WO2016037562A1 - 一种具有调焦及倾斜校正设计的标记及对准方法 - Google Patents

一种具有调焦及倾斜校正设计的标记及对准方法 Download PDF

Info

Publication number
WO2016037562A1
WO2016037562A1 PCT/CN2015/089167 CN2015089167W WO2016037562A1 WO 2016037562 A1 WO2016037562 A1 WO 2016037562A1 CN 2015089167 W CN2015089167 W CN 2015089167W WO 2016037562 A1 WO2016037562 A1 WO 2016037562A1
Authority
WO
WIPO (PCT)
Prior art keywords
mark
focus
focal plane
alignment
marks
Prior art date
Application number
PCT/CN2015/089167
Other languages
English (en)
French (fr)
Inventor
杜荣
陈跃飞
Original Assignee
上海微电子装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微电子装备有限公司 filed Critical 上海微电子装备有限公司
Priority to KR1020177008904A priority Critical patent/KR101948906B1/ko
Priority to JP2017513477A priority patent/JP6309694B2/ja
Priority to SG11201701903QA priority patent/SG11201701903QA/en
Publication of WO2016037562A1 publication Critical patent/WO2016037562A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70681Metrology strategies
    • G03F7/70683Mark designs
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/706843Metrology apparatus
    • G03F7/706845Calibration, e.g. tool-to-tool calibration, beam alignment, spot position or focus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7073Alignment marks and their environment
    • G03F9/708Mark formation

Definitions

  • the present invention relates to a marking and alignment method having a focus and tilt correction design, and more particularly to a marking comprising an alignment mark and at least one pair of focusing marks and an alignment method thereof.
  • a complete chip usually requires multiple lithographic exposures to be completed.
  • the lithography of the other layers must be accurately positioned before the exposure, and the graphics (ie, marks) left by the previous layer exposure are ensured.
  • the relative position that is, the precision of the engraving.
  • an alignment system based on the principle of optical imaging is one of the commonly used systems in a lithography machine, such as a Nikon FIA system, an Ultratec MVS, and the like.
  • the FIA's markup style is single, as shown in Figure 1.
  • Ultratec MVS has a mark learning function and the mark has no fixed form.
  • US6344698B2 and CN102103336 consider the effect of the process on the marking and design the markings that are less affected by the process.
  • distortion is a common aberration.
  • the effect of distortion on measurement reproducibility cannot be ignored.
  • Its influence mechanism is to measure the positional uncertainty of the mark in the field of view and the nonlinear coupling of the distortion, which affects the measurement reproducibility.
  • the FIA system is measured by multiple iterations so that the mark is always at a fixed position, the effect of distortion is mitigated, but the iteration takes a lot of time.
  • the defocusing tilt effect of the mark also affects the measurement reproducibility, and the object tilt angle a produces an error D.
  • the focus leveling system in the lithography machine can achieve tilt and defocus correction, since the focus leveling measurement surface is the upper surface of the photoresist, the alignment mark is sometimes located in the lithography Under the rubber surface, the thickness of the photoresist has a certain degree of fluctuation, so the focus leveling system is not enough to achieve high-precision focusing and leveling of the alignment mark.
  • the present invention provides a mark having a focus adjustment and tilt correction design, including:
  • An alignment mark and at least one pair of focus marks the center of the alignment mark being located on a line connecting any pair of the focus marks, wherein the at least one pair of focus marks is used to determine the best by itself
  • the focal plane position is used to achieve focus adjustment of the alignment mark.
  • the alignment mark is a cross mark or a m-shaped mark, a horizontal line type mark or a vertical line type mark.
  • center of the alignment mark is located at a midpoint of any pair of the focus mark lines.
  • the line width of the alignment mark is greater than the discretization granularity.
  • the line width of the alignment mark is greater than a double point spread function width.
  • the focus mark is a square focus mark or a raster type focus mark.
  • the grating type focus mark is a horizontal grating type focus mark or a vertical grating type focus mark.
  • the mark includes an alignment mark and a focus mark
  • the focus mark includes a pair of the square type focus mark, a pair of the horizontal grating type focus mark, and a pair of the vertical type Focus mark.
  • the present invention also proposes an alignment method applied to the mark, the alignment method comprising the following steps:
  • each set of said indicia comprising an alignment mark and at least one pair of focus marks, the center of said alignment mark being located in either pair The line connecting the focus mark;
  • the workpiece table is vertically moved according to the optimal focal plane position M of the workpiece and its inclination T to compensate for the vertical position of each of the alignment marks.
  • the focal plane criterion includes a gradient magnitude method and a point spread function width method.
  • the focus mark is a square focus mark or a raster type focus mark.
  • the focal plane criterion of the grating type focus mark is a gradient magnitude of the mark image.
  • the focal plane criterion of the block type focus mark is a point spread function of the mark
  • the width of the number is determined by extracting a certain row or a certain number of gray values of the square type focus mark to obtain a gray scale distribution, and solving the middle h value, and determining the focal plane position according to the magnitude of the h value.
  • the method for acquiring the optimal focal plane position ⁇ P i , Q i ⁇ of each pair of focus markers includes:
  • the method for acquiring the optimal focal plane position ⁇ P i , Q i ⁇ of each pair of focus markers includes:
  • the workpiece table is vertically moved d and -d, respectively, and images are respectively taken to obtain focal length criterion values V 1 and V 2 ;
  • the present invention discloses a marking and alignment method with a focus and tilt correction design, which realizes high-precision focus adjustment of alignment marks.
  • the focus adjustment is eliminated while the influence of the tilt on the mark is eliminated, and the measurement reproducibility is improved.
  • the influence mechanism of the distortion on the measurement reproducibility is analyzed, and the width of the alignment mark is given accordingly.
  • the qualification conditions further improve the measurement reproducibility.
  • Figure 1 is a schematic view of the FIA mark
  • Figure 2 is a schematic diagram of the defocusing effect
  • FIG. 3 is a schematic diagram of a mark in the first embodiment of the present invention.
  • FIG. 4 is a schematic diagram of extracting a mark gray value according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic diagram showing the gray scale distribution of the gray value of the extracted mark according to the first embodiment of the present invention.
  • FIG. 6 is a schematic diagram showing the positional relationship between an alignment mark and a focus mark in the first embodiment of the present invention
  • FIG. 7 is a schematic diagram of calculating vertical attitudes Mi, Ti of each alignment mark according to the obtained vertical positions Pi, Qi of each focus mark;
  • Figure 8 is a schematic view showing the position of the workpiece (wafer) according to the positions X, Y of the plurality of alignment marks;
  • Figure 9 is a schematic diagram of the effect of distortion on measurement reproducibility
  • Figure 10 is a schematic view showing a mark in the second embodiment of the present invention.
  • Figure 11 is a schematic view of a mark in the third embodiment of the present invention.
  • a object tilt angle
  • D error
  • 10 block type focus mark
  • 30 block type focus mark
  • 11 horizontal raster type focus mark
  • 31 horizontal grating type focus mark
  • 12 Vertical grating type focus mark
  • 32 vertical grating type focus mark
  • 20 alignment mark
  • h PSF width
  • 1 best focal plane for one side focus mark
  • 2 best alignment mark
  • 3 The best focal plane of the other side focus mark.
  • the first embodiment of the present invention provides a mark having a focus adjustment and tilt correction design
  • the mark includes an alignment mark 20 and at least one pair of focus marks
  • the focus mark is a square type focus adjustment.
  • a mark or grating type focus mark the raster type focus mark is a horizontal raster type focus mark or a vertical grating type focus mark
  • the focus mark includes a pair of the square type focus mark, a pair of A horizontal grating type focus mark and a pair of the vertical grating type focus marks
  • the focus mark includes a block type focus mark 10, a block type focus mark 30, a horizontal grating type focus mark 11, and a horizontal grating
  • the square-type focus mark 10 and the square-type focus mark 30 are a pair of square-shaped focus marks
  • the horizontal-gear type focus mark 11 and the horizontal-gear type focus mark 31 are a pair of grating-type focus marks
  • the grating type focus mark 12 and the vertical grating type focus mark 32 are a pair of grating type focus marks.
  • the alignment mark 20 is a cross mark or a m-shaped mark for alignment. In the first embodiment, the alignment mark 20 is a cross mark, and the cross type alignment mark 20 includes horizontal lines and vertical lines.
  • the horizontal line and the vertical line are perpendicular to each other, and the center of the alignment mark 20 is located at a midpoint of any pair of the focus mark lines, and any pair of the focus marks are symmetrical with respect to the alignment mark
  • the line width of the alignment mark 20 is greater than the discretization granularity, and at least one pair of focusing marks can perform horizontal adjustment on the surface of the alignment mark 20 while performing focal plane adjustment in the alignment process, that is, With at least one pair of focus marks, for the measurement of the alignment mark 20, high-precision focus leveling of the face of the alignment mark 20 is first provided.
  • the focal plane criterion needs to be selected. There are two common methods for the focal plane criterion, namely the gradient amplitude method and the PSF (point spread function) width method.
  • the focal plane criterion of the grating-type focus marks 11, 12, 31 and 32 is a gradient magnitude method, that is, the image is convoluted with the Sobel operator and accumulated.
  • the formula for the focal plane criterion is as follows:
  • Image is the original image
  • SobelX and SobelY are the horizontal and vertical Sobel operators respectively
  • Dx and Dy are the images detected by the horizontal and vertical edges respectively
  • V is the gradient approximation, that is, the focal surface criterion value.
  • the focal plane criterion of the block-type focus marks 10 and 30 adopts the PSF width method, that is, the gray value of a certain row or rows of the square mark is extracted, as shown by the dotted line in FIG.
  • the accumulation (projection) of the gradation values yields a gradation distribution as shown in FIG. 5, and the PSF width h in FIG. 5 is solved, that is, the focal plane criterion value, and then the focal plane position is determined based on the magnitude of the PSF width h value.
  • the method of determining the best focal plane is the first method or the second method.
  • the first method includes the following steps:
  • the second method includes the following steps:
  • the workpiece table is vertically moved d and -d, respectively, and images are respectively taken to obtain focal length criterion values V 1 and V 2 ;
  • the vertical position of the workpiece table or its mark can be used to indicate the vertical distance of the mark relative to the lens, so the term "workpiece table vertical position" in the step (1) can also be replaced with "mark vertical position".
  • the entire system described in this embodiment is described on the premise that the silicon wafer is placed horizontally and the lens is viewed from the top down, and thus the vertical position of the mark may be the vertical position of the alignment mark, or It is the vertical position of the focus mark, and their values are the same.
  • the calibration process since the calibration process records the relationship between the "focal surface criterion value" and the "workpiece table vertical position" (which is used to indicate the vertical distance of the mark relative to the lens), The distance from the mark to the lens is not known when the image is taken, and the workpiece table is held at the current vertical position, that is, the image is captured at the distance from the lens and the "focal surface criterion value" is calculated, and the calculated value is calculated.
  • the focal surface criterion value is returned to the calibrated relationship data, and the vertical distance from the workpiece table to the lens in the vertical position of the current workpiece table can be calculated, or when the object calibrated in step (1) is "focal"
  • the face criterion value and the "marked vertical position” the vertical distance marked on the lens in the vertical position of the current workpiece table is calculated, and the workpiece table or mark is obtained at the vertical position of the current workpiece table.
  • the vertical distance d of the focal plane is returned to the calibrated relationship data, and the vertical distance from the workpiece table to the lens in the vertical position of the current workpiece table can be calculated, or when the object calibrated in step (1) is "focal"
  • step (4) After the above step (4) is completed, it is not possible to judge whether the workpiece stage is deviated from the focal plane in the forward direction or the reverse direction, and thus the workpiece stage is described in the step (2) in the step (5) of the second method.
  • the vertical movement d and -d are respectively moved, that is, the distance d is vertically moved in the direction of approaching and moving away from the lens, respectively, and the corresponding focal surface criterion values V 1 and V 2 are respectively obtained.
  • step (6) of the second method by comparing which of the focal plane criterion values V 1 and V 2 is preferable, it is easy to determine that the workpiece stage is in the vertical position of the workpiece table corresponding to the preferred criterion value. The mark is at the best focal plane position.
  • the alignment mark 20 is in the middle of a pair of focus marks, that is, the center of the alignment mark 20 is located at the midpoint of the center line of the pair of focus marks, and the alignment mark 20 is
  • the best focal plane position 2 is the best focal plane position 1 of one side focus mark and the most focus mark of the other side.
  • the optimal focal plane position of the alignment mark and the focus mark can be represented by the height value (ie, the vertical coordinate value) of the mark center with respect to the alignment system.
  • the inclination of the alignment mark 20 can also be obtained according to the best focal plane position 1 of one side focus mark and the best focus face position 3 of the other side focus mark.
  • the alignment method of the mark includes the following steps:
  • the first step of focusing adjustment is realized by the focus leveling system (FLS);
  • the alignment mark is located at the center of each pair of focus marks.
  • the best focal plane positions P 1 , Q 1 of the pair of focus marks in the first mark group and the best focal planes of the pair of focus marks in the second mark group are respectively obtained in this step.
  • Q 1 can calculate the optimal focal plane position M 1 of the alignment mark in the first mark set and its inclination T 1 according to the optimal focal plane position.
  • P 2 , Q 2 can calculate the optimal focal plane position M 2 of the alignment mark in the second mark set and its inclination T 2 , according to the optimal focal plane position P 3 , Q 3 can be calculated in the third mark set The best focal plane position M 3 of the alignment mark and its inclination T 3 ;
  • step (1) is the first step of focusing and leveling, and is used for preliminary adjustment
  • steps (3)-(8) are the second step of focusing and leveling, which is used for realizing high-precision focusing and leveling of alignment marks. .
  • each of the n sets of marks has a plurality of pairs (such as m pairs) of focus marks
  • only the best focal plane position of one of the set of focus marks of each set of marks can be calculated.
  • the average focal plane position of two or more pairs of focus marks in each set of marks is averaged to obtain the best focal plane positions P i and Q i representing the set of marks.
  • the grating marks generally need to be averaged by two vertical gratings (e.g., vertical and horizontal). However, for block or other markers, it is not necessary to measure multiple pairs.
  • the alignment mark has a certain line width, and the line width in FIG. 9 is the length of the LR line segment.
  • the positions on both sides of the alignment mark are L and R, the center position is C, the actual image forming positions of the alignment marks are L' and R', and the corresponding center position is CC.
  • the calibration algorithm establishes the positional relationship between the ideal imaging point and the actual imaging point, as indicated by the arrows in Figure 9. Due to the nonlinearity of the distortion, the CC point deviates from the image point C' corresponding to the point C. Therefore, the actual mark test position CC deviates from the actual position of the mark, however, the reproducibility is guaranteed if the amount of deviation remains fixed. But in fact, as the position of the field of view is different, the amount of deviation will also change, which will affect the measurement reproducibility.
  • the calculation method of the influence of distortion on the alignment accuracy includes the following steps:
  • the window is divided from the center and divided into two adjacent sub-windows, respectively W(t) and W(t-T/2), and the width is T/2;
  • the line width of the alignment mark 20 the smaller the influence of distortion on the accuracy. but Since the image is discretized by the CCD (Charge Coupled Device) at the back end, the line width of the alignment mark 20 needs to be larger than the discretization granularity of the image (the size of the particles), so the alignment mark 20 cannot be infinitely small.
  • CCD Charge Coupled Device
  • the information of the position of the alignment mark 20 is not included. Only at the edge of the alignment mark 20 is there a feature that indicates the position of the alignment mark 20. In order to accurately locate the edge of the alignment mark 20, in the range of edge coverage (ie, PSF width), 4 sampling points are required, so the line width of the alignment mark 20 needs to be greater than 2 times the PSF width, thereby determining the alignment mark 20. Line width.
  • the center of the alignment mark is not necessarily located at the midpoint of any pair of the focus mark lines (as shown in FIG. 10), and the focus mark 20' includes A pair of said square type focus marks 10' and 30', a pair of said horizontal grating type focus marks 11' and 31' and a pair of said vertical grating type focus marks 12' and 32', aligned
  • the center of the mark 20' is not located at the midpoint of any pair of focus mark lines, but only the distance to the two focus marks is known, that is, the distances W1W2 and W2W3 of the focus mark to the mark in Fig.
  • the second embodiment provides a mark with fewer qualifications, which satisfies the diversified needs of users.
  • the marking and the aligning method are the same as those in the first embodiment, and therefore will not be further described herein.
  • the alignment mark is a horizontal line type mark or a vertical line type mark for measuring the unidirectional position as shown in FIG.
  • the focus mark 20" includes a pair of the square type focus marks 10" and 30", a pair of the horizontal grating type focus marks 11" and 31", and a pair of the vertical grating type focus marks 12" and 32", the center of the alignment mark 20" is not at the midpoint of any pair of focus mark lines.
  • the third embodiment provides a method for measuring the unidirectional position. The mark meets the diverse needs of users.
  • the marking and the alignment method are the same as those in the first embodiment, and therefore will not be further described herein.
  • the alignment mark is a m-shaped mark.
  • the fourth embodiment provides a rice-shaped alignment mark (not shown), which satisfies the diversified needs of users.
  • the marking and the alignment method are the same as those in the first embodiment, and therefore will not be described again.
  • the present invention discloses a marking and alignment method with a focus adjustment and tilt correction design, which achieves high-precision focus adjustment of alignment marks.
  • the focus is eliminated while the focus is removed, and the measurement reproducibility is improved.
  • the influence mechanism of the distortion on the measurement reproducibility is analyzed, and the qualification conditions for the mark width are given accordingly. Improved measurement reproducibility.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Optical Head (AREA)

Abstract

一种具有调焦及倾斜校正设计的标记及对准方法,所述标记包括对准标记(20)和至少一对调焦标记,所述对准标记(20)的中心位于任一对所述调焦标记的连线上,其中,所述至少一对调焦标记用于通过确定自身的最佳焦面位置来实现所述对准标记(20)的调焦调平。还提供了应用于所述标记的对准方法,实现了对准标记的高精度调焦调平。该方案提供的标记在调焦的同时消除了倾斜对标记的影响,提高了测量复现性。

Description

一种具有调焦及倾斜校正设计的标记及对准方法 技术领域
本发明涉及一种具有调焦及倾斜校正设计的标记及对准方法,尤其是一种包括对准标记和至少一对调焦标记的标记及其对准方法。
背景技术
在集成电路制造过程中,一个完整的芯片通常需要经过多次光刻曝光才能制作完成。除了第一层光刻外,其余层次的光刻在曝光前都要将该层次的图形与以前层次曝光留下的图形(即标记)进行精确定位,这样才能保证每一层图形之间有正确的相对位置,即套刻精度。
在现有技术中,基于光学成像原理的对准系统是光刻机中常用的系统之一,如Nikon FIA系统、Ultratec MVS等。FIA的标记样式单一,如图1所示。Ultratec MVS具有标记学习功能,标记无固定形式。此外,US6344698B2和CN102103336考虑了工艺对标记的影响,并分别设计了受工艺影响较小的标记。
实际上,除了工艺影响测量精度外,还有众多因素会影响测量精度。
首先,畸变是一种常见的像差,在光学成像系统中,畸变对测量复现性的影响不容忽视。它的影响机理是,测量标记在视场中的位置不确定性与畸变的非线性耦合,影响测量复现性。虽然FIA系统通过多次迭代以使标记始终处于某一固定位置被测量,减轻了畸变的影响,但是迭代需要消耗大量的时间。
其次,如图2所示,标记的离焦倾斜效应也会影响测量复现性,被测物倾斜角a会产生误差D。尽管光刻机中的调焦调平系统可实现倾斜与离焦的校正,但是由于调焦调平测量面为光刻胶上表面,而对准标记有时位于光刻 胶下表面,光刻胶的厚度具有一定的波动性,因此调焦调平系统还不足以实现对准标记的高精度调焦调平。
此外,在光学成像系统中,尽管自动调焦技术在对准传感器中已经广泛应用,但是在自动调焦的同时实现倾斜校正的传感器还未被发明。
发明内容
本发明的目的在于提供一种具有调焦及倾斜校正设计的标记及对准方法,所述标记包括对准标记和至少一对调焦标记,用于在调焦的同时消除倾斜对标记的影响,同时降低畸变对标记的影响。
为了达到上述目的,本发明提供了一种具有调焦及倾斜校正设计的标记,包括:
对准标记和至少一对调焦标记,所述对准标记的中心位于任一对所述调焦标记的连线上,其中,所述至少一对调焦标记用于通过确定自身的最佳焦面位置来实现所述对准标记的调焦调平。
进一步地,所述对准标记为十字型标记或者米字型标记、横线条型标记或竖线条型标记。
进一步地,所述对准标记的中心位于任一对所述调焦标记连线的中点上。
进一步地,所述对准标记的线宽大于离散化粒度。
进一步地,所述对准标记的线宽大于两倍点扩散函数宽度。
进一步地,所述调焦标记为方块型调焦标记或光栅型调焦标记。
进一步地,所述光栅型调焦标记为水平光栅型调焦标记或者竖直光栅型调焦标记。
进一步地,所述标记包括对准标记和调焦标记,所述调焦标记包括一对所述方块型调焦标记、一对所述水平光栅型调焦标记和一对所述竖直光栅型调焦标记。
本发明还提出了一种对准方法,应用于所述标记,所述对准方法包括以下步骤:
(1)在一工件上形成n组具有调焦及倾斜校正设计的标记,每组所述标记包括对准标记和至少一对调焦标记,所述对准标记的中心位于任一对所述调焦标记的连线上;
(2)使用对准系统对各组所述标记进行初步对准;
(3)以预定步距垂向移动工件台,根据焦面判据及其最佳焦面确定方法获得各组标记中的至少一对调焦标记的最佳焦面位置{Pi,Qi},其中,Pi和Qi分别为第i组标记中的一对调焦标记的最佳焦面位置,其中i=1,2,…,n且n≥3;
(4)根据各对调焦标记的最佳焦面位置{Pi,Qi}及各对标记对应的水平向距离Dis(Pi,Qi)获得各组标记中的所述对准标记的最佳焦面位置的原始值Mi及其倾斜的原始值Ti,其中,
Figure PCTCN2015089167-appb-000001
(5)根据各所述对准标记的最佳焦面位置的原始值Mi及其倾斜的原始值Ti通过均值滤波或者中值滤波方法确定所述工件的最佳焦面位置M及其倾斜T;
(6)根据所述工件的最佳焦面位置M及其倾斜T垂向运动工件台以补偿各所述对准标记的垂向位置。
进一步地,所述焦面判据包括梯度幅值法和点扩散函数宽度法。
进一步地,所述调焦标记为方块型调焦标记或光栅型调焦标记。
进一步地,所述光栅型调焦标记的所述焦面判据是所述标记图像的梯度幅值。
进一步地,所述方块型调焦标记的所述焦面判据是所述标记的点扩散函 数宽度,具体方法是,抽取所述方块型调焦标记的某行或某几行灰度值,得到灰度分布,并求解中h值,根据h值的大小判断焦面位置。
进一步地,所述获取各对调焦标记的最佳焦面位置{Pi,Qi}的方法包括:
(1)以预定步距垂向运动工件台;
(2)在每个垂向步进位置拍摄图像;
(3)从图像中提取所述焦面判据值;
(4)拟合曲线求所述各对调焦标记的最佳焦面位置。
进一步地,所述获取各对调焦标记的最佳焦面位置{Pi,Qi}的方法包括:
(1)标定所述焦面判据值与工件台垂向位置的关系;
(2)在当前工件台垂向位置上拍摄图像;
(3)从图像中提取所述焦面判据值;
(4)根据所述标定的关系及所提取的焦面判据值获得在当前工件台垂向位置上所述工件台离焦面的距离d;
(5)在当前工件台垂向位置的基础上使工件台分别垂向移动d与-d,并分别拍摄图像以获得焦面判据值V1与V2
(6)比较V1与V2,决定所述各对调焦标记的最佳焦面位置。
与现有技术相比,本发明公开了一种具有调焦及倾斜校正设计的标记及对准方法,实现了对准标记的高精度调焦调平。一方面,使得调焦的同时消除了倾斜对标记的影响,提高了测量复现性;另一方面,分析了畸变对测量复现性的影响机理,并据此给出了对准标记宽度的限定条件,进一步地提高了测量复现性。
附图说明
图1为FIA标记的示意图;
图2为离焦倾斜效应的原理图;
图3为本发明实施例一中标记的示意图;
图4为本发明实施例一中抽取标记灰度值的示意图;
图5为本发明实施例一中抽取标记灰度值的灰度分布示意图;
图6为本发明实施例一中对准标记和调焦标记的位置关系示意图;
图7为根据各调焦标记的得到的垂向位置Pi、Qi,计算各对准标记的垂向位姿Mi,Ti的示意图;
图8为根据若干个对准标记的位置X,Y,计算工件(硅片)位置的位置示意图;
图9为畸变对测量复现性的影响的原理图;
图10为本发明实施例二中标记的示意图;
图11为本发明实施例三中标记的示意图。
其中,a:被测物倾斜角,D:误差,10:方块型调焦标记,30:方块型调焦标记,11:水平光栅型调焦标记,31:水平光栅型调焦标记,12:竖直光栅型调焦标记,32:竖直光栅型调焦标记,20:对准标记,h:PSF宽度,1:一侧调焦标记的最佳焦面,2:对准标记的最佳焦面,3:另一侧调焦标记的最佳焦面。
具体实施方式
下面将结合示意图对本发明的具体实施方式进行更详细的描述。根据下列描述和权利要求书,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。
实施例一
如图3所示,本发明实施例一提供了一种具有调焦及倾斜校正设计的标记,所述标记包括对准标记20和至少一对调焦标记,调焦标记为方块型调焦 标记或光栅型调焦标记,所述光栅型调焦标记为水平光栅型调焦标记或者竖直光栅型调焦标记,所述调焦标记包括一对所述方块型调焦标记、一对所述水平光栅型调焦标记和一对所述竖直光栅型调焦标记,所述调焦标记包括方块型调焦标记10、方块型调焦标记30、水平光栅型调焦标记11、水平光栅型调焦标记31、竖直光栅型调焦标记12和竖直光栅型调焦标记32。其中,方块型调焦标记10和方块型调焦标记30为一对方块形调焦标记,水平光栅型调焦标记11和水平光栅型调焦标记31为一对光栅型调焦标记,竖直光栅型调焦标记12和竖直光栅型调焦标记32为一对光栅型调焦标记。对准标记20为十字型标记或者米字型标记,用于对准,在实施例一中,对准标记20为十字型标记,所述十字型的对准标记20包括横线条和竖线条,所述横线条和竖线条相互垂直,且对准标记20的中心位于任一对所述调焦标记连线上的中点上,任一对所述调焦标记关于所述对准标记相对称,确定两侧调焦标记相对于对准系统的高度并结合两侧调焦标记及中央对准标记的位置关系,推算出对准标记20的高度与倾斜,从而实现对准标记20的高精度调焦调平。其中,所述对准标记20的线宽大于离散化粒度,通过至少一对调焦标记可以在对准过程中,对对准标记20所在面进行焦面调整的同时,进行水平度调节,即通过至少一对调焦标记,为对准标记20的测量,先提供对准标记20所在面的高精度调焦调平。在确定调焦标记的最佳焦面时,需要选择焦面判据。常见的焦面判据有两种方式,分别是梯度幅值法和PSF(点扩散函数)宽度法。
在实施例一中,光栅型调焦标记11、12、31和32的焦面判据采用梯度幅值法,即将图像与Sobel算子卷积,并累加。焦面判据的公式如下:
Dx=Image*SobelX
Dy=Image*SobelY
Figure PCTCN2015089167-appb-000002
其中,Image为原始图像,SobelX及SobelY分别为横向和纵向Sobel算子,Dx及Dy分别为横向和纵向边缘检测的图像,V为梯度近似值,也即焦面判据值。
在实施例一中,方块型调焦标记10和30的焦面判据采用PSF宽度法,即抽取方块标记的某行或某几行的灰度值,如图4中虚线框所示,通过灰度值的累加(投影)得到如图5所示的灰度分布,求解图5中的PSF宽度h,即焦面判据值,然后再根据PSF宽度h值的大小判断焦面位置。
在选定焦面判据后,确定最佳焦面的方法为第一方法或第二方法。
第一方法包括以下步骤:
(1)以预定步距运动工件台;
(2)在工件台的每个垂向步进位置拍摄图像;
(3)从图像中提取所述焦面判据值;
(4)拟合曲线求最佳焦面位置。
第二方法包括以下步骤:
(1)标定所述焦面判据值与工件台垂向位置的关系;
(2)在当前工件台垂向位置上拍摄图像;
(3)从图像中提取所述焦面判据值;
(4)根据上述步骤(1)标定的所述焦面判据值与工件台垂向位置的关系并结合上述步骤(3)中提取的焦面判据值,获得在当前工件台垂向位置上工件台离焦面的距离d;
(5)在当前工件台垂向位置的基础上使工件台分别垂向移动d与-d,并分别拍摄图像以获得焦面判据值V1与V2
(6)比较V1与V2,决定最佳焦面位置。
其中,第二方法的第(1)步骤中,由于通常对准系统(包含镜头)是固 定的,可用工件台或其标记的垂向位置来指示标记相对于镜头的垂向距离,因此第(1)步骤中的术语“工件台垂向位置”也可替换为“标记垂向位置”,其实现的效果是一致的。此处应当注意的是,本实施例中描述的整个系统是在硅片水平放置、镜头从上往下看的前提下描述的,因而标记垂向位置可以是对准标记垂向位置,也可以是调焦标记垂向位置,它们的值是相同的。
第二方法的第(4)步骤中,由于标定过程记录了“焦面判据值”与“工件台垂向位置”(其用于表明标记相对于镜头的垂向距离)之间的关系,在拍摄图像时所述标记到镜头的距离尚未得知,保持工件台在当前垂向位置,即保持标记到镜头的这一距离拍摄图像并计算“焦面判据值”,再将计算得到的焦面判据值回代到所标定的关系数据中,就可计算出在当前工件台垂向位置上工件台到镜头的垂向距离,或者当第(1)步骤中标定的对象是“焦面判据值”与“标记垂向位置”时,计算出在当前工件台垂向位置上标记到镜头的垂向距离,同时可获得在当前工件台垂向位置上所述工件台或标记离焦面的垂向距离d。
在完成上述第(4)步骤后,尚无法判断工件台是在正向还是反向上偏离焦面,因而在第二方法的第(5)步骤中使工件台在第(2)步骤所述的当前工件台垂向位置的基础上分别垂向移动d与-d,即分别沿靠近和远离镜头的方向垂向移动距离d,并分别获得相应的焦面判据值V1与V2
在第二方法的第(6)步骤中,通过比较焦面判据值V1与V2哪个较佳,容易判断出当工件台处于该较佳的判据值所对应的工件台垂向位置时,所述标记位于最佳焦面位置。
如图6所示,假设在工件台表面,对准标记20处于一对调焦标记中间,即对准标记20的中心位于一对调焦标记的中心连线的中点,则对准标记20的最佳焦面位置2为一侧调焦标记的最佳焦面位置1和另一侧调焦标记的最 佳焦面位置3的均值。此处,对准标记及调焦标记的最佳焦面位置可以采用标记中心相对于对准系统的高度值(即垂向坐标值)来表示。此外,根据一侧调焦标记的最佳焦面位置1和另一侧调焦标记的最佳焦面位置3还可获得对准标记20的倾斜。
所述标记的对准方法包括以下步骤:
(1)将预先形成有n组具有调焦及倾斜校正设计的标记的工件置于工件台上后,通过调焦调平系统(FLS)实现第一步调焦调平;
参见图7,在本实施例中采用了3组具有调焦及倾斜校正设计的标记,即n=3,3组标记以下分别称为第一标记组、第二标记组和第三标记组,其中,在每个标记组中,对准标记位于各对调焦标记的中央。
(2)移动工件台将各组标记带入对准系统视场,对准完成初步测量,从而确定各组标记中的调焦标记的水平位置参数;
(3)以预定步距垂向移动工件台,根据焦面判据及其最佳焦面确定方法,即前述第一方法或第二方法,获得各组标记中的至少一对调焦标记的最佳焦面位置{Pi,Qi},其中,
Pi和Qi分别为第i组标记中的一对调焦标记的最佳焦面位置,其中i=1,2,…,n且n≥3;
根据本实施例,在此步骤中分别获得第一标记组中的一对调焦标记的最佳焦面位置P1,Q1,第二标记组中的一对调焦标记的最佳焦面位置P2,Q2,以及第三标记组中的一对调焦标记的最佳焦面位置P3,Q3
(4)根据各对调焦标记的最佳焦面位置{Pi,Qi},即两个调焦标记的垂向最佳焦面位置及各对标记对应的水平向距离Dis(Pi,Qi),获得相应的对准标记20的最佳焦面位置的原始值Mi及其倾斜的原始值Ti,其中,
Figure PCTCN2015089167-appb-000003
此步骤请参见图7,根据最佳焦面位置P1,Q1可以计算出第一标记组中的对准标记的最佳焦面位置M1及其倾斜T1,根据最佳焦面位置P2,Q2可以计算出第二标记组中的对准标记的最佳焦面位置M2及其倾斜T2,根据最佳焦面位置P3,Q3可以计算出第三标记组中的对准标记的最佳焦面位置M3及其倾斜T3
(5)根据各所述对准标记20的最佳焦面位置的原始值Mi及其倾斜的原始值Ti通过均值滤波或者中值滤波方法确定多个对准标记20所围视场内的工件(硅片)的最佳焦面位置M及其倾斜T;
(6)根据所述视场内的工件(硅片)的最佳焦面位置的M及其倾斜T垂向运动工件台以补偿多个对准标记中需补偿的对准标记的垂向位置;
(7)重新计算对准标记20的水平位置,其水平位置为xWZCS,yWZCS,同时记录测量时的工件台位置,此步骤请参见图8。具有调焦及倾斜校正设计的标记,其位置通过步骤(6)中的工件台运动以后(图示未显示具体的运动轨迹和位置变化),获得每组标记新的水平位置,如在图8中所示,分别为第一标记组的水平位置X1,Y1,第二标记组的水平位置X2,Y2,第三标记组的水平位置X3,Y3
(8)获得工件(硅片)在工件台中的位置。
其中,步骤(1)为第一步调焦调平,用于初步调整,步骤(3)-(8)为第二步调焦调平,用于实现对准标记的高精度调焦调平。
需要说明的是,当n组标记中的每一组都具有多对(如m对)调焦标记时,可以只对每组标记的其中一对调焦标记的最佳焦面位置进行计算,也可以根据需要对每组标记的其中两对以上的调焦标记的最佳焦面位置进行计算,从而得到集合{Pij,Qij},其中,i=1,2,…,n;j=1,2,…,m。然而,例如对每组标记中的两对以上的调焦标记的最佳焦面位置取均值,得到代表该组标记的最佳焦面位置Pi和Qi。这种方法尤其适合于采用光栅标记作为调焦标记的情 形,如图7所示,所述光栅标记一般需要用两个方向垂直的光栅(如竖光栅和水平光栅)分别测量后取平均。然而,对于方块型或其它标记则不需要测多对取均值。
上述内容完成了有倾斜校正的标记的设计,并给出了该对准标记的对准方法,但并未考虑畸变对对准标记的对准精度的影响。
如图9所示,对准标记具有一定线宽,图9中线宽为LR线段长度。对准标记两侧位置为L和R,中心位置为C,对准标记的实际成像位置为L’和R’,相应的中心位置为CC。标定算法可建立起理想成像点与实际成像点位置关系,如图9中箭头所示。由于畸变的非线性,CC点偏离了C点对应的成像点C’,因此,实际标记测试位置CC偏离了标记实际位置,尽管如此,若偏离量保持固定则复现性仍可保证。但实际上,随着视场位置的不同,偏离量也将变化,从而影响测量复现性。
畸变对对准精度影响的计算方法包括以下步骤:
(1)通过Zemax和CODE V等光学软件获取在视场各位置镜头相对于理想成像位置的偏移量曲线O(t);
(2)根据标记的线宽生成窗口函数,宽度为T;
(3)将窗口从中心切分,分为两个紧邻的子窗口,分别为W(t)和W(t-T/2),宽度均为T/2;
(4)将子窗口W(t)和W(t-T/2)分别与O(t)进行卷积,得到C(t)和D(t);
(5)取E(t)=C(t)-D(t);
(6)求E(t)中最大值Max与最小值Min。
在像方,畸变对精度的影响可计算为Err=Max-Min,相应的物方值为Err/倍率。
由上述分析可知,对准标记20的线宽越小,畸变对精度的影响越小。但 是由于后端由CCD(电荷耦合元件)对图像进行离散化,对准标记20线宽需大于图像的离散化粒度(颗粒的大小),因此对准标记20不可以无限小。
此外,由于对准标记20内部亮度值保持不变,不含对准标记20位置的信息。仅在对准标记20边缘处,才存在标明对准标记20位置的特征。为了能准确定位对准标记20的边缘,在边缘覆盖的范围内(即PSF宽度),需要4个采样点,因此对准标记20线宽需大于2倍PSF宽度,从而确定对准标记20的线宽。
实施例二
与实施例一不同,在实施例二中,对准标记的中心不一定位于所述任一对调焦标记连线的中点上(如图10所示),所述调焦标记20’包括一对所述方块型调焦标记10’和30’、一对所述水平光栅型调焦标记11’和31’以及一对所述竖直光栅型调焦标记12’和32’,对准标记20’的中心不位于任一对调焦标记连线的中点,而只需到两个调焦标记的距离已知,即图10中调焦标记到对准标记的距离W1W2及W2W3已知,根据已知的对准标记到两个调焦标记的距离获得对准标记的最佳焦面位置。与实施例一相比,实施例二提供了一种限定条件较少的标记,满足了用户的多样化需求。
在实施例二中,除上述内容,标记及对准方法均与实施例一一致,故在此不再赘述。
实施例三
与实施例一不同,在实施例三中,对准标记为横线条型标记或竖线条型标记,用于测量单方向位置,如图11所示。所述调焦标记20”包括一对所述方块型调焦标记10”和30”、一对所述水平光栅型调焦标记11”和31”以及一对所述竖直光栅型调焦标记12”和32”,对准标记20”的中心不位于任一对调焦标记连线的中点。与实施例一相比,实施例三提供了一种用于测量单方向位置 的标记,满足了用户的多样化需求。
在实施例三中,除上述内容,标记及对准方法均与实施例一一致,故在此不再赘述。
实施例四
与实施例一不同,在实施例四中,对准标记为米字型标记。与实施例一相比,实施例四提供了一种米字型对准标记(未图示),满足了用户的多样化需求。
在实施例四中,除上述内容,标记及对准方法均与实施例一一致,故在此不再赘述。
综上,本发明公开了一种具有调焦及倾斜校正设计的标记及对准方法,实现了对准标记的高精度调焦调平。一方面,使得调焦的同时消除了倾斜,提高了测量复现性;另一方面,分析了畸变对测量复现性的影响机理,并据此给出了对标记宽度的限定条件,进一步地提高了测量复现性。
上述仅为本发明的优选实施例而已,并不对本发明起到任何限制作用。任何所属技术领域的技术人员,在不脱离本发明的技术方案的范围内,对本发明揭露的技术方案和技术内容做任何形式的等同替换或修改等变动,均属未脱离本发明的技术方案的内容,仍属于本发明的保护范围之内。

Claims (15)

  1. 一种具有调焦及倾斜校正设计的标记,其特征在于,所述标记包括对准标记和至少一对调焦标记,所述对准标记的中心位于任一对所述调焦标记的连线上,其中,所述至少一对调焦标记用于通过确定自身的最佳焦面位置来实现所述对准标记的调焦调平。
  2. 如权利要求1所述的标记,其特征在于,所述对准标记为十字型标记、米字型标记、横线条型标记或竖线条型标记。
  3. 如权利要求1所述的标记,其特征在于,所述对准标记的中心位于任一对所述调焦标记连线的中点上。
  4. 如权利要求1所述的标记,其特征在于,所述对准标记的线宽大于离散化粒度。
  5. 如权利要求4所述的标记,其特征在于,所述对准标记的线宽大于两倍点扩散函数宽度。
  6. 如权利要求1所述的标记,其特征在于,所述调焦标记为方块型调焦标记或光栅型调焦标记。
  7. 如权利要求6所述的标记,其特征在于,所述光栅型调焦标记为水平光栅型调焦标记或者竖直光栅型调焦标记。
  8. 如权利要求1所述的标记,其特征在于,所述调焦标记包括一对方块型调焦标记、一对水平光栅型调焦标记和一对竖直光栅型调焦标记。
  9. 一种对准方法,其特征在于,所述对准方法包括以下步骤:
    (1)在一工件上形成n组具有调焦及倾斜校正设计的标记,每组所述标记包括对准标记和至少一对调焦标记,所述对准标记的中心位于任一对所述调焦标记的连线上;
    (2)使用对准系统对各组所述标记进行初步对准;
    (3)以预定步距垂向移动工件台,根据焦面判据及其最佳焦面确定方法获得各组标记中的至少一对调焦标记的最佳焦面位置{Pi,Qi},其中,Pi和Qi分别为第i组标记中的一对调焦标记的最佳焦面位置,其中i=1,2,…,n且n≥3;
    (4)根据各对调焦标记的最佳焦面位置{Pi,Qi}及各对标记对应的水平向距离Dis(Pi,Qi)获得各组标记中的所述对准标记的最佳焦面位置的原始值Mi及其倾斜的原始值Ti,其中,
    Figure PCTCN2015089167-appb-100001
    (5)根据各所述对准标记的最佳焦面位置的原始值Mi及其倾斜的原始值Ti通过均值滤波或者中值滤波方法确定所述工件的最佳焦面位置M及其倾斜T;
    (6)根据所述工件的最佳焦面位置M及其倾斜T垂向运动工件台以补偿各所述对准标记的垂向位置。
  10. 如权利要求9所述的对准方法,其特征在于,所述焦面判据包括梯度幅值法和点扩散函数宽度法。
  11. 如权利要求10所述的对准方法,其特征在于,所述调焦标记为方块型调焦标记或光栅型调焦标记。
  12. 如权利要求11所述的对准方法,其特征在于,所述光栅型调焦标记的所述焦面判据是所述标记图像的梯度幅值。
  13. 如权利要求11所述的对准方法,其特征在于,所述方块型调焦标记的所述焦面判据是所述标记的点扩散函数宽度。
  14. 如权利要求9所述的对准方法,其特征在于,获取各组标记中的至少一对调焦标记的最佳焦面位置{Pi,Qi}的方法包括:
    (1)以预定步距垂向运动工件台;
    (2)在每个垂向步进位置拍摄图像;
    (3)从图像中提取所述焦面判据值;
    (4)拟合曲线求所述各对调焦标记的最佳焦面位置。
  15. 如权利要求9所述的对准方法,其特征在于,获取各组标记中的至少一对调焦标记的最佳焦面位置{Pi,Qi}包括:
    (1)标定所述焦面判据值与工件台垂向位置的关系;
    (2)在当前工件台垂向位置上拍摄图像;
    (3)从图像中提取所述焦面判据值;
    (4)根据所述标定的关系及所提取的焦面判据值获得在当前工件台垂向位置上所述工件台离焦面的距离d;
    (5)在当前工件台垂向位置的基础上使工件台分别垂向移动d与-d,并分别拍摄图像以获得焦面判据值V1与V2
    (6)比较V1与V2,决定所述各对调焦标记的最佳焦面位置。
PCT/CN2015/089167 2014-09-09 2015-09-08 一种具有调焦及倾斜校正设计的标记及对准方法 WO2016037562A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177008904A KR101948906B1 (ko) 2014-09-09 2015-09-08 포커싱 및 경사 교정 디자인을 구비하는 마커 및 정렬 방법
JP2017513477A JP6309694B2 (ja) 2014-09-09 2015-09-08 焦点合わせと傾斜補正のデザインを有するマーク及びそのアラインメント方法
SG11201701903QA SG11201701903QA (en) 2014-09-09 2015-09-08 Marker having focusing and tilt correction design and alignment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410456314.2 2014-09-09
CN201410456314.2A CN105467781B (zh) 2014-09-09 2014-09-09 一种具有调焦及倾斜校正设计的标记及对准方法

Publications (1)

Publication Number Publication Date
WO2016037562A1 true WO2016037562A1 (zh) 2016-03-17

Family

ID=55458350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089167 WO2016037562A1 (zh) 2014-09-09 2015-09-08 一种具有调焦及倾斜校正设计的标记及对准方法

Country Status (6)

Country Link
JP (1) JP6309694B2 (zh)
KR (1) KR101948906B1 (zh)
CN (1) CN105467781B (zh)
SG (1) SG11201701903QA (zh)
TW (1) TWI585513B (zh)
WO (1) WO2016037562A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110849266A (zh) * 2019-11-28 2020-02-28 江西瑞普德测量设备有限公司 一种影像测量仪的远心镜头远心度调试方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107450287B (zh) * 2016-05-31 2019-10-25 上海微电子装备(集团)股份有限公司 调焦调平测量装置及方法
CN108333880B (zh) * 2017-01-19 2020-08-04 上海微电子装备(集团)股份有限公司 光刻曝光装置及其焦面测量装置和方法
JP7186531B2 (ja) * 2018-07-13 2022-12-09 キヤノン株式会社 露光装置、および物品製造方法
CN111624856B (zh) * 2019-02-28 2021-10-15 上海微电子装备(集团)股份有限公司 一种掩模版、运动台定位误差补偿装置及补偿方法
CN111383537A (zh) * 2020-04-02 2020-07-07 上海天马有机发光显示技术有限公司 显示面板和显示装置
CN115356898A (zh) * 2022-08-25 2022-11-18 上海华力集成电路制造有限公司 提高光刻套刻精度的方法
CN117492336B (zh) * 2024-01-02 2024-04-09 天府兴隆湖实验室 对准标记及图形对准方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060103823A1 (en) * 2004-11-15 2006-05-18 Oki Electric Industry Co., Ltd. Focus monitoring method
JP2006261644A (ja) * 2005-02-16 2006-09-28 Nikon Corp 露光装置およびレチクルと感応基板ステージとの位置合わせ方法
JP2006332480A (ja) * 2005-05-30 2006-12-07 Nikon Corp 位置計測方法、露光方法、デバイスの製造方法及び位置計測装置並びに露光装置
CN101135859A (zh) * 2007-08-20 2008-03-05 上海微电子装备有限公司 透射对准标记组合及光刻装置的对准方法
CN101943865A (zh) * 2009-07-09 2011-01-12 上海微电子装备有限公司 一种用于光刻设备的对准标记和对准方法
CN102566338A (zh) * 2010-12-28 2012-07-11 上海微电子装备有限公司 光刻对准系统中对对准位置进行修正的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL9000503A (nl) * 1990-03-05 1991-10-01 Asm Lithography Bv Apparaat en werkwijze voor het afbeelden van een maskerpatroon op een substraat.
JPH06196387A (ja) * 1992-12-22 1994-07-15 Canon Inc 基板の焦点合わせ方法および投影露光方法
US6136662A (en) * 1999-05-13 2000-10-24 Lsi Logic Corporation Semiconductor wafer having a layer-to-layer alignment mark and method for fabricating the same
JP2004279166A (ja) * 2003-03-14 2004-10-07 Canon Inc 位置検出装置
KR20080033347A (ko) * 2005-07-04 2008-04-16 코닌클리케 필립스 일렉트로닉스 엔.브이. 광 픽업 및/또는 기록장치
JP2007305696A (ja) * 2006-05-09 2007-11-22 Nsk Ltd 位置決め装置の精度測定方法
JP2010098143A (ja) * 2008-10-16 2010-04-30 Canon Inc 露光装置およびデバイス製造方法
CN103163747B (zh) * 2011-12-14 2015-03-25 上海微电子装备有限公司 基于区域照明的小光斑离轴对准系统
CN203553154U (zh) * 2013-11-14 2014-04-16 中芯国际集成电路制造(北京)有限公司 测量标记

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060103823A1 (en) * 2004-11-15 2006-05-18 Oki Electric Industry Co., Ltd. Focus monitoring method
JP2006261644A (ja) * 2005-02-16 2006-09-28 Nikon Corp 露光装置およびレチクルと感応基板ステージとの位置合わせ方法
JP2006332480A (ja) * 2005-05-30 2006-12-07 Nikon Corp 位置計測方法、露光方法、デバイスの製造方法及び位置計測装置並びに露光装置
CN101135859A (zh) * 2007-08-20 2008-03-05 上海微电子装备有限公司 透射对准标记组合及光刻装置的对准方法
CN101943865A (zh) * 2009-07-09 2011-01-12 上海微电子装备有限公司 一种用于光刻设备的对准标记和对准方法
CN102566338A (zh) * 2010-12-28 2012-07-11 上海微电子装备有限公司 光刻对准系统中对对准位置进行修正的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110849266A (zh) * 2019-11-28 2020-02-28 江西瑞普德测量设备有限公司 一种影像测量仪的远心镜头远心度调试方法

Also Published As

Publication number Publication date
CN105467781B (zh) 2017-12-29
KR20170051480A (ko) 2017-05-11
CN105467781A (zh) 2016-04-06
JP2017528766A (ja) 2017-09-28
SG11201701903QA (en) 2017-04-27
TW201614365A (en) 2016-04-16
TWI585513B (zh) 2017-06-01
JP6309694B2 (ja) 2018-04-11
KR101948906B1 (ko) 2019-02-15

Similar Documents

Publication Publication Date Title
WO2016037562A1 (zh) 一种具有调焦及倾斜校正设计的标记及对准方法
US7479982B2 (en) Device and method of measuring data for calibration, program for measuring data for calibration, program recording medium readable with computer, and image data processing device
CN102376089B (zh) 一种标靶校正方法及系统
CN107270810B (zh) 多方位投影的投影仪标定方法及装置
CN102768762B (zh) 一种针对盾构隧道病害数字照相检测的数码相机标定方法及其装置
JP4095491B2 (ja) 距離測定装置、距離測定方法、及び距離測定プログラム
CN111192235B (zh) 一种基于单目视觉模型和透视变换的图像测量方法
KR102160351B1 (ko) 이중 층 정렬 장치 및 방법
CN102810205A (zh) 一种摄像或照相装置的标定方法
JP5963514B2 (ja) 測距装置、測距方法及び撮像システム
CN112288822B (zh) 一种结合标定的摄像头主动对位方法
CN108805940B (zh) 一种变倍相机在变倍过程中跟踪定位的方法
CN103676487A (zh) 一种工件高度测量装置及其校正方法
CN104930976A (zh) 便携式裂纹长度测量装置及方法
CN111376254A (zh) 平面测距方法及系统和机械手调校平面的方法及系统
CN106814557A (zh) 一种对准系统及对准方法
KR20170105024A (ko) 사전 정렬 측정 장치 및 방법
TWI501049B (zh) 對於分區曝光之物體而測量其中一區之相對局部位置誤差之方法與裝置
CN110653016B (zh) 移液系统及其校准方法
EP3855397A1 (en) Imaging system
CN102193340A (zh) 一种投影光刻调焦的图像处理方法
CN110956668A (zh) 一种基于聚焦测度的聚焦堆栈成像系统预置位标定方法
RU2610137C1 (ru) Способ калибровки видеосистемы для контроля объектов на плоской площадке
CN113920197A (zh) 一种激光雷达辅助摄像机自动调焦聚焦的方法
CN116056561A (zh) 植物的尺寸测定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15840844

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017513477

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177008904

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15840844

Country of ref document: EP

Kind code of ref document: A1