WO2016037506A1 - 一种四节式炭素材料组合坩埚 - Google Patents
一种四节式炭素材料组合坩埚 Download PDFInfo
- Publication number
- WO2016037506A1 WO2016037506A1 PCT/CN2015/081630 CN2015081630W WO2016037506A1 WO 2016037506 A1 WO2016037506 A1 WO 2016037506A1 CN 2015081630 W CN2015081630 W CN 2015081630W WO 2016037506 A1 WO2016037506 A1 WO 2016037506A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carbon
- crucible
- section
- anthrax
- graphite
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
- C30B15/10—Crucibles or containers for supporting the melt
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
- C30B29/06—Silicon
Definitions
- the utility model relates to a thermal field equipment technology of a silicon single crystal furnace, in particular to a four-section carbon material composite crucible, belonging to the technical field of photovoltaic solar silicon single crystal manufacturing.
- CZ method Czochralski method
- the growth process of the CZ silicon single crystal is as follows: the polycrystalline silicon is charged into the quartz crucible, heated and melted, and then the molten silicon is slightly cooled to give a certain degree of subcooling, and a specific crystal orientation of the silicon single crystal (referred to as seed crystal) and The contact of the melt silicon, by adjusting the temperature of the melt and the upward lifting speed of the seed crystal, so that when the seed crystal grows to the target diameter, the lifting speed is adjusted to make the single crystal grow at a constant diameter, and the growth process is near completion, by increasing The lifting speed of the crystal and the adjustment of the heating of the crucible cause the crystal diameter to gradually decrease to form a cone.
- the temperature in the furnace is as high as 1500 °C.
- the quartz crucible becomes soft, and the outer crucible is supported.
- the quartz crucible remaining after pulling the crystal is often attached to the outer wall of the support crucible. .
- the quartz crucible Since the quartz crucible is a one-time tooling, it must be replaced one by one. When the crucible is a whole or a full circle structure, although the overall rod rate and crystal formation rate are higher when pulling crystal, the removal of the quartz crucible is more difficult, even when removed. Will damage the cockroach. When multi-valve structure is used, such as graphite crucible, its mechanical properties are poor.
- Graphite crucible is used in high temperature environment, it must support the weight of quartz crucible and raw material, and it is in a rotating state, which is easy to be broken under the action of external force; During the use of the petal graphite crucible, its roundness may also change, affecting the pull ring The stability of the environment, the overall rate and the crystal formation rate are affected, resulting in an increase in the production cost of the enterprise; in addition, the wall thickness of the graphite crucible, the heat of the heater is transmitted to the quartz crucible, causing heat loss, slow response, and High consumption.
- the technical problem to be solved by the utility model is to overcome the above-mentioned defects existing in the prior art and provide a four-section carbon material composite crucible, which can not only remove the quartz crucible residue but also improve the utilization efficiency of electric energy. .
- the technical solution adopted by the utility model to solve the technical problem is: a four-section carbon material composite crucible comprising carbon-anthraquinone and graphite crucible, characterized in that the carbon-anthrax is composed of carbon-anthrax upper part and carbon - The middle part of the anthrax and the lower part of the carbon-anthrax are butted.
- the carbon-anthroke is made of a carbon-carbon composite material
- the density of the carbon-carbon composite material is 1.2 to 1.8 g/cm 3
- the bending strength of the carbon-carbon composite material is ⁇ 80 MPa.
- the graphite crucible is made of isostatically pressed graphite, the density of the isostatically pressed graphite is ⁇ 1.78 g/cm 3 , and the flexural strength of the isostatic graphite is ⁇ 35 MPa.
- the carbon-anthrax upper section, the carbon-anthraquinone middle section, and the carbon-anthrax lower section are respectively provided with 2 to 150 through holes in the circumferential direction, and the aperture is 3 to 30 mm, and the heater radiation can directly pass through the through hole.
- the quartz crucible is heated to rapidly melt the silicon material in the quartz crucible; in addition, after the crystal pulling is completed, the combined crucible is taken out, the graphite crucible is separated from the carbon-anthrax, and the quartz crucible residue is exposed by the bottom, and the fitter hammer can be used. It is easy to knock out the quartz crucible residue; the quartz crucible residue adhering to the carbon-anthrite can be removed by sharp-cutting through a through hole in the carbon-anthrax.
- the surface of the carbon-anthrax and/or graphite crucible has an oxidation resistant coating and can The anti-oxidation and anti-corrosion ability of the composite crucible can be improved, thereby improving the service life of the composite crucible;
- the anti-oxidation coating is a SiC coating, and the coating thickness is 4 to 100 ⁇ m.
- the utility model Compared with the prior art multi-lobed graphite crucible, the utility model has the following advantages: (1) the utilization rate of energy is high, the melting speed of the silicon material is fast, and the melting time is short; (2) the quartz crucible residue can be conveniently and effectively removed; (3) If one of the sections is damaged, it is only necessary to replace the corresponding parts without replacing the entire raft, which is beneficial to reduce the production cost; (4) The structure is simple, and the installation and disassembly are convenient.
- FIG. 1 is a schematic structural view of a four-section carbon material composite crucible according to the present invention.
- This embodiment includes carbon-anthrax 4, graphite crucible 5, which is composed of a carbon-anthracene upper section 1, a carbon-anthraquinone middle section 2, and a carbon-anthrox lower section 3.
- Carbon-anthrax 4 is made of a carbon-carbon composite material, the density of the carbon-carbon composite material is 1.2 g/cm 3 , and the bending strength of the carbon-carbon composite material is 80 MPa.
- the graphite crucible 5 is made of isostatically pressed graphite, the density of the isostatically pressed graphite is 1.78 g/cm 3 , and the flexural strength of the isostatically pressed graphite is 35 Mpa.
- the upper part of the carbon-anthrax, the middle section of the carbon-anthraquinone 2, and the lower section of the carbon-anthraquinone 3 are respectively provided with 150 through holes, and the hole diameter is 3 mm.
- the surfaces of carbon-anthrax 4 and graphite crucible 5 have an oxidation resistant coating, and the oxidation resistant coating is a SiC coating with a coating thickness of 4 ⁇ m.
- the crystal When working, the crystal is finished, the combined crucible is taken out, the graphite crucible 5 is separated from the carbon-anthrax 4, and the quartz crucible residue is exposed to the bottom of the crucible, and the quartz crucible can be easily knocked out by the fitter hammer; The quartz crucible residue on the carbon-anthrax 4 can be removed by sharp-cutting through a through hole in the carbon-anthrax 4.
- the utility model has convenient operation, the silicon material has a fast melting speed, the melting time can be shortened by about 2 hours, and the utilization rate of electric energy is greatly improved; It is convenient and effective to remove the quartz crucible; the service life is increased from the original 35-40 furnace to more than 60 furnaces; in addition, the roundness of the composite crucible is good and stable, and the overall rod rate is increased compared with the multi-valve crucible. % to 9%.
- the density of the carbon-carbon composite material is 1.5 g/cm 3
- the bending strength of the carbon-carbon composite material is 100 MPa
- the density of the isostatic graphite is 1.80 g/cm. 3
- the flexural strength of isostatic graphite 42Mpa
- the upper part of carbon-anthrax, the middle section of carbon-anthraquinone 2, the lower section of carbon-anthraquinone 3 are uniformly distributed with 100 through holes, the pore diameter is 6mm
- the thickness of the anti-oxidation coating SiC coating on the surface of the anthrax 4 and the graphite crucible 5 50 ⁇ m.
- the utility model is convenient to operate compared with the prior art multi-lobed graphite crucible (other process parameters are unchanged), the silicon material has a fast melting speed, the melting time is shortened by 2.5 h, and the utilization rate of electric energy is greatly improved.
- Improve can easily and effectively remove the quartz crucible; the service life is increased from the original 35-40 furnace to more than 60 furnaces; The roundness of the combined sputum is good and stable, and the overall rod rate is increased by 3% to 10% relative to the multi-valve crystallization.
- the density of the carbon-carbon composite material is 1.8 g/cm 3
- the bending strength of the carbon-carbon composite material is 130 MPa
- the density of the isostatic graphite is 1.82 g/cm. 3
- the flexural strength of isostatic graphite 48Mpa
- the upper part of carbon-anthrax, the middle section of carbon-anthraquinone 2, the lower section of carbon-anthraquinone 3 are respectively distributed with 2 through holes, the pore diameter is 30mm
- the thickness of the oxidation resistant coating SiC coating on the surface of the anthrax 4 and the graphite crucible 5 100 ⁇ m.
- the utility model is practically used, compared with the prior art multi-lobed graphite crucible (other process parameters are unchanged), the utility model has convenient operation, the silicon material has a fast melting speed, the melting time is shortened by 1.0 h, and the utilization rate of the electric energy is greatly improved. Improve; can easily and effectively remove the quartz crucible; the service life is increased from the original 35-40 furnace to more than 65 furnaces; in addition, the roundness of the composite crucible is good and stable, compared with the multi-valve crucible, its whole rod The rate is increased by 4% to 11%.
- the density of the carbon-carbon composite material is 1.6 g/cm 3
- the bending strength of the carbon-carbon composite material is 110 MPa
- the density of the isostatic graphite is 1.81 g/cm. 3
- the flexural strength of isostatic graphite 45Mpa
- the upper part of carbon-anthrax, the middle section of carbon-anthraquinone 2, the lower section of carbon-anthraquinone 3 are uniformly distributed with 96 through holes, the pore diameter is 10mm
- the thickness of the oxidation resistant coating SiC coating on the surface of the anthrax 4 and the graphite crucible 5 was 40 ⁇ m. The same as Example 1.
- the utility model is simpler than the prior art multi-lobed graphite crucible (other process parameters are unchanged), the utility model has convenient operation, the silicon material has high melting speed and the melting time Shortened by 2.5h, the utilization rate of electric energy is greatly improved; the quartz crucible can be easily and effectively removed; the service life is increased from the original 35-40 furnace to more than 65 furnaces; in addition, the roundness of the composite crucible is good and stable, relative In the multi-valve pulling, the overall stick rate is increased by 4% to 11%.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
一种四节式炭素材料组合坩埚,包括炭-炭坩埚(4)、石墨坩埚(5),所述炭-炭坩埚(4)由炭-炭坩埚上段(1)、炭-炭坩埚中段(2)和炭-炭坩埚下段(3)构成,炭-炭坩埚上(1)、炭-炭坩埚中(2)、炭-炭坩埚下(3)圆周方向分别均布有孔径为3~30mm的通孔。本实用新型结构简单,操作方便,能够有效地减轻去除石英坩埚残体时对组合埚的损伤,延长组合埚的使用寿命;此外,炭-炭坩埚上(1)、炭-炭坩埚中(2)、炭-炭坩埚下(3)圆周方向分别均布有通孔,更有利于辐射热的传递,提高了能量利用率。
Description
本实用新型涉及硅单晶炉热场装备技术,尤其涉及一种四节式炭素材料组合坩埚,属于光伏太阳能硅单晶制造技术领域。
半导体硅单晶,大约85%是采用直拉(Czochralski)法(简称CZ法)制造。CZ法硅单晶生长过程为:将多晶硅装入石英坩埚内,加热熔化,然后将熔硅稍微降温,给予一定的过冷度,将一支特定晶向的硅单晶体(称做籽晶)与熔体硅接触,通过调整熔体的温度和籽晶向上提升速度,使籽晶放肩长大至目标直径时,调整提升速度,使单晶体以恒定的直径生长,生长过程接近完成时,通过增加晶体的提升速度和调整对埚的供热,使晶体直径渐渐减少形成一个锥体,当锥尖足够小时,晶体就会与熔体脱离,从而完成晶体的生长过程。在单晶硅棒拉制过程中,炉内温度高达1500℃左右,此时,石英坩埚变软,要靠外面的坩埚承托,拉晶后残留的石英坩埚常紧贴外面的承托坩埚内壁。
由于石英坩埚是一次性工装,必须逐炉更换,当坩埚为整体或整圆结构时,虽然拉晶时的整棒率和成晶率较高,但是石英坩埚的去除则较为困难,去除时甚至会损坏坩埚。当坩埚采用多瓣结构时,如石墨坩埚,其力学性能较差,石墨坩埚在高温环境中使用,要承托石英坩埚及原材料的重量,并且处于旋转状态,在外力的作用下容易破裂;多瓣石墨坩埚在使用过程中,其圆度还有可能发生变化,影响拉晶环
境的稳定,整棒率和成晶率均受到影响,导致企业生产成本增加;此外,石墨坩埚的壁厚,加热器的热量传导到石英坩埚的少,造成热损失,响应速度较慢,能耗高。
实用新型内容
本实用新型要解决的技术问题是,克服现有技术存在的上述缺陷,提供一种四节式炭素材料组合坩埚,使用该组合坩埚,既便于清除石英坩埚残体,又能够提高电能的利用效率。
本实用新型解决其技术问题采用的技术方案是:一种四节式炭素材料组合坩埚,包括炭-炭坩埚、石墨坩埚,其特征在于,所述炭-炭坩埚由炭-炭坩埚上段、炭-炭坩埚中段和炭-炭坩埚下段对接构成。
进一步,所述炭-炭坩埚由炭-炭复合材料制成,炭-炭复合材料的密度=1.2~1.8g/cm3,炭-炭复合材料的的抗弯强度≥80Mpa。
进一步,所述石墨坩埚由等静压石墨制成,等静压石墨的密度≥1.78g/cm3,等静压石墨的抗弯强度≥35Mpa。
进一步,所述炭-炭坩埚上段、炭-炭坩埚中段、炭-炭坩埚下段圆周方向分别均布有2~150个通孔,孔径为3~30mm,加热器辐射光可以通过通孔直接对石英坩埚加热,使石英坩埚内的硅料快速熔化;此外,拉晶完毕,将组合坩埚取出,石墨坩埚与炭-炭坩埚分离,石英坩埚残体因其底部暴露在外,用钳工锤即可很容易地敲除石英坩埚残体;粘在炭-炭坩埚上的石英坩埚残体,可以用锐器通过炭-炭坩埚上的通孔敲碎而去除。
进一步,所述炭-炭坩埚和/或石墨坩埚的表面有抗氧化涂层,能
够提高组合坩埚的抗氧化、抗腐蚀能力,从而提高组合坩埚的使用寿命;所述抗氧化涂层为SiC涂层,涂层厚度=4~100μm。
本实用新型与现有技术多瓣石墨坩埚相比,具有以下优点:(1)能量的利用率高,硅料熔化速度快,熔化时间短;(2)能够方便有效地去除石英坩埚残体;(3)如果其中某一节损坏了,只需更换相应的零件而不需更换整个坩埚,有利于降低生产成本;(4)结构简单,安装拆卸方便。
图1为本实用新型四节式炭素材料组合坩埚的结构示意图;
图中:1-炭-炭坩埚上段,2-炭-炭坩埚中段,3-炭-炭坩埚下段,4-炭-炭坩埚,5-石墨坩埚。
以下结合实例对本实用新型作进一步说明。
实施例1
本实施例包括炭-炭坩埚4,石墨坩埚5,所述炭-炭坩埚4由炭-炭坩埚上段1、炭-炭坩埚中段2和炭-炭坩埚下段3对接构成。
炭-炭坩埚4由炭-炭复合材料制成,炭-炭复合材料的密度=1.2g/cm3,炭-炭复合材料的的抗弯强度为80Mpa。
石墨坩埚5由等静压石墨制成,等静压石墨的密度=1.78g/cm3,等静压石墨的抗弯强度=35Mpa。
炭-炭坩埚上段1、炭-炭坩埚中段2、炭-炭坩埚下段3圆周方向分别均布有150个通孔,孔径为3mm。
炭-炭坩埚4和石墨坩埚5的表面有抗氧化涂层,抗氧化涂层为SiC涂层,涂层厚度=4μm。
工作时,拉晶完毕,将组合坩埚取出,石墨坩埚5与炭-炭坩埚4分离,石英坩埚残体因其底部暴露在外,用钳工锤即可很容易地敲除石英坩埚残体;粘在炭-炭坩埚4上的石英坩埚残体,可以用锐器通过炭-炭坩埚4上的通孔敲碎而去除。
经实践使用,与现有技术的多瓣石墨坩埚相比(其他工艺参数不变),本实用新型操作方便,硅料熔化速度快,熔化时间可缩短约2h,电能的利用率大大提高;能够方便有效地去除石英坩埚残体;使用寿命由原来的35~40炉,提高到60炉以上;此外,组合埚的圆度好且稳定,相对于多瓣埚拉晶,其整棒率提高4%~9%。
实施例2
本实施例与实施例1的区别仅在于,炭-炭复合材料的密度=1.5g/cm3,炭-炭复合材料的的抗弯强度为100Mpa;等静压石墨的密度=1.80g/cm3,等静压石墨的抗弯强度=42Mpa;炭-炭坩埚上段1、炭-炭坩埚中段2、炭-炭坩埚下段3圆周方向分别均布有100个通孔,孔径为6mm;炭-炭坩埚4和石墨坩埚5的表面的抗氧化涂层SiC涂层的厚度=50μm。余同实施例1。
经实践使用,本实用新型与现有技术的多瓣石墨坩埚相比(其他工艺参数不变),本实用新型操作方便,硅料熔化速度快,熔化时间缩短了2.5h,电能的利用率大大提高;能够方便有效地去除石英坩埚残体;使用寿命由原来的35~40炉,提高到60炉以上;此外,组
合埚的圆度好且稳定,相对于多瓣埚拉晶,其整棒率提高3%~10%。
实施例3
本实施例与实施例1的区别仅在于,炭-炭复合材料的密度=1.8g/cm3,炭-炭复合材料的的抗弯强度为130Mpa;等静压石墨的密度=1.82g/cm3,等静压石墨的抗弯强度=48Mpa;炭-炭坩埚上段1、炭-炭坩埚中段2、炭-炭坩埚下段3圆周方向分别均布有2个通孔,孔径为30mm;炭-炭坩埚4和石墨坩埚5的表面的抗氧化涂层SiC涂层的厚度=100μm。余同实施例1。
经实践使用,本实用新型与现有技术的多瓣石墨坩埚相比(其他工艺参数不变),本实用新型操作方便,硅料熔化速度快,熔化时间缩短了1.0h,电能的利用率大大提高;能够方便有效地去除石英坩埚残体;使用寿命由原来的35~40炉,提高到65炉以上;此外,组合埚的圆度好且稳定,相对于多瓣埚拉晶,其整棒率提高4%~11%。
实施例4
本实施例与实施例1的区别仅在于,炭-炭复合材料的密度=1.6g/cm3,炭-炭复合材料的的抗弯强度为110Mpa;等静压石墨的密度=1.81g/cm3,等静压石墨的抗弯强度=45Mpa;炭-炭坩埚上段1、炭-炭坩埚中段2、炭-炭坩埚下段3圆周方向分别均布有96个通孔,孔径为10mm;炭-炭坩埚4和石墨坩埚5的表面的抗氧化涂层SiC涂层的厚度=40μm。余同实施例1。
经实践使用,本实用新型与现有技术的多瓣石墨坩埚相比(其他工艺参数不变),本实用新型操作方便,硅料熔化速度快,熔化时间
缩短了2.5h,电能的利用率大大提高;能够方便有效地去除石英坩埚残体;使用寿命由原来的35~40炉,提高到65炉以上;此外,组合埚的圆度好且稳定,相对于多瓣埚拉晶,其整棒率提高4%~11%
以上所述,仅是本实用新型的较佳实施例,并非对本实用新型作任何限制,凡是根据本实用新型技术实质对以上实施例所作的任何修改、变更以及等效结构变换,均仍属本实用新型技术方案的保护范围。
Claims (10)
- 一种四节式炭素材料组合坩埚,包括炭-炭坩埚(4)、石墨坩埚(5),其特征在于,炭-炭坩埚由炭-炭坩埚上段(1)、炭-炭坩埚中段(2)和炭-炭坩埚下段(3)对接构成。
- 根据权利要求1所述的四节式炭素材料组合坩埚,其特征在于:所述炭-炭坩埚(4)由炭-炭复合材料制成。
- 根据权利要求1所述的四节式炭素材料组合坩埚,其特征在于:所述石墨坩埚(5)由等静压石墨制成。
- 根据权利要求1或2或3所述的四节式炭素材料组合坩埚,其特征在于:所述炭-炭坩埚上段(1)、炭-炭坩埚中段(2)、炭-炭坩埚下段(3)圆周方向分别均布有2~150个通孔,孔径为3~30mm。
- 根据权利要求2所述的四节式炭素材料组合坩埚,其特征在于:所述炭-炭复合材料的密度=1.2~1.8g/cm3。
- 根据权利要求3所述的四节式炭素材料组合坩埚,其特征在于:所述等静压石墨的密度≥1.78g/cm3。
- 根据权利要求2或5所述的四节式炭素材料组合坩埚,其特征在于:所述炭-炭复合材料的的抗弯强度≥80Mpa。
- 根据权利要求3或6所述的四节式炭素材料组合坩埚,其特征在于:所述等静压石墨的抗弯强度≥35Mpa。
- 根据权利要求1所述的四节式炭素材料组合坩埚,其特征在于:所述炭-炭坩埚(4)和/或石墨坩埚(5)的表面有抗氧化涂层。
- 根据权利要求9所述的四节式炭素材料组合坩埚,其特征在于:所述抗氧化涂层为SiC涂层,涂层厚度=4~100μm。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201420512775.2 | 2014-09-09 | ||
CN201420512775.2U CN204097595U (zh) | 2014-09-09 | 2014-09-09 | 一种四节式炭素材料组合坩埚 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016037506A1 true WO2016037506A1 (zh) | 2016-03-17 |
Family
ID=52266040
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/081630 WO2016037506A1 (zh) | 2014-09-09 | 2015-06-17 | 一种四节式炭素材料组合坩埚 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN204097595U (zh) |
WO (1) | WO2016037506A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116903372A (zh) * | 2023-07-07 | 2023-10-20 | 江苏泰瑞耐火有限公司 | 一种节能长寿化碳素坩埚及制备方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN204097595U (zh) * | 2014-09-09 | 2015-01-14 | 湖南南方搏云新材料有限责任公司 | 一种四节式炭素材料组合坩埚 |
CN111349966A (zh) * | 2020-03-26 | 2020-06-30 | 哈尔滨科友半导体产业装备与技术研究院有限公司 | 一种大小可调的组合式坩埚热场 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3734004B2 (ja) * | 1999-01-14 | 2006-01-11 | 東芝セラミックス株式会社 | シリコン単結晶引上げ用黒鉛ルツボ |
CN101643933A (zh) * | 2009-08-19 | 2010-02-10 | 蒋建纯 | Cz法硅单晶生长炉石英坩埚碳素护埚及其制造工艺 |
CN102191537A (zh) * | 2011-06-01 | 2011-09-21 | 奥特斯维能源(太仓)有限公司 | 一种用于直拉法生长单晶的坩埚 |
CN102296358A (zh) * | 2011-06-01 | 2011-12-28 | 湖南金博复合材料科技有限公司 | 炭素材料组合坩埚的组合方法及组合坩埚 |
CN103668437A (zh) * | 2012-08-30 | 2014-03-26 | 上海杰姆斯电子材料有限公司 | 一种直拉法制备单晶硅所使用的坩埚 |
CN204097595U (zh) * | 2014-09-09 | 2015-01-14 | 湖南南方搏云新材料有限责任公司 | 一种四节式炭素材料组合坩埚 |
-
2014
- 2014-09-09 CN CN201420512775.2U patent/CN204097595U/zh not_active Expired - Fee Related
-
2015
- 2015-06-17 WO PCT/CN2015/081630 patent/WO2016037506A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3734004B2 (ja) * | 1999-01-14 | 2006-01-11 | 東芝セラミックス株式会社 | シリコン単結晶引上げ用黒鉛ルツボ |
CN101643933A (zh) * | 2009-08-19 | 2010-02-10 | 蒋建纯 | Cz法硅单晶生长炉石英坩埚碳素护埚及其制造工艺 |
CN102191537A (zh) * | 2011-06-01 | 2011-09-21 | 奥特斯维能源(太仓)有限公司 | 一种用于直拉法生长单晶的坩埚 |
CN102296358A (zh) * | 2011-06-01 | 2011-12-28 | 湖南金博复合材料科技有限公司 | 炭素材料组合坩埚的组合方法及组合坩埚 |
CN103668437A (zh) * | 2012-08-30 | 2014-03-26 | 上海杰姆斯电子材料有限公司 | 一种直拉法制备单晶硅所使用的坩埚 |
CN204097595U (zh) * | 2014-09-09 | 2015-01-14 | 湖南南方搏云新材料有限责任公司 | 一种四节式炭素材料组合坩埚 |
Non-Patent Citations (1)
Title |
---|
WANG, JINDUO ET AL.: "Research and development of carbon / carbon composite material split-type crucible", CARBON TECHNIQUES, vol. 32, no. 4, 30 April 2013 (2013-04-30), pages B4 - 5, and 36 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116903372A (zh) * | 2023-07-07 | 2023-10-20 | 江苏泰瑞耐火有限公司 | 一种节能长寿化碳素坩埚及制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN204097595U (zh) | 2015-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101962798B (zh) | 用于生产蓝宝石单晶的方法和设备 | |
CN100432023C (zh) | 单晶硅拉制炉用热场炭/炭坩埚的制备方法 | |
WO2016082525A1 (zh) | 一种多晶硅铸锭炉底部小保温板活动装置及多晶硅铸锭炉 | |
WO2016078321A1 (zh) | 大尺寸Yb-YAG激光晶体泡生法制备方法 | |
WO2016037506A1 (zh) | 一种四节式炭素材料组合坩埚 | |
US8555674B2 (en) | Quartz glass crucible for silicon single crystal pulling operation and process for manufacturing the same | |
CN109868503A (zh) | 一种坩埚组件及长晶炉 | |
CN201463538U (zh) | 组合坩埚 | |
CN104120488A (zh) | 一种大尺寸c轴蓝宝石晶体动态温度场制备方法 | |
CN104073875A (zh) | 一种大尺寸蓝宝石晶体动态温度场制备方法 | |
JP2015182944A (ja) | サファイア単結晶の製造方法 | |
CN204138819U (zh) | 泡生法蓝宝石单晶生长炉保温侧屏 | |
TWI726505B (zh) | 一種晶體生長爐的導流筒和晶體生長爐 | |
JP6344374B2 (ja) | SiC単結晶及びその製造方法 | |
CN102817071A (zh) | 防热辐射直拉多或单晶硅制备工艺 | |
CN105586634B (zh) | 用于直拉单晶炉热场的加热器及使用方法 | |
CN201089804Y (zh) | 直拉硅单晶制备用坩埚 | |
CN114737253A (zh) | 生长大尺寸蓝宝石单晶板材的单晶炉热场结构及方法 | |
CN102817069A (zh) | 复合加热防辐射式直拉多或单晶硅制备工艺 | |
CN208618005U (zh) | 一种太阳能单晶热场隔热装置 | |
CN206616292U (zh) | 一种泡生法制备蓝宝石晶体的装置 | |
CN202090096U (zh) | 炭素材料组合坩埚 | |
JP5776587B2 (ja) | 単結晶製造方法 | |
CN108609864B (zh) | 一种镀膜隔热反光石英热屏及其制备方法 | |
CN201063884Y (zh) | 一种用于直拉硅单晶炉热场的主发热体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15839697 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15839697 Country of ref document: EP Kind code of ref document: A1 |