JPH01205889A - Joining method - Google Patents

Joining method

Info

Publication number
JPH01205889A
JPH01205889A JP2741388A JP2741388A JPH01205889A JP H01205889 A JPH01205889 A JP H01205889A JP 2741388 A JP2741388 A JP 2741388A JP 2741388 A JP2741388 A JP 2741388A JP H01205889 A JPH01205889 A JP H01205889A
Authority
JP
Japan
Prior art keywords
joining
side plate
projection
deformation
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2741388A
Other languages
Japanese (ja)
Inventor
Kazumi Katayama
片山 一三
Toshihiko Oshita
俊彦 大下
Yasuhiro Fukaya
深谷 保博
Kisaburo Tanaka
田中 喜三郎
Sadato Shigemura
重村 貞人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2741388A priority Critical patent/JPH01205889A/en
Publication of JPH01205889A publication Critical patent/JPH01205889A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the occurrence of deformation by joining by performing vacuum diffusion welding on a continuous projection surrounding the periphery of the joining surface and further, performing diffusion welding on a remaining recessed part in the high-temperature hydrostatic pressure. CONSTITUTION:In joining an impeller of a centrifugal compressor, etc., for instance, the projection 2 is provided so as to surround the entire periphery of the surface to be joined to a main plate 5 on the tip of a vane 1 cut out by machining from a side plate 3 of the impeller. The main plate 5 is superposed on the side plate 3 and load is applied thereto from the outside and the projection 2 is joined by the vacuum diffusion welding method in the high temperature. Since a contact area of the projection is extremely small, the slight load applied from the outside will do and even if the vane 1 is inclined, the deformation is extremely slight and the recessed part remains as space 6 in a vacuum state. When the high hydrostatic pressure is then applied, although the stress to cause the deformation is not generated on the side plate 3, the main plate 5 and the vane 1, the internal force in the direction to crush acts on the vacuum space 6 of the recessed part and when the periphery is made in the high temperature, the remaining joining surface can be also welded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば遠心圧縮機、送風機の羽根車の夷造な
どに適用される接合方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a joining method that is applied to, for example, the construction of impellers for centrifugal compressors and blowers.

〔従来の技術〕[Conventional technology]

第2図は遠心式羽根車の従来の溶接による接合方法の説
明図である。図に於いて、羽根車は第2図(a)に示す
ように円盤状の主板11と側板12とにより構成され、
羽根13は第2図(b)に示すように側板12と一体に
、側板12の材料から削シ出して形成されている。この
ような主板11と側板12とを重ね合わせ、第2図(C
)にその断面を示すように主板11が羽根13と接する
外側に溶接用の溝を形成してそこから両者を溶接し、羽
根部と主板11とを一体化する。溶接後、材料に見合う
熱処理を施して所定の強度とし、最終仕上げ加工を行う
FIG. 2 is an explanatory diagram of a conventional welding method for joining centrifugal impellers. In the figure, the impeller is composed of a disk-shaped main plate 11 and a side plate 12, as shown in FIG. 2(a).
The blades 13 are formed integrally with the side plate 12 by cutting out the material of the side plate 12, as shown in FIG. 2(b). The main plate 11 and the side plate 12 are overlapped and shown in FIG.
), a welding groove is formed on the outside where the main plate 11 contacts the blade 13, and the two are welded from there, thereby integrating the blade part and the main plate 11. After welding, heat treatment appropriate to the material is applied to achieve the desired strength, and final finishing is performed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のような溶接による接合方法に於いては、被溶接物
への入熱量が多く、このため被溶接物が変形して初期の
加工精度が失われる。また、溶接時の発熱により被溶接
物の表面が酸化して表面粗さが悪くなる。これを防止す
るために、溶接後に表面を磨いて表面粗さを良好に保つ
が羽根車などの内面は作業性が悪いために完全なものが
得られず、ま念製造原価も高くなる。
In the joining method by welding as described above, a large amount of heat is input to the welded object, which deforms the welded object and loses initial processing accuracy. Furthermore, the heat generated during welding oxidizes the surface of the welded object, resulting in poor surface roughness. In order to prevent this, the surface is polished after welding to maintain a good surface roughness, but the inner surfaces of impellers, etc., are difficult to work with, making it impossible to obtain a perfect product, which also increases manufacturing costs.

これを避けるために、真空拡散溶接法が適用されること
がある。第3図は遠心式羽根車の従来の真空拡散溶接法
による接合方法の説明図である。図に於いて、この方法
は第3図(a)に示すように羽根13が側板12に対し
て垂直に立っている場合には接合が可能であるが、第3
図(b)に示すように最近の高性能な遠心式羽根車は流
体の流れ損失が低減するように羽根13が側板12に対
して傾いておシ、拡散溶接時に加える外部荷重により羽
根13が破線で示すように変形するために接合面の圧縮
応力が均等に得られず、接合が不可能であるなどの課題
を抱えている。
To avoid this, vacuum diffusion welding is sometimes applied. FIG. 3 is an explanatory diagram of a conventional method of joining centrifugal impellers by vacuum diffusion welding. In the figure, this method allows joining when the blade 13 stands perpendicular to the side plate 12 as shown in FIG.
As shown in Figure (b), in recent high-performance centrifugal impellers, the blades 13 are inclined with respect to the side plate 12 to reduce fluid flow loss, and the blades 13 are bent due to the external load applied during diffusion welding. Due to the deformation shown by the broken line, compressive stress cannot be obtained uniformly on the bonding surfaces, making it impossible to bond.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る接合方法は上記の課題を解決することを目
的処しており、接合面の周囲を囲んで連続した突起を設
けて互いの接合面を当接し先づ上記突起に対して真空拡
散溶接を行い、さらに高温静水圧中に於いて残余の凹部
に対して拡散接合を行うことを特徴としている。
The joining method according to the present invention is aimed at solving the above problems, and involves providing continuous protrusions surrounding the joint surfaces, bringing the joint surfaces into contact with each other, and first performing vacuum diffusion welding on the projections. The method is characterized by performing diffusion bonding on the remaining recessed portions under high temperature and hydrostatic pressure.

〔作用〕[Effect]

即ち、本発明に係る接合方法に於いては接合する面を囲
うように全周に微小な突起を設けて先づこの突起部の真
空拡散溶接を行い、接合する而の全周をシールして内部
に真空の空間を作る。次に、高温中で静水圧を加える所
謂高加圧処理による拡散接合を施すことにより互いに傾
いた部材の場合でも接合部に変形を与えることなく、接
合部に均一な圧縮応力を発生させて良好な接合を行うこ
とができる。
That is, in the joining method according to the present invention, minute projections are provided all around the surfaces to be joined, vacuum diffusion welding is first performed on the projections, and the entire periphery of the area to be joined is sealed. Create a vacuum space inside. Next, by performing diffusion bonding using a so-called high-pressure treatment that applies hydrostatic pressure at high temperatures, even when the members are tilted to each other, uniform compressive stress is generated in the joint without deforming the joint, resulting in good results. It is possible to perform various types of joints.

最初に行う真空拡散溶接は接合面が微小な突起部のみで
あるので、小さい外部荷重で十分に高い圧縮応力を発生
させることができ、溶接部の変形が起こらない。次に行
う高温静水圧処理による拡散接合では残余の接合面に存
在する空間を押し潰す作用が静水圧により発生するので
、接合部の変形を起こさない。
Since the first vacuum diffusion welding involves only a small protrusion on the joint surface, a sufficiently high compressive stress can be generated with a small external load, and the welded part will not be deformed. In the subsequent diffusion bonding by high-temperature hydrostatic pressure treatment, the hydrostatic pressure produces an action that crushes the space existing in the remaining bonding surfaces, so that deformation of the bonded portion does not occur.

〔実施例〕〔Example〕

本発明の実施例を第1図に基づき説明する。 An embodiment of the present invention will be described based on FIG.

第1図は本発明の一実施例に係る羽根車の接合方法の説
明図である。図に於いて、羽根1は第1図(a)に示す
ように羽根車の側板3から機械加工により削り出されて
形成されている。第1図(b)は第1図(a)に於ける
b−b断面図で、羽根1の先端部には第1図(b)に示
すように主板5と接合される面を全周囲むように突起2
が設けられている。この突起部は第1図(c)に示すよ
うに電気メツキ法(より別の材料を羽根1の先端に付着
させて先端角部に突起2を設けてもよい。また、第1図
(d)に示すように羽根1の先端部を機械加工或いはエ
ツチング法などによ)接合する面の角部を残して中央部
を凹形に加工してもよい。
FIG. 1 is an explanatory diagram of a method for joining impellers according to an embodiment of the present invention. In the figure, the blades 1 are formed by cutting out the side plate 3 of the impeller by machining, as shown in FIG. 1(a). FIG. 1(b) is a cross-sectional view taken along line bb in FIG. 1(a), and the tip of the blade 1 has a surface connected to the main plate 5 all around it, as shown in FIG. protrusion 2
is provided. This protrusion may be formed by electroplating as shown in FIG. 1(c) (or by attaching another material to the tip of the blade 1 to form a protrusion 2 at the tip corner. ), the tip of the blade 1 may be machined or etched to form a concave central portion, leaving the corner portions of the surfaces to be joined.

このような羽根lの付いた側板3と主板5とを第1図(
e)に示すように重ね合わせて外部から荷重を加え、羽
根1の接合面全周の角部即ち突起2を高温中で真空拡散
溶接法により接合する。
The side plate 3 with such blades l and the main plate 5 are shown in Figure 1 (
As shown in e), the blades are overlapped and a load is applied from the outside, and the corner portions, that is, the protrusions 2 of the entire circumference of the joining surface of the blade 1 are joined by vacuum diffusion welding at high temperature.

このように真空拡散溶接2行った場合は突起部の接触面
積が極めて小さいので、外部から加える荷重は小さくて
良い。従って、羽根1が傾いていでも変形は極く微小で
める。
When vacuum diffusion welding 2 is performed in this way, the contact area of the protrusion is extremely small, so the load applied from the outside can be small. Therefore, even if the blade 1 is tilted, the deformation will be extremely small.

このようにして接合面の周囲を真空拡散溶接できるので
、凹部は真空の状態の空間6として残る。次に、第1図
(f)に示すように高静水圧を加えると、側板3、主板
5、羽根1には変形を起こす応力は静水圧の原理に基づ
き生じないが、凹部の真空の空間6には押し潰される方
向の内力が働く。このような状態に於いて周囲を高温に
すれば、残余の接合面も拡散接合が可能になる。
In this way, vacuum diffusion welding can be performed around the joint surface, so that the recess remains as a vacuum space 6. Next, when high hydrostatic pressure is applied as shown in Figure 1(f), stress that causes deformation is not generated in the side plate 3, main plate 5, and blade 1 based on the principle of hydrostatic pressure, but the vacuum space of the recess is not generated. An internal force acts on 6 in the direction of crushing it. In such a state, if the surrounding temperature is raised to high temperature, diffusion bonding can be performed on the remaining bonding surfaces.

〔発明の効果〕〔Effect of the invention〕

本発明に係る接合方法は前記の通りであり、接合する部
材には大きな熱量を特に加える必要がなく、また部材全
体が均一な温度状態で行われるので接合による変形が発
生しないので、例え部材が互いに直交しておらずに傾い
ていても接合が可能であるなどの効果が奏せられる。
The joining method according to the present invention is as described above, and there is no need to particularly apply a large amount of heat to the members to be joined, and since the entire member is kept at a uniform temperature, no deformation occurs due to joining. Even if they are not perpendicular to each other and are tilted, they can be joined.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る接合方法の説明図、第
2図および第3図は従来の接合方法の説明図である。 1・・・羽根、2・・・突起、3・・・側板、5・・・
主板、6・・・空間。 代理人 弁理士 坂 間   暁  外2名42区 (0−り (の 側3閃 (久) (b)
FIG. 1 is an explanatory diagram of a joining method according to an embodiment of the present invention, and FIGS. 2 and 3 are explanatory diagrams of a conventional joining method. 1...Blade, 2...Protrusion, 3...Side plate, 5...
Main plate, 6...space. Agent: Patent attorney Akira Sakama, 2 others, 42 wards (0-ri(no side 3) (b)

Claims (1)

【特許請求の範囲】[Claims] 接合面の周囲を囲んで連続した突起を設けて互いの接合
面を当接し先づ上記突起に対して真空拡散溶接を行い、
さらに高温静水圧中に於いて残余の凹部に対して拡散接
合を行うことを特徴とする接合方法。
A continuous protrusion is provided surrounding the joint surface, the joint surfaces are brought into contact with each other, and vacuum diffusion welding is first performed on the protrusion.
Furthermore, the bonding method is characterized in that diffusion bonding is performed on the remaining recessed portions under high temperature and hydrostatic pressure.
JP2741388A 1988-02-10 1988-02-10 Joining method Pending JPH01205889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2741388A JPH01205889A (en) 1988-02-10 1988-02-10 Joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2741388A JPH01205889A (en) 1988-02-10 1988-02-10 Joining method

Publications (1)

Publication Number Publication Date
JPH01205889A true JPH01205889A (en) 1989-08-18

Family

ID=12220402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2741388A Pending JPH01205889A (en) 1988-02-10 1988-02-10 Joining method

Country Status (1)

Country Link
JP (1) JPH01205889A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6499953B1 (en) 2000-09-29 2002-12-31 Pratt & Whitney Canada Corp. Dual flow impeller
JP5860995B1 (en) * 2014-09-09 2016-02-16 株式会社ミヤタ Manufacturing method of pipe assembly
WO2017073500A1 (en) * 2015-10-28 2017-05-04 株式会社荏原製作所 Method of manufacturing impeller
CN107949704A (en) * 2015-10-28 2018-04-20 株式会社荏原制作所 The manufacture method of impeller

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6130292A (en) * 1984-07-23 1986-02-12 Natl Res Inst For Metals Diffusion-joining method by hot isotropic pressure press
JPS6160292A (en) * 1984-08-30 1986-03-27 テキサコ・デベロツプメント・コーポレーシヨン Non-fuming solder purifying melt

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6130292A (en) * 1984-07-23 1986-02-12 Natl Res Inst For Metals Diffusion-joining method by hot isotropic pressure press
JPS6160292A (en) * 1984-08-30 1986-03-27 テキサコ・デベロツプメント・コーポレーシヨン Non-fuming solder purifying melt

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6499953B1 (en) 2000-09-29 2002-12-31 Pratt & Whitney Canada Corp. Dual flow impeller
JP5860995B1 (en) * 2014-09-09 2016-02-16 株式会社ミヤタ Manufacturing method of pipe assembly
WO2016038691A1 (en) * 2014-09-09 2016-03-17 株式会社ミヤタ Method for manufacturing pipe joint and pipe joint
WO2017073500A1 (en) * 2015-10-28 2017-05-04 株式会社荏原製作所 Method of manufacturing impeller
CN107949704A (en) * 2015-10-28 2018-04-20 株式会社荏原制作所 The manufacture method of impeller
EP3369937A4 (en) * 2015-10-28 2019-06-26 Ebara Corporation Method of manufacturing impeller
US10710186B2 (en) 2015-10-28 2020-07-14 Ebara Corporation Method of manufacturing impeller

Similar Documents

Publication Publication Date Title
KR101465052B1 (en) Shrouds of centrifugal compressor impeller and method of manufacturing the same
JPH01205889A (en) Joining method
JPH05202701A (en) Joining method
JPS6227380A (en) Method of joining axis of ceramic structure to boss of metalstructure
JPS6311242A (en) Method of bonding ceramic and metal
JPH08159088A (en) Manufacture of impeller
EP3177425B1 (en) Method of joining metallic members for forming a component in a gas turbine engine through use of heat and pressure for shape changing one member to fill a recess in the other member
WO1990002479A3 (en) Dual-alloy disk system
JPS5952030B2 (en) Cold welding method
JPH08284603A (en) Steam turbine rotor for quick start
JPH02104432A (en) Manufacture of lengthwise complex cutter
JPH02151341A (en) Method for forming scroll member
JPS59113990A (en) Production of rotor for turbo molecular pump
JP2548130B2 (en) Method of joining sintered alloy members
JP2003328989A (en) Impeller manufacturing method
JPH04200883A (en) Welding method
JPH0663775A (en) Method for joining annular member and shaft member
JPH04203396A (en) Diffused and connecting vane wheel
JPS60234777A (en) Manufacture of rotor for turbo molecular pump
JPS61212604A (en) Turbine nozzle diaphragm
JPS585513A (en) Thrust collar of rotor made of chrome steel
JPS6146338A (en) Segment assembly type press die
JPH03264701A (en) Manufacture of full shroud impeller
JPH08108459A (en) Cap for extruder and production thereof
JP3004530B2 (en) Method for manufacturing hollow structure