WO2017073500A1 - Method of manufacturing impeller - Google Patents

Method of manufacturing impeller Download PDF

Info

Publication number
WO2017073500A1
WO2017073500A1 PCT/JP2016/081401 JP2016081401W WO2017073500A1 WO 2017073500 A1 WO2017073500 A1 WO 2017073500A1 JP 2016081401 W JP2016081401 W JP 2016081401W WO 2017073500 A1 WO2017073500 A1 WO 2017073500A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
impeller
main plate
blade
manufacturing
Prior art date
Application number
PCT/JP2016/081401
Other languages
French (fr)
Japanese (ja)
Inventor
栄佐雄 山田
健太郎 織田
貴士 山川
Original Assignee
株式会社荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016190866A external-priority patent/JP6758144B2/en
Application filed by 株式会社荏原製作所 filed Critical 株式会社荏原製作所
Priority to EP16859730.0A priority Critical patent/EP3369937B1/en
Priority to CN201680051415.9A priority patent/CN107949704A/en
Priority to US15/770,944 priority patent/US10710186B2/en
Publication of WO2017073500A1 publication Critical patent/WO2017073500A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps

Definitions

  • the present invention relates to a method for manufacturing an impeller.
  • the welding rod does not enter the blade (in the depth direction of the paper surface in the case of FIG. 7D), so it is difficult to perform normal welding.
  • slot welding is used.
  • the main plate is welded to the blade in a state where the outer peripheral side of the main plate and the outer peripheral side of the side plate are fixed by the fixing jig and the inner peripheral side of the main plate and the inner peripheral side of the side plate are not fixed by the fixing jig (for example, 9), a large deformation occurs in the main plate after welding.
  • the large deformation means that the inner peripheral side of the main plate 2 hangs down to the side plate 3 as shown in FIG. The following can be considered as the cause of this deformation.
  • the deformation of the main plate 2 is such that when the main plate is welded to the blade in a state where the main plate and the side plate are not fixed by the fixing jig on both the outer peripheral side and the inner peripheral side, both the outer peripheral side and the inner peripheral side are Also occurs.
  • the side plate after welding is greatly deformed. Conventionally, such a deformation could be a product if it was processed and deleted and allowed. However, in recent years, since the demand for the dimensional accuracy of the blades is high, such deformation is not tolerable in processing.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an impeller manufacturing method capable of reducing deformation of a main plate or a side plate due to welding.
  • the impeller manufacturing method includes a step of forming a side plate provided with a plurality of blades, and the core is attached to the side plate so that the core is sandwiched between the blades and the blades.
  • the core is provided with a through-hole adapted to the shape of the blade so that the blade can be accommodated in the core.
  • An impeller manufacturing method is the impeller manufacturing method described above, wherein the core is destroyed when the main plate becomes lower than a predetermined temperature after the welding step. It further has the process of removing.
  • An impeller manufacturing method is any one of the impeller manufacturing methods described above, wherein the core is provided with a vent hole, and the welding step is performed before the welding step.
  • the method further includes the step of applying a tape to the gap between the main plate and the core, and filling the space between the main plate, the side plate, and the core with the inert gas from the vent hole.
  • An impeller manufacturing method is any one of the impeller manufacturing methods described above, wherein the core through-hole has a shape similar to the shape of the blade, and is circumferential. Is wider than the blade.
  • An impeller manufacturing method is any one of the above impeller manufacturing methods, wherein the number of through holes in the core is the same as the number of the blades,
  • the cores are arranged by covering the side plates so that the horizontal positions of the corresponding through holes substantially coincide with the horizontal positions of the plurality of blades.
  • An impeller manufacturing method is any one of the impeller manufacturing methods described above, wherein the side plate and the core are disk-shaped, and the core is disposed on the side plate.
  • the core is disposed such that the central axis of the core and the central axis of the side plate substantially coincide with each other.
  • An impeller manufacturing method is the impeller manufacturing method described above, wherein the main plate and the core are disk-shaped, and the main plate is disposed on the blade.
  • the main plate is disposed so that the central axis of the main plate and the central axis of the side plate substantially coincide with each other.
  • the impeller manufacturing method according to an aspect of the present invention is any of the above impeller manufacturing methods, wherein the core is formed using a material used for precision casting.
  • the impeller manufacturing method according to an aspect of the present invention is any one of the impeller manufacturing methods described above, wherein the side plate is a side plate that is integrally cut out by machining.
  • An impeller manufacturing method is any one of the impeller manufacturing methods described above, wherein a groove for welding is provided in a groove of the main plate, and the main plate, the blade, In the step of welding, the welding material is poured through the welding hole to weld the main plate and the blade.
  • the impeller manufacturing method according to an aspect of the present invention is any one of the impeller manufacturing methods described above, and the impeller is an impeller of a rotating machine.
  • the manufacturing method of the impeller which concerns on 1 aspect of this invention forms the main board of the said main board so that a core may be inserted
  • the core is provided with a through-hole adapted to the shape of the blade so that the blade can be accommodated in the core.
  • the main plate includes a step of forming a main plate provided with a plurality of blades, and a split core is disposed between the adjacent blades.
  • the weight of each split core can be reduced, and collapse due to its own weight can be avoided. Further, the bending moment generated in the split core is reduced by lifting the split core, and it is possible to secure the strength that can withstand operations such as manufacturing the split core and welding setup (assembly of the split core). Since the split core has a small size, the amount of deformation during the curing process can be reduced, and the mounting (assembly) workability to the impeller can be improved in combination with the split structure. Further, even if the split core becomes unusable due to deformation or damage, since it has a split structure, it is only necessary to replace one of the split cores, thereby reducing the influence on the manufacturing cost.
  • the impeller manufacturing method according to the fourteenth aspect of the present invention is the impeller manufacturing method according to the thirteenth aspect, wherein a hollow is formed in the center of the main plate, and the split core is In the step of disposing the split core, the inner peripheral spacer is provided between the adjacent split cores on the inner peripheral side when protruding from the main plate.
  • the impeller manufacturing method according to the fifteenth aspect of the present invention is the impeller manufacturing method according to the fourteenth aspect, wherein the height of the inner peripheral spacer when the inner peripheral spacer is provided is:
  • the inert gas is supplied from the inner peripheral side so that the inert gas flows through the flow path formed between the main plate and the side plate during the welding step, which is lower than the height of the split core.
  • An impeller manufacturing method is an impeller manufacturing method according to any of the thirteenth to fifteenth aspects, wherein a hollow is formed in the center of the main plate, After the step of forming the main plate, the step of mounting a centering jig in the cavity formed in the main plate before disposing the split core, and in the step of disposing the split core, The back surface on the inner peripheral side of the core is disposed so as to contact the surface of the centering jig.
  • the split core supports the inner peripheral side of the side plate, it is possible to prevent the inner peripheral side of the side plate provided on the core from falling down by welding.
  • An impeller manufacturing method is the impeller manufacturing method according to any one of the thirteenth to sixteenth aspects, wherein in the step of disposing the split core, The method further includes a step of disposing outer peripheral spacers on the outer peripheral side of the split core and between the adjacent blades, and a flow path formed between the main plate and the side plate in the welding step.
  • the inert gas is supplied from the inner peripheral side so that the inert gas flows.
  • the presence of the outer peripheral spacer makes it difficult for the inert gas to leak out. It is possible to make the inert gas impinge on the lining produced during the welding of the blade, and to prevent the lining from being oxidized.
  • An impeller manufacturing method is the impeller manufacturing method according to any of the thirteenth to seventeenth aspects, wherein the plurality of blades are equal to each other from the center of the main plate.
  • the blades are provided at angular intervals, and the blades have substantially the same shape, and the split cores have substantially the same shape.
  • the wooden mold for forming the split core can be a small set and can be formed from the same wooden mold.
  • the wooden mold for molding the split core has become smaller, and it is also possible to use a small and inexpensive 3D printer for resin molding for the production of the wooden mold. Since the (resin mold) can be manufactured, the split core can be created in a short time and at a low cost. Alternatively, the same split core can be mass-produced by a 3D printer based on the same 3D data.
  • An impeller manufacturing method is the impeller manufacturing method according to any of the thirteenth to eighteenth aspects, wherein the thickness of the split core is the surface of the main plate. It is thinner by a predetermined length than the height of the reference blade.
  • the blade contracts and becomes approximately the same height as the thickness of the split core, so that it is possible to prevent an extra force from being applied to the split core.
  • the impeller manufacturing method includes a step of forming a side plate provided with a plurality of blades, and the side plate such that a split core is disposed between the adjacent blades.
  • the weight of each split core can be reduced, and collapse due to its own weight can be avoided. Further, the bending moment generated in the split core is reduced by lifting the split core, and it is possible to secure the strength that can withstand operations such as manufacturing the split core and welding setup (assembly of the split core). Since the split core has a small size, the amount of deformation during the curing process can be reduced, and the mounting (assembly) workability to the impeller can be improved in combination with the split structure. Further, even if the split core becomes unusable due to deformation or damage, since it has a split structure, it is only necessary to replace one of the split cores, thereby reducing the influence on the manufacturing cost.
  • the core physically suppresses deformation of the main plate or the side plate due to the shrinkage force during natural cooling after welding, an impeller with a small amount of deformation of the main plate or the side plate can be manufactured.
  • the yield can be improved, the production efficiency can be remarkably improved, and the manufacturing cost can be reduced.
  • FIG. 3 is a cross-sectional view showing a continuation of the manufacturing process of FIG. 2.
  • FIG. 4 is a cross-sectional view showing a continuation of the manufacturing process of FIG. 3.
  • FIG. 5A is a top view of the impeller at the time of FIG.
  • FIG. 5B is a cross-sectional view taken along the line BB ′ in FIG. It is a perspective view of the side plate 3 which concerns on a comparative example.
  • FIG. 9 is a detail view illustrating a manufacturing process continued from FIG. 8.
  • FIG. 10 is a detail view illustrating a manufacturing process continued from FIG. 9. It is a figure for demonstrating the contraction amount of the impeller 21 concerning a comparative example. It is a perspective view of the main board before and behind mounting
  • FIG. 6 is a perspective view of the side plate 3 according to the comparative example.
  • FIG. 7 is a schematic diagram illustrating a manufacturing process of the impeller 21 according to the comparative example, using a cross-sectional view taken along the line CC ′ of FIG. 6.
  • FIG. 8 is a detailed view showing a manufacturing process of the impeller 21 according to the comparative example, using a cross-sectional view taken along the line DD ′ of FIG.
  • FIG. 9 is a detailed view showing a manufacturing process subsequent to FIG.
  • FIG. 10 is a detailed view showing a manufacturing process subsequent to FIG.
  • the side plate 3 shown in FIG. 6 is obtained by cutting out the side plate 3 in which the blades 4 are integrated from the forged material.
  • the side plate 3 is provided with a plurality of blades 4.
  • FIG. 7A which is a CC ′ sectional view of FIG. 6, the blades 4 are provided substantially perpendicular to the side plate 3.
  • the blade 4 is provided on the side plate 3 as shown in Step 1 of FIG. 8 which is a DD ′ sectional view of FIG. 6.
  • a steel centering jig 8 is installed at the center of the side plate 3.
  • the main plate 2 is installed on the side plate 3.
  • the main plate 2 is provided with a groove 5 for slot welding the blade 4 and the main plate 2 on the surface opposite to the surface in contact with the blade 4.
  • the shape of the groove 5 is similar to the upper surface (joint surface) of the blade 4 and is slightly larger than the blade 4, and the horizontal position of the blade 4 and the groove 5 is substantially the same.
  • the main plate 2 is installed so as to match. Further, as indicated by a broken line in step 3 of FIG. 8, a plurality of holes 9 for welding are provided in the groove 5.
  • the outer peripheral portion of the main plate 2 and the outer peripheral portion of the side plate 3 are fixed by the fixing jig 7.
  • the fixing jig 7 is strip-shaped and plate-shaped, and the fixing jig 7 fixes the outer peripheral side of the main plate 2 and the outer peripheral side of the side plate 3 over the entire periphery.
  • the fixing weld 11 the welding material is poured from the hole 9 provided in the groove 5, the main plate 2 and the blade 4 are temporarily fixed by welding, and the fixing jig 7 and the main plate 2 are welded.
  • the fixing jig 7 and the side plate 3 are temporarily fixed by welding.
  • step 6 of FIG. 9 electric welding is performed along the groove 5. Specifically, for example, slot welding is performed with a current of 60 A to 190 A from the inner peripheral side to the outer peripheral side of the groove 5. At this time, the welding material is poured from the welding hole 9 shown in FIG. 7C to weld the main plate 2 and the blade 4. The structure shown in FIG. 7C is obtained by welding. As shown in FIG. 7C, there is a deformation in which the main plate 2 hangs down to the side plate 3 side between the blades 4 in the cross section taken along the line CC ′ in FIG. 6.
  • step 7 of FIG. 10 annealing is performed for removing strain at 500 to 600 ° C. for about 3 hours.
  • step 8 of FIG. 10 the portion fixed by the fixing jig 7 or the like is deleted, and surface processing is performed according to the design dimension. Thereby, the impeller 21 which concerns on a comparative example is completed, and the impeller which has the cross section shown to FIG 7 (D) is obtained.
  • FIG. 7D there is a deformation in which the main plate 2 hangs down to the side plate 3 side between the blades 4 in the cross section taken along the line CC ′ of FIG.
  • FIG. 11 is a diagram for explaining the amount of contraction of the impeller 21 according to the comparative example. Since the outer peripheral side is fixed and the inner peripheral side is welded in a free end state, as shown in FIG. 11, the inner peripheral side is more contracted than the outer peripheral side, so the inner peripheral side is more than the outer peripheral side. Deformation increases.
  • the rotating machine is, for example, a pump, a turbine, a compressor, or a blower.
  • FIG. 1 is a perspective view showing an outline of the manufacturing process of the impeller 1 according to the present embodiment.
  • FIG. 2 is a cross-sectional view showing details of the manufacturing process of the impeller 1 according to the present embodiment.
  • FIG. 3 is a cross-sectional view showing a continuation of the manufacturing process of FIG.
  • FIG. 4 is a sectional view showing a continuation of the manufacturing process of FIG.
  • FIG. 5A is a top view of the impeller at the time of FIG.
  • FIG. 5B is a cross-sectional view taken along the line BB ′ in FIG.
  • the side plate 3 provided with the blades 4 is formed. Specifically, the side plate 3 is cut out from the forged material by machining so that the blades 4 are integrally cut out. As shown in FIG. 1A, the side plate 3 has a disc shape. As shown in step 1 of FIG. 2, the side plate 3 is installed. Next, as shown in step 2 of FIG. 1B and FIG. 2, a centering jig 8 is attached to the center of the side plate 3.
  • the core 10 is arranged on the side plate 3 so that the core 10 is sandwiched between the blade 4 and the blade 4.
  • the core 10 has a disk shape, and a through hole (slit) 14 that matches the shape of the blade 4 is formed in the core 10 so that the blade 4 can be accommodated in the core 10 when the core 10 is arranged. Is provided. Further, the same number of through holes 14 of the core 10 as the number of blades 4 are provided.
  • a specific arrangement method is as follows. The core 10 is placed by placing the core 10 on the side plate 3 so that the horizontal positions of the corresponding through holes 14 substantially coincide with the horizontal positions of the plurality of blades 4.
  • the core 10 is arranged so that the central axis of the core 10 and the central axis of the side plate 3 substantially coincide.
  • the through hole 14 of the core 10 has a shape similar to the shape of the blade 4, and the width in the circumferential direction is wider than that of the blade 4. As a result, the blade 4 is accommodated in the core 10.
  • the core 10 is provided with a vent hole 15.
  • the ventilation hole 15 is for back shield gas, and is a hole for flowing an inert gas such as nitrogen (N2) or argon (Ar) for the purpose of preventing oxidation of the weld metal.
  • the weld metal is a metal that melts and solidifies during welding when welding is performed.
  • the core 10 is exposed to a high temperature during welding, it is preferably a high temperature resistant material.
  • the core 10 is formed using a material used for precision casting.
  • precision casting there are few unevenness
  • corrugation of the surface of the core 10 can be decreased.
  • the core 10 since the core 10 must be removed after welding, it is preferably a material that can be physically broken easily.
  • the core 10 is formed using the material described in Patent Document 1. By using such a material, physical removal of the core 10 is facilitated.
  • the main plate 2 is disposed on the blade 4.
  • the main plate 2 is formed with a groove 5 in accordance with the shape of the blade, and the groove 5 has a welding hole 9 indicated by a broken line in step 4 of FIG. A plurality are provided.
  • the main plate 2 has a disk shape, and in the step of arranging the main plate 2 on the blades 4, the main plate 2 is arranged so that the central axis of the main plate 2 and the central axis of the side plate 3 substantially coincide with each other.
  • the core 10 is inserted between the main plate 2 and the side plate 3. Thereby, the deformation
  • step 5 of FIG. 3 tape 16 is applied to the gap between the main plate 2 and the core 10, and inert gas is passed through the vent holes 15 (see FIG. 5B) between the main plate 2, the side plate 3, and the core 10. Fill the space between.
  • the tape 16 has heat resistance.
  • the ends of the blades 4 and the grooves 5 of the main plate 2 are fixed by welding (see step 5 in FIG. 3). Thereby, the welding part 11 for fixation is formed. Thereafter, as shown in Step 6 of FIG.
  • the main plate 2 and the blade 4 are welded by pouring the welding material through the plurality of welding holes 9.
  • This welding is so-called slot welding.
  • the welding current at this time is, for example, 60 A to 190 A.
  • the tape 16 is peeled off after the step 6 of welding shown in FIG.
  • the welded impeller is annealed.
  • the annealing conditions vary depending on the plate thickness and the like. In the present embodiment, annealing is performed at 500 to 600 ° C. for about 3 hours as an example.
  • the centering jig 8 that has played the role of positioning is removed.
  • step 9 of FIG. 4 when the main plate 2 becomes lower than a predetermined temperature, the core 10 is physically destroyed and removed. Thereby, since the core is destroyed when contraction force acts on the main plate, a structure in which a space is provided between the main plate and the side plate can be manufactured without deforming the main plate.
  • the outer peripheral portion 19 shown in step 9 of FIG. Thereby, the impeller 1 which concerns on this embodiment is completed.
  • the main plate 2 had a large amount of shrinkage and a large amount of deformation in the direction from the outer peripheral side to the inner peripheral side boss portion 18.
  • the boss portion 18 of the main plate 2 becomes a free end, a large contraction occurs and the deformation is large.
  • the core 10 is physically suppressed from being deformed by the contraction force during natural cooling after welding by inserting the core 10 between the main plate 2 and the side plate 3 of the impeller 1. Therefore, an impeller with a small deformation amount of the main plate 2 can be manufactured. Thereby, the yield can be improved, the production efficiency can be remarkably improved, and the manufacturing cost can be reduced.
  • this embodiment demonstrated the manufacturing method of the impeller 1 of a rotary machine, it is not restricted to this, Using a core is applicable also to the manufacturing method of another structure. In particular, it is preferable to adapt to a structure having a narrow space where a welding rod is difficult to enter.
  • the manufacturing method of the impeller includes a step of forming a main plate provided with a plurality of blades, and a step of arranging the core on the main plate so that the core is sandwiched between the blades and the blades. And a step of arranging a side plate on which a groove matching the shape of the blade is formed on the blade, and a step of welding the side plate and the blade.
  • the core is provided with a through-hole that matches the shape of the blade so that the blade can be accommodated in the core when the core is disposed.
  • the first embodiment it is a large disk-shaped core, which is approximately the same size as the main plate of the impeller.
  • This core is resistant to compression but has a brittle nature, and the thin outer peripheral portion is liable to collapse due to lack of corners or its own weight.
  • the core needs to be hardened after molding. However, deformation such as warpage is likely to occur at this time, and this deformation is particularly large in a single disk-shaped core. It becomes difficult to attach the core, and it is easy to damage the core if it is forcibly installed.
  • a split core obtained by dividing the disk-shaped core along the shape of the blade is used instead of the disk-shaped core.
  • the split angles with the impeller central axis as the center are substantially the same.
  • the split core Since the split core has a small size, the amount of deformation during the curing process can be reduced, and combined with the split structure, the mounting (assembly) workability to the impeller is extremely high. Even if the split core becomes unusable due to deformation or damage, since it has a split structure, it is only necessary to replace one of the split cores, thereby reducing the influence on the production cost. Further, as shown in FIG. 14 to be described later, by providing an inner circumferential spacer between the split core and providing a gap between the split core and the split core, air permeability of the back seal gas is ensured. This makes it possible to avoid the work of creating a vent hole with a high risk of damaging the core.
  • FIG. 12 is a perspective view of the main plate before and after mounting of the centering jig.
  • FIG. 13 is a perspective view of the main plate before and after the arrangement of the split cores.
  • FIG. 14 is a perspective view when one split core is viewed from the back surface.
  • FIG. 15 is an exploded perspective view when the split core is viewed from the back in order to explain the inner peripheral spacer and the outer peripheral spacer.
  • FIG. 16 is a perspective view of the main plate when the inner circumferential spacer, the outer circumferential spacer, and the split core are disposed.
  • FIG. 12 is a perspective view of the main plate before and after mounting of the centering jig.
  • FIG. 13 is a perspective view of the main plate before and after the arrangement of the split cores.
  • FIG. 14 is a perspective view when one split core is viewed from the back surface.
  • FIG. 15 is an exploded perspective view when the split core is viewed from the back in order to explain the inner peripheral spacer and the
  • FIG. 17 is a partial perspective view of the main plate when cut along the polygonal line L1 and the straight line L2 of FIG. However, in FIG. 17, the inner circumferential spacers 34-1 to 34-13 and the outer circumferential spacers 35-1 to 35-13 are omitted.
  • FIG. 18 is a perspective view of the main plate before and after the side plates are arranged.
  • FIG. 19 is a flowchart illustrating an example of a manufacturing method of an impeller according to the second embodiment.
  • the main plate 31 provided with a plurality of blades 41-1 to 41-13 is formed. Specifically, the main plate 31 is cut out from the forged material by machining, so that the blades 41-1 to 41-13 are cut out integrally. As shown in FIG. 12, the main plate 31 has a disk shape, and the main plate 31 has a cavity formed in the center. The plurality of blades 41-1 to 41-13 are provided at equal angular intervals from the center of the main plate 31, and the shapes of the blades 41-1 to 41-13 are substantially the same.
  • Step S102 Next, as shown in FIG. 12, a centering jig 32 is mounted in the cavity formed in the main plate 31.
  • Step S103 Next, the split cores 33-1 to 33-13, the inner circumferential spacers 34-1 to 34-13, and the outer circumferential spacers 35-1 to 35-13 are arranged. Specifically, as shown in FIG. 13, a plurality of split cores 33-1 to 33-33 are arranged on the main plate 31 so that the split cores 33-1 to 33-13 are arranged between adjacent blades. Place -13. As shown in FIGS. 13 and 17, the split cores 33-1 to 33-13 protrude to the inner peripheral side from the main plate 31.
  • the split cores 33-1 have substantially the same shape as the split cores, and each split core has a shape as shown in FIG.
  • the wooden molds for molding the split cores 33-1 to 33-13 need only be one small set, and can be formed from the same wooden mold.
  • the wooden molds for molding the split cores 33-1 to 33-13 are smaller, and it is possible to use a small and inexpensive 3D printer for resin molding for the production of the wooden molds. Since it is possible to manufacture a wooden mold (resin mold) with high target shape accuracy, the split cores 33-1 to 33-13 can be created in a short time and at low cost. Alternatively, the same split core can be mass-produced by a 3D printer based on the same 3D data.
  • the inner periphery is disposed between the adjacent split cores 33-1 to 33-13 on the inner peripheral side. Spacers 34-1 to 34-13 are provided. With this configuration, the positions of the split cores 33-1 to 33-13 can be determined.
  • the height of the inner peripheral spacers 34-1 to 34-13 when the inner peripheral spacers 34-1 to 34-13 are provided is equal to the height of the split cores 33-1 to 33-13. Less than that.
  • an inert gas is supplied from the inner peripheral side so that an inert gas may flow through the flow path formed between the main plate 31 and the side plate 36. With this configuration, a slight gap can be provided on the surface of the split core and the split core, and the inert gas can be supplied from this gap. For this reason, it is possible to avoid a vent hole forming operation with a high risk of damaging the core.
  • the adjacent blades 41- on the outer peripheral side of the split cores 33-1 to 33-13 are arranged.
  • Outer spacers 35-1 to 35-13 are arranged between 1 to 41-13, respectively.
  • the back surface on the inner peripheral side of the split core is placed in contact with the surface of the centering jig 32.
  • the thickness of the split cores 33-1 to 33-13 is thinner by a predetermined length than the height of the blades relative to the surface of the main plate 31.
  • the predetermined length is a length corresponding to the amount by which the blade is contracted and the height of the blade is lowered by melting the end face of the blade by welding. As a result, the end face of the blade is melted by welding, so that the blade contracts and becomes approximately the same height as the thickness of the split cores 33-1 to 33-13. Can be prevented from applying excessive force.
  • the split cores 33-1 to 33-13 must be removed after welding, it is preferable to use a material that can be physically easily broken.
  • the split cores 33-1 to 33-13 are formed using the material described in Patent Document 1. By using such a material, physical removal of the split cores 33-1 to 33-13 is facilitated.
  • Step S104 Next, as shown in FIG. 18, on the main plate 31 and the split cores 33-1 to 33-13, grooves 37-1 to 37 matched with the shapes of the blades 41-1 to 41-13 are formed. A side plate 36 on which ⁇ 13 is formed is disposed.
  • Step S105 Next, the side plate 36 and the blades 41-1 to 41-13 are welded while supplying the inert gas from the inner peripheral side.
  • the inert gas is supplied from the inner peripheral side so that the inert gas flows through the flow path formed between the main plate 31 and the side plate 36.
  • the presence of the outer peripheral spacers 35-1 to 35-13 makes it difficult for the inert gas to leak out. It is possible to make the inert gas impinge on the lining produced during the welding of the blade, and to prevent the lining from being oxidized.
  • Step S106 heat treatment is performed. For example, after slowly raising the temperature, cool slowly. Thereby, the residual stress can be released.
  • Step S107 Next, the outer peripheral portion is cut out. As a result, the outer peripheral spacers 35-1 to 35-13 are removed.
  • Step S108 Next, the split cores 33-1 to 33-13 are physically destroyed with a wire or the like.
  • Step S109 Next, a desired shape is finished by machining. Thereby, an impeller is completed.
  • the manufacturing method of the impeller according to the second embodiment includes the step of forming the main plate 31 provided with the plurality of blades 41-1 to 41-13 and the arrangement of the split cores between the adjacent blades. As described above, a step of disposing a plurality of split cores 33-1 to 33-13 on the main plate 31, and a step of disposing a side plate 36 on the main plate 31 and the split cores 33-1 to 33-13. And welding the side plate 36 and the blades 41-1 to 41-13.
  • the weight of each of the split cores 33-1 to 33-13 can be reduced, and collapse due to its own weight can be avoided. Further, by lifting the split cores 33-1 to 33-13, the bending moment generated in the split cores 33-1 to 33-13 is reduced, and the split cores 33-1 to 33-13 are manufactured and welded ( It is possible to ensure strength that can withstand work such as assembling the split core. Since the split cores 33-1 to 33-13 have a small size, the amount of deformation during the curing process can be reduced, and the mounting (assembly) workability to the impeller can be improved in combination with the split structure. Further, even if the split cores 33-1 to 33-13 become unusable due to deformation or damage, it is possible to replace one of the split cores 33-1 to 33-13 because of the split structure. , The impact on production costs will be reduced.
  • the blades 41-1 to 41-13 are formed on the main plate 31, but the present invention is not limited to this, and the blades 41-1 to 41-13 may be formed on the side plate 36.
  • the manufacturing method of the impeller includes a step of forming a side plate provided with a plurality of blades and a plurality of divided cores on the side plate so that the divided cores are arranged between adjacent blades. What is necessary is just to make it have the process of arrange
  • the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage.
  • various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment.
  • constituent elements over different embodiments may be appropriately combined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

This method of manufacturing an impeller comprises the steps of forming a side plate or main plate provided with a plurality of vanes, placing a core on the side plate or the main plate so that the core fits in between the vanes, placing on the vanes a main plate or side plate having formed therein grooves matching the shapes of the vanes, and welding the main plate or the side plate and the vanes together.

Description

羽根車の製造方法Manufacturing method of impeller
 本発明は、羽根車の製造方法に関する。 The present invention relates to a method for manufacturing an impeller.
 溶接の技術を用いて構造物を製作することが古くから行われている。溶接で製造される構造物は、船舶、橋など大型のものから、自動車、電車の車体、回転機械の羽根車などの精密を要求される機械にまで及んでいる。ポンプ、コンプレッサ、タービンなどの回転機械は、近年その機械の小型化及び高性能化に伴い、主板と側板との間口(図7(D)の主板と側板との間口b2参照)が狭くなると同時にその精度要求が厳しくなってきている。 ¡Manufacturing structures using welding technology has long been done. Structures manufactured by welding range from large-sized structures such as ships and bridges to machines that require precision, such as automobiles, car bodies, and impellers of rotating machines. With rotary machines such as pumps, compressors, and turbines, the size of the main plate and the side plate (refer to the size b2 between the main plate and the side plate in FIG. 7D) becomes narrower in recent years as the size and performance of the machine become smaller. The accuracy requirements are becoming stricter.
 主板と側板との間口が十数mm以下に狭くなると、羽根の奥(図7(D)の場合、紙面の奥行き方向)にまで溶接棒は入らないので通常の溶接を施工することは難しい。これに対し、従来、溶接棒が羽根の奥に入らない狭い間口の羽根の溶接をする場合には、スロット溶接が用いられている。 If the gap between the main plate and the side plate becomes narrower than 10 mm or less, the welding rod does not enter the blade (in the depth direction of the paper surface in the case of FIG. 7D), so it is difficult to perform normal welding. On the other hand, conventionally, when welding a narrow-blade blade where the welding rod does not enter the blade, slot welding is used.
特公昭55-23705号公報Japanese Patent Publication No.55-23705
 しかし、主板の外周側と側板の外周側が固定治具によって固定されており且つ主板の内周側と側板の内周側が固定治具によって固定されていない状態で羽根に主板を溶接した場合(例えば図9の工程6参照)、溶接後の主板に大きな変形が生じる。この大きな変形とは、具体的には図7(D)に示すように主板2の内周側が側板3側に垂れ下がるというものである。この変形の原因として以下の事項が考えられる。すなわち外周側は固定されているが内周側は固定されていない状態で溶接されるので、溶接後の自然冷却時の収縮力が固定部を支点として内周側になるに従って大きくなり、最も内周側であるボス部(図11のボス部18参照)で最も大きな変形が生じると考えられる。 However, when the main plate is welded to the blade in a state where the outer peripheral side of the main plate and the outer peripheral side of the side plate are fixed by the fixing jig and the inner peripheral side of the main plate and the inner peripheral side of the side plate are not fixed by the fixing jig (for example, 9), a large deformation occurs in the main plate after welding. Specifically, the large deformation means that the inner peripheral side of the main plate 2 hangs down to the side plate 3 as shown in FIG. The following can be considered as the cause of this deformation. In other words, since welding is performed in a state where the outer peripheral side is fixed but the inner peripheral side is not fixed, the shrinkage force during natural cooling after welding becomes larger as it goes to the inner peripheral side with the fixed part as a fulcrum, It is considered that the largest deformation occurs at the boss portion on the circumferential side (see the boss portion 18 in FIG. 11).
 また、このような主板2の変形は、外周側及び内周側がともに主板と側板が固定治具によって固定されていない状態で羽根に主板を溶接した場合には、外周側にも内周側にも生じる。同様に、羽根に側板を溶接した場合、溶接後の側板に大きな変形が生じる。従来、このような変形は加工して削除され許容される程度であれば製品となり得た。しかし、近年、羽根の寸法精度の要求が高いので、このような変形は加工で許容される程度ではない。 In addition, the deformation of the main plate 2 is such that when the main plate is welded to the blade in a state where the main plate and the side plate are not fixed by the fixing jig on both the outer peripheral side and the inner peripheral side, both the outer peripheral side and the inner peripheral side are Also occurs. Similarly, when the side plate is welded to the blade, the side plate after welding is greatly deformed. Conventionally, such a deformation could be a product if it was processed and deleted and allowed. However, in recent years, since the demand for the dimensional accuracy of the blades is high, such deformation is not tolerable in processing.
 本発明は、上記問題に鑑みてなされたものであり、溶接による主板または側板の変形を低減することを可能とする羽根車の製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an impeller manufacturing method capable of reducing deformation of a main plate or a side plate due to welding.
 本発明の一態様に係る羽根車の製造方法は、複数の羽根が設けられた側板を形成する工程と、前記羽根と前記羽根の間に中子が挟み込まれるように当該中子を前記側板の上に配置する工程と、前記羽根の形状に合わせた溝が形成された主板を前記羽根の上に配置する工程と、前記主板と前記羽根とを溶接する工程と、を有し、前記中子を配置したときに前記羽根が前記中子に収まるように、前記中子に前記羽根の形状に合わせた貫通孔が設けられていることを特徴とする。 The impeller manufacturing method according to one aspect of the present invention includes a step of forming a side plate provided with a plurality of blades, and the core is attached to the side plate so that the core is sandwiched between the blades and the blades. A step of disposing the core plate on the blade, and a step of welding the main plate and the blade. The core is provided with a through-hole adapted to the shape of the blade so that the blade can be accommodated in the core.
 これにより、溶接後の自然冷却時の収縮力による主板の変形を中子が物理的に抑制するので、主板の変形量の少ない羽根車を製造することができるので、歩留まりが向上し、生産効率を著しく向上するとともに製造コストを低減することができる。 As a result, since the core physically suppresses deformation of the main plate due to the shrinkage force during natural cooling after welding, an impeller with a small amount of deformation of the main plate can be manufactured, which improves yield and increases production efficiency. Can be significantly improved and the manufacturing cost can be reduced.
 本発明の一態様に係る羽根車の製造方法は、上記の羽根車の製造方法であって、前記溶接する工程の後に前記主板が所定の温度より低くなった場合、前記中子を破壊して除去する工程を更に有する。 An impeller manufacturing method according to an aspect of the present invention is the impeller manufacturing method described above, wherein the core is destroyed when the main plate becomes lower than a predetermined temperature after the welding step. It further has the process of removing.
 これにより、主板に収縮力が働くなったときに中子を破壊するので、主板が変形することなく主板と側板の間に空間が設けられた羽根車を製造することができる。 This makes it possible to manufacture an impeller in which a space is provided between the main plate and the side plate without causing deformation of the main plate because the core is destroyed when contraction force acts on the main plate.
 本発明の一態様に係る羽根車の製造方法は、上記いずれかの羽根車の製造方法であって、前記中子には、通気穴が設けられており、前記溶接する工程の前に、前記主板と前記中子の隙間にテープを貼り、前記通気穴から不活性ガスを前記主板と前記側板と前記中子の間の空間に充満させる工程を更に有する。 An impeller manufacturing method according to an aspect of the present invention is any one of the impeller manufacturing methods described above, wherein the core is provided with a vent hole, and the welding step is performed before the welding step. The method further includes the step of applying a tape to the gap between the main plate and the core, and filling the space between the main plate, the side plate, and the core with the inert gas from the vent hole.
 これにより、テープを貼ることにより、主板と側板と中子との隙間から不活性ガスがもれないようにすることができるので、溶接金属の酸化を確実に防止できる。 This makes it possible to prevent the inert gas from leaking through the gap between the main plate, the side plate, and the core by sticking the tape, so that oxidation of the weld metal can be reliably prevented.
 本発明の一態様に係る羽根車の製造方法は、上記いずれかの羽根車の製造方法であって、前記中子の貫通孔は、前記羽根の形状と類似した形状を有し、円周方向の幅が前記羽根よりも広い。 An impeller manufacturing method according to an aspect of the present invention is any one of the impeller manufacturing methods described above, wherein the core through-hole has a shape similar to the shape of the blade, and is circumferential. Is wider than the blade.
 これにより、羽根と羽根の間に中子を挿入することができる。 This makes it possible to insert the core between the blades.
 本発明の一態様に係る羽根車の製造方法は、上記いずれかの羽根車の製造方法であって、前記中子の貫通孔は、前記羽根の枚数と同じ数だけ設けられており、前記中子を配置する工程において、複数の前記羽根の水平位置に、対応する前記貫通孔の水平位置が略一致するように前記中子を前記側板にかぶせることにより前記中子を配置する。 An impeller manufacturing method according to an aspect of the present invention is any one of the above impeller manufacturing methods, wherein the number of through holes in the core is the same as the number of the blades, In the step of arranging the cores, the cores are arranged by covering the side plates so that the horizontal positions of the corresponding through holes substantially coincide with the horizontal positions of the plurality of blades.
 これにより、羽根と羽根それぞれの間に中子を挿入することができる。 This makes it possible to insert a core between the blades.
 本発明の一態様に係る羽根車の製造方法は、上記いずれかの羽根車の製造方法であって、前記側板及び前記中子は円板状であり、前記中子を前記側板の上に配置する工程において、前記中子は、当該中子の中心軸と前記側板の中心軸とが略一致するように配置される。 An impeller manufacturing method according to an aspect of the present invention is any one of the impeller manufacturing methods described above, wherein the side plate and the core are disk-shaped, and the core is disposed on the side plate. In the step of performing, the core is disposed such that the central axis of the core and the central axis of the side plate substantially coincide with each other.
 これにより、同軸上に側板と中子が配置される。 This places the side plate and core on the same axis.
 本発明の一態様に係る羽根車の製造方法は、上記の羽根車の製造方法であって、前記主板及び前記中子は円板状であり、前記主板を前記羽根の上に配置する工程において、前記主板は、当該主板の中心軸と前記側板の中心軸が略一致するように配置される。 An impeller manufacturing method according to an aspect of the present invention is the impeller manufacturing method described above, wherein the main plate and the core are disk-shaped, and the main plate is disposed on the blade. The main plate is disposed so that the central axis of the main plate and the central axis of the side plate substantially coincide with each other.
 これにより、同軸上に主板と側板が配置される。 This places the main plate and the side plate on the same axis.
 本発明の一態様に係る羽根車の製造方法は、上記いずれかの羽根車の製造方法であって、前記中子は、精密鋳造に用いられる素材を用いて形成されたものである。 The impeller manufacturing method according to an aspect of the present invention is any of the above impeller manufacturing methods, wherein the core is formed using a material used for precision casting.
 これにより、中子の表面の凹凸を少なくすることができる。このため、溶接によって主板のうち中子が接する面に、中子の表面の形状に応じた凹凸ができたとしても、中子の表面の凹凸が少ないので、当該面の凹凸も少なくすることができる。 This can reduce the unevenness of the core surface. For this reason, even if unevenness according to the shape of the surface of the core is made on the surface of the main plate that contacts the core plate by welding, the unevenness of the surface of the core is small, so the unevenness of the surface may be reduced. it can.
 本発明の一態様に係る羽根車の製造方法は、上記いずれかの羽根車の製造方法であって、前記側板は、機械加工によって前記羽根が一体となって削り出された側板である。 The impeller manufacturing method according to an aspect of the present invention is any one of the impeller manufacturing methods described above, wherein the side plate is a side plate that is integrally cut out by machining.
 これにより、羽根と側板との間に継ぎ目がないので羽根が側板からとれるのを抑制することができる。 This prevents the blades from being removed from the side plates because there is no seam between the blades and the side plates.
 本発明の一態様に係る羽根車の製造方法は、上記いずれかの羽根車の製造方法であって、前記主板の溝には、溶接用の穴が設けられており、前記主板と前記羽根とを溶接する工程において、前記溶接用の穴を介して溶接材料を流しこみ前記主板と前記羽根とを溶接する。 An impeller manufacturing method according to an aspect of the present invention is any one of the impeller manufacturing methods described above, wherein a groove for welding is provided in a groove of the main plate, and the main plate, the blade, In the step of welding, the welding material is poured through the welding hole to weld the main plate and the blade.
 これにより、溶接棒の入りにくい狭い空間を有する羽根車でも、主板と羽根とを溶接することができる。 This enables the main plate and the blades to be welded even in an impeller having a narrow space where the welding rod is difficult to enter.
 本発明の一態様に係る羽根車の製造方法は、上記いずれかの羽根車の製造方法であって、前記羽根車は、回転機械の羽根車である。 The impeller manufacturing method according to an aspect of the present invention is any one of the impeller manufacturing methods described above, and the impeller is an impeller of a rotating machine.
 これにより、主板の変形量の少ない羽根車を製造することができる。 This makes it possible to manufacture an impeller with a small deformation amount of the main plate.
 本発明の一態様に係る羽根車の製造方法は、複数の羽根が設けられた主板を形成する工程と、前記羽根と前記羽根の間に中子が挟み込まれるように前記中子を前記主板の上に配置する工程と、前記羽根の形状に合わせた溝が形成された側板を前記羽根の上に配置する工程と、前記側板と前記羽根とを溶接する工程と、を有し、前記中子を配置したときに前記羽根が前記中子に収まるように、前記中子に前記羽根の形状に合わせた貫通孔が設けられていることを特徴とする。 The manufacturing method of the impeller which concerns on 1 aspect of this invention forms the main board of the said main board so that a core may be inserted | pinched between the process of forming the main board in which the several blade | wing was provided, and the said blade | wing. A step of disposing the side plate on the blade, and a step of welding the side plate and the blade. The core is provided with a through-hole adapted to the shape of the blade so that the blade can be accommodated in the core.
 これにより、溶接後の自然冷却時の収縮力による側板の変形を中子が物理的に抑制するので、側板の変形量の少ない羽根車を製造することができるので、歩留まりが向上し、生産効率を著しく向上するとともに製造コストを低減することができる。 As a result, since the core physically suppresses deformation of the side plate due to the contraction force during natural cooling after welding, an impeller with a small amount of deformation of the side plate can be manufactured, which improves yield and increases production efficiency. Can be significantly improved and the manufacturing cost can be reduced.
 本発明の第13の態様に係る羽根車の製造方法は、複数の羽根が設けられた主板を形成する工程と、隣り合う前記羽根の間それぞれに分割中子が配置されるように、前記主板上に複数の分割中子を配置する工程と、前記主板及び前記分割中子の上に側板を配置する工程と、前記側板と前記羽根とを溶接する工程と、を有する。 In the impeller manufacturing method according to the thirteenth aspect of the present invention, the main plate includes a step of forming a main plate provided with a plurality of blades, and a split core is disposed between the adjacent blades. A step of disposing a plurality of split cores; a step of disposing side plates on the main plate and the split core; and a step of welding the side plates and the blades.
 これにより、分割中子を採用したことにより、分割中子個々の重量は少なく済み、自重による崩壊を回避することができる。また、分割中子を持ち上げることで分割中子に生じる曲げモーメントが軽減され、分割中子の製作や溶接段取り(分割中子の組立)などの作業に耐え得る強度を確保することができる。分割中子は小さなサイズとなることから、硬化処理中の変形量も小さく済み、分割構造と相まって羽根車への装着(組立)作業性を向上させることができる。また、分割中子が変形や損傷で使用不可能となっても、分割構造であることから分割中子の一つを交換すれば済むので、製作原価への影響が軽減される。 Thus, by adopting the split core, the weight of each split core can be reduced, and collapse due to its own weight can be avoided. Further, the bending moment generated in the split core is reduced by lifting the split core, and it is possible to secure the strength that can withstand operations such as manufacturing the split core and welding setup (assembly of the split core). Since the split core has a small size, the amount of deformation during the curing process can be reduced, and the mounting (assembly) workability to the impeller can be improved in combination with the split structure. Further, even if the split core becomes unusable due to deformation or damage, since it has a split structure, it is only necessary to replace one of the split cores, thereby reducing the influence on the manufacturing cost.
 本発明の第14の態様に係る羽根車の製造方法は、第13の態様に係る羽根車の製造方法であって、前記主板には中央に空洞が形成されており、前記分割中子は、前記主板よりも内周側に突出しており、前記分割中子を配置する工程の際に、内周側に、隣り合う分割中子の間に内周スペーサを設ける工程を有する。 The impeller manufacturing method according to the fourteenth aspect of the present invention is the impeller manufacturing method according to the thirteenth aspect, wherein a hollow is formed in the center of the main plate, and the split core is In the step of disposing the split core, the inner peripheral spacer is provided between the adjacent split cores on the inner peripheral side when protruding from the main plate.
 これにより、分割中子の位置を決めることができる。 This makes it possible to determine the position of the split core.
 本発明の第15の態様に係る羽根車の製造方法は、第14の態様に係る羽根車の製造方法であって、前記内周スペーサが設けられたときの前記内周スペーサの高さは、前記分割中子の高さより低く、前記溶接する工程の際に、前記主板と前記側板との間に形成された流路を不活性ガスが流れるように、不活性ガスが内周側から供給される。 The impeller manufacturing method according to the fifteenth aspect of the present invention is the impeller manufacturing method according to the fourteenth aspect, wherein the height of the inner peripheral spacer when the inner peripheral spacer is provided is: The inert gas is supplied from the inner peripheral side so that the inert gas flows through the flow path formed between the main plate and the side plate during the welding step, which is lower than the height of the split core. The
 これにより、分割中子と分割中子との面に僅かな隙間を設けることができ、この隙間から不活性ガスを供給することができる。このため、中子を損傷する危険性の高い通気穴形成作業を回避することができる。 Thereby, a slight gap can be provided on the surface of the split core and the split core, and the inert gas can be supplied from this gap. For this reason, it is possible to avoid a vent hole forming operation with a high risk of damaging the core.
 本発明の第16の態様に係る羽根車の製造方法は、第13から第15のいずれかの態様に係る羽根車の製造方法であって、前記主板には中央に空洞が形成されており、前記主板を形成する工程後、前記分割中子を配置する前に、前記主板に形成された空洞にセンタリング治具を装着する工程を更に有し、前記分割中子を配置する工程において、前記分割中子の内周側の裏面は、前記センタリング治具の表面に接するように配置する。 An impeller manufacturing method according to a sixteenth aspect of the present invention is an impeller manufacturing method according to any of the thirteenth to fifteenth aspects, wherein a hollow is formed in the center of the main plate, After the step of forming the main plate, the step of mounting a centering jig in the cavity formed in the main plate before disposing the split core, and in the step of disposing the split core, The back surface on the inner peripheral side of the core is disposed so as to contact the surface of the centering jig.
 これにより、分割中子が側板の内周側を支えるので、中子の上に設けた側板の内周側が、溶接によって下に落ちてこないようにすることができる。 Thereby, since the split core supports the inner peripheral side of the side plate, it is possible to prevent the inner peripheral side of the side plate provided on the core from falling down by welding.
 本発明の第17の態様に係る羽根車の製造方法は、第13から第16のいずれかの態様に係る羽根車の製造方法であって、前記分割中子を配置する工程の際に、前記分割中子の外周側で且つ隣り合う前記羽根の間それぞれに外周スペーサを配置する工程を更に有し、前記溶接する工程の際に、前記主板と前記側板との間に形成された流路を不活性ガスが流れるように、不活性ガスが内周側から供給される。 An impeller manufacturing method according to a seventeenth aspect of the present invention is the impeller manufacturing method according to any one of the thirteenth to sixteenth aspects, wherein in the step of disposing the split core, The method further includes a step of disposing outer peripheral spacers on the outer peripheral side of the split core and between the adjacent blades, and a flow path formed between the main plate and the side plate in the welding step. The inert gas is supplied from the inner peripheral side so that the inert gas flows.
 これにより、外周スペーサがあることによって、不活性ガスが外に漏れにくくすることができる。羽根の溶接時に生じる裏なみに不活性ガスが当たるようにすることができ、裏なみが酸化しないようにすることができる。 Thereby, the presence of the outer peripheral spacer makes it difficult for the inert gas to leak out. It is possible to make the inert gas impinge on the lining produced during the welding of the blade, and to prevent the lining from being oxidized.
 本発明の第18の態様に係る羽根車の製造方法は、第13から第17のいずれかの態様に係る羽根車の製造方法であって、前記複数の羽根は、前記主板の中心から互いに等しい角度間隔で設けられており、且つ前記羽根の形状は互いに略同一であり、前記分割中子の形状は互いに略同一である。 An impeller manufacturing method according to an eighteenth aspect of the present invention is the impeller manufacturing method according to any of the thirteenth to seventeenth aspects, wherein the plurality of blades are equal to each other from the center of the main plate. The blades are provided at angular intervals, and the blades have substantially the same shape, and the split cores have substantially the same shape.
 これにより、分割中子を成形する木型は小型のもの一組で済み、同じ木型で形成できる。また分割中子を成形する木型が小型になり、木型の製作には小型で安価な樹脂造形用の3Dプリンターを用いることも可能となり、短期且つ低コストで比較的形状精度の高い木型(樹脂型)製作が可能となるため、分割中子を短期且つ低コストで作成することができる。あるいは、同じ3Dデータを基に、3Dプリンターで同じ分割中子を量産することもできる。 Thus, the wooden mold for forming the split core can be a small set and can be formed from the same wooden mold. In addition, the wooden mold for molding the split core has become smaller, and it is also possible to use a small and inexpensive 3D printer for resin molding for the production of the wooden mold. Since the (resin mold) can be manufactured, the split core can be created in a short time and at a low cost. Alternatively, the same split core can be mass-produced by a 3D printer based on the same 3D data.
 本発明の第19の態様に係る羽根車の製造方法は、第13から第18のいずれかの態様に係る羽根車の製造方法であって、前記分割中子の厚みは、前記主板の表面を基準とする前記羽根の高さより所定の長さだけ薄い。 An impeller manufacturing method according to a nineteenth aspect of the present invention is the impeller manufacturing method according to any of the thirteenth to eighteenth aspects, wherein the thickness of the split core is the surface of the main plate. It is thinner by a predetermined length than the height of the reference blade.
 これにより、羽根の端面が溶接により溶けることにより羽根が収縮して分割中子の厚みと略同じ高さになるので、分割中子に余計な力がかかるのを防ぐことができる。 Thereby, since the end face of the blade is melted by welding, the blade contracts and becomes approximately the same height as the thickness of the split core, so that it is possible to prevent an extra force from being applied to the split core.
 本発明の第20の態様に係る羽根車の製造方法は、複数の羽根が設けられた側板を形成する工程と、隣り合う前記羽根の間それぞれに分割中子が配置されるように、前記側板上に複数の分割中子を配置する工程と、前記側板及び前記分割中子の上に主板を配置する工程と、前記主板と前記羽根とを溶接する工程と、を有する。 The impeller manufacturing method according to the twentieth aspect of the present invention includes a step of forming a side plate provided with a plurality of blades, and the side plate such that a split core is disposed between the adjacent blades. A step of disposing a plurality of split cores; a step of disposing a main plate on the side plate and the split core; and a step of welding the main plate and the blades.
 これにより、分割中子を採用したことにより、分割中子個々の重量は少なく済み、自重による崩壊を回避することができる。また、分割中子を持ち上げることで分割中子に生じる曲げモーメントが軽減され、分割中子の製作や溶接段取り(分割中子の組立)などの作業に耐え得る強度を確保することができる。分割中子は小さなサイズとなることから、硬化処理中の変形量も小さく済み、分割構造と相まって羽根車への装着(組立)作業性を向上させることができる。また、分割中子が変形や損傷で使用不可能となっても、分割構造であることから分割中子の一つを交換すれば済むので、製作原価への影響が軽減される。 Thus, by adopting the split core, the weight of each split core can be reduced, and collapse due to its own weight can be avoided. Further, the bending moment generated in the split core is reduced by lifting the split core, and it is possible to secure the strength that can withstand operations such as manufacturing the split core and welding setup (assembly of the split core). Since the split core has a small size, the amount of deformation during the curing process can be reduced, and the mounting (assembly) workability to the impeller can be improved in combination with the split structure. Further, even if the split core becomes unusable due to deformation or damage, since it has a split structure, it is only necessary to replace one of the split cores, thereby reducing the influence on the manufacturing cost.
 本発明によれば、溶接後の自然冷却時の収縮力による主板または側板の変形を中子が物理的に抑制するので、主板または側板の変形量の少ない羽根車を製造することができるので、歩留まりが向上し、生産効率を著しく向上するとともに製造コストを低減することができる。 According to the present invention, since the core physically suppresses deformation of the main plate or the side plate due to the shrinkage force during natural cooling after welding, an impeller with a small amount of deformation of the main plate or the side plate can be manufactured. The yield can be improved, the production efficiency can be remarkably improved, and the manufacturing cost can be reduced.
本実施形態に係る羽根車1の製造工程の概略を示す斜視図である。It is a perspective view which shows the outline of the manufacturing process of the impeller 1 which concerns on this embodiment. 本実施形態に係る羽根車1の製造工程の詳細を示す断面図である。It is sectional drawing which shows the detail of the manufacturing process of the impeller 1 which concerns on this embodiment. 図2の製造工程の続きを示す断面図である。FIG. 3 is a cross-sectional view showing a continuation of the manufacturing process of FIG. 2. 図3の製造工程の続きを示す断面図である。FIG. 4 is a cross-sectional view showing a continuation of the manufacturing process of FIG. 3. 図5(A)は、図1(D)のときの羽根車の上面図である。図5(B)は、図5(A)のBB'線で切った場合の断面図である。FIG. 5A is a top view of the impeller at the time of FIG. FIG. 5B is a cross-sectional view taken along the line BB ′ in FIG. 比較例に係る側板3の斜視図である。It is a perspective view of the side plate 3 which concerns on a comparative example. 図6のCC'線で切った場合の断面図を用いて、比較例に係る羽根車21の製造工程を示す概略図である。It is the schematic which shows the manufacturing process of the impeller 21 which concerns on a comparative example using sectional drawing at the time of cutting at CC 'line of FIG. 図6のDD'線で切った場合の断面図を用いて、比較例に係る羽根車21の製造工程を示す詳細図である。It is detail drawing which shows the manufacturing process of the impeller 21 which concerns on a comparative example using sectional drawing at the time of cutting at DD 'line of FIG. 図8の続きの製造工程を示す詳細図である。FIG. 9 is a detail view illustrating a manufacturing process continued from FIG. 8. 図9の続きの製造工程を示す詳細図である。FIG. 10 is a detail view illustrating a manufacturing process continued from FIG. 9. 比較例にかかる羽根車21の収縮量について説明するための図である。It is a figure for demonstrating the contraction amount of the impeller 21 concerning a comparative example. センタリング治具の装着前後の主板の斜視図である。It is a perspective view of the main board before and behind mounting | wearing of a centering jig | tool. 分割中子の配置前後の主板の斜視図である。It is a perspective view of the main board before and behind arrangement | positioning of a split core. 一つの分割中子を裏面からみた場合の斜視図である。It is a perspective view at the time of seeing one division | segmentation core from the back surface. 内周スペーサと外周スペーサを説明するために分割中子を裏から見た場合の分解斜視図である。It is a disassembled perspective view at the time of seeing a division | segmentation core from the back in order to demonstrate an inner peripheral spacer and an outer peripheral spacer. 内周スペーサ、外周スペーサ及び分割中子が配置されたときの主板の斜視図である。It is a perspective view of a main board when an inner circumference spacer, an outer circumference spacer, and a split core are arranged. 図16の折れ線L1と直線L2で切断した場合における主板の一部斜視図である。It is a partial perspective view of the main board at the time of cut | disconnecting by the broken line L1 and the straight line L2 of FIG. 側板の配置前後の主板の斜視図である。It is a perspective view of the main board before and behind arrangement | positioning of a side board. 第2の実施形態に係る羽根車の製造方法の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing method of the impeller which concerns on 2nd Embodiment.
 <比較例>
 本発明の課題をより明確にするために、本発明の実施形態に係る回転機械の羽根車の製造方法について説明する前に、比較例に係る回転機械の羽根車21の製造方法について図6~図10を用いて説明する。スロット溶接で主板と側板との間口が狭い羽根を溶接する手法について説明する。
<Comparative example>
In order to clarify the problem of the present invention, before describing a method for manufacturing an impeller for a rotary machine according to an embodiment of the present invention, a method for manufacturing an impeller 21 for a rotary machine according to a comparative example will be described with reference to FIGS. This will be described with reference to FIG. A method for welding blades having a narrow opening between the main plate and the side plate by slot welding will be described.
 図6は、比較例に係る側板3の斜視図である。図7は、図6のCC'線で切った場合の断面図を用いて、比較例に係る羽根車21の製造工程を示す概略図である。図8は、図6のDD'線で切った場合の断面図を用いて、比較例に係る羽根車21の製造工程を示す詳細図である。図9は、図8の続きの製造工程を示す詳細図である。図10は、図9の続きの製造工程を示す詳細図である。 FIG. 6 is a perspective view of the side plate 3 according to the comparative example. FIG. 7 is a schematic diagram illustrating a manufacturing process of the impeller 21 according to the comparative example, using a cross-sectional view taken along the line CC ′ of FIG. 6. FIG. 8 is a detailed view showing a manufacturing process of the impeller 21 according to the comparative example, using a cross-sectional view taken along the line DD ′ of FIG. FIG. 9 is a detailed view showing a manufacturing process subsequent to FIG. FIG. 10 is a detailed view showing a manufacturing process subsequent to FIG.
 鍛造材から羽根4が一体となった側板3を削りだすことにより、図6に示す側板3が得られる。図6に示すように、側板3には、複数の羽根4が設けられている。また、図6のCC'断面図である図7(A)に示すように、羽根4が側板3に対して略垂直に設けられている。また、このときは図6のDD'断面図である図8の工程1に示すように、側板3の上に羽根4が設けられている。 The side plate 3 shown in FIG. 6 is obtained by cutting out the side plate 3 in which the blades 4 are integrated from the forged material. As shown in FIG. 6, the side plate 3 is provided with a plurality of blades 4. Further, as shown in FIG. 7A which is a CC ′ sectional view of FIG. 6, the blades 4 are provided substantially perpendicular to the side plate 3. Further, at this time, the blade 4 is provided on the side plate 3 as shown in Step 1 of FIG. 8 which is a DD ′ sectional view of FIG. 6.
 続いて、図8の工程2に示すように、側板3の中心に鋼材製のセンタリング治具8を設置する。続いて、図8の工程3及び図9の工程4に示すように、主板2を側板3の上に設置する。主板2には、羽根4と主板2とをスロット溶接するための溝5が羽根4と接する面とは反対側の面に設けられている。図7(B)に示すように、溝5の形状は、羽根4の上面(接合面)と類似の形状で羽根4よりもやや大きめであり、羽根4と溝5の水平方向の位置が略一致するように主板2を設置する。また、図8の工程3で破線で示されているように、溝5には溶接用の穴9が複数設けられている。 Subsequently, as shown in step 2 of FIG. 8, a steel centering jig 8 is installed at the center of the side plate 3. Subsequently, as shown in Step 3 in FIG. 8 and Step 4 in FIG. 9, the main plate 2 is installed on the side plate 3. The main plate 2 is provided with a groove 5 for slot welding the blade 4 and the main plate 2 on the surface opposite to the surface in contact with the blade 4. As shown in FIG. 7B, the shape of the groove 5 is similar to the upper surface (joint surface) of the blade 4 and is slightly larger than the blade 4, and the horizontal position of the blade 4 and the groove 5 is substantially the same. The main plate 2 is installed so as to match. Further, as indicated by a broken line in step 3 of FIG. 8, a plurality of holes 9 for welding are provided in the groove 5.
 次に図9の工程5に示すように、主板2の外周部と側板3の外周部とを固定治具7により固定する。固定治具7は帯状で板状であり、この固定治具7で主板2の外周側と側板3の外周側を全周に渡って固定する。また、それとともに、固定用溶接部11で示すように、溝5に設けられた穴9から溶接材料を流し込み主板2と羽根4を溶接で仮止めし、固定治具7と主板2を溶接で仮止めし、固定治具7と側板3を溶接で仮止めする。 Next, as shown in step 5 of FIG. 9, the outer peripheral portion of the main plate 2 and the outer peripheral portion of the side plate 3 are fixed by the fixing jig 7. The fixing jig 7 is strip-shaped and plate-shaped, and the fixing jig 7 fixes the outer peripheral side of the main plate 2 and the outer peripheral side of the side plate 3 over the entire periphery. At the same time, as shown by the fixing weld 11, the welding material is poured from the hole 9 provided in the groove 5, the main plate 2 and the blade 4 are temporarily fixed by welding, and the fixing jig 7 and the main plate 2 are welded. The fixing jig 7 and the side plate 3 are temporarily fixed by welding.
 次に図9の工程6に示すように、溝5に沿って電気溶接する。具体的には例えば、溝5の内周側から外周側に向かって、60A~190Aの電流でスロット溶接を行う。この際、図7(C)に示す溶接用の穴9から溶接材料を流しこみ、主板2と羽根4とを溶接する。溶接することにより、図7(C)に示す構造物が得られる。図7(C)に示すように、図6のCC'線で切った場合の断面において、羽根4と羽根4との間において主板2が側板3側に垂れ下がる変形がある。 Next, as shown in step 6 of FIG. 9, electric welding is performed along the groove 5. Specifically, for example, slot welding is performed with a current of 60 A to 190 A from the inner peripheral side to the outer peripheral side of the groove 5. At this time, the welding material is poured from the welding hole 9 shown in FIG. 7C to weld the main plate 2 and the blade 4. The structure shown in FIG. 7C is obtained by welding. As shown in FIG. 7C, there is a deformation in which the main plate 2 hangs down to the side plate 3 side between the blades 4 in the cross section taken along the line CC ′ in FIG. 6.
 次に図10の工程7に示すように、500~600℃で約3時間、歪み取りのために焼鈍を行う。次に図10の工程8に示すように、固定治具7等で固定されていた箇所を削除し、設計寸法に合わせて表面加工する。これにより、比較例に係る羽根車21が完成し、図7(D)に示す断面を有する羽根車が得られる。 Next, as shown in step 7 of FIG. 10, annealing is performed for removing strain at 500 to 600 ° C. for about 3 hours. Next, as shown in step 8 of FIG. 10, the portion fixed by the fixing jig 7 or the like is deleted, and surface processing is performed according to the design dimension. Thereby, the impeller 21 which concerns on a comparative example is completed, and the impeller which has the cross section shown to FIG 7 (D) is obtained.
 図7(D)に示すように、図6のCC'線で切った場合の断面において、羽根4と羽根4との間において主板2が側板3側に垂れ下がる変形がある。図11は、比較例に係る羽根車21の収縮量について説明するための図である。外周側が固定され内周側は自由端の状態で溶接されるので、図11に示すように外周側よりも内周側の方が収縮が大きくなるので、外周側よりも内周側の方が変形が大きくなる。 As shown in FIG. 7D, there is a deformation in which the main plate 2 hangs down to the side plate 3 side between the blades 4 in the cross section taken along the line CC ′ of FIG. FIG. 11 is a diagram for explaining the amount of contraction of the impeller 21 according to the comparative example. Since the outer peripheral side is fixed and the inner peripheral side is welded in a free end state, as shown in FIG. 11, the inner peripheral side is more contracted than the outer peripheral side, so the inner peripheral side is more than the outer peripheral side. Deformation increases.
 <本発明の実施形態>
 それに対し、本発明の実施形態では、溶接の際に、主板2と側板3との間に中子が挟まる状態にして、主板2が羽根4と羽根4との間において側板3側に垂れ下がることを物理的に抑制する。以下、本実施形態に係る回転機械の羽根車1の製造方法について、図1~図5を参照しながら説明する。ここで回転機械は、例えば、ポンプ、タービン、コンプレッサ、または送風機である。
<Embodiment of the present invention>
On the other hand, in the embodiment of the present invention, when welding, the core is sandwiched between the main plate 2 and the side plate 3 and the main plate 2 hangs down to the side plate 3 between the blade 4 and the blade 4. Is physically suppressed. Hereinafter, a method for manufacturing the impeller 1 of the rotary machine according to the present embodiment will be described with reference to FIGS. Here, the rotating machine is, for example, a pump, a turbine, a compressor, or a blower.
 図1は、本実施形態に係る羽根車1の製造工程の概略を示す斜視図である。図2は、本実施形態に係る羽根車1の製造工程の詳細を示す断面図である。図3は、図2の製造工程の続きを示す断面図である。図4は、図3の製造工程の続きを示す断面図である。図5(A)は、図1(D)のときの羽根車の上面図である。図5(B)は、図5(A)のBB'線で切った場合の断面図である。 FIG. 1 is a perspective view showing an outline of the manufacturing process of the impeller 1 according to the present embodiment. FIG. 2 is a cross-sectional view showing details of the manufacturing process of the impeller 1 according to the present embodiment. FIG. 3 is a cross-sectional view showing a continuation of the manufacturing process of FIG. FIG. 4 is a sectional view showing a continuation of the manufacturing process of FIG. FIG. 5A is a top view of the impeller at the time of FIG. FIG. 5B is a cross-sectional view taken along the line BB ′ in FIG.
 まず、羽根4が設けられた側板3を形成する。具体的には側板3は、鍛造材から機械加工によって削り出されることにより、羽根4が一体となって削り出される。図1(A)に示すように、側板3は円板状である。図2の工程1に示すように、この側板3を設置する。次に図1(B)及び図2の工程2に示すように、側板3の中心にセンタリング治具8を装着する。 First, the side plate 3 provided with the blades 4 is formed. Specifically, the side plate 3 is cut out from the forged material by machining so that the blades 4 are integrally cut out. As shown in FIG. 1A, the side plate 3 has a disc shape. As shown in step 1 of FIG. 2, the side plate 3 is installed. Next, as shown in step 2 of FIG. 1B and FIG. 2, a centering jig 8 is attached to the center of the side plate 3.
 次に図1(C)及び図2の工程3に示すように、羽根4と羽根4の間に中子10が挟み込まれるように当該中子10を側板3の上に配置する。ここで中子10は円板状であり、中子10を配置したときに羽根4が当該中子10に収まるように、中子10に羽根4の形状に合わせた貫通孔(スリット)14が設けられている。また中子10の貫通孔14は、羽根4の枚数と同じ数だけ設けられている。
 具体的な配置方法は、以下の通りである。複数の羽根4の水平位置に、対応する貫通孔14の水平位置が略一致するように中子10を側板3にかぶせることにより中子10を配置する。この際、中子10は当該中子10の中心軸と側板3の中心軸とが略一致するように配置される。本実施形態では、中子10の貫通孔14は、羽根4の形状と類似した形状を有し、円周方向の幅が羽根4よりも広い。これにより、羽根4が当該中子10に収まる。
Next, as shown in Step 3 of FIG. 1C and FIG. 2, the core 10 is arranged on the side plate 3 so that the core 10 is sandwiched between the blade 4 and the blade 4. Here, the core 10 has a disk shape, and a through hole (slit) 14 that matches the shape of the blade 4 is formed in the core 10 so that the blade 4 can be accommodated in the core 10 when the core 10 is arranged. Is provided. Further, the same number of through holes 14 of the core 10 as the number of blades 4 are provided.
A specific arrangement method is as follows. The core 10 is placed by placing the core 10 on the side plate 3 so that the horizontal positions of the corresponding through holes 14 substantially coincide with the horizontal positions of the plurality of blades 4. At this time, the core 10 is arranged so that the central axis of the core 10 and the central axis of the side plate 3 substantially coincide. In the present embodiment, the through hole 14 of the core 10 has a shape similar to the shape of the blade 4, and the width in the circumferential direction is wider than that of the blade 4. As a result, the blade 4 is accommodated in the core 10.
 また図1(C)及び図5(B)に示すように、中子10には、通気穴15が設けられている。通気穴15は、バックシールドガス用であり、溶接金属の酸化防止を目的として窒素(N2)またはアルゴン(Ar)などの不活性ガスを流すための穴である。ここで溶接金属は、溶接を施した際に溶接中に溶融して凝固した金属である。 Further, as shown in FIGS. 1 (C) and 5 (B), the core 10 is provided with a vent hole 15. The ventilation hole 15 is for back shield gas, and is a hole for flowing an inert gas such as nitrogen (N2) or argon (Ar) for the purpose of preventing oxidation of the weld metal. Here, the weld metal is a metal that melts and solidifies during welding when welding is performed.
 中子10は、溶接時高温にさらされるので、耐高温材であることが好ましい。また、中子10は、精密鋳造に用いられる素材を用いて形成されたものである。ここで精密鋳造では、鋳肌面等の凹凸が少ない。これにより、中子10の表面の凹凸を少なくすることができる。このため、溶接によって主板2のうち中子10が接する面に、中子10の表面の形状に応じた凹凸ができたとしても、中子10の表面の凹凸が少ないので、当該面の凹凸も少なくすることができる。
 また、中子10は溶接後除去しなくてはならないので、物理的に簡単に破壊できる素材であることが好ましい。本実施形態では一例として、中子10は特許文献1に記載の材料を用いて形成されたものである。このような材料を用いることにより、中子10の物理的除去が容易となる。
Since the core 10 is exposed to a high temperature during welding, it is preferably a high temperature resistant material. The core 10 is formed using a material used for precision casting. Here, in precision casting, there are few unevenness | corrugations, such as a casting surface. Thereby, the unevenness | corrugation of the surface of the core 10 can be decreased. For this reason, even if unevenness corresponding to the shape of the surface of the core 10 is formed on the surface of the main plate 2 in contact with the core 10 by welding, the unevenness of the surface of the core 10 is small. Can be reduced.
Moreover, since the core 10 must be removed after welding, it is preferably a material that can be physically broken easily. In the present embodiment, as an example, the core 10 is formed using the material described in Patent Document 1. By using such a material, physical removal of the core 10 is facilitated.
 次に図1(D)及び図2の工程4に示すように、羽根4の上に主板2を配置する。図1(D)に示すように、主板2には、羽根の形状に合わせた溝5が形成されており、溝5には図2の工程4において破線で示された溶接用の穴9が複数設けられている。また、主板2は円板状であり、主板2を羽根4の上に配置する工程において、主板2は、当該主板2の中心軸と側板3の中心軸が略一致するように配置される。 Next, as shown in step 4 of FIG. 1 (D) and FIG. 2, the main plate 2 is disposed on the blade 4. As shown in FIG. 1 (D), the main plate 2 is formed with a groove 5 in accordance with the shape of the blade, and the groove 5 has a welding hole 9 indicated by a broken line in step 4 of FIG. A plurality are provided. Further, the main plate 2 has a disk shape, and in the step of arranging the main plate 2 on the blades 4, the main plate 2 is arranged so that the central axis of the main plate 2 and the central axis of the side plate 3 substantially coincide with each other.
 図5(B)に示すように、中子10は、主板2と側板3の間に挿入されている。これにより、溶接による溶融金属の凝固収縮による主板2の変形を物理的に抑制することができる。また、主板2の内周部17は、センタリング治具8と中子10によって支えられている。これにより、溶接による溶融金属の凝固収縮による内周部17の変形を物理的に抑制することができる。 As shown in FIG. 5B, the core 10 is inserted between the main plate 2 and the side plate 3. Thereby, the deformation | transformation of the main plate 2 by the solidification shrinkage of the molten metal by welding can be suppressed physically. Further, the inner peripheral portion 17 of the main plate 2 is supported by the centering jig 8 and the core 10. Thereby, the deformation | transformation of the inner peripheral part 17 by the solidification shrinkage | contraction of the molten metal by welding can be suppressed physically.
 図3の工程5に示すように、主板2と中子10の隙間にテープ16を貼り、通気穴15(図5(B)参照)から不活性ガスを主板2と側板3と中子10の間の空間に充満させる。ここでテープ16は耐熱性を有する。テープ16を貼ることにより、主板2と側板3と中子10との隙間から不活性ガスがもれないようにすることができるので、溶接金属の酸化を確実に防止できる。その後に、羽根4の端部と主板2の溝5を溶接で固定することにより仮止めする(図3の工程5参照)。これにより、固定用溶接部11が形成される。
 その後に、図3の工程6に示すように、複数の溶接用の穴9を介して溶接材料を流しこみ主板2と羽根4とを溶接する。これにより、溶接棒の入りにくい狭い空間を有する羽根車でも、主板と羽根とを溶接することができる。この溶接はいわゆるスロット溶接である。このときの溶接電流は、例えば60A~190Aである。この溶接により、溶接部12が形成される。その後、図3の工程7に示すように、図3の溶接する工程6の後に、テープ16を剥がす。
As shown in step 5 of FIG. 3, tape 16 is applied to the gap between the main plate 2 and the core 10, and inert gas is passed through the vent holes 15 (see FIG. 5B) between the main plate 2, the side plate 3, and the core 10. Fill the space between. Here, the tape 16 has heat resistance. By sticking the tape 16, it is possible to prevent the inert gas from leaking through the gaps between the main plate 2, the side plate 3 and the core 10, so that oxidation of the weld metal can be reliably prevented. Thereafter, the ends of the blades 4 and the grooves 5 of the main plate 2 are fixed by welding (see step 5 in FIG. 3). Thereby, the welding part 11 for fixation is formed.
Thereafter, as shown in Step 6 of FIG. 3, the main plate 2 and the blade 4 are welded by pouring the welding material through the plurality of welding holes 9. As a result, the main plate and the blade can be welded even in an impeller having a narrow space where the welding rod is difficult to enter. This welding is so-called slot welding. The welding current at this time is, for example, 60 A to 190 A. By this welding, the welded portion 12 is formed. Thereafter, as shown in step 7 of FIG. 3, the tape 16 is peeled off after the step 6 of welding shown in FIG.
 次に、図3の工程7に示すように、溶接された羽根車を焼鈍する。焼鈍の条件は、板厚等に応じて様々であるが、本実施形態では一例として500~600℃で約3時間、焼鈍する。焼鈍後、図4の工程8に示すように、位置決めの役目を果たしていたセンタリング治具8を取り除く。次に、図4の工程9に示すように、主板2が所定の温度より低くなった場合、中子10を物理的に破壊し除去する。これにより、主板に収縮力が働くなったときに中子を破壊するので、主板が変形することなく主板と側板の間に空間が設けられた構造物を製造することができる。次に、図4の工程10に示すように、図4の工程9に示す外周部19を削除する加工などを行うことによって、設計寸法に加工する。これにより、本実施形態に係る羽根車1が完成する。 Next, as shown in step 7 of FIG. 3, the welded impeller is annealed. The annealing conditions vary depending on the plate thickness and the like. In the present embodiment, annealing is performed at 500 to 600 ° C. for about 3 hours as an example. After annealing, as shown in step 8 of FIG. 4, the centering jig 8 that has played the role of positioning is removed. Next, as shown in step 9 of FIG. 4, when the main plate 2 becomes lower than a predetermined temperature, the core 10 is physically destroyed and removed. Thereby, since the core is destroyed when contraction force acts on the main plate, a structure in which a space is provided between the main plate and the side plate can be manufactured without deforming the main plate. Next, as shown in step 10 of FIG. 4, the outer peripheral portion 19 shown in step 9 of FIG. Thereby, the impeller 1 which concerns on this embodiment is completed.
 精密測定器によって測定を行った結果、比較例では、内周側の最も変形の激しい箇所で0.5~1mm程度の凹状の変形が観測された。それに対し、本実施形態では、対応する内周側の箇所で殆ど変形は見られないか、変形があっても0.1mm程度の極めて小さな変形であった。 As a result of measuring with a precision measuring instrument, in the comparative example, a concave deformation of about 0.5 to 1 mm was observed at the most severely deformed portion on the inner peripheral side. On the other hand, in the present embodiment, almost no deformation is observed at the corresponding inner peripheral side, or even if there is a deformation, it is an extremely small deformation of about 0.1 mm.
 図11に示すように比較例では、主板2は、外周側から内周側のボス部18の方向に、収縮量が大きくなり、変形量が大きくなっていた。特に主板2のボス部18は、自由端になるので大きな収縮が生じ、変形が大きかった。それに対し、本実施形態では、中子10が羽根車1の主板2と側板3の間に挿入されることにより、溶接後の自然冷却時の収縮力による変形を中子10が物理的に抑制することができるので、主板2の変形量の少ない羽根車を製造することができる。これにより、歩留まりが向上し、生産効率を著しく向上するとともに製造コストを低減することができる。 As shown in FIG. 11, in the comparative example, the main plate 2 had a large amount of shrinkage and a large amount of deformation in the direction from the outer peripheral side to the inner peripheral side boss portion 18. In particular, since the boss portion 18 of the main plate 2 becomes a free end, a large contraction occurs and the deformation is large. On the other hand, in this embodiment, the core 10 is physically suppressed from being deformed by the contraction force during natural cooling after welding by inserting the core 10 between the main plate 2 and the side plate 3 of the impeller 1. Therefore, an impeller with a small deformation amount of the main plate 2 can be manufactured. Thereby, the yield can be improved, the production efficiency can be remarkably improved, and the manufacturing cost can be reduced.
 なお、本実施形態では、回転機械の羽根車1の製造方法について説明したが、これに限ったものではなく、中子を用いることは他の構造物の製造方法にも適用可能である。特に、溶接棒の入りにくい狭い空間を有する構造物に適応することが好ましい。 In addition, although this embodiment demonstrated the manufacturing method of the impeller 1 of a rotary machine, it is not restricted to this, Using a core is applicable also to the manufacturing method of another structure. In particular, it is preferable to adapt to a structure having a narrow space where a welding rod is difficult to enter.
 なお、本実施形態では、側板に羽根を設けたが、これに限らず、主板に羽根を設けてもよい。いずれの場合でも、二つの素材から一つの羽根車を製造することができる。また、機械加工によって羽根を削り出すことができるため、鋳物よりも正確に流路を形成できる。具体的には、羽根車の製造方法は、複数の羽根が設けられた主板を形成する工程と、羽根と羽根の間に中子が挟み込まれるように中子を主板の上に配置する工程と、羽根の形状に合わせた溝が形成された側板を羽根の上に配置する工程と、側板と羽根とを溶接する工程と、を有する。そして、中子を配置したときに羽根が中子に収まるように、中子に羽根の形状に合わせた貫通孔が設けられている。 In addition, in this embodiment, although the blade | wing was provided in the side plate, you may provide a blade | wing not only in this but a main plate. In either case, one impeller can be manufactured from two materials. Further, since the blades can be cut out by machining, the flow path can be formed more accurately than the casting. Specifically, the manufacturing method of the impeller includes a step of forming a main plate provided with a plurality of blades, and a step of arranging the core on the main plate so that the core is sandwiched between the blades and the blades. And a step of arranging a side plate on which a groove matching the shape of the blade is formed on the blade, and a step of welding the side plate and the blade. The core is provided with a through-hole that matches the shape of the blade so that the blade can be accommodated in the core when the core is disposed.
 <第2の実施形態>
 第1の実施形態では、円板状の大きな一枚の中子であり、羽根車の主板とほほ同程度の大きさであった。この中子は圧縮に強い一方で脆い性質があり、角部が欠けることや自重によって薄い外周部が崩壊しやすい。中子は成形後に硬化処理をする必要があるが、この際に反り等の変形が生じやすく、特に円板状の大きな一枚の中子では、この変形も大きくなるため、結果として羽根車への装着が困難となり、無理に装着することで中子を損傷しやすい。
<Second Embodiment>
In the first embodiment, it is a large disk-shaped core, which is approximately the same size as the main plate of the impeller. This core is resistant to compression but has a brittle nature, and the thin outer peripheral portion is liable to collapse due to lack of corners or its own weight. The core needs to be hardened after molding. However, deformation such as warpage is likely to occur at this time, and this deformation is particularly large in a single disk-shaped core. It becomes difficult to attach the core, and it is easy to damage the core if it is forcibly installed.
 また、第1の実施形態のように、大きな円板中子を用いて羽根車を製造する場合、円板中子に部分的な欠損があると、その円板中子は使用不可能となる。中子の原材料は比較的安価であるが、中子の製作人件費は高価であるため、円板中子が使用不可能になれば、原価への影響は多大である。また第1の実施形態に係る中子では、バックシールガスの通気性確保のため、小さな通気穴を設ける作業をするが、この時にも中子を損傷する危険性が高いことから、慎重で手間のかかる作業となっていた。 Moreover, when manufacturing an impeller using a big disk core like 1st Embodiment, if a disk core has a partial defect | deletion, the disk core will become unusable. . Although the core raw material is relatively inexpensive, the production cost of the core is expensive. If the disk core becomes unusable, the cost is greatly affected. In the core according to the first embodiment, a small ventilation hole is provided in order to secure the air permeability of the back seal gas. However, since there is a high risk of damaging the core at this time, it is necessary to be careful and troublesome. It was an expensive work.
 それに対して、第2の実施形態では、円板状の中子の代わりに、円板状の中子を羽根の形状に沿って分割した分割中子を用いる。ここで分割中子は、複数であり、一例として羽根車中心軸を中心とする分割角度を略同じにする。このように中子が分割された分割中子を用いることにより、分割中子単体の重量が抑制され、自重による分割中子の崩壊を回避することができる。 On the other hand, in the second embodiment, a split core obtained by dividing the disk-shaped core along the shape of the blade is used instead of the disk-shaped core. Here, there are a plurality of split cores, and as an example, the split angles with the impeller central axis as the center are substantially the same. By using the split core in which the core is divided in this way, the weight of the single split core is suppressed, and the collapse of the split core due to its own weight can be avoided.
 分割中子は、小さなサイズとなることから、硬化処理中の変形量も小さく済み、分割構造と相まって羽根車への装着(組立)作業性が極めて高い。分割中子が変形や損傷で使用不可能となっても、分割構造であることから分割中子の一つを交換すれば済むので、製作原価への影響が軽減される。また後述する図14に示すように、分割中子と分割中子の間に内周スペーサを設けて分割中子と分割中子の間に隙間を設けることで、バックシールガスの通気性を確保でき、中子を損傷する危険性の高い通気穴作成作業を回避することができる。 Since the split core has a small size, the amount of deformation during the curing process can be reduced, and combined with the split structure, the mounting (assembly) workability to the impeller is extremely high. Even if the split core becomes unusable due to deformation or damage, since it has a split structure, it is only necessary to replace one of the split cores, thereby reducing the influence on the production cost. Further, as shown in FIG. 14 to be described later, by providing an inner circumferential spacer between the split core and providing a gap between the split core and the split core, air permeability of the back seal gas is ensured. This makes it possible to avoid the work of creating a vent hole with a high risk of damaging the core.
 続いて、図12~図18を参照しつつ、図19のフローチャートに沿って羽根車の製造方法について説明する。図12は、センタリング治具の装着前後の主板の斜視図である。図13は、分割中子の配置前後の主板の斜視図である。図14は、一つの分割中子を裏面からみた場合の斜視図である。図15は、内周スペーサと外周スペーサを説明するために分割中子を裏から見た場合の分解斜視図である。図16は、内周スペーサ、外周スペーサ及び分割中子が配置されたときの主板の斜視図である。図17は、図16の折れ線L1と直線L2で切断した場合における主板の一部斜視図である。但し、図17では、内周スペーサ34-1~34-13と外周スペーサ35-1~35-13とが省略されている。図18は、側板の配置前後の主板の斜視図である。図19は、第2の実施形態に係る羽根車の製造方法の一例を示すフローチャートである。 Subsequently, the manufacturing method of the impeller will be described along the flowchart of FIG. 19 with reference to FIGS. FIG. 12 is a perspective view of the main plate before and after mounting of the centering jig. FIG. 13 is a perspective view of the main plate before and after the arrangement of the split cores. FIG. 14 is a perspective view when one split core is viewed from the back surface. FIG. 15 is an exploded perspective view when the split core is viewed from the back in order to explain the inner peripheral spacer and the outer peripheral spacer. FIG. 16 is a perspective view of the main plate when the inner circumferential spacer, the outer circumferential spacer, and the split core are disposed. FIG. 17 is a partial perspective view of the main plate when cut along the polygonal line L1 and the straight line L2 of FIG. However, in FIG. 17, the inner circumferential spacers 34-1 to 34-13 and the outer circumferential spacers 35-1 to 35-13 are omitted. FIG. 18 is a perspective view of the main plate before and after the side plates are arranged. FIG. 19 is a flowchart illustrating an example of a manufacturing method of an impeller according to the second embodiment.
 以下、図19のフローチャートに沿って説明する。
 (ステップS101)まず、複数の羽根41-1~41-13が設けられた主板31を形成する。具体的には主板31は、鍛造材から機械加工によって削り出されることにより、羽根41-1~41-13が一体となって削り出される。図12に示すように、主板31は円板状であり、主板31には中央に空洞が形成されている。複数の羽根41-1~41-13は、主板31の中心から互いに等しい角度間隔で設けられており、且つ羽根41-1~41-13の形状は互いに略同一である。
Hereinafter, a description will be given along the flowchart of FIG.
(Step S101) First, the main plate 31 provided with a plurality of blades 41-1 to 41-13 is formed. Specifically, the main plate 31 is cut out from the forged material by machining, so that the blades 41-1 to 41-13 are cut out integrally. As shown in FIG. 12, the main plate 31 has a disk shape, and the main plate 31 has a cavity formed in the center. The plurality of blades 41-1 to 41-13 are provided at equal angular intervals from the center of the main plate 31, and the shapes of the blades 41-1 to 41-13 are substantially the same.
 (ステップS102)次に、図12に示すように、主板31に形成された空洞にセンタリング治具32を装着する。 (Step S102) Next, as shown in FIG. 12, a centering jig 32 is mounted in the cavity formed in the main plate 31.
 (ステップS103)次に、分割中子33-1~33-13、内周スペーサ34-1~34-13、外周スペーサ35-1~35-13を配置する。具体的には、図13に示すように、隣り合う羽根の間それぞれに分割中子33-1~33-13が配置されるように、主板31上に複数の分割中子33-1~33-13を配置する。図13及び図17に示すように、分割中子33-1~33-13は、主板31よりも内周側に突出している。 (Step S103) Next, the split cores 33-1 to 33-13, the inner circumferential spacers 34-1 to 34-13, and the outer circumferential spacers 35-1 to 35-13 are arranged. Specifically, as shown in FIG. 13, a plurality of split cores 33-1 to 33-33 are arranged on the main plate 31 so that the split cores 33-1 to 33-13 are arranged between adjacent blades. Place -13. As shown in FIGS. 13 and 17, the split cores 33-1 to 33-13 protrude to the inner peripheral side from the main plate 31.
 分割中子33-1は、分割中子の形状は互いに略同一であり、一つ一つの分割中子の形状は図14に示すような形状を有する。この構成により、分割中子33-1~33-13を成形する木型は小型のもの一組で済み、同じ木型で形成できる。また分割中子33-1~33-13を成形する木型が小型になり、木型の製作には小型で安価な樹脂造形用の3Dプリンターを用いることも可能となり、短期且つ低コストで比較的形状精度の高い木型(樹脂型)製作が可能となるため、分割中子33-1~33-13を短期且つ低コストで作成することができる。あるいは、同じ3Dデータを基に、3Dプリンターで同じ分割中子を量産することもできる。 The split cores 33-1 have substantially the same shape as the split cores, and each split core has a shape as shown in FIG. With this configuration, the wooden molds for molding the split cores 33-1 to 33-13 need only be one small set, and can be formed from the same wooden mold. In addition, the wooden molds for molding the split cores 33-1 to 33-13 are smaller, and it is possible to use a small and inexpensive 3D printer for resin molding for the production of the wooden molds. Since it is possible to manufacture a wooden mold (resin mold) with high target shape accuracy, the split cores 33-1 to 33-13 can be created in a short time and at low cost. Alternatively, the same split core can be mass-produced by a 3D printer based on the same 3D data.
 図15及び図16に示すように、分割中子33-1~33-13を配置する工程の際に、内周側に、隣り合う分割中子33-1~33-13の間に内周スペーサ34-1~34-13を設ける。この構成により、分割中子33-1~33-13の位置を決めることができる。 As shown in FIG. 15 and FIG. 16, in the step of arranging the split cores 33-1 to 33-13, the inner periphery is disposed between the adjacent split cores 33-1 to 33-13 on the inner peripheral side. Spacers 34-1 to 34-13 are provided. With this configuration, the positions of the split cores 33-1 to 33-13 can be determined.
 図16に示すように、内周スペーサ34-1~34-13が設けられたときの内周スペーサ34-1~34-13の高さは、分割中子33-1~33-13の高さより低い。そして、後述する溶接する工程の際に、主板31と側板36との間に形成された流路を不活性ガスが流れるように、不活性ガスが内周側から供給される。この構成により、分割中子と分割中子との面に僅かな隙間を設けることができ、この隙間から不活性ガスを供給することができる。このため、中子を損傷する危険性の高い通気穴形成作業を回避することができる。 As shown in FIG. 16, the height of the inner peripheral spacers 34-1 to 34-13 when the inner peripheral spacers 34-1 to 34-13 are provided is equal to the height of the split cores 33-1 to 33-13. Less than that. And in the process of welding mentioned later, an inert gas is supplied from the inner peripheral side so that an inert gas may flow through the flow path formed between the main plate 31 and the side plate 36. With this configuration, a slight gap can be provided on the surface of the split core and the split core, and the inert gas can be supplied from this gap. For this reason, it is possible to avoid a vent hole forming operation with a high risk of damaging the core.
 また、図15及び図16に示すように、分割中子33-1~33-13を配置する工程の際に、分割中子33-1~33-13の外周側で且つ隣り合う羽根41-1~41-13の間それぞれに外周スペーサ35-1~35-13を配置する。 Further, as shown in FIGS. 15 and 16, in the step of arranging the split cores 33-1 to 33-13, the adjacent blades 41- on the outer peripheral side of the split cores 33-1 to 33-13 are arranged. Outer spacers 35-1 to 35-13 are arranged between 1 to 41-13, respectively.
 図17に示すように、分割中子を配置する工程において、分割中子の内周側の裏面は、センタリング治具32の表面に接するように配置する。この構成により、分割中子が側板の内周側を支えるので、中子の上に設けた側板の内周側が、溶接によって下に落ちてこないようにすることができる。 As shown in FIG. 17, in the step of placing the split core, the back surface on the inner peripheral side of the split core is placed in contact with the surface of the centering jig 32. With this configuration, since the split core supports the inner peripheral side of the side plate, the inner peripheral side of the side plate provided on the core can be prevented from falling down by welding.
 図17に示すように、分割中子33-1~33-13の厚みは、主板31の表面を基準とする羽根の高さより所定の長さだけ薄い。所定の長さは、羽根の端面が溶接により溶けることにより羽根が収縮して羽根の高さが下がる分に応じた長さである。これにより、羽根の端面が溶接により溶けることにより羽根が収縮して分割中子33-1~33-13の厚みと略同じ高さになるので、分割中子33-1~33-13に余計な力がかかるのを防ぐことができる。 As shown in FIG. 17, the thickness of the split cores 33-1 to 33-13 is thinner by a predetermined length than the height of the blades relative to the surface of the main plate 31. The predetermined length is a length corresponding to the amount by which the blade is contracted and the height of the blade is lowered by melting the end face of the blade by welding. As a result, the end face of the blade is melted by welding, so that the blade contracts and becomes approximately the same height as the thickness of the split cores 33-1 to 33-13. Can be prevented from applying excessive force.
 また、分割中子33-1~33-13は溶接後除去しなくてはならないので、物理的に簡単に破壊できる素材であることが好ましい。本実施形態では一例として、分割中子33-1~33-13は特許文献1に記載の材料を用いて形成されたものである。このような材料を用いることにより、分割中子33-1~33-13の物理的除去が容易となる。 Further, since the split cores 33-1 to 33-13 must be removed after welding, it is preferable to use a material that can be physically easily broken. In the present embodiment, as an example, the split cores 33-1 to 33-13 are formed using the material described in Patent Document 1. By using such a material, physical removal of the split cores 33-1 to 33-13 is facilitated.
 (ステップS104)次に、図18に示すように、主板31及び分割中子33-1~33-13の上に、羽根41-1~41-13の形状に合わせた溝37-1~37-13が形成された側板36を配置する。 (Step S104) Next, as shown in FIG. 18, on the main plate 31 and the split cores 33-1 to 33-13, grooves 37-1 to 37 matched with the shapes of the blades 41-1 to 41-13 are formed. A side plate 36 on which −13 is formed is disposed.
 (ステップS105)次に、不活性ガスを内周側から供給しながら、側板36と羽根41-1~41-13を溶接する。このように溶接する工程の際に、主板31と側板36との間に形成された流路を不活性ガスが流れるように、不活性ガスが内周側から供給される。これにより、外周スペーサ35-1~35-13があることによって、不活性ガスが外に漏れにくくすることができる。羽根の溶接時に生じる裏なみに不活性ガスが当たるようにすることができ、裏なみが酸化しないようにすることができる。 (Step S105) Next, the side plate 36 and the blades 41-1 to 41-13 are welded while supplying the inert gas from the inner peripheral side. In this welding process, the inert gas is supplied from the inner peripheral side so that the inert gas flows through the flow path formed between the main plate 31 and the side plate 36. Thus, the presence of the outer peripheral spacers 35-1 to 35-13 makes it difficult for the inert gas to leak out. It is possible to make the inert gas impinge on the lining produced during the welding of the blade, and to prevent the lining from being oxidized.
 (ステップS106)次に、熱処理を行う。例えば、ゆっくりと温度を上げたのちに、ゆっくりと冷ます。これにより、残留応力を逃がすことができる。 (Step S106) Next, heat treatment is performed. For example, after slowly raising the temperature, cool slowly. Thereby, the residual stress can be released.
 (ステップS107)次に、外周部分を削り出す。これにより、外周スペーサ35-1~35-13が除去される。 (Step S107) Next, the outer peripheral portion is cut out. As a result, the outer peripheral spacers 35-1 to 35-13 are removed.
 (ステップS108)次に、針金等で分割中子33-1~33-13を物理的に破壊する。 (Step S108) Next, the split cores 33-1 to 33-13 are physically destroyed with a wire or the like.
 (ステップS109)次に、機械加工によって所望の形状に仕上げる。これにより、羽根車が完成する。 (Step S109) Next, a desired shape is finished by machining. Thereby, an impeller is completed.
 以上、第2の実施形態に係る羽根車の製造方法は、複数の羽根41-1~41-13が設けられた主板31を形成する工程と、隣り合う羽根の間それぞれに分割中子が配置されるように、主板31上に複数の分割中子33-1~33-13を配置する工程と、主板31及び分割中子33-1~33-13の上に側板36を配置する工程と、側板36と羽根41-1~41-13とを溶接する工程と、を有する。 As described above, the manufacturing method of the impeller according to the second embodiment includes the step of forming the main plate 31 provided with the plurality of blades 41-1 to 41-13 and the arrangement of the split cores between the adjacent blades. As described above, a step of disposing a plurality of split cores 33-1 to 33-13 on the main plate 31, and a step of disposing a side plate 36 on the main plate 31 and the split cores 33-1 to 33-13. And welding the side plate 36 and the blades 41-1 to 41-13.
 この構成により、分割中子33-1~33-13を採用したことにより、分割中子33-1~33-13個々の重量は少なく済み、自重による崩壊を回避することができる。また、分割中子33-1~33-13を持ち上げることで分割中子33-1~33-13に生じる曲げモーメントが軽減され、分割中子33-1~33-13の製作や溶接段取り(分割中子の組立)などの作業に耐え得る強度を確保することができる。分割中子33-1~33-13は小さなサイズとなることから、硬化処理中の変形量も小さく済み、分割構造と相まって羽根車への装着(組立)作業性を向上させることができる。また、分割中子33-1~33-13が変形や損傷で使用不可能となっても、分割構造であることから分割中子33-1~33-13の一つを交換すれば済むので、製作原価への影響が軽減される。 With this configuration, by using the split cores 33-1 to 33-13, the weight of each of the split cores 33-1 to 33-13 can be reduced, and collapse due to its own weight can be avoided. Further, by lifting the split cores 33-1 to 33-13, the bending moment generated in the split cores 33-1 to 33-13 is reduced, and the split cores 33-1 to 33-13 are manufactured and welded ( It is possible to ensure strength that can withstand work such as assembling the split core. Since the split cores 33-1 to 33-13 have a small size, the amount of deformation during the curing process can be reduced, and the mounting (assembly) workability to the impeller can be improved in combination with the split structure. Further, even if the split cores 33-1 to 33-13 become unusable due to deformation or damage, it is possible to replace one of the split cores 33-1 to 33-13 because of the split structure. , The impact on production costs will be reduced.
 なお、本実施形態では、主板31に羽根41-1~41-13が形成されているが、これに限らず、側板36に羽根41-1~41-13が形成されていてもよい。その場合、羽根車の製造方法は、複数の羽根が設けられた側板を形成する工程と、隣り合う羽根の間それぞれに分割中子が配置されるように、側板上に複数の分割中子を配置する工程と、側板及び分割中子の上に主板を配置する工程と、主板と羽根とを溶接する工程と、を有するようにすればよい。 In the present embodiment, the blades 41-1 to 41-13 are formed on the main plate 31, but the present invention is not limited to this, and the blades 41-1 to 41-13 may be formed on the side plate 36. In that case, the manufacturing method of the impeller includes a step of forming a side plate provided with a plurality of blades and a plurality of divided cores on the side plate so that the divided cores are arranged between adjacent blades. What is necessary is just to make it have the process of arrange | positioning, the process of arrange | positioning a main plate on a side plate and a division | segmentation core, and the process of welding a main plate and a blade | wing.
 以上、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。 As described above, the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.
 1、21:羽根車、2、31:主板、3、36:側板、4、41-1~41-13:羽根、5、37-1~37-13:溝、7:固定治具、8、32:センタリング治具、9:穴、10:中子、11:固定用溶接部、12:溶接部、14:貫通孔、15:通気穴、16:テープ、17:内周部、18:ボス部、19:外周部、33-1~33-13:分割中子、34-1~34-13:内周スペーサ、35-1~35-13:外周スペーサ

 
1, 2: Impeller 2, 31: Main plate 3, 36: Side plate 4, 41-1 to 41-13: Blade, 5, 37-1 to 37-13: Groove, 7: Fixing jig, 8 32: Centering jig, 9: Hole, 10: Core, 11: Welding part for fixing, 12: Welded part, 14: Through hole, 15: Vent hole, 16: Tape, 17: Inner peripheral part, 18: Boss portion, 19: outer peripheral portion, 33-1 to 33-13: split core, 34-1 to 34-13: inner peripheral spacer, 35-1 to 35-13: outer peripheral spacer

Claims (20)

  1.  複数の羽根が設けられた側板を形成する工程と、
     前記羽根と前記羽根の間に中子が挟み込まれるように前記中子を前記側板の上に配置する工程と、
     前記羽根の形状に合わせた溝が形成された主板を前記羽根の上に配置する工程と、
     前記主板と前記羽根とを溶接する工程と、
     を有し、
     前記中子を配置したときに前記羽根が前記中子に収まるように、前記中子に前記羽根の形状に合わせた貫通孔が設けられていることを特徴とする
     羽根車の製造方法。
    Forming a side plate provided with a plurality of blades;
    Placing the core on the side plate such that the core is sandwiched between the blade and the blade; and
    Disposing a main plate on which the grooves according to the shape of the blade are formed on the blade;
    Welding the main plate and the blade;
    Have
    A manufacturing method of an impeller, wherein a through-hole matching the shape of the blade is provided in the core so that the blade is accommodated in the core when the core is disposed.
  2.  前記溶接する工程の後に前記主板が所定の温度より低くなった場合、前記中子を破壊して除去する工程を更に有する
     請求項1に記載の羽根車の製造方法。
    The impeller manufacturing method according to claim 1, further comprising: a step of destroying and removing the core when the main plate becomes lower than a predetermined temperature after the welding step.
  3.  前記中子には、通気穴が設けられており、
     前記溶接する工程の前に、前記主板と前記中子の隙間にテープを貼り、前記通気穴から不活性ガスを前記主板と前記側板と前記中子の間の空間に充満させる工程を更に有する
     請求項1または2に記載の羽根車の製造方法。
    The core is provided with a vent hole,
    Prior to the welding step, the method further includes a step of attaching a tape to a gap between the main plate and the core, and filling an inert gas into the space between the main plate, the side plate, and the core through the vent hole. Item 3. A method for producing an impeller according to Item 1 or 2.
  4.  前記中子の貫通孔は、前記羽根の形状と類似した形状を有し、円周方向の幅が前記羽根よりも広い
     請求項1から3のいずれか一項に記載の羽根車の製造方法。
    The impeller manufacturing method according to any one of claims 1 to 3, wherein the through hole of the core has a shape similar to the shape of the blade, and has a circumferential width wider than that of the blade.
  5.  前記中子の貫通孔は、前記羽根の枚数と同じ数だけ設けられており、
     前記中子を配置する工程において、複数の前記羽根の水平位置に、対応する前記貫通孔の水平位置が略一致するように前記中子を前記側板にかぶせることにより前記中子を配置する
     請求項1から4のいずれか一項に記載の羽根車の製造方法。
    The number of through-holes in the core is the same as the number of blades,
    In the step of arranging the core, the core is arranged by placing the core on the side plate so that the horizontal position of the corresponding through hole substantially coincides with the horizontal position of the plurality of blades. The manufacturing method of the impeller as described in any one of 1-4.
  6.  前記側板及び前記中子は円板状であり、
     前記中子を前記側板の上に配置する工程において、前記中子は、当該中子の中心軸と前記側板の中心軸とが略一致するように配置される
     請求項1から5のいずれか一項に記載の羽根車の製造方法。
    The side plate and the core are disk-shaped,
    In the step of arranging the core on the side plate, the core is arranged so that a central axis of the core and a central axis of the side plate substantially coincide with each other. The manufacturing method of the impeller as described in a term.
  7.  前記主板及び前記中子は円板状であり、
     前記主板を前記羽根の上に配置する工程において、前記主板は、当該主板の中心軸と前記側板の中心軸が略一致するように配置される
     請求項1から6のいずれか一項に記載の羽根車の製造方法。
    The main plate and the core are disk-shaped,
    The process of arrange | positioning the said main board on the said blade | wing WHEREIN: The said main board is arrange | positioned so that the central axis of the said main board and the central axis of the said side plate may correspond substantially. The manufacturing method of an impeller.
  8.  前記中子は、精密鋳造に用いられる素材を用いて形成されたものである
     請求項1から7のいずれか一項に記載の羽根車の製造方法。
    The impeller manufacturing method according to any one of claims 1 to 7, wherein the core is formed using a material used for precision casting.
  9.  前記側板は、機械加工によって前記羽根が一体となって削り出された側板である
     請求項1から8のいずれか一項に記載の羽根車の製造方法。
    The impeller manufacturing method according to any one of claims 1 to 8, wherein the side plate is a side plate formed by machining the blades integrally.
  10.  前記主板の溝には、溶接用の穴が設けられており、
     前記主板と前記羽根とを溶接する工程において、前記溶接用の穴を介して溶接材料を流しこみ前記主板と前記羽根とを溶接する
     請求項1から9のいずれか一項に記載の羽根車の製造方法。
    A groove for welding is provided in the groove of the main plate,
    10. The impeller according to claim 1, wherein in the step of welding the main plate and the blade, a welding material is poured through the welding hole to weld the main plate and the blade. Production method.
  11.  前記羽根車は、回転機械の羽根車である
     請求項1から10のいずれか一項に記載の羽根車の製造方法。
    The manufacturing method of the impeller according to any one of claims 1 to 10, wherein the impeller is an impeller of a rotary machine.
  12.  複数の羽根が設けられた主板を形成する工程と、
     前記羽根と前記羽根の間に中子が挟み込まれるように前記中子を前記主板の上に配置する工程と、
     前記羽根の形状に合わせた溝が形成された側板を前記羽根の上に配置する工程と、
     前記側板と前記羽根とを溶接する工程と、
     を有し、
     前記中子を配置したときに前記羽根が前記中子に収まるように、前記中子に前記羽根の形状に合わせた貫通孔が設けられていることを特徴とする
     羽根車の製造方法。
    Forming a main plate provided with a plurality of blades;
    Placing the core on the main plate such that the core is sandwiched between the blade and the blade; and
    A step of placing a side plate on which the groove according to the shape of the blade is formed on the blade;
    Welding the side plate and the blade;
    Have
    A manufacturing method of an impeller, wherein a through-hole matching the shape of the blade is provided in the core so that the blade is accommodated in the core when the core is disposed.
  13.  複数の羽根が設けられた主板を形成する工程と、
     隣り合う前記羽根の間それぞれに分割中子が配置されるように、前記主板上に複数の分割中子を配置する工程と、
     前記主板及び前記分割中子の上に側板を配置する工程と、
     前記側板と前記羽根とを溶接する工程と、
     を有する羽根車の製造方法。
    Forming a main plate provided with a plurality of blades;
    Disposing a plurality of split cores on the main plate such that split cores are respectively disposed between the adjacent blades;
    Placing a side plate on the main plate and the split core;
    Welding the side plate and the blade;
    The manufacturing method of the impeller which has.
  14.  前記主板には中央に空洞が形成されており、
     前記分割中子は、前記主板よりも内周側に突出しており、
     前記分割中子を配置する工程の際に、内周側に、隣り合う分割中子の間に内周スペーサを設ける工程を有する
     請求項13に記載の羽根車の製造方法。
    A hollow is formed in the center of the main plate,
    The split core protrudes to the inner peripheral side from the main plate,
    The method for manufacturing an impeller according to claim 13, further comprising a step of providing an inner peripheral spacer between adjacent split cores on an inner peripheral side in the step of arranging the split core.
  15.  前記内周スペーサが設けられたときの前記内周スペーサの高さは、前記分割中子の高さより低く、
     前記溶接する工程の際に、前記主板と前記側板との間に形成された流路を不活性ガスが流れるように、不活性ガスが内周側から供給される
     請求項14に記載の羽根車の製造方法。
    The height of the inner circumferential spacer when the inner circumferential spacer is provided is lower than the height of the split core,
    The impeller according to claim 14, wherein an inert gas is supplied from an inner peripheral side so that the inert gas flows through a flow path formed between the main plate and the side plate during the welding process. Manufacturing method.
  16.  前記主板には中央に空洞が形成されており、
     前記主板を形成する工程後、前記分割中子を配置する前に、前記主板に形成された空洞にセンタリング治具を装着する工程を更に有し、
     前記分割中子を配置する工程において、前記分割中子の内周側の裏面は、前記センタリング治具の表面に接するように配置する
     請求項13から15のいずれか一項に記載の羽根車の製造方法。
    A hollow is formed in the center of the main plate,
    After the step of forming the main plate, before placing the split core, further comprising the step of mounting a centering jig in the cavity formed in the main plate,
    16. The impeller according to claim 13, wherein, in the step of arranging the split core, the back surface on the inner peripheral side of the split core is disposed so as to contact the surface of the centering jig. Production method.
  17.  前記分割中子を配置する工程の際に、前記分割中子の外周側で且つ隣り合う前記羽根の間それぞれに外周スペーサを配置する工程を更に有し、
     前記溶接する工程の際に、前記主板と前記側板との間に形成された流路を不活性ガスが流れるように、不活性ガスが内周側から供給される
     請求項13から16のいずれか一項に記載の羽根車の製造方法。
    In the step of disposing the split core, it further includes a step of disposing outer peripheral spacers on the outer peripheral side of the split core and between the adjacent blades.
    17. The inert gas is supplied from the inner peripheral side so that the inert gas flows through a flow path formed between the main plate and the side plate during the welding step. An impeller manufacturing method according to one item.
  18.  前記複数の羽根は、前記主板の中心から互いに等しい角度間隔で設けられており、且つ前記羽根の形状は互いに略同一であり、
     前記分割中子の形状は互いに略同一である
     請求項13から17のいずれか一項に記載の羽根車の製造方法。
    The plurality of blades are provided at equal angular intervals from the center of the main plate, and the shapes of the blades are substantially the same.
    The impeller manufacturing method according to any one of claims 13 to 17, wherein the divided cores have substantially the same shape.
  19.  前記分割中子の厚みは、前記主板の表面を基準とする前記羽根の高さより所定の長さだけ薄い
     請求項13から18のいずれか一項に記載の羽根車の製造方法。
    The method of manufacturing an impeller according to any one of claims 13 to 18, wherein the thickness of the split core is thinner by a predetermined length than the height of the blades relative to the surface of the main plate.
  20.  複数の羽根が設けられた側板を形成する工程と、
     隣り合う前記羽根の間それぞれに分割中子が配置されるように、前記側板上に複数の分割中子を配置する工程と、
     前記側板及び前記分割中子の上に主板を配置する工程と、
     前記主板と前記羽根とを溶接する工程と、
     を有する羽根車の製造方法。
     
    Forming a side plate provided with a plurality of blades;
    Arranging a plurality of split cores on the side plate such that split cores are respectively disposed between the adjacent blades;
    Arranging a main plate on the side plate and the split core;
    Welding the main plate and the blade;
    The manufacturing method of the impeller which has.
PCT/JP2016/081401 2015-10-28 2016-10-24 Method of manufacturing impeller WO2017073500A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16859730.0A EP3369937B1 (en) 2015-10-28 2016-10-24 Method of manufacturing impeller
CN201680051415.9A CN107949704A (en) 2015-10-28 2016-10-24 The manufacture method of impeller
US15/770,944 US10710186B2 (en) 2015-10-28 2016-10-24 Method of manufacturing impeller

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-211703 2015-10-28
JP2015211703 2015-10-28
JP2016190866A JP6758144B2 (en) 2015-10-28 2016-09-29 How to manufacture an impeller
JP2016-190866 2016-09-29

Publications (1)

Publication Number Publication Date
WO2017073500A1 true WO2017073500A1 (en) 2017-05-04

Family

ID=58630361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081401 WO2017073500A1 (en) 2015-10-28 2016-10-24 Method of manufacturing impeller

Country Status (1)

Country Link
WO (1) WO2017073500A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108869400A (en) * 2018-08-24 2018-11-23 浙江南元泵业有限公司 Centrifugal pump guide vane
CN108895033A (en) * 2018-08-24 2018-11-27 浙江南元泵业有限公司 The intracorporal guide vane mechanism of blower inlet casing
CN118060833A (en) * 2024-04-25 2024-05-24 广东鑫风风机有限公司 Multi-angle welding table for fan impeller and use method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523705B2 (en) * 1978-01-23 1980-06-24
JPS61262465A (en) * 1985-05-16 1986-11-20 Mitsubishi Heavy Ind Ltd Method for welding and assembling narrow gap member
JPH01205889A (en) * 1988-02-10 1989-08-18 Mitsubishi Heavy Ind Ltd Joining method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523705B2 (en) * 1978-01-23 1980-06-24
JPS61262465A (en) * 1985-05-16 1986-11-20 Mitsubishi Heavy Ind Ltd Method for welding and assembling narrow gap member
JPH01205889A (en) * 1988-02-10 1989-08-18 Mitsubishi Heavy Ind Ltd Joining method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3369937A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108869400A (en) * 2018-08-24 2018-11-23 浙江南元泵业有限公司 Centrifugal pump guide vane
CN108895033A (en) * 2018-08-24 2018-11-27 浙江南元泵业有限公司 The intracorporal guide vane mechanism of blower inlet casing
CN118060833A (en) * 2024-04-25 2024-05-24 广东鑫风风机有限公司 Multi-angle welding table for fan impeller and use method thereof

Similar Documents

Publication Publication Date Title
JP6758144B2 (en) How to manufacture an impeller
WO2017073500A1 (en) Method of manufacturing impeller
KR100611274B1 (en) Investment casting
EP2841710B1 (en) Gas turbine engine core providing exterior airfoil portion
US8944768B2 (en) Composite turbine blade and method of manufacture
US20090261669A1 (en) Method of making and device for cooling rotor motor cores
KR101960715B1 (en) Method for manufacturing a impeller and Method for manufacturing a turbine wheel
JP2005028455A (en) Investment casting method, and core and die used therein
JP2002168133A5 (en)
US20120180972A1 (en) method of lost-wax manufacture of an annular bladed turbomachine assembly, metal mould and wax model for implementing such a method
JP5714122B2 (en) Stator core manufacturing method and stator core
JP2007098476A (en) Method for manufacturing hollow component and pattern therefor
JP2007060889A (en) Permanent magnet type motor
US8714953B2 (en) Method of manufacturing mold for tire vulcanization and mold for tire vulcanization
JP5315639B2 (en) Resin injection molding method and resin injection mold
EP2570207B1 (en) Mold for casting a workpiece that includes one or more casting pins
JP5891079B2 (en) Guide vanes and guide vane recipes
JP2013238173A (en) Method of manufacturing blade for rotary machine and casting jig for balance weight used therefor
US9259781B2 (en) Case corrosion-resistant liners in nozzles and case bodies to eliminate overlays
JP3120131B2 (en) Mold motor
JP2001078409A (en) Squirrel-cage type cast rotor core and manufacturing method therefor
JP5104974B2 (en) Manufacturing method of tire vulcanization mold
CN108788009A (en) Component for manufacturing turbine engine blade
JP2014187732A (en) Rotor core casting device and rotor core casting method
CN113939375A (en) Improved method of forming wax patterns for turbine blades

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859730

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15770944

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016859730

Country of ref document: EP