WO2016037957A1 - Anordnung und verfahren zum detektieren der annäherung eines objektes - Google Patents

Anordnung und verfahren zum detektieren der annäherung eines objektes Download PDF

Info

Publication number
WO2016037957A1
WO2016037957A1 PCT/EP2015/070328 EP2015070328W WO2016037957A1 WO 2016037957 A1 WO2016037957 A1 WO 2016037957A1 EP 2015070328 W EP2015070328 W EP 2015070328W WO 2016037957 A1 WO2016037957 A1 WO 2016037957A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
operating parameter
antenna
electromagnetic field
vehicle
Prior art date
Application number
PCT/EP2015/070328
Other languages
English (en)
French (fr)
Inventor
Dieter Sass
Original Assignee
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive Gmbh filed Critical Continental Automotive Gmbh
Priority to US15/510,702 priority Critical patent/US20170282858A1/en
Publication of WO2016037957A1 publication Critical patent/WO2016037957A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R25/00Fittings or systems for preventing or indicating unauthorised use or theft of vehicles
    • B60R25/20Means to switch the anti-theft system on or off
    • B60R25/24Means to switch the anti-theft system on or off using electronic identifiers containing a code not memorised by the user
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B81/00Power-actuated vehicle locks
    • E05B81/54Electrical circuits
    • E05B81/64Monitoring or sensing, e.g. by using switches or sensors
    • E05B81/76Detection of handle operation; Detection of a user approaching a handle; Electrical switching actions performed by door handles
    • E05B81/77Detection of handle operation; Detection of a user approaching a handle; Electrical switching actions performed by door handles comprising sensors detecting the presence of the hand of a user
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • G07C9/00174Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys
    • G07C9/00309Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated with bidirectional data transmission between data carrier and locks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/3208Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used
    • H01Q1/3233Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used particular used as part of a sensor or in a security system, e.g. for automotive radar, navigation systems
    • H01Q1/3241Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used particular used as part of a sensor or in a security system, e.g. for automotive radar, navigation systems particular used in keyless entry systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/325Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle
    • H01Q1/3283Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle side-mounted antennas, e.g. bumper-mounted, door-mounted
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2325/00Indexing scheme relating to vehicle anti-theft devices
    • B60R2325/10Communication protocols, communication systems of vehicle anti-theft devices
    • B60R2325/103Near field communication [NFC]
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • G07C9/00174Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys
    • G07C9/00309Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated with bidirectional data transmission between data carrier and locks
    • G07C2009/00365Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated with bidirectional data transmission between data carrier and locks in combination with a wake-up circuit
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • G07C9/00174Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys
    • G07C9/00309Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated with bidirectional data transmission between data carrier and locks
    • G07C2009/00388Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated with bidirectional data transmission between data carrier and locks code verification carried out according to the challenge/response method
    • G07C2009/00404Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated with bidirectional data transmission between data carrier and locks code verification carried out according to the challenge/response method starting with prompting the lock
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C2209/00Indexing scheme relating to groups G07C9/00 - G07C9/38
    • G07C2209/60Indexing scheme relating to groups G07C9/00174 - G07C9/00944
    • G07C2209/63Comprising locating means for detecting the position of the data carrier, i.e. within the vehicle or within a certain distance from the vehicle

Definitions

  • the invention relates to an arrangement and a method for detecting the approach of an object, in particular in a system for providing a passive keyless vehicle access.
  • Keyless vehicle entry and start ⁇ systems such as the passive Start Entry (Päse) system are automatic systems to unlock a vehicle without active use of a Autoêtis and to start by merely operating the start button.
  • Systems for concluding ⁇ selloses vehicle access for example, as
  • the driver carries an electronic key with a chip. As the driver's hand approaches the door handle of a suitably equipped vehicle within a few centimeters, this approach is detected by a proximity sensor (e.g., optical or capacitive). The system then wakes up from a standby mode and a PASE communication is started. In the case of a PASE communication, the access system in the vehicle transmits a request signal coded on the basis of a first coding table on one
  • LF frequency (LF stands for "Low Frequency” with frequencies between, for example, 20kHz and 200kHz) to check the authorization of the electronic key
  • UHF Ultra High Frequency
  • the access system switches to a receive mode in the UHF range (UHF stands for "Ultra High Frequency”). with frequencies in the three-digit MHz range, for example) and waits for an answer. If a transponder-equipped key is within range, it will receive the LF signal, decode it and send it below Use of a second coding table with a new coding as UHF signal again off.
  • the UHF signal is decoded in the vehicle. Since the vehicle knows both coding tables, it can compare its own original transmission with the currently received response signal and grant access if it matches. If there is no correct answer within a defined time, nothing happens and the system returns to standby mode. Pulling the door handle has no effect in this case and the vehicle remains closed.
  • a capacitive proximity sensor for detecting approach of an object generally comprises a so-called sensor ⁇ electrode forming an electrode of a capacitor.
  • the counterelectrode of the capacitor is a grounded object penetrating into the detection area of the sensor.
  • the capacitance of the capacitor formed by the sensor electrode and the counter electrode changes.
  • the capacitance change is determined directly or indirectly by means of evaluation electronics, for example by means of dual-slope (conversion of the capacity into a frequency) or
  • Charge-Discharge method (measurement of charging and discharging times of the capacitor), and compared with a predetermined triggering criterion, from which the evaluation concludes the presence or absence of an object in the detection area.
  • the distance of the object to the sensor can be determined.
  • the object of the invention is to provide an arrangement and a method which with as few components as possible Approaching an object, in particular to a vehicle, can detect.
  • the arrangement for detecting the approach of an object in this case has an antenna having a communication device, wherein the antenna is adapted to generate at regular intervals in a polling mode (polling mode) an electromagnetic field.
  • the communication device is designed to determine at least one operating parameter of the antenna every time an electromagnetic field is generated, to compare the at least one determined operating parameter with a corresponding previously determined operating parameter, wherein a change of the at least one operating parameter indicates the approach of an object the Ltdu ⁇ nikations Cooper indicating and emit a signal when the comparison indicates that an operating parameter has changed.
  • the previously determined operating parameter may be an operating parameter determined immediately beforehand or a previously determined operating parameter, which, however, is not the operating parameter determined immediately before.
  • a communication device can serve as a proximity sensor, which can detect the approach of an object, since different operating parameters of an electromagnetic field generating antenna change when an object moves into the electromagnetic field.
  • the latter is designed to transmit the signal only when the comparison of the determined and corresponding previously determined operating parameter shows that the operating parameter has changed by an amount greater than or equal to a predetermined threshold amount. In this way it is ensured that only with a reasonable (large) change of the operating parameter, a signal is sent, and smaller z. For example, environmental or systemic fluctuations may be disregarded.
  • the communication device may be a near field communication device (NFC device).
  • NFC device near field communication device
  • Nahfeldkommunikations mar are provided in ⁇ play, in vehicles already for various other functions. Thus, no additional proximity sensors and associated evaluation units are required.
  • the at least one determined operating parameter may be an amplitude of a voltage at the antenna or a phase angle between a voltage at and a current through the antenna.
  • the arrangement may further comprise a controller adapted to receive the signal from the communication device and to start PASE communication when receiving the signal.
  • the arrangement may thus serve as a proximity sensor in a system for providing keyless vehicle access.
  • PASE communication for example, the authorization of a vehicle key located in the vicinity can be checked. If a valid vehicle key is nearby, then for example, access to a vehicle can be granted.
  • the communication device may be this is ⁇ classified in a vehicle.
  • the communication device for example, in a door handle, on a window, on a side mirror or be arranged in the B-pillar of the vehicle.
  • the communication device may further be configured to switch to polling mode in a standby mode in which the antenna generates no electromagnetic field. In this way, energy can be saved because the electromagnetic field is not generated continuously. In particular, in vehicles in which the components are supplied from the vehicle battery, the saving of energy is an important criterion.
  • the arrangement may be designed to determine the at least one operating parameter every 25-50 ms. For example, an approach of a user's hand, which wants to open a vehicle door, can be detected and access to the vehicle can be provided without the user noticing delays.
  • a method for detecting the approach of an object with the steps of: generating an electromagnetic field at regular intervals by means of an antenna in a communication device; Determining at least one operating parameter of the antenna each time an electromagnetic field is generated; Wherein a change of the at least one operating parameter indicative of comparing each determined operating parameter to a previously determined operating parameters, the approach of a Whether ⁇ jektes to the communication device; and sending out a Signal, if the comparison shows that an operating ⁇ parameter has changed.
  • Figure 1 is a block diagram of an arrangement with a
  • FIG. 2 shows a block diagram of two communication devices for near field communication
  • FIG. 3 is a schematic diagram of the state transition diagram
  • Figure 4 is a block diagram of an arrangement with a
  • FIG. 6 schematically shows the state transition diagram
  • FIG. 7 is a flow chart showing a method of accessing a vehicle according to an embodiment of the invention.
  • FIG. 1 shows a block diagram of an arrangement with a proximity sensor 1.
  • the proximity sensor 1 may be, for example, a capacitive or optical proximity sensor 1, which is designed to determine certain parameters.
  • a parameter may be a capacitance.
  • a capacitive proximity sensor for detecting the approach of an object typically comprises a so-called sensor electrode, which forms a first electrode of a capacitor.
  • the counter ⁇ electrode of the capacitor is a penetrating into the detection range of the sensor grounded object.
  • the capacitance of the capacitor formed by the sensor electrode and the counter electrode changes.
  • the determined parameters are made available to an evaluation unit 2.
  • the capacitance change is determined directly or indirectly in the evaluation unit 2, for example by means of dual-slope method (conversion of the capacitance into a frequency) or batch-discharge method (measurement of the charging and discharging times of the capacitor), and with a predetermined value Tripping ⁇ Sekriterium compared, from which the evaluation unit 2 closes on the presence or absence of an object in the detection area.
  • the evaluation unit can provide a corresponding signal to a control unit 3.
  • the control unit 3 can then start a PASE communication (Passive Start Entry).
  • the controller 3 sends to check the authorization of an electronic key Request signal coded by means of a first coding table on an LF frequency (LF stands for “Low Frequency” with frequencies between, for example, 20 kHz and 200 kHz) .Then the control unit 3 enters a reception mode in the UHF range (UHF stands for "Ultra High Frequency”). with frequencies in the three-digit MHz range, for example) and waits for an answer. If a transponder-equipped key is in range, it receives the LF signal, decodes it, and retransmits it using a second encoding table with a new encoding as the UHF signal. The UHF signal is decoded in the controller 3.
  • LF Low Frequency
  • control unit 3 Since the control unit 3 knows both coding tables, it can compare its own original transmission with the response signal just received and grant access if it matches. If the control unit 3 does not receive a correct answer within a defined time, nothing happens and the arrangement returns to standby mode. Pulling the door handle has no effect in this case and the vehicle remains closed.
  • a proximity sensor 1 and an evaluation unit 2 are required.
  • Nahfeldkom ⁇ munication English, near field communication
  • NFC for short
  • NFC enables contactless data exchange between devices over a distance of a few centimeters. Using NFC, up to 424 kbps can be transmitted.
  • the block diagram in Figure 2 shows a first Kommunikati ⁇ ons réelle 4, which is for example arranged in a vehicle, and a second communication device 5.
  • the second Kom ⁇ munikations réelle 5 can be arranged for example in a smartphone or a vehicle key.
  • the first and second communication devices 4, 5 are configured to transmit data by means of NFC.
  • the inductance of a communication device fun ⁇ yaws while a so-called initiator, the inductance of the other communication device as a so-called target.
  • the electromagnetic fields radiate from the initiator to the target at a frequency of 13.56MHz.
  • An in-vehicle be ⁇ find pending first communication device 4 is in a so-called cyclical polling mode (state A). In this polling mode, the first communication device 4 generates an electromagnetic field. While the first communication device 4 is in polling mode, it can be detected whether an object is in the vicinity. If no object is detected during the polling mode, the first communication device 4 changes into one
  • Standby mode (state B). In the standby mode, the first communication device 4 does not generate an electromagnetic field. At ⁇ closing the first communication device 4 goes back into the polling mode and a new cycle begins.
  • the first communication device 4 changes to an active mode (state C). In this active mode, the first communication device checks 4 first different NFC protocols. That is, it successively sends out signals according to various NFC standards and waits for a response.
  • Mobile NFC-enabled communication devices 5, such as smartphones typically use only one of a number of known NFC standards.
  • an in-vehicle communication device 4 can generally communicate according to all known standards. If the first communication device 4 does not receive an answer to any of the signals, this means that no NFC-capable device 5 according to a valid standard is located nearby.
  • the first Kom ⁇ munikations meeting 4 then returns to the standby mode (state B) before the next change in the polling mode (state A), a new cycle begins. If the first communication device 4 receives a valid response to a signal, an NFC-capable device 5 has been recognized according to a valid standard (state D). The first communica tion device ⁇ 4 then starts transmission on this unit (condition E). When the transmission is completed, the first communication device 4 goes into standby mode (state B) before starting a new cycle with the next change to the polling mode (state A).
  • the first communication device 4 has an antenna which generates an electromagnetic field for the data exchange with the second communication device 5.
  • the electromagnetic field emitted by the first in-vehicle communication device 4 utilizes the present invention to detect the approach of an object.
  • An NFC device 4 which is already present for other functions in the vehicle, thus replaces the additional (eg optical or capacitive) proximity sensor. This is exemplified in the block diagram in Figure 4 is provided ⁇ .
  • the first communication device 4 has an antenna 41.
  • the antenna 41 generates an electromagnetic field, which is represented by semicircles in FIG. If an object 6 moves into the electromagnetic field, different operating parameters of the antenna 41 change.
  • the antenna 41 comprises, for example, a coil.
  • the first communication device 4 can detect at least one operating parameter at regular intervals (eg every 25-50 ms). Subsequently, the first communication device 4 can compare the detected value with a previously determined value of this operating parameter. The detected values of the operating parameters can each be stored in the communication device 4 for a specific time for this purpose. A change in the operating parameters indicates the approach of an object 6. If the approach of an object 6 detected, then as described above, a PASE communication can be started to check whether a valid transponder (eg car key) is nearby and the vehicle is opened.
  • a valid transponder eg car key
  • the block diagram in FIG. 5 shows by way of example a possible implementation of a communication device 4.
  • the communication device 4 has an antenna 41.
  • An antenna front end 42 is connected to the antenna 41 and is configured to adjust the frequency of the electromagnetic field generated by the antenna 41.
  • a problem associated with the antenna front-end 42 Ba ⁇ sis réelle 43 is, for example, to adapted to generate the elekt ⁇ romagnetician field and perform a demodulation of a received signal.
  • the base unit 43 thus assumes the tasks of a sender and a receiver.
  • a microcontroller 44 is connected to the base unit 43.
  • the microcontroller 44 is configured to issue commands to the Ba ⁇ sis réelle 43rd
  • the microcontroller 44 sends a signal via a bus interface 45 when the approach of an object has been detected.
  • the bus interface 45 is connected between the microcontroller 44 and a vehicle bus 7.
  • the control unit 3 is designed to perform a PASE communication.
  • the various components of the communication device 4 are on one hand connected to a reference potential GND Be ⁇ and secondly with a voltage regulator 46th
  • the voltage regulator 46 is connected to the reference potential GND and to a terminal for a positive potential V + and is configured to supply a supply voltage for the Components of the communication device 4 to provide.
  • the supply voltage can be for example 3V.
  • FIG. 6 the flow of an access granting process using an NFC communication device 4 is schematically illustrated.
  • the in-vehicle first communication device 4 cycles as described above between a polling mode (state A) in which an electromagnetic field is generated and a standby mode (state B) in which no electromagnetic field is generated.
  • a PASE communication is started (state F) and a search is made for a valid vehicle key in the vicinity of the vehicle.
  • the PASE communication is independent of the NFC communication described in relation to FIG. If an object 6 is detected in the electromagnetic field (which does not necessarily have to be an NFC-capable device), for example, a PASE communication can be started even before the first communication device 4 starts polling the NFC protocols (as in relation to state C described in Figure 3). However, it is also possible that a PASE communication is started, during or after an interrogation of the NFC protocols was led by ⁇ . If either a valid vehicle key is detected or no valid vehicle key is detected within a certain time, the
  • FIG. 7 shows by way of example a method for providing access to a vehicle in a flow chart.
  • each time when the first communication device 4 forms the electrostatic ⁇ magnetic field step 701
  • various loading operating parameter of the antenna 41 is determined (step 702).
  • These operating parameters are stored and compared with previously determined operating parameters (step 703).
  • Operating parameters previously determined can thereby be immediately previously calculated or previously determined at any time Radiopa ⁇ parameters which, however, are not the operating parameters directly previously determined. If the operating parameters agree with the previously determined operating parameters, there is no object in the electromagnetic field.
  • the process then begins anew at step 701 with the generation of the electromagnetic field.
  • the first communication device 4 may first enter a standby mode for a certain time (not shown in FIG. 7) before re-generating the electromagnetic field.
  • an object 6 is located in the electromagnetic field. This can be, for example, the hand of a user. However, it is also possible that the object 6 is an NFC-capable communication device 5 or, for example, also raindrops.
  • the recognition of the approach of an object 6 triggers the start of a PASE communication, which is performed for example by a ent ⁇ speaking control unit 3.
  • the controller 3 attempts to establish a connection (step 704) and for this purpose sends out a request signal (step 705). Subsequently, the controller 3 waits for response (step 706). Get that
  • Control unit 3 no response to the request signal, so there is no key in range, the PASE communication is aborted. The process then begins anew at step 701 with the generation of the electromagnetic field. If the controller 3 receives a response, it decodes it (step 709) and checks if it is a valid answer. The control unit 3 compares it's own transmission for ⁇ nal with the currently received signal (step 708). If there is no match, so there is no valid vehicle key within reach, the
  • step 701 PASE communication aborted.
  • the process then begins anew at step 701 with the generation of the electromagnetic field. If a match is found, a valid key is within range and the vehicle is opened (step 709).
  • NFC communication devices 4 may be arranged in the vehicle at various locations.
  • communication devices 4 can be arranged in the door handle. This arrangement may be advantageous since it can be detected at this position whether a user grips the door handle to open the vehicle.
  • communication devices 4 can also be arranged, for example, on window panes. This can be advantageous as arranged on the inside of windows are commu ⁇ equipment described there 4 well protected from rain, wind, dust and other environmental influences. But other positions in the vehicle, such as in the B-pillar or side ⁇ mirror, are possible. If the communication device 4, and thus the proximity sensor, not mounted in the door handle, must be
  • NFC communication device 4 already in the vehicle for other functions has the advantage that no additional (capacitive or optical) proximity sensor 1 and a corresponding evaluation electronics 2 are provided Need to become. The method thus comes with already provided for other functions components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Mechanical Engineering (AREA)
  • Computer Security & Cryptography (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Lock And Its Accessories (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

Anordnung mit einem eine Antenne (41) aufweisenden Kommunikationsgerät (4), wobei die Antenne dazu ausgebildet ist, in regelmäßigen Abständen in einem Polling-Modus ein elektromagnetisches Feld zu erzeugen. Das Kommunikationsgerät ist dazu ausgebildet, jedes Mal, wenn ein elektromagnetisches Feld erzeugt wird, wenigstens einen Betriebsparameter der Antenne zu ermitteln, den wenigstens einen ermittelten Betriebsparameter mit einem korrespondierenden zuvor ermittelten Betriebsparameter zu vergleichen, wobei eine Veränderung des wenigstens einen Betriebsparameters die Annäherung eines Objektes (6) an das Kommunikationsgerät anzeigt, und ein Signal auszusenden, wenn der Vergleich ergibt, dass sich ein Betriebsparameter verändert hat.

Description

Beschreibung
Anordnung und Verfahren zum Detektieren der Annäherung eines Obj ektes
Die Erfindung betrifft eine Anordnung und ein Verfahren zum Detektieren der Annäherung eines Objektes, insbesondere in einem System zum Bereitstellen eines passiven schlüssellosen Fahrzeugzugangs .
Viele Fahrzeuge können heutzutage schlüssellos ent- oder ver¬ riegelt werden. Schlüssellose Fahrzeug-Zugangs- und Start¬ systeme, wie beispielsweise das Passive Start Entry (PÄSE) System, sind automatische Systeme, um ein Fahrzeug ohne aktive Benutzung eines Autoschlüsseis zu entriegeln und durch das bloße Betätigen des Startknopfes zu starten. Systeme zum schlüs¬ sellosen Fahrzeugzugang werden beispielsweise auch als
Keyless-Entry-Systeme bezeichnet. Der Fahrer führt dabei einen elektronischen Schlüssel mit einem Chip mit sich. Sobald sich die Hand des Fahrers dem Türgriff eines entsprechend ausgestatten Fahrzeugs bis auf wenige Zentimeter nähert, wird diese Annäherung durch einen Näherungssensor (z.B. optisch oder kapazitiv) detektiert. Das System erwacht dann aus einem Standby-Modus und eine PASE-Kommunikation wird gestartet. Bei einer PASE-Kom- munikation sendet das Zugangssystem im Fahrzeug ein anhand einer ersten Codiertabelle codiertes Anfragesignal auf einer
LF-Frequenz (LF steht für„Low Frequency" mit Frequenzen zwischen beispielsweise 20kHz und 200kHz) aus, um die Berechtigung des elektronischen Schlüssels zu überprüfen. Dann wechselt das Zugangssystem in einen Empfangsmodus im UHF-Bereich (UHF steht für „Ultra High Frequency" mit Frequenzen beispielsweise im dreistelligen MHz-Bereich) und wartet auf Antwort. Ist ein mit einem Transponder ausgestatteter Schlüssel in Reichweite empfängt dieser das LF-Signal, decodiert es und sendet es unter Verwendung einer zweiten Codiertabelle mit einer neuen Codierung als UHF-Signal wieder aus. Das UHF-Signal wird im Fahrzeug decodiert. Da das Fahrzeug beide Codiertabellen kennt, kann es die eigene ursprüngliche Aussendung mit dem gerade empfangenen Antwortsignal vergleichen und bei Übereinstimmung den Zugang gewähren. Gibt es innerhalb einer definierten Zeit keine korrekte Antwort, passiert nichts und das System schaltet wieder in den Standby-Modus . Ein Ziehen des Türgriffes hat in diesem Fall keine Wirkung und das Fahrzeug bleibt verschlossen.
Ein kapazitiver Näherungssensor zum Detektieren der Annäherung eines Objektes umfasst in der Regel eine so genannte Sensor¬ elektrode, welche eine Elektrode eines Kondensators bildet. Als Gegenelektrode des Kondensators dient ein in den Erfassungs- bereich des Sensors eindringendes geerdetes Objekt. Nähert sich ein Objekt (z.B. die Hand des Fahrers) dem Sensor, ändert sich die Kapazität des mittels Sensorelektrode und Gegenelektrode gebildeten Kondensators . Die Kapazitätsänderung wird direkt oder indirekt mittels einer Auswerteelektronik bestimmt , z.B. mittels Dual-Slope- (Umsetzung der Kapazität in eine Frequenz) oder
Charge-Discharge-Verfahren (Messung der Lade- und Entladezeiten des Kondensators) , und mit einem vorgegebenen Auslösekriterium verglichen, woraus die Auswerteelektronik auf die Anwesenheit oder Abwesenheit eines Objekts im Erfassungsbereich schließt. Zudem kann beispielsweise auch der Abstand des Objekts zu dem Sensor bestimmt werden. Eine solche Sensoranordnung ist beispielsweise in der Publikation DE 102011 012 688 AI beschrieben.
Hierfür sind verschiedene Komponenten wie beispielsweise ein Sensor und eine entsprechende Auswerteelektronik erforderlich, welche Platz im Fahrzeug benötigen und Kosten verursachen.
Aufgabe der Erfindung ist es, eine Anordnung und ein Verfahren bereitzustellen, welche mit möglichst wenig Komponenten die Annäherung eines Objekts, insbesondere an ein Fahrzeug, de- tektieren können.
Diese Aufgabe wird gelöst durch eine Anordnung gemäß Anspruch 1 beziehungsweise ein Verfahren gemäß Anspruch 9.
Vorteilhafte Ausgestaltungen sind Gegenstand der Unteran¬ sprüche .
Die Anordnung zum Erfassen der Annäherung eines Objekts weist dabei ein eine Antenne aufweisendes Kommunikationsgerät auf, wobei die Antenne dazu ausgebildet ist, in regelmäßigen Abständen in einem Polling-Modus (Abfrage-Modus) ein elektromagnetisches Feld zu erzeugen. Das Kommunikationsgerät ist dazu ausgebildet, jedes Mal, wenn ein elektromagnetisches Feld erzeugt wird, wenigstens einen Betriebsparameter der Antenne zu ermitteln, den wenigstens einen ermittelten Betriebsparameter mit einem korrespondierenden zuvor ermittelten Betriebsparameter zu vergleichen, wobei eine Veränderung des wenigstens einen Betriebsparameters die Annäherung eines Objektes an das Kommu¬ nikationsgerät anzeigt, und ein Signal auszusenden, wenn der Vergleich ergibt, dass sich ein Betriebsparameter verändert hat. Der zuvor ermittelte Betriebsparameter kann dabei ein unmittelbar zuvor ermittelter oder ein zu einem beliebigen Zeitpunkt vorher ermittelter Betriebsparameter sein, welcher jedoch nicht der unmittelbar zuvor ermittelte Betriebsparameter ist.
Es kann somit ein Kommunikationsgerät als Näherungssensor dienen, welcher die Annäherung eines Objektes erfassen kann, da sich verschiedene Betriebsparameter einer ein elektromagnetisches Feld erzeugenden Antenne ändern, wenn sich ein Objekt in das elektromagnetische Feld hinein bewegt. Gemäß einer Ausgestaltung des Kommunikationsgeräts ist dieses derart ausgebildet, das Signal nur dann auszusenden, wenn der Vergleich aus ermitteltem und korrespondierendem zuvor ermitteltem Betriebsparameter ergibt, dass sich der Betriebs- parameter um einen Betrag größer oder gleich einem vorbestimmten Schwellbetrag geändert hat. Auf diese Weise wird sichergestellt, dass nur bei einer angemessenen (großen) Änderung des Betriebsparameters ein Signal ausgesendet wird, und kleinere z. B. umweltbedingte oder systembedingte Schwankungen unberück- sichtigt bleiben.
Das Kommunikationsgerät kann ein Nahfeldkommunikationsgerät (NFC-Gerät) sein. Nahfeldkommunikationsgeräte sind bei¬ spielsweise in Fahrzeugen bereits für verschiedene andere Funktionen vorgesehen. Somit sind keine zusätzlichen Näherungssensoren sowie zugehörige Auswerteeinheiten erforderlich. Der wenigstens eine ermittelte Betriebsparameter kann eine Amplitude einer Spannung an der Antenne oder ein Phasenwinkel zwischen einer Spannung an und einem Strom durch die Antenne sein.
Die Anordnung kann weiterhin ein Steuergerät aufweisen, das dazu ausgebildet ist, das Signal von dem Kommunikationsgerät zu empfangen und eine PASE-Kommunikation zu starten, wenn es das Signal empfängt. Die Anordnung kann somit als Näherungssensor in einem System zum Bereitstellen eines schlüssellosen Fahrzeugzugangs dienen. Mittels einer PASE-Kommunikation kann beispielsweise die Berechtigung eines in der Nähe befindlichen Fahrzeugschlüssels geprüft werden. Befindet sich ein gültiger Fahrzeugschlüssel in der Nähe, kann dann beispielsweise der Zugang zu einem Fahrzeug gewährt werden.
Das Kommunikationsgerät kann hierfür in einem Fahrzeug ange¬ ordnet sein. In dem Fahrzeug kann das Kommunikationsgerät beispielsweise in einem Türgriff, an einer Fensterscheibe, an einem Seitenspiegel oder in der B-Säule des Fahrzeugs angeordnet sein .
Das Kommunikationsgerät kann weiterhin dazu ausgebildet sein, nach dem Polling-Modus in einen Standby-Modus zu wechseln, in dem die Antenne kein elektromagnetisches Feld erzeugt. Auf diese Weise kann Energie gespart werden, da das elektromagnetische Feld nicht durchgehend erzeugt wird. Insbesondere in Fahrzeugen, in welchen die Komponenten aus der Fahrzeugbatterie versorgt werden, ist das Einsparen von Energie ein wichtiges Kriterium.
Die Anordnung kann dazu ausgebildet sein, alle 25 - 50ms den wenigstens einen Betriebsparameter zu ermitteln. So kann eine Annäherung beispielsweise der Hand eines Nutzers, welcher eine Fahrzeugtür öffnen will, detektiert und ein Zugang zum Fahrzeug bereitgestellt werden, ohne dass der Nutzer Verzögerungen bemerkt .
Vorteil der erfindungsgemäßen Anordnung ist, dass (NFC-fähige) Kommunikationsgeräte in Fahrzeugen bereits für verschiedenen anderen Applikationen vorhanden sind und somit zusätzliche Sensoren eingespart und dadurch Kosten gesenkt werden können.
Gemäß einem weiteren Aspekt der Erfindung wird ein Verfahren zum Erfassen der Annäherung eines Objekts mit den Schritten vorgeschlagen: Erzeugen eines elektromagnetischen Feldes in regelmäßigen Abständen mittels einer Antenne in einem Kommunikationsgerät; Ermitteln wenigstens eines Betriebsparameters der Antenne, jedes Mal, wenn ein elektromagnetisches Feld erzeugt wird; Vergleichen jedes ermittelten Betriebsparameters mit einem zuvor ermittelten Betriebsparameter, wobei eine Veränderung des wenigstens einen Betriebsparameters die Annäherung eines Ob¬ jektes an das Kommunikationsgerät anzeigt; und Aussenden eines Signals, wenn der Vergleich ergibt, dass sich ein Betriebs¬ parameter verändert hat.
Vorteilhafte Ausgestaltungen der Anordnung sind, soweit auf das Verfahren anwendbar, auch als vorteilhafte Ausgestaltungen des Verfahrens anzusehen und umgekehrt.
Die Erfindung wird nachfolgend anhand der in den Figuren der Zeichnung dargestellten Ausführungsbeispiele näher erläutert. Es zeigt:
Figur 1 in einem Blockschaltbild eine Anordnung mit einem
Näherungssensor,
Figur 2 in einem Blockschaltbild zwei Kommunikationsgeräte zur Nahfeldkommunikation,
Figur 3 in einem Zustandsübergangsdiagramm schematisch den
Ablauf eines NFC-Verfahrens ,
Figur 4 in einem Blockschaltbild eine Anordnung mit einem
Kommunikationsgerät gemäß einer Ausführungsform der Erfindung, in einem Blockschaltbild eine weitere Anordnung mit einem Kommunikationsgerät gemäß einer Ausführungsform der Erfindung,
Figur 6 in einem Zustandsübergangsdiagramm schematisch den
Ablauf eines Verfahrens zur Zugangsgewährung, und
Figur 7 in einem Ablaufdiagramm ein Verfahren zur Zugangsgewährung zu einem Fahrzeug gemäß einer Ausfüh- rungsform der Erfindung. In Figur 1 ist in einem Blockschaltbild eine Anordnung mit einem Näherungssensor 1 dargestellt. Der Näherungssensor 1 kann beispielsweise ein kapazitiver oder optischer Näherungssensor 1 sein, welcher dazu ausgebildet ist, bestimmte Parameter zu ermitteln. Im Falle eines kapazitiven Näherungssensors 1 kann ein Parameter beispielsweise eine Kapazität sein. Ein kapazitiver Näherungssensor zum Detektieren der Annäherung eines Objektes umfasst in der Regel eine so genannte Sensorelektrode, welche eine erste Elektrode eines Kondensators bildet. Als Gegen¬ elektrode des Kondensators dient ein in den Erfassungsbereich des Sensors eindringendes geerdetes Objekt. Nähert sich ein Objekt (z.B. die Hand des Fahrers) dem Sensor, ändert sich die Kapazität des mittels Sensorelektrode und Gegenelektrode gebildeten Kondensators.
Die ermittelten Parameter werden einer Auswerteeinheit 2 zur Verfügung gestellt. Die Kapazitätsänderung wird in der Auswerteeinheit 2 direkt oder indirekt bestimmt, z.B. mittels Dual-Slope-Verfahren (Umsetzung der Kapazität in eine Frequenz) oder Charge-Discharge-Verfahren (Messung der Lade- und Entlade- zeiten des Kondensators) , und mit einem vorgegebenen Auslö¬ sekriterium verglichen, woraus die Auswerteeinheit 2 auf die Anwesenheit oder Abwesenheit eines Objekts im Erfassungsbereich schließt.
Wird das Vorhandensein eines Objektes in einem bestimmten Abstand zum Näherungssensor 1 detektiert, kann die Auswerteeinheit ein entsprechendes Signal an ein Steuergerät 3 zur Verfügung stellen. Das Steuergerät 3 kann dann eine PASE-Kommunikation (PÄSE = Passive Start Entry) starten.
Bei einer PASE-Kommunikation sendet das Steuergerät 3, um die Berechtigung eines elektronischen Schlüssels zu überprüfen, ein mittels einer ersten Codiertabelle codiertes Anfragesignal auf einer LF-Frequenz (LF steht für „Low Frequency" mit Frequenzen zwischen beispielsweise 20kHz und 200kHz) aus. Dann geht das Steuergerät 3 in einen Empfangsmodus im UHF-Bereich (UHF steht für „Ultra High Frequency" mit Frequenzen beispielsweise im dreistelligen MHz-Bereich) und wartet auf Antwort. Ist ein mit einem Transponder ausgestatteter Schlüssel in Reichweite, empfängt dieser das LF-Signal, decodiert es und sendet es unter Verwendung einer zweiten Codiertabelle mit einer neuen Codierung als UHF-Signal wieder aus. Das UHF-Signal wird in dem Steuergerät 3 decodiert. Da das Steuergerät 3 beide Codiertabellen kennt, kann sie die eigene ursprüngliche Aussendung mit dem gerade empfangenen Antwortsignal vergleichen und bei Übereinstimmung den Zugang gewähren. Empfängt das Steuergerät 3 innerhalb einer definierten Zeit keine korrekte Antwort, passiert nichts und die Anordnung schaltet wieder in den Standby-Modus . Ein Ziehen des Türgriffes hat in diesem Fall keine Wirkung und das Fahrzeug bleibt verschlossen. Eine derartige Anordnung hat den Nachteil, dass zusätzlich zu im Fahrzeug bereits für andere Funktionen vorhandenen Komponenten ein Näherungssensor 1 und eine Auswerteeinheit 2 erforderlich sind . Für verschiedene Funktionen im Fahrzeug (z.B. Fahrzeugstart- autorisierung, Fahrzeugstatusanzeige auf dem Mobiltelefon, automatisches WiFi- oder Bluetooth-Pairing oder Fahrzeugper- sonalisierung) kommt heutzutage die so genannte Nahfeldkom¬ munikation (engl, near field communication) , kurz NFC, zum Einsatz. NFC ermöglicht einen kontaktlosen Datenaustausch zwischen Geräten über eine Distanz von wenigen Zentimetern. Mittels NFC können bis zu 424 kBits/s übertragen werden. Das Blockschaltbild in Figur 2 zeigt ein erstes Kommunikati¬ onsgerät 4, welches beispielsweise in einem Fahrzeug angeordnet ist, und ein zweites Kommunikationsgerät 5. Das zweite Kom¬ munikationsgerät 5 kann beispielsweise in einem Smartphone oder einem Fahrzeugschlüssel angeordnet sein. Das erste und das zweite Kommunikationsgerät 4 , 5 sind dazu ausgebildet, Daten mittels NFC zu übertragen.
Bei der Nahfeldkommunikation erfolgt der Datenaustausch über eine induktive Kopplung zwischen zwei Induktivitäten (z.B.
Antennen) . Die Induktivität eines Kommunikationsgerätes fun¬ giert dabei als sogenannter Initiator, die Induktivität des anderen Kommunikationsgerätes als sogenanntes Target. Die elektromagnetischen Felder strahlen mit einer Frequenz von 13,56MHz vom Initiator zum Target.
In dem Zustandsübergangsdiagramm in Figur 3 ist schematisch der Ablauf eines NFC-Verfahrens dargestellt. Ein im Fahrzeug be¬ findliches erstes Kommunikationsgerät 4 geht zyklisch in einen sogenannten Polling-Modus (Zustand A) . In diesem Polling-Modus erzeugt das erste Kommunikationsgerät 4 ein elektromagnetisches Feld. Während sich das erste Kommunikationsgerät 4 im Polling- Modus befindet, kann erkannt werden, ob sich ein Objekt in der Nähe befindet. Wird während des Polling-Modus kein Objekt erkannt, wechselt das erste Kommunikationsgerät 4 in einen
Standby-Modus (Zustand B) . In dem Standby-Modus erzeugt das erste Kommunikationsgerät 4 kein elektromagnetisches Feld. An¬ schließend geht das erste Kommunikationsgerät 4 wieder in den Polling-Modus und ein neuer Zyklus beginnt.
Wird, während des Polling-Modus, ein Objekt, das ein NFC-fähiges zweites Kommunikationsgerät 5 sein kann, detektiert, wechselt das erste Kommunikationsgerät 4 in einen aktiven Modus (Zustand C) . In diesem aktiven Modus prüft das erste Kommunikationsgerät 4 zunächst verschiedene NFC-Protokolle . Das heißt, es sendet nacheinander Signale gemäß verschiedener NFC-Standards aus und wartet auf eine Antwort. Mobile NFC-fähige Kommunikationsgeräte 5, wie beispielsweise Smartphones, verwenden in der Regel lediglich einen aus einer Reihe bekannter NFC-Standards. Ein im Fahrzeug befindliches Kommunikationsgerät 4 kann im Allgemeinen hingegen nach allen bekannten Standards kommunizieren. Erhält das erste Kommunikationsgerät 4 auf keines der Signale eine Antwort bedeutet dies, dass sich kein NFC-fähiges Gerät 5 nach einem gültigen Standard in der Nähe befindet. Das erste Kom¬ munikationsgerät 4 wechselt dann wieder in den Standby-Modus (Zustand B) , bevor mit dem nächsten Wechsel in den Polling-Modus (Zustand A) ein neuer Zyklus beginnt. Erhält das erste Kommunikationsgerät 4 auf ein Signal eine gültige Antwort, wurde ein NFC-fähiges Gerät 5 nach einem gültigen Standard erkannt (Zustand D) . Das erste Kommunika¬ tionsgerät 4 beginnt dann eine Übertragung mit diesem Gerät (Zustand E) . Ist die Übertragung beendet, geht das erste Kommunikationsgerät 4 in den Standby-Modus (Zustand B) , bevor mit dem nächsten Wechsel in den Polling-Modus (Zustand A) ein neuer Zyklus beginnt.
Das erste Kommunikationsgerät 4 weist eine Antenne auf, welche ein elektromagnetisches Feld für den Datenaustausch mit dem zweiten Kommunikationsgerät 5 erzeugt. Das von dem ersten, im Fahrzeug befindlichen, Kommunikationsgerät 4 ausgesendete elektromagnetische Feld macht sich die vorliegende Erfindung zu Nutze, um die Annäherung eines Objektes zu detektieren. Ein NFC-Gerät 4, welches bereits für andere Funktionen im Fahrzeug vorhanden ist, ersetzt somit den zusätzlichen (z.B. optischen oder kapazitiven) Näherungssensor. Dies ist beispielhaft in dem Blockschaltbild in Figur 4 dar¬ gestellt. Das erste Kommunikationsgerät 4 weist eine Antenne 41 auf. Die Antenne 41 erzeugt ein elektromagnetisches Feld, welches in Figur 4 durch Halbkreise dargestellt ist. Bewegt sich ein Objekt 6 in das elektromagnetische Feld hinein, verändern sich verschiedene Betriebsparameter der Antenne 41. Die Antenne 41 umfasst beispielsweise eine Spule. Wird die Spule von einem sich zeitlich ändernden Strom durchflössen, entsteht um die Spule ein sich zeitlich ändernder magnetischer Fluss. Wenn sich ein Objekt 6 in das elektromagnetische Feld bewegt, verändert sich bei¬ spielsweise die Amplitude einer Spannung über der Antenne 41, da dem elektromagnetischen Feld Wirkleistung entzogen wird (sog. Wirbelstromverluste) . Anstatt oder zusätzlich zu der Amplitude der Spannung kann sich auch der Phasenwinkel zwischen der Spannung an und dem Strom in der Antenne 41 verändern, wenn sich ein Objekt 6 in das elektromagnetische Feld bewegt. Die An¬ näherung eines Objektes 6 bewirkt demnach, bei einem vorgegebenen ersten Betriebsparameter (z.B. Strom in der Antenne 41), eine Änderung eines zweiten Betriebsparameters der Antenne (z.B. Spannung oder Phasenwinkel) .
Das erste Kommunikationsgerät 4 kann, unabhängig von dem oben beschriebenen Zyklus (zyklischer Übergang in den Polling-Modus aus dem Standby-Modus ) , wenigstens einen Betriebsparameter in regelmäßigen Abständen (z.B. alle 25 - 50ms) erfassen. Anschließend kann das erste Kommunikationsgerät 4 den erfassten Wert mit einem zuvor ermittelten Wert dieses Betriebsparameters vergleichen. Die erfassten Werte der Betriebsparameter können hierfür jeweils für eine bestimmte Zeit im Kommunikationsgerät 4 gespeichert werden. Eine Veränderung der Betriebsparameter zeigt die Annäherung eines Objektes 6 an. Wird die Annäherung eines Objektes 6 erfasst, kann dann wie oben beschrieben eine PASE-Kommunikation gestartet werden, um zu prüfen, ob sich ein gültiger Transponder (z.B. Fahrzeugschlüssel) in der Nähe befindet und das Fahrzeug geöffnet wird.
Das Blockschaltbild in Figur 5 zeigt beispielhaft eine mögliche Implementierung eines Kommunikationsgerätes 4. Zum Erzeugen eines elektromagnetischen Feldes weist das Kommunikationsgerät 4 eine Antenne 41 auf. Ein Antennen-Front-End 42 ist mit der Antenne 41 verbunden und ist dazu ausgebildet, die Frequenz des von der Antenne 41 erzeugten elektromagnetischen Feldes ein- zustellen. Ein mit dem Antennen-Front-End 42 verbundenes Ba¬ sisgerät 43 ist beispielsweise dazu ausgebildet, das elekt¬ romagnetische Feld zu erzeugen und eine Demodulation eines empfangenen Signales vorzunehmen. Das Basisgerät 43 übernimmt somit die Aufgaben eines Senders und eines Empfängers.
Ein MikroController 44 ist mit dem Basisgerät 43 verbunden. Der MikroController 44 ist dazu ausgebildet, Befehle an das Ba¬ sisgerät 43 auszugeben. Über ein Bus-Interface 45 sendet der MikroController 44 beispielsweise ein Signal, wenn die Annä- herung eines Objektes detektiert wurde. Das Bus-Interface 45 ist zwischen den MikroController 44 und einen Fahrzeugbus 7 geschaltet. Der Fahrzeugbus 7 kann beispielsweise ein LIN-Bus (LIN = Local Interconnect Network) oder ein CAN-Bus (CAN = Controller Area Network) sein. Über den Fahrzeugbus 7 können Signale im Fahrzeug zwischen verschiedenen Steuergeräten übertragen werden. Wird die Annäherung eines Objektes detektiert, kann beispielsweise ein entsprechendes Signal an ein Steuergerät 3 gesendet werden. Das Steuergerät 3 ist dazu ausgebildet, eine PASE-Kommunikation durchzuführen. Die verschiedenen Komponenten des Kommunikationsgerätes 4 sind einerseits mit einem Be¬ zugspotential GND und andererseits mit einem Spannungsregler 46 verbunden . Der Spannungsregler 46 ist mit dem Bezugspotential GND und mit einem Anschluss für ein positives Potential V+ verbunden und ist dazu ausgebildet, eine Versorgungsspannung für die Komponenten des Kommunikationsgerätes 4 zur Verfügung zu stellen. Die Versorgungsspannung kann beispielsweise 3V betragen . In dem Zustandsübergangsdiagramm in Figur 6 ist schematisch der Ablauf eines Verfahrens zur Zugangsgewährung unter Verwendung eines NFC-Kommunikationsgerätes 4 dargestellt. Das im Fahrzeug befindliche erste Kommunikationsgerät 4 wechselt wie oben bereits beschrieben zyklisch zwischen einem Polling-Modus (Zustand A) , in welchem ein elektromagnetisches Feld erzeugt wird, und einem Standby-Modus (Zustand B) , in welchem kein elektromagnetisches Feld erzeugt wird. Wird während des Polling- Modus eine Änderung wenigstens eines Betriebsparameters in der Antenne 41 erkannt, wird also ein Objekt 6 detektiert, wird eine PASE-Kommunikation gestartet (Zustand F) und nach einem gültigen Fahrzeugschlüssel in der Nähe des Fahrzeugs gesucht. Die PASE-Kommunikation ist dabei unabhängig von der in Bezug auf Figur 3 beschriebenen NFC-Kommunikation . Wird ein Objekt 6 im elektromagnetischen Feld detektiert (welches nicht zwangsläufig ein NFC-fähiges Gerät sein muss) , kann beispielsweise eine PASE-Kommunikation gestartet werden, noch bevor das erste Kommunikationsgerät 4 mit der Abfrage der NFC-Protokolle beginnt (wie in Bezug auf Zustand C in Figur 3 beschrieben) . Es ist jedoch auch möglich, dass eine PASE-Kommunikation gestartet wird, während oder nachdem eine Abfrage der NFC-Protokolle durch¬ geführt wurde. Wird entweder ein gültiger Fahrzeugschlüssel detektiert oder wird innerhalb einer bestimmten Zeit kein gültiger Fahrzeugschlüssel detektiert, ist die
PASE-Kommunikation beendet (Zustand G) .
Figur 7 zeigt in einem Ablaufdiagramm beispielhaft ein Verfahren zur Bereitstellung eines Zuganges zu einem Fahrzeug. Dabei werden jedes Mal, wenn das erste Kommunikationsgerät 4 das elektro¬ magnetische Feld erzeugt (Schritt 701), verschiedene Be- triebsparameter der Antenne 41 ermittelt (Schritt 702). Diese Betriebsparameter werden gespeichert und mit zuvor ermittelten Betriebsparametern verglichen (Schritt 703) . Zuvor ermittelte Betriebsparameter können dabei unmittelbar zuvor ermittelte oder zu einem beliebigen Zeitpunkt vorher ermittelte Betriebspa¬ rameter sein, welche jedoch nicht die unmittelbar zuvor ermittelten Betriebsparameter sind. Stimmen die Betriebsparameter mit den zuvor ermittelten Betriebsparametern überein, befindet sich kein Objekt im elektromagnetischen Feld. Das Verfahren beginnt dann von neuem bei Schritt 701 mit der Erzeugung des elektromagnetischen Feldes. Wie in Bezug auf Figur 3 beschrieben, kann das erste Kommunikationsgerät 4 jedoch zunächst für eine bestimmte Zeit in einen Standby-Modus wechseln (in Figur 7 nicht dargestellt) , bevor es das elektromagnetische Feld erneut erzeugt.
Stimmen die ermittelten Betriebsparametern mit den zuvor ermittelten Betriebsparametern nicht überein, sondern weichen um einen vorgebbaren Mindestbetrag davon ab, befindet sich ein Objekt 6 im elektromagnetischen Feld. Dies kann beispielsweise die Hand eines Nutzers sein. Es ist jedoch auch möglich, dass es sich bei dem Objekt 6 um ein NFC-fähiges Kommunikationsgerät 5 handelt oder aber beispielsweise auch um Regentropfen. Das Erkennen der Annäherung eines Objektes 6 löst den Start einer PASE-Kommunikation aus, welche beispielsweise von einem ent¬ sprechenden Steuergerät 3 durchgeführt wird. Das Steuergerät 3 versucht eine Verbindung aufzubauen (Schritt 704) und sendet hierfür ein Anfragesignal aus (Schritt 705) . Anschließend wartet das Steuergerät 3 auf Antwort (Schritt 706) . Erhält das
Steuergerät 3 keine Antwort auf das Anfragesignal, befindet sich also kein Schlüssel in Reichweite, wird die PASE-Kommunikation abgebrochen. Das Verfahren beginnt dann von neuem bei Schritt 701 mit der Erzeugung des elektromagnetischen Feldes. Erhält das Steuergerät 3 eine Antwort, decodiert es diese (Schritt 709) und prüft, ob es sich um eine gültige Antwort handelt. Das Steuergerät 3 vergleicht dabei die eigene ur¬ sprüngliche Aussendung mit dem gerade empfangenen Signal (Schritt 708) . Gibt es keine Übereinstimmung, befindet sich also kein gültiger Fahrzeugschlüssel in Reichweite, wird die
PASE-Kommunikation abgebrochen. Das Verfahren beginnt dann von neuem bei Schritt 701 mit der Erzeugung des elektromagnetischen Feldes. Wird eine Übereinstimmung festgestellt befindet sich ein gültiger Schlüssel in Reichweite und das Fahrzeug wird geöffnet (Schritt 709) .
NFC-Kommunikationsgeräte 4 können im Fahrzeug an verschiedensten Stellen angeordnet sein. Beispielsweise können Kommunikati- onsgeräte 4 im Türgriff angeordnet sein. Diese Anordnung kann vorteilhaft sein, da an dieser Position erkannt werden kann, ob ein Nutzer zum Öffnen des Fahrzeugs nach dem Türgriff greift. Kommunikationsgeräte 4 können jedoch auch beispielsweise an Fensterscheiben angeordnet werden. Dies kann vorteilhaft sein, da an der Innenseite von Fensterscheiben angeordnete Kommu¬ nikationsgeräte 4 dort gut vor Regen, Wind, Staub oder sonstigen Umwelteinflüssen geschützt sind. Aber auch andere Positionen im Fahrzeug, wie beispielsweise in der B-Säule oder dem Seiten¬ spiegel, sind möglich. Ist das Kommunikationsgerät 4, und somit der Näherungssensor, nicht im Türgriff angebracht, muss ein
Nutzer jedoch beispielsweise seine Hand über die entsprechende Stelle (z.B. an der Seitenscheibe) bewegen, da mittels NFC nur Objekte 6 in wenigen Zentimetern Entfernung detektiert werden können .
Die Verwendung eines im Fahrzeug bereits für andere Funktionen befindlichen NFC-Kommunikationsgerätes 4 hat den Vorteil, dass kein zusätzlicher (kapazitiver oder optischer) Näherungssensor 1 sowie eine entsprechende Auswerteelektronik 2 vorgesehen werden müssen. Das Verfahren kommt somit mit bereits für andere Funktionen vorgesehenen Komponenten aus.
Bezugs zeichenliste
1 Sensor
2 Auswerteeinheit
3 Steuergerät
4 erstes Kommunikationsgerät
5 zweites Kommunikationsgerät
6 Objekt
7 Fahrzeugbus
41 Antenne
42 Antennen-Front-End
43 Basisgerät
44 MikroController
45 Bus-Interface
46 Spannungsregler
A - G Zustände
701 - 709 Verfahrensschritte

Claims

Patentansprüche
1. Anordnung mit einem eine Antenne (41) aufweisenden Kommunikationsgerät (4), wobei die Antenne (41) dazu ausgebildet ist, in regelmäßigen Abständen in einem Polling-Modus ein elektromagnetisches Feld zu erzeugen und wobei das Kommuni¬ kationsgerät (4) dazu ausgebildet ist,
jedes Mal, wenn ein elektromagnetisches Feld erzeugt wird, wenigstens einen Betriebsparameter der Antenne (41) zu er- mittein,
den wenigstens einen ermittelten Betriebsparameter mit einem korrespondierenden zuvor ermittelten Betriebsparameter zu vergleichen, wobei eine Veränderung des wenigstens einen Betriebsparameters die Annäherung eines Objektes (6) an das Kommunikationsgerät (4) anzeigt, und
ein Signal auszusenden, wenn der Vergleich ergibt, dass sich ein Betriebsparameter verändert hat.
2. Anordnung nach Anspruch 1, wobei das Kommunikationsgerät (4) ein Nahfeldkommunikationsgerät ist.
3. Anordnung nach Anspruch 1 oder 2, wobei der wenigstens eine ermittelte Betriebsparameter eine Amplitude einer Spannung an der Antenne (41) oder ein Phasenwinkel zwischen einer Spannung an und einem Strom durch die Antenne (41) ist.
4. Anordnung nach einem der vorherigen Ansprüche, die weiterhin ein Steuergerät (3) aufweist, wobei das Steuergerät (3) dazu ausgebildet ist, das Signal von dem Kommunikationsgerät (4) zu empfangen und eine Passive-Start-Entry-Kommunikation zu starten, wenn es das Signal empfängt.
5. Anordnung nach einem der vorherigen Ansprüche, wobei das Kommunikationsgerät (4) weiterhin dazu ausgebildet ist, nach einem Polling-Modus in einen Standby-Modus zu wechseln, in dem die Antenne (41) kein elektromagnetisches Feld erzeugt.
6. Anordnung nach einem der vorherigen Ansprüche, wobei die Antenne (41) dazu ausgebildet ist, alle 25 - 50ms den wenigstens einen Betriebsparameter zu ermitteln.
7. Anordnung nach einem der vorherigen Ansprüche, wobei das Kommunikationsgerät (4) in einem Fahrzeug angeordnet ist.
8. Anordnung nach Anspruch 7, wobei das Kommunikationsgerät (4) in einem Türgriff, an einer Fensterscheibe, an einem Seitenspiegel oder in der B-Säule des Fahrzeugs angeordnet ist.
9. Verfahren zum Detektieren eines Objektes (6) mit folgenden Schritten :
Erzeugen eines elektromagnetischen Feldes in regelmäßigen Abständen mittels einer Antenne (41) in einem Kommunikati¬ onsgerät ( 4 ) ;
Ermitteln wenigstens eines Betriebsparameters der Antenne
(41) , jedes Mal, wenn ein elektromagnetisches Feld erzeugt wird;
Vergleichen jedes ermittelten Betriebsparameters mit einem zuvor ermittelten Betriebsparameter, wobei eine Veränderung des wenigstens einen Betriebsparameters die Annäherung eines Ob- jektes (6) an das Kommunikationsgerät (4) anzeigt; und
Aussenden eines Signals, wenn der Vergleich ergibt, dass sich ein Betriebsparameter verändert hat.
PCT/EP2015/070328 2014-09-11 2015-09-07 Anordnung und verfahren zum detektieren der annäherung eines objektes WO2016037957A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/510,702 US20170282858A1 (en) 2014-09-11 2015-09-07 Keyless Entry Systems

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014218213.1 2014-09-11
DE102014218213.1A DE102014218213B4 (de) 2014-09-11 2014-09-11 Anordnung und Verfahren zum Detektieren der Annäherung eines Objektes

Publications (1)

Publication Number Publication Date
WO2016037957A1 true WO2016037957A1 (de) 2016-03-17

Family

ID=54065357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/070328 WO2016037957A1 (de) 2014-09-11 2015-09-07 Anordnung und verfahren zum detektieren der annäherung eines objektes

Country Status (3)

Country Link
US (1) US20170282858A1 (de)
DE (1) DE102014218213B4 (de)
WO (1) WO2016037957A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018024398A1 (de) 2016-08-05 2018-02-08 Huf Hülsbeck & Fürst Gmbh & Co. Kg Verfahren zum erfassen der annäherung eines zugangsgerätes für ein schliesssystem eines kraftfahrzeuges

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101816414B1 (ko) * 2016-06-21 2018-01-08 현대자동차주식회사 모션 센서를 이용한 안테나 시스템 및 그 동작 방법
DE102016218618A1 (de) 2016-09-27 2018-03-29 Continental Automotive Gmbh Vorrichtung und Verfahren zur Zugangs- und Startverifizierung in einem Fahrzeug
FR3063098B1 (fr) * 2017-02-23 2019-03-15 Continental Automotive France Procede et systeme de detection de presence d'une main humaine sur un ouvrant de vehicule automobile
ES2913661T3 (es) 2017-11-29 2022-06-03 Premo Sa Antena de baja frecuencia triaxial de perfil ultra bajo para integración en un teléfono móvil y teléfono móvil con la misma
US10284262B1 (en) * 2018-06-19 2019-05-07 Stmicroelectronics, Inc. Environmental condition and media composition sensing using near-field communications
DE102018122254B3 (de) 2018-09-12 2019-12-12 Ifm Electronic Gmbh Kapazitiver Türgriffsensor mit einer Antenne zur Nahfeldkommunikation
DE102018125176B4 (de) * 2018-10-11 2020-12-10 Ifm Electronic Gmbh Türgriffmodul mit einem NFC-Initiator
KR20200056080A (ko) * 2018-11-14 2020-05-22 현대자동차주식회사 게이트웨이 장치, 이를 포함하는 차량 및 원격 제어 시스템
US11131117B2 (en) * 2019-03-12 2021-09-28 Magna Closures Inc. Electromagnetic-based sensor with cold mirror cover
EP3731245A1 (de) 2019-04-24 2020-10-28 Premo, S.A. Niederfrequenzantenne mit extrem niedrigem profil
US11055936B2 (en) 2019-05-02 2021-07-06 Voxx International Corporation Multi-sensor passive keyless functionality
US10848954B1 (en) * 2019-09-06 2020-11-24 Ford Global Technologies, Llc Conditional repetitive wireless device searching
EP3945501B1 (de) * 2020-07-31 2023-05-03 Continental Automotive Technologies GmbH Zugangssystem

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2311249A1 (de) * 1971-03-16 1973-09-13 Mueller Harro Dipl Ing Von einer annaeherung der menschlichen hand beruehrungslos ausloesbarer elektronischer schalter
DE10163778A1 (de) * 2001-06-27 2003-01-23 Witte Velbert Gmbh & Co Kg Griff mit integrierter Antenne und Sensorelektrode
EP1795860A1 (de) * 2004-09-28 2007-06-13 Aisin Seiki Kabushiki Kaisha Antennenanordnung und türgriffeinheit
WO2009128032A1 (en) * 2008-04-15 2009-10-22 Nxp B.V. Low power near-field communication devices
JP2010031455A (ja) * 2008-07-24 2010-02-12 Mitsubishi Cable Ind Ltd 電子キーシステム
DE102011012688A1 (de) 2011-03-01 2012-09-06 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Hallstadt Türgriffeinheit für ein Fahrzeug
WO2013137892A1 (en) * 2012-03-15 2013-09-19 Intel Corporation Near field co (nfc) and proximity sensor for portable devices
FR2998235A1 (fr) * 2012-11-19 2014-05-23 Continental Automotive France Dispositif de detection d'un badge d'acces « main libre » autour d'un vehicule et de detection de presence d'un utilisateur a proximite d'un ouvrant d'un vehicule et procede de detection associe
WO2014129317A1 (ja) * 2013-02-22 2014-08-28 デクセリアルズ株式会社 可変容量回路、可変容量デバイス、共振回路、増幅回路及び電子機器
WO2014146949A1 (de) * 2013-03-18 2014-09-25 Huf Hülsbeck & Fürst Gmbh & Co. Kg Türgriffanordnung für ein kraftfahrzeug mit kapazitivem näherungssensor und nfc-sende-/empfangseinheit

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4656472A (en) * 1985-01-23 1987-04-07 Walton Charles A Proximity identification system with power aided identifier
FR2802344B1 (fr) * 1999-12-10 2002-02-01 Valeo Securite Habitacle Vehicule automobile equipe d'un systeme d'acces selectif dit "mains libres"
GB0016089D0 (en) * 2000-07-01 2000-08-23 Honeywell Control Syst Keyless access sensor system
EP1239420A1 (de) * 2001-03-05 2002-09-11 Siemens Aktiengesellschaft Identifikationssystem und Codegeber zum Nachweis einer Berechtigung für den Zugang zu einem Objekt oder die Benutzung eines Objekts, insbesondere eines Kraftfahrzeugs
DE10206676A1 (de) * 2002-02-18 2003-08-28 Giesecke & Devrient Gmbh Mit einem Transponder betätigbare Schaltvorrichtung
JP2004003161A (ja) * 2002-05-31 2004-01-08 Denso Corp 電子キーシステム
US20110063076A1 (en) * 2009-08-28 2011-03-17 Omron Automotive Electronics, Inc. Apparatus for preventing unauthorized use of a vehicle
US20120214411A1 (en) * 2011-02-23 2012-08-23 Texas Instruments System and method of near field communication tag presence detection for smart polling
DE102011051434A1 (de) * 2011-06-29 2013-01-03 Huf Hülsbeck & Fürst Gmbh & Co. Kg Kapazitive Sensoranordnung und Verfahren zur Erfassung von Betätigungsgesten an einem Kraftfahrzeug
DE102011115761A1 (de) * 2011-10-12 2013-04-18 Volkswagen Ag Verfahren für einen Funkschlüssel eines Fahrzeuges sowie entsprechenden Funkschlüssel und System für ein Fahrzeug
US8798809B2 (en) * 2012-08-21 2014-08-05 GM Global Technology Operations LLC System for passive entry and passive start using near field communication
US10152706B2 (en) * 2013-03-11 2018-12-11 Cellco Partnership Secure NFC data authentication
US9407619B2 (en) * 2013-03-17 2016-08-02 NXT-ID, Inc. Un-password™: risk aware end-to-end multi-factor authentication via dynamic pairing

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2311249A1 (de) * 1971-03-16 1973-09-13 Mueller Harro Dipl Ing Von einer annaeherung der menschlichen hand beruehrungslos ausloesbarer elektronischer schalter
DE10163778A1 (de) * 2001-06-27 2003-01-23 Witte Velbert Gmbh & Co Kg Griff mit integrierter Antenne und Sensorelektrode
EP1795860A1 (de) * 2004-09-28 2007-06-13 Aisin Seiki Kabushiki Kaisha Antennenanordnung und türgriffeinheit
WO2009128032A1 (en) * 2008-04-15 2009-10-22 Nxp B.V. Low power near-field communication devices
JP2010031455A (ja) * 2008-07-24 2010-02-12 Mitsubishi Cable Ind Ltd 電子キーシステム
DE102011012688A1 (de) 2011-03-01 2012-09-06 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Hallstadt Türgriffeinheit für ein Fahrzeug
WO2013137892A1 (en) * 2012-03-15 2013-09-19 Intel Corporation Near field co (nfc) and proximity sensor for portable devices
FR2998235A1 (fr) * 2012-11-19 2014-05-23 Continental Automotive France Dispositif de detection d'un badge d'acces « main libre » autour d'un vehicule et de detection de presence d'un utilisateur a proximite d'un ouvrant d'un vehicule et procede de detection associe
WO2014129317A1 (ja) * 2013-02-22 2014-08-28 デクセリアルズ株式会社 可変容量回路、可変容量デバイス、共振回路、増幅回路及び電子機器
WO2014146949A1 (de) * 2013-03-18 2014-09-25 Huf Hülsbeck & Fürst Gmbh & Co. Kg Türgriffanordnung für ein kraftfahrzeug mit kapazitivem näherungssensor und nfc-sende-/empfangseinheit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018024398A1 (de) 2016-08-05 2018-02-08 Huf Hülsbeck & Fürst Gmbh & Co. Kg Verfahren zum erfassen der annäherung eines zugangsgerätes für ein schliesssystem eines kraftfahrzeuges
DE102016114595A1 (de) 2016-08-05 2018-02-08 Huf Hülsbeck & Fürst Gmbh & Co. Kg Verfahren zum Erfassen der Annäherung eines Zugangsgerätes für ein Schließsystem eines Kraftfahrzeuges

Also Published As

Publication number Publication date
US20170282858A1 (en) 2017-10-05
DE102014218213A1 (de) 2016-03-17
DE102014218213B4 (de) 2017-09-28

Similar Documents

Publication Publication Date Title
DE102014218213B4 (de) Anordnung und Verfahren zum Detektieren der Annäherung eines Objektes
DE102016223654B4 (de) Schlüsselloses System
EP2637903B1 (de) SCHLIEßSYSTEM, INSBESONDERE FÜR EIN KRAFTFAHRZEUG
EP3198567B1 (de) Daten- und messerfassungsvorrichtung für einen türgriff sowie verfahren dazu
WO2005086069A2 (de) Verfahren zum erkennen von identifikationsmedien
DE102017200378B4 (de) Verfahren und Vorrichtung zum Sichern eines Systems für passive Entriegelung eines Fahrzeugsystems gegen Relaisstellenangriffe
EP2817181A1 (de) Passives zugangssystem für ein kraftfahrzeug und zugehöriges verfahren
DE102017214109B4 (de) Mobiler Identifikationsgeber
DE102015121736A1 (de) Fahrzeugschlüssel für passive Zugangssysteme und zugehöriges Verfahren
DE102014226925A1 (de) Verfahren und Vorrichtung zur Zugangsverifizierung in einem Fahrzeug
DE102014221933B4 (de) Verhindern einer Funktionsstörung eines schlüssellosen Zugangsberechtigungssystems eines Kraftfahrzeugs durch das Wechselfeld einer induktiven Ladestation
DE102014216987B4 (de) Schlüsselloses System und mobile Vorrichtung
WO2014173902A1 (de) Handhabe für einen beweglichen teil eines kraftfahrzeugs und verfahren zur übertragung von daten in einem kraftfahrzeug
DE112020001669T5 (de) Drahtloskommunikationssystem
DE102012222083A1 (de) Vorrichtung und Verfahren zum Erfassen einer Position eines Drahtlos-Gerätes
EP3640896B1 (de) Fahrzeugtürgriff mit nahfeld-kommunikationselektronik
DE102011115761A1 (de) Verfahren für einen Funkschlüssel eines Fahrzeuges sowie entsprechenden Funkschlüssel und System für ein Fahrzeug
DE102016218618A1 (de) Vorrichtung und Verfahren zur Zugangs- und Startverifizierung in einem Fahrzeug
DE102015205038A1 (de) Empfangsschaltung, insbesondere zum Einbau in ein Fahrzeug-Zugangs- und Startsystem (PASE)
DE102018125176B4 (de) Türgriffmodul mit einem NFC-Initiator
EP3581443B1 (de) Kommunikationsvorrichtung für ein fahrzeug zur durchführung einer kontaktlosen datenübertragung
DE102013004177A1 (de) Schließsystem, insbesondere für ein Kraftfahrzeug
DE102016014538A1 (de) Verfahren zum Betrieb eines schlüssellosen Zugangs- und Fahrberechtigungssystems
DE102015215157B4 (de) Verfahren und Vorrichtung zur Zugangs- und Startverifizierung in einem Fahrzeug.
DE102014225022A1 (de) Vorrichtung und Verfahren zur Steuerung einer induktiven Ladevorrichtung in einem Fahrzeug

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15760161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15510702

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 15760161

Country of ref document: EP

Kind code of ref document: A1