JP2004174532A - Branch structure and face-to-face joining method for holder used for manufacturing the same - Google Patents

Branch structure and face-to-face joining method for holder used for manufacturing the same Download PDF

Info

Publication number
JP2004174532A
JP2004174532A JP2002341816A JP2002341816A JP2004174532A JP 2004174532 A JP2004174532 A JP 2004174532A JP 2002341816 A JP2002341816 A JP 2002341816A JP 2002341816 A JP2002341816 A JP 2002341816A JP 2004174532 A JP2004174532 A JP 2004174532A
Authority
JP
Japan
Prior art keywords
main body
holder
branch
face
branch structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002341816A
Other languages
Japanese (ja)
Other versions
JP4191984B2 (en
Inventor
Hiroshi Hasegawa
泰士 長谷川
Eiji Tsuru
英司 津留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002341816A priority Critical patent/JP4191984B2/en
Publication of JP2004174532A publication Critical patent/JP2004174532A/en
Application granted granted Critical
Publication of JP4191984B2 publication Critical patent/JP4191984B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a branch structure which is manufactured at cost, is suitable for mass production and is free from the possibility of a degradation in sealability between a main body and a branch pipe even when the pressure of an internal fluid is high. <P>SOLUTION: A holder 3 is face-to-face joined by a liquid phase diffusion joining method to the main body 1 having therein a flow passage 2. To a joint surface 7 compressive force by internal fluid pressure is applied. The branch pipe 5 is attached to the holder 3 and the tip of the pipe is brought into metal-to-metal touch with the main body 1. The holer can be face-to-face joined to the main body in the state of applying the compressive force to the joint surface of the main body and the holder by inserting a wedge-like tool to the side of the tip of the holder 3 opposite to the joint surface. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、内部に流体搬送用の管路を有する配管系を構成するために用いられる分岐構造体に関するものであり、更に詳しくは、圧力配管系や流体搬送系の管路システムないし配管システムを構成する要素としての分岐構造体及びその製造に用いられるホルダーの面接合方法に関するものである。
【0002】
【従来の技術】
【特許文献1】特開2002−195125号公報
【特許文献2】特開2001−280218号公報
【0003】
搬送流体を内包する配管系では、その流体を一方向から取り入れ、複数方向へと分岐させる機能を有する分岐構造体を備えて配管システムを構築する場合が多い。この分岐構造体にはY字型のものやT字型のものなど多くの種類があるが、機能的にはほぼT字分岐と同等であると考えられる。このような分岐構造体を「ティー」あるいは「T分岐」と称し、搬送流体の管路において重要な役割を果たしている。本明細書ではこのような一方向から流入した流体を分岐させる役割を持つ分岐構造体を総称してティーと記す。
【0004】
ところで、ティーの内部を流れる流体が圧力流体である場合には、分岐の際に生じる管路内表面の応力集中があるため、通常の管路とは異なりティーの構成材料にはこれに耐える強度あるいはその他の材料特性を要求されることがある。特に分岐方向が本体(本管)に対して垂直で、分岐した管(分岐管)が本体に対して小径である場合にはその傾向が強くなる。したがってティーには本体とは異なる材質や構造が要求される場合が多く、その製造技術は特に圧力配管において重要かつ困難な技術である。
【0005】
例えば、火力発電プラントの蒸気溜め(ヘッダー)はこのティーを複数並列に並べたものであり、分岐管の直径は本体の直径の1/10程度となる場合もある。具体例を挙げると、内径100mmの鋼管に内径15mmの多数の小径鋼管を垂直にアーク溶接したものである。しかしこのヘッダーは、集合配管部位長さ5m以上の大型構造物であり工作上の余裕が大きいこと、また搬送流体である蒸気は小径鋼管から集合して本体に流入するために溶接継手部分の応力集中は比較的少ないことなどの理由から、アーク溶接によって製造可能である。
【0006】
このようにティーの製造には従来から主としてアーク溶接が用いられているが、流体圧力の低い場合には鋳造などで一体成型する方法も採用され、また流体圧力が1000MPaを超えるような高圧の場合には削り出しや、鍛造品に穿孔する方法が採用されている。しかしいずれにしても、上記したようなティーの製造法は大量生産には適しておらず、高価なものとならざるを得ないという問題があった。
【0007】
このほか、エンジンのコモンレール式燃料噴射装置には、コモンレールと呼ばれる分岐構造体が用いられている。これは加圧された燃料をエンジンの噴射ノズルに分配するものであり、多数の分岐管が本体の側面に垂直に配置されている。前記した特許文献1には、全体をブロックから削り出す方法により製造されたコモンレールが開示されている。この特許文献1のコモンレールは溶接継手を持たないため液漏洩のおそれはないが、製造コストが非常に高価となることは避けられない。
【0008】
また前記した特許文献2には、袋ナット形式により分岐管と本体とをメタルタッチシールさせたコモンレールが開示されている。この特許文献2のコモンレールの要部は図11に示すとおりであり、50が本体、51が本体50に回し隅肉溶接された分岐部材(ホルダー)、52が分岐部材51に螺合された分岐管である。燃料の圧力により分岐管52には本体50から離れる方向の応力負荷が生じるが、それに耐えてメタルタッチ面53のシール性を確保できるか否かは溶接部54の強度によって決まることとなる。このため、本体50や分岐部材51が難溶接材料であったり繰り返し疲労応力が付加されたりする場合には、溶接部54の耐久性が低下してシール性が不十分となるおそれがある。
【0009】
【発明が解決しようとする課題】
本発明は上記したような従来の問題点を解決し、製造コストが安価で大量生産に適し、しかも内部流体の圧力が高い場合にも本体と分岐管とのシール性が低下するおそれのない分岐構造体及びその製造に用いられるホルダーの面接合方法を提供するためになされたものである。
【0010】
【課題を解決するための手段】
上記の課題を解決するためになされた本発明の分岐構造体は、内部に流路を備えた本体にホルダーを接合し、このホルダーに分岐管を装着した分岐構造体において、本体とホルダーとが内部の流体圧によって圧縮力を受ける面において面接合されていることを特徴とするものである。なお、ホルダーに装着された分岐管と本体とがメタルタッチシールされていることが好ましい。また本発明の分岐構造体は、内部に燃料が供給される本体に複数の分岐管を垂直に設けたコモンレールとすることができる。あるいは分岐管を1列に並べるコモンレールに加えて、これを複数列としたもの、ないしは分岐管から本体へ圧力流体が搬送される流体集合配管、例えば高温圧力容器であるボイラーのヘッダーとすることができる。本体とホルダーとの面接合は、液相拡散接合とすることが好ましい。
【0011】
更に、上記の分岐構造体の製造に用いられる本発明のホルダーの面接合方法は、内部に流路を備えた本体の外壁面にホルダーの先端が挿入される凹部を形成し、この凹部に挿入されたホルダーの先端の接合面とは反対側に楔状冶具を差し込むことにより本体とホルダーとの接合面に圧縮力を加えた状態で、本体にホルダーを面接合することを特徴とするものである。
【0012】
本発明の分岐構造体は、本体とホルダーとが内部の流体圧によって圧縮力を受ける面において面接合されているため、接合部の開先が破壊されない限りは接合部の強度や健全性が問題になることはなく、このホルダーに装着された分岐管と本体との間のシール性が損なわれるおそれはない。また本発明のホルダーの面接合方法によれば、本体とホルダーとの接合面の圧縮力を加えた状態で本体にホルダーを面接合することができるので、本発明の分岐構造体の製造が容易となる。
【0013】
【発明の実施の形態】
以下に本発明の好ましい実施形態を示す。
図1は分岐構造体の第1の実施形態を示す断面図であり、1は断面が円形の本体、2は本体1の内部に形成された加圧流体の流路2である。本体1の上部にはメネジ4を備えたホルダー3が固定され、このホルダー3の内部に分岐管5が螺合されている。
【0014】
図示のように、本体1の上部両側部にはV字状の2つの凹部6が形成され、これらの凹部6の対向する上側の2平面は、本体1の外周に向かって拡がった接合面7となっている。一方、ホルダー3の先端部8はこれらV字状の2つの凹部6に挿入できる断面形状を有し、先端部8の内側面は上記の接合面7とぴったりと密着できる平面となっている。そしてこれらの接合面7において、本体1とホルダー3とは面接合される。
【0015】
接合面7を面接合する方法には、最も簡便な方法であるろう付けのほか、拡散ろう付け、液相拡散接合、固相拡散接合などの様々な種類があり、任意の面接合法を採用することができる。しかし、難接合材料や異種金属材料の接合には液相拡散接合を採用することが有利である。この液相拡散接合は、被接合材料よりも低い共晶点を有する合金を箔、粉末、あるいはメッキなどの手段で開先に供給し、接合部あるいは被接合材料の全体を共晶温度以上に加熱することで溶融金属を開先間に現出させ、共晶点を形成する元素、多くはBまたはPを被接合材料中へと拡散させて溶融金属の融点が上昇する、等温凝固現象を実現することで継手を形成する接合技術である。
【0016】
液相拡散接合は面接合であるため、接合面積によらず接合時間が一定であり、また液相を介することから通常の固相拡散接合とは異なって接合時間が短く、かつ必要な開先への応力付加も少ないことが特徴である。さらに、通常では溶接トーチの入る間隙のないような狭小な開先あるいは外部に開口していない開先などの場合にも熱源供給形態を高周波誘導加熱等とすることで適用ができるなどの多くの利点を有している。
【0017】
その反面、開先間への接合金属の供給形態から、開先の加工や突合せ精度は高いものが必要であり、開先間は全面が十分な面圧を、液相が現出した状態すなわち等温凝固の過程で得ていなければならない。このことは例えば液相拡散接合の温度を1100〜1200℃などに設定した場合、被接合材料の熱間塑性変形能や剛性の関係から、ごくわずかでも面圧が十分でない部分が開先に存在するだけでも接合欠陥となることを示唆している。
【0018】
しかし、図1に示したように本発明ではホルダー3の先端部8の内側面と本体1の接合面7とを精度よく突き合わせることができ、液相拡散接合を採用することができる。特に請求項6に記載した面接合方法を取ることにより、開先間に十分な面圧を加えた状態で接合を行わせることができる。この方法は図9に示すように、本体1の凹部6に挿入されたホルダー3の先端の接合面7とは反対側に楔状冶具9を差し込むことにより、本体1とホルダー3との接合面7に圧縮力を加えた状態で面接合を行う方法である。図9では楔状冶具9の先端角度を誇張してあるが、図1の分岐構造体においてもV字状の2つの凹部6の下側側面10とホルダー3の先端との間に楔状冶具9を挿入できる隙間を形成しておくことにより、この方法を採用することができる。
【0019】
なお、楔状冶具9としては被接合材料と同一の鋼材を使用しても問題はなく、高温での高い膨張率に期待してオーステナイト鋼を用いることもできる。この場合、特に化学成分には制限がないが、室温から接合温度で常にFCC構造を有し、通常の液相拡散接合温度である1100〜1200℃において溶融しないことが必要である。楔状冶具9は接合後に除去することができるが、接合箔の排出によって冶具先端が被接合材料と接合した場合や、被接合材料の構造上有益である場合にはそのまま残置してもよい。また楔状冶具9は必ずしも金属製である必要はなく、酸化物、窒化物、炭化物などの高温で剛性を有するセラミックスや耐火煉瓦など、あるいはそれらの焼成品を使用することもできる。
【0020】
上記のようにして本体1に面接合されたホルダー3に、分岐管5が螺合される。分岐管5の先端にはテーパ状のシール面11が形成されており、本体1の上面の円錐状凹面と密着してメタルタッチシールがなされる。この状態で本体1の内部に形成された分岐流路12が分岐管5の内部流路13と連通する。これらの流路を流れる流体が加圧流体である場合、内部の流体圧によって本体1に対して分岐管5を引き離す方向の力が作用するが、図1に分岐構造体では接合面7は本体1の外周に向かって拡がっており、内部の流体圧は接合面7に圧縮力を加えるように作用する。このため、接合面7には使用中は圧縮応力が作用することとなり、図11に示した従来構造のように引っ張り応力が作用することはない。従って内部流体の圧力が高い場合にも、本体1と分岐管5とのシール性が低下することがない。しかも3つの部品を組み合わせることによって、安価に大量生産することができる。
【0021】
なお、接合面7に加わる圧縮応力は上記したように流体内圧によるものが主であるが、ホルダー3が例えばコモンレールの場合には、これを取り付けたエンジンの振動による外部応力、ヘッダーの場合には配管システム全体に生じる熱膨張・収縮に起因するシステム応力による外力によっても、圧縮応力がもたらされる。本発明の効果はこれら外力起因の応力に対しても内圧に対すると同様に発揮され、ホルダー3を本体から引き離す応力を接合面の圧縮応力へ変換することができる。
【0022】
図2に示す第2の実施形態では、ホルダー3の先端が内側に直角に延びており、本体1の凹部6もこれに対応する形状となっているが、その他の構成は第1の実施形態と共通である。この第2の実施形態では本体1とホルダー3との接合面7は分岐管5の長手方向(図2の上下方向)に対して垂直な平面であり、好ましくは液相拡散接合されている。この分岐構造体においても、内部の流体圧によって接合面7が圧縮力を受けるため、内部流体の圧力が高い場合にも、本体1と分岐管5とのシール性が低下することがない。
【0023】
図3、図4に示す第3の実施形態では、本体1の両側面に凹部6が形成され、本体1の上方から被さる形状のホルダー3の先端が内側に屈曲されてこれらの凹部6に挿入されている。両者の接合面7は分岐管5の方向に向けて外側に拡がった傾斜面となっており、やはり内部の流体圧によって圧縮力が作用する接合面7となっている。このようにホルダー3を角型にすれば本体1との密着性を一段と高めることができる。
【0024】
図5に示す第4の実施形態では、本体1を外側から包む形状のホルダー3が用いられている。この場合の接合面7は本体1の下面(分岐管5とは反対側の面)であるから、内部の流体圧により本体1に対して分岐管5を引き離す方向の力が作用すると、接合面7には圧縮力が加わることとなり、本体1と分岐管5とのシール性が低下することがない。この構造では接合面7の面積を広く取ることができ、さらに信頼性を高めることができる。
【0025】
図6、図7は本発明をコモンレールに適用した第5の実施形態を示すものである。その断面構造は図1に示した第1の実施形態と同様であり、細長い本体1の上面に端面からスライドさせてはめ込まれた複数のホルダー3が垂直に設けられ、傾斜した接合面7において液相拡散接合されている。図7に示すように各ホルダー3の内部には分岐管5が螺合されており、その先端は本体1とメタルタッチシールされている。
【0026】
図8に示す第6の実施形態は本体1を断面円形としたボイラーのヘッダー、その他の構成は第5の実施形態と同様である。このようなヘッダーは本体1に流路2から供給された高圧の流体を集合させて搬送するための装置であり、熱応力を受ける状態で使用しても接合面7の健全性が損なわれることはなく、また流体の内部圧力によってシール性が低下することもない。
【0027】
図10は本発明の構造体と図11に示した従来品の疲労特性を示したグラフである。このグラフから明らかなように、本発明の分岐構造体はきわめて優れた疲労特性を示す。
【0028】
【発明の効果】
以上に説明したように、本発明の分岐構造体は製造コストが安価で大量生産に適し、しかも内部流体の圧力が高い場合にも本体と分岐管とのシール性が低下するおそれのない利点があるから、ティーやコモンレールあるいはヘッダーとして実用的な価値の高いものである。また、本発明のホルダーの面接合方法によれば、接合面に圧縮力を加えた状態で容易に面接合が可能となり、本発明の分岐構造体の製造に有益である。
【図面の簡単な説明】
【図1】第1の実施形態を示す断面図である。
【図2】第2の実施形態を示す断面図である。
【図3】第3の実施形態を示す断面図である。
【図4】第3の実施形態を示す斜視図である。
【図5】第4の実施形態を示す断面図である。
【図6】第5の実施形態を示す斜視図である。
【図7】第5の実施形態を示す断面図である。
【図8】第6の実施形態を示す斜視図である。
【図9】ホルダーの面接合方法を説明する断面図である。
【図10】本発明品と従来品との疲労特性を示すグラフである。
【図11】従来技術を示す断面図である。
【符号の説明】
1 本体
2 流路
3 ホルダー
4 メネジ
5 分岐管
6 凹部
7 接合面
8 先端部
9 楔状冶具
10 下側側面
11 シール面
12 分岐流路
13 内部流路
50 従来技術における本体
51 回し隅肉溶接された分岐部材
52 分岐管
53 メタルタッチ面
54 溶接部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a branch structure used to constitute a piping system having a pipeline for fluid conveyance therein, and more particularly, to a pipeline system or a piping system of a pressure piping system or a fluid transportation system. The present invention relates to a branch structure as a constituent element and a surface joining method of a holder used for manufacturing the same.
[0002]
[Prior art]
[Patent Document 1] JP-A-2002-195125 [Patent Document 2] JP-A-2001-280218
In a piping system containing a carrier fluid, a piping system is often constructed with a branch structure having a function of taking the fluid from one direction and branching the fluid into a plurality of directions. Although there are many types of this branch structure, such as a Y-shaped one and a T-shaped one, it is considered that it is functionally almost equivalent to a T-shaped branch. Such a branch structure is referred to as a "tee" or "T-branch", and plays an important role in a conduit for a carrier fluid. In this specification, a branch structure having a role of branching a fluid flowing from one direction is generally referred to as a tee.
[0004]
By the way, when the fluid flowing inside the tee is a pressurized fluid, there is a stress concentration on the inner surface of the pipe at the time of branching. Alternatively, other material properties may be required. In particular, when the branch direction is perpendicular to the main body (main pipe) and the branched pipe (branch pipe) has a small diameter with respect to the main body, the tendency becomes strong. Therefore, a material and a structure different from the main body are often required for the tee, and the manufacturing technique is an important and difficult technique particularly in the pressure piping.
[0005]
For example, a steam reservoir (header) of a thermal power plant has a plurality of the tees arranged in parallel, and the diameter of the branch pipe may be about 1/10 of the diameter of the main body. As a specific example, a large number of small-diameter steel pipes having an inner diameter of 15 mm are vertically arc-welded to a steel pipe having an inner diameter of 100 mm. However, this header is a large-sized structure with a length of at least 5 m for collecting pipes and has a large working margin. In addition, since the steam, which is the carrier fluid, collects from small-diameter steel pipes and flows into the main body, the stress at the weld joints is reduced. It can be manufactured by arc welding because of the relatively low concentration.
[0006]
As described above, arc welding has been mainly used in the manufacture of tees, but when the fluid pressure is low, a method of integral molding by casting or the like is also adopted, and when the fluid pressure is high such as exceeding 1000 MPa. A method of shaving or drilling a forged product is adopted. However, in any case, there is a problem that the above-mentioned method for producing tea is not suitable for mass production and must be expensive.
[0007]
In addition, a branch structure called a common rail is used in a common rail fuel injection device of an engine. This distributes pressurized fuel to the injection nozzles of the engine, and a number of branch pipes are arranged vertically on the side surface of the main body. The above-mentioned Patent Document 1 discloses a common rail manufactured by a method of cutting the whole from a block. Since the common rail of Patent Document 1 does not have a welded joint, there is no risk of liquid leakage, but it is unavoidable that the manufacturing cost is extremely high.
[0008]
Patent Document 2 discloses a common rail in which a branch pipe and a main body are metal-touch-sealed by a cap nut type. The essential part of the common rail of this patent document 2 is as shown in FIG. 11, 50 is a main body, 51 is a branch member (holder) which is turned around the main body 50 and is welded to fillet, and 52 is a branch which is screwed to the branch member 51. Tube. The pressure of the fuel causes a stress load in the branch pipe 52 in a direction away from the main body 50, and whether or not the metal pipe surface 53 can withstand this and maintain the sealing property depends on the strength of the welded portion 54. For this reason, when the main body 50 and the branch member 51 are difficult-to-weld materials or are repeatedly subjected to fatigue stress, there is a possibility that the durability of the welded portion 54 decreases and the sealing performance becomes insufficient.
[0009]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems, and has a low production cost and is suitable for mass production. In addition, even when the pressure of the internal fluid is high, there is no possibility that the sealing performance between the main body and the branch pipe is reduced. The present invention has been made to provide a surface bonding method of a structure and a holder used for manufacturing the structure.
[0010]
[Means for Solving the Problems]
A branch structure of the present invention made in order to solve the above-mentioned problem, a holder is joined to a main body having a flow path therein, and in a branch structure in which a branch pipe is attached to the holder, the main body and the holder are connected. It is characterized in that it is surface-joined on a surface that receives a compressive force due to internal fluid pressure. Preferably, the branch pipe mounted on the holder and the main body are sealed with a metal touch. Further, the branch structure of the present invention may be a common rail in which a plurality of branch pipes are provided vertically in a main body to which fuel is supplied. Alternatively, in addition to a common rail in which branch pipes are arranged in a single row, a plurality of rows may be provided, or a fluid collecting pipe in which pressure fluid is transferred from the branch pipe to the main body, for example, a header of a boiler which is a high-temperature pressure vessel. it can. The surface bonding between the main body and the holder is preferably liquid phase diffusion bonding.
[0011]
Further, in the method for bonding a holder of the present invention used for manufacturing the branch structure, a concave portion into which the tip of the holder is inserted is formed on an outer wall surface of a main body having a flow path therein, and the concave portion is inserted into the concave portion. The wedge-shaped jig is inserted on the opposite side to the joint surface at the tip of the holder, and the holder is surface-joined to the main body while compressive force is applied to the joint surface between the main body and the holder. .
[0012]
In the branch structure of the present invention, since the main body and the holder are surface-joined on a surface that receives a compressive force due to the internal fluid pressure, the strength and soundness of the joint are problematic unless the groove of the joint is destroyed. And the sealing performance between the branch pipe mounted on the holder and the main body is not impaired. According to the holder surface joining method of the present invention, the holder can be surface-joined to the main body in a state where the compressive force of the joint surface between the main body and the holder is applied, so that the branch structure of the present invention can be easily manufactured. It becomes.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described.
FIG. 1 is a cross-sectional view showing a first embodiment of a branch structure, wherein 1 is a main body having a circular cross section, and 2 is a flow path 2 of a pressurized fluid formed inside the main body 1. A holder 3 having a female screw 4 is fixed to an upper portion of the main body 1, and a branch pipe 5 is screwed into the holder 3.
[0014]
As shown in the figure, two V-shaped concave portions 6 are formed on both upper side portions of the main body 1, and two opposing upper planes of these concave portions 6 are joined to a joint surface 7 that extends toward the outer periphery of the main body 1. It has become. On the other hand, the distal end portion 8 of the holder 3 has a cross-sectional shape that can be inserted into these two V-shaped concave portions 6, and the inner surface of the distal end portion 8 is a flat surface that can be in close contact with the bonding surface 7. Then, at these joint surfaces 7, the main body 1 and the holder 3 are surface-joined.
[0015]
There are various types of methods for surface bonding of the bonding surface 7, such as brazing, which is the simplest method, diffusion brazing, liquid phase diffusion bonding, solid phase diffusion bonding, etc., and an arbitrary surface bonding method is adopted. be able to. However, it is advantageous to employ liquid phase diffusion bonding for bonding difficult-to-bond materials or dissimilar metal materials. In this liquid phase diffusion bonding, an alloy having a lower eutectic point than the material to be joined is supplied to the groove by means such as foil, powder, or plating, and the entire joint or the material to be joined is heated to the eutectic temperature or higher. Heating causes the molten metal to appear between the grooves and diffuses the element that forms the eutectic point, most often B or P, into the material to be joined, raising the melting point of the molten metal. This is a joining technology that forms a joint by realizing it.
[0016]
Since liquid phase diffusion bonding is surface bonding, the bonding time is constant irrespective of the bonding area, and since it passes through the liquid phase, unlike normal solid phase diffusion bonding, the bonding time is short and the necessary groove is required. It is characterized in that the application of stress to the surface is small. Furthermore, even in the case of a narrow groove having no gap into which a welding torch normally enters or a groove not opening to the outside, it can be applied by setting a heat source supply form to high-frequency induction heating or the like. Has advantages.
[0017]
On the other hand, from the supply form of the joining metal to the gap, it is necessary to have high processing and butting accuracy of the groove, the surface between the groove is a sufficient surface pressure, the state in which the liquid phase appeared, It must have been obtained during the isothermal solidification process. This means that, for example, when the temperature of the liquid phase diffusion bonding is set to 1100 to 1200 ° C., there is a very small portion where the contact pressure is not sufficient due to the hot plastic deformability and rigidity of the material to be bonded. This suggests that just performing a bonding defect will result in a bonding defect.
[0018]
However, as shown in FIG. 1, in the present invention, the inner side surface of the distal end portion 8 of the holder 3 and the bonding surface 7 of the main body 1 can be accurately butted, and liquid phase diffusion bonding can be employed. In particular, by employing the surface joining method described in claim 6, the joining can be performed with a sufficient surface pressure applied between the grooves. In this method, as shown in FIG. 9, a wedge-shaped jig 9 is inserted into the opposite side of the joint surface 7 at the tip of the holder 3 inserted into the concave portion 6 of the main body 1 to thereby form a joint surface 7 between the main body 1 and the holder 3. This is a method of performing surface joining while applying a compressive force to the surface. Although the tip angle of the wedge-shaped jig 9 is exaggerated in FIG. 9, the wedge-shaped jig 9 is also provided between the lower side surface 10 of the two V-shaped recesses 6 and the tip of the holder 3 in the branch structure of FIG. 1. This method can be adopted by forming a gap that can be inserted.
[0019]
It should be noted that there is no problem even if the same steel material as the material to be joined is used as the wedge-shaped jig 9, and austenitic steel can be used in view of a high expansion coefficient at a high temperature. In this case, although there is no particular limitation on the chemical components, it is necessary that the compound always has an FCC structure from room temperature to the bonding temperature and does not melt at a normal liquid phase diffusion bonding temperature of 1100 to 1200 ° C. The wedge-shaped jig 9 can be removed after joining, but may be left as it is when the tip of the jig is joined to the material to be joined by discharging the joining foil or when the structure of the material to be joined is beneficial. The wedge-shaped jig 9 does not necessarily need to be made of metal, but may be made of ceramics such as oxides, nitrides and carbides having high temperature rigidity, refractory bricks or the like, or fired products thereof.
[0020]
The branch pipe 5 is screwed into the holder 3 surface-joined to the main body 1 as described above. A tapered sealing surface 11 is formed at the tip of the branch pipe 5, and a metal touch seal is made in close contact with the conical concave surface on the upper surface of the main body 1. In this state, the branch flow path 12 formed inside the main body 1 communicates with the internal flow path 13 of the branch pipe 5. When the fluid flowing through these channels is a pressurized fluid, a force in the direction of separating the branch pipe 5 acts on the main body 1 by the internal fluid pressure, but in the branch structure shown in FIG. 1, and the fluid pressure therein acts to apply a compressive force to the joint surface 7. For this reason, a compressive stress acts on the joint surface 7 during use, and a tensile stress does not act unlike the conventional structure shown in FIG. Therefore, even when the pressure of the internal fluid is high, the sealing performance between the main body 1 and the branch pipe 5 does not decrease. Moreover, by combining the three parts, mass production can be performed at low cost.
[0021]
The compressive stress applied to the joint surface 7 is mainly caused by the internal pressure of the fluid as described above. However, when the holder 3 is, for example, a common rail, external stress due to vibration of an engine to which the holder 3 is attached, and when the header is a header, Compressive stress is also caused by an external force due to system stress caused by thermal expansion / contraction occurring in the entire piping system. The effect of the present invention is exerted on the stress caused by the external force as well as the internal pressure, and the stress separating the holder 3 from the main body can be converted into the compressive stress of the joint surface.
[0022]
In the second embodiment shown in FIG. 2, the tip of the holder 3 extends inward at a right angle, and the concave portion 6 of the main body 1 has a corresponding shape, but other configurations are the same as those of the first embodiment. And is common. In the second embodiment, the joint surface 7 between the main body 1 and the holder 3 is a plane perpendicular to the longitudinal direction of the branch pipe 5 (vertical direction in FIG. 2), and is preferably subjected to liquid phase diffusion joining. Also in this branch structure, since the joint surface 7 receives a compressive force due to the internal fluid pressure, the sealing performance between the main body 1 and the branch pipe 5 does not decrease even when the pressure of the internal fluid is high.
[0023]
In the third embodiment shown in FIGS. 3 and 4, concave portions 6 are formed on both side surfaces of the main body 1, and the tips of the holders 3 that are shaped to cover from above the main body 1 are bent inward and inserted into these concave portions 6. Have been. The joint surface 7 of the two is an inclined surface that expands outward in the direction of the branch pipe 5, and is also a joint surface 7 on which a compressive force acts by the internal fluid pressure. If the holder 3 is formed in a square shape as described above, the adhesion to the main body 1 can be further enhanced.
[0024]
In the fourth embodiment shown in FIG. 5, a holder 3 having a shape that wraps the main body 1 from the outside is used. In this case, the joining surface 7 is the lower surface of the main body 1 (the surface opposite to the branch pipe 5). 7, a compressive force is applied, and the sealing performance between the main body 1 and the branch pipe 5 does not decrease. With this structure, the area of the joint surface 7 can be made large, and the reliability can be further improved.
[0025]
FIGS. 6 and 7 show a fifth embodiment in which the present invention is applied to a common rail. Its cross-sectional structure is the same as that of the first embodiment shown in FIG. 1, and a plurality of holders 3 slidably fitted from the end faces on the upper surface of the elongated main body 1 are provided vertically, and the liquid Phase diffusion bonded. As shown in FIG. 7, a branch pipe 5 is screwed into each holder 3, and the distal end thereof is metal-sealed with the main body 1.
[0026]
The sixth embodiment shown in FIG. 8 is the same as that of the fifth embodiment except for the boiler header in which the main body 1 has a circular cross section. Such a header is a device for collecting and transporting the high-pressure fluid supplied from the flow path 2 to the main body 1, and the integrity of the joint surface 7 is impaired even when used under a state of receiving thermal stress. In addition, the sealability does not decrease due to the internal pressure of the fluid.
[0027]
FIG. 10 is a graph showing the fatigue characteristics of the structure of the present invention and the conventional product shown in FIG. As is clear from this graph, the branched structure of the present invention shows extremely excellent fatigue properties.
[0028]
【The invention's effect】
As described above, the branch structure of the present invention has an advantage that the manufacturing cost is inexpensive and suitable for mass production, and even when the pressure of the internal fluid is high, the sealing performance between the main body and the branch pipe is not reduced. As such, it is of high practical value as a tee, common rail or header. Further, according to the holder surface joining method of the present invention, surface joining can be easily performed in a state where a compressive force is applied to the joining surface, which is useful for manufacturing the branch structure of the present invention.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating a first embodiment.
FIG. 2 is a cross-sectional view illustrating a second embodiment.
FIG. 3 is a sectional view showing a third embodiment.
FIG. 4 is a perspective view showing a third embodiment.
FIG. 5 is a sectional view showing a fourth embodiment.
FIG. 6 is a perspective view showing a fifth embodiment.
FIG. 7 is a sectional view showing a fifth embodiment.
FIG. 8 is a perspective view showing a sixth embodiment.
FIG. 9 is a cross-sectional view illustrating a method of bonding surfaces of the holder.
FIG. 10 is a graph showing fatigue characteristics of the product of the present invention and a conventional product.
FIG. 11 is a sectional view showing a conventional technique.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Main body 2 Flow path 3 Holder 4 Female thread 5 Branch pipe 6 Depression 7 Joint surface 8 Tip 9 Wedge-shaped jig 10 Lower side surface 11 Seal surface 12 Branch flow path 13 Internal flow path 50 Main body 51 in the prior art Turn-filled Branch member 52 Branch pipe 53 Metal touch surface 54 Weld

Claims (6)

内部に流路を備えた本体にホルダーを接合し、このホルダーに分岐管を装着した分岐構造体において、本体とホルダーとが内部の流体圧によって圧縮力を受ける面において面接合されていることを特徴とする分岐構造体。In a branch structure in which a holder is joined to a main body having a flow path therein, and a branch pipe is attached to the holder, it is required that the main body and the holder are surface-joined on a surface which receives a compressive force due to internal fluid pressure. Characteristic branch structure. ホルダーに装着された分岐管と本体とがメタルタッチシールされていることを特徴とする請求項1に記載の分岐構造体。The branch structure according to claim 1, wherein the branch pipe mounted on the holder and the main body are metal-touch sealed. 内部に燃料が供給される本体に複数の分岐管を垂直に設けてコモンレールを構成したことを特徴とする請求項1または2に記載の分岐構造体。The branch structure according to claim 1 or 2, wherein a plurality of branch pipes are provided vertically in a main body to which fuel is supplied, thereby forming a common rail. 本体に複数の分岐管を複数列配置し、分岐管から本体に圧力流体が供給される圧力容器用のヘッダーを構成した請求項1または2に記載の分岐構造体。The branch structure according to claim 1, wherein a plurality of branch pipes are arranged in a plurality of rows in the main body, and a header for a pressure vessel configured to supply a pressure fluid from the branch pipe to the main body is configured. 本体とホルダーとの面接合を液相拡散接合としたことを特徴とする請求項1〜4の何れかに記載の分岐構造体。The branch structure according to any one of claims 1 to 4, wherein the surface bonding between the main body and the holder is a liquid phase diffusion bonding. 内部に流路を備えた本体の外壁面にホルダーの先端が挿入される凹部を形成し、この凹部に挿入されたホルダーの先端の接合面とは反対側に楔状冶具を差し込むことにより本体とホルダーとの接合面に圧縮力を加えた状態で、本体にホルダーを面接合することを特徴とするホルダーの面接合方法。A concave portion is formed on the outer wall surface of the main body having a flow path therein, into which the tip of the holder is inserted. A surface joining method of a holder, characterized in that a surface of a holder is joined to a main body while a compressive force is applied to a joining surface of the holder.
JP2002341816A 2002-11-26 2002-11-26 Branch structure and method of surface joining of holders used for manufacturing the same Expired - Fee Related JP4191984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002341816A JP4191984B2 (en) 2002-11-26 2002-11-26 Branch structure and method of surface joining of holders used for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002341816A JP4191984B2 (en) 2002-11-26 2002-11-26 Branch structure and method of surface joining of holders used for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2004174532A true JP2004174532A (en) 2004-06-24
JP4191984B2 JP4191984B2 (en) 2008-12-03

Family

ID=32704036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002341816A Expired - Fee Related JP4191984B2 (en) 2002-11-26 2002-11-26 Branch structure and method of surface joining of holders used for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4191984B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5860995B1 (en) * 2014-09-09 2016-02-16 株式会社ミヤタ Manufacturing method of pipe assembly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5860995B1 (en) * 2014-09-09 2016-02-16 株式会社ミヤタ Manufacturing method of pipe assembly
WO2016038691A1 (en) * 2014-09-09 2016-03-17 株式会社ミヤタ Method for manufacturing pipe joint and pipe joint

Also Published As

Publication number Publication date
JP4191984B2 (en) 2008-12-03

Similar Documents

Publication Publication Date Title
US3427707A (en) Method of joining a pipe and fitting
US3078551A (en) Method of making a tube and plate connection
US3567257A (en) Tapered pipe joint
CN101718378A (en) High pressure fluid connection
JP2011512495A (en) Screw connection device
CN101925792A (en) Welded header/nozzle structure
JPS63238923A (en) Combustion chamber of high pressure burner for rocket and its manufacturing method
CN101015879B (en) Friction stir welding method
CN101084394A (en) Method of joining components, fitting and tube joint where at least one of the components comprises or is made of material difficult to weld
CN106001825B (en) Anticorrosion superalloy pipe tube sheet connection method and heat exchanger
JP4191984B2 (en) Branch structure and method of surface joining of holders used for manufacturing the same
US8991869B2 (en) Tube coupling apparatus having liquefiable metal sealing layer
CN107002914B (en) Fluid conduit element and method for forming a fluid conduit element
JPH10296433A (en) High frequency brazing method for aluminum tube
JP2007071323A (en) Connecting method for corrugated pipe
KR100896560B1 (en) Stainless steel pipe and flange fixing process
JP4089899B2 (en) Connection method and structure of difficult-to-join pipes used at high temperatures
JPH1047557A (en) Clearance setting method and member for welded pipe joint
RU2207236C1 (en) Titanium-steel reducer
JPH06658A (en) Formation of joint for stainless steel products and different metallic material
CN208214619U (en) One kind is from centering backside gas shield jig
KR101664309B1 (en) Apparatus for clamping pipes in butt fusion of polyethylene pipes
CA1320984C (en) Coupling
JPS591063A (en) Socket and spigot brazing method of end parts of pipe and bar
JPS59102879A (en) Double pipe structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080912

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080919

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4191984

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees