を行った後に受け面58と当該端面とが接する位置に形成されている。このような方法とすることにより、第1金属パイプと第2金属パイプとの間に生じる溝を無くし、製造するパイプ接合体の外観を一層よくすることが可能となる。なお、固相拡散接合が同じ条件で行われている場合には、受け面の有無に関わらず、パイプ接合体の接合部の特徴(残留する応力や強度等)に変わりは無い。 (3) The method for manufacturing a pipe joined body according to the present invention may be as in Modification 2 shown below. FIG. 12 is a view for explaining the pipe joined body 104 according to the second modification. 12A is a perspective view of the pipe joined body 104, FIG. 12B is a cross-sectional view corresponding to FIG. 1D of the pipe joined body 104, and FIG. 12C is a first metal pipe. FIG. 12D is a cross-sectional view corresponding to FIG. 1D of the first metal pipe 50. The manufacturing method of the pipe joined body according to Modification 2 is basically the same as the manufacturing method of the pipe joined body according to the embodiment, but the configuration of the first metal pipe prepared in the preparation process is different. The 1st metal pipe 50 in the modification 2 is provided with the receiving surface 58 which receives the end surface of the side with the inner surface edge part 22 of the 2nd metal pipe 20, as shown in FIG.12 (c) and (d). Reference numeral 50i denotes an internal space of the first metal pipe 50, reference numeral 52 denotes a through hole, reference numeral 54 denotes a protruding portion, and reference numeral 56 denotes an inclined outer surface. is there. The receiving surface 58 has a gap between the receiving surface 58 and the end surface of the second metal pipe 20 when the first metal pipe 50 and the second metal pipe 20 are combined. The surface 58 is formed at a position where the end surface is in contact. By adopting such a method, it is possible to eliminate the groove formed between the first metal pipe and the second metal pipe, and to further improve the appearance of the manufactured pipe assembly. When solid phase diffusion bonding is performed under the same conditions, the characteristics (residual stress, strength, etc.) of the bonded portion of the pipe bonded body remain unchanged regardless of the presence or absence of the receiving surface.
10,10a,30,50…第1金属パイプ、10i,30i,50i…第1金属パイプの内部空間、12,12a,32,52…貫通孔、14,54…突出部、16,56…傾斜外面、20,20a,40…第2金属パイプ、20i,40i…第2金属パイプの内部空間、22…内面端部、58…受け面、100,102,104…パイプ接合体、1000…加圧装置、1010…一方の電極、1012…他方の電極、1020…下部プラテン、1022…上部プラテン、ax…所定の接続軸、ax1…第1金属パイプの中心軸、ax2…第2金属パイプの中心軸 10, 10a, 30, 50 ... first metal pipe, 10i, 30i, 50i ... internal space of the first metal pipe, 12, 12a, 32, 52 ... through hole, 14, 54 ... projecting portion, 16, 56 ... inclined Outer surface, 20, 20a, 40 ... second metal pipe, 20i, 40i ... inner space of second metal pipe, 22 ... inner surface end, 58 ... receiving surface, 100, 102, 104 ... pipe assembly, 1000 ... pressurization Apparatus, 1010 ... One electrode, 1012 ... The other electrode, 1020 ... Lower platen, 1022 ... Upper platen, ax ... Predetermined connection axis, ax1 ... Central axis of the first metal pipe, ax2 ... Central axis of the second metal pipe

Claims (12)

  1.  第1金属パイプの側面外方に第2金属パイプが所定の接続軸に沿って接合され、かつ、前記第1金属パイプの内部空間と前記第2金属パイプの内部空間とが連結されているパイプ接合体の製造方法であって、
     前記第1金属パイプ側面に形成された貫通孔と、「前記貫通孔を囲うように形成され、かつ、前記所定の接続軸に対して所定の角度で傾斜する傾斜外面を有し、かつ、前記第1金属パイプ側面から外側に向かって突出する」突出部とを備える前記第1金属パイプと、前記第1金属パイプと前記第2金属パイプとを組み合わせたとき前記突出部の前記傾斜外面に接する内面端部を備える前記第2金属パイプとを準備する第1工程と、
     前記第1金属パイプと前記第2金属パイプとを前記所定の接続軸に沿って組み合わせた後、前記突出部と前記内面端部との間に圧力を掛けながら、通電による電気抵抗発熱をエネルギー源とする固相拡散接合により前記第1金属パイプ及び前記第2金属パイプを接合する第2工程とをこの順序で含むことを特徴とするパイプ接合体の製造方法。
    A pipe in which a second metal pipe is joined along a predetermined connection axis to the outside of the side surface of the first metal pipe, and the internal space of the first metal pipe and the internal space of the second metal pipe are connected. A method for manufacturing a joined body, comprising:
    A through-hole formed in the side surface of the first metal pipe, and “having an inclined outer surface formed so as to surround the through-hole and inclined at a predetermined angle with respect to the predetermined connection axis; and When the first metal pipe provided with a projecting portion projecting outward from the side surface of the first metal pipe, and the first metal pipe and the second metal pipe are combined, they contact the inclined outer surface of the projecting portion. A first step of preparing the second metal pipe having an inner surface end;
    After combining the first metal pipe and the second metal pipe along the predetermined connection axis, electric resistance heat is generated by energization while applying pressure between the protrusion and the inner surface end. And a second step of joining the first metal pipe and the second metal pipe in this order by solid phase diffusion joining.
  2.  請求項1に記載のパイプ接合体の製造方法において、
     前記第2工程では、通電時間を1秒以下とすることを特徴とするパイプ接合体の製造方法。
    In the manufacturing method of the pipe zygote according to claim 1,
    In the second step, the energization time is set to 1 second or less, and the method for manufacturing a pipe joined body according to the second step.
  3.  請求項1又は2に記載のパイプ接合体の製造方法において、
     前記第2工程においては、前記固相拡散接合のための通電の直前に初期加圧を行い、前記初期加圧から加圧を継続したまま前記固相拡散接合により前記第1金属パイプ及び前記第2金属パイプを接合することを特徴とするパイプ接合体の製造方法。
    In the manufacturing method of the pipe zygote according to claim 1 or 2,
    In the second step, initial pressurization is performed immediately before energization for the solid phase diffusion bonding, and the first metal pipe and the first metal are bonded by the solid phase diffusion bonding while continuing the pressurization from the initial pressurization. A manufacturing method of a pipe joined body characterized by joining two metal pipes.
  4.  請求項1~3のいずれかに記載のパイプ接合体の製造方法において、
     前記傾斜外面は、前記所定の接続軸に対する傾斜角度が5~80°の範囲内にあることを特徴とするパイプ接合体の製造方法。
    In the method for manufacturing a pipe joined body according to any one of claims 1 to 3,
    The method of manufacturing a pipe joined body, wherein the inclined outer surface has an inclination angle with respect to the predetermined connection axis in a range of 5 to 80 °.
  5.  請求項1~4のいずれかに記載のパイプ接合体の製造方法において、
     前記所定の接続軸は、前記貫通孔がある位置の前記第1金属パイプの中心軸と直交することを特徴とするパイプ接合体の製造方法。
    In the method for manufacturing a pipe joined body according to any one of claims 1 to 4,
    The method for manufacturing a pipe joined body, wherein the predetermined connection axis is orthogonal to a central axis of the first metal pipe at a position where the through hole is present.
  6.  請求項1~5のいずれかに記載のパイプ接合体の製造方法において、
     前記第1工程は、
     前記第1金属パイプの素材となる素材パイプを準備する工程と、
     前記素材パイプに前記貫通孔を形成する工程と、
     前記素材パイプの内部から外部に向けてバーリング加工を行うことにより、前記貫通孔の周囲に前記突出部の元となる壁状部を形成する工程と、
     前記壁状部の外面に前記傾斜外面を形成して、前記壁状部を前記突出部とする工程とをこの順序で含むことを特徴とするパイプ接合体の製造方法。
    In the method for manufacturing a pipe joined body according to any one of claims 1 to 5,
    The first step includes
    Preparing a material pipe as a material of the first metal pipe;
    Forming the through hole in the material pipe;
    Performing a burring process from the inside of the material pipe to the outside, thereby forming a wall-like portion that is a source of the protruding portion around the through hole; and
    Forming the inclined outer surface on the outer surface of the wall-shaped portion, and using the wall-shaped portion as the projecting portion in this order.
  7.  請求項1~6のいずれかに記載のパイプ接合体の製造方法において、
     前記第2工程は、前記第1金属パイプ及び前記第2金属パイプを組み合わせて前記突出部と前記内面端部との間に圧力を掛けることが可能な加圧装置を用いて行うことを特徴とするパイプ接合体の製造方法。
    In the method for manufacturing a pipe joined body according to any one of claims 1 to 6,
    The second step is performed using a pressurizing device capable of applying pressure between the protruding portion and the inner surface end portion by combining the first metal pipe and the second metal pipe. To manufacture a pipe assembly.
  8.  請求項7に記載のパイプ接合体の製造方法において、
     前記第2工程は、前記加圧装置として、前記固相拡散接合を行うための電極を備える加圧装置を用いて行うことを特徴とするパイプ接合体の製造方法。
    In the manufacturing method of the pipe zygote according to claim 7,
    The second step is performed using a pressurizing device including an electrode for performing the solid phase diffusion bonding as the pressurizing device.
  9.  請求項8に記載のパイプ接合体の製造方法において、
     前記加圧装置は、
     筐体と、電源装置と、押圧装置と、前記電源装置と接続された一対の電極と、前記筐体に固定され、前記一対の電極のうち一方の電極に接続された下部プラテンと、前記一対の電極のうち他方の電極に接続され、前記押圧装置により前記下部プラテンに向けて押し下げ可能な上部プラテンとを備え、
     前記一方の電極は前記第1金属パイプを固定する機能を有し、
     前記他方の電極は前記第2金属パイプを固定する機能を有することを特徴とするパイプ接合体の製造方法。
    In the manufacturing method of the pipe zygote according to claim 8,
    The pressure device is
    A housing, a power supply device, a pressing device, a pair of electrodes connected to the power supply device, a lower platen fixed to the housing and connected to one of the pair of electrodes, and the pair An upper platen connected to the other of the electrodes and capable of being pushed down toward the lower platen by the pressing device,
    The one electrode has a function of fixing the first metal pipe;
    The other electrode has a function of fixing the second metal pipe.
  10.  請求項9に記載のパイプ接合体の製造方法において、
     前記他方の電極により、前記第2金属パイプの全周に渡って均一に固定することを特徴とするパイプ接合体の製造方法。
    In the manufacturing method of the pipe zygote according to claim 9,
    A method for producing a pipe joined body, wherein the other electrode is uniformly fixed over the entire circumference of the second metal pipe.
  11.  請求項1~10のいずれかに記載のパイプ接合体の製造方法により製造されたパイプ接合体であって、
     第1金属パイプの側面外方に第2金属パイプが所定の接続軸に沿って接合され、かつ、前記第1金属パイプの内部空間と前記第2金属パイプの内部空間とが連結されており、
     前記第1金属パイプと前記第2金属パイプとの接合部に残留する応力が圧縮応力であることを特徴とするパイプ接合体。
    A pipe joined body manufactured by the method for manufacturing a pipe joined body according to any one of claims 1 to 10,
    A second metal pipe is joined along a predetermined connection axis to the outside of the side surface of the first metal pipe, and the internal space of the first metal pipe and the internal space of the second metal pipe are connected;
    The pipe joined body, wherein the stress remaining in the joint portion between the first metal pipe and the second metal pipe is a compressive stress.
  12.  請求項11に記載のパイプ接合体において、
     前記接合部の引張強度が、前記第1金属パイプ及び前記第2金属パイプの母材の引張強度よりも大きく、かつ、前記接合部の変形強度が、前記第1金属パイプ及び前記第2金属パイプの母材の変形強度よりも大きいことを特徴とするパイプ接合体。
    In the pipe joined body according to claim 11,
    The tensile strength of the joint is greater than the tensile strength of the base metal of the first metal pipe and the second metal pipe, and the deformation strength of the joint is the first metal pipe and the second metal pipe. A pipe joined body characterized by being larger than the deformation strength of the base material.
PCT/JP2014/073837 2014-09-09 2014-09-09 Method for manufacturing pipe joint and pipe joint WO2016038691A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2014/073837 WO2016038691A1 (en) 2014-09-09 2014-09-09 Method for manufacturing pipe joint and pipe joint
JP2015506026A JP5860995B1 (en) 2014-09-09 2014-09-09 Manufacturing method of pipe assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/073837 WO2016038691A1 (en) 2014-09-09 2014-09-09 Method for manufacturing pipe joint and pipe joint

Publications (1)

Publication Number Publication Date
WO2016038691A1 true WO2016038691A1 (en) 2016-03-17

Family

ID=55305482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073837 WO2016038691A1 (en) 2014-09-09 2014-09-09 Method for manufacturing pipe joint and pipe joint

Country Status (2)

Country Link
JP (1) JP5860995B1 (en)
WO (1) WO2016038691A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2557605A1 (en) * 1975-12-20 1977-06-30 Keller Kg Wilhelm SCREW CONNECTION FOR PIPE SECTION OF HEATING OIL TANK SYSTEMS
JPS59151211U (en) * 1983-03-28 1984-10-09 日本電気株式会社 Optical fiber cord holding structure
JPS59172878U (en) * 1983-05-06 1984-11-19 株式会社クボタ Branch pipe in pipe-in-pipe construction method
JPH01205889A (en) * 1988-02-10 1989-08-18 Mitsubishi Heavy Ind Ltd Joining method
JPH02197382A (en) * 1989-01-24 1990-08-03 Murata Mfg Co Ltd Heater chip for thermocompression bonding
JPH04100614A (en) * 1990-08-20 1992-04-02 Kubota Corp Composite roll
JPH1015625A (en) * 1996-07-05 1998-01-20 Hiroshima Pref Gov Apparatus for production of laminated metallic material by gas pressure welding and manufacture of its production as well as worked product of laminated metallic material
JP2004174532A (en) * 2002-11-26 2004-06-24 Nippon Steel Corp Branch structure and face-to-face joining method for holder used for manufacturing the same
JP2011255420A (en) * 2010-05-13 2011-12-22 Panasonic Corp Device and method for joining, and battery
WO2012026205A1 (en) * 2010-08-24 2012-03-01 株式会社オーハシテクニカ Joining method for joining parts with high fatigue strength
JP2013169568A (en) * 2012-02-21 2013-09-02 Ohashi Technica Inc Method for controlling joining quality of press fitting joining
JP2014097526A (en) * 2012-11-15 2014-05-29 Auto Network Gijutsu Kenkyusho:Kk Connection structure and connection structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5954288U (en) * 1982-10-04 1984-04-09 松下精工株式会社 duct connection device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2557605A1 (en) * 1975-12-20 1977-06-30 Keller Kg Wilhelm SCREW CONNECTION FOR PIPE SECTION OF HEATING OIL TANK SYSTEMS
JPS59151211U (en) * 1983-03-28 1984-10-09 日本電気株式会社 Optical fiber cord holding structure
JPS59172878U (en) * 1983-05-06 1984-11-19 株式会社クボタ Branch pipe in pipe-in-pipe construction method
JPH01205889A (en) * 1988-02-10 1989-08-18 Mitsubishi Heavy Ind Ltd Joining method
JPH02197382A (en) * 1989-01-24 1990-08-03 Murata Mfg Co Ltd Heater chip for thermocompression bonding
JPH04100614A (en) * 1990-08-20 1992-04-02 Kubota Corp Composite roll
JPH1015625A (en) * 1996-07-05 1998-01-20 Hiroshima Pref Gov Apparatus for production of laminated metallic material by gas pressure welding and manufacture of its production as well as worked product of laminated metallic material
JP2004174532A (en) * 2002-11-26 2004-06-24 Nippon Steel Corp Branch structure and face-to-face joining method for holder used for manufacturing the same
JP2011255420A (en) * 2010-05-13 2011-12-22 Panasonic Corp Device and method for joining, and battery
WO2012026205A1 (en) * 2010-08-24 2012-03-01 株式会社オーハシテクニカ Joining method for joining parts with high fatigue strength
JP2013169568A (en) * 2012-02-21 2013-09-02 Ohashi Technica Inc Method for controlling joining quality of press fitting joining
JP2014097526A (en) * 2012-11-15 2014-05-29 Auto Network Gijutsu Kenkyusho:Kk Connection structure and connection structure

Also Published As

Publication number Publication date
JP5860995B1 (en) 2016-02-16
JPWO2016038691A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
KR101256973B1 (en) Liquid phase diffusion bonding pipe joint and manufacturing method therefor
US9855623B2 (en) Method for connecting a tubular cable lug to a strand produced from aluminium
AU2006338414A1 (en) Bolt for projection welding and method of welding the same
CN102059437A (en) Method of bonding metallic members, and metallic bonded body
JP2016055347A (en) Manufacturing method of pipe joint body and pipe joint body
CN106573332B (en) Metal bonded body and method for producing metal bonded body
KR102084465B1 (en) Method of manufacturing hollow tube
CN109807457A (en) Ultrasonic bonding/soldering of the steel workpiece on aluminium alloy
CN109862995B (en) Method for manufacturing joint component
JP2017531563A (en) Heat bonding method for butt connection of metal parts
JP2008290099A (en) Resistance spot welding method
JP5860995B1 (en) Manufacturing method of pipe assembly
CN112074993A (en) Wire connection structure and wire connection method
US20180056433A1 (en) Metallic member bonding device for pressing rod-shaped or cylindrical first metallic member into hole portion of annular second metallic member to bond the same and bonding method therefor
JP2671757B2 (en) Mandrel bar manufacturing method for seamless pipe manufacturing
JP2004114146A (en) Press-fitting joining structure and method
JP6744809B2 (en) Washer manufacturing method and washer
US20220055696A1 (en) Joint structure, joining method, and vehicle member
JP4453506B2 (en) Friction spot welding method
JP6112511B2 (en) Tow hook manufacturing method
JP2012097888A (en) Method of manufacturing crankshaft
JP6811063B2 (en) Resistance spot welding method and resistance spot welding joint manufacturing method
JP2010247194A (en) Method of joining metallic tube
JP2018065192A (en) Method for manufacturing joint component
JP6797650B2 (en) Sliding member

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015506026

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14901526

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14901526

Country of ref document: EP

Kind code of ref document: A1