WO2016035704A1 - 海水淡水化システムおよびエネルギー回収装置 - Google Patents
海水淡水化システムおよびエネルギー回収装置 Download PDFInfo
- Publication number
- WO2016035704A1 WO2016035704A1 PCT/JP2015/074421 JP2015074421W WO2016035704A1 WO 2016035704 A1 WO2016035704 A1 WO 2016035704A1 JP 2015074421 W JP2015074421 W JP 2015074421W WO 2016035704 A1 WO2016035704 A1 WO 2016035704A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- seawater
- chamber
- flow
- concentrated
- port
- Prior art date
Links
- 239000013535 sea water Substances 0.000 title claims abstract description 480
- 238000011084 recovery Methods 0.000 title claims abstract description 95
- 238000010612 desalination reaction Methods 0.000 title claims abstract description 33
- 230000002093 peripheral effect Effects 0.000 claims abstract description 28
- 239000012528 membrane Substances 0.000 claims description 56
- 238000001223 reverse osmosis Methods 0.000 claims description 50
- 239000012530 fluid Substances 0.000 claims description 37
- 238000000926 separation method Methods 0.000 claims description 32
- 239000013505 freshwater Substances 0.000 claims description 26
- 238000007599 discharging Methods 0.000 claims description 18
- 230000015572 biosynthetic process Effects 0.000 claims description 16
- 230000000903 blocking effect Effects 0.000 claims description 10
- 238000010008 shearing Methods 0.000 claims description 2
- 150000003839 salts Chemical class 0.000 abstract description 16
- 238000009826 distribution Methods 0.000 description 43
- 238000010586 diagram Methods 0.000 description 16
- 238000002156 mixing Methods 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 230000005484 gravity Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 238000011144 upstream manufacturing Methods 0.000 description 7
- 230000003204 osmotic effect Effects 0.000 description 6
- 230000006399 behavior Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000000265 homogenisation Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/06—Energy recovery
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/025—Reverse osmosis; Hyperfiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/08—Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/58—Multistep processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/10—Spiral-wound membrane modules
- B01D63/12—Spiral-wound membrane modules comprising multiple spiral-wound assemblies
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/441—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/08—Seawater, e.g. for desalination
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/10—Energy recovery
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/131—Reverse-osmosis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
Definitions
- the present invention relates to a seawater desalination system that desalinates seawater by removing salt from seawater and an energy recovery device that is suitably used in a seawater desalination system (seawater desalination plant).
- seawater desalination system in which seawater is desalted by passing it through a reverse osmosis membrane separator is known.
- the collected seawater is adjusted to a constant water quality condition by a pretreatment device, and then pressurized by a high-pressure pump and pumped to a reverse osmosis membrane separation device.
- a part of the high-pressure seawater in the tank overcomes the osmotic pressure, passes through the reverse osmosis membrane, and is taken out as fresh water from which the salinity has been removed.
- seawater is discharged as concentrated seawater (brine) from the reverse osmosis membrane separation device in a state where the salt concentration is increased and concentrated.
- the maximum operating cost in the seawater desalination system is the power cost, and a large proportion of the energy for raising the pretreated seawater to a pressure that can overcome the osmotic pressure, that is, the reverse osmotic pressure, that is, the pressure energy by the high-pressure pump Accounted for.
- the pressure energy possessed by the high-salt concentration and high-pressure concentrated seawater discharged from the reverse osmosis membrane separator is used to boost a part of the seawater.
- the inside of the cylinder is separated by a piston movably fitted in the cylinder.
- An energy recovery chamber is used that is separated into two spaces, and provided with a concentrated seawater port for entering and exiting concentrated seawater in one of the two spaces, and a seawater port for entering and exiting seawater on the other.
- FIG. 21 is a schematic diagram showing a configuration example of a conventional seawater desalination system.
- seawater taken by a water intake pump (not shown) is adjusted to a predetermined water quality condition by removing suspended matters or the like by a pretreatment device, and then motor M is connected via a seawater supply line 1.
- Seawater pressurized by the high-pressure pump 2 is supplied via a discharge line 3 to a reverse osmosis membrane separator 4 equipped with a reverse osmosis membrane (RO membrane).
- RO membrane reverse osmosis membrane
- a concentrated seawater line 5 for discharging concentrated seawater from the reverse osmosis membrane separation device 4 is connected to a concentrated seawater port P1 of the energy recovery chamber 10 via a control valve 6.
- a seawater supply line 1 for supplying pre-processed low-pressure seawater branches upstream of the high-pressure pump 2 and is connected to a seawater port P2 of the energy recovery chamber 10 via a valve 7.
- the energy recovery chamber 10 includes a piston 16 therein, and the piston 16 is fitted so as to be movable while separating the inside of the energy recovery chamber 10 into two volume chambers.
- the seawater pressurized using the pressure of the concentrated seawater in the energy recovery chamber 10 is supplied to the booster pump 8 through the valve 7.
- An energy recovery device 11 is configured by the control valve 6, the valve 7, and the energy recovery chamber 10. Then, the booster pump 8 further increases the pressure of the seawater so that the pressure becomes the same level as the discharge line 3 of the high-pressure pump 2, and the pressurized seawater merges with the discharge line 3 of the high-pressure pump 2 via the valve 9 and reverses.
- the osmotic membrane separation device 4 is supplied.
- FIG. 22 is a schematic diagram illustrating a configuration example of a conventional seawater desalination system including two control valves 6, energy recovery chambers 10, and valves 7 that are components of the energy recovery apparatus illustrated in FIG.
- the energy recovery device 11 includes two energy recovery chambers 10 and 10, thereby supplying concentrated seawater to one of the two energy exchange chambers 10 and 10 and simultaneously exchanging the other energy. Operates to drain concentrated seawater from the chamber.
- high-pressure seawater can always be discharged from the apparatus (continuous), so the seawater supplied to the reverse osmosis membrane separation device 4
- the fresh water obtained from the reverse osmosis membrane separation device 4 can be obtained at a constant flow rate with a constant flow rate.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2010-284642
- Patent Document 2 Japanese Patent Application Laid-Open No. 2010-284642
- RO membrane reverse osmosis membrane
- FIG. 23 is a cross-sectional view showing the energy recovery chamber 10 without a piston.
- the energy recovery chamber 10 includes a long cylindrical chamber body 11 and an end plate 12 that closes both open ends of the chamber body 11.
- a chamber CH is formed in the chamber body 11, a concentrated seawater port P 1 is formed at the position of one end plate 12, and a seawater port P 2 is formed at the position of the other end plate 12.
- the concentrated seawater port P ⁇ b> 1 and the seawater port P ⁇ b> 2 are arranged on the central axis of the cylindrical chamber body 11.
- the inner diameter of the chamber CH is set to ⁇ D, and the inner diameters of the concentrated seawater port P1 and the seawater port P2 are set to ⁇ d.
- the energy recovery chamber 10 is installed vertically. Considering the influence of the specific gravity difference between the concentrated seawater and the seawater, the chamber CH is vertically arranged, the port P1 of concentrated seawater having a high specific gravity is placed on the lower side, and the port P2 of seawater with a low specific gravity is placed on the top. That is, the long cylindrical chamber body 11 is arranged such that the longitudinal direction (axial direction) of the chamber is vertical, and the concentrated seawater port P1 supplies and drains the concentrated seawater below the chamber CH.
- the seawater port P2 is provided on the upper side of the chamber so as to supply and discharge seawater on the upper side of the chamber CH.
- the overall length of the chamber CH is L, and the flow resistor 13 is disposed in the chamber CH at a position spaced apart by L1 in the axial direction from the concentrated seawater port P1, and at a position spaced apart by L1 in the axial direction from the seawater port P2.
- a flow resistor 13 is arranged.
- the flow resistor 13 is composed of a single perforated plate.
- the flow of fluid having a large velocity distribution at the center portion is distributed in the diameter direction of the chamber CH by the flow resistor 13 through the small-diameter ports P1 and P2, and the chamber
- the two fluids are pushed and pulled while the interface between the seawater and the concentrated seawater is kept horizontal, thereby mixing the seawater and the concentrated seawater with different salt concentrations in the chamber.
- Energy transmission is performed while maintaining a small state.
- FIG. 24 is a cross-sectional view showing the energy recovery chamber 10 in which two perforated plates separated by a predetermined distance as flow resistors disposed in the vicinity of each port in FIG. 23 are disposed in the vicinity of each port.
- the first porous plate 14 is disposed in the chamber CH at a position spaced apart from the concentrated seawater port P1 by L1 in the axial direction, and further separated from the first porous plate 14 by L2 in the axial direction.
- the second perforated plate 15 is disposed at the position.
- the first perforated plate 14 is disposed at a position spaced apart by L1 in the axial direction from the seawater port P2
- the second perforated plate 15 is disposed at a position separated from the first perforated plate 14 by L2 in the axial direction.
- the two perforated plates 14 and 15 constitute a flow resistor 13.
- Other configurations of the energy recovery chamber 10 shown in FIG. 24 are the same as the configurations of the energy recovery chamber 10 shown in FIG.
- the applicant of the present invention has a case where the flow velocity of the fluid flowing into the chamber is high, or the size and shape of the perforated plate, the position where the perforated plate is disposed, that is, the distance L1 in FIG.
- the solution is described in Japanese Patent Application No. 2013-0778012 (unpublished). Proposed. That is, as shown in FIG.
- the flow resistor 23 is disposed in the chamber CH at a position spaced apart by L1 in the axial direction from the concentrated seawater port P1, and at a position spaced apart by L1 in the axial direction from the seawater port P2.
- a flow resistor 23 is arranged.
- the flow resistor 23 has a disk shape with an outer diameter ( ⁇ D) equal to the inner diameter of the chamber, and is outside the virtual circle ( ⁇ dc) at the center.
- a plurality of small holes 23h having a diameter ⁇ dk1 are formed, and a single perforated plate in which small holes are not formed on the inner side (center side) of the virtual circle is formed. That is, a perforated plate having a closed central portion is arranged.
- FIG. 27 is a diagram showing a flow distribution by numerical fluid analysis in the vicinity of the seawater port when the flow resistor 23 composed of a perforated plate with the central portion shown in FIG. 25 is horizontally disposed.
- the arrows in the figure indicate the flow speed by the length of the arrow and the flow direction by the direction of the arrow. Since the flow that has flowed into the chamber CH from the seawater port P2 flows into the chamber from the small-diameter port, the velocity distribution near the port of the chamber has a large flow at the center. This high-speed flow at the center collides with the closed portion of the perforated plate facing the port, and becomes a flow toward the outer periphery of the chamber horizontally along the plate.
- the fluid flows downstream only through small holes formed in the outer peripheral portion of the perforated plate and passes through the perforated plate.
- a part of the horizontal flow flows upward along the side surface of the chamber, and a large vortex is generated in the outer peripheral portion.
- the speed of the high-speed flow flowing in from the port becomes slow.
- the flow which passed the small hole from the outer peripheral part flows so that it may gather in a central part again after the central part once flows to the outer peripheral side.
- a vortex is generated downstream of the closed portion of the perforated plate, but the flow velocity and direction can be made uniform in the AA cross section separated from the perforated plate to the center of the chamber by a predetermined distance in FIG. It was that.
- the applicant of the present application has further analyzed the characteristics of the flow in the chamber by computational fluid dynamics (CFD) focusing on the velocity distribution flowing from the port of the energy recovery device shown in FIGS. 25 and 26.
- CFD computational fluid dynamics
- the perforated plate having a circular block at the center of the disc has a speed dependence, and the flow rate and direction in the chamber are uniform by the perforated plate with a limited range of inflow speed. It has been found that when the flow velocity changes, the velocity distribution in the evaluation section separated from the perforated plate by a predetermined distance from the perforated plate to the center of the chamber also changes, resulting in a decrease in uniformity.
- FIG. 28 shows a flow by numerical fluid analysis (CFD) in the vicinity of a seawater port when a perforated plate having a circular closed portion is arranged in the center of the disc and the flow velocity is increased to three times that of the case of FIG. It is a figure which shows the result of distribution.
- CFD numerical fluid analysis
- the flow rate from the small-diameter port is always within a predetermined range, so that the flow is uniformly dispersed in the chamber.
- the desired effect may not be obtained when the flow velocity from the port is greatly changed.
- the flow does not always flow from the port to the chamber at a constant speed, but the speed changes greatly in one cycle. That is, increasing the flow velocity limit at which a desired flow homogenization effect can be obtained can be applied to a wide range of processing flow rates by the energy recovery chamber.
- the critical flow velocity of the perforated plate having a circular closed portion at the center was about 250 mm / s. However, if this flow velocity is exceeded, this does not mean that the homogenizing action will be lost at all, but that the flow velocity distribution will be greater than a prescribed threshold value.
- uniform flow means that the flow velocity and direction in a horizontal cross section in the chamber are uniform.
- flow velocity (scalar) and direction (vector) in a horizontal section in the chamber are uniformly distributed at any position in the horizontal section, it is called a completely uniform flow. That is, as shown in FIG. 29, flows at arbitrary points Pn and Pm in the horizontal cross section are indicated by arrows whose flow sizes are Vn and Vm, respectively.
- the flow at the points Pn and Pm is a uniform flow, and when the angles ⁇ and ⁇ are the same at any position in the horizontal section, the flow is completely uniform.
- a closer flow is assumed to be a uniform flow.
- the cylindrical chamber wall exists as a vertical wall surface on the outer periphery in the horizontal cross section, the angles ⁇ and ⁇ are more uniform as the angles ⁇ and ⁇ are both perpendicular.
- the push-pull of seawater and concentrated seawater refers to an operation of pushing out (pushing) the seawater while boosting the seawater with the concentrated seawater, and then switching the valve 6 to draw the concentrated seawater with the seawater and discharge (pull) it.
- seawater and concentrated seawater form a two-fluid boundary where seawater and concentrated seawater contact each other in a chamber space having a length indicated by La between flow resistors 13. And this boundary part reciprocates in La by pushing and pulling seawater and concentrated seawater, and it controls so that seawater is not discharged
- the pushing and pulling of seawater and concentrated seawater has the same meaning as pushing up seawater and pushing down concentrated seawater.
- Mixing at the boundary is promoted by pushing and pulling seawater and concentrated seawater, but the flow of seawater and concentrated seawater above and below the boundary is made uniform in the region of La in the chamber, resulting in uneven flow.
- the phenomenon that the boundary surface turbulently diffuses and mixes due to the property is suppressed, and at the same time, it can be pushed and pulled like a virtual piston by keeping the boundary portion horizontal.
- the present invention has a configuration in which flow resistors are arranged on the concentrated seawater port side and the seawater port side of the chamber, respectively, and a high-speed fluid flow in the center of the flow resistor corresponding to the port diameter. Even in the case of collision, the flow of fluid by the flow resistor is rectified, and the pressure is transmitted from the high-pressure concentrated seawater to seawater while suppressing mixing at the boundary where the two fluids contact each other by the effect of making it uniform. Therefore, an object of the present invention is to provide an energy recovery device that can prevent discharge of seawater having a high salt concentration that can be generated by mixing seawater and concentrated seawater in the energy recovery device.
- the present invention has the effect of rectifying the flow of the fluid by the flow resistor and making it uniform, making it less dependent on the flow rate flowing from the port and making the flow uniform over a wide range of flow rates.
- An object of the present invention is to provide an energy recovery device having a configuration that can be used.
- seawater pressurized by a pump is passed through a reverse osmosis membrane separation device and separated into fresh water and concentrated seawater to obtain fresh water from seawater.
- An energy recovery device that converts the pressure energy of the concentrated seawater discharged from the reverse osmosis membrane separation device into the pressure energy of the seawater in a seawater desalination system that generates water, and has a space for containing the concentrated seawater and seawater therein
- a cylindrical chamber having a longitudinal direction arranged vertically, a concentrated seawater port provided in the lower part of the chamber for supplying and discharging concentrated seawater, and a seawater port provided in the upper part of the chamber for supplying and discharging seawater
- a flow resistor disposed on the concentrated seawater port side in the chamber; and a flow resistor disposed on the seawater port side in the chamber.
- a flow resistor, and the flow resistor disposed on the concentrated seawater port side and the seawater port side is at least one porous disk, and a virtual circle having a predetermined diameter concentric with the porous disk
- a hole is formed in the outer peripheral region of the outer periphery of the hole, and the hole is formed so that the aperture ratio gradually increases from the outer diameter of the virtual circle having the predetermined diameter toward the outer diameter of the porous disk.
- the concentrated seawater is supplied and discharged from the concentrated seawater port provided at the lower part of the chamber, and the seawater is supplied and discharged from the seawater port provided at the upper part of the chamber to the chamber.
- a hole is formed in the outer peripheral region outside the predetermined diameter of the porous disk, and the high speed flowing into the chamber in the central region of the porous plate having the region where the hole is not formed in the central portion.
- the flow is collided and dispersed in the radial direction of the chamber and rectified so as to reduce the flow velocity, so that it flows downstream from the area where the hole in the outer periphery is formed.
- a more uniform flow velocity distribution can be obtained in the cross section of the chamber.
- the boundary between the concentrated seawater and seawater rectified by the porous disk is formed due to the difference in specific gravity.By pushing and pulling, the lower concentrated seawater pushes up the seawater, the upper seawater pushes down the concentrated seawater, and the concentrated seawater and seawater move up and down.
- the pressure can be transmitted from the high-pressure concentrated seawater to the seawater while suppressing mixing at the boundary portion where the two fluids contact with each other.
- the hole is formed so that the aperture ratio gradually increases from the outer diameter of the virtual circle having the predetermined diameter toward the outer diameter of the porous disk, even if the flow velocity flowing from the port changes to a wide flow velocity range.
- the flow on the back surface of the porous disk hardly changes, and the flow can be made uniform.
- the region in which the hole of the porous disk is not formed is a circle with a predetermined diameter as an inscribed circle, and a circle that is not more than the outer diameter of the porous disk and larger than the diameter of the virtual circle. It is a region of a star-shaped polygon that is a circumscribed circle.
- the flow in the radial direction of the downstream flow after passing through the perforated plate is changed by the pore distribution by attaching the strength of the blocking portion (opening ratio) in the circumferential direction of the perforated plate, Rectification can be performed so that the entire chamber is uniform in the longitudinal direction.
- this shape has a high leveling effect in a wide range of flow rates, and has the effect of making the flow faster than the conventional flow rate.
- the perforated disk is a first perforated plate
- the second perforated plate is disposed at a predetermined distance from the first perforated plate.
- the flow resistor as the flow resistor, the flow dispersed and uniformly rectified by the first perforated plate is further uniformized by the second perforated plate disposed downstream, so that a higher leveling effect can be obtained. Can do.
- the energy recovery device includes a donut-shaped disk having an opening in the center between one or both of the concentrated seawater port and the seawater port and the flow resistor. It is characterized by.
- the concentrated seawater is supplied / drained into the chamber from the concentrated seawater port provided at the lower part of the chamber, and the seawater is supplied / drained into the chamber from the seawater port provided at the upper part of the chamber, the seawater port and the concentrated seawater are provided. Even if the port is not in the axial center of the chamber, the flow that flows into the chamber flows from the hole of the disk with a hole in the center to the center of the flow resistor.
- the flow can be distributed throughout the chamber without bias and the flow downstream of the flow resistor can be rectified into a more uniform flow.
- Concentrated seawater rectified by the flow resistor and seawater form a boundary due to the difference in specific gravity, and by pushing and pulling, the lower concentrated seawater pushes up the seawater, the upper seawater pushes down the concentrated seawater, and the concentrated seawater and seawater move up and down.
- the pressure can be transmitted from the high-pressure concentrated seawater to the seawater while suppressing mixing at the boundary portion where the two fluids contact with each other.
- the seawater desalination system for generating fresh water from seawater by passing the seawater pressurized by the pump through the reverse osmosis membrane separator and separating it into freshwater and concentrated seawater.
- An energy recovery device that converts pressure energy of concentrated seawater discharged from the reverse osmosis membrane separation device into pressure energy of the seawater, having a space for containing the concentrated seawater and seawater therein, and having a longitudinal direction vertically A cylindrical chamber disposed; a concentrated seawater port provided at a lower portion of the chamber for supplying and discharging concentrated seawater; a seawater port provided at an upper portion of the chamber for supplying and discharging seawater; and the concentrated seawater in the chamber A flow resistor disposed on the port side, and a flow resistor disposed on the seawater port side in the chamber, The flow resistor disposed on the reduced seawater port side and the seawater port side is at least one porous disk, and a hole is formed in a region outside a virtual circle having a predetermined diameter of the porous disk.
- a formation region in which the holes are densely formed and a non-formation region in which no hole is formed are provided, and a collective jet that is bundled by a jet group from the holes passing through the formation region is defined.
- the stationary fluid is defined by the flow through the disk being blocked by the non-formation region, and the formation region and the non-formation region are alternately distributed in the circumferential direction of the outer region.
- shearing occurs between the collective jet and the stationary fluid.
- the seawater desalination system for generating fresh water from seawater by passing seawater pressurized by a pump through a reverse osmosis membrane separation device and separating it into fresh water and concentrated seawater.
- An energy recovery device that converts pressure energy of concentrated seawater discharged from the reverse osmosis membrane separation device into pressure energy of the seawater, having a space for containing the concentrated seawater and seawater therein, and having a longitudinal direction vertically A cylindrical chamber disposed; a concentrated seawater port provided at a lower portion of the chamber for supplying and discharging concentrated seawater; a seawater port provided at an upper portion of the chamber for supplying and discharging seawater; and the concentrated seawater in the chamber A flow resistor disposed on the port side, and a flow resistor disposed on the seawater port side in the chamber, The flow resistor disposed on the reduced seawater port side and the seawater port side is at least one porous disk, and a hole is formed in a region outside a virtual circle having a predetermined diameter of the porous disk.
- a formation region for forming the hole and a non-formation region in which no hole is formed are provided in the outer region, the non-formation region is connected to the virtual circle, and is formed in a radial petal shape toward the outer periphery of the porous disk. A formation region is formed.
- the seawater desalination system for generating fresh water from seawater by passing the seawater pressurized by the pump through the reverse osmosis membrane separator and separating it into freshwater and concentrated seawater.
- An energy recovery device that converts pressure energy of concentrated seawater discharged from the reverse osmosis membrane separation device into pressure energy of the seawater, having a space for containing the concentrated seawater and seawater therein, and having a longitudinal direction vertically A cylindrical chamber disposed; a concentrated seawater port provided at a lower portion of the chamber for supplying and discharging concentrated seawater; a seawater port provided at an upper portion of the chamber for supplying and discharging seawater; and the concentrated seawater in the chamber A flow resistor disposed on the port side, and a flow resistor disposed on the seawater port side in the chamber, The flow resistor disposed on the reduced seawater port side and the seawater port side is at least one porous disk, and a hole is formed in a region outside a virtual circle having a predetermined radius from the center of the porous disk.
- the seawater desalination system of the present invention is the seawater desalination system in which seawater pressurized by a pump is passed through a reverse osmosis membrane separation device and separated into fresh water and concentrated seawater to produce fresh water from the seawater.
- the energy recovery device is provided, which converts the pressure energy of the concentrated seawater discharged from the device into the pressure energy of the seawater.
- the pressure energy of high-pressure concentrated seawater discharged from a reverse osmosis membrane separation device can be directly transmitted to seawater, and mixing of two fluids when pushing and pulling concentrated seawater and seawater is suppressed. Therefore, seawater with a high salt concentration is not discharged from the energy recovery device, and the system can be operated without increasing the seawater supply pressure to the reverse osmotic pressure separation device. Electric power required can be reduced.
- the present invention has the following effects. 1) The high-speed flow flowing into the chamber is dispersed in the radial direction of the chamber in the area where the hole is not formed in the central part of the perforated disk in which the hole is formed in the outer peripheral area with a predetermined diameter, and the flow velocity is reduced. It is made to flow downstream from the region where the hole in the outer peripheral portion is formed, and further, the strength of the blocking portion (opening ratio) is given in the circumferential direction of the porous plate, and the downstream flow after passing through the porous plate in the radial direction By changing the flow according to the hole distribution, the action of decelerating and dispersing the large flow in the central portion to make the flow more uniform in the cross section of the chamber is dramatically improved.
- Pressure can be transmitted from high-pressure concentrated seawater to seawater while suppressing mixing at a boundary portion where the two fluids contact each other by a uniformizing action that rectifies the flow of fluid by a flow resistor made of a porous disk. Furthermore, since the hole is formed so that the aperture ratio gradually increases from the outer diameter of the virtual circle having the predetermined diameter toward the outer diameter of the porous disk, even if the flow velocity flowing from the port changes to a wide flow velocity range. The flow on the back surface of the porous disk hardly changes, and the flow can be made uniform.
- FIG. 1 is a schematic diagram showing a configuration example of a seawater desalination system according to the present invention.
- FIG. 2 is a schematic sectional view of the energy recovery chamber of the present invention applied to the seawater desalination system shown in FIG.
- FIG. 3 is a plan view illustrating an example of a flow resistor.
- FIG. 4 is a view showing an example of another flow resistor, and is a plan view showing a flow resistor made of one mesh plate.
- FIG. 5 is an enlarged plan view of the holes of the perforated plate in FIG.
- FIG. 6 is an enlarged plan view of the wire and opening of the mesh plate in FIG. 7A, 7B, and 7C are graphs showing average aperture ratios at the diameter positions of the three types of flow resistors.
- FIG. 8 (a) and 8 (b) show the CFD (computational fluid analysis) in the vicinity of the seawater port when a flow resistor composed of a perforated plate having a central hexagonal shape closed as shown in FIG. It is a figure which shows the flow distribution by.
- 9 (a) and 9 (b) show a CFD in another cross section near the seawater port when a flow resistor composed of a perforated plate whose central portion is closed in a star-shaped hexagonal shape as shown in FIG. It is a figure which shows the flow distribution by (numerical fluid analysis).
- FIGS. 10 (a) and 10 (b) are views of still another cross section in the vicinity of the seawater port when a flow resistor composed of a perforated plate whose central portion is closed in a star-shaped hexagonal shape as shown in FIG. It is a figure which shows the flow distribution by CFD (computational fluid analysis).
- Fig.11 (a) is a schematic sectional drawing which shows the energy recovery chamber of the energy recovery apparatus which concerns on another embodiment of this invention.
- FIG.11 (b) is a top view which shows each porous plate installed in the energy recovery chamber shown to Fig.11 (a).
- FIG. 12 is an enlarged plan view of the second perforated plate shown in FIG. FIGS.
- FIG. 13A and 13B are diagrams showing the flow distribution inside the chamber when seawater flows in from the seawater port near the top of the chamber in FIG. 14 (a) and 14 (b) are diagrams showing flow distributions in different cross sections inside the chamber when seawater flows from the seawater port near the upper part of the chamber in FIG. 11 (a).
- FIGS. 15A and 15B are diagrams showing the flow distribution in yet another section inside the chamber when seawater flows from the seawater port near the upper part of the chamber in FIG. 11A.
- FIG. 16 is a plan view showing another embodiment of the perforated plate of the flow resistor.
- FIG. 17 is an enlarged plan view of the holes of the perforated plate of FIG. FIG.
- FIG. 18 is a cross-sectional view of a chamber of an energy recovery device according to still another embodiment of the present invention.
- FIG. 19 is a plan view of a disk with holes.
- FIG. 20 is a cross-sectional view of a chamber of an energy recovery device according to still another embodiment of the present invention.
- FIG. 21 is a schematic diagram illustrating a configuration example of a conventional seawater desalination system.
- FIG. 22 is a schematic diagram showing a configuration example of a conventional seawater desalination system including two control valves, energy recovery chambers, and valves, which are components of the conventional energy recovery apparatus shown in FIG.
- FIG. 23 is a cross-sectional view showing an energy recovery chamber without a conventional piston.
- FIG. 24 is a cross-sectional view showing an energy recovery chamber in which two perforated plates separated by a predetermined distance as flow resistors arranged in the vicinity of each port in FIG. 23 are arranged in the vicinity of each port.
- FIG. 25 is a cross-sectional view showing an energy recovery chamber provided with a flow resistor provided with a circular closed portion at the center as proposed in Japanese Patent Application No. 2013-0778012.
- FIG. 26 is a plan view of a perforated plate provided with a circular blocking portion proposed in Japanese Patent Application No. 2013-0778012.
- FIG. 27 is a diagram showing a flow distribution by CFD (computational fluid analysis) inside the chamber when high-speed seawater flows from the seawater port near the upper part of the chamber in FIG.
- CFD computational fluid analysis
- FIG. 28 is a diagram showing a flow distribution by CFD (computational fluid analysis) inside the chamber when higher-speed seawater flows from the seawater port near the upper part of the chamber in FIG.
- FIG. 29 is a diagram showing the uniformity of flow at points Pn and Pm on the horizontal cross section in the chamber.
- FIGS. 1 to 20 the same or corresponding components are denoted by the same reference numerals, and redundant description is omitted.
- FIG. 1 is a schematic diagram showing a configuration example of a seawater desalination system according to the present invention.
- seawater taken by a water intake pump (not shown) is pretreated by a pretreatment device and adjusted to a predetermined water quality condition, and then a motor M is directly connected via a seawater supply line 1.
- a seawater supply line 1 Supplied to the high-pressure pump 2.
- Seawater pressurized by the high-pressure pump 2 is supplied via a discharge line 3 to a reverse osmosis membrane separator 4 equipped with a reverse osmosis membrane (RO membrane).
- RO membrane reverse osmosis membrane separation device 4 separates seawater into concentrated seawater having a high salt concentration and fresh water having a low salt concentration, and obtains freshwater from the seawater.
- a concentrated seawater line 5 for discharging concentrated seawater from the reverse osmosis membrane separation device 4 is connected to a concentrated seawater port P1 of the energy recovery chamber 20 via a control valve 6.
- a seawater supply line 1 for supplying pretreated low-pressure seawater is branched upstream of the high-pressure pump 2 and connected to a seawater port P2 of the energy recovery chamber 20 via a valve 7.
- the energy recovery chamber 20 performs energy transfer while separating the two fluids by the boundary region between the concentrated seawater and the seawater.
- the seawater pressurized using the pressure of the concentrated seawater in the energy recovery chamber 20 is supplied to the booster pump 8 via the valve 7. Then, the booster pump 8 further increases the pressure of the seawater so that the pressure becomes the same level as the discharge line 3 of the high-pressure pump 2, and the pressurized seawater merges with the discharge line 3 of the high-pressure pump 2 via the valve 9 and reverses.
- the osmotic membrane separation device 4 is supplied.
- the concentrated seawater that has lost its energy by boosting the seawater is discharged from the energy recovery chamber 20 to the concentrated seawater discharge line 17 via the control valve 6.
- the pressure of the discharge line 3 of the high-pressure pump 2 is, for example, 6.5 MPa
- the seawater is increased to an equal pressure (6.4 MPa).
- the pressure loss of the energy recovery apparatus itself is reduced. For example, 6.3 MPa of seawater Is discharged from the energy recovery device.
- the booster pump 8 slightly raises 6.3 MPa seawater to a pressure of 6.5 MPa, joins the discharge line 3 of the high pressure pump 2, and is supplied to the reverse osmosis membrane separation device 4.
- the booster pump 8 only needs to increase the pressure loss in this way, and the energy consumed here is very small.
- the ratio of obtaining fresh water is about 40%.
- the other 60% is discharged from the reverse osmosis membrane separation device 4 as concentrated seawater, but the pressure of this 60% concentrated seawater is transmitted to the seawater by the energy recovery device and discharged, so that a slight consumption of the booster pump
- the amount of seawater equivalent to a high-pressure pump can be obtained with energy. For this reason, the energy of the high-pressure pump for obtaining the same amount of fresh water as compared with the case where there is no energy recovery device can be almost halved.
- FIG. 2 is a schematic sectional view of the energy recovery chamber of the present invention applied to the seawater desalination system shown in FIG.
- the energy recovery chamber 20 includes a long cylindrical chamber main body 21 and an end plate 22 that closes both open ends of the chamber main body 21.
- a chamber CH is formed in the chamber body 21, a concentrated seawater port P 1 is formed at the position of one end plate 22, and a seawater port P 2 is formed at the position of the other end plate 22.
- the energy recovery chamber 20 is installed vertically. Considering the influence of the specific gravity difference between the concentrated seawater and the seawater, the chamber CH is vertically arranged, the port P1 of concentrated seawater having a high specific gravity is placed on the lower side, and the port P2 of seawater with a low specific gravity is placed on the top. That is, the long cylindrical chamber main body 21 is arranged such that the longitudinal direction (axial direction) of the chamber is vertical, and the concentrated seawater port P1 supplies and drains the concentrated seawater below the chamber CH.
- the seawater port P2 is provided on the upper side of the chamber so as to supply and discharge seawater on the upper side of the chamber CH.
- the total length of the chamber CH is L, and the flow resistor 23 is disposed in the chamber CH at a position spaced apart by L1 in the axial direction from the concentrated seawater port P1, and at a position spaced apart by L1 in the axial direction from the seawater port P2.
- a flow resistor 23 is arranged.
- FIG. 3 is a plan view illustrating an example of a flow resistor.
- the flow resistor 23 has a disk shape having an outer diameter ( ⁇ D) equal to the inner diameter of the chamber, and a virtual circle (diameter: ⁇ dc) at the center is an inscribed circle.
- a plurality of small holes 23h having a diameter ⁇ dk1 are formed outside a virtual polygon (particularly a concave polygon, a star hexagon (hexagonal star, hexagonal star, etc.)) having a circle (diameter: ⁇ dr) as a circumscribed circle.
- the rectangular inner side (center side) is composed of a single perforated plate in which no small holes are formed.
- the perforated plate in which a central portion and a part of the outer periphery are closed.
- the intersection of the inscribed circle that is a virtual circle and the virtual polygon is represented by Pdc
- the intersection of the circumscribed circle that is a virtual circle and the virtual polygon is represented by Pdr.
- the diameter of the virtual circle ( ⁇ dc) at the center of the perforated plate is the same as or slightly larger than the inner diameter ⁇ ds of the seawater port and the inner diameter ⁇ db of the concentrated seawater port in FIG.
- the high-speed flow is made to collide with the blockage to slow down the flow.
- the blocking portion is made larger than each port, the flow passing through the plurality of small holes 23h provided on the outer peripheral side is biased toward the outer peripheral side, and the equalizing action becomes smaller on the contrary, so that it is almost the same as the inner diameter of each port.
- the virtual circle at the center of the flow resistor 23 is provided to be concentric with the outer periphery of the flow resistor disk.
- a seawater port and a concentrated seawater port are provided at the axial center of the cylindrical chamber so that a high-speed flow flowing from each port into the chamber collides with the closed portion defined by the virtual circle. Yes.
- the diameter ( ⁇ dr) of the virtual circle circumscribing the star hexagon is made smaller than the outer diameter ( ⁇ D) of the flow resistor 23.
- the flow resistor 23 composed of a perforated plate closed with a star-shaped hexagon gives an appropriate flow resistance to the flow upstream of the flow resistor in the chamber CH, thereby reducing the flow downstream of the flow resistor. It has a function of rectifying the entire chamber to be uniform. It should be noted that the outer edge connecting the corners of the polygon is not necessarily a straight side.
- FIG. 4 is a view showing an example of another flow resistor, and is a plan view showing a flow resistor made of one mesh plate.
- the flow resistor 23 is composed of a mesh material formed by weaving a wire material into a disk shape having an outer diameter ⁇ D.
- Another star-shaped hexagonal plate 30 having a virtual circle ( ⁇ dc) at the center of the disk made of mesh material as an inscribed circle and an outer virtual circle ( ⁇ dr) as a circumscribed circle is attached.
- the fluid flows in the outer portion of the star-shaped hexagon where the mesh material is exposed, and the fluid does not flow in the portion of the star-shaped hexagonal plate 30.
- the flow resistor 23 configured to be closed by a star-shaped hexagon gives an appropriate flow resistance to the flow upstream of the main flow resistor in the chamber CH, thereby allowing the flow downstream of the main flow resistor to flow through the entire chamber. It has a function of rectifying to be uniform.
- the porous plate shown in FIG. 3 and the mesh plate shown in FIG. 4 are collectively referred to as a porous disk.
- a uniform perforated plate has a certain aperture ratio defined by the shape of the hole (diameter in the case of a round hole), the distance (pitch) between arrangements, and the arrangement.
- APR 90.6 ⁇ dk 2 / P 2 (Formula 1)
- the aperture ratio is defined by the following equation, assuming that the mesh between the lines is Am and the wire diameter is dm.
- APR Am 2 / (Am + dm) 2 (Formula 2)
- FIG. 7A, 7B, and 7C are graphs showing the aperture ratio at the radial position of the disk.
- the aperture ratio (APR) at the radial position of the disk is constant at any position as shown in FIG. Become.
- the aperture ratio (APR) at each diameter position in the case of a perforated plate (FIGS. 25 and 26) provided with a circular closed portion at the center is zero in the area of the diameter dc closed at the center, Since the aperture ratio is constant from a diameter larger than the diameter dc, the aperture ratio at the radial position shown in FIG. 7B is obtained.
- the star-shaped hexagonal closed portion of the present invention when the star-shaped hexagonal closed portion of the present invention is provided, the area of the diameter dc closed at the central portion has an opening ratio of zero, and the outer side of the circumscribed circle (diameter dr) of the star-shaped hexagon is uniform. Since the APR is calculated based on the aperture ratio of the mesh, the aperture ratio gradually increases from zero to the APR, and the aperture ratio relationship at the radial position shown in FIG. As described above, the present invention can be characterized as a shape in which the aperture ratio gradually increases toward the outer periphery. In addition, the aperture ratio of the vertical axis
- the star-shaped polygon is a star-shaped hexagon, and the angle formed by two imaginary lines connecting two adjacent acute vertices on the outer peripheral side of the disk and the center of the porous plate is 60 degrees.
- the center line of the staggered arrangement is arranged so as to be the above-mentioned star-shaped hexagonal virtual line, it can be rotationally symmetric with respect to the perforated plate center. it can.
- the arrangement of the individual holes formed in the perforated plate is also rotationally symmetric, so that the flow downstream of the perforated plate is rectified so that the flow downstream of the perforated plate is uniform over the entire chamber. Can be expected.
- FIGS. 8A and 8B are diagrams showing the flow distribution at the time of inflow of seawater near the seawater port of the chamber in the B1-B1 cross section passing through the intersection of the star-shaped hexagon of the perforated plate and the inscribed circle.
- FIG. 8B is a plan view of the flow resistor 23 having the same configuration as that shown in FIG. 3, and FIG. 8A is a seawater port of the chamber in the B1-B1 cross section of FIG. 8B. It is a figure which shows the flow distribution of the vicinity.
- FIG.8 (b) illustration of the small hole 23h outside a star-shaped hexagon is abbreviate
- the flow that flows into the chamber CH from the seawater port P2 flows into the chamber from the small-diameter port, so that the velocity distribution near the port of the chamber has a large flow at the center.
- This high-speed flow at the center collides with the circular closed portion at the center of the perforated plate facing the port, and becomes a flow toward the outer periphery of the chamber horizontally along the plate.
- the fluid flows downstream only through small holes formed in the perimeter of the perforated plate and flows through the perforated plate, and part of the horizontal flow flows upward along the side surface of the chamber. A big vortex is generated.
- the speed of the high-speed flow flowing in from the port becomes slow.
- the flow downstream of the perforated plate that has passed through the small holes of the perforated plate from the outer peripheral portion flows so as to gather again at the central portion after the central portion once flows to the outer peripheral side.
- a vortex indicated by Vx is generated on the back side of the closed portion of the perforated plate.
- a vortex Vx is also generated on the outer peripheral side upstream of the evaluation cross section AA separated from the perforated plate by a predetermined distance.
- the vortex becomes a complicated flow having a component velocity in a direction perpendicular to the two-dimensional plane of the cross section shown in FIG.
- FIG. 9B shows a plan view of the flow resistor 23 having the same configuration as that shown in FIG. 3, and FIG. 9A shows the seawater of the chamber in the B2-B2 cross section of FIG. 9B. It is a figure which shows the flow distribution of a port vicinity.
- FIG.9 (b) illustration of the small hole 23h outside a star-shaped hexagon is abbreviate
- the vortex Vx is generated on the back side of the closed portion of the porous plate and on the outer peripheral side upstream of the evaluation section AA, as in FIG. 8A.
- the central vortex Vx is larger than that in the cross section shown in FIG. 8A, and the outer peripheral vortex Vx is smaller than that in FIG. 8A. ing.
- FIGS. 10 (a) and 10 (b) Shown in 10B is a plan view of the flow resistor 23 having the same configuration as that shown in FIG. 3, and FIG. 10A is a seawater port of the chamber in the B3-B3 cross section of FIG. 10B. It is a figure which shows the flow distribution of the vicinity. In FIG. 10B, the small holes 23h outside the star-shaped hexagon are not shown. As shown in FIG.
- the ratio of the closed portion at the center is large, and a flow along the wall of the cylinder in the chamber is formed from the outer peripheral portion.
- a large vortex Vx is formed at the center, and a complicated flow having a component velocity perpendicular to the two-dimensional plane of the cross section shown in FIG.
- the vortex Vx has an appearance in which a plurality of complicated vortices are mixed.
- the flow behavior in the B1-B1 and B3-B3 cross-sections is extreme, but can occur in very limited pinpoint cross-sections, each with three cross-sections. The flow behavior intermediate between these extreme flow behaviors is almost the same as that of the B2-B2 cross section.
- the flow that flows in from the concentrated seawater port P1 arranged at the lower side of the chamber collides with the closing plate at the center of the perforated plate at the time of inflow, and the flow slows down. Therefore, the fluid between the perforated plates flows in and out with a uniform flow in the horizontal section of the chamber, and is uniformly pushed and pulled over the entire section. By this action, when seawater and concentrated seawater are pushed and pulled, mixing of seawater and concentrated seawater having different salt concentrations can be suppressed.
- the energy recovery device of the present invention pushes the mixing region of seawater and concentrated seawater so as to go back and forth between the flow resistors respectively arranged on the seawater port P2 side and the concentrated seawater port P1 side in the chamber. Switch the pull. Therefore, the mixed region of seawater and concentrated seawater exists in a portion indicated by La between the flow resistors 23 and 23 in FIG.
- the seawater flowing in from the seawater port P2 provided above the chamber becomes a uniform flow in the horizontal section of the downstream chamber by the flow resistor 23, but this flows out from the concentrated seawater port P1 side which is the discharge side. It also changes depending on the flow resistance. That is, it changes also with the combination with the flow resistor 23 arrange
- the resistance of the flow resistor 23 on the outflow side is taken into consideration.
- the flow equalization action by the inflow-side flow resistor in the present invention varies depending on the arrangement of the outflow-side flow resistor and the port. Since the energy recovery device repeats inflow and outflow of seawater and concentrated seawater alternately, in addition to making the flow in one direction uniform, consideration must be given to the flow of outflow when flowing in the opposite direction.
- Fig.11 (a) is a schematic sectional drawing which shows the energy recovery chamber of the energy recovery apparatus which concerns on another embodiment of this invention.
- the first porous plate 24 is horizontally disposed in the chamber at a position separated by a distance L1 from the seawater port P2, and similarly spaced from the concentrated seawater port P1 by L1.
- the first perforated plate 24 is disposed horizontally at the position, and the second perforated plate 25 is disposed horizontally at a position spaced apart from each first perforated plate 24 by L2.
- a flow resistor 23 is constituted by the first porous plate 24 and the second porous plate 25.
- 11 (b) is a plan view showing each porous plate installed in the energy recovery chamber shown in FIG. 11 (a).
- the first perforated plate 24 constituting the flow resistor disposed in the energy recovery chamber of FIG. 11A is a star-shaped six plate having a virtual circle at the center as an inscribed circle and a virtual circle at the outer periphery as a circumscribed circle.
- the first porous plate 24 may be a porous plate whose central portion is closed as shown in FIG. 4 and whose outer peripheral portion is a mesh material.
- the second perforated plate 25 is a disc having small holes formed at equal intervals on the entire surface.
- the second porous plate 25 may be a disk made of a mesh material.
- FIG. 12 is an enlarged plan view of the second porous plate 25 shown in FIG.
- the second porous plate 25 is made of a disc having an outer diameter of ⁇ D equal to the inner diameter of the chamber, and a small hole 25h having a diameter ⁇ dk2 is formed on the entire surface of the disc as shown in FIG. It is formed at intervals.
- FIGS. 11 (a), 11 (b) show a porous disc 24 in which the central portion of the plate is closed with a star hexagon as shown in FIGS. 11 (a), 11 (b).
- FIGS. 13 (a) and 13 (b) are diagrams showing the flow distribution when inflowing seawater near the seawater port of the chamber in the B1-B1 cross section passing through the intersection of the star-shaped hexagon of the perforated plate and the inscribed circle. That is, FIG. 13B shows a plan view of the first perforated plate 24 having the same configuration as that shown in FIG. 3, and FIG. 13A shows the chamber in the B1-B1 cross section of FIG. It is a figure which shows the flow distribution of seawater port vicinity. In FIG. 13B, illustration of the outer small hole 23h of the star-shaped hexagon is omitted.
- FIGS. 14 (a) and 14 (b) show the flow distribution when seawater flows in the vicinity of the seawater port of the chamber in the B2-B2 cross section passing through the middle of the intersection of the star hexagon and the inscribed circle and the circumscribed circle of the perforated plate.
- FIG. 14B is a plan view of the first perforated plate 24 having the same configuration as that shown in FIG. 3, and FIG. 14A is a view of the chamber in the B2-B2 cross section of FIG. 14B. It is a figure which shows the flow distribution of seawater port vicinity. In FIG. 14 (b), the outer small hole 23h of the star-shaped hexagon is not shown.
- FIG. 15 (a) and 15 (b) are diagrams showing the flow distribution at the time of inflow of seawater near the seawater port of the chamber in the B3-B3 cross section passing through the intersection of the perforated star hexagon and circumscribed circle. That is, FIG. 15B shows a plan view of the first perforated plate 24 having the same configuration as that shown in FIG. 3, and FIG. 15A shows the chamber in the B3-B3 cross section of FIG. It is a figure which shows the flow distribution of seawater port vicinity. In FIG. 15 (b), the outer small hole 23h of the star-shaped hexagon is not shown.
- the flow speed and direction approach the same flow, and a more uniform flow can be obtained.
- the function of the first perforated plate is to cause a high-speed flow from the seawater port (or concentrated seawater port) to collide with the circular block at the center to reduce the speed and to distribute the flow to the outer periphery. Then, the flow downstream of the perforated plate is dispersed by the hole channel whose opening ratio gradually increases from the center toward the outer periphery so as to have the “uniform” velocity distribution defined in FIG. 29 in the circular cross section of the chamber.
- the function of the second perforated plate is to further smooth out the difference in the velocity distribution still remaining in the flow dispersed by the first perforated plate.
- FIG. 16 is a plan view showing another shape of the flow resistor.
- the flow resistor 23 shown in FIG. 16 is used instead of the flow resistor 23 shown in FIG.
- the flow resistor is constituted by two porous plates shown in FIGS. 11A and 11B, the flow resistor is replaced with the porous plate 24 shown in FIGS. 11A and 11B on the side close to each port.
- a perforated plate 24 shown in FIG. As shown in FIG.
- the flow resistor 23 has a disk shape with an outer diameter ( ⁇ D) equal to the inner diameter of the chamber, and a virtual circle ( ⁇ dc) at the center is an inscribed circle, and a virtual circle ( A plurality of small holes 23h having a diameter ⁇ dk1 are formed on the outer side of a star-shaped square having a circumscribed circle of ⁇ dr), and a single perforated plate with no small holes formed on the inner side (center side) of the star-shaped square. It is configured. That is, it is a perforated plate in which a central portion and a part of the outer periphery are closed.
- the diameter of the virtual circle ( ⁇ dc) at the center of the perforated plate is set to be the same as or slightly larger than the inner diameter ⁇ ds of the seawater port and the concentrated seawater port in FIG.
- the high-speed flow is made to collide with the blockage to slow down the flow.
- the blocking portion is made larger than each port, the flow passing through the plurality of small holes 23h provided on the outer peripheral side is biased toward the outer peripheral side, and the equalizing action becomes smaller on the contrary, so that it is almost the same as the inner diameter of each port.
- the diameter of the virtual circle ( ⁇ dr) circumscribing the star-shaped square is made smaller than the outer diameter ( ⁇ D) of the flow resistor 23.
- FIG. 17 is an enlarged plan view showing the arrangement of the holes of the perforated plate shown in FIG. Holes having a diameter of ⁇ dk are arranged apart from each other by a distance (pitch) P on an orthogonal axis.
- This arrangement is called a parallel arrangement, and the aperture ratio can be calculated as follows.
- APR 78.5 ⁇ dk 2 / P 2 (Formula 3)
- the shape that closes the center of the disk is a star-shaped square, and the holes are arranged in parallel, so that the shape of the chamber is 90-degree rotational symmetry.
- the flow resistor composed of a perforated plate of this shape also has a feature that the aperture ratio gradually increases from the outer diameter of the center virtual circle toward the outer diameter of the perforated disk.
- the flow resistor 23 composed of a perforated plate closed with a star-shaped square similarly provides a flow resistance downstream of the flow resistor by giving an appropriate flow resistance to the flow upstream of the flow resistor in the chamber CH. Has a function of rectifying the gas so as to be uniform over the entire chamber.
- Both the star-shaped quadrangle (FIG. 16) and the star-shaped hexagon (FIG. 2) are excellent in homogenization, and the shape in which the aperture ratio gradually increases from the outer diameter of the center virtual circle toward the outer diameter of the porous disk is uniformized. It is shown to be an effective feature.
- FIG. 18 is a cross-sectional view of a chamber of an energy recovery device according to still another embodiment of the present invention.
- the chamber of the present embodiment has a configuration in which the upper seawater port is divided into two ports, a seawater inflow port P2 IN and a seawater outflow port P2 OUT , and each is provided at a position spaced radially from the central axis of the chamber. ing. Then, from the port P2 IN, P2 OUT only spaced locations Lp, it is arranged perforated disc 31 formed with holes in the center.
- a first porous plate 24 whose central portion is closed at a position spaced apart from the holed disk 31 by L1 is disposed, and a second porous plate 25 having holes uniformly formed on the entire surface is disposed at a position spaced apart by L2. Yes.
- FIG. 19 is a plan view of the holed disc 31.
- the holed disc 31 has an outer diameter equal to the inner diameter ( ⁇ D) of the chamber, and has a circular hole with a diameter ( ⁇ dp) at the center of the disc.
- ⁇ D inner diameter
- ⁇ dp diameter
- the flow flowing in from the port is restricted from flowing from the outer peripheral portion to the flow resistor 23 through the hole having the diameter ⁇ dp in the central portion. Even if the configuration is not in the central portion, it is possible to diffuse and rectify the flow uniformly in the outer peripheral direction by the downstream flow resistor 23 after once flowing in the central portion of the chamber. Therefore, a uniform flow can be formed in the cylindrical chamber.
- a flow collides with the obstruction
- the downstream flow after the first porous plate 24 is the same as the flow shown and described in FIGS. 8A and 8B to FIGS. 10A and 10B.
- the perforated disc 31 is the same thing as that disposed in the chamber axis with the chamber port locations of the arrangement seawater inlet port P2 IN to an eccentric position.
- FIG. 20 is a cross-sectional view of a chamber of an energy recovery device according to still another embodiment of the present invention.
- the configuration of the chamber of FIG. 20 on the seawater port side is the same as that of the embodiment shown in FIG. 18, but the chamber of this embodiment is different in that a concentrated seawater port on the lower side of the chamber is formed on the side surface of the chamber. . That is, since the concentrated seawater port P1 is formed on the side surface of the chamber, the concentrated seawater is supplied and discharged in a direction (radial direction) perpendicular to the axial direction of the chamber.
- a holed disc 31 having a hole formed in the center is disposed at a position spaced apart by Lp from the chamber end surface on the concentrated seawater port side, and the first porous plate 24 is disposed at a position spaced apart from the holed disk 31 by L1.
- the second perforated plate 25 is arranged at a position spaced apart from the first perforated plate 24 by L2.
- the perforated disc 31 has the same configuration as that shown in FIG. 19, the first porous plate 24 has the same configuration as that shown in FIG. 3 or FIG. 4, and the second porous plate 25 has the same configuration as that shown in FIG. The configuration is the same as that shown.
- the flow that flows in from the concentrated seawater port P1 on the side of the chamber is regulated by the circular plate 31 with a hole so that it flows from the hole with the diameter ( ⁇ dp) in the center toward the flow resistor 23.
- the flow can be once rectified in the central part of the chamber and then uniformly distributed in the outer peripheral direction by the downstream flow resistor 23 to be rectified. Therefore, a uniform flow can be formed in the cylindrical chamber.
- the downstream flow after the first perforated plate 24 is a flow in which the flows shown in FIGS. 8A and 8B to FIGS. 10A and 10B are upside down.
- the flow equalizing action by the flow resistor on the inflow side also varies depending on the arrangement of the flow resistor 23 and the port on the outflow side.
- the holed disc 31 having a hole in the center, the inflow position into the flow resistor 23 becomes the center of the chamber regardless of the arrangement of the ports.
- the holed disk 31 disposed between each port and the flow resistor 23 Since the hole formed in the central portion can be seen as a virtual seawater port and a concentrated seawater port inside the chamber, the same operation and effect as the invention of the embodiment shown in FIG. 2 and FIGS. 11 (a) and 11 (b) Can be obtained.
- the flow resistance constructed in the chamber has symmetry in inflow and outflow.
- the flow resistor configured in the chamber between the ports is rotationally symmetric about the central axis of the chamber, and the flow resistance of inflow and outflow in the radial direction of the chamber is rotationally symmetric.
- the internal configuration of the chamber is rotationally symmetric about the center axis of the chamber between the hole at the center of the holed disc 31 and the center port. It has become.
- both port positions are not at the center of the chamber as in the embodiment of FIG. 20, the internal configuration of the chamber between the central holes of both the perforated discs 31 is rotationally symmetric about the chamber center axis. ing.
- the concentrated seawater flows out from the flow resistor 23 on the concentrated seawater port side to the port P1 side on the downstream left side. Because it becomes easier, the flow is biased in the radial direction. As a result, when viewed as seawater inflow, the action of the flow resistor 23 on the seawater side is affected by the non-uniformity of the downstream flow resistance, and the uniformizing action is lost. This is because, in the absence of the holed disc 31 of the embodiment of FIG. 20, the rotational symmetry about the chamber central axis is lost in the configuration between the ports, and the feature of the structural symmetry of the present invention is lacking. Because.
- the flow resistor configured in the chamber between the ports (holes) rotationally symmetric around the chamber central axis, the flow resistance in the chamber radial direction is also rotationally symmetric, There is a uniform flow in the push-pull space between the flow resistors.
- the present invention can be used in a seawater desalination system that removes salt from seawater to desalinate seawater and an energy recovery device that is suitably used in a seawater desalination system (seawater desalination plant).
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nanotechnology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
そのため、本件出願人は、特開2010-284642号公報(特許文献1)において円筒形長尺のチャンバーをエネルギー交換チャンバーとし、チャンバー内に逆浸透膜(RO膜)から排出される高圧の濃縮海水と海水とを導入し、濃縮海水で直接海水を加圧する方式を採用することにより、ピストンの無い形態のエネルギー回収チャンバーを提案した。
図24に示すエネルギー回収チャンバー10のその他の構成は、図23に示すエネルギー回収チャンバー10の構成と同様である。
海水ポートP2からチャンバーCHに流入した流れは、小径のポートからチャンバーに流入するので、チャンバーのポート付近の速度分布は中央部が大きな流れになる。この中央部の高速な流れは、ポートと対向する多孔板の閉塞部に衝突し、板に沿って水平にチャンバー外周に向かう流れとなる。流体は多孔板外周部に形成した小孔からのみ多孔板を通過して下流に流れ、一部の水平な流れはチャンバー側面に沿って上向きに流れ、外周部で大きな渦が生じる。この時、多孔板の閉塞部に衝突して外周へ流れるとともに、ポートから流入する高速な流れの速度が遅くなる。そして外周部から小孔を通過した流れは、中央部が一旦外周側に流れた後、再び中央部に集まるように流れる。多孔板の閉塞部の下流には渦が生じるが、図27における多孔板からチャンバー中央へ所定の距離だけ離間したA-A断面において、流れの速度と、向きが均一な流れとすることができるというものであった。
図28は円板の中央に円形の閉塞部を有する多孔板をチャンバー内に配置し、流速を図27のケースの3倍に高速にした場合の海水ポート近傍の数値流体解析(CFD)による流れ分布の結果を示す図である。
数値流体解析(CFD)と分析の結果、流速に依存する速度分布の変化は、円板の中央部にある円形の閉塞部の裏側(下流側)に生じる渦の大きさに起因することがわかった。
このように、中央に円形の閉塞部を設けた多孔板やメッシュによれば、小径のポートからの流速が、いつも所定の範囲にあれば流れをチャンバー内に均一に分散して流す作用が得られるのであるが、ポートからの流速を大きく変更した場合に所望の作用が得られない場合がある。特に、実際のポートからチャンバーに給排水する際には、常に一定の速度でポートからチャンバーに流れるのではなく、1サイクルで速度は大きく変化する。すなわち、所望の流れの均一化作用が得られる流速限界を大きくすることは、エネルギー回収チャンバーによって広い範囲の処理流量に適用できるということになる。なお、中央部に円形の閉塞部を設けた多孔板の限界流速は約250mm/s程度であった。ただし、この流速以上にするとまったく均一化作用がなくなるということではなく、流れの速度分布が規定した閾値以上に大きくなるということである。
海水と濃縮海水の押し引きによって境界部の混合が促進されるが、境界部の上下にある海水と濃縮海水の流れをチャンバー内のLaの領域で均一な流れにすることで、流れの不均一性によって境界面が乱流拡散して混合する現象が抑制されると同時に、境界部を水平に維持することにより仮想的なピストンのように押し引きすることができる。
特に、本発明は、流れ抵抗器による流体の流れを整流し、均一な流れにする効果としてポートから流入する流速に依存しにくく、広い範囲の流速において均一な流れにする効果を発揮することができる構成を有したエネルギー回収装置を提供することを目的とする。
更に、該所定の直径の仮想円の外径から多孔円板の外径に向かって開口率が漸増するように孔を形成したので、ポートから流入する流速が広い範囲の流速に変化しても、多孔円板の背面の流れが変化しにくく、均一な流れにすることができる。
本発明によれば、多孔板の円周方向に閉塞部(開口率)の強弱をつけることによって、多孔板を通過した後の下流の流れの半径方向への流れを孔分布によって変化させて、チャンバー全体で長手方向に均一になるように整流することができる。また、本形状は海水ポートおよび濃縮海水ポートからの流入流速が変化しても、広範囲の流速において均一化作用が高く、従来の流速より高速な流れを均一にする作用を有する。
本発明によれば、流れ抵抗器として、第1多孔板によって分散、均一に整流された流れを下流に配置した第2多孔板によりさらに均一化作用されるので、より高い均一化効果を得ることができる。
本発明によれば、チャンバーの下部に設けられた濃縮海水ポートから濃縮海水をチャンバー内へ給排水し、チャンバーの上部に設けられた海水ポートから海水をチャンバー内へ給排水する場合、海水ポートと濃縮海水ポートがチャンバーの軸心になくても、チャンバーに流入した流れを、中央に孔を備えた円板の孔から流れ抵抗器の中央部に流れるようにしたため、流れ抵抗器の上流の中央部から偏りなくチャンバー全体に流れを分散し、流れ抵抗器の下流の流れをより均一な流れに整流することができる。流れ抵抗器で整流された濃縮海水と海水は比重の差から境界部が形成され、押し引きにより下側の濃縮海水は海水を押し上げ、上側の海水は濃縮海水を押し下げ、濃縮海水と海水を上下に分離しつつ2流体の接触する境界部での混合を抑制しながら、高圧の濃縮海水から海水へ圧力伝達を行うことができる。
本発明によれば、逆浸透膜分離装置から排出される高圧の濃縮海水の圧力エネルギーを海水に直接伝達することができるとともに、濃縮海水と海水の押し引き時に2つの流体が混合することが抑制されるので、エネルギー回収装置から塩濃度の高い海水が排出されることがなく、ひいては逆浸透圧分離装置への海水供給圧力を高くすることなくシステムを運転することができるので、システムの運転に要する電力を削減することができる。
1)チャンバーに流入する高速な流れを、所定の直径より外周領域に孔が形成された多孔円板における中心部の孔が形成されていない領域で、チャンバー半径方向に分散するととともに流速を落とし、外周部の孔が形成された領域から下流に流れるようにし、さらに多孔板の円周方向に閉塞部(開口率)の強弱をつけ、多孔板を通過した後の下流の流れの半径方向への流れを孔分布によって変化させることにより、流入する中心部の大きな流れを減速、分散してチャンバーの断面においてより均一な流れにする作用が飛躍的に向上される。多孔円板からなる流れ抵抗器による流体の流れを整流する均一化作用によって2流体の接触する境界部での混合を抑制しながら、高圧の濃縮海水から海水へ圧力伝達を行うことができる。更に、該所定の直径の仮想円の外径から多孔円板の外径に向かって開口率が漸増するように孔を形成したので、ポートから流入する流速が広い範囲の流速に変化しても、多孔円板の背面の流れが変化しにくく、均一な流れにすることができる。
2)チャンバー内での乱流拡散による濃縮海水と海水の混合を抑制でき、濃度の高い海水を逆浸透膜分離装置に送ってしまうことがないので、逆浸透膜分離装置の性能を十分に発揮することができるとともに、逆浸透膜自体の交換周期を長くすることができる。
高圧ポンプ2の吐出ライン3の圧力が例えば6.5MPaとすると、逆浸透膜分離装置4のRO膜モジュールの圧力損失で僅かに圧力が低下し6.4MPaの濃縮海水が逆浸透膜分離装置4から排出される。この濃縮海水の圧力を海水に作用すると海水が等圧(6.4MPA)に昇圧されるが、エネルギー回収装置を流れる際にエネルギー回収装置自体の圧力損失分が低下し、例えば6.3MPaの海水がエネルギー回収装置から排出される。ブースターポンプ8は6.3MPaの海水を6.5MPaの圧力に僅かに昇圧して高圧ポンプ2の吐出ライン3に合流して逆浸透膜分離装置4に供給される。ブースターポンプ8はこのように僅かな圧力損失分を昇圧するだけでよく、ここで消費されるエネルギーは僅かである。
多孔板の中央部の仮想円の径(φdc)は、図2における海水ポートの内径φds、濃縮海水ポートの内径φdbと同じ径、あるいはそれより僅かに大きな径とすることで、各ポートから流入する高速な流れを閉塞部に衝突させて流れを遅くするようにする。しかし、閉塞部を各ポートより大きくしすぎると、外周側に設けた複数の小孔23hを通過する流れが外周側に偏り、均一化作用が逆に小さくなるため、各ポートの内径とほぼ同じ径の仮想円とする。
ここで、流れ抵抗器23の中央部の仮想円は、流れ抵抗器の円板外周と同心になるように設けられている。海水ポートおよび濃縮海水ポートを、図2に示すように円筒状チャンバーの軸心に設け、各ポートからチャンバーに流入する高速な流れを、この仮想円で定義される閉塞部に衝突させるようにしている。
星型六角形と外接する仮想円の径(φdr)は、流れ抵抗器23の外径(φD)より小さくする。
星型六角形で閉塞した多孔板で構成される流れ抵抗器23は、チャンバーCH内において本流れ抵抗器の上流の流れに適切な流れ抵抗を与えることで、本流れ抵抗器の下流の流れをチャンバー全体に均一になるように整流する機能を有する。
尚、多角形の隣り合う角と角を結ぶ外縁は、必ずしも直線の辺でなくても良い。
星型六角形で閉塞して構成される流れ抵抗器23は、チャンバーCH内において本流れ抵抗器の上流の流れに適切な流れ抵抗を与えることで、本流れ抵抗器の下流の流れをチャンバー全体に均一になるように整流する機能を有する。図3に示す多孔板および図4に示すメッシュ板を総称して多孔円板という。
均一な多孔板は孔の形状(丸孔の場合は径)、配置間距離(ピッチ)、配置により一定の開口率が定義される。例えば、円形孔の径dk、配置間隔P、60度千鳥という図5に孔の配置を示すような一般的な多孔板の場合、開口率APRは次式で定義される。
APR=90.6×dk2/P2 (式1)
図6に示すような線材を編み込んだメッシュ材の場合、線間の目開きAm、線径dmとすると、開口率は次式で定義される。
APR=Am2/(Am+dm)2 (式2)
閉塞部が無い場合、円板全面は平均的に均一な開口率となるため、円板の半径位置における開口率(APR)は、図7(a)に示すように、どの位置においても一定になる。
中央部に円形の閉塞部を設けた多孔板(図25および図26)の場合の各直径位置での開口率(APR)は、中央部に閉塞した直径dcの領域は開口率がゼロとなり、直径dcより大きい径から一定の開口率となるので図7(b)に示す半径位置における開口率の関係となる。
一方、本発明の星型六角形の閉塞部を設けた場合、中央部に閉塞した直径dcの領域は開口率がゼロとなり、星型六角形の外接円(直径dr)より外側が均一な多孔やメッシュの開口率で計算されるAPRとなるので、ゼロからAPRに開口率が漸増する関係となり、図7(c)に示す半径位置における開口率の関係となる。
以上のように、本発明は開口率が外周に向けて漸増する形状であると特徴付けることができる。
なお、図7(a),(b),(c)に示した縦軸の開口率は半径位置における平均開口率としている。
図3に示したように、星型多角形を星型六角形とし、円板外周側の隣り合う2つの鋭角頂点と多孔板中心とを結ぶ2つの仮想線によって形成される角度を60度とし、図5に示すように孔の配置を60度千鳥とし、千鳥配置の中心線を前述の星型六角形の仮想線となるように配置すると、多孔板中心に対して回転対称とすることができる。このように、多孔板に形成する個々の孔配置も回転対称とすることで、回転対称でない形状に対して、本多孔板の下流の流れをチャンバー全体に均一になるように整流するより高い作用が期待できる。
図8(a),(b)は多孔板の星型六角形と内接円の交点を通るB1-B1断面におけるチャンバーの海水ポート近傍の海水の流入時の流れ分布を示す図である。すなわち、図8(b)は図3に示したものと同様の構成の流れ抵抗器23の平面図を示し、図8(a)は図8(b)のB1-B1断面におけるチャンバーの海水ポート近傍の流れ分布を示す図である。なお、図8(b)においては星形六角形の外側の小孔23hは図示を省略している。
図8(a)に示すように、海水ポートP2からチャンバーCHに流入した流れは、小径のポートからチャンバーに流入するので、チャンバーのポート付近の速度分布は中央部が大きな流れになる。この中央部の高速な流れは、ポートと対向する多孔板の中央の円形閉塞部に衝突し、板に沿って水平にチャンバー外周に向かう流れとなる。流体は多孔板外周部に形成した小孔からのみ多孔板を通過して下流に流れ、一部の水平な流れはチャンバー側面に沿って上向きに流れ、多孔板で区画された上流空間で外周部で大きな渦が生じる。この時、多孔板の閉塞部に衝突して外周へ流れるとともに、ポートから流入する高速な流れの速度が遅くなる。そして外周部から多孔板の小孔を通過した多孔板下流の流れは、中央部が一旦外周側に流れた後、再び中央部に集まるように流れる。これは多孔板の閉塞部の裏側にはVxで示す渦が生じるためである。また、多孔板から所定の距離だけ離間した評価断面A-Aの上流の外周側にも渦Vxが生じる。ここで、渦は図8(a)に示す断面の二次元平面に対し垂直方向の成分の速度を持つ複雑な流れになる。
図9(a)に示すように、図8(a)と同様に多孔板の閉塞部の裏側と評価断面A-Aの上流の外周側に渦Vxが生じる。中央の渦Vxは図8(a)で示した断面のときより大きく、外周の渦Vxは図8(a)のときより小さく、本断面の二次元における主要流れは、真下に向かう流れになっている。
図10(a)に示すように、中央部の閉塞部の割合が大きく、外周部からチャンバー内円筒の壁に沿った流れが形成される。そして中央部には大きな渦Vxが形成され、図10(a)に示す断面の二次元平面に対し垂直方向の成分の速度を持つ複雑な流れが形成される。ここで、渦Vx内には複数の複雑な渦が混在した様相を呈する。
B1-B1断面とB3-B3断面における流れの挙動は両極端でありながら、各々3断面ずつの、ごく限られたピンポイントの断面で起こりうる。これら両極端の流れの挙動の中間の流れの挙動は、ほとんどB2-B2断面の場合のようになっている。以上3種類の断面の流れの挙動により、結果としてポートから流入する流速が広い範囲の流速に変化しても、多孔円板の背面の流れが変化しにくく、均一な流れとすることが可能となった。
図27および図28にて示した流れは中央部にのみ集まるように流れていたが、閉塞部に半径方向に開口率の分布を付けることにより、この分布によって多孔板を通過する主要な流れが半径方向に分散される。
このように、本発明における流入側の流れ抵抗器による流れの均一化作用は、流出側の流れ抵抗器やポートの配置によっても変化する。エネルギー回収装置は、海水と濃縮海水が交互に流入と流出を繰り返すため、一方向の流れを均一にすることに加え、逆向きに流れた場合の流出の流れにも配慮しなければならない。
図11(b)は、図11(a)に示すエネルギー回収チャンバー内に設置された各多孔板を示す平面図であり、上から下に向かって、海水ポート側の第1多孔板24,第2多孔板25、濃縮海水ポート側の第2多孔板25,第1多孔板24を示している。図11(a)のエネルギー回収チャンバーに配置した流れ抵抗器を構成する第1多孔板24は、中央部の仮想円を内接円とし、それより外周の仮想円を外接円とする星型六角形の外側に、複数の小孔が形成され、星型六角形の内側(中心側)には小孔が形成されていない1枚の多孔板であり、図3に示したものと同様の構成である。第1多孔板24を図4に示すような中央部が閉塞し外周部がメッシュ材である多孔質板としてもよい。また、第2多孔板25は全面に小孔が等間隔に形成された円板からなっている。第2多孔板25をメッシュ材からなる円板としてもよい。
図13(a),(b)は多孔板の星型六角形と内接円の交点を通るB1-B1断面におけるチャンバーの海水ポート近傍の海水の流入時の流れ分布を示す図である。すなわち、図13(b)は図3に示したものと同様の構成の第1多孔板24の平面図を示し、図13(a)は、図13(b)のB1-B1断面におけるチャンバーの海水ポート近傍の流れ分布を示す図である。なお、図13(b)においては、星型六角形の外側の小孔23hは図示を省略している。
図14(a),(b)は多孔板の星型六角形と内接円の交点と外接円の交点の中間を通るB2-B2断面におけるチャンバーの海水ポート近傍の海水の流入時の流れ分布を示す図である。すなわち、図14(b)は図3に示したものと同様の構成の第1多孔板24の平面図を示し、図14(a)は、図14(b)のB2-B2断面におけるチャンバーの海水ポート近傍の流れ分布を示す図である。なお、図14(b)においては、星型六角形の外側の小孔23hは図示を省略している。
図15(a),(b)は多孔板の星型六角形と外接円の交点を通るB3-B3断面におけるチャンバーの海水ポート近傍の海水の流入時の流れ分布を示す図である。すなわち、図15(b)は図3に示したものと同様の構成の第1多孔板24の平面図を示し、図15(a)は、図15(b)のB3-B3断面におけるチャンバーの海水ポート近傍の流れ分布を示す図である。なお、図15(b)においては、星型六角形の外側の小孔23hは図示を省略している。
第1多孔板の機能は、海水ポート(または濃縮海水ポート)からの高速な流れを中央部の円形の閉塞部に衝突させ速度を減速するとともに、流れを外周部に分散する。そして中央から外周に向けて開口率が漸増する孔流路によって多孔板下流の流れをチャンバーの円形断面において図29にて定義した「均一」な速度分布となるように分散する。そして第2多孔板の機能は、第1多孔板によって分散した流れにおいて依然として残っている速度分布の高低差をさらに均すことである。
第2多孔板を配置することによって、流入流速によって第1多孔板を通過した流れの均一性が崩れても、第2多孔板によって速度分布を均す機能を追加することで、より広い範囲の流入流速に対応する流れ抵抗器とすることができる。これは、エネルギー回収装置として、同じ構成の装置であっても広い範囲の処理流量に対応できるということになる。
多孔板の中央部の仮想円(φdc)の径は、図2における海水ポートの内径φds、濃縮海水ポートの内径φdbと同じ径、あるいはそれより僅かに大きな径とすることで、各ポートから流入する高速な流れを閉塞部に衝突させて流れを遅くするようにする。しかし、閉塞部を各ポートより大きくしすぎると、外周側に設けた複数の小孔23hを通過する流れが外周側に偏り、均一化作用が逆に小さくなるため、各ポートの内径とほぼ同じ径の仮想円とする。
星型四角形と外接する仮想円(φdr)の径は、流れ抵抗器23の外径(φD)より小さくする。
APR=78.5×dk2/P2 (式3)
円板の中央を閉塞する形状を星型四角形とし、孔を並列配置とすることで、チャンバーの形状を90度の回転対称とするようにしている。
本形状の多孔板からなる流れ抵抗器も中央の仮想円の外径から多孔円板の外径に向かって開口率が漸増する特徴を有する。図2に示した星型六角多孔板とは、開口率と開口率の漸増の傾きが異なる。
星型四角形で閉塞した多孔板で構成される流れ抵抗器23も同様に、チャンバーCH内において本流れ抵抗器の上流の流れに適切な流れ抵抗を与えることで、本流れ抵抗器の下流の流れをチャンバー全体に均一になるように整流する機能を有する。星型四角形(図16)、星型六角形(図2)ともに均一化作用は優れ、中央の仮想円の外径から多孔円板の外径に向かって開口率が漸増する形状が均一化に有効な特徴であることが示されている。
孔付き円板31は偏心した位置に配置された海水流入ポートP2INのポート位置をチャンバー内でチャンバー軸心に配置していることと同じことである。
図20のチャンバーの海水ポート側の構成は、図18で示した実施形態と同様であるが、本実施形態のチャンバーは、チャンバー下側の濃縮海水ポートがチャンバー側面に形成されている点が異なる。すなわち、濃縮海水ポートP1はチャンバー側面に形成されているため、濃縮海水はチャンバーの軸方向とは直角の方向(半径方向)に給排水される。そして、濃縮海水ポート側のチャンバー端面からLpだけ離間した位置に中央部に孔を形成した孔付き円板31を配置し、孔付き円板31からL1だけ離間した位置に第1多孔板24を配置し、さらに第1多孔板24からL2だけ離間した位置に第2多孔板25を配置している。
孔付き円板31は図19に示したものと同様の構成であり、第1多孔板24は図3又は図4に示したものと同様の構成であり、第2多孔板25は図12に示したものと同様の構成である。
また、各ポート間のチャンバー内に構成した流れ抵抗器は、チャンバー中心軸まわりに回転対称となっており、チャンバーの半径方向における流入、流出の流れ抵抗が回転対称となるようにしている。図18の実施形態のように、一方のポート位置がチャンバー中心に無い場合は、孔付き円板31の中央部の孔と中央のポートの間でチャンバーの内部構成がチャンバー中心軸まわりに回転対称となっている。図20の実施形態のように、両方のポート位置がチャンバー中心に無い場合は、両方の孔付き円板31の中央部の孔の間のチャンバーの内部構成がチャンバー中心軸まわりに回転対称となっている。
2 高圧ポンプ
3 吐出ライン
4 逆浸透膜分離装置
5 濃縮海水ライン
6 制御弁
7,9 バルブ
8 ブースターポンプ
10,20 エネルギー回収チャンバー
11 エネルギー回収装置
12,22 端板
13,23 流れ抵抗器
14,24 第1多孔板
15,25 第2多孔板
16 ピストン
17 濃縮海水排出ライン
21 チャンバー本体
23h 孔
30 円板
31 孔付き円板
CH チャンバー
P1 濃縮海水ポート
P2 海水ポート
P2IN 海水流入ポート
P2OUT 海水流出ポート
Claims (9)
- ポンプによって昇圧した海水を逆浸透膜分離装置に通水して淡水と濃縮海水に分離して海水から淡水を生成する海水淡水化システムにおいて前記逆浸透膜分離装置から吐出される濃縮海水の圧力エネルギーを前記海水の圧力エネルギーに変換するエネルギー回収装置であって、
内部に濃縮海水および海水を収容する空間を有し、長手方向を鉛直に配置した円筒形状のチャンバーと、
前記チャンバーの下部に設けられ、濃縮海水の給排水を行う濃縮海水ポートと、
前記チャンバーの上部に設けられ、海水の給排水を行う海水ポートと、
前記チャンバー内において濃縮海水ポート側に配置される流れ抵抗器と、
前記チャンバー内において海水ポート側に配置される流れ抵抗器とを備え、
前記濃縮海水ポート側および前記海水ポート側に配置される流れ抵抗器は、少なくとも1枚の多孔円板であって、該多孔円板と同心の所定の直径の仮想円の外側の外周領域に孔が形成されてなり、該所定の直径の仮想円の外径から多孔円板の外径に向かって開口率が漸増するように孔を形成したことを特徴とするエネルギー回収装置。 - 前記多孔円板の孔を形成しない領域は、所定の直径の円を内接円とし、該多孔円板の外径以下で且つ仮想円の直径より大きな円を外接円とする星型多角形の領域であることを特徴とする請求項1に記載のエネルギー回収装置。
- 前記多孔円板を第1多孔板とし、第1多孔板から所定距離だけ離間して第2多孔板を配置することを特徴とする請求項1又は2に記載のエネルギー回収装置。
- 前記エネルギー回収装置は、濃縮海水ポートと海水ポートのいずれか又は両方と、前記流れ抵抗器との間に中央に開口を有するドーナツ形状の円板を備えたことを特徴とする請求項1乃至3のいずれか一項に記載のエネルギー回収装置。
- ポンプによって昇圧した海水を逆浸透膜分離装置に通水して淡水と濃縮海水に分離して海水から淡水を生成する海水淡水化システムにおいて前記逆浸透膜分離装置から吐出される濃縮海水の圧力エネルギーを前記海水の圧力エネルギーに変換するエネルギー回収装置であって、
内部に濃縮海水および海水を収容する空間を有し、長手方向を鉛直に配置した円筒形状のチャンバーと、
前記チャンバーの下部に設けられ、濃縮海水の給排水を行う濃縮海水ポートと、
前記チャンバーの上部に設けられ、海水の給排水を行う海水ポートと、
前記チャンバー内において濃縮海水ポート側に配置される流れ抵抗器と、
前記チャンバー内において海水ポート側に配置される流れ抵抗器とを備え、
前記濃縮海水ポート側および前記海水ポート側に配置される流れ抵抗器は、少なくとも1枚の多孔円板であって、該多孔円板の所定の直径の仮想円より外側の領域に孔が形成されてなり、前記外側の領域において該孔を密集して形成する形成領域と、孔を形成しない非形成領域を設け、形成領域を通過する孔からの噴流群による束状にまとまった集合噴流が定義され、非形成領域によって該円板を通過する流れが遮断されてできる静止流体が定義され、前記外側の領域の円周方向に形成領域と非形成領域を交互に分布させたことを特徴とするエネルギー回収装置。 - 前記集合噴流と前記静止流体との間でせん断が生ずることを特徴とする請求項5に記載のエネルギー回収装置。
- ポンプによって昇圧した海水を逆浸透膜分離装置に通水して淡水と濃縮海水に分離して海水から淡水を生成する海水淡水化システムにおいて前記逆浸透膜分離装置から吐出される濃縮海水の圧力エネルギーを前記海水の圧力エネルギーに変換するエネルギー回収装置であって、
内部に濃縮海水および海水を収容する空間を有し、長手方向を鉛直に配置した円筒形状のチャンバーと、
前記チャンバーの下部に設けられ、濃縮海水の給排水を行う濃縮海水ポートと、
前記チャンバーの上部に設けられ、海水の給排水を行う海水ポートと、
前記チャンバー内において濃縮海水ポート側に配置される流れ抵抗器と、
前記チャンバー内において海水ポート側に配置される流れ抵抗器とを備え、
前記濃縮海水ポート側および前記海水ポート側に配置される流れ抵抗器は、少なくとも1枚の多孔円板であって、該多孔円板の所定の直径の仮想円より外側の領域に孔が形成されてなり、前記外側の領域において該孔を形成する形成領域と、孔を形成しない非形成領域を設け、非形成領域は前記仮想円とつながり、多孔円板の外周へ向かって放射状の花弁状の非形成領域を構成することを特徴とするエネルギー回収装置。 - ポンプによって昇圧した海水を逆浸透膜分離装置に通水して淡水と濃縮海水に分離して海水から淡水を生成する海水淡水化システムにおいて前記逆浸透膜分離装置から吐出される濃縮海水の圧力エネルギーを前記海水の圧力エネルギーに変換するエネルギー回収装置であって、
内部に濃縮海水および海水を収容する空間を有し、長手方向を鉛直に配置した円筒形状のチャンバーと、
前記チャンバーの下部に設けられ、濃縮海水の給排水を行う濃縮海水ポートと、
前記チャンバーの上部に設けられ、海水の給排水を行う海水ポートと、
前記チャンバー内において濃縮海水ポート側に配置される流れ抵抗器と、
前記チャンバー内において海水ポート側に配置される流れ抵抗器とを備え、
前記濃縮海水ポート側および前記海水ポート側に配置される流れ抵抗器は、少なくとも1枚の多孔円板であって、該多孔円板の中心から所定の半径を有する仮想円より外側の領域に孔が形成されてなり、前記外側の領域において前記仮想円によって形成される円弧を底辺側として円板の外径方向に略三角形状に拡がる領域であって孔が形成されない領域を円周方向に複数個設けたことを特徴とするエネルギー回収装置。 - ポンプによって昇圧した海水を逆浸透膜分離装置に通水して淡水と濃縮海水に分離して海水から淡水を生成する海水淡水化システムにおいて、
前記逆浸透膜分離装置から吐出される濃縮海水の圧力エネルギーを前記海水の圧力エネルギーに利用変換する請求項1乃至8のいずれか一項に記載のエネルギー回収装置を備えたことを特徴とする海水淡水化システム。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580045853.XA CN106794423B (zh) | 2014-09-01 | 2015-08-28 | 海水淡化系统及能量回收装置 |
US15/504,230 US10005034B2 (en) | 2014-09-01 | 2015-08-28 | Seawater desalination system and energy recovery apparatus |
JP2016546610A JP6580048B2 (ja) | 2014-09-01 | 2015-08-28 | 海水淡水化システムおよびエネルギー回収装置 |
US15/977,109 US10124295B2 (en) | 2014-09-01 | 2018-05-11 | Seawater desalination system and energy recovery apparatus |
US16/138,232 US10232315B2 (en) | 2014-09-01 | 2018-09-21 | Seawater desalination system and energy recovery apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014177469 | 2014-09-01 | ||
JP2014-177469 | 2014-09-01 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/504,230 A-371-Of-International US10005034B2 (en) | 2014-09-01 | 2015-08-28 | Seawater desalination system and energy recovery apparatus |
US15/977,109 Division US10124295B2 (en) | 2014-09-01 | 2018-05-11 | Seawater desalination system and energy recovery apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016035704A1 true WO2016035704A1 (ja) | 2016-03-10 |
Family
ID=55439767
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/074421 WO2016035704A1 (ja) | 2014-09-01 | 2015-08-28 | 海水淡水化システムおよびエネルギー回収装置 |
Country Status (4)
Country | Link |
---|---|
US (3) | US10005034B2 (ja) |
JP (1) | JP6580048B2 (ja) |
CN (1) | CN106794423B (ja) |
WO (1) | WO2016035704A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018180890A1 (ja) * | 2017-03-28 | 2018-10-04 | 株式会社 荏原製作所 | 海水淡水化システムおよびエネルギー回収装置 |
WO2018187024A1 (en) * | 2017-04-05 | 2018-10-11 | Dow Global Technologies Llc | Spiral wound module assembly including integrated pressure monitoring |
CN111573784A (zh) * | 2020-06-15 | 2020-08-25 | 乾通环境科技(苏州)有限公司 | 能量回收装置 |
US11148098B2 (en) | 2017-07-27 | 2021-10-19 | Ddp Specialty Electronic Materials Us, Llc | Spiral wound membrane module including integrated differential pressure monitoring |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109550399B (zh) * | 2018-12-10 | 2023-09-19 | 中国矿业大学 | 一种大处理量转子式能量回收装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53124178A (en) * | 1977-01-20 | 1978-10-30 | Kobe Steel Ltd | Separating method by reverse osmosis |
JP2013184096A (ja) * | 2012-03-07 | 2013-09-19 | Ebara Corp | 海水淡水化システムおよびエネルギー回収装置 |
WO2014163019A1 (ja) * | 2013-04-05 | 2014-10-09 | 株式会社 荏原製作所 | 海水淡水化システムおよびエネルギー回収装置 |
WO2014163018A1 (ja) * | 2013-04-03 | 2014-10-09 | 株式会社 荏原製作所 | 海水淡水化システムおよびエネルギー回収装置 |
WO2015060337A1 (ja) * | 2013-10-23 | 2015-04-30 | 株式会社 荏原製作所 | 海水淡水化システムおよびエネルギー回収装置 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5298226A (en) | 1992-10-02 | 1994-03-29 | Praxair Technology, Inc. | Perforated plate fluid distributor and its associated fixed bed vessel |
CN103623702B (zh) | 2009-05-15 | 2017-08-25 | 株式会社荏原制作所 | 海水淡化系统及能量交换腔室 |
JP5676408B2 (ja) | 2011-09-30 | 2015-02-25 | Kddi株式会社 | Bgpルータにおける経路表の管理方法及び管理サーバ |
-
2015
- 2015-08-28 JP JP2016546610A patent/JP6580048B2/ja active Active
- 2015-08-28 WO PCT/JP2015/074421 patent/WO2016035704A1/ja active Application Filing
- 2015-08-28 CN CN201580045853.XA patent/CN106794423B/zh active Active
- 2015-08-28 US US15/504,230 patent/US10005034B2/en active Active
-
2018
- 2018-05-11 US US15/977,109 patent/US10124295B2/en active Active
- 2018-09-21 US US16/138,232 patent/US10232315B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53124178A (en) * | 1977-01-20 | 1978-10-30 | Kobe Steel Ltd | Separating method by reverse osmosis |
JP2013184096A (ja) * | 2012-03-07 | 2013-09-19 | Ebara Corp | 海水淡水化システムおよびエネルギー回収装置 |
WO2014163018A1 (ja) * | 2013-04-03 | 2014-10-09 | 株式会社 荏原製作所 | 海水淡水化システムおよびエネルギー回収装置 |
WO2014163019A1 (ja) * | 2013-04-05 | 2014-10-09 | 株式会社 荏原製作所 | 海水淡水化システムおよびエネルギー回収装置 |
WO2015060337A1 (ja) * | 2013-10-23 | 2015-04-30 | 株式会社 荏原製作所 | 海水淡水化システムおよびエネルギー回収装置 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018180890A1 (ja) * | 2017-03-28 | 2018-10-04 | 株式会社 荏原製作所 | 海水淡水化システムおよびエネルギー回収装置 |
WO2018187024A1 (en) * | 2017-04-05 | 2018-10-11 | Dow Global Technologies Llc | Spiral wound module assembly including integrated pressure monitoring |
US11198098B2 (en) | 2017-04-05 | 2021-12-14 | Ddp Specialty Electronic Materials Us, Llc | Spiral wound module assembly including integrated pressure monitoring |
US11148098B2 (en) | 2017-07-27 | 2021-10-19 | Ddp Specialty Electronic Materials Us, Llc | Spiral wound membrane module including integrated differential pressure monitoring |
CN111573784A (zh) * | 2020-06-15 | 2020-08-25 | 乾通环境科技(苏州)有限公司 | 能量回收装置 |
Also Published As
Publication number | Publication date |
---|---|
US10232315B2 (en) | 2019-03-19 |
US20170252700A1 (en) | 2017-09-07 |
CN106794423A (zh) | 2017-05-31 |
JP6580048B2 (ja) | 2019-09-25 |
US10124295B2 (en) | 2018-11-13 |
JPWO2016035704A1 (ja) | 2017-06-15 |
US20180257035A1 (en) | 2018-09-13 |
US10005034B2 (en) | 2018-06-26 |
US20190022587A1 (en) | 2019-01-24 |
CN106794423B (zh) | 2019-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6580048B2 (ja) | 海水淡水化システムおよびエネルギー回収装置 | |
JP6113833B2 (ja) | 海水淡水化システムおよびエネルギー回収装置 | |
JP5848184B2 (ja) | 海水淡水化システムおよびエネルギー交換チャンバー | |
JP4456176B2 (ja) | 静止型流体混合装置 | |
WO2016178436A3 (ja) | 液体処理ノズル、それを用いた液体処理方法、ガス溶解方法及びガス溶解装置 | |
CN104014263A (zh) | 一种静态混合器 | |
JP5632866B2 (ja) | 海水淡水化システムおよびエネルギー回収装置 | |
CN103387282B (zh) | 一种塔式曝气器 | |
JP6152416B2 (ja) | 海水淡水化システムおよびエネルギー回収装置 | |
CN204134487U (zh) | 挡板式管道混合加药器 | |
JP2014124541A (ja) | 静止型流体混合装置 | |
JP6234723B2 (ja) | 流体混合装置 | |
RU75589U1 (ru) | Статический струйный смеситель | |
RU156526U1 (ru) | Установка для перемешивания жидкостей в резервуарах | |
AU2015266723A1 (en) | Interaction chambers with reduced cavitation | |
US20130064640A1 (en) | Perforated hydrocratic generator | |
JP6339733B2 (ja) | 混合ユニット、流体混合装置、及び、混合流体生成装置 | |
WO2018180890A1 (ja) | 海水淡水化システムおよびエネルギー回収装置 | |
JP6300103B2 (ja) | 膜分離活性汚泥処理装置 | |
CN104524979A (zh) | 卷式膜静态混流隔网 | |
KR100829290B1 (ko) | 수중방류노즐 | |
RU136738U1 (ru) | Статический смеситель | |
JP2016223275A (ja) | 災害時水道用貯水槽 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15838266 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016546610 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15504230 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15838266 Country of ref document: EP Kind code of ref document: A1 |