WO2016035479A1 - Field effect transistor - Google Patents

Field effect transistor Download PDF

Info

Publication number
WO2016035479A1
WO2016035479A1 PCT/JP2015/071377 JP2015071377W WO2016035479A1 WO 2016035479 A1 WO2016035479 A1 WO 2016035479A1 JP 2015071377 W JP2015071377 W JP 2015071377W WO 2016035479 A1 WO2016035479 A1 WO 2016035479A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating film
film
nitride semiconductor
drain electrode
semiconductor layer
Prior art date
Application number
PCT/JP2015/071377
Other languages
French (fr)
Japanese (ja)
Inventor
哲三 永久
勝 久保
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2016035479A1 publication Critical patent/WO2016035479A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate

Definitions

  • the present invention relates to a nitride semiconductor field effect transistor.
  • a nitride semiconductor HFET Heterojunction Field Effect Transistor
  • HFET Heterojunction Field Effect Transistor
  • silicon is present on the surface of the GaN-based semiconductor layer formed on the substrate from silicon nitride having a higher stoichiometric composition ratio (for example, a silicon / nitrogen composition ratio of 1.85 to 1.9).
  • An insulating film is formed, and a gate electrode, a source electrode, and a drain electrode are formed on the GaN-based semiconductor layer.
  • the collapse phenomenon is suppressed by reducing the oxide of the group III element in the surface layer of the GaN-based semiconductor layer, which is considered to cause the collapse phenomenon that the drain current decreases when a high drain voltage is applied. ing.
  • Patent Document 2 As a nitride semiconductor HFET, there is a field effect transistor disclosed in Japanese Unexamined Patent Application Publication No. 2004-200248 (Patent Document 2).
  • a GaN channel layer and an AlGaN electron supply layer are formed on a substrate, and a source electrode and a drain electrode in ohmic contact are formed on the electron supply layer.
  • a gate electrode having a field plate portion protruding in the shape of an eave on the drain side and having a Schottky contact is provided between the source electrode and the drain electrode.
  • a laminated film composed of a SiN film and a SiO 2 film is formed under the field plate portion, and the surface of the AlGaN electron supply layer is covered with the SiN film.
  • the trade-off relationship between the amount of collapse and the gate breakdown voltage is improved by the synergistic effect of the gate electrode structure including the field plate and the layer structure below the field plate.
  • the conventional nitride semiconductor HFET has a problem that either of Patent Document 1 and Patent Document 2 is insufficiently improved with respect to collapse in the case of high voltage during switching operation. .
  • an object of the present invention is to provide a field effect transistor that can improve collapse even in the case of a high voltage during switching operation.
  • the field effect transistor of the present invention is A nitride semiconductor layer including a heterojunction; A source electrode and a drain electrode disposed on the nitride semiconductor layer at a distance from each other; A gate electrode disposed between the source electrode and the drain electrode on the nitride semiconductor layer; A first insulating film formed between the gate electrode and the drain electrode immediately above the nitride semiconductor layer and having at least silicon and nitrogen as constituent elements; A second insulating film formed on the first insulating film, The first insulating film is formed up to an edge of a contact surface between the drain electrode and the nitride semiconductor layer, The drain electrode has a field plate portion protruding in an eave shape toward the gate electrode side and in contact with the upper surface of the second insulating film, A single-layer film region provided below the field plate in the vicinity of the edge of the contact surface between the drain electrode and the nitride semiconductor layer, and in which only the first insulating film is formed; A multi-
  • a third insulating film having a dielectric constant smaller than that of the first insulating film is further laminated on the second insulating film, The field plate portion is in contact with the upper surface of the third insulating film.
  • the second insulating film or the third insulating film covers an insulating film having a dielectric constant larger than that of the insulating film under the field plate portion in the vicinity of the drain electrode.
  • the dielectric constant of the second insulating film is smaller than the dielectric constant of the first insulating film.
  • the first insulating film, the second insulating film, and the third insulating film below the field plate portion have a smaller dielectric constant as the upper insulating film.
  • the field effect transistor of the present invention is The first insulating film and the second insulating film are stacked in this order between the gate electrode and the drain electrode immediately above the nitride semiconductor layer and below the field plate portion. ing.
  • the electric field on the surface of the nitride semiconductor layer can be relaxed.
  • the first insulating film includes silicon and nitrogen as constituent elements, it is possible to perform interface control that makes it difficult for negative charges to be accumulated on the surface of the nitride semiconductor layer, and the drain electrode and the nitride semiconductor can be controlled. Formed to the edge of the contact surface with the layer.
  • the field plate portion of the drain electrode can be formed stepwise. Therefore, the electric field strength in the vicinity of the drain electrode can be further relaxed, and the occurrence of disconnection of the drain electrode can be suppressed.
  • the collapse in the case of a high voltage during the switching operation can be remarkably improved.
  • FIG. 5 is a diagram in which the sum of the first and second insulating films is taken on the vertical axis in the case of FIG. 4.
  • FIG. 3 is an enlarged cross-sectional view of the vicinity of a drain electrode in a nitride semiconductor HFET different from FIG.
  • FIG. 7 is an enlarged cross-sectional view of the vicinity of a drain electrode in a nitride semiconductor HFET different from FIGS. 2 and 6.
  • FIG. 1 is a cross-sectional view of a nitride semiconductor HFET which is an example of a field effect transistor according to the present embodiment.
  • FIG. 2 is an enlarged view of the vicinity of the drain electrode in FIG.
  • a channel layer 2 made of GaN and a barrier layer made of Al x Ga 1-x N (0 ⁇ x ⁇ 1) are formed on a substrate 1 made of Si. 3 are stacked in this order.
  • the GaN channel layer 2 and the Al x Ga 1-x N barrier layer 3 constitute the nitride semiconductor layer, and the thickness of the Al x Ga 1-x N barrier layer 3 is 30 nm. Yes.
  • a source electrode 4 and a drain electrode 5 are formed on the Al x Ga 1-x N barrier layer 3 with a predetermined interval therebetween.
  • the source electrode 4 and the drain electrode 5 are formed using Ti / Al in which Ti and Al are stacked in this order.
  • recesses are formed in the barrier layer 3 and the channel layer 2 at the positions where the source electrode 4 and the drain electrode 5 are formed, and an electrode material is deposited and annealed, so that the electrodes 4, 5 and the channel layer 2 are formed.
  • An ohmic contact is formed with 2DEG (two dimensional electron gas) formed on the surface layer.
  • a gate electrode 6 is formed between the source electrode 4 and the drain electrode 5 on the Al x Ga 1-x N barrier layer 3.
  • the gate electrode 6 is formed using WN / W in which WN and W are stacked in this order.
  • the first insulating film 7 made of SiN y is formed Yes.
  • the first insulating film 7 is formed to extend to the edge 8 of the contact surface between the drain electrode 5 and the nitride semiconductor layer (hereinafter simply referred to as the contact surface edge 8).
  • the contact surface edge 8 In the vicinity of, the nitride semiconductor layer is completely covered with the first insulating film 7.
  • the thickness of the first insulating film 7 is 30 nm.
  • the function of the first insulating film 7 is to control the interface of the surface of the nitride semiconductor layer. In order to suppress the collapse, it is necessary to form the film while keeping the growth rate at 800 ⁇ / min or less.
  • the “interface control” is control that makes it difficult for negative charges to be accumulated at the interface between the nitride semiconductor layer and the first insulating film 7 in order to suppress the collapse. It is to appropriately treat dangling bonds generated on the surface, reduce generation of interface states, reduce the depth of interface states, and the like. If negative charges are accumulated at the interface between the nitride semiconductor layer and the first insulating film 7, the polarization of the barrier layer 3 is weakened. As a result, the carrier concentration in 2DEG is reduced and collapsed. A phenomenon will occur.
  • the second insulating film 9 made of SiN z is formed on the first insulating film 7, the second insulating film 9 made of SiN z is formed.
  • the thickness of the second insulating film 9 is 230 nm.
  • the drain electrode 5 has a field plate portion 10 that protrudes toward the gate electrode 6 and is in contact with the upper surface of the second insulating film 9. With this field plate structure, the electric field strength at the lower portion of the field plate portion 10, particularly in the vicinity of the contact surface edge 8 can be reduced.
  • the length of the field plate portion 10 is a distance from the contact surface edge 8 to the tip of the field plate portion 10 and is 2 ⁇ m.
  • the insulation covering the nitride semiconductor layer is provided in the vicinity of the edge (contact surface edge) 8 of the contact surface between the drain electrode 5 and the nitride semiconductor layer.
  • a single layer film region 11 where only the first insulating film 7 is formed is provided.
  • the first insulating film 7 and the second insulating film 9 are laminated and formed below the field plate portion 10 on the opposite side of the contact surface edge 8 from the single layer film region 11.
  • a layer film region 12 is provided.
  • the thickness of the first insulating film 7 is set to 25 nm. Further, in the multilayer film region 12, the film thickness of the first insulating film 7 is 30 nm, and the film thickness of the second insulating film 9 is 230 nm.
  • the film thickness of the first insulating film 7 is different between the single-layer film region 11 and the multilayer film region 12 because of process processing, and even if the film thicknesses of both regions are different as in this embodiment. It may be the same or the same.
  • the inventors have revealed for the first time that a phenomenon completely different from the collapse phenomenon known so far has occurred under the condition of high voltage during switching operation, which is a problem of the present invention.
  • the high voltage is a drain voltage of 400 V or higher
  • the switching is a frequency of 10 kHz or higher.
  • the experiment is performed with a drain voltage of 600 V and a frequency of 100 kHz.
  • the above-mentioned different phenomenon is a mechanism in which a large current flows in the vicinity of the drain electrode 5 at a high electric field momentarily at the time of the switching, and an electron trap or a semiconductor is deteriorated by the energy, thereby causing a collapse phenomenon.
  • the inventors thought that.
  • the present invention by adopting a field plate structure for the drain electrode 5, an electric field in the vicinity of the contact surface edge 8 is particularly relaxed. Furthermore, by controlling the interface of the nitride semiconductor layer, the first insulating film 7 for suppressing the collapse is formed on the nitride semiconductor layer without being interrupted to the contact surface edge 8. Yes.
  • the electric field in the vicinity of the drain electrode 5 is relaxed, but that alone is not sufficient for the collapse in the case of a high voltage during switching operation. It has been revealed for the first time by the present inventors. The reason is that when switching is performed at a high voltage, an electric field is induced in the nitride semiconductor layer corresponding to the lower side of the tip of the field plate portion 10 in the drain electrode 5 and collapse occurs in that region.
  • the field plate portion 10 of the drain electrode 5 can be formed stepwise by providing the single layer film region 11 and the multilayer film region 12 as an insulating film covering the nitride semiconductor layer. Therefore, the electric field strength in the vicinity of the drain electrode 5 can be relaxed, and the occurrence of disconnection of the drain electrode 5 can be suppressed.
  • the thickness of the first insulating film 7 in the single layer film region 11 is desirably 60 nm or less.
  • the SiNy film having a high dielectric constant and capable of interface control in the nitride semiconductor layer is used as the first insulating film 7 in the single-layer film region 11 to solve the above problem. succeeded in.
  • the inventors of the present invention have formed the insulating films (the first insulating film 7 and the second insulating film 9) formed below the field plate portion 10 protruding from the drain electrode 5, particularly in the multilayer film region 12. It has been determined that it is necessary to increase the total film thickness to some extent.
  • the first insulating film 7 inevitably has a low deposition rate because it is necessary to control the interface of the surface of the nitride semiconductor layer, and only the first insulating film 7 is used during the switching operation. It is difficult to obtain a film thickness that can suppress collapse in the case of high voltage. Therefore, in this embodiment, the insulating film located above the nitride semiconductor layer and below the field plate portion 10 of the drain electrode 5 is formed at least twice.
  • FIG. 3 shows the total film thickness of the first insulating film (SiN y ) 7 and the second insulating film (SiN z ) 9 necessary for improving the collapse in the case of a high voltage during the switching operation, and Al x Ga 1 ⁇
  • each film thickness indicates the film thickness in the multilayer film region. The reason for this is that, as described above, the collapse is caused by the induction of an electric field in the nitride semiconductor layer corresponding to the lower side of the tip of the field plate portion 10 in the drain electrode 5. This is because the thickness of the region is important.
  • the required total film thickness of the insulating layer with respect to the film thickness of 20 nm of the barrier layer 3 is 264 nm
  • the required total film thickness of the insulating layer with respect to the film thickness of 30 nm of the barrier layer 3 is 255 nm.
  • the required total film thickness of the insulating layer with respect to the film thickness of the barrier layer 3 is 40 nm.
  • the total film thickness of the insulating layer necessary for improving the collapse in the case of a high voltage during the switching operation is slightly dependent on the film thickness of the barrier layer 3. Therefore, as described above, the total film thickness of the insulating film formed under the field plate portion 10 needs to be “somewhat” thicker than the film thickness obtained from FIG. 3, specifically, the total film thickness of 270 nm or more. Film thickness is required.
  • FIG. 5 shows a graph in which the vertical axis represents the sum of the first insulating film (SiN z ) 7 and the second insulating film (SiO 2 ) 9 in the case of FIG.
  • the required thickness of the second insulating film 9 varies depending on the thickness of the first insulating film 7.
  • the film thickness of the first insulating film 7 does not depend on the required total film thickness of the first insulating film 7 and the second insulating film 9, and the total film thickness is 200 nm or more. Is sufficient.
  • SiO 2 is used as an example of a film having a dielectric constant lower than that of the first insulating film 7 with respect to the second insulating film 9, but in order to significantly reduce the required total film thickness.
  • the insulating film has a lower dielectric constant than the first insulating film 7, other films can be used.
  • other films include SiN z (z> y), which has a higher N composition than the first insulating film 7.
  • SiN z 4/3
  • SiN z (z> 4/3) having a higher N composition than that, SiON, and SiOC.
  • the relative dielectric constant of SiN y used for the first insulating film 7 is preferably in the range of 7.5 to 9.5. Since it is necessary to control the interface of the surface of the nitride semiconductor layer, the first insulating film 7 is desirably a film having a higher Si composition than the stoichiometry, that is, y ⁇ 4/3. In that case, if there is too much Si composition, a leak will occur. Therefore, it is desirable that the relative dielectric constant is within the above range. In addition, the first insulating film 7 only needs to contain silicon and nitrogen within a range in which the interface of the nitride semiconductor layer surface can be controlled as a constituent element, and may be, for example, a SiON film.
  • the thickness of the Al x Ga 1-x N barrier layer 3 is generally 20 nm to 40 nm, but is not particularly limited. In order to obtain a desirable sheet carrier concentration, a desirable threshold voltage, etc., it may be set freely.
  • the 2DEG induces crystallinity to operate as a transistor
  • the mixed crystal is used.
  • the ratio x is not particularly limited. The reason is that since the dielectric constant does not greatly change depending on the mixed crystal ratio x, the effect of the present invention can be obtained regardless of the mixed crystal ratio x.
  • the film thickness of the first insulating film 7 is preferably several nm to 200 nm. This is because if the film thickness of the first insulating film 7 is too thin, it is difficult to control the interface of the nitride semiconductor layer, but it is difficult to form a film thickness of 200 nm or more at a low deposition rate. However, it is not the same thing that can be formed by improving process technology.
  • the film thickness of the second insulating film 9 is preferably 100 nm to several ⁇ m although it depends on the film thickness of the first insulating film 7. In order to suppress the electric field on the surface of the nitride semiconductor layer, it is desirable that the total film thickness of the first insulating film 7 and the second insulating film 9 is 200 nm or more, so that the total film thickness is half (100 nm) or more. This is because if the film thickness is too thick (several ⁇ m or more), stress is applied and the wafer warps.
  • the length from the contact surface edge 8 to the tip of the field plate portion 10 is preferably 0.3 ⁇ m or more. This is because the electric field at the edge 8 of the contact surface with the nitride semiconductor layer is not relaxed without a certain length.
  • the upper limit of the length of the field plate portion 10 is not particularly limited, it naturally depends on the distance from the gate electrode 6 and the source electrode 4, and the gate electrode 6 or the source electrode 4 also adopts a field plate structure. It depends on whether you are doing it. In principle, it is desirable that the length be such that dielectric breakdown does not occur between the drain electrode 5 and the gate electrode 6 or the source electrode 4.
  • FIG. 6 is a cross-sectional view in the HFET of the nitride semiconductor layer in the second embodiment, and is an enlarged view near the drain electrode.
  • the multilayer film region 12 includes a two-layer film region 12 a in which the first insulating film 7 and the second insulating film 9 are stacked, and a third insulating film on the second insulating film 9. It is composed of a three-layer film region 12b on which a film 13 is laminated.
  • SiO 2 (relative permittivity about 3.9) is used as the third insulating film 13.
  • the thickness of the first insulating film 7 is set to 25 nm. Further, in the multilayer film region 12, the thickness of the first insulating film 7 is 30 nm, the thickness of the second insulating film 9 is 100 nm, and the thickness of the third insulating film 13 is 200 nm. As in the case of the second embodiment, the film thickness of the first insulating film 7 differs between the single-layer film region 11 and the multilayer film region 12 because of process processing. As in the form, the thicknesses of both regions may be different or the same.
  • the field plate portion 10 of the drain electrode 5 is formed in three stages by forming a three-layer structure as an insulating film that covers the nitride semiconductor layer and is located under the field plate portion 10 of the drain electrode 5. Can be formed. Therefore, the occurrence of disconnection of the drain electrode 5 can be further suppressed. Furthermore, the total film thickness of the insulating film can be increased, the electric field strength on the surface of the nitride semiconductor layer can be further relaxed, and the collapse in the case of a high voltage during the switching operation can be improved.
  • the relative dielectric constant of the first insulating film 7 is about 8
  • the relative dielectric constant of the second insulating film 9 is about 7.5
  • the relative dielectric constant of the third insulating film 13 is about 3.9. It is.
  • it is desirable that the upper film constituting the insulating film has a lower dielectric constant. The reason is that by lowering the dielectric constant of the upper film, the electric field concentration can be kept away from the surface of the nitride semiconductor layer, so that the influence of collapse on the 2DEG can be reduced.
  • the second insulating film 9 and the third insulating film 13 have a dielectric constant higher than that of the first insulating film 7.
  • SiN z (z> y) having a higher N composition than the first insulating film 7, especially stoichiometric SiN z (z 4/3) and N composition often SiN z (z> 4/3) and the, SiON, SiOC, and the like.
  • the insulating film located under the field plate portion 10 of the drain electrode 5 has a three-layer structure, but it may be further multilayered. In that case, the occurrence of disconnection of the drain electrode 5 can be further suppressed, and the total film thickness of the insulating film can be increased to further relax the electric field on the surface of the nitride semiconductor layer, thereby increasing the level during switching operation. It is possible to improve the collapse in the case of voltage.
  • the upper film located under the field plate portion 10 has a multilayer structure of four or more layers, it is desirable that the upper film has a lower dielectric constant for the reasons described above.
  • the thickness of the second insulating film 9 is constant in the multilayer film region 12, but the thickness may vary depending on the location. .
  • the step may be generated. Absent. This is the same when the number of insulating films in the multilayer film region 12 is further increased.
  • the relative dielectric constant of SiN y used for the first insulating film 7 is preferably in the range of 7.5 to 9.5. Further, the first insulating film 7 only needs to contain silicon and nitrogen as constituent elements within a range in which the interface control of the nitride semiconductor layer surface can be performed, and may be, for example, a SiON film.
  • the thickness of the Al x Ga 1-x N barrier layer 3 is generally 20 nm to 40 nm, but is not particularly limited. In order to obtain a desired sheet carrier concentration, a desired threshold voltage, etc., it may be set freely.
  • the 2DEG induces crystallinity to operate as a transistor
  • the mixed crystal is used.
  • the ratio x is not particularly limited. The reason is that since the dielectric constant does not greatly change depending on the mixed crystal ratio x, the effect of the present invention can be obtained regardless of the mixed crystal ratio x.
  • the film thickness of the first insulating film 7 is preferably several nm to 200 nm. This is because if the film thickness of the first insulating film 7 is too thin, it is difficult to control the interface of the nitride semiconductor layer, but it is difficult to form a film thickness of 200 nm or more at a low deposition rate. However, it is not the same thing that can be formed by improving process technology.
  • the film thickness of each layer in the case of the second insulating film 9, the third insulating film 13, and four or more layers is not limited.
  • the total thickness of all the insulating films formed above the first insulating film 7 is desirably 100 nm to several ⁇ m.
  • the length from the contact surface edge 8 to the tip of the field plate portion 10 is preferably 0.3 ⁇ m or more. This is because the electric field at the contact surface edge 8 is not relaxed without a certain length.
  • the upper limit of the length of the field plate portion 10 is not particularly limited, it naturally depends on the distance from the gate electrode 6 and the source electrode 4, and the gate electrode 6 or the source electrode 4 also adopts a field plate structure. It depends on whether you are doing it. In principle, it is desirable that the length be such that dielectric breakdown does not occur between the drain electrode 5 and the gate electrode 6 or the source electrode 4.
  • FIG. 7 is a cross-sectional view in the HFET of the nitride semiconductor layer in the third embodiment, and is an enlarged view near the drain electrode.
  • a single layer film region 11 is provided in the vicinity of the contact surface edge 8, and the single layer film region is provided.
  • a multilayer film region 12 is provided below the field plate portion 10 on the opposite side of the contact surface edge 8 from 11.
  • the multilayer film region 12 in the present embodiment includes a two-layer film region 12 a in which the first insulating film 7 and the third insulating film 13 are stacked, and a second insulating film on the first insulating film 7. 9 and the third insulating film 13 are constituted by a three-layer film region 12b laminated in this order.
  • the second insulating film 9 is not formed in the two-layer film region 12a, and the third insulating film 13 in the three-layer film region 12b extends into the two-layer film region 12a, and the second insulating film 9
  • the structure covers the end face and reaches the upper surface of the first insulating film 7.
  • SiO 2 (relative permittivity about 3.9) is used as the third insulating film 13. Therefore, the third insulating film 13 having a dielectric constant lower than that of the second insulating film 9 covers the surface and end face of the second insulating film 9 in the vicinity of the drain electrode 5.
  • the thickness of the first insulating film 7 is set to 25 nm. Further, in the multilayer film region 12, the thickness of the first insulating film 7 is 30 nm, the thickness of the second insulating film 9 is 100 nm, and the thickness of the third insulating film 13 is 200 nm. As in the second and third embodiments, the thickness of the first insulating film 7 differs between the single-layer film region 11 and the multi-layer film region 12 because of process processing. As in the embodiment, the thicknesses of both regions may be different or the same.
  • an insulating film having a lower dielectric constant is covered with an insulating film having a lower dielectric constant than the insulating film.
  • the first insulating film 7 needs to be installed on the nitride semiconductor layer in order to control the interface of the nitride semiconductor layer. Therefore, the insulating film except the first insulating film 7 in the single layer film region 11 is covered with the insulating film having a low dielectric constant.
  • the insulating film located under the field plate portion 10 of the drain electrode 5 has a three-layer structure, but it may be further multilayered. In that case, the occurrence of disconnection of the drain electrode 5 can be further suppressed, and the total film thickness of the insulating film can be increased to further relax the electric field on the surface of the nitride semiconductor layer, thereby increasing the level during switching operation. It is possible to improve the collapse in the case of voltage.
  • the upper film located under the field plate portion 10 has a multilayer structure of four or more layers, it is desirable that the upper film has a lower dielectric constant for the reasons described above.
  • the insulating film has a multilayer structure of four or more layers, it is desirable to cover with an insulating film having the lowest dielectric constant among the insulating films.
  • an insulating film having the lowest dielectric constant is disposed in the uppermost layer in the multilayer film region 12, and an insulating film other than the first insulating film 7 is formed by the insulating film. It is more desirable to cover completely. By doing so, the other insulating film is covered with the insulating film having the lowest dielectric constant, so that the electric field on the surface of the nitride semiconductor layer can be relaxed over a wide range.
  • the relative dielectric constant of SiN y used for the first insulating film 7 is preferably in the range of 7.5 to 9.5. Further, the first insulating film 7 only needs to contain silicon and nitrogen as constituent elements within a range in which the interface control of the nitride semiconductor layer surface can be performed, and may be, for example, a SiON film.
  • the thickness of the Al x Ga 1-x N barrier layer 3 is generally 20 nm to 40 nm, but is not particularly limited. In order to obtain a desired sheet carrier concentration, a desired threshold voltage, etc., it may be set freely.
  • the 2DEG induces crystallinity to operate as a transistor
  • the mixed crystal is used.
  • the ratio x is not particularly limited. The reason is that since the dielectric constant does not greatly change depending on the mixed crystal ratio x, the effect of the present invention can be obtained regardless of the mixed crystal ratio x.
  • the film thickness of the first insulating film 7 is preferably several nm to 200 nm. This is because if the film thickness of the first insulating film 7 is too thin, it is difficult to control the interface of the nitride semiconductor layer, but it is difficult to form a film thickness of 200 nm or more at a low deposition rate. However, it is not the same thing that can be formed by improving process technology.
  • the film thickness of each layer in the case of the second insulating film 9, the third insulating film 13, and four or more layers is not limited.
  • the total thickness of all the insulating films formed above the first insulating film 7 is desirably 100 nm to several ⁇ m.
  • the insulating film having the lowest dielectric constant is thicker than the other insulating films. By doing so, it is possible to alleviate the electric field applied to the surface of the nitride semiconductor layer by the action of the insulating film having the lowest dielectric constant, and to improve the collapse in the case of a high voltage during the switching operation.
  • the length from the contact surface edge 8 to the tip of the field plate portion 10 is preferably 0.3 ⁇ m or more. This is because the electric field at the contact surface edge 8 is not relaxed without a certain length.
  • the upper limit of the length of the field plate portion 10 is not particularly limited, it naturally depends on the distance from the gate electrode 6 and the source electrode 4, and the gate electrode 6 or the source electrode 4 also adopts a field plate structure. It depends on whether you are doing it. In principle, it is desirable that the length be such that dielectric breakdown does not occur between the drain electrode 5 and the gate electrode 6 or the source electrode 4.
  • a Si substrate is used as the substrate 1 of the HFET.
  • the substrate is not limited to the Si substrate, and a sapphire substrate, an SiC substrate, or a GaN substrate may be used.
  • GaN is used as the channel layer 2 of the HFET
  • Al x Ga 1-x N is used as the barrier layer 3.
  • the channel layer 2 and the barrier layer 3 are represented by Al x In w Ga 1-xw N (x ⁇ 0, w ⁇ 0, 0 ⁇ x + w ⁇ 1).
  • a nitride semiconductor layer may be used. That is, the nitride semiconductor layer composed of the channel layer 2 and the barrier layer 3 may be configured to contain AlGaN, GaN, InGaN, or the like.
  • the nitride semiconductor layer is configured by directly forming the barrier layer 3 on the channel layer 2.
  • the substrate 1, the nitride semiconductor layer, A buffer layer may be appropriately formed between and between the layers constituting the nitride semiconductor layer.
  • an AlN layer having a thickness of about 1 nm may be formed between the channel layer 2 and the barrier layer 3 in order to improve mobility.
  • GaN may be formed on the barrier layer 3 as a cap layer.
  • a recess is formed in the barrier layer 3 and the channel layer 2 where the source electrode 4 and the drain electrode 5 are formed, and an electrode material is deposited and annealed.
  • 5 and the 2DEG are formed as ohmic contacts.
  • the formation method of the ohmic contact is not limited to this, and any formation method may be used as long as an ohmic contact can be formed between the electrodes 4 and 5 and the 2DEG.
  • an undoped AlGaN layer for contact is formed on the channel layer 2 with a thickness of, for example, 15 nm, and an electrode material is directly deposited on the undoped AlGaN layer without forming a recess to form the source electrode 4 and the drain electrode 5.
  • the ohmic contact may be formed by forming and annealing.
  • the gate electrode 6 is formed using WN / W in which WN and W are stacked in this order.
  • the present invention is not limited to this, and any material may be used as long as it functions as a gate of a transistor.
  • TiN, Pt / Au, or Ni / Au can be used.
  • the gate electrode material a material that forms a Schottky junction when bonded to the nitride semiconductor layer may be used.
  • the source electrode 4 and the drain electrode 5 are formed using Ti / Al in which Ti and Al are laminated in this order.
  • the present invention is not limited to this, and any material may be used as long as it has electrical conductivity and can make ohmic contact with the 2DEG.
  • Ti / Al / TiN may be formed using Ti / Al / TiN laminated in this order.
  • AlSi, AlCu, and Au may be used instead of the above-described Al, or may be laminated on Al.
  • the field effect transistor of this invention is: A nitride semiconductor layer including a heterojunction; A source electrode 4 and a drain electrode 5 which are spaced apart from each other on the nitride semiconductor layer; A gate electrode 6 disposed between the source electrode 4 and the drain electrode 5 on the nitride semiconductor layer; A first insulating film 7 formed between the gate electrode 6 and the drain electrode 5 immediately above the nitride semiconductor layer, and having at least silicon and nitrogen as constituent elements; A second insulating film 9 formed by laminating on the first insulating film 7, The first insulating film 7 is formed up to the edge 8 of the contact surface between the drain electrode 5 and the nitride semiconductor layer, The drain electrode 5 has a field plate portion 10 that protrudes toward the gate electrode 6 side and is in contact with the upper surface of the second insulating film 9.
  • a single-layer film region 11 provided under the field plate portion 10 in the vicinity of the edge 8 of the contact surface between the drain electrode 5 and the nitride semiconductor layer, and in which only the first insulating film 7 is formed;
  • the single-layer film region 11 is provided below the field plate portion 10 on the side opposite to the edge 8 side of the contact surface, and is formed by laminating the first insulating film 7 and the second insulating film 9.
  • the multilayer film region 12 is provided.
  • the first insulating film 7 and the second insulating film are between the gate electrode 6 and the drain electrode 5 immediately above the nitride semiconductor layer and below the field plate portion 10. 9 are laminated in this order.
  • the electric field on the surface of the nitride semiconductor layer can be relaxed.
  • the interface control of the surface of the nitride semiconductor layer can be performed, and the contact surface between the drain electrode 5 and the nitride semiconductor layer can be controlled. Are formed up to the edge 8.
  • the field plate portion 10 By providing the single-layer film region 11 and the multilayer film region 12 as an insulating film covering the nitride semiconductor layer under the field plate portion 10, the field plate portion 10 can be formed stepwise. it can. Therefore, the electric field strength in the vicinity of the drain electrode 5 can be further relaxed, and the occurrence of disconnection of the drain electrode 5 can be suppressed.
  • the collapse in the case of a high voltage during the switching operation can be remarkably improved.
  • the dielectric constant of the second insulating film 9 is smaller than the dielectric constant of the first insulating film 7.
  • the electric field concentration is kept away from the surface of the nitride semiconductor layer by reducing the dielectric constant of the second insulating film 9 located on the surface side of the insulating film below the field plate portion 10. be able to. Therefore, the electric field strength applied to the surface of the nitride semiconductor layer in the case of a high voltage during the switching operation can be further reduced, and the influence of the collapse on the 2DEG can be reduced.
  • the required total film thickness of the first insulating film 7 and the second insulating film 9 is remarkably increased. Can be small. As a result, the occurrence of disconnection of the drain electrode 5 can be suppressed.
  • the relative dielectric constant of the first insulating film 7 is in the range of 7.5 to 9.5.
  • the first insulating film 7 needs to control the interface of the surface of the nitride semiconductor layer, a film having a higher silicon composition than the stoichiometry is desirable. In that case, if the silicon composition is too large, leakage occurs.
  • the relative dielectric constant of the first insulating film 7 is in the range of 7.5 or more and 9.5 or less. Therefore, the first insulating film 7 can perform interface control of the surface of the nitride semiconductor layer without causing leakage.
  • a third insulating film 13 having a dielectric constant smaller than that of the first insulating film 7 is further laminated.
  • the field plate portion 10 is in contact with the upper surface of the third insulating film 13.
  • the field plate portion 10 of the drain electrode 5 is formed by forming a multi-layer structure of three or more layers as an insulating film that covers the nitride semiconductor layer and is located under the field plate portion 10. Can be made into three or more stages. Therefore, the occurrence of disconnection of the drain electrode 5 can be further suppressed. Furthermore, the total film thickness of the insulating film can be increased, and the electric field strength on the surface of the nitride semiconductor layer can be further relaxed to improve the collapse in the case of a high voltage during switching operation. .
  • the second insulating film 9 or the third insulating film 13 covers an insulating film having a dielectric constant larger than that of the insulating film under the field plate portion 10 in the vicinity of the drain electrode 5.
  • the second insulating film 9 or the third insulating film 13 covers an insulating film having a dielectric constant larger than that of the insulating film. Therefore, it is possible to relax the electric field on the surface of the nitride semiconductor layer over a wide range. As a result, the collapse in the case of a high voltage during the switching operation can be further improved.
  • the first insulating film 7, the second insulating film 9, and the third insulating film 13 below the field plate portion 10 have a lower dielectric constant as the upper insulating film.
  • the electric field concentration can be kept away from the surface of the nitride semiconductor layer. Therefore, it is possible to further reduce the electric field strength applied to the surface of the nitride semiconductor layer in the case of a high voltage during the switching operation, and the influence of collapse on the 2DEG can be reduced.
  • the insulating film covering the insulating film 9 having a high dielectric constant under the field plate portion 10 in the vicinity of the drain electrode 5 has the lowest dielectric constant under the field plate portion 10 in the vicinity of the drain electrode 5. It is an insulating film.
  • the electric field on the surface of the nitride semiconductor layer can be relaxed over a wide range.
  • the total thickness of the insulating film formed under the field plate portion 10 is 200 nm or more.
  • the total film thickness of the insulating film under the field plate portion 10 is 200 nm or more. Therefore, the electric field on the surface of the nitride semiconductor layer in the vicinity of the drain electrode 5 is sufficiently relaxed, and the total film thickness is necessary for improving the collapse in the case of a high voltage during the switching operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

This field effect transistor comprises, on a nitride semiconductor layer, a source electrode (4), a drain electrode (5), a gate electrode (6), a first insulating film (7) and a second insulating film (9). The first insulating film (7) is formed to an edge (8) of the contact surface of the drain electrode (5) and the nitride semiconductor layer. The drain electrode (5) has a field plate part (10) which protrudes toward the gate electrode (6) in the form of an eave, and which is in contact with the upper surface of the second insulating film (9). This field effect transistor is provided with: a single layer film region (11) which is provided below the field plate part (10) in the vicinity of the edge (8) of the contact surface of the drain electrode (5) and the nitride semiconductor layer, and wherein only the first insulating film (7) is formed; and a multilayer film region (12) which is provided below the field plate part (10) on a side of the single layer film region (11), said side being opposite to the side of the edge (8) of the contact surface, and wherein the first insulating film (7) and the second insulating film (9) are formed and laminated.

Description

電界効果トランジスタField effect transistor
 この発明は、窒化物半導体の電界効果トランジスタに関する。 The present invention relates to a nitride semiconductor field effect transistor.
 従来、窒化物半導体のHFET(ヘテロ接合電界効果トランジスタ)として、特開2006‐278812号公報(特許文献1)に開示された半導体装置がある。この半導体装置においては、基板上に形成されたGaN系半導体層の表面に、珪素が化学量論的な組成比より多い(例えば、珪素/窒素組成比1.85~1.9)窒化珪素からなる絶縁膜を形成し、上記GaN系半導体層上にゲート電極,ソース電極およびドレイン電極を形成している。 Conventionally, as a nitride semiconductor HFET (Heterojunction Field Effect Transistor), there is a semiconductor device disclosed in Japanese Patent Laid-Open No. 2006-278812 (Patent Document 1). In this semiconductor device, silicon is present on the surface of the GaN-based semiconductor layer formed on the substrate from silicon nitride having a higher stoichiometric composition ratio (for example, a silicon / nitrogen composition ratio of 1.85 to 1.9). An insulating film is formed, and a gate electrode, a source electrode, and a drain electrode are formed on the GaN-based semiconductor layer.
 こうして、高いドレイン電圧を印加するとドレイン電流が減少してしまうコラプス現象の原因と考えられる上記GaN系半導体層の表面層内のIII族元素の酸化物を減少させることによって、コラプス現象の抑制を図っている。 Thus, the collapse phenomenon is suppressed by reducing the oxide of the group III element in the surface layer of the GaN-based semiconductor layer, which is considered to cause the collapse phenomenon that the drain current decreases when a high drain voltage is applied. ing.
 また、窒化物半導体のHFETとして、特開2004‐200248号公報(特許文献2)に開示された電界効果トランジスタがある。この電界効果トランジスタにおいては、基板上にGaNチャネル層およびAlGaN電子供給層を形成し、この電子供給層上にオーム性接触がとられたソース電極およびドレイン電極を形成している。そして、上記ソース電極とドレイン電極との間に、上記ドレイン側にひさし状に張り出したフィールドプレート部を有してショットキー性接触がとられたゲート電極が設けられている。上記フィールドプレート部の下に、SiN膜およびSiO膜からなる積層膜を形成し、上記SiN膜で上記AlGaN電子供給層の表面を覆っている。 As a nitride semiconductor HFET, there is a field effect transistor disclosed in Japanese Unexamined Patent Application Publication No. 2004-200248 (Patent Document 2). In this field effect transistor, a GaN channel layer and an AlGaN electron supply layer are formed on a substrate, and a source electrode and a drain electrode in ohmic contact are formed on the electron supply layer. A gate electrode having a field plate portion protruding in the shape of an eave on the drain side and having a Schottky contact is provided between the source electrode and the drain electrode. A laminated film composed of a SiN film and a SiO 2 film is formed under the field plate portion, and the surface of the AlGaN electron supply layer is covered with the SiN film.
 こうして、フィールドプレートを備えるゲート電極構造と、上記フィールドプレート部下の層構造との相乗効果によって、コラプス量とゲート耐圧とのトレードオフの関係の改善を図っている。 Thus, the trade-off relationship between the amount of collapse and the gate breakdown voltage is improved by the synergistic effect of the gate electrode structure including the field plate and the layer structure below the field plate.
特開2006‐278812号公報JP 2006-278812 A 特開2004‐200248号公報JP 2004-200248 A
 しかしながら、上記従来の窒化物半導体のHFETにおいては、特許文献1および特許文献2の何れにおいても、スイッチング動作時の高電圧の場合におけるコラプスに対しては、改善が不十分であるという問題がある。 However, the conventional nitride semiconductor HFET has a problem that either of Patent Document 1 and Patent Document 2 is insufficiently improved with respect to collapse in the case of high voltage during switching operation. .
 そこで、この発明の課題は、スイッチング動作時の高電圧の場合においてもコラプスを改善できる電界効果トランジスタを提供することにある。 Therefore, an object of the present invention is to provide a field effect transistor that can improve collapse even in the case of a high voltage during switching operation.
 上記課題を解決するため、この発明の電界効果トランジスタは、
 ヘテロ接合を含む窒化物半導体層と、
 上記窒化物半導体層上に、互いに間隔を置いて配置されたソース電極およびドレイン電極と、
 上記窒化物半導体層上における上記ソース電極と上記ドレイン電極との間に配置されたゲート電極と、
 上記窒化物半導体層の直上における上記ゲート電極と上記ドレイン電極との間に形成されると共に、少なくともシリコンおよび窒素を構成元素とする第1絶縁膜と、
 上記第1絶縁膜上に積層して形成された第2絶縁膜と
を備え、
 上記第1絶縁膜は、上記ドレイン電極と上記窒化物半導体層との接触面の縁まで形成されており、
 上記ドレイン電極は、上記ゲート電極側に向かってひさし状にせり出し、且つ上記第2絶縁膜の上面に接触しているフィールドプレート部を有しており、
 上記ドレイン電極と上記窒化物半導体層との接触面の縁の近傍における上記フィールドプレート部下に設けられると共に、上記第1絶縁膜のみが形成されている単層膜領域と、
 上記単層膜領域の上記接触面の縁側とは反対側における上記フィールドプレート部下に設けられると共に、上記第1絶縁膜と上記第2絶縁膜とが積層して形成されている複層膜領域とを備えたことを特徴としている。
In order to solve the above problems, the field effect transistor of the present invention is
A nitride semiconductor layer including a heterojunction;
A source electrode and a drain electrode disposed on the nitride semiconductor layer at a distance from each other;
A gate electrode disposed between the source electrode and the drain electrode on the nitride semiconductor layer;
A first insulating film formed between the gate electrode and the drain electrode immediately above the nitride semiconductor layer and having at least silicon and nitrogen as constituent elements;
A second insulating film formed on the first insulating film,
The first insulating film is formed up to an edge of a contact surface between the drain electrode and the nitride semiconductor layer,
The drain electrode has a field plate portion protruding in an eave shape toward the gate electrode side and in contact with the upper surface of the second insulating film,
A single-layer film region provided below the field plate in the vicinity of the edge of the contact surface between the drain electrode and the nitride semiconductor layer, and in which only the first insulating film is formed;
A multi-layer film region provided under the field plate portion on the opposite side of the contact surface of the single-layer film region and formed by laminating the first insulating film and the second insulating film; It is characterized by having.
 また、一実施の形態の電界効果トランジスタでは、
 上記第2絶縁膜上には、上記第1絶縁膜よりも誘電率の小さい第3絶縁膜がさらに積層して形成されており、
 上記フィールドプレート部は、上記第3絶縁膜の上面に接触している。
In the field effect transistor of one embodiment,
A third insulating film having a dielectric constant smaller than that of the first insulating film is further laminated on the second insulating film,
The field plate portion is in contact with the upper surface of the third insulating film.
 また、一実施の形態の電界効果トランジスタでは、
 上記第2絶縁膜または上記第3絶縁膜が、当該絶縁膜よりも誘電率が大きい絶縁膜を、上記ドレイン電極の近傍における上記フィールドプレート部下において覆っている。
In the field effect transistor of one embodiment,
The second insulating film or the third insulating film covers an insulating film having a dielectric constant larger than that of the insulating film under the field plate portion in the vicinity of the drain electrode.
 また、一実施の形態の電界効果トランジスタでは、
 上記第2絶縁膜の誘電率は、上記第1絶縁膜の誘電率よりも小さい。
In the field effect transistor of one embodiment,
The dielectric constant of the second insulating film is smaller than the dielectric constant of the first insulating film.
 また、一実施の形態の電界効果トランジスタでは、
 上記フィールドプレート部下における、上記第1絶縁膜、上記第2絶縁膜および上記第3絶縁膜は、上側の絶縁膜ほど誘電率が小さい。
In the field effect transistor of one embodiment,
The first insulating film, the second insulating film, and the third insulating film below the field plate portion have a smaller dielectric constant as the upper insulating film.
 以上より明らかなように、この発明の電界効果トランジスタは、
 上記窒化物半導体層の直上における上記ゲート電極と上記ドレイン電極との間であり、且つ上記フィールドプレート部下に、上記第1絶縁膜と上記第2絶縁膜とを、この順で積層して形成している。こうして、上記フィールドプレート部下の絶縁膜の総膜厚を厚くすることによって、上記窒化物半導体層の表面の電界を緩和することができる。
As is clear from the above, the field effect transistor of the present invention is
The first insulating film and the second insulating film are stacked in this order between the gate electrode and the drain electrode immediately above the nitride semiconductor layer and below the field plate portion. ing. Thus, by increasing the total thickness of the insulating film under the field plate portion, the electric field on the surface of the nitride semiconductor layer can be relaxed.
 その際に、上記第1絶縁膜は、シリコンおよび窒素を構成元素としているので上記窒化物半導体層表面に負電荷が蓄積され難くする界面制御を行うことができ、上記ドレイン電極と上記窒化物半導体層との接触面の縁まで形成される。 At this time, since the first insulating film includes silicon and nitrogen as constituent elements, it is possible to perform interface control that makes it difficult for negative charges to be accumulated on the surface of the nitride semiconductor layer, and the drain electrode and the nitride semiconductor can be controlled. Formed to the edge of the contact surface with the layer.
 さらに、窒化物半導体層を覆う絶縁膜として、単層膜領域と複層膜領域とを設けることによって、ドレイン電極のフィールドプレート部を段階的に形成することができる。したがって、ドレイン電極の近傍における電界強度をさらに緩和することができると共に、ドレイン電極の段切れの発生を抑制することが可能になる。 Furthermore, by providing a single-layer film region and a multi-layer film region as an insulating film covering the nitride semiconductor layer, the field plate portion of the drain electrode can be formed stepwise. Therefore, the electric field strength in the vicinity of the drain electrode can be further relaxed, and the occurrence of disconnection of the drain electrode can be suppressed.
 したがって、この発明によれば、スイッチング動作時の高電圧の場合におけるコラプスを著しく改善することができるのである。 Therefore, according to the present invention, the collapse in the case of a high voltage during the switching operation can be remarkably improved.
この発明の電界効果トランジスタとしての窒化物半導体HFETにおける断面図である。It is sectional drawing in the nitride semiconductor HFET as a field effect transistor of this invention. 図1におけるドレイン電極近傍の拡大図である。It is an enlarged view of the drain electrode vicinity in FIG. コラプス改善に必要な第1,第2絶縁膜の総膜厚とバリア層の膜厚との関係を示す図である。It is a figure which shows the relationship between the total film thickness of a 1st, 2nd insulating film required for collapse improvement, and the film thickness of a barrier layer. コラプス改善に必要なSiOを用いた第2絶縁膜の総膜厚とバリア層の膜厚との関係を示す図である。It is a diagram showing the relationship between the thickness of the total thickness and the barrier layer of the second insulating film using SiO 2 required for the collapse improvement. 図4の場合において第1,第2絶縁膜の和を縦軸にとった図である。FIG. 5 is a diagram in which the sum of the first and second insulating films is taken on the vertical axis in the case of FIG. 4. 図2とは異なる窒化物半導体HFETにおけるドレイン電極近傍の断面拡大図である。FIG. 3 is an enlarged cross-sectional view of the vicinity of a drain electrode in a nitride semiconductor HFET different from FIG. 図2および図6とは異なる窒化物半導体HFETにおけるドレイン電極近傍の断面拡大図である。FIG. 7 is an enlarged cross-sectional view of the vicinity of a drain electrode in a nitride semiconductor HFET different from FIGS. 2 and 6.
 以下、この発明を図示の実施の形態により詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings.
 ・第1実施の形態
 図1は、本実施の形態の電界効果トランジスタの一例である窒化物半導体のHFETにおける断面図である。また、図2は、図1におけるドレイン電極近傍の拡大図である。
First Embodiment FIG. 1 is a cross-sectional view of a nitride semiconductor HFET which is an example of a field effect transistor according to the present embodiment. FIG. 2 is an enlarged view of the vicinity of the drain electrode in FIG.
 図1に示すように、本実施の形態のHFETにおいては、Siからなる基板1上に、GaNからなるチャネル層2と、AlGa1-xN(0<x<1)からなるバリア層3とが、この順序で積層されて形成されている。尚、AlGa1-xNバリア層3におけるAl結晶比xは、本実施の形態においては、一例としてx=0.17としている。さらに、本実施の形態においては、GaNチャネル層2とAlGa1-xNバリア層3とで上記窒化物半導体層を構成し、AlGa1-xNバリア層3の厚みを30nmとしている。 As shown in FIG. 1, in the HFET according to the present embodiment, a channel layer 2 made of GaN and a barrier layer made of Al x Ga 1-x N (0 <x <1) are formed on a substrate 1 made of Si. 3 are stacked in this order. In the present embodiment, the Al crystal ratio x in the Al x Ga 1-x N barrier layer 3 is set to x = 0.17 as an example. Further, in the present embodiment, the GaN channel layer 2 and the Al x Ga 1-x N barrier layer 3 constitute the nitride semiconductor layer, and the thickness of the Al x Ga 1-x N barrier layer 3 is 30 nm. Yes.
 上記AlGa1-xNバリア層3上に、ソース電極4とドレイン電極5とが予め設定された間隔を空けて形成されている。ここで、本実施の形態においては、ソース電極4およびドレイン電極5を、TiとAlとがこの順序で積層されたTi/Alを用いて形成している。その場合、ソース電極4とドレイン電極5との形成箇所にあるバリア層3およびチャネル層2にリセスを形成し、電極材料を蒸着してアニールすることで、各電極4,5とチャネル層2の表層に形成される2DEG(two dimensional electron gas:二次元電子ガス)との間にオーミックコンタクトを形成している。 A source electrode 4 and a drain electrode 5 are formed on the Al x Ga 1-x N barrier layer 3 with a predetermined interval therebetween. Here, in the present embodiment, the source electrode 4 and the drain electrode 5 are formed using Ti / Al in which Ti and Al are stacked in this order. In that case, recesses are formed in the barrier layer 3 and the channel layer 2 at the positions where the source electrode 4 and the drain electrode 5 are formed, and an electrode material is deposited and annealed, so that the electrodes 4, 5 and the channel layer 2 are formed. An ohmic contact is formed with 2DEG (two dimensional electron gas) formed on the surface layer.
 上記AlGa1-xNバリア層3上におけるソース電極4とドレイン電極5との間に、ゲート電極6が形成されている。本実施の形態においては、ゲート電極6を、WNとWとがこの順序で積層されたWN/Wを用いて形成している。 A gate electrode 6 is formed between the source electrode 4 and the drain electrode 5 on the Al x Ga 1-x N barrier layer 3. In the present embodiment, the gate electrode 6 is formed using WN / W in which WN and W are stacked in this order.
 上記バリア層3上におけるソース電極4からゲート電極6までの間と、バリア層3上におけるゲート電極6からドレイン電極5までの間とには、SiNからなる第1絶縁膜7が形成されている。特に、この第1絶縁膜7は、ドレイン電極5と上記窒化物半導体層との接触面の縁8(以下、単に接触面縁8と言う)まで延在して形成されており、ドレイン電極5の近傍において、上記窒化物半導体層は第1絶縁膜7で完全に覆われている。尚、本実施の形態においては、一例として、第1絶縁膜7の厚みを30nmとしている。 And between the source electrode 4 to the gate electrode 6 on the barrier layer 3, the the period from the gate electrode 6 on the barrier layer 3 to the drain electrode 5, the first insulating film 7 made of SiN y is formed Yes. In particular, the first insulating film 7 is formed to extend to the edge 8 of the contact surface between the drain electrode 5 and the nitride semiconductor layer (hereinafter simply referred to as the contact surface edge 8). In the vicinity of, the nitride semiconductor layer is completely covered with the first insulating film 7. In the present embodiment, as an example, the thickness of the first insulating film 7 is 30 nm.
 上記第1絶縁膜7の機能は、上記窒化物半導体層の表面の界面制御であり、上記コラプスの抑制のためには成長レートを800Å/min以下に保ちながら成膜する必要がある。 The function of the first insulating film 7 is to control the interface of the surface of the nitride semiconductor layer. In order to suppress the collapse, it is necessary to form the film while keeping the growth rate at 800 Å / min or less.
 ここで、上記「界面制御」とは、コラプスの抑制のために、上記窒化物半導体層と第1絶縁膜7との界面に負電荷が蓄積され難くする制御であり、上記窒化物半導体層の表面に生ずるダングリングボンドを適切に処理し、界面準位の発生の低減および界面準位の深さを浅くする等を行うことである。尚、上記窒化物半導体層と第1絶縁膜7との界面に負電荷が蓄積されてしまうと、バリア層3の分極が弱くなり、その結果、2DEG中のキャリア濃度が減少してしまい、コラプス現象が生じてしまうのである。 Here, the “interface control” is control that makes it difficult for negative charges to be accumulated at the interface between the nitride semiconductor layer and the first insulating film 7 in order to suppress the collapse. It is to appropriately treat dangling bonds generated on the surface, reduce generation of interface states, reduce the depth of interface states, and the like. If negative charges are accumulated at the interface between the nitride semiconductor layer and the first insulating film 7, the polarization of the barrier layer 3 is weakened. As a result, the carrier concentration in 2DEG is reduced and collapsed. A phenomenon will occur.
 上記第1絶縁膜7上には、SiNからなる第2絶縁膜9が形成されている。尚、本実施の形態においては、一例として、第2絶縁膜9の厚みを230nmとしている。 On the first insulating film 7, the second insulating film 9 made of SiN z is formed. In the present embodiment, as an example, the thickness of the second insulating film 9 is 230 nm.
 上記ドレイン電極5は、ゲート電極6側に向かってひさし状にせり出し、且つ第2絶縁膜9の上面に接触しているフィールドプレート部10を有している。このフィールドプレート構造によって、フィールドプレート部10の下部の、特に上記接触面縁8の近傍の電界強度を低減することができる。ここで、フィールドプレート部10の長さは、上記接触面縁8からフィールドプレート部10の先端までの距離で、2μmである。 The drain electrode 5 has a field plate portion 10 that protrudes toward the gate electrode 6 and is in contact with the upper surface of the second insulating film 9. With this field plate structure, the electric field strength at the lower portion of the field plate portion 10, particularly in the vicinity of the contact surface edge 8 can be reduced. Here, the length of the field plate portion 10 is a distance from the contact surface edge 8 to the tip of the field plate portion 10 and is 2 μm.
 また、図2に示すように、本実施の形態においては、上記ドレイン電極5と上記窒化物半導体層との接触面の縁(接触面縁)8の近傍に、上記窒化物半導体層を覆う絶縁膜として、上記第1絶縁膜7のみが形成されている単層膜領域11が設けられている。そして、その単層膜領域11よりも上記接触面縁8とは反対側におけるフィールドプレート部10下には、第1絶縁膜7と上記第2絶縁膜9とが積層して形成されている複層膜領域12が設けられている。 Further, as shown in FIG. 2, in the present embodiment, the insulation covering the nitride semiconductor layer is provided in the vicinity of the edge (contact surface edge) 8 of the contact surface between the drain electrode 5 and the nitride semiconductor layer. As a film, a single layer film region 11 where only the first insulating film 7 is formed is provided. The first insulating film 7 and the second insulating film 9 are laminated and formed below the field plate portion 10 on the opposite side of the contact surface edge 8 from the single layer film region 11. A layer film region 12 is provided.
 ここで、上記単層膜領域11において、第1絶縁膜7の膜厚を25nmとしている。さらに、複層膜領域12において、第1絶縁膜7の膜厚を30nm、第2絶縁膜9の膜厚を230nmとしている。尚、第1絶縁膜7の膜厚が、単層膜領域11と複層膜領域12とにおいて異なるのはプロセス加工の都合であり、本実施の形態のごとく両領域の膜厚が異なってもよいし、同一であっても構わない。 Here, in the single-layer film region 11, the thickness of the first insulating film 7 is set to 25 nm. Further, in the multilayer film region 12, the film thickness of the first insulating film 7 is 30 nm, and the film thickness of the second insulating film 9 is 230 nm. The film thickness of the first insulating film 7 is different between the single-layer film region 11 and the multilayer film region 12 because of process processing, and even if the film thicknesses of both regions are different as in this embodiment. It may be the same or the same.
 ここで、この発明の要旨についての説明を行う。 Here, the gist of the present invention will be described.
 この発明が課題とするスイッチング動作時の高電圧という条件下では、これまで知られているコラプスの現象とは全く異なる現象が生じていることが、発明者等によって初めて明らかになった。ここで、上記高電圧とは400V以上のドレイン電圧であり、スイッチングは10kHz以上の周波数である。尚、本実施の形態においては、ドレイン電圧が600V、周波数が100kHzで実験を行っている。 The inventors have revealed for the first time that a phenomenon completely different from the collapse phenomenon known so far has occurred under the condition of high voltage during switching operation, which is a problem of the present invention. Here, the high voltage is a drain voltage of 400 V or higher, and the switching is a frequency of 10 kHz or higher. In this embodiment, the experiment is performed with a drain voltage of 600 V and a frequency of 100 kHz.
 上記異なる現象とは、上記スイッチング時には、ドレイン電極5の近傍で、一瞬ではあるが高電界で大電流が流れ、そのエネルギーで電子トラップまたは半導体の劣化が生じ、コラプス現象を生じさせているというメカニズムであると発明者等は考えた。 The above-mentioned different phenomenon is a mechanism in which a large current flows in the vicinity of the drain electrode 5 at a high electric field momentarily at the time of the switching, and an electron trap or a semiconductor is deteriorated by the energy, thereby causing a collapse phenomenon. The inventors thought that.
 そこで、この発明においては、上記ドレイン電極5にフィールドプレート構造を採用することによって、特に、上記接触面縁8の近傍における電界を緩和するようにしている。さらに、上記窒化物半導体層の界面を制御することによって、上記コラプスを抑制する第1絶縁膜7を、上記接触面縁8まで途切れさせることなく、上記窒化物半導体層上に形成するようにしている。 Therefore, in the present invention, by adopting a field plate structure for the drain electrode 5, an electric field in the vicinity of the contact surface edge 8 is particularly relaxed. Furthermore, by controlling the interface of the nitride semiconductor layer, the first insulating film 7 for suppressing the collapse is formed on the nitride semiconductor layer without being interrupted to the contact surface edge 8. Yes.
 上記ドレイン電極5にフィールドプレート構造を採用することにより、ドレイン電極5の近傍の電界は緩和されるのであるが、スイッチング動作時の高電圧の場合における上記コラプスに対しては、それだけでは不十分であることが本発明者等によって初めて明らかにされた。その理由は、高電圧でスイッチングを行うと、ドレイン電極5におけるフィールドプレート部10の先端地点の下側に対応する上記窒化物半導体層において電界が誘起され、その領域でコラプスが生ずるためである。 By adopting a field plate structure for the drain electrode 5, the electric field in the vicinity of the drain electrode 5 is relaxed, but that alone is not sufficient for the collapse in the case of a high voltage during switching operation. It has been revealed for the first time by the present inventors. The reason is that when switching is performed at a high voltage, an electric field is induced in the nitride semiconductor layer corresponding to the lower side of the tip of the field plate portion 10 in the drain electrode 5 and collapse occurs in that region.
 また、上記窒化物半導体層を覆う絶縁膜として、単層膜領域11と複層膜領域12とを設けることによって、ドレイン電極5のフィールドプレート部10を段階的に形成することができる。したがって、ドレイン電極5の近傍における電界強度を緩和することができると共に、ドレイン電極5の段切れの発生を抑制することが可能になる。尚、ドレイン電極5の近傍における電界強度を緩和するには、単層膜領域11における第1絶縁膜7の膜厚は60nm以下が望ましい。 Also, the field plate portion 10 of the drain electrode 5 can be formed stepwise by providing the single layer film region 11 and the multilayer film region 12 as an insulating film covering the nitride semiconductor layer. Therefore, the electric field strength in the vicinity of the drain electrode 5 can be relaxed, and the occurrence of disconnection of the drain electrode 5 can be suppressed. In order to reduce the electric field strength in the vicinity of the drain electrode 5, the thickness of the first insulating film 7 in the single layer film region 11 is desirably 60 nm or less.
 ここで、上記単層膜領域11の絶縁膜に掛かる電界を考慮すると、単層膜領域11の絶縁膜に誘電率の低い絶縁膜を用いた場合には絶縁破壊が生ずるという問題を、発明者等は見出した。そこで、この発明においては、単層膜領域11の第1絶縁膜7として、誘電率が高く、且つ上記窒化物半導体層における界面制御が可能なSiNy膜を用いることによって、上記問題を解決することに成功した。 Here, in consideration of the electric field applied to the insulating film in the single-layer film region 11, the problem that the dielectric breakdown occurs when an insulating film having a low dielectric constant is used as the insulating film in the single-layer film region 11. Etc. found. Therefore, in the present invention, the SiNy film having a high dielectric constant and capable of interface control in the nitride semiconductor layer is used as the first insulating film 7 in the single-layer film region 11 to solve the above problem. succeeded in.
 それに加えて、本発明者等は、上記ドレイン電極5からせり出したフィールドプレート部10の下、特に複層膜領域12に形成された絶縁膜(第1絶縁膜7および第2絶縁膜9)の総膜厚をある程度厚くすることが必要であることを突き止めた。 In addition, the inventors of the present invention have formed the insulating films (the first insulating film 7 and the second insulating film 9) formed below the field plate portion 10 protruding from the drain electrode 5, particularly in the multilayer film region 12. It has been determined that it is necessary to increase the total film thickness to some extent.
 しかしながら、その場合、上記第1絶縁膜7は、上記窒化物半導体層の表面の界面制御を行う必要があることから必然的に堆積レートは小さくなり、第1絶縁膜7のみでスイッチング動作時の高電圧の場合におけるコラプスを抑制できる程度の膜厚を得ることは困難である。したがって、本実施の形態においては、上記窒化物半導体層より上で、且つドレイン電極5のフィールドプレート部10より下に位置する絶縁膜を、少なくとも2度に分けて形成するようにしている。 However, in that case, the first insulating film 7 inevitably has a low deposition rate because it is necessary to control the interface of the surface of the nitride semiconductor layer, and only the first insulating film 7 is used during the switching operation. It is difficult to obtain a film thickness that can suppress collapse in the case of high voltage. Therefore, in this embodiment, the insulating film located above the nitride semiconductor layer and below the field plate portion 10 of the drain electrode 5 is formed at least twice.
 図3は、スイッチング動作時の高電圧の場合におけるコラプス改善のために必要な第1絶縁膜(SiN)7および第2絶縁膜(SiN)9の総膜厚と、AlGa1-xNバリア層3の膜厚との関係を示す。ここで各膜厚は、複層膜領域における膜厚を示している。その理由は、上述のように、コラプスは、ドレイン電極5におけるフィールドプレート部10の先端地点の下側に対応する上記窒化物半導体層において電界が誘起されることによって生じるためであり、複層膜領域の膜厚が重要であるためである。 FIG. 3 shows the total film thickness of the first insulating film (SiN y ) 7 and the second insulating film (SiN z ) 9 necessary for improving the collapse in the case of a high voltage during the switching operation, and Al x Ga 1− The relationship with the film thickness of xN barrier layer 3 is shown. Here, each film thickness indicates the film thickness in the multilayer film region. The reason for this is that, as described above, the collapse is caused by the induction of an electric field in the nitride semiconductor layer corresponding to the lower side of the tip of the field plate portion 10 in the drain electrode 5. This is because the thickness of the region is important.
 図3から分かるように、上記バリア層3の膜厚20nmに対する上記絶縁層の必要総膜厚は264nmであり、バリア層3の膜厚30nmに対する上記絶縁層の必要総膜厚は255nmであり、バリア層3の膜厚40nmに対する上記絶縁層の必要総膜厚は247nmである。このように、スイッチング動作時の高電圧の場合におけるコラプス改善のために必要な上記絶縁層の総膜厚には、若干ながらバリア層3の膜厚依存性がある。そこで、上述したように、フィールドプレート部10下に形成される上記絶縁膜の総膜厚を図3から得られる膜厚よりも「ある程度」厚くする必要があり、具体的には270nm以上の総膜厚が必要である。 As can be seen from FIG. 3, the required total film thickness of the insulating layer with respect to the film thickness of 20 nm of the barrier layer 3 is 264 nm, and the required total film thickness of the insulating layer with respect to the film thickness of 30 nm of the barrier layer 3 is 255 nm. The required total film thickness of the insulating layer with respect to the film thickness of the barrier layer 3 is 40 nm. As described above, the total film thickness of the insulating layer necessary for improving the collapse in the case of a high voltage during the switching operation is slightly dependent on the film thickness of the barrier layer 3. Therefore, as described above, the total film thickness of the insulating film formed under the field plate portion 10 needs to be “somewhat” thicker than the film thickness obtained from FIG. 3, specifically, the total film thickness of 270 nm or more. Film thickness is required.
 尚、本実施の形態においては、上記第1絶縁膜7としてSiNを、第2絶縁膜9としてSiNを用いているが、第2絶縁膜9は第1絶縁膜7と膜質が同じであっても構わないし、異なっても構わない。すなわち、第2絶縁膜9は、z=yとなるSiNであっても構わないし、z≠yとなるSiNであっても構わないし、SiN以外の絶縁膜であっても構わないのである。 In the present embodiment, SiN y is used as the first insulating film 7 and SiN z is used as the second insulating film 9, but the second insulating film 9 has the same film quality as the first insulating film 7. It doesn't matter if it is present or not. That is, the second insulating film 9, to may be a SiN z to be z = y, to may be a SiN z as the z ≠ y, since it may be an insulating film other than SiN z is there.
 特に、上記第2絶縁膜9として、第1絶縁膜7よりも誘電率の低い膜を用いることによって、スイッチング動作時で高電圧の場合という条件下において、上記窒化物半導体層の表面に掛かる電界強度を、第1絶縁膜7と同じ誘電率の膜を用いる場合よりも低減することが可能である。このことから、また、第2絶縁膜9に用いる膜の誘電率が低いほど、第2絶縁膜9に必要な膜厚を小さくすることができ、ドレイン電極5の段切れ発生を抑制することができる。 In particular, by using a film having a dielectric constant lower than that of the first insulating film 7 as the second insulating film 9, an electric field applied to the surface of the nitride semiconductor layer under the condition of a high voltage during switching operation. The strength can be reduced as compared with the case where a film having the same dielectric constant as that of the first insulating film 7 is used. Accordingly, the lower the dielectric constant of the film used for the second insulating film 9, the smaller the required film thickness for the second insulating film 9, thereby suppressing the occurrence of disconnection of the drain electrode 5. it can.
 図4に、上記第2絶縁膜9としてSiNよりも誘電率の低いSiOを用いた場合におけるスイッチング動作時の高電圧の場合におけるコラプスの改善に必要な第2絶縁膜9の膜厚とAlGa1-xNバリア層3の膜厚との関係を示す。さらに、図3と対比するため、図5に、図4の場合において第1絶縁膜(SiN)7と第2絶縁膜(SiO)9との和を縦軸にとったグラフを示す。 4, the thickness of the second insulating film 9 need to improve the collapse in the case of the high voltage during the switching operation in the case of using the SiO 2 lower dielectric constant than SiN z as the second insulating film 9 The relationship with the film thickness of the Al x Ga 1-x N barrier layer 3 is shown. For comparison with FIG. 3, FIG. 5 shows a graph in which the vertical axis represents the sum of the first insulating film (SiN z ) 7 and the second insulating film (SiO 2 ) 9 in the case of FIG.
 図4から分かるように、上記第1絶縁膜7の膜厚によって、第2絶縁膜9の必要膜厚は異なる。但し、図5から分かるように、第1絶縁膜7と第2絶縁膜9との必要総膜厚に、第1絶縁膜7の膜厚はあまり依存せず、上記総膜厚が200nm以上あれば十分であるといえる。 As can be seen from FIG. 4, the required thickness of the second insulating film 9 varies depending on the thickness of the first insulating film 7. However, as can be seen from FIG. 5, the film thickness of the first insulating film 7 does not depend on the required total film thickness of the first insulating film 7 and the second insulating film 9, and the total film thickness is 200 nm or more. Is sufficient.
 また、図5と図3とを比べれば明らかなように、上記第2絶縁膜9として、第1絶縁膜7(SiN:比誘電率=約8)よりも誘電率の低い膜(SiO:比誘電率=約3.9)を用いることにより、第1絶縁膜7と第2絶縁膜9との必要総膜厚を顕著に小さくすることができる。その結果、ドレイン電極5の段切れ発生を抑制することが可能になる。 Further, as apparent from comparison between FIG. 5 and FIG. 3, the second insulating film 9 has a lower dielectric constant (SiO 2 ) than the first insulating film 7 (SiN y : relative dielectric constant = about 8). : Relative dielectric constant = about 3.9), the required total film thickness of the first insulating film 7 and the second insulating film 9 can be significantly reduced. As a result, the occurrence of disconnection of the drain electrode 5 can be suppressed.
 尚、図4および図5では、上記第2絶縁膜9に関して、第1絶縁膜7よりも誘電率の低い膜の例としてSiOを用いたが、必要総膜厚を顕著に小さくするには、第1絶縁膜7よりも誘電率の低い絶縁膜であれば他の膜でも差し支えなく、他の膜の例として、第1絶縁膜7よりもN組成の多いSiN(z>y)、特にストイキオメトリのSiN(z=4/3)やそれよりもN組成の多いSiN(z>4/3)、SiON、SiOC等が挙げられる。 4 and 5, SiO 2 is used as an example of a film having a dielectric constant lower than that of the first insulating film 7 with respect to the second insulating film 9, but in order to significantly reduce the required total film thickness. As long as the insulating film has a lower dielectric constant than the first insulating film 7, other films can be used. Examples of other films include SiN z (z> y), which has a higher N composition than the first insulating film 7. In particular, stoichiometric SiN z (z = 4/3), SiN z (z> 4/3) having a higher N composition than that, SiON, and SiOC.
 また、上記第1絶縁膜7に用いるSiNの比誘電率は、7.5~9.5の範囲内であることが望ましい。第1絶縁膜7は、上記窒化物半導体層の表面の界面制御を行う必要があることから、上記ストイキオメトリよりもSi組成が多い膜、すなわちy<4/3であることが望ましい。その場合に、あまりにSi組成が多いとリークが発生してしまう。そのために、上記比誘電率の範囲内が望ましい。また、第1絶縁膜7においては、構成元素として、上記窒化物半導体層表面の界面制御ができる範囲内のシリコンおよび窒素を含んでいればよく、例えばSiON膜であっても良い。 The relative dielectric constant of SiN y used for the first insulating film 7 is preferably in the range of 7.5 to 9.5. Since it is necessary to control the interface of the surface of the nitride semiconductor layer, the first insulating film 7 is desirably a film having a higher Si composition than the stoichiometry, that is, y <4/3. In that case, if there is too much Si composition, a leak will occur. Therefore, it is desirable that the relative dielectric constant is within the above range. In addition, the first insulating film 7 only needs to contain silicon and nitrogen within a range in which the interface of the nitride semiconductor layer surface can be controlled as a constituent element, and may be, for example, a SiON film.
 また、本実施の形態における各部の寸法や膜厚は、飽くまでも一例であり、この発明の構造を有しておればこの発明の範囲内である。 In addition, the dimensions and film thicknesses of the respective parts in the present embodiment are merely examples, and if they have the structure of the present invention, they are within the scope of the present invention.
 例えば、上記AlGa1-xNバリア層3の膜厚は、一般的に20nm~40nmがよく使用されるが、特に限定されるものではない。望ましいシートキャリア濃度や、望ましい閾値電圧等を得るために、自由に設定してよい。 For example, the thickness of the Al x Ga 1-x N barrier layer 3 is generally 20 nm to 40 nm, but is not particularly limited. In order to obtain a desirable sheet carrier concentration, a desirable threshold voltage, etc., it may be set freely.
 また、上記バリア層3には、混晶比x=0.17%のAlGa1-xNを用いているが、上記2DEGが誘起し、トランジスタとして動作する結晶性であれば、混晶比xは特に限定されるものではない。その理由は、混晶比xによって大きく誘電率が変わらないことから、混晶比xに係わらずこの発明の効果を得ることができるためである。 Further, Al x Ga 1-x N having a mixed crystal ratio x = 0.17% is used for the barrier layer 3. However, if the 2DEG induces crystallinity to operate as a transistor, the mixed crystal is used. The ratio x is not particularly limited. The reason is that since the dielectric constant does not greatly change depending on the mixed crystal ratio x, the effect of the present invention can be obtained regardless of the mixed crystal ratio x.
 また、上記第1絶縁膜7の膜厚は、数nm~200nmが望ましい。第1絶縁膜7の膜厚が薄すぎると上記窒化物半導体層の界面制御が困難である一方、低い堆積レートで200nm以上の膜厚を形成するのは困難であるためである。しかしながら、プロセス技術の向上等によって形成可能になれはその類ではない。 The film thickness of the first insulating film 7 is preferably several nm to 200 nm. This is because if the film thickness of the first insulating film 7 is too thin, it is difficult to control the interface of the nitride semiconductor layer, but it is difficult to form a film thickness of 200 nm or more at a low deposition rate. However, it is not the same thing that can be formed by improving process technology.
 上記第2絶縁膜9の膜厚は、第1絶縁膜7の膜厚にもよるが、100nm~数μmが望ましい。上記窒化物半導体層における表面の電界を抑えるためには、第1絶縁膜7と第2絶縁膜9との総膜厚が200nm以上になることが望ましいことから総膜厚の半分(100nm)以上が望ましく、膜厚が厚すぎる(数μm以上)と応力が掛かってウエハが反るという問題が生じるためである。 The film thickness of the second insulating film 9 is preferably 100 nm to several μm although it depends on the film thickness of the first insulating film 7. In order to suppress the electric field on the surface of the nitride semiconductor layer, it is desirable that the total film thickness of the first insulating film 7 and the second insulating film 9 is 200 nm or more, so that the total film thickness is half (100 nm) or more. This is because if the film thickness is too thick (several μm or more), stress is applied and the wafer warps.
 また、上記ドレイン電極5のフィールドプレート部10の長さに関して、上記接触面縁8からフィールドプレート部10の先端までの長さは、0.3μm以上が望ましい。ある程度の長さがないと、上記窒化物半導体層との接触面の縁8の電界が緩和されないためである。尚、フィールドプレート部10長さの上限は特に限定されるものではないが、当然ゲート電極6やソース電極4との距離にも依存するし、ゲート電極6またはソース電極4もフィールドプレート構造を採用しているか否かによっても変わる。原則として、ドレイン電極5と、ゲート電極6またはソース電極4との間で絶縁破壊しない程度の長さとすることが望ましい。 Further, with respect to the length of the field plate portion 10 of the drain electrode 5, the length from the contact surface edge 8 to the tip of the field plate portion 10 is preferably 0.3 μm or more. This is because the electric field at the edge 8 of the contact surface with the nitride semiconductor layer is not relaxed without a certain length. Although the upper limit of the length of the field plate portion 10 is not particularly limited, it naturally depends on the distance from the gate electrode 6 and the source electrode 4, and the gate electrode 6 or the source electrode 4 also adopts a field plate structure. It depends on whether you are doing it. In principle, it is desirable that the length be such that dielectric breakdown does not occur between the drain electrode 5 and the gate electrode 6 or the source electrode 4.
 ・第2実施の形態
 図6は、第2実施の形態における窒化物半導体層のHFETにおける断面図であり、ドレイン電極近傍の拡大図である。
Second Embodiment FIG. 6 is a cross-sectional view in the HFET of the nitride semiconductor layer in the second embodiment, and is an enlarged view near the drain electrode.
 本実施の形態においては、上記第1実施の形態の場合と重複する箇所には、上記第1実施の形態の場合と同じ番号を付けて説明は省略し、本実施の形態の特徴について説明を行う。 In this embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and the description thereof is omitted, and the features of the present embodiment are described. Do.
 図6に示すように、本実施の形態においては、上記第1実施の形態の場合と同様に、上記ドレイン電極5と上記窒化物半導体層との接触面の縁(接触面縁)8の近傍には単層膜領域11が設けられており、単層膜領域11よりも上記接触面縁8とは反対側におけるフィールドプレート部10下には複層膜領域12が設けられている。但し、本実施の形態における複層膜領域12は、上記第1絶縁膜7と上記第2絶縁膜9とが積層された2層膜領域12aと、第2絶縁膜9上にさらに第3絶縁膜13が積層された3層膜領域12bとで構成されている。 As shown in FIG. 6, in the present embodiment, as in the case of the first embodiment, the vicinity of the edge (contact surface edge) 8 of the contact surface between the drain electrode 5 and the nitride semiconductor layer. A single layer film region 11 is provided, and a multi layer film region 12 is provided below the field plate portion 10 on the opposite side of the contact surface edge 8 from the single layer film region 11. However, in the present embodiment, the multilayer film region 12 includes a two-layer film region 12 a in which the first insulating film 7 and the second insulating film 9 are stacked, and a third insulating film on the second insulating film 9. It is composed of a three-layer film region 12b on which a film 13 is laminated.
 本実施の形態においては、上記第1絶縁膜7として、上記ストイキオメトリよりもSi組成が多いSiN(y<4/3、比誘電率=約8)を用いている。また、第2絶縁膜9として、Si組成が上記ストイキオメトリに略等しいSiN(z≒4/3、比誘電率=約7.5)を用いている。さらに、第3絶縁膜13として、SiO(比誘電率=約3.9)を用いている。 In the present embodiment, SiN y (y <4/3, relative dielectric constant = about 8) having a higher Si composition than the stoichiometry is used as the first insulating film 7. As the second insulating film 9, SiN z (z≈4 / 3, relative dielectric constant = about 7.5) having an Si composition substantially equal to the stoichiometry is used. Further, SiO 2 (relative permittivity = about 3.9) is used as the third insulating film 13.
 ここで、上記単層膜領域11において、第1絶縁膜7の膜厚を25nmとしている。さらに、複層膜領域12において、第1絶縁膜7の膜厚を30nm、第2絶縁膜9の膜厚を100nm、第3絶縁膜13の膜厚を200nmとしている。尚、上記第2実施の形態の場合と同様に、第1絶縁膜7の膜厚が、単層膜領域11と複層膜領域12とにおいて異なるのはプロセス加工の都合であり、本実施の形態のごとく両領域の膜厚が異なってもよいし、同一であっても構わない。 Here, in the single-layer film region 11, the thickness of the first insulating film 7 is set to 25 nm. Further, in the multilayer film region 12, the thickness of the first insulating film 7 is 30 nm, the thickness of the second insulating film 9 is 100 nm, and the thickness of the third insulating film 13 is 200 nm. As in the case of the second embodiment, the film thickness of the first insulating film 7 differs between the single-layer film region 11 and the multilayer film region 12 because of process processing. As in the form, the thicknesses of both regions may be different or the same.
 本実施の形態のごとく、上記窒化物半導体層を覆うと共にドレイン電極5のフィールドプレート部10下に位置する絶縁膜として、3層構造にすることによって、ドレイン電極5のフィールドプレート部10を3段階に形成することができる。したがって、ドレイン電極5の段切れの発生をさらに抑制することができる。さらに、上記絶縁膜の総膜厚を厚くすることができ、上記窒化物半導体層の表面における電界強度をさらに緩和し、スイッチング動作時の高電圧の場合におけるコラプスを改善することが可能になる。 As in this embodiment, the field plate portion 10 of the drain electrode 5 is formed in three stages by forming a three-layer structure as an insulating film that covers the nitride semiconductor layer and is located under the field plate portion 10 of the drain electrode 5. Can be formed. Therefore, the occurrence of disconnection of the drain electrode 5 can be further suppressed. Furthermore, the total film thickness of the insulating film can be increased, the electric field strength on the surface of the nitride semiconductor layer can be further relaxed, and the collapse in the case of a high voltage during the switching operation can be improved.
 ここで、上記第1絶縁膜7の比誘電率は約8であり、第2絶縁膜9の比誘電率は約7.5であり、第3絶縁膜13の比誘電率は約3.9である。このように上記絶縁膜を構成する上側の膜ほど誘電率を低くするのが望ましい。その理由は、上側の膜ほど誘電率を低くすることによって、電界の集中を上記窒化物半導体層の表面から遠ざけることができるため、コラプスの上記2DEGへの影響を小さくできるためである。 Here, the relative dielectric constant of the first insulating film 7 is about 8, the relative dielectric constant of the second insulating film 9 is about 7.5, and the relative dielectric constant of the third insulating film 13 is about 3.9. It is. As described above, it is desirable that the upper film constituting the insulating film has a lower dielectric constant. The reason is that by lowering the dielectric constant of the upper film, the electric field concentration can be kept away from the surface of the nitride semiconductor layer, so that the influence of collapse on the 2DEG can be reduced.
 また、上記第1実施の形態の場合と同様に、上記第2絶縁膜9としてSi組成が上記ストイキオメトリに略等しいSiN(z≒4/3、比誘電率=約7.5)を用い、上記第3絶縁膜13として、SiO(比誘電率=約3.9)を用いたが、第2絶縁膜9および、第3絶縁膜13は、第1絶縁膜7よりも誘電率の低い絶縁膜であればよく、他の例として、第1絶縁膜7よりもN組成が多いSiN(z>y)、特にストイキオメトリのSiN(z=4/3)やN組成の多いSiN(z>4/3)や、SiON、SiOC等が挙げられる。なお、上述のように、上側の膜ほど誘電率を低くすることが望ましい。 As in the case of the first embodiment, SiN z (z≈4 / 3, relative dielectric constant = about 7.5) is used as the second insulating film 9 in which the Si composition is substantially equal to the stoichiometry. Although SiO 2 (relative dielectric constant = approximately 3.9) was used as the third insulating film 13, the second insulating film 9 and the third insulating film 13 have a dielectric constant higher than that of the first insulating film 7. In other examples, SiN z (z> y) having a higher N composition than the first insulating film 7, especially stoichiometric SiN z (z = 4/3) and N composition often SiN z (z> 4/3) and the, SiON, SiOC, and the like. As described above, it is desirable to lower the dielectric constant of the upper film.
 また、本実施の形態においては、上記ドレイン電極5のフィールドプレート部10下に位置する絶縁膜を3層構造としたが、さらに多層にしても差し支えない。その場合には、ドレイン電極5の段切れの発生をさらに抑制できると共に、上記絶縁膜の総膜厚を厚くして、上記窒化物半導体層の表面の電界をさらに緩和し、スイッチング動作時の高電圧の場合におけるコラプスを改善することが可能となる。 In the present embodiment, the insulating film located under the field plate portion 10 of the drain electrode 5 has a three-layer structure, but it may be further multilayered. In that case, the occurrence of disconnection of the drain electrode 5 can be further suppressed, and the total film thickness of the insulating film can be increased to further relax the electric field on the surface of the nitride semiconductor layer, thereby increasing the level during switching operation. It is possible to improve the collapse in the case of voltage.
 さらに、上記フィールドプレート部10下に位置する絶縁膜を4層以上の多層構造にした場合においても、上述の理由により、上側の膜ほど誘電率が低い構成とするのが望ましい。 Furthermore, even when the insulating film located under the field plate portion 10 has a multilayer structure of four or more layers, it is desirable that the upper film has a lower dielectric constant for the reasons described above.
 また、本実施の形態においては、図7に示すように、第2絶縁膜9の膜厚が複層膜領域12において一定となっているが、場所によって膜厚に変化があっても構わない。特に、上面に第3絶縁膜13が形成される領域と、上面にドレイン電極5形成される領域とで、プロセス加工において段差が生ずる場合があるが、この発明においては上記段差が生じても差し支えない。このことは、複層膜領域12における絶縁膜の層数をさらに多層化する場合も同様である。 In the present embodiment, as shown in FIG. 7, the thickness of the second insulating film 9 is constant in the multilayer film region 12, but the thickness may vary depending on the location. . In particular, there may be a step in the process process between the region where the third insulating film 13 is formed on the upper surface and the region where the drain electrode 5 is formed on the upper surface. However, in the present invention, the step may be generated. Absent. This is the same when the number of insulating films in the multilayer film region 12 is further increased.
 また、上記第1実施の形態の場合と同様の理由で、上記第1絶縁膜7に用いるSiNの比誘電率は、7.5~9.5の範囲内であることが望ましい。また、第1絶縁膜7においては、上記窒化物半導体層表面の界面制御ができる範囲内のシリコンおよび窒素を構成元素として含んでいればよく、例えばSiON膜であっても良い。 For the same reason as in the first embodiment, the relative dielectric constant of SiN y used for the first insulating film 7 is preferably in the range of 7.5 to 9.5. Further, the first insulating film 7 only needs to contain silicon and nitrogen as constituent elements within a range in which the interface control of the nitride semiconductor layer surface can be performed, and may be, for example, a SiON film.
 また、本実施の形態における各部寸法や膜厚は、飽くまでも一例であり、この発明の構造を有しておればこの発明の範囲内である。 Further, the dimensions and film thicknesses of the respective parts in the present embodiment are merely examples, and it is within the scope of the present invention if it has the structure of the present invention.
 例えば、上記AlGa1-xNバリア層3の膜厚は、一般的に20nm~40nmがよく使用されるが、特に限定されるものではない。望ましいシートキャリア濃度や、望ましい閾値電圧などを得るために、自由に設定してよい。 For example, the thickness of the Al x Ga 1-x N barrier layer 3 is generally 20 nm to 40 nm, but is not particularly limited. In order to obtain a desired sheet carrier concentration, a desired threshold voltage, etc., it may be set freely.
 また、上記バリア層3には、混晶比x=0.17%のAlGa1-xNを用いているが、上記2DEGが誘起し、トランジスタとして動作する結晶性であれば、混晶比xは特に限定されるものではない。その理由は、混晶比xによって大きく誘電率が変わらないことから、混晶比xに係わらずこの発明の効果を得ることができるためである。 Further, Al x Ga 1-x N having a mixed crystal ratio x = 0.17% is used for the barrier layer 3. However, if the 2DEG induces crystallinity to operate as a transistor, the mixed crystal is used. The ratio x is not particularly limited. The reason is that since the dielectric constant does not greatly change depending on the mixed crystal ratio x, the effect of the present invention can be obtained regardless of the mixed crystal ratio x.
 また、上記第1絶縁膜7の膜厚は、数nm~200nmが望ましい。第1絶縁膜7の膜厚が薄すぎると上記窒化物半導体層の界面制御が困難である一方、低い堆積レートで200nm以上の膜厚を形成するのは困難なためである。しかしながら、プロセス技術の向上等によって形成可能になれはその類ではない。 The film thickness of the first insulating film 7 is preferably several nm to 200 nm. This is because if the film thickness of the first insulating film 7 is too thin, it is difficult to control the interface of the nitride semiconductor layer, but it is difficult to form a film thickness of 200 nm or more at a low deposition rate. However, it is not the same thing that can be formed by improving process technology.
 上記第2絶縁膜9,第3絶縁膜13、および、4層以上の場合における各層の膜厚は限定されるものではない。但し、第1絶縁膜7よりも上に形成される全絶縁膜における膜厚の総和は、100nm~数μmが望ましい。上記窒化物半導体層における表面の電界を抑えるためには、上記絶縁膜の総膜厚が200nm以上になることが望ましいことから総膜厚の半分(100nm)以上が望ましく、膜厚が厚すぎる(数μm以上)と応力が掛かってウエハが反るという問題が生じるためである。 The film thickness of each layer in the case of the second insulating film 9, the third insulating film 13, and four or more layers is not limited. However, the total thickness of all the insulating films formed above the first insulating film 7 is desirably 100 nm to several μm. In order to suppress the electric field on the surface of the nitride semiconductor layer, it is desirable that the total film thickness of the insulating film be 200 nm or more, so that it is desirably half or more (100 nm) of the total film thickness, and the film thickness is too thick ( This is because there is a problem that the wafer is warped due to the stress of several μm or more.
 また、上記ドレイン電極5のフィールドプレート部10の長さに関して、上記接触面縁8からフィールドプレート部10の先端までの長さは、0.3μm以上が望ましい。ある程度の長さがないと、上記接触面縁8の電界が緩和されないためである。尚、フィールドプレート部10長さの上限は特に限定されるものではないが、当然ゲート電極6やソース電極4との距離にも依存するし、ゲート電極6またはソース電極4もフィールドプレート構造を採用しているか否かによっても変わる。原則として、ドレイン電極5と、ゲート電極6またはソース電極4との間で、絶縁破壊しない程度の長さとすることが望ましい。 Further, with respect to the length of the field plate portion 10 of the drain electrode 5, the length from the contact surface edge 8 to the tip of the field plate portion 10 is preferably 0.3 μm or more. This is because the electric field at the contact surface edge 8 is not relaxed without a certain length. Although the upper limit of the length of the field plate portion 10 is not particularly limited, it naturally depends on the distance from the gate electrode 6 and the source electrode 4, and the gate electrode 6 or the source electrode 4 also adopts a field plate structure. It depends on whether you are doing it. In principle, it is desirable that the length be such that dielectric breakdown does not occur between the drain electrode 5 and the gate electrode 6 or the source electrode 4.
 ・第3実施の形態
 図7は、第3実施の形態における窒化物半導体層のHFETにおける断面図であり、ドレイン電極近傍の拡大図である。
Third Embodiment FIG. 7 is a cross-sectional view in the HFET of the nitride semiconductor layer in the third embodiment, and is an enlarged view near the drain electrode.
 本実施の形態においては、上記第1および第2実施の形態の場合と重複する箇所には、上記第1および第2実施の形態の場合と同じ番号を付けて説明は省略し、本実施の形態の特徴について説明を行う。 In this embodiment, the same parts as those in the first and second embodiments are given the same numbers as in the first and second embodiments, and the description thereof is omitted. The features of the form will be described.
 図7に示すように、本実施の形態においては、上記第2実施の形態の場合と同様に、上記接触面縁8の近傍には単層膜領域11が設けられており、単層膜領域11よりも上記接触面縁8とは反対側におけるフィールドプレート部10下には複層膜領域12が設けられている。但し、本実施の形態における複層膜領域12は、上記第1絶縁膜7と上記第3絶縁膜13とが積層された2層膜領域12aと、第1絶縁膜7上に第2絶縁膜9と第3絶縁膜13とがこの順序で積層された3層膜領域12bとで構成されている。つまり、2層膜領域12aにおいて、第2絶縁膜9は形成されてはおらず、3層膜領域12bの第3絶縁膜13が2層膜領域12a内に延びてきて、第2絶縁膜9の端面を覆って第1絶縁膜7の上面に至る構造になっている。 As shown in FIG. 7, in the present embodiment, as in the case of the second embodiment, a single layer film region 11 is provided in the vicinity of the contact surface edge 8, and the single layer film region is provided. A multilayer film region 12 is provided below the field plate portion 10 on the opposite side of the contact surface edge 8 from 11. However, the multilayer film region 12 in the present embodiment includes a two-layer film region 12 a in which the first insulating film 7 and the third insulating film 13 are stacked, and a second insulating film on the first insulating film 7. 9 and the third insulating film 13 are constituted by a three-layer film region 12b laminated in this order. That is, the second insulating film 9 is not formed in the two-layer film region 12a, and the third insulating film 13 in the three-layer film region 12b extends into the two-layer film region 12a, and the second insulating film 9 The structure covers the end face and reaches the upper surface of the first insulating film 7.
 本実施の形態においては、上記第1絶縁膜7として、上記ストイキオメトリよりもSi組成が多いSiN(y<4/3、比誘電率=約8)を用いている。また、第2絶縁膜9として、Si組成が上記ストイキオメトリに略等しいSiN(z≒4/3、比誘電率=約7.5)を用いている。さらに、第3絶縁膜13として、SiO(比誘電率=約3.9)を用いている。したがって、第2絶縁膜9よりも誘電率が低い第3絶縁膜13が、ドレイン電極5の近傍で第2絶縁膜9の表面および端面を覆うことになる。 In the present embodiment, SiN y (y <4/3, relative dielectric constant = about 8) having a higher Si composition than the stoichiometry is used as the first insulating film 7. As the second insulating film 9, SiN z (z≈4 / 3, relative dielectric constant = about 7.5) having an Si composition substantially equal to the stoichiometry is used. Further, SiO 2 (relative permittivity = about 3.9) is used as the third insulating film 13. Therefore, the third insulating film 13 having a dielectric constant lower than that of the second insulating film 9 covers the surface and end face of the second insulating film 9 in the vicinity of the drain electrode 5.
 ここで、上記単層膜領域11において、第1絶縁膜7の膜厚を25nmとしている。さらに、複層膜領域12において、第1絶縁膜7の膜厚を30nm、第2絶縁膜9の膜厚を100nm、第3絶縁膜13の膜厚を200nmとしている。尚、上記第2,第3実施の形態の場合と同様に、第1絶縁膜7の膜厚が単層膜領域11と複層膜領域12とにおいて異なるのはプロセス加工の都合であり、本実施の形態のごとく両領域の膜厚が異なってもよいし、同一であっても構わない。 Here, in the single-layer film region 11, the thickness of the first insulating film 7 is set to 25 nm. Further, in the multilayer film region 12, the thickness of the first insulating film 7 is 30 nm, the thickness of the second insulating film 9 is 100 nm, and the thickness of the third insulating film 13 is 200 nm. As in the second and third embodiments, the thickness of the first insulating film 7 differs between the single-layer film region 11 and the multi-layer film region 12 because of process processing. As in the embodiment, the thicknesses of both regions may be different or the same.
 本実施の形態のごとく、上記窒化物半導体層を覆うと共にフィールドプレート部10下に位置する複層膜領域12において、誘電率の低い絶縁膜で当該絶縁膜よりも誘電率が大きい絶縁膜を覆うことによって、上記窒化物半導体層の表面の電界を緩和することが広範囲で可能となる。したがって、スイッチング動作時の高電圧の場合におけるコラプスをさらに改善することが可能になる。 As in this embodiment, in the multilayer film region 12 that covers the nitride semiconductor layer and is located under the field plate portion 10, an insulating film having a lower dielectric constant is covered with an insulating film having a lower dielectric constant than the insulating film. This makes it possible to relax the electric field on the surface of the nitride semiconductor layer over a wide range. Therefore, it is possible to further improve the collapse in the case of a high voltage during the switching operation.
 尚、上記第1絶縁膜7は、上記窒化物半導体層の界面制御のために、窒化物半導体層上に設置することが必要である。よって、誘電率の低い絶縁膜で覆うのは、単層膜領域11における第1絶縁膜7を除いた絶縁膜となる。 The first insulating film 7 needs to be installed on the nitride semiconductor layer in order to control the interface of the nitride semiconductor layer. Therefore, the insulating film except the first insulating film 7 in the single layer film region 11 is covered with the insulating film having a low dielectric constant.
 また、本実施の形態においては、上記ドレイン電極5のフィールドプレート部10下に位置する絶縁膜を3層構造としたが、さらに多層にしても差し支えない。その場合には、ドレイン電極5の段切れの発生をさらに抑制できると共に、上記絶縁膜の総膜厚を厚くして、上記窒化物半導体層の表面の電界をさらに緩和し、スイッチング動作時の高電圧の場合におけるコラプスを改善することが可能となる。 In the present embodiment, the insulating film located under the field plate portion 10 of the drain electrode 5 has a three-layer structure, but it may be further multilayered. In that case, the occurrence of disconnection of the drain electrode 5 can be further suppressed, and the total film thickness of the insulating film can be increased to further relax the electric field on the surface of the nitride semiconductor layer, thereby increasing the level during switching operation. It is possible to improve the collapse in the case of voltage.
 さらに、フィールドプレート部10下に位置する絶縁膜を4層以上の多層構造にした場合においても、上述の理由により、上側の膜ほど誘電率が低い構成とするのが望ましい。 Furthermore, even when the insulating film located under the field plate portion 10 has a multilayer structure of four or more layers, it is desirable that the upper film has a lower dielectric constant for the reasons described above.
 また、上記絶縁膜を4層以上の多層構造にした場合には、上記絶縁膜のうち最も誘電率が低い絶縁膜で覆うのが望ましい。上述のことと合わせると、多層構造にする場合には、複層膜領域12において、最も誘電率の低い絶縁膜を最上層に配置し、その絶縁膜によって第1絶縁膜7以外の絶縁膜を完全に覆うことが、より望ましい。そうすることによって、その誘電率が最も低い絶縁膜で他の絶縁膜が覆われることで、上記窒化物半導体層の表面における電界を緩和することが広範囲で可能となる。 Further, when the insulating film has a multilayer structure of four or more layers, it is desirable to cover with an insulating film having the lowest dielectric constant among the insulating films. In combination with the above, in the case of a multilayer structure, an insulating film having the lowest dielectric constant is disposed in the uppermost layer in the multilayer film region 12, and an insulating film other than the first insulating film 7 is formed by the insulating film. It is more desirable to cover completely. By doing so, the other insulating film is covered with the insulating film having the lowest dielectric constant, so that the electric field on the surface of the nitride semiconductor layer can be relaxed over a wide range.
 また、上記第1実施の形態の場合と同様の理由で、上記第1絶縁膜7に用いるSiNの比誘電率は、7.5~9.5の範囲内であることが望ましい。また、第1絶縁膜7においては、上記窒化物半導体層表面の界面制御ができる範囲内のシリコンおよび窒素を構成元素として含んでいればよく、例えばSiON膜であっても良い。 For the same reason as in the first embodiment, the relative dielectric constant of SiN y used for the first insulating film 7 is preferably in the range of 7.5 to 9.5. Further, the first insulating film 7 only needs to contain silicon and nitrogen as constituent elements within a range in which the interface control of the nitride semiconductor layer surface can be performed, and may be, for example, a SiON film.
 また、本実施の形態における各部寸法や膜厚は、飽くまでも一例であり、この発明の構造を有しておればこの発明の範囲内である。 Further, the dimensions and film thicknesses of the respective parts in the present embodiment are merely examples, and it is within the scope of the present invention if it has the structure of the present invention.
 例えば、上記AlGa1-xNバリア層3の膜厚は、一般的に20nm~40nmがよく使用されるが、特に限定されるものではない。望ましいシートキャリア濃度や、望ましい閾値電圧などを得るために、自由に設定してよい。 For example, the thickness of the Al x Ga 1-x N barrier layer 3 is generally 20 nm to 40 nm, but is not particularly limited. In order to obtain a desired sheet carrier concentration, a desired threshold voltage, etc., it may be set freely.
 また、上記バリア層3には、混晶比x=0.17%のAlGa1-xNを用いているが、上記2DEGが誘起し、トランジスタとして動作する結晶性であれば、混晶比xは特に限定されるものではない。その理由は、混晶比xによって大きく誘電率が変わらないことから、混晶比xに係わらずこの発明の効果を得ることができるためである。 Further, Al x Ga 1-x N having a mixed crystal ratio x = 0.17% is used for the barrier layer 3. However, if the 2DEG induces crystallinity to operate as a transistor, the mixed crystal is used. The ratio x is not particularly limited. The reason is that since the dielectric constant does not greatly change depending on the mixed crystal ratio x, the effect of the present invention can be obtained regardless of the mixed crystal ratio x.
 また、上記第1絶縁膜7の膜厚は、数nm~200nmが望ましい。第1絶縁膜7の膜厚が薄すぎると上記窒化物半導体層の界面制御が困難である一方、低い堆積レートで200nm以上の膜厚を形成するのは困難なためである。しかしながら、プロセス技術の向上等によって形成可能になれはその類ではない。 The film thickness of the first insulating film 7 is preferably several nm to 200 nm. This is because if the film thickness of the first insulating film 7 is too thin, it is difficult to control the interface of the nitride semiconductor layer, but it is difficult to form a film thickness of 200 nm or more at a low deposition rate. However, it is not the same thing that can be formed by improving process technology.
 上記第2絶縁膜9,第3絶縁膜13、および、4層以上の場合における各層の膜厚は限定されるものではない。但し、第1絶縁膜7よりも上に形成される全絶縁膜における膜厚の総和は、100nm~数μmが望ましい。上記窒化物半導体層における表面の電界を抑えるためには、上記絶縁膜の総膜厚が200nm以上になることが望ましいことから総膜厚の半分(100nm)以上が望ましく、膜厚が厚すぎる(数μm以上)と応力が掛かってウエハが反るという問題が生じるためである。 The film thickness of each layer in the case of the second insulating film 9, the third insulating film 13, and four or more layers is not limited. However, the total thickness of all the insulating films formed above the first insulating film 7 is desirably 100 nm to several μm. In order to suppress the electric field on the surface of the nitride semiconductor layer, it is desirable that the total film thickness of the insulating film be 200 nm or more, so that it is desirably half or more (100 nm) of the total film thickness, and the film thickness is too thick ( This is because there is a problem that the wafer is warped due to the stress of several μm or more.
 また、上記絶縁膜を4層以上の多層構造にした場合には、最も誘電率が低い絶縁膜の膜厚は、他の絶縁膜の膜厚よりも厚いことが望ましい。そうすることによって、最も誘電率が低い絶縁膜の作用によって、上記窒化物半導体層の表面に掛かる電界を緩和し、スイッチング動作時の高電圧の場合におけるコラプスを改善することが可能になる。 In addition, when the insulating film has a multilayer structure of four or more layers, it is desirable that the insulating film having the lowest dielectric constant is thicker than the other insulating films. By doing so, it is possible to alleviate the electric field applied to the surface of the nitride semiconductor layer by the action of the insulating film having the lowest dielectric constant, and to improve the collapse in the case of a high voltage during the switching operation.
 また、上記ドレイン電極5のフィールドプレート部10の長さに関して、上記接触面縁8からフィールドプレート部10の先端までの長さは、0.3μm以上が望ましい。ある程度の長さがないと、上記接触面縁8の電界が緩和されないためである。尚、フィールドプレート部10長さの上限は特に限定されるものではないが、当然ゲート電極6やソース電極4との距離にも依存するし、ゲート電極6またはソース電極4もフィールドプレート構造を採用しているか否かによっても変わる。原則として、ドレイン電極5と、ゲート電極6またはソース電極4との間で、絶縁破壊しない程度の長さとすることが望ましい。 Further, with respect to the length of the field plate portion 10 of the drain electrode 5, the length from the contact surface edge 8 to the tip of the field plate portion 10 is preferably 0.3 μm or more. This is because the electric field at the contact surface edge 8 is not relaxed without a certain length. Although the upper limit of the length of the field plate portion 10 is not particularly limited, it naturally depends on the distance from the gate electrode 6 and the source electrode 4, and the gate electrode 6 or the source electrode 4 also adopts a field plate structure. It depends on whether you are doing it. In principle, it is desirable that the length be such that dielectric breakdown does not occur between the drain electrode 5 and the gate electrode 6 or the source electrode 4.
 上記各実施の形態においては、上記HFETの基板1としてSi基板を用いている。しかしながら、Si基板に限定されるものではなく、サファイア基板やSiC基板やGaN基板を用いても差し支えない。 In each of the above embodiments, a Si substrate is used as the substrate 1 of the HFET. However, the substrate is not limited to the Si substrate, and a sapphire substrate, an SiC substrate, or a GaN substrate may be used.
 さらに、上記HFETのチャネル層2としてGaNを用い、上記バリア層3としてAlGa1-xNを用いている。しかしながら、上記構成に限定されるものではなく、チャネル層2およびバリア層3を、AlInGa1-x-wN(x≧0,w≧0,0≦x+w<1)で表される窒化物半導体層を用いてもよい。すなわち、チャネル層2とバリア層3とで成る上記窒化物半導体層を、AlGaN,GaN,InGaN等を含んで構成してもよい。 Further, GaN is used as the channel layer 2 of the HFET, and Al x Ga 1-x N is used as the barrier layer 3. However, it is not limited to the above configuration, and the channel layer 2 and the barrier layer 3 are represented by Al x In w Ga 1-xw N (x ≧ 0, w ≧ 0, 0 ≦ x + w <1). A nitride semiconductor layer may be used. That is, the nitride semiconductor layer composed of the channel layer 2 and the barrier layer 3 may be configured to contain AlGaN, GaN, InGaN, or the like.
 また、上記各実施の形態においては、ノーマリーオンタイプのHFETについて説明したが。ノーマリーオフタイプのHFETでも同様の効果を得ることができる。 In each of the above embodiments, a normally-on type HFET has been described. The same effect can be obtained even with a normally-off type HFET.
 また、上記各実施の形態においては、上記チャネル層2上にバリア層3を直接形成して上記窒化物半導体層を構成しているが、この発明においては、基板1と上記窒化物半導体層との間、および、上記窒化物半導体層を構成する各層間に、適宜、バッファ層を形成してもよい。 In each of the above embodiments, the nitride semiconductor layer is configured by directly forming the barrier layer 3 on the channel layer 2. In the present invention, the substrate 1, the nitride semiconductor layer, A buffer layer may be appropriately formed between and between the layers constituting the nitride semiconductor layer.
 また、上記チャネル層2とバリア層3との間に、移動度向上のために、層厚1nm程度のAlN層を形成してもよい。 Further, an AlN layer having a thickness of about 1 nm may be formed between the channel layer 2 and the barrier layer 3 in order to improve mobility.
 また、上記バリア層3の上に、キャップ層としてGaNを形成してもよい。 Further, GaN may be formed on the barrier layer 3 as a cap layer.
 また、上記各実施の形態においては、上記バリア層3およびチャネル層2におけるソース電極4とドレイン電極5との形成箇所にリセスを形成し、電極材料を蒸着してアニールすることで、各電極4,5と上記2DEGとのオーミックコンタクトを形成している。しかしながら、上記オーミックコンタクトの形成方法はこれに限定されるものではなく、各電極4,5と上記2DEGとの間にオーミックコンタクトを形成可能であれば如何様な形成方法でも構わない。例えば、チャネル層2上にコンタクト用のアンドープAlGaN層を例えば厚さ15nmで形成し、リセスを形成すること無く、アンドープAlGaN層上に電極材料を直接蒸着してソース電極4とドレイン電極5とを形成し、アニールすることでオーミックコンタクトを形成してもよい。 In each of the above embodiments, a recess is formed in the barrier layer 3 and the channel layer 2 where the source electrode 4 and the drain electrode 5 are formed, and an electrode material is deposited and annealed. , 5 and the 2DEG are formed as ohmic contacts. However, the formation method of the ohmic contact is not limited to this, and any formation method may be used as long as an ohmic contact can be formed between the electrodes 4 and 5 and the 2DEG. For example, an undoped AlGaN layer for contact is formed on the channel layer 2 with a thickness of, for example, 15 nm, and an electrode material is directly deposited on the undoped AlGaN layer without forming a recess to form the source electrode 4 and the drain electrode 5. The ohmic contact may be formed by forming and annealing.
 また、上記各実施の形態においては、上記ゲート電極6を、WNとWとがこの順序で積層されたWN/Wを用いて形成している。しかしながら、この発明はこれに限定されるものではなく、トランジスタのゲートとして機能するものであれば如何様な材料でも構わない。例えばTiNやPt/AuやNi/Auを用いることができる。また、ゲート電極材料として、上記窒化物半導体層と接合した場合にショットキー接合となる材料を用いてもよい。 In each of the above embodiments, the gate electrode 6 is formed using WN / W in which WN and W are stacked in this order. However, the present invention is not limited to this, and any material may be used as long as it functions as a gate of a transistor. For example, TiN, Pt / Au, or Ni / Au can be used. Further, as the gate electrode material, a material that forms a Schottky junction when bonded to the nitride semiconductor layer may be used.
 また、上記各実施の形態においては、上記ソース電極4およびドレイン電極5を、TiとAlとがこの順序で積層されたTi/Alを用いて形成している。しかしながら、この発明はこれに限定されるものではなく、電気伝導性が有り、上記2DEGとオーミックコンタクトが可能であれば如何様な材料でも構わない。例えば、Ti,Al,TiNがこの順序で積層されたTi/Al/TiNを用いて形成してもよい。また、AlSi,AlCu,Auを、上記Alの代わりに用いてもよいし、Alの上に積層させてもよい。 In each of the above embodiments, the source electrode 4 and the drain electrode 5 are formed using Ti / Al in which Ti and Al are laminated in this order. However, the present invention is not limited to this, and any material may be used as long as it has electrical conductivity and can make ohmic contact with the 2DEG. For example, Ti / Al / TiN may be formed using Ti / Al / TiN laminated in this order. Further, AlSi, AlCu, and Au may be used instead of the above-described Al, or may be laminated on Al.
 以上、この発明の具体的な実施の形態について説明したが、この発明は上記実施の形態に限定されるものではなく、この発明の範囲内で種々変更して実施することができる。 Although specific embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various modifications can be made within the scope of the present invention.
 以下、この発明を纏めると、この発明の電界効果トランジスタは、
 ヘテロ接合を含む窒化物半導体層と、
 上記窒化物半導体層上に、互いに間隔を置いて配置されたソース電極4およびドレイン電極5と、
 上記窒化物半導体層上における上記ソース電極4と上記ドレイン電極5との間に配置されたゲート電極6と、
 上記窒化物半導体層の直上における上記ゲート電極6と上記ドレイン電極5との間に形成されると共に、少なくともシリコンおよび窒素を構成元素とする第1絶縁膜7と、
 上記第1絶縁膜7上に積層して形成された第2絶縁膜9と
を備え、
 上記第1絶縁膜7は、上記ドレイン電極5と上記窒化物半導体層との接触面の縁8まで形成されており、
 上記ドレイン電極5は、上記ゲート電極6側に向かってひさし状にせり出し、且つ上記第2絶縁膜9の上面に接触しているフィールドプレート部10を有しており、
 上記ドレイン電極5と上記窒化物半導体層との接触面の縁8の近傍における上記フィールドプレート部10下に設けられると共に、上記第1絶縁膜7のみが形成されている単層膜領域11と、
 上記単層膜領域11の上記接触面の縁8側とは反対側における上記フィールドプレート部10下に設けられると共に、上記第1絶縁膜7と上記第2絶縁膜9とが積層して形成されている複層膜領域12と
を備えたことを特徴としている。
Hereinafter, when this invention is summarized, the field effect transistor of this invention is:
A nitride semiconductor layer including a heterojunction;
A source electrode 4 and a drain electrode 5 which are spaced apart from each other on the nitride semiconductor layer;
A gate electrode 6 disposed between the source electrode 4 and the drain electrode 5 on the nitride semiconductor layer;
A first insulating film 7 formed between the gate electrode 6 and the drain electrode 5 immediately above the nitride semiconductor layer, and having at least silicon and nitrogen as constituent elements;
A second insulating film 9 formed by laminating on the first insulating film 7,
The first insulating film 7 is formed up to the edge 8 of the contact surface between the drain electrode 5 and the nitride semiconductor layer,
The drain electrode 5 has a field plate portion 10 that protrudes toward the gate electrode 6 side and is in contact with the upper surface of the second insulating film 9.
A single-layer film region 11 provided under the field plate portion 10 in the vicinity of the edge 8 of the contact surface between the drain electrode 5 and the nitride semiconductor layer, and in which only the first insulating film 7 is formed;
The single-layer film region 11 is provided below the field plate portion 10 on the side opposite to the edge 8 side of the contact surface, and is formed by laminating the first insulating film 7 and the second insulating film 9. The multilayer film region 12 is provided.
 上記構成によれば、上記窒化物半導体層の直上における上記ゲート電極6と上記ドレイン電極5との間であり、且つ上記フィールドプレート部10下に、上記第1絶縁膜7と上記第2絶縁膜9とを、この順で積層して形成している。こうして、上記フィールドプレート部10下の絶縁膜の総膜厚を厚くすることによって、上記窒化物半導体層の表面の電界を緩和することができる。 According to the above configuration, the first insulating film 7 and the second insulating film are between the gate electrode 6 and the drain electrode 5 immediately above the nitride semiconductor layer and below the field plate portion 10. 9 are laminated in this order. Thus, by increasing the total film thickness of the insulating film under the field plate portion 10, the electric field on the surface of the nitride semiconductor layer can be relaxed.
 その際に、上記第1絶縁膜7は、シリコンおよび窒素を構成元素としているので上記窒化物半導体層表面の界面制御を行うことができ、上記ドレイン電極5と上記窒化物半導体層との接触面の縁8まで形成される。 At that time, since the first insulating film 7 includes silicon and nitrogen as constituent elements, the interface control of the surface of the nitride semiconductor layer can be performed, and the contact surface between the drain electrode 5 and the nitride semiconductor layer can be controlled. Are formed up to the edge 8.
 上記フィールドプレート部10下の上記窒化物半導体層を覆う絶縁膜として、上記単層膜領域11と上記複層膜領域12とを設けることによって、上記フィールドプレート部10を段階的に形成することができる。したがって、上記ドレイン電極5の近傍における電界強度をさらに緩和することができると共に、上記ドレイン電極5の段切れの発生を抑制することが可能になる。 By providing the single-layer film region 11 and the multilayer film region 12 as an insulating film covering the nitride semiconductor layer under the field plate portion 10, the field plate portion 10 can be formed stepwise. it can. Therefore, the electric field strength in the vicinity of the drain electrode 5 can be further relaxed, and the occurrence of disconnection of the drain electrode 5 can be suppressed.
 したがって、この発明によれば、スイッチング動作時の高電圧の場合におけるコラプスを著しく改善することができるのである。 Therefore, according to the present invention, the collapse in the case of a high voltage during the switching operation can be remarkably improved.
 また、一実施の形態の電界効果トランジスタでは、
 上記第2絶縁膜9の誘電率は、上記第1絶縁膜7の誘電率よりも小さくなっている。
In the field effect transistor of one embodiment,
The dielectric constant of the second insulating film 9 is smaller than the dielectric constant of the first insulating film 7.
 この実施の形態によれば、上記フィールドプレート部10下の絶縁膜における表面側に位置する第2絶縁膜9の誘電率を小さくすることによって、電界の集中を上記窒化物半導体層の表面から遠ざけることができる。したがって、スイッチング動作時の高電圧の場合における上記窒化物半導体層の表面に掛かる電界強度をより低減することが可能となり、上記コラプスの上記2DEGへの影響を小さくすることができる。 According to this embodiment, the electric field concentration is kept away from the surface of the nitride semiconductor layer by reducing the dielectric constant of the second insulating film 9 located on the surface side of the insulating film below the field plate portion 10. be able to. Therefore, the electric field strength applied to the surface of the nitride semiconductor layer in the case of a high voltage during the switching operation can be further reduced, and the influence of the collapse on the 2DEG can be reduced.
 さらに、上記第2絶縁膜9として、上記第1絶縁膜7よりも誘電率の低い膜を用いることによって、上記第1絶縁膜7と上記第2絶縁膜9との必要総膜厚を顕著に小さくすることができる。その結果、上記ドレイン電極5の段切れ発生を抑制することが可能になる。 Further, by using a film having a dielectric constant lower than that of the first insulating film 7 as the second insulating film 9, the required total film thickness of the first insulating film 7 and the second insulating film 9 is remarkably increased. Can be small. As a result, the occurrence of disconnection of the drain electrode 5 can be suppressed.
 また、一実施の形態の電界効果トランジスタでは、
 上記第1絶縁膜7の比誘電率は、7.5以上且つ9.5以下の範囲内である。
In the field effect transistor of one embodiment,
The relative dielectric constant of the first insulating film 7 is in the range of 7.5 to 9.5.
 上記第1絶縁膜7は、上記窒化物半導体層の表面の界面制御を行う必要があるので、ストイキオメトリよりも上記シリコン組成が多い膜が望ましい。その場合に、あまりに上記シリコン組成が多いとリークが発生してしまう。 Since the first insulating film 7 needs to control the interface of the surface of the nitride semiconductor layer, a film having a higher silicon composition than the stoichiometry is desirable. In that case, if the silicon composition is too large, leakage occurs.
 この実施の形態によれば、上記第1絶縁膜7の比誘電率は、7.5以上且つ9.5以下の範囲内である。そのために、上記第1絶縁膜7は、リークを発生すること無く、上記窒化物半導体層の表面の界面制御を行うことができる。 According to this embodiment, the relative dielectric constant of the first insulating film 7 is in the range of 7.5 or more and 9.5 or less. Therefore, the first insulating film 7 can perform interface control of the surface of the nitride semiconductor layer without causing leakage.
 また、一実施の形態の電界効果トランジスタでは、
 上記第2絶縁膜9上には、上記第1絶縁膜7よりも誘電率の小さい第3絶縁膜13がさらに積層して形成されており、
 上記フィールドプレート部10は、上記第3絶縁膜13の上面に接触している。
In the field effect transistor of one embodiment,
On the second insulating film 9, a third insulating film 13 having a dielectric constant smaller than that of the first insulating film 7 is further laminated.
The field plate portion 10 is in contact with the upper surface of the third insulating film 13.
 この実施の形態によれば、上記窒化物半導体層を覆うと共に上記フィールドプレート部10下に位置する絶縁膜として、3層以上の多構造にすることによって、上記ドレイン電極5の上記フィールドプレート部10を、3段階以上の多段階にすることができる。したがって、上記ドレイン電極5の段切れの発生をさらに抑制することができる。さらに、上記絶縁膜の総膜厚を厚くすることができ、上記窒化物半導体層の表面における電界強度をさらに緩和して、スイッチング動作時の高電圧の場合におけるコラプスを改善することが可能となる。 According to this embodiment, the field plate portion 10 of the drain electrode 5 is formed by forming a multi-layer structure of three or more layers as an insulating film that covers the nitride semiconductor layer and is located under the field plate portion 10. Can be made into three or more stages. Therefore, the occurrence of disconnection of the drain electrode 5 can be further suppressed. Furthermore, the total film thickness of the insulating film can be increased, and the electric field strength on the surface of the nitride semiconductor layer can be further relaxed to improve the collapse in the case of a high voltage during switching operation. .
 また、一実施の形態の電界効果トランジスタでは、
 上記第2絶縁膜9または上記第3絶縁膜13が、当該絶縁膜よりも誘電率が大きい絶縁膜を、上記ドレイン電極5の近傍における上記フィールドプレート部10下において覆っている。
In the field effect transistor of one embodiment,
The second insulating film 9 or the third insulating film 13 covers an insulating film having a dielectric constant larger than that of the insulating film under the field plate portion 10 in the vicinity of the drain electrode 5.
 この実施の形態によれば、上記第2絶縁膜9または上記第3絶縁膜13が、当該絶縁膜よりも誘電率が大きい絶縁膜を覆っている。したがって、上記窒化物半導体層の表面の電界を緩和することが広範囲で可能となる。その結果、スイッチング動作時の高電圧の場合におけるコラプスをさらに改善することが可能になる。 According to this embodiment, the second insulating film 9 or the third insulating film 13 covers an insulating film having a dielectric constant larger than that of the insulating film. Therefore, it is possible to relax the electric field on the surface of the nitride semiconductor layer over a wide range. As a result, the collapse in the case of a high voltage during the switching operation can be further improved.
 また、一実施の形態の電界効果トランジスタでは、
 上記フィールドプレート部10下における、上記第1絶縁膜7、上記第2絶縁膜9および上記第3絶縁膜13は、上側の絶縁膜ほど誘電率が小さい。
In the field effect transistor of one embodiment,
The first insulating film 7, the second insulating film 9, and the third insulating film 13 below the field plate portion 10 have a lower dielectric constant as the upper insulating film.
 この実施の形態によれば、上側の絶縁膜ほど誘電率を低くすることによって、電界の集中を上記窒化物半導体層の表面から遠ざけることができる。したがって、スイッチング動作時の高電圧の場合における上記窒化物半導体層の表面に掛かる電界強度をより低減することが可能となり、コラプスの上記2DEGへの影響を小さくできるためである。 According to this embodiment, by lowering the dielectric constant of the upper insulating film, the electric field concentration can be kept away from the surface of the nitride semiconductor layer. Therefore, it is possible to further reduce the electric field strength applied to the surface of the nitride semiconductor layer in the case of a high voltage during the switching operation, and the influence of collapse on the 2DEG can be reduced.
 また、一実施の形態の電界効果トランジスタでは、
 上記誘電率が大きい絶縁膜9を、上記ドレイン電極5の近傍における上記フィールドプレート部10下において覆っている絶縁膜は、ドレイン電極5の近傍における上記フィールドプレート部10下において、最も誘電率の低い絶縁膜である。
In the field effect transistor of one embodiment,
The insulating film covering the insulating film 9 having a high dielectric constant under the field plate portion 10 in the vicinity of the drain electrode 5 has the lowest dielectric constant under the field plate portion 10 in the vicinity of the drain electrode 5. It is an insulating film.
 この実施の形態によれば、その誘電率が最も低い絶縁膜によって他の絶縁膜が覆われることで、上記窒化物半導体層の表面における電界を緩和することが広範囲で可能となる。 According to this embodiment, since the other insulating film is covered with the insulating film having the lowest dielectric constant, the electric field on the surface of the nitride semiconductor layer can be relaxed over a wide range.
 また、一実施の形態の電界効果トランジスタでは、
 上記フィールドプレート部10下に形成されている絶縁膜の総膜厚は200nm以上である。
In the field effect transistor of one embodiment,
The total thickness of the insulating film formed under the field plate portion 10 is 200 nm or more.
 この実施の形態によれば、上記フィールドプレート部10下の絶縁膜の総膜厚は200nm以上である。したがって、ドレイン電極5の近傍の上記窒化物半導体層表面の電界緩和が十分になされ、スイッチング動作時の高電圧の場合におけるコラプス改善のために必要な総膜厚を有している。 According to this embodiment, the total film thickness of the insulating film under the field plate portion 10 is 200 nm or more. Therefore, the electric field on the surface of the nitride semiconductor layer in the vicinity of the drain electrode 5 is sufficiently relaxed, and the total film thickness is necessary for improving the collapse in the case of a high voltage during the switching operation.
 1…Si基板
 2…GaNチャネル層
 3…AlGa1-xN(0<x<1)バリア層
 4…ソース電極
 5…ドレイン電極
 6…ゲート電極
 7…第1絶縁膜
 8…接触面縁
 9…第2絶縁膜
10…フィールドプレート部
11…単層膜領域
12…複層膜領域
12a…2層膜領域
12b…3層膜領域
13…第3絶縁膜
1 ... Si substrate 2 ... GaN channel layer 3 ... Al x Ga 1-x N (0 <x <1) barrier layer 4 ... source electrode 5 ... drain electrode 6 ... gate electrode 7 ... first insulating film 8 ... contact surface edge DESCRIPTION OF SYMBOLS 9 ... 2nd insulating film 10 ... Field plate part 11 ... Single layer film area | region 12 ... Multi-layer film area | region 12a ... 2 layer film area | region 12b ... 3 layer film area | region 13 ... 3rd insulating film

Claims (5)

  1.  ヘテロ接合を含む窒化物半導体層と、
     上記窒化物半導体層上に、互いに間隔を置いて配置されたソース電極(4)およびドレイン電極(5)と、
     上記窒化物半導体層上における上記ソース電極(4)と上記ドレイン電極(5)との間に配置されたゲート電極(6)と、
     上記窒化物半導体層の直上における上記ゲート電極(6)と上記ドレイン電極(5)との間に形成されると共に、少なくともシリコンおよび窒素を構成元素とする第1絶縁膜(7)と、
     上記第1絶縁膜(7)上に積層して形成された第2絶縁膜(9)と
    を備え、
     上記第1絶縁膜(7)は、上記ドレイン電極(5)と上記窒化物半導体層との接触面の縁(8)まで形成されており、
     上記ドレイン電極(5)は、上記ゲート電極(6)側に向かってひさし状にせり出し、且つ上記第2絶縁膜(9)の上面に接触しているフィールドプレート部(10)を有しており、
     上記ドレイン電極(5)と上記窒化物半導体層との接触面の縁(8)の近傍における上記フィールドプレート部(10)下に設けられると共に、上記第1絶縁膜(7)のみが形成されている単層膜領域(11)と、
     上記単層膜領域(11)の上記接触面の縁(8)側とは反対側における上記フィールドプレート部(10)下に設けられると共に、上記第1絶縁膜(7)と上記第2絶縁膜(9)とが積層して形成されている複層膜領域(12)と
    を備えたことを特徴とする電界効果トランジスタ。
    A nitride semiconductor layer including a heterojunction;
    A source electrode (4) and a drain electrode (5) spaced apart from each other on the nitride semiconductor layer;
    A gate electrode (6) disposed between the source electrode (4) and the drain electrode (5) on the nitride semiconductor layer;
    A first insulating film (7) formed between the gate electrode (6) and the drain electrode (5) immediately above the nitride semiconductor layer, and comprising at least silicon and nitrogen as constituent elements;
    A second insulating film (9) formed on the first insulating film (7),
    The first insulating film (7) is formed up to the edge (8) of the contact surface between the drain electrode (5) and the nitride semiconductor layer,
    The drain electrode (5) has a field plate portion (10) protruding in an eave-like shape toward the gate electrode (6) and in contact with the upper surface of the second insulating film (9). ,
    Provided under the field plate portion (10) in the vicinity of the edge (8) of the contact surface between the drain electrode (5) and the nitride semiconductor layer, and only the first insulating film (7) is formed. A single layer film region (11),
    The first insulating film (7) and the second insulating film are provided below the field plate portion (10) on the side opposite to the edge (8) side of the contact surface of the single layer film region (11). And a multilayer film region (12) formed by laminating (9).
  2.  請求項1に記載の電界効果トランジスタにおいて、
     上記第2絶縁膜(9)上には、上記第1絶縁膜(7)よりも誘電率の小さい第3絶縁膜(13)がさらに積層して形成されており、
     上記フィールドプレート部(10)は、上記第3絶縁膜(13)の上面に接触していることを特徴とする電界効果トランジスタ。
    The field effect transistor according to claim 1.
    A third insulating film (13) having a dielectric constant smaller than that of the first insulating film (7) is further laminated on the second insulating film (9).
    The field plate transistor (10) is in contact with the upper surface of the third insulating film (13).
  3.  請求項2に記載の電界効果トランジスタにおいて、
     上記第2絶縁膜(9)または上記第3絶縁膜(13)が、当該絶縁膜よりも誘電率が大きい絶縁膜を、上記ドレイン電極(5)の近傍における上記フィールドプレート部(10)下において覆っていることを特徴とする電界効果トランジスタ。
    The field effect transistor according to claim 2.
    The second insulating film (9) or the third insulating film (13) has an insulating film having a dielectric constant larger than that of the insulating film under the field plate portion (10) in the vicinity of the drain electrode (5). A field effect transistor characterized by covering.
  4.  請求項1乃至請求項3のいずれか一つに記載の電界効果トランジスタにおいて、
     上記第2絶縁膜(9)の誘電率は、上記第1絶縁膜(7)の誘電率よりも小さいことを特徴とする電界効果トランジスタ。
    The field effect transistor according to any one of claims 1 to 3,
    The field effect transistor according to claim 1, wherein a dielectric constant of the second insulating film (9) is smaller than a dielectric constant of the first insulating film (7).
  5.  請求項2または3に記載の電界効果トランジスタにおいて、
     上記フィールドプレート部(10)下における、上記第1絶縁膜(7)、上記第2絶縁膜(9)および上記第3絶縁膜(13)は、上側の絶縁膜ほど誘電率が小さいことを特徴とする電界効果トランジスタ。
    The field effect transistor according to claim 2 or 3,
    The first insulating film (7), the second insulating film (9), and the third insulating film (13) under the field plate portion (10) have a lower dielectric constant as the upper insulating film. A field effect transistor.
PCT/JP2015/071377 2014-09-04 2015-07-28 Field effect transistor WO2016035479A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014180475A JP2017199700A (en) 2014-09-04 2014-09-04 Field-effect transistor
JP2014-180475 2014-09-04

Publications (1)

Publication Number Publication Date
WO2016035479A1 true WO2016035479A1 (en) 2016-03-10

Family

ID=55439548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071377 WO2016035479A1 (en) 2014-09-04 2015-07-28 Field effect transistor

Country Status (2)

Country Link
JP (1) JP2017199700A (en)
WO (1) WO2016035479A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004200248A (en) * 2002-12-16 2004-07-15 Nec Corp Field effect transistor
JP2005093864A (en) * 2003-09-19 2005-04-07 Toshiba Corp Semiconductor device for electric power
JP2014072360A (en) * 2012-09-28 2014-04-21 Fujitsu Ltd Compound semiconductor device and manufacturing method of the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004200248A (en) * 2002-12-16 2004-07-15 Nec Corp Field effect transistor
JP2005093864A (en) * 2003-09-19 2005-04-07 Toshiba Corp Semiconductor device for electric power
JP2014072360A (en) * 2012-09-28 2014-04-21 Fujitsu Ltd Compound semiconductor device and manufacturing method of the same

Also Published As

Publication number Publication date
JP2017199700A (en) 2017-11-02

Similar Documents

Publication Publication Date Title
JP6591168B2 (en) Semiconductor device and manufacturing method thereof
JP5348364B2 (en) Heterojunction field effect semiconductor device
US8530937B2 (en) Compound semiconductor device having insulation film with different film thicknesses beneath electrodes
JP5776217B2 (en) Compound semiconductor device
US8643025B2 (en) Semiconductor device and method of manufacturing same
JP6272557B2 (en) Nitride semiconductor field effect transistor
JP6591169B2 (en) Semiconductor device and manufacturing method thereof
JP2017073506A (en) Nitride semiconductor device and method for manufacturing the same
JP2008034438A (en) Semiconductor device
US9627504B2 (en) Semiconductor device
WO2012111363A1 (en) Lateral-type semiconductor device
US10243049B2 (en) Nitride semiconductor device
JP2011233695A (en) NORMALLY-OFF TYPE GaN-BASED FIELD EFFECT TRANSISTOR
JP2014045174A (en) Nitride semiconductor device
JP2015173237A (en) semiconductor device
JP2019145703A (en) Semiconductor device
WO2014003058A1 (en) Electrode structure for nitride semiconductor device, and nitride semiconductor field effect transistor
JP7097708B2 (en) Nitride semiconductor equipment
JP6331907B2 (en) Semiconductor device
JP2016058721A (en) Semiconductor device
JP2016181570A (en) Semiconductor device and manufacturing method of the same
JP2018160668A (en) Nitride semiconductor device
WO2016035479A1 (en) Field effect transistor
WO2016181681A1 (en) Field effect transistor
JP2011204780A (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15837453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15837453

Country of ref document: EP

Kind code of ref document: A1