WO2016035337A1 - 情報処理装置、情報処理方法、及び、記録媒体 - Google Patents

情報処理装置、情報処理方法、及び、記録媒体 Download PDF

Info

Publication number
WO2016035337A1
WO2016035337A1 PCT/JP2015/004463 JP2015004463W WO2016035337A1 WO 2016035337 A1 WO2016035337 A1 WO 2016035337A1 JP 2015004463 W JP2015004463 W JP 2015004463W WO 2016035337 A1 WO2016035337 A1 WO 2016035337A1
Authority
WO
WIPO (PCT)
Prior art keywords
limit voltage
charging
information processing
lower limit
capacity
Prior art date
Application number
PCT/JP2015/004463
Other languages
English (en)
French (fr)
Inventor
祐一 今村
潤一 宮本
高橋 真吾
翔 大谷
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US15/505,417 priority Critical patent/US20170254853A1/en
Priority to JP2016546325A priority patent/JPWO2016035337A1/ja
Publication of WO2016035337A1 publication Critical patent/WO2016035337A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • G01R31/388Determining ampere-hour charge capacity or SoC involving voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to control of a power storage device that stores (charges) and discharges power, and particularly relates to an information processing apparatus that measures the state of the power storage device, a power storage information processing method, and a recording medium.
  • a storage battery for an electric vehicle will be described.
  • the remaining capacity of the battery decreases as the electric vehicle travels, and the remaining cruising distance decreases as the remaining capacity decreases.
  • a household storage battery will be described.
  • the storage battery provides power for a vacuum cleaner, a washing machine, a TV (Television), and the like, and only the power used for the supply provides the remaining amount of storage battery (SOC: State Of Charge). Decrease.
  • the storage battery turns off (reduces) the display of the indicator LED (Light Emitting Diode) indicating the remaining amount in accordance with the remaining amount.
  • the light is turned off to inform the user of a decrease in the remaining battery level.
  • Patent Document 1 determines the initial actual capacity based on the charge capacity from the fully discharged state to the fully charged state. In addition, the technique described in Patent Document 1 assumes complete discharge when the discharge voltage is lowered to a predetermined value (for example, about 3 V).
  • stationary storage batteries such as household storage batteries discharge with various amounts of electric power based on the connection load status.
  • stationary storage batteries are often installed outdoors. Therefore, the stationary storage battery is exposed to an environment that exceeds the negative temperature in winter and 40 ° C. in summer. In such an environment, it is difficult to completely discharge the storage battery as in the technique described in Patent Document 1.
  • the internal resistance of a storage battery such as a lithium ion battery varies greatly based on the environmental temperature and the degree of deterioration. That is, the voltage drop based on the internal resistance (R) and the discharge current value (I) of the storage battery (that is, based on the IR component) varies depending on the environmental temperature and the degree of deterioration. For this reason, the technique described in Patent Document 1 that determines the discharge state based on the same end voltage may determine that the remaining capacity remains as a complete discharge state that has reached the end voltage. Based on the charging from this state to the fully charged state, the technique described in Patent Document 1 cannot measure an accurate battery capacity. As described above, the technique described in Patent Document 1 has a problem that accurate battery capacity may not be measured.
  • An object of the present invention is to solve the above-described problems and provide an information processing apparatus, an information processing method, and a recording medium that accurately measure the full charge capacity of a storage battery.
  • An information processing apparatus includes a receiving unit that receives a state of a power storage unit that stores electric power, a first period that is charged from a second lower limit voltage to a first lower limit voltage, and a first lower limit voltage.
  • Charge / discharge control means for controlling charging in a charging period including a second period for charging from the first to the first upper limit voltage, and capacity calculating means for calculating the capacity of the power storage means based on the state in the second period.
  • An information processing apparatus includes a power storage unit that stores power, a reception unit that receives a state of the power storage unit, and a first period in which charging is performed from the second lower limit voltage to the first lower limit voltage. And charge / discharge control means for controlling charging in a charging period including the second period for charging from the first lower limit voltage to the first upper limit voltage, and the capacity of the power storage means based on the state in the second period Capacity calculating means for calculating.
  • An information processing method includes a first period in which a state of a power storage unit that stores electric power is received, and charging from a second lower limit voltage to a first lower limit voltage, and the first lower limit voltage to the first.
  • the charging of the power storage means in the charging period including the second period of charging up to the upper limit voltage is controlled, and the capacity of the power storage means is calculated based on the state in the second period.
  • a recording medium including a process of receiving a state of power storage means for storing electric power, a first period of charging from a second lower limit voltage to a first lower limit voltage, and a first lower limit voltage. And causing the computer to execute a process of controlling charging of the power storage means during a charging period including a second period of charging up to an upper limit voltage of 1, and a process of calculating the capacity of the power storage means based on the state during the second period Record the program in a computer readable manner.
  • FIG. 1 is a block diagram showing an example of the configuration of the information processing apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of charge / discharge for capacity measurement according to the first embodiment.
  • FIG. 3 is a flowchart illustrating an example of processing of the information processing apparatus according to the first embodiment.
  • FIG. 4 is a diagram illustrating a comparison between a measurement result of the information processing apparatus according to the first embodiment and a measurement result of a general apparatus.
  • FIG. 5 is a block diagram illustrating another example of the configuration of the information processing apparatus according to the first embodiment.
  • FIG. 6 is a block diagram illustrating another example of the configuration of the information processing apparatus according to the first embodiment.
  • FIG. 1 is a block diagram showing an example of the configuration of the information processing apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of charge / discharge for capacity measurement according to the first embodiment.
  • FIG. 3 is a flowchart illustrating an example of
  • FIG. 7 is a block diagram illustrating an example of the configuration of the information processing apparatus according to the second embodiment.
  • FIG. 8 is a diagram illustrating an example of charge / discharge for capacity measurement according to the second embodiment.
  • FIG. 9 is a flowchart illustrating an example of processing of the information processing apparatus according to the second embodiment.
  • FIG. 10 is a diagram illustrating a comparison between a measurement result of the information processing apparatus according to the second embodiment and a measurement result of a general measurement apparatus.
  • FIG. 11 is a diagram illustrating a comparison between a measurement result of the information processing apparatus according to the second embodiment and a measurement result of a general measurement apparatus.
  • FIG. 12 is a diagram illustrating a comparison between a measurement result of the information processing apparatus according to the second embodiment and a measurement result of a general measurement apparatus.
  • FIG. 13 is a block diagram illustrating an example of the configuration of the information processing apparatus according to the third embodiment.
  • FIG. 14 is a diagram illustrating an example of charge / discharge of capacity measurement according to the third embodiment.
  • FIG. 15 is a flowchart illustrating an example of processing of the information processing apparatus according to the third embodiment.
  • FIG. 16 is a block diagram illustrating another example of the configuration of the information processing apparatus according to the first embodiment.
  • FIG. 1 is a block diagram showing an example of the configuration of the information processing apparatus 10 according to the first embodiment of the present invention.
  • the information processing apparatus 10 includes a power storage unit 101, a state acquisition unit 102, a capacity calculation unit 103, a range information reception unit 104, a capacity measurement determination unit 105, a voltage setting unit 106, a charge / discharge control unit 107, Charging / discharging unit 108.
  • the power storage unit 101 includes a power storage device (not shown).
  • the power storage device is not particularly limited.
  • the power storage device is, for example, a secondary battery (such as a lithium ion battery, a lead storage battery, or a nickel metal hydride battery) or an electric double layer capacitor.
  • the power storage unit 101 may include one power storage device or a plurality of power storage devices connected in series or in parallel.
  • the power storage unit 101 is connected to a power supply device (for example, a battery) and a power consumption device (for example, a load device) (not shown), and charges and discharges power.
  • the state acquisition unit 102 measures information representing the state of the power storage unit 101 (for example, voltage, current, and temperature). More specifically, the state acquisition unit 102 includes a voltage measuring device, a current measuring device, and / or a temperature measuring device (not shown). Then, the state acquisition unit 102 uses the included measurement device to measure the physical quantity of the power storage device included in the power storage unit 101 (for example, the cell voltage or total voltage of the storage battery, the charge current or discharge current of the storage battery, or the power storage unit 101 ). Then, the status acquisition unit 102 transmits (notifies) the measured status information of the power storage unit 101 to the capacity calculation unit 103, the voltage setting unit 106, and the charge / discharge control unit 107.
  • the state acquisition unit 102 uses the included measurement device to measure the physical quantity of the power storage device included in the power storage unit 101 (for example, the cell voltage or total voltage of the storage battery, the charge current or discharge current of the storage battery, or the power storage unit 101 ). Then, the status acquisition unit 102 transmits
  • the measurement timing and transmission timing of the state acquisition unit 102 are not particularly limited.
  • the state acquisition unit 102 may measure the state information of the power storage unit 101 at all times or at a predetermined time interval, and transmit the measured state information to the capacity calculation unit 103 and the charge / discharge control unit 107.
  • the state acquisition unit 102 measures the state information of the power storage unit 101 in response to a request from the capacity calculation unit 103 or the charge / discharge control unit 107, and transmits the state information to the capacity calculation unit 103 or the charge / discharge control unit 107. May be.
  • the state acquisition unit 102 measures the state information of the power storage unit 101 at a predetermined time interval, and transmits the measured state information in response to a request from the capacity calculation unit 103 or the charge / discharge control unit 107. Also good. Note that the state acquisition unit 102 may acquire (receive) the state of the power storage unit 101 from a voltage measurement device, a current measurement device, and / or a temperature measurement device (not shown) provided outside the information processing apparatus 10. . In that case, the state acquisition unit 102 operates as a reception unit that receives the state of the power storage unit. Hereinafter, it may be referred to as “the state acquisition unit 102 receives a state” including “the state acquisition unit 102 acquires a state”.
  • the capacity calculation unit 103 calculates the capacity of the power storage unit 101 (for example, SOC (State of Charge) or SOH (State of Health)) using the state information.
  • the capacity calculation unit 103 may store the calculated capacity (such as SOC or SOH) in a storage unit (not shown).
  • the calculated values of the capacity calculation unit 103 including the SOC and the like are collectively referred to as “capacity”.
  • the range information receiving unit 104 receives range information.
  • the range information includes the upper limit voltage (upper limit voltage during use) and lower limit voltage (lower limit voltage during use) of the power storage unit 101 during normal use, and the upper limit voltage (first limit of the voltage range during capacity measurement). Upper limit voltage) and lower limit voltage (first lower limit voltage).
  • the range information receiving unit 104 may receive the voltage range during use and the voltage range for capacity measurement at the same time or may be received separately. Further, the range information receiving unit 104 may receive the voltage range of the capacity measurement not only once but a plurality of times.
  • the range information receiving unit 104 may receive range information from a device operated by a user or business operator of the information processing apparatus 10 (not shown).
  • the range information receiving unit 104 has no particular limitation on the information path.
  • the range information receiving unit 104 may be connected to a device operated by the user via the Internet. The range information receiving unit 104 transmits the received information to the voltage setting unit 106.
  • the capacity measurement determination unit 105 notifies the voltage setting unit 106 of whether or not the capacity of the power storage unit 101 can be measured.
  • the capacity measurement determination unit 105 may periodically notify the voltage setting unit 106 of whether or not capacity measurement is possible.
  • the capacity measurement determination unit 105 may notify the voltage setting unit 106 of whether or not capacity measurement is possible based on an instruction from a device (not shown) operated by a user or business operator.
  • the capacitance measurement determination unit 105 may notify the voltage setting unit 106 of “measurement is possible”, that is, the start of measurement without notifying “no measurement”. Therefore, hereinafter, the notification from the capacity measurement determination unit 105 is referred to as “measurement start notification”.
  • the voltage setting unit 106 receives range information (first upper limit voltage and first lower limit voltage, and upper limit voltage during use and lower limit voltage during use) from the range information receiving unit 104. In addition, the voltage setting unit 106 receives a measurement start notification from the capacitance measurement determination unit 105. In addition, the voltage setting unit 106 receives state information from the state acquisition unit 102. Then, the voltage setting unit 106 calculates the second lower limit voltage based on the range information and the state information.
  • range information first upper limit voltage and first lower limit voltage, and upper limit voltage during use and lower limit voltage during use
  • the information processing apparatus 10 needs to realize a stable first lower limit voltage as a measurement starting point when measuring the capacity of the power storage unit 101. More specifically, the information processing apparatus 10 achieves a stable first lower limit voltage by charging a constant current constant voltage (CCCV: Constant-Current-Constant Voltage) up to the first lower limit voltage.
  • CCCV Constant-Current-Constant Voltage
  • the information processing apparatus 10 opens the power storage unit 101 before realizing the stable first lower limit voltage. It is necessary to start CCCV charging after the voltage is sufficiently lower than the first lower limit voltage.
  • the information processing apparatus 10 sets the voltage of the power storage unit 101 as the second lower limit as a starting point for CCCV charging (referred to as pre-charging) to the first lower limit voltage before realizing the stable first lower limit voltage.
  • the second lower limit voltage is “lower voltage”
  • the first lower limit voltage is “middle voltage”
  • the first upper limit voltage is “upper voltage”.
  • the second lower limit voltage will be further described later.
  • the voltage setting unit 106 sends the range information (upper limit voltage in use, lower limit voltage in use, first upper limit voltage, and first lower limit voltage) and second lower limit voltage information to the charge / discharge control unit 107.
  • the charge / discharge control unit 107 may receive range information from the range information receiving unit 104.
  • the voltage setting unit 106 notifies the charge / discharge control unit 107 of the start of measurement based on the measurement start notification.
  • the voltage setting unit 106 may notify the charge / discharge control unit 107 of the start of measurement when measurement is possible.
  • the charge / discharge control unit 107 may determine that reception of information including the second lower limit voltage from the voltage setting unit 106 is an instruction to start measurement.
  • the charging / discharging control unit 107 transmits the acquired voltage information (range information and the second lower limit voltage) to the charging / discharging unit 108, and causes the charging / discharging unit 108 to charge or discharge the power storage unit 101. Control charge and discharge.
  • the charging / discharging unit 108 charges and discharges the power storage unit 101 based on the acquired voltage information.
  • the charging / discharging unit 108 desirably charges the power storage unit 101 in a CCCV manner during charging.
  • the charging / discharging unit 108 may control charging / discharging of the power storage unit 101 by controlling connection between the power storage unit 101 and a power storage unit or a load (not shown).
  • the information processing apparatus 10 need not be limited to CCCV charging.
  • the information processing apparatus 10 may use constant power (CP) charging or pulse charging instead of CC (Constant Current) charging.
  • CC Constant Current
  • the information processing apparatus 10 may use variable rate charging for charging.
  • FIG. 2 is a diagram illustrating an example of charge / discharge for capacity measurement according to the first embodiment.
  • FIG. 3 is a flowchart showing an example of processing of the information processing apparatus 10 according to the first embodiment.
  • FIG. 2 shows a case where the voltage range and the capacity measurement range during normal use are the same.
  • the time (1) shown in FIG. 2 is a normal discharge state. Normally, the voltage of power storage unit 101 decreases according to a change in load. Based on the state information from the state acquisition unit 102, the charge / discharge control unit 107 instructs the charge / discharge unit 108 to perform normal charging when the voltage of the power storage unit 101 becomes the lower limit voltage during normal use.
  • Time (2) is a normal state of charge.
  • the voltage difference between time (1) and time (2) is a voltage difference based on the internal resistance of the rechargeable battery.
  • Charging / discharging unit 108 performs CCCV charging of power storage unit 101. Therefore, the line indicating the voltage at time (2) shown in FIG. 2 is a straight line or a curve approximated to a straight line (hereinafter collectively referred to as “substantially straight line”) up to the vicinity of the upper limit voltage in use.
  • the charge / discharge control unit 107 switches to CV (Constant Voltage) charging when the voltage of the power storage unit 101 reaches the upper limit voltage in use, and instructs the charging / discharging unit 108 to stop charging when the CV termination condition is satisfied.
  • CV Constant Voltage
  • the CV end condition is, for example, one of the following conditions.
  • First condition The charging current was sufficiently small.
  • Second condition Sufficient time passed after switching to CV charging.
  • Third condition Both the first condition and the second condition are satisfied.
  • Fourth condition A sufficient time has elapsed since the charging current became sufficiently small.
  • the CV end condition of the present embodiment is not limited to this. Thereafter, as in the time (1), the power storage unit 101 is discharged according to the load.
  • Time (3) is a normal discharge state. However, at the point a of time (3) in FIG. 2, the information processing apparatus 10 detects the start of capacity measurement (step S101). For example, the capacitance measurement determination unit 105 detects the timing of periodic capacitance measurement and instructs the voltage setting unit 106 to start measurement.
  • the voltage setting unit 106 transmits the voltages (first upper limit voltage and first lower limit voltage) used for measurement to the charge / discharge control unit 107 (step S103).
  • the voltage setting unit 106 calculates a second lower limit voltage, and transmits information on the calculated second lower limit voltage to the charge / discharge control unit 107 (step S104).
  • the voltage setting unit 106 calculates a second lower limit voltage that satisfies Equation 1 shown below. More specifically, voltage setting unit 106 calculates the internal resistance of power storage unit 101 based on the temperature included in the state information of power storage unit 101 received from state acquisition unit 102. And the voltage setting part 106 calculates a 2nd minimum voltage using internal resistance, the electric current value at the time of discharge, and a 1st minimum voltage.
  • Second lower limit voltage ⁇ (first lower limit voltage ⁇ (internal resistance of power storage unit 101 ⁇ discharge current value) ⁇ (internal resistance of power storage unit 101 ⁇ charge current value)
  • the method for obtaining the second lower limit voltage in the voltage setting unit 106 need not be limited to Equation 1.
  • the voltage setting unit 106 may use a method suitable for calculating the capacity of the power storage unit 101.
  • the charging / discharging control unit 107 causes the charging / discharging unit 108 to discharge the power storage unit 101 until the power storage unit 101 reaches the second lower limit voltage (No in step S105).
  • Time (4) is a state of preliminary charging.
  • step S105 When the voltage of the power storage unit 101 has reached the second lower limit voltage (Yes in step S105), the charge / discharge control unit 107 instructs the charge / discharge unit 108 to perform CCCV charging up to the first lower limit voltage (step S106). ).
  • the charging / discharging control unit 107 waits until the charging voltage reaches the first lower limit voltage (No in step S107).
  • Time (5) is a state of capacity calculation.
  • the charge / discharge control unit 107 instructs the charge / discharge unit 108 to perform CCCV charging up to the first upper limit voltage in the power storage unit 101 (step S108).
  • the capacity calculation unit 103 calculates a measured value of the capacity (full charge capacity) of the power storage unit 101 based on the current flowing between the first lower limit voltage and the first upper limit voltage (step S109). For example, the capacity calculation unit 103 calculates a measured value of the capacity by integrating currents included in the state information received from the state acquisition unit 102 (for example, current integration method).
  • the power storage unit 101 used in this measurement was a lithium ion secondary battery.
  • the upper limit voltage and the first upper limit voltage during use were 4.1 V
  • the lower limit voltage during use and the first lower limit voltage were 3.0 V
  • the second lower limit voltage was 2.5 V.
  • FIG. 4 is a diagram showing a comparison between a measurement result of the capacity of the information processing apparatus 10 according to the present embodiment and a measurement result of the capacity of a general measurement apparatus.
  • the measured value of the capacity became smaller as the temperature became lower.
  • the error increases at low temperatures.
  • the temperature dependence as that of a general measurement apparatus was not observed, and an accurate measurement value of the capacity could be obtained.
  • this embodiment can obtain the effect of accurately measuring the full charge capacity.
  • the voltage setting unit 106 calculates a second lower limit voltage lower than the first lower limit voltage in order to stably realize the first lower limit voltage used in the measurement. Then, after the charge / discharge control unit 107 discharges the power storage unit 101 to the second lower limit voltage, the charge / discharge unit 108 is used to charge the power storage unit 101 to the first lower limit voltage CCCV. Therefore, the first lower limit voltage that is the starting point of measurement is stable.
  • Charging / discharging control unit 107 uses charging / discharging unit 108 to charge power storage unit 101 to the first upper limit voltage CCCV, and measures the capacity of power storage unit 101. This is because the information processing apparatus 10 can measure the capacity using the stable first lower limit voltage.
  • each component of the information processing apparatus 10 may be configured with a hardware circuit.
  • the information processing apparatus 10 may be configured by using a plurality of information processing apparatuses in which the components of the information processing apparatus 10 are connected via a network or a bus.
  • the information processing apparatus 10 uses the range information receiving unit 104 as another device, and prior to processing, the necessary information (the upper limit voltage during use, the lower limit voltage during use, the first upper limit voltage, and the first lower limit voltage) ) May be received, held, and operated.
  • the information processing apparatus 10 may perform the capacity measurement based on an instruction from the apparatus, with the capacity measurement determination unit 105 as another apparatus. Further, the information processing apparatus 10 may control the power storage unit 101 installed as a separate apparatus.
  • FIG. 5 includes an example of the configuration of the information processing apparatus 11 according to the present modification.
  • the information processing apparatus 11 includes a state acquisition unit 102, a capacity calculation unit 103, a voltage setting unit 106, a charge / discharge control unit 107, and a charge / discharge unit 108. Since each configuration of the information processing apparatus 11 operates in the same manner as the information processing apparatus 10, a detailed description of the configuration and operation is omitted.
  • the state acquisition unit 102 receives information indicating the state of a power storage unit (not shown) corresponding to the power storage unit 101 in FIG.
  • the voltage setting unit 106 receives range information from a range information receiving unit (not shown) corresponding to the range information receiving unit 104 in FIG. Further, the voltage setting unit 106 receives a measurement start notification from a capacitance measurement determination unit (not shown) corresponding to the capacitance measurement determination unit 105 in FIG.
  • the charging / discharging unit 108 charges and discharges a power storage unit (not shown) based on an instruction from the charging / discharging control unit 107.
  • the information processing apparatus 11 configured in this way can obtain the same effects as the information processing apparatus 10.
  • the reason is that the information processing apparatus 11 can realize the same function as the information processing apparatus 10.
  • the configuration excluding the state acquisition unit 102, the capacity calculation unit 103, and the charge / discharge control unit 107 may be configured as a separate device.
  • FIG. 16 includes an example of the configuration of the information processing apparatus 12 according to this modification.
  • the information processing apparatus 12 includes a state acquisition unit 102, a capacity calculation unit 103, and a charge / discharge control unit 107.
  • Each configuration of the information processing apparatus 12 operates in the same manner as the information processing apparatus 10. That is, the state acquisition unit 102 acquires or receives the state of the power storage unit 101.
  • the charging / discharging control unit 107 controls charging / discharging in the charging unit 101 using the charging / discharging unit 108 based on information from the voltage setting unit 106. Then, the capacity calculation unit 103 calculates the capacity of the power storage unit 101 based on the state acquired by the state acquisition unit 102.
  • the information processing apparatus 12 configured as described above can obtain the same effects as the information processing apparatus 10.
  • the reason is that the information processing apparatus 12 can realize the same function as the information processing apparatus 10.
  • the information processing apparatus 12 is the minimum configuration of the present invention.
  • each of the plurality of components may be configured by one piece of hardware.
  • the description common to the information processing apparatus 10, the information processing apparatus 11, and the information processing apparatus 12 will be described as the information processing apparatus 10.
  • the information processing apparatus 10 may be realized as a computer device including a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory).
  • the information processing apparatus 10 may be realized as a computer apparatus that further includes an input / output connection circuit (IOC: Input ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ / Output Circuit) and a network interface circuit (NIC: Network Interface Circuit).
  • IOC Input ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ / Output Circuit
  • NIC Network Interface Circuit
  • FIG. 6 is a block diagram showing an example of the configuration of the information processing apparatus 60 according to this modification.
  • the information processing device 60 includes a CPU 610, a ROM 620, a RAM 630, an internal storage device 640, an IOC 650, and a NIC 680, and constitutes a computer device.
  • the CPU 610 reads a program from ROM 620.
  • the CPU 610 controls the RAM 630, the internal storage device 640, the IOC 650, and the NIC 680 based on the read program.
  • the computer including the CPU 610 controls these configurations, and each function as the state acquisition unit 102, the capacity calculation unit 103, the voltage setting unit 106, and the charge / discharge control unit 107 illustrated in FIGS. Is realized.
  • the computer including the CPU 610 may realize at least part of the functions of the power storage unit 101, the range information receiving unit 104, the capacity measurement determination unit 105, or the charge / discharge unit 108 shown in FIG.
  • the computer including the CPU 610 controls these configurations, and implements the functions as the state acquisition unit 102, the capacity calculation unit 103, and the charge / discharge control unit 107 illustrated in FIG.
  • the CPU 610 may use the RAM 630 or the internal storage device 640 as a temporary storage of a program when realizing each function.
  • the CPU 610 may read the program included in the storage medium 700 storing the program so as to be readable by a computer using a storage medium reading device (not shown). Alternatively, the CPU 610 may receive a program from an external device (not shown) via the NIC 680, store the program in the RAM 630, and operate based on the stored program.
  • ROM 620 stores programs executed by CPU 610 and fixed data.
  • the ROM 620 is, for example, a P-ROM (Programmable-ROM) or a flash ROM.
  • the RAM 630 temporarily stores programs executed by the CPU 610 and data.
  • the RAM 630 is, for example, a D-RAM (Dynamic-RAM).
  • the internal storage device 640 stores data and programs that the information processing device 60 stores for a long time. Further, the internal storage device 640 may operate as a temporary storage device for the CPU 610.
  • the internal storage device 640 is, for example, a hard disk device, a magneto-optical disk device, an SSD (Solid State Drive), or a disk array device.
  • the ROM 620 and the internal storage device 640 are nonvolatile storage media.
  • the RAM 630 is a volatile storage medium.
  • the CPU 610 can operate based on a program stored in the ROM 620, the internal storage device 640, or the RAM 630. That is, the CPU 610 can operate using a nonvolatile storage medium or a volatile storage medium.
  • the IOC 650 mediates data between the CPU 610, the input device 660, and the display device 670.
  • the IOC 650 is, for example, an IO interface card or a USB (Universal Serial Bus) card.
  • the input device 660 is a device that receives an input instruction from an operator of the information processing apparatus 60.
  • the input device 660 is, for example, a keyboard, a mouse, or a touch panel.
  • the input device 660 may operate as the range information receiving unit 104 or the capacity measurement determining unit 105.
  • the display device 670 is a device that displays information to the operator of the information processing apparatus 60.
  • the display device 670 is a liquid crystal display, for example.
  • the NIC 680 relays data exchange with an external device (not shown) via the network.
  • the NIC 680 may operate as the range information receiving unit 104.
  • the NIC 680 is, for example, a LAN (Local Area Network) card.
  • the NIC 680 may operate as the range information receiving unit 104 or the capacity measurement determining unit 105.
  • the information processing apparatus 60 configured as described above can obtain the same effects as the information processing apparatus 10.
  • the reason is that the CPU 610 of the information processing apparatus 60 can realize the same function as the information processing apparatus 10 based on the program.
  • the voltage range during normal use and the voltage range for capacitance measurement are the same. However, the voltage range during normal use and the capacity measurement range may be different. An embodiment in which the voltage range during normal use and the capacity measurement range are different will be described as a second embodiment. Also in this embodiment, the second lower limit voltage is “lower voltage”, the first lower limit voltage is “middle voltage”, and the first upper limit voltage is , “Upper voltage”.
  • the deterioration rate is also calculated.
  • FIG. 7 is a block diagram showing an example of the configuration of the information processing apparatus 20 according to the second embodiment.
  • the information processing apparatus 20 includes a storage unit 109 and a deterioration calculation unit 110 in addition to the configuration of the information processing apparatus 10 of the first embodiment.
  • a storage unit 109 and a deterioration calculation unit 110 in addition to the configuration of the information processing apparatus 10 of the first embodiment.
  • description of the configuration that operates in the same manner as in the first embodiment will be omitted, and operation unique to this embodiment will be described.
  • the information processing apparatus 20 may be realized using a computer shown in FIG.
  • the capacity measurement determination unit 105 transmits whether the capacity can be measured to the deterioration calculation unit 110 in addition to the transmission of the voltage setting unit 106.
  • Storage unit 109 stores the capacity of power storage unit 101 calculated by capacity calculation unit 103, and transmits the stored capacity to deterioration calculation unit 110 as necessary.
  • the storage unit 109 stores at least an initial capacity (initial capacity value).
  • the deterioration calculation unit 110 After receiving whether or not the capacity measurement can be measured from the capacity measurement determination unit 105, the deterioration calculation unit 110 receives the measured value of the capacity calculated by the capacity calculation unit 103 and the capacity stored in the storage unit 109 (for example, an initial capacity value). Is used to calculate the deterioration rate of the power storage unit 101. The deterioration calculation unit 110 may calculate a deterioration rate from the capacity at a predetermined time stored in the storage unit 109.
  • the deterioration calculation unit 110 may store the calculated deterioration rate in the storage unit 109.
  • FIG. 8 is a diagram illustrating an example of charge / discharge for capacity measurement according to the second embodiment.
  • FIG. 8 is the same except that the upper limit voltage during use and the first upper limit voltage, and the lower limit voltage during use and the first lower limit voltage are different from each other.
  • FIG. 9 is a flowchart showing an example of processing of the information processing apparatus 20 according to the second embodiment.
  • the operations from step S201 to step S210 are substantially the same as the operations from step S101 to S110. Therefore, hereinafter, the description of the same operation as that of the first embodiment is omitted, and an operation different from that of the first embodiment will be described.
  • step S203 the voltage setting unit 106 transmits the first upper limit voltage received from the range information receiving unit 104 to the charge / discharge control unit 107.
  • the voltage setting unit 106 may calculate a first upper limit voltage that satisfies Formula 2 shown below, and transmit the first upper limit voltage to the charge / discharge control unit 107.
  • First upper limit voltage ⁇ (first lower limit voltage + (internal resistance of power storage unit 101 ⁇ charge current value))
  • the charge / discharge control unit 107 may omit the discharging operation up to the second lower limit voltage in step S205.
  • the information processing apparatus 20 may perform the following operation. That is, the voltage setting unit 106 calculates the first lower limit voltage that satisfies Equation 1 using the current voltage (V now ) as the second lower limit voltage.
  • the information processing apparatus 20 can omit the discharging operation up to the second lower limit voltage in step S205.
  • step S211 and subsequent steps will be described.
  • the deterioration calculation unit 110 calculates the deterioration rate (%) by applying the initial capacity stored in the storage unit 109 and the measured value of the capacity obtained this time (capacity at time n) to Equation 3 (step). S211).
  • the storage unit 109 stores an initial capacity for each settable voltage range as an initial capacity.
  • Degradation rate (%) (capacity at time n / initial capacity) ⁇ 100 Further, the deterioration calculating unit 110 calculates the full charge capacity (Ah) by applying the initial capacity (SOC when new: 0% to 100% measured value) and the deterioration rate to Equation 4. S212).
  • the deterioration calculation unit 110 is not limited to Equation 4, and may calculate the full charge capacity by another method. For example, the deterioration calculation unit 110 replaces the first lower limit voltage and the first upper limit voltage whose capacity has been measured with the SOC using a correspondence table of voltage and SOC. Then, the deterioration calculation unit 110 calculates the full charge capacity based on the proportional relationship between the replaced SOC range (and its capacity) and the full charge capacity SOC range (from 0% to 100% of the SOC). May be.
  • the deterioration calculating unit 110 may store the calculated deterioration rate and full charge capacity in the storage unit 109.
  • the information processing apparatus 20 of the present embodiment need not be limited to CCCV discharge in charging.
  • the information processing apparatus 20 may use CP charging or pulse charging instead of CC charging.
  • the information processing apparatus 20 may use variable rate charging for charging.
  • the storage battery used in the measurement results described below was a lithium ion secondary battery.
  • the upper limit voltage during use is 4.1V
  • the lower limit voltage during use is 3.0V
  • the first upper limit voltage is 4.0V
  • the first lower limit voltage is 3.8V
  • the second lower limit voltage is 3.V. It was 3V.
  • the measurement was carried out every three months (April 1, July 1, October 1, and January 1 of the following year).
  • the measurement on April 1 is a measurement in the factory when it is new. Other measurements are outdoor measurements.
  • FIG. 10 is a diagram showing a comparison of measurement results of capacity.
  • FIG. 11 is a figure which shows the comparison of the result of a deterioration rate.
  • the capacity and the deterioration rate decreased greatly as time passed and the temperature decreased.
  • This result indicates that accurate capacity measurement is not performed based on a change in temperature when the capacity is measured, an increase in internal resistance based on deterioration of the storage battery, and the like.
  • the measurement result of the information processing apparatus 20 according to the present embodiment is less affected by temperature, internal resistance, and the like, and thus indicates that the capacity can be measured more accurately than a general measurement apparatus.
  • FIG. 12 is a diagram showing comparison of measurement results in different measurement ranges.
  • the information processing apparatus 20 includes a deterioration rate between the first voltages (3.5V-4.1V) and a second voltage (3.0V-4.1V: normal).
  • the result of the deterioration rate of the entire use range was almost consistent. This is because, although not shown, the results of measuring the capacity of the information processing apparatus 20 are substantially the same.
  • the information processing apparatus 20 can accurately calculate the deterioration rate of the entire storage battery based on the measurement in an arbitrary voltage section. That is, the information processing apparatus 20 can realize accurate measurement even if the voltage range to be measured is narrowed to shorten the measurement time.
  • the information processing apparatus 20 can obtain the effect of reducing the measurement time in addition to the effect of the first embodiment. Furthermore, the information processing apparatus 20 can obtain the effect of calculating the deterioration rate.
  • the information processing apparatus 20 measures the capacity using a voltage range for measurement narrower than the voltage range in use.
  • the deterioration rate of the power storage unit 101 is calculated based on the measured capacity value calculated by the capacity calculation unit 103 of the information processing apparatus 20 and the initial capacity value.
  • the information processing apparatus 10 of the first embodiment and the information processing apparatus 20 of the second embodiment measured the capacity using charging.
  • the information processing apparatus 10 and the information processing apparatus 20 may measure the capacity using discharge. Therefore, an embodiment using discharge will be described as a third embodiment.
  • FIG. 13 is a block diagram illustrating an example of the configuration of the information processing apparatus 30 according to the third embodiment. Since the configuration of the information processing device 30 is the same as that of the information processing device 20, a detailed description of the configuration is omitted. Information processor 30 may be realized using the computer shown in FIG.
  • FIG. 14 is a diagram illustrating an example of charge / discharge for capacity measurement according to the third embodiment.
  • FIG. 14 differs from FIG. 8 in the direction of voltage change.
  • FIG. 14 shows a second upper limit voltage instead of the second lower limit voltage. This is because the present embodiment uses electric discharge for capacity measurement.
  • the second upper limit voltage is “upper voltage” and the first upper voltage is “middle voltage”.
  • the first lower limit voltage is “lower voltage”.
  • FIG. 15 is a flowchart illustrating an example of processing of the information processing apparatus 30 according to the third embodiment.
  • the second lower limit voltage in steps S204 and S205 in FIG. 9 is the second upper limit voltage in steps S304 and S305.
  • the first lower limit voltage in steps S206 and S207 in FIG. 9 is the first upper limit voltage in steps S306 and S307.
  • the first upper limit voltage in steps S208 and S209 in FIG. 9 is the first lower limit voltage in steps S308 and S308.
  • the voltage setting part 106 calculates a 1st upper limit voltage in step S303.
  • Other operations are the same as those in the second embodiment. This is because this embodiment uses discharging instead of charging in measurement. That is, the operation of the information processing apparatus 30 of the present embodiment is an operation in which charging and discharging are interchanged in the operation of the information processing apparatus 20 of the second embodiment.
  • step S303 the voltage setting unit 106 calculates a first lower limit voltage.
  • the voltage setting unit 106 calculates a first lower limit voltage corresponding to Expression 2 and satisfying Expression 5 shown below.
  • First lower limit voltage ⁇ (first upper limit voltage ⁇ (internal resistance of power storage unit 101 ⁇ discharge current value))
  • the voltage setting unit 106 calculates a second upper limit voltage.
  • the second upper limit voltage needs to be a voltage at which at least the open circuit voltage of the power storage unit 101 does not fall below the first upper limit voltage. This is because CCCV discharge up to the first upper limit voltage cannot be performed when the open circuit voltage of the power storage unit 101 is lower than the first upper limit voltage. Therefore, the voltage setting unit 106 calculates, for example, a second upper limit voltage that corresponds to Equation 1 and satisfies Equation 6 below.
  • Second upper limit voltage ⁇ (first upper limit voltage + (internal resistance of power storage unit 101 ⁇ charge current value) + (internal resistance of power storage unit 101 ⁇ discharge current value)
  • the method for obtaining the second upper limit voltage need not be limited to this.
  • the charging / discharging unit 108 charges the power storage unit 101 to the second upper limit voltage based on the instruction from the charging / discharging setting unit 107 (step S305).
  • the charge / discharge unit 108 causes the power storage unit 101 to perform CCCV discharge to the first upper limit voltage (steps S306 and S307).
  • the charge / discharge unit 108 causes the power storage unit 101 to perform CCCV discharge to the first lower limit voltage based on the instruction from the charge / discharge setting unit 107 (step S308).
  • the capacity calculation unit 103 calculates a measured value of the capacity (full charge capacity) of the power storage unit 101 based on the current that flows between the first upper limit voltage and the first lower limit voltage (step S309).
  • the information processing apparatus 30 of this embodiment does not need to be limited to CCCV discharge in discharge.
  • the information processing apparatus 30 may use CP discharge or pulse discharge instead of CC discharge.
  • the information processing apparatus 30 may use a variable rate discharge for the discharge.
  • this embodiment can obtain the same effect as the second embodiment.
  • the information processing apparatus 30 uses a discharge current instead of charging the information processing apparatus 20 according to the second embodiment, but the capacity measurement based on the discharge current is based on the charge current. This is because the same measurement result as that of the measured capacity can be calculated.
  • Information processing apparatus 11
  • Information processing apparatus 12
  • Information processing apparatus 20
  • Information processing apparatus 30
  • Information processing apparatus 60
  • Information processing apparatus 101
  • Power storage part 102
  • State acquisition part 103
  • Capacity calculation part 104
  • Range information reception part 105
  • Capacity measurement determination part 106
  • Voltage setting part 107
  • Charging / discharging control unit 108
  • Charging / discharging unit 109
  • Storage unit 110
  • Deterioration calculation unit 610
  • Internal storage device 650
  • IOC 660
  • Input device 670 Display device 680

Abstract

 正確な蓄電池の満充電容量を測定するため、本発明の情報処理装置は、電力を蓄積する蓄電手段の状態を受信する受信手段と、第2の下限電圧から第1の下限電圧まで充電する第1の期間と第1の下限電圧から第1の上限電圧まで充電する第2の期間とを含む充電期間における充電を制御する充放電制御手段と、第2の期間における状態に基づいて蓄電手段の容量を算出する容量演算手段とを含む。

Description

情報処理装置、情報処理方法、及び、記録媒体
 本発明は、電力を貯蔵(充電)及び放電する電力貯蔵デバイスの制御に関し、特に、電力貯蔵デバイスの状態を測定する情報処理装置、蓄電情報処理方法及び記録媒体に関する。
 近年、リチウムイオン電池などの蓄電池(二次電池)のエネルギー密度が、向上している。その結果、蓄電池が、様々なところで、活用されている。そして、蓄電池における体積エネルギー密度の上昇及び装置における消費電力の低下にともない、携帯電話などのポータブルデバイスの小型高性能化が、達成されている。あるいは、蓄電池の高エネルギー重量密度化に基づいて、電気自動車などの移動距離の延長が、実現されている。さらに、定置型蓄電池は、安価な夜間電力によって充電した電力を用いて、昼間の電力をまかなうなどの機能を有し、一般家庭でも利用され始めている。
 一般的に、蓄電池は、放電すると電池容量が減少し、充電すると電池容量が増加する。例えば、電気自動車の蓄電池について説明すると、蓄電池は、電気自動車の走行に伴い電池の残容量が減り、残容量の減少に合わせて残りの航続可能距離が少なくなる。あるいは、家庭用蓄電池の例について説明すると、蓄電池は、掃除機、洗濯機、及びTV(Television)等の電力を賄い、賄いに用いた電力だけ、蓄電池の残量(SOC:State Of Charge)を減少させる。そして、例えば、蓄電池は、残量を示すインジケータのLED(Light Emitting Diode)の表示を、残量に合わせて消灯(削減)していく。その消灯によって、電池残量の減少がユーザーに知らされる。
 また、蓄電池は、充放電を繰り返すと、蓄電池自体の満容量が減少する。正確なSOCの算出のためには、定期的に蓄電池の容量を求めることが、必要である。また、容量の正確な測定は、正確なSOCの算出につながる。例えば、ユーザーは、正確なSOCを用いて、電気自動車の計画通りの走行を実現できる。
 そこで、正確な蓄電池の実容量を算出する技術が、用いられている(例えば、特許文献1を参照)。
 特許文献1の技術は、完全放電状態から満充電状態までの充電容量を基に、初期の実容量を求める。なお、特許文献1に記載の技術は、放電電圧が所定値(例えば、3V程度)まで低くなった場合を、完全放電としている。
特開2013-247045号公報
 一般的に、家庭用蓄電池等の定置型蓄電池は、接続負荷状況に基づいて、様々な電力量で、放電する。また、定置型蓄電池は、屋外に設置されることが多い。そのため、定置型蓄電池は、冬場のマイナス温度から夏場の40℃を超える環境下にさらされる。このような環境の中において、特許文献1に記載の技術のような、蓄電池の完全放電は、難しい。
 その理由について、以下に説明する。
 リチウムイオン電池等の蓄電池の内部抵抗は、環境温度及び劣化度に基づいて、大きく変化する。つまり、蓄電池の内部抵抗(R)と放電電流値(I)に基づく(つまり、IR成分に基づく)電圧降下は、環境温度及び劣化度に応じて異なる。そのため、同じ終止電圧を基に放電状態を判断する特許文献1に記載の技術は、残容量が残った状態を、終止電圧に達した完全放電状態と判断する可能性がある。この状態から満充電状態までの充電に基づくと、特許文献1に記載の技術は、正確な電池容量を測定できない。このように、特許文献1に記載の技術は、正確な電池容量を測定できない場合があるという問題点があった。
 本発明の目的は、上記の問題点を解決し、正確な蓄電池の満充電容量を測定する情報処理装置、情報処理方法及び記録媒体を提供することにある。
 本発明の一形態における情報処理装置は、電力を蓄積する蓄電手段の状態を受信する受信手段と、第2の下限電圧から第1の下限電圧まで充電する第1の期間と第1の下限電圧から第1の上限電圧まで充電する第2の期間とを含む充電期間における充電を制御する充放電制御手段と、第2の期間における状態に基づいて蓄電手段の容量を算出する容量演算手段とを含む。
 また、本発明の一形態における情報処理装置は、電力を蓄積する蓄電手段と、蓄電手段の状態を受信する受信手段と、第2の下限電圧から第1の下限電圧まで充電する第1の期間と第1の下限電圧から第1の上限電圧まで充電する第2の期間とを含む充電期間における充電を制御する充放電制御手段と、第2の期間における状態に基づいて、蓄電手段の容量を算出する容量演算手段とを含む。
 本発明の一形態における情報処理方法は、電力を蓄積する蓄電手段の状態を受信し、第2の下限電圧から第1の下限電圧まで充電する第1の期間と第1の下限電圧から第1の上限電圧まで充電する第2の期間とを含む充電期間における蓄電手段の充電を制御し、第2の期間における状態に基づいて蓄電手段の容量を算出する。
 本発明の一形態における記録媒体は、電力を蓄積する蓄電手段の状態を受信する処理と、第2の下限電圧から第1の下限電圧まで充電する第1の期間と第1の下限電圧から第1の上限電圧まで充電する第2の期間とを含む充電期間における蓄電手段の充電を制御する処理と、第2の期間における状態に基づいて蓄電手段の容量を算出する処理とをコンピュータに実行させるプログラムをコンピュータに読み取り可能に記録する。
 本発明に基づけば、満充電容量を正確に測定するとの効果を提供できる。
図1は、本発明における第1実施形態に係る情報処理装置の構成の一例を示すブロック図である。 図2は、第1実施形態に係る容量測定の充放電の一例を示す図である。 図3は、第1実施形態に係る情報処理装置の処理の一例を示すフローチャートである。 図4は、第1実施形態に係る情報処理装置の測定結果と一般的な装置の測定結果との比較を示す図である。 図5は、第1実施形態に係る情報処理装置の構成の別の一例を示すブロック図である。 図6は、第1実施形態に係る情報処理装置の構成の別の一例を示すブロック図である。 図7は、第2実施形態に係る情報処理装置の構成の一例を示すブロック図である。 図8は、第2実施形態に係る容量測定の充放電の一例を示す図である。 図9は、第2実施形態に係る情報処理装置の処理の一例を示すフローチャートである。 図10は、第2実施形態に係る情報処理装置の測定結果と一般的な計測装置の測定結果との比較を示す図である。 図11は、第2実施形態に係る情報処理装置の測定結果と一般的な計測装置の測定結果との比較を示す図である。 図12は、第2実施形態に係る情報処理装置の測定結果と一般的な計測装置の測定結果との比較を示す図である。 図13は、第3実施形態に係る情報処理装置の構成の一例を示すブロック図である。 図14は、第3実施形態に係る容量測定の充放電の一例を示す図である。 図15は、第3実施形態に係る情報処理装置の処理の一例を示すフローチャートである。 図16は、第1実施形態に係る情報処理装置の構成の別の一例を示すブロック図である。
 以下、本発明の実施形態について、図面を用いて説明する。なお、各図面は、本発明の実施形態を説明するものである。ただし、本発明は、各図面の記載に限られるわけではない。また、各図面において、同様な構成には同様の符号を付し、適宜、その繰り返しの説明を省略する場合がある。
 また、以下の説明に用いる図面において、本発明の説明に関係しない部分の構成については、記載を省略し、図示しない場合もある。
 <第1実施形態>
 [構成の説明]
 図1は、本発明のおける第1実施形態に係る情報処理装置10の構成の一例を示すブロック図である。
 情報処理装置10は、蓄電部101と、状態取得部102と、容量演算部103と、範囲情報受信部104と、容量測定判定部105と、電圧設定部106と、充放電制御部107と、充放電部108とを含む。
 蓄電部101は、図示しない電力貯蔵デバイスを含む。ここで、電力貯蔵デバイスは、特に制限はない。電力貯蔵デバイスは、例えば、二次電池(リチウムイオン電池、鉛蓄電池、ニッケル水素電池等)、又は、電気二重層キャパシタである。蓄電部101は、1つの電力貯蔵デバイス、又は、直列若しくは並列に接続された複数の電力貯蔵デバイスを含んでもよい。蓄電部101は、図示しない電力供給装置(例えば、蓄電器)及び電力消費装置(例えば、負荷装置)と接続し、電力を充電及び放電する。
 状態取得部102は、蓄電部101の状態を表す情報(例えば、電圧、電流、及び温度)を測定する。より具体的には、状態取得部102は、図示しない電圧測定器、電流測定器、及び/又は温度測定器を含む。そして、状態取得部102は、含まれる測定器を用いて、蓄電部101に含まれる電力貯蔵デバイスの物理量(例えば、蓄電池のセル電圧若しくは総電圧、蓄電池の充電電流若しくは放電電流、又は蓄電部101の温度)を測定する。そして、状態取得部102は、測定した蓄電部101の状態情報を、容量演算部103と、電圧設定部106と、充放電制御部107とに送信(通知)する。なお、状態取得部102の測定のタイミング及び送信のタイミングは、特に制限はない。例えば、状態取得部102は、常時又は所定の時間間隔で、蓄電部101の状態情報を測定し、測定された状態情報を容量演算部103と充放電制御部107に送信してもよい。あるいは、状態取得部102は、容量演算部103又は充放電制御部107からの要求に応じて、蓄電部101の状態情報を測定し、容量演算部103又は充放電制御部107に状態情報を送信してもよい。あるいは、状態取得部102は、所定の時間間隔で、蓄電部101の状態情報を計測し、容量演算部103又は充放電制御部107からの要求に応じて、計測済みの状態情報を送信してもよい。なお、状態取得部102は、情報処理装置10の外部に設けられた図示しない電圧測定器、電流測定器、及び/又は温度測定器から、蓄電部101の状態を取得(受信)してもよい。その場合、状態取得部102は、蓄電部の状態を受信する受信部として動作する。以下、「状態取得部102が状態を取得する」ことを含め、「状態取得部102が状態を受信」と呼ぶ場合もある。
 容量演算部103は、状態情報を用いて、蓄電部101の容量(例えば、SOC(State of Charge)又はSOH(State of Health))を算出する。容量演算部103は、算出した容量(SOC又はSOH等)を、図示しない記憶部に記憶させてもよい。以下、SOCなどを含め、容量演算部103の算出値をまとめて、「容量」と呼ぶ。
 範囲情報受信部104は、範囲情報を受信する。範囲情報は、蓄電部101の通常の使用時の電圧範囲の上限電圧(使用時の上限電圧)及び下限電圧(使用時の下限電圧)、並びに、容量測定の電圧範囲の上限電圧(第1の上限電圧)及び下限電圧(第1の下限電圧)を含む。なお、範囲情報受信部104は、使用時の電圧範囲と、容量測定の電圧範囲とを、同時に受信してよく、別々に受信してもよい。また、範囲情報受信部104は、容量測定の電圧範囲を、1回に限らず、複数回受信してもよい。
 また、範囲情報の送信元は、特に制限はない。例えば、範囲情報受信部104は、図示しない情報処理装置10のユーザー又は事業者が操作する装置から、範囲情報を受信してもよい。また、範囲情報受信部104は、情報の経路も特に制限はない。例えば、範囲情報受信部104は、インターネットを介して、ユーザーが操作する装置と接続してもよい。範囲情報受信部104は、受信した情報を、電圧設定部106に送信する。
 容量測定判定部105は、蓄電部101の容量の測定の可否を電圧設定部106に通知する。容量測定判定部105は、定期的に、容量の測定の可否を電圧設定部106に通知してもよい。あるいは、容量測定判定部105は、図示しないユーザー又は事業者が操作する装置からの指示を基に、容量の測定の可否を電圧設定部106に通知してもよい。なお、容量測定判定部105は、電圧設定部106に、「測定の否」を通知しないで、「測定の可」、つまり、測定開始を通知してもよい。そのため、以下、容量測定判定部105からの通知を「測定開始通知」と呼ぶ。
 電圧設定部106は、範囲情報受信部104から範囲情報(第1の上限電圧及び第1の下限電圧、並びに、使用時の上限電圧及び使用時の下限電圧)を受信する。また、電圧設定部106は、容量測定判定部105から、測定開始通知を受信する。また、電圧設定部106は、状態取得部102から状態情報を受信する。そして、電圧設定部106は、範囲情報と状態情報とを基に、第2の下限電圧を算出する。
 ここで、第2の下限電圧を説明する。
 情報処理装置10は、蓄電部101の容量を測定する際に、測定の起点として、安定した第1の下限電圧の実現が必要である。より具体的には、情報処理装置10は、第1の下限電圧まで定電流定電圧(CCCV:Constant Current-Constant Voltage)充電して、安定した第1の下限電圧を実現する。第1の下限電圧より低い電圧からCCCV充電を用いて第1の下限電圧を実現するためには、情報処理装置10は、安定した第1の下限電圧を実現する前に、蓄電部101の開放電圧を第1の下限電圧より十分低くしてから、CCCV充電を開始する必要がある。そこで、情報処理装置10は、安定した第1の下限電圧を実現する前に、第1の下限電圧までCCCV充電(予備充電という)するための起点として、蓄電部101の電圧を第2の下限電圧に設定する。そのため、本実施形態では、第2の下限電圧は、「下側の電圧(lower voltage)」であり、第1の下限電圧は、「中間の電圧(middle voltage)」であり、第1の上限電圧は、「上側の電圧(upper voltage)」である。第2の下限電圧については、後ほど、さらに説明する。
 電圧設定部106は、範囲情報(使用時の上限電圧、使用時の下限電圧、第1の上限電圧、及び第1の下限電圧)と第2の下限電圧の情報を、充放電制御部107に送信する。なお、充放電制御部107は、範囲情報受信部104から、範囲情報を受信してもよい。
 そして、電圧設定部106は、測定開始通知を基に、充放電制御部107に測定の開始を通知する。なお、測定開始通知が、測定の可及び否を含む場合、電圧設定部106は、測定の可の場合に、充放電制御部107に測定の開始を通知してもよい。あるいは、充放電制御部107は、電圧設定部106からの第2の下限電圧を含む情報の受信を、測定の開始の指示と判断してよい。
 充放電制御部107は、取得した電圧情報(範囲情報と第2の下限電圧)を、充放電部108に送信し、充放電部108に蓄電部101を充電又は放電させて、蓄電部101における充放電を制御する。
 充放電部108は、取得した電圧情報に基づいて、蓄電部101を充電及び放電させる。充放電部108は、充電において、蓄電部101をCCCV充電させることが望ましい。なお、充放電部108が、蓄電部101と図示しない蓄電器又は負荷との接続を制御して、蓄電部101の充放電を制御してもよい。
 なお、本実施形態の情報処理装置10は、充電において、CCCV充電に限る必要はない。例えば、情報処理装置10は、充電において、CC(Constant Current)充電に換えて、定電力(CP:Constant Power)充電、又は、パルス充電を用いてもよい。あるいは、情報処理装置10は、充電に、可変レートの充電を用いてもよい。
 [動作の説明]
 次に、情報処理装置10の動作について説明する。
 図2は、第1実施形態に係る容量測定の充放電の一例を示す図である。
 図3は、第1実施形態に係る情報処理装置10の処理の一例を示すフローチャートである。
 なお、図2は、通常の使用時の電圧範囲と容量測定範囲とが同じ場合を示す。
 図2に示す時間(1)は、通常の放電状態である。通常、蓄電部101は、負荷の変化に応じて電圧が低下する。充放電制御部107は、状態取得部102からの状態情報を基に、蓄電部101の電圧が、通常の使用時の下限電圧となると、充放電部108に通常の充電を指示する。
 時間(2)は、通常の充電状態である。なお、時間(1)と時間(2)との電圧差は、充電池の内部抵抗に基づく電圧差である。充放電部108は、蓄電部101をCCCV充電する。そのため、図2に示す時間(2)の電圧を示す線は、使用時の上限電圧の近傍まで、直線又は直線に近似した曲線(以下、まとめて「略直線」と呼ぶ)となっている。充放電制御部107は、蓄電部101の電圧が使用時の上限電圧となると、CV(Constant Voltage)充電に切り替え、CV終了条件を満たすと、充放電部108に充電の停止を指示する。ここでCV終了条件とは、例えば、次のいずれかの条件である。
第1の条件:充電電流が十分に小さくなった。
第2の条件:CV充電に切り替わり後、十分に時間が経過した。
第3の条件:第1の条件と第2の条件の両方の条件が成立した。
第4の条件:充電電流が十分に小さくなってから十分な時間が経過した。
ただし、本実施形態のCV終了条件は、これに限定されない。
これ以降は、時間(1)と同様に、蓄電部101は、負荷に応じて、放電する。
 時間(3)は、通常の放電状態である。ただし、図2の時間(3)のa点において、情報処理装置10は、容量測定の開始を検出する(ステップS101)。例えば、容量測定判定部105が、定期的な容量測定のタイミングを検出し、電圧設定部106に測定の開始を指示する。
 電圧設定部106は、計測に用いる電圧(第1の上限電圧及び第1の下限電圧)を充放電制御部107に送信する(ステップS103)。
 次に、電圧設定部106は、第2の下限電圧を算出し、算出された第2の下限電圧の情報を充放電制御部107に送信する(ステップS104)。本実施形態の電圧設定部106は、次に示す数式1を満足する第2の下限電圧を算出する。より具体的には、電圧設定部106は、状態取得部102から受信した蓄電部101の状態情報に含まれる温度を基に、蓄電部101の内部抵抗を算出する。そして、電圧設定部106は、内部抵抗と、放電時の電流値と、第1の下限電圧とを用いて、第2の下限電圧を算出する。
 [数式1]
第2の下限電圧≦(第1の下限電圧-(蓄電部101の内部抵抗×放電電流値)-(蓄電部101の内部抵抗×充電電流値))
 ただし、電圧設定部106における第2の下限電圧を求める手法は、数式1に限る必要はない。電圧設定部106は、蓄電部101の容量の算出に適した手法を用いればよい。
 充放電制御部107は、充放電部108に、蓄電部101が第2の下限電圧となるまで(ステップS105でNo)、蓄電部101を放電させる。
 時間(4)は、予備充電の状態である。
 蓄電部101の電圧が第2の下限電圧に達した場合(ステップS105でYes)、充放電制御部107は、充放電部108に、第1の下限電圧までのCCCV充電を指示する(ステップS106)。
 充放電制御部107は、充電電圧が第1の下限電圧となるまで、待つ(ステップS107でNo)。
 時間(5)は、容量の算出の状態である。
 第1の下限電圧まで充電した場合(ステップS107でYes)、充放電制御部107は、充放電部108に、蓄電部101における第1の上限電圧までのCCCV充電を指示する(ステップS108)。
 容量演算部103は、第1の下限電圧と第1の上限電圧との間で流れた電流を基に、蓄電部101の容量(満充電容量)の測定値を算出する(ステップS109)。例えば、容量演算部103は、状態取得部102から受信した状態情報に含まれる電流を積算(例えば、電流積算法)することによって、容量の測定値を算出する。
 [測定結果]
 次に、本実施形態の情報処理装置10と、一般的な計測装置(例えば、第1の下限電圧まで定電流(CC:Constant Current)放電の後、第1の上限電圧までCCCV充電する装置)との測定結果を説明する。
 この測定において使用された蓄電部101は、リチウムイオン二次電池であった。また、使用時の上限電圧及び第1の上限電圧は、4.1V、使用時の下限電圧及び第1の下限電圧は、3.0V、第2の下限電圧は、2.5Vであった。
 図4は、本実施形態の情報処理装置10の容量の測定結果と、一般的な計測装置と容量の測定結果との比較を示す図である。図4に示すように、一般的な計測装置の場合、低温になるに従い、容量の測定値が小さくなった。つまり、一般的な計測装置の場合、低温になると誤差が大きくなった。一方、本実施形態の情報処理装置10の計測結果では、一般的な計測装置ほどの温度依存性は見られず、正確な容量の測定値を得ることができた。
 [効果の説明]
 このように、本実施形態は、満充電容量を正確に測定するとの効果を得ることができる。
 その理由は、次のとおりである。
 電圧設定部106が、測定の用いる第1の下限電圧を安定して実現するため、第1の下限電圧より低い第2の下限電圧を算出する。そして、充放電制御部107が、蓄電部101を第2の下限電圧まで放電させた後、充放電部108を用いて、蓄電部101を第1の下限電圧までCCCV充電する。そのため、測定の起点である第1の下限電圧は、安定している。そして、充放電制御部107は、充放電部108を用いて、蓄電部101を第1の上限電圧までCCCV充電し、蓄電部101の容量を測定する。このように、情報処理装置10は、安定した第1の下限電圧を用いて容量を測定できるためである。
 [変形例1]
 以上のように説明した情報処理装置10は、次のように構成される。
 例えば、情報処理装置10の各構成部は、ハードウェア回路で構成されても良い。
 また、情報処理装置10は、情報処理装置10の各構成部をネットワーク又はバスを介して接続した複数の情報処理装置を用いて構成されても良い。
 例えば、情報処理装置10は、範囲情報受信部104を別装置とし、処理に先立ち、必要な情報(使用時の上限電圧、使用時の下限電圧、第1の上限電圧、及び第1の下限電圧)を受け取り、保持して動作してもよい。また、情報処理装置10は、容量測定判定部105を別装置とし、その装置からの指示を基に、容量計測を実行してもよい。また、情報処理装置10は、別装置として設置された蓄電部101を制御してもよい。
 図5は、本変形例に係る情報処理装置11の構成の一例を含む。
 情報処理装置11は、状態取得部102と、容量演算部103と、電圧設定部106と、充放電制御部107と、充放電部108とを含む。情報処理装置11の各構成は、情報処理装置10と同様に動作するため、構成及び動作の詳細な説明を省略する。
 ただし、状態取得部102は、図1における蓄電部101に相当する図示しない蓄電部の状態を表す情報を受信する。
 電圧設定部106は、図1における範囲情報受信部104に相当する図示しない範囲情報受信部から、範囲情報を受信する。また、電圧設定部106は、図1における容量測定判定部105に相当する図示しない容量測定判定部から、測定開始通知を受信する。
 充放電部108は、充放電制御部107の指示を基に、図示しない蓄電部を充電及び放電する。
 このように構成された情報処理装置11は、情報処理装置10と同様の効果を得ることができる。
 その理由は、情報処理装置11が、情報処理装置10と同様の機能を実現できるためである。
 [変形例2]
 さらに、情報処理装置10において、状態取得部102、容量演算部103及び充放電制御部107を除く構成は、別装置で構成されてもよい。
 図16は、本変形例に係る情報処理装置12の構成の一例を含む。
 情報処理装置12は、状態取得部102と、容量演算部103と、充放電制御部107とを含む。情報処理装置12の各構成は、情報処理装置10と同様に動作する。すなわち、状態取得部102は、蓄電部101の状態を取得又は受信する。充放電制御部107は、電圧設定部106からの情報を基に、充放電部108を用いて、充電部101における充放電を制御する。そして、容量演算部103は、状態取得部102が取得した状態に基づいて、蓄電部101の容量を算出する。
 このように構成された情報処理装置12は、情報処理装置10と同様の効果を得ることができる。
 その理由は、情報処理装置12が、情報処理装置10と同様の機能を実現できるためである。
 なお、情報処理装置12は、本発明の最小構成である。
 [変形例3]
 また、情報処理装置10、情報処理装置11及び情報処理装置12において、それぞれの複数の構成部は、1つのハードウェアで構成されても良い。以下、説明の便宜のため、情報処理装置10、情報処理装置11及び情報処理装置12に共通となる説明の場合、情報処理装置10として説明する。
 また、情報処理装置10は、CPU(Central Processing Unit)と、ROM(Read Only Memory)と、RAM(Random Access Memory)とを含むコンピュータ装置として実現されても良い。情報処理装置10は、上記構成に加え、さらに、入出力接続回路(IOC:Input / Output Circuit)と、ネットワークインターフェース回路(NIC:Network Interface Circuit)とを含むコンピュータ装置として実現されても良い。
 図6は、本変形例に係る情報処理装置60の構成の一例を示すブロック図である。
 情報処理装置60は、CPU610と、ROM620と、RAM630と、内部記憶装置640と、IOC650と、NIC680とを含み、コンピュータ装置を構成している。
 CPU610は、ROM620からプログラムを読み込む。そして、CPU610は、読み込んだプログラムに基づいて、RAM630と、内部記憶装置640と、IOC650と、NIC680とを制御する。そして、CPU610を含むコンピュータは、これらの構成を制御し、図1及び図5に示す、状態取得部102と、容量演算部103と、電圧設定部106と、充放電制御部107としての各機能を実現する。さらに、CPU610を含むコンピュータは、図1に示す蓄電部101と、範囲情報受信部104、容量測定判定部105、又は充放電部108としての機能の少なくとも一部を実現してもよい。あるいは、CPU610を含むコンピュータは、これらの構成を制御し、図16に示す、状態取得部102と、容量演算部103と、充放電制御部107としての各機能を実現する。
 CPU610は、各機能を実現する際に、RAM630又は内部記憶装置640を、プログラムの一時記憶として使用しても良い。
 また、CPU610は、コンピュータで読み取り可能にプログラムを記憶した記憶媒体700が含むプログラムを、図示しない記憶媒体読み取り装置を用いて読み込んでも良い。あるいは、CPU610は、NIC680を介して、図示しない外部の装置からプログラムを受け取り、RAM630に保存して、保存したプログラムを基に動作しても良い。
 ROM620は、CPU610が実行するプログラム及び固定的なデータを記憶する。ROM620は、例えば、P-ROM(Programmable-ROM)又はフラッシュROMである。
 RAM630は、CPU610が実行するプログラム及びデータを一時的に記憶する。RAM630は、例えば、D-RAM(Dynamic-RAM)である。
 内部記憶装置640は、情報処理装置60が長期的に保存するデータ及びプログラムを記憶する。また、内部記憶装置640は、CPU610の一時記憶装置として動作しても良い。内部記憶装置640は、例えば、ハードディスク装置、光磁気ディスク装置、SSD(Solid State Drive)又はディスクアレイ装置である。
 ここで、ROM620と内部記憶装置640は、不揮発性の記憶媒体である。一方、RAM630は、揮発性の記憶媒体である。そして、CPU610は、ROM620、内部記憶装置640、又は、RAM630に記憶されているプログラムを基に動作可能である。つまり、CPU610は、不揮発性記憶媒体又は揮発性記憶媒体を用いて動作可能である。
 IOC650は、CPU610と、入力機器660及び表示機器670とのデータを仲介する。IOC650は、例えば、IOインターフェースカード又はUSB(Universal Serial Bus)カードである。
 入力機器660は、情報処理装置60の操作者からの入力指示を受け取る機器である。入力機器660は、例えば、キーボード、マウス又はタッチパネルである。入力機器660は、範囲情報受信部104又は容量測定判定部105として動作してもよい。
 表示機器670は、情報処理装置60の操作者に情報を表示する機器である。表示機器670は、例えば、液晶ディスプレイである。
 NIC680は、ネットワークを介した図示しない外部の装置とのデータのやり取りを中継する。NIC680は、範囲情報受信部104として動作してもよい。NIC680は、例えば、LAN(Local Area Network)カードである。NIC680は、範囲情報受信部104又は容量測定判定部105として動作してもよい。
 このように構成された情報処理装置60は、情報処理装置10と同様の効果を得ることができる。
 その理由は、情報処理装置60のCPU610が、プログラムに基づいて情報処理装置10と同様の機能を実現できるためである。
 <第2実施形態>
 第1実施形態の説明では、通常使用時の電圧範囲と容量測定の電圧範囲とが、同じであった。しかし、通常使用時の電圧範囲と容量測定範囲とは、異なってもよい。そこで、通常使用時の電圧範囲と容量測定範囲とが異なる実施形態を、第2実施形態として説明する。本実施形態でも、第2の下限電圧は、「下側の電圧(lower voltage)」であり、第1の下限電圧は、「中間の電圧(middle voltage)」であり、第1の上限電圧は、「上側の電圧(upper voltage)」である。
 なお、本実施形態は、劣化率についても算出する。
 以下、図面を参照して、本発明に係る第2実施形態を説明する。
 [構成の説明]
 まず、第2実施形態に係る情報処理装置20の構成について説明する。
 図7は、第2実施形態に係る情報処理装置20の構成の一例を示すブロック図である。情報処理装置20は、第1実施形態の情報処理装置10の構成に加え、記憶部109と、劣化演算部110とを含む。以下、説明の便宜のため、第1実施形態の同様に動作する構成の説明を省略し、本実施形態の特有の動作について説明する。なお、情報処理装置20は、図6に示すコンピュータを用いて実現されてもよい。
 容量測定判定部105は、容量の測定の可否を電圧設定部106の送信に加え、劣化演算部110に送信する。
 記憶部109は、容量演算部103で算出された蓄電部101の容量を記憶し、必要に応じて記憶した容量を劣化演算部110に送信する。記憶部109は、少なくとも、最初の容量(初期容量値)を記憶する。
 劣化演算部110は、容量測定判定部105からの容量の測定の可否を受信した後、容量演算部103で算出された容量の測定値と記憶部109が記憶する容量(例えば、初期容量値)を用いて、蓄電部101の劣化率を算出する。劣化演算部110は、記憶部109が記憶する所定の時点の容量からの劣化率を算出してもよい。
 なお、劣化演算部110は、算出した劣化率を、記憶部109に記憶させてもよい。
 [動作の説明]
 次に、情報処理装置20の動作について説明する。
 図8は、第2実施形態に係る容量測定の充放電の一例を示す図である。図8は、使用時の上限電圧と第1の上限電圧、及び、使用時の下限電圧と第1の下限電圧とが、それぞれ異なる以外は、同様である。
 図9は、第2実施形態に係る情報処理装置20の処理の一例を示すフローチャートである。図9において、ステップS201からステップS210の動作は、ステップS101からS110の動作とおおむね同様の動作である。そこで、以下、第1実施形態と同じ動作の説明を省略し、第1実施形態と異なる動作について説明する。
 まず、第1の実施形態の同様のステップS201からS210について説明する。
 ステップS203において、電圧設定部106は、範囲情報受信部104から受信した第1の上限電圧を充放電制御部107に送信する。ただし、電圧設定部106は、次に示す数式2を満足する第1の上限電圧を算出し、充放電制御部107に送信してもよい。
 [数式2]
第1の上限電圧≧(第1の下限電圧+(蓄電部101の内部抵抗×充電電流値))
 ステップS204において、蓄電部101の電圧が第2の下限電圧より低い場合、充放電制御部107は、ステップS205の第2の下限電圧までの放電作業を省略してもよい。また、現時点の電圧(Vnow)から第1の上限電圧までの容量を測定したい場合は、情報処理装置20は、次のような動作を実行すればよい。すなわち、電圧設定部106は、現時点の電圧(Vnow)を第2の下限電圧とし、数式1を満足する第1の下限電圧を算出する。そして、容量演算部103が、算出された第1の下限電圧と第1の上限電圧間の容量を測定すればよい。また、この場合も、情報処理装置20は、ステップS205の第2の下限電圧までの放電作業を省略できる。
 次にステップS211以降について、説明する。
 劣化演算部110は、記憶部109が記憶している初期容量と、今回求めた容量の測定値(n時点の容量)とを、数式3に適用して劣化率(%)を算出する(ステップS211)。
ここで、記憶部109は、初期容量として、設定可能な電圧範囲毎の初期容量を記憶している。
 [数式3]
劣化率(%)=(n時点の容量/初期容量)×100
 さらに、劣化演算部110は、初期容量(新品時のSOC:0%から100%間の容量測定値)と劣化率とを数式4に適用して、満充電容量(Ah)を算出する(ステップS212)。
 [数式4]
満充電容量(Ah)=初期容量×劣化率
 ただし、劣化演算部110は、数式4に限らず、別の方法で満充電容量を算出してもよい。例えば、劣化演算部110は、電圧とSOCの対応表等を用いて、容量を測定した第1の下限電圧及び第1の上限電圧を、SOCに置き換える。そして、劣化演算部110は、この置き換えたSOCの範囲(及びその容量)と、満充電容量のSOCの範囲(SOCの0%から100%)との比例関係を基に、満充電容量を算出してもよい。
 劣化演算部110は、算出した劣化率と満充電容量とを記憶部109に記憶してもよい。
 なお、本実施形態の情報処理装置20は、充電において、CCCV放電に限る必要はない。例えば、情報処理装置20は、CC充電に換えて、CP充電、又は、パルス充電を用いてもよい。あるいは、情報処理装置20は、充電に、可変レートの充電を用いてもよい。
 [測定結果]
 次に、本実施形態の情報処理装置20と、一般的な計測装置(比較技術)との測定結果を説明する。
 以下で説明する測定結果において使用された蓄電池は、リチウムイオン二次電池であった。また、使用時の上限電圧は4.1V、使用時の下限電圧は3.0V、第1の上限電圧は4.0V、第1の下限電圧は3.8V、第2の下限電圧は3.3Vであった。測定は、3か月毎(4月1日、7月1日、10月1日、及び翌年の1月1日)に実施した。ここで、4月1日の測定は、新品時の工場内での測定である。その他の測定は、屋外での測定である。
 図10は、容量の測定結果の比較を示す図である。また、図11は、劣化率の結果の比較を示す図である。
 図10及び図11に示すとおり、一般的な計測装置の場合、時間が経過及び温度の低下に伴い、容量及び劣化率の低下が大きくなった。この結果は、容量が測定されたときの温度の変化、及び、蓄電池の劣化に基づく内部抵抗の上昇等に基づいて、正確な容量の計測が実行されていないことを示している。一方、本実施形態の情報処理装置20の測定結果は、温度及び内部抵抗等の影響を受けにくいため、一般的な計測装置より正確な容量を計測できたことを示している。
 図12は、異なる計測範囲の測定結果の比較を示す図である。
 図12に示すように、本実施形態の情報処理装置20は、第1の電圧間(3.5V-4.1V)の劣化率と、第2電圧間(3.0V-4.1V:通常使用範囲全体)の劣化率の結果とが、ほぼ一致した。これは、図示していないが、情報処理装置20の容量の計測の結果が、ほぼ一致しているためである。このように、情報処理装置20は、任意の電圧区間の計測を基に、蓄電池全体の劣化率を精度よく算出できる。つまり、情報処理装置20は、計測する電圧範囲を狭くして計測時間を短縮しても、正確な計測を実現できた。
 [効果の説明]
 本実施形態に係る情報処理装置20は、第1実施形態の効果に加え、計測時間を短縮するとの効果を得ることができる。さらに、情報処理装置20は、劣化率を算出するとの効果を得ることができる。
 その理由は、次のとおりである。
 情報処理装置20は、使用時の電圧範囲より狭い計測用の電圧範囲を用いて容量を計測するためである。
 また、情報処理装置20の容量演算部103が算出した容量の測定値と初期容量の値との基に、蓄電部101の劣化率を算出するためである。
 <第3実施形態>
 第1実施形態の情報処理装置10及び第2実施形態の情報処理装置20は、充電を用いて容量を計測した。しかし、情報処理装置10及び情報処理装置20は、放電を用いて容量を計測してもよい。そこで、放電を用いる実施形態を、第3実施形態として説明する。
 以下、図面を参照して、本発明に係る第3実施形態を説明する。
 [構成の説明]
 図13は、第3実施形態に係る情報処理装置30の構成の一例を示すブロック図である。情報処理装置30の構成は、情報処理装置20と同じため、構成の詳細な説明を省略する。なお、情報処理装置30は、図6に示すコンピュータを用いて実現されてもよい。
 [動作の説明]
 次に、情報処理装置30の動作について説明する。
 図14は、第3実施形態に係る容量測定の充放電の一例を示す図である。図14は、図8と電圧の変化の方向が異なる。また、図14は、第2の下限電圧に換えて、第2の上限電圧を示している。これは、本実施形態が、容量の計測に放電を用いるためである。図14に示すように、本実施形態では、第2の上限電圧が、「上側の電圧(upper voltage)」であり、第1の上限電圧が、「中間の電圧(middle voltage)」であり、第1の下限電圧は、「下側の電圧(lower voltage)」となる。
 図15は、第3実施形態に係る情報処理装置30の処理の一例を示すフローチャートである。図15に示すとおり、情報処理装置30の動作は、図9のステップS204とS205の第2の下限電圧が、ステップS304とS305において第2の上限電圧となっている。また、情報処理装置30の動作は、図9のステップS206とS207の第1の下限電圧が、ステップS306とS307において第1の上限電圧となっている。また、情報処理装置30の動作は、図9のステップS208とS209の第1の上限電圧が、ステップS308とS308において第1の下限電圧となっている。また、電圧設定部106は、ステップS303において、第1の上限電圧を算出する。それ以外の動作は、第2実施形態と同様である。これは、本実施形態が、計測において、充電に換えて放電を用いるためである。つまり、本実施形態の情報処理装置30の動作は、第2の実施形態の情報処理装置20の動作において、充電と放電を入れ替えた動作となっている。
 そこで、以下、第2実施形態と同じ動作の説明を省略し、第3実施形態の特有の動作について説明する。
 ステップS303において、電圧設定部106は、第1の下限電圧を算出する。例えば、電圧設定部106は、数式2に対応する、次に示す数式5を満足する第1の下限電圧を算出する。
 [数式5]
第1の下限電圧≦(第1の上限電圧-(蓄電部101の内部抵抗×放電電流値))
 ステップS304において、電圧設定部106は、第2の上限電圧を算出する。第2の上限電圧は、少なくとも蓄電部101の開放電圧が第1の上限電圧を下回らない電圧である必要がある。これは、蓄電部101の開放電圧が第1の上限電圧よりも低いと、第1の上限電圧までのCCCV放電が実行できないためである。そこで、電圧設定部106は、例えば、数式1に対応する、次に示す数式6を満足する第2の上限電圧を算出する。
 [数式6]
第2の上限電圧≧(第1の上限電圧+(蓄電部101の内部抵抗×充電電流値)+(蓄電部101の内部抵抗×放電電流値))
 ただし第2の上限電圧を求める手法は、これに限る必要はない。
 そして、充放電部108は、充放電設定部107からの指示を基に、蓄電部101を、第2の上限電圧まで充電させる(ステップS305)。
 次に、充放電部108は、充放電設定部107からの指示を基に、蓄電部101を、第1の上限電圧までCCCV放電させる(ステップS306とS307)。
 そして、充放電部108は、充放電設定部107からの指示を基に、蓄電部101を、第1の下限電圧までCCCV放電させる(ステップS308)。
 容量演算部103は、第1の上限電圧と第1の下限電圧との間で流れた電流を基に蓄電部101の容量(満充電容量)の測定値を算出する(ステップS309)。
 以降の動作は、第2の実施形態と同様である。
 なお、本実施形態の情報処理装置30は、放電において、CCCV放電に限る必要はない。例えば、情報処理装置30は、CC放電に換えて、CP放電、又は、パルス放電を用いてもよい。あるいは、情報処理装置30は、放電に、可変レートの放電を用いてもよい。
 [効果の説明]
 このように、本実施形態は、第2実施形態の同様の効果を得ることができる。
 その理由は、次のとおりである。
 本実施形態の情報処理装置30は、第2実施形態の情報処理装置20の充電に換えて、放電の電流を用いるが、放電の電流を基にした容量の測定は、充電の電流を基にした容量の測定と同様の計測結果を算出できるためである。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成及び詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2014年 9月 5日に出願された日本出願特願2014-181340を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 10  情報処理装置
 11  情報処理装置
 12  情報処理装置
 20  情報処理装置
 30  情報処理装置
 60  情報処理装置
 101  蓄電部
 102  状態取得部
 103  容量演算部
 104  範囲情報受信部
 105  容量測定判定部
 106  電圧設定部
 107  充放電制御部
 108  充放電部
 109  記憶部
 110  劣化演算部
 610  CPU
 620  ROM
 630  RAM
 640  内部記憶装置
 650  IOC
 660  入力機器
 670  表示機器
 680  NIC
 700  記憶媒体

Claims (9)

  1.  電力を蓄積する蓄電手段の状態を受信する受信手段と、
     第2の下限電圧から第1の下限電圧まで充電する第1の期間と前記第1の下限電圧から第1の上限電圧まで充電する第2の期間とを含む充電期間における充電を制御する充放電制御手段と、
     前記第2の期間における前記状態を基づいて前記蓄電手段の容量を算出する容量演算手段と
     を含む情報処理装置。
  2.  前記状態と前記第1の下限電圧とに基づいて前記第2の下限電圧を算出する電圧設定手段を
     さらに含む請求項1に記載の情報処理装置。
  3.  電力を蓄積する蓄電手段の状態を受信する受信手段と、
     第2の上限電圧から第1の上限電圧まで放電する第1の期間と前記第1の上限電圧から第1の下限電圧まで放電する第2の期間とを含む放電期間における充電を制御する充放電制御手段と、
     前記第2の期間における前記状態に基づいて前記蓄電手段の容量を算出する容量演算手段と
     を含む情報処理装置。
  4.  前記状態と前記第1の上限電圧とに基づいて前記第2の上限電圧を算出する電圧設定手段を
     さらに含む請求項3に記載の情報処理装置。
  5.  前記充電期間及び前記放電期間は、前記第1の期間と前記第2の期間との間に、充電及び放電をしない期間を含む
     請求項1ないし4のいずれか1項に記載の情報処理装置。
  6.  前記充放電手段が、
     定電流定電圧での充電又は放電を指示する
     請求項1ないし5のいずれか1項に記載の情報処理装置。
  7.  電力を蓄積する蓄電手段と、
     前記蓄電手段の状態を受信する受信手段と、
     第2の下限電圧から第1の下限電圧まで充電する第1の期間と前記第1の下限電圧から第1の上限電圧まで充電する第2の期間とを含む充電期間における充電を制御する充放電制御手段と、
     前記第2の期間における前記状態に基づいて、前記蓄電手段の容量を算出する容量演算手段と
     を含む情報処理装置。
  8.  電力を蓄積する蓄電手段の状態を受信し、
     第2の下限電圧から第1の下限電圧まで充電する第1の期間と前記第1の下限電圧から第1の上限電圧まで充電する第2の期間とを含む充電期間における前記蓄電手段の充電を制御し、
     前記第2の期間における前記状態に基づいて前記蓄電手段の容量を算出する
     情報処理方法。
  9.  電力を蓄積する蓄電手段の状態を受信する処理と、
     第2の下限電圧から第1の下限電圧まで充電する第1の期間と前記第1の下限電圧から第1の上限電圧まで充電する第2の期間とを含む充電期間における前記蓄電手段の充電を制御する処理と、
     前記第2の期間における前記状態に基づいて前記蓄電手段の容量を算出する処理と
     をコンピュータに実行させるプログラムをコンピュータに読み取り可能に記録した不揮発性記録媒体。
PCT/JP2015/004463 2014-09-05 2015-09-02 情報処理装置、情報処理方法、及び、記録媒体 WO2016035337A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/505,417 US20170254853A1 (en) 2014-09-05 2015-09-02 Information processing device, information processing method, and recording medium
JP2016546325A JPWO2016035337A1 (ja) 2014-09-05 2015-09-02 情報処理装置、情報処理方法、及び、プログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-181340 2014-09-05
JP2014181340 2014-09-05

Publications (1)

Publication Number Publication Date
WO2016035337A1 true WO2016035337A1 (ja) 2016-03-10

Family

ID=55439416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004463 WO2016035337A1 (ja) 2014-09-05 2015-09-02 情報処理装置、情報処理方法、及び、記録媒体

Country Status (3)

Country Link
US (1) US20170254853A1 (ja)
JP (2) JP2016058373A (ja)
WO (1) WO2016035337A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017194308A (ja) * 2016-04-19 2017-10-26 三菱自動車エンジニアリング株式会社 バッテリ容量測定装置及びバッテリ容量測定プログラム
CN107783042A (zh) * 2016-08-24 2018-03-09 神讯电脑(昆山)有限公司 管控电池电量的测试方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102542958B1 (ko) * 2017-12-12 2023-06-14 현대자동차주식회사 차량 배터리 열화판단 제어방법 및 시스템
JP7346034B2 (ja) * 2019-02-01 2023-09-19 株式会社東芝 蓄電池管理装置及び方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003134678A (ja) * 2001-10-17 2003-05-09 Toyota Motor Corp 車両用二次電池制御装置
JP2010019664A (ja) * 2008-07-10 2010-01-28 Nippon Soken Inc 電池劣化検出装置および方法
JP2011043460A (ja) * 2009-08-24 2011-03-03 Sanyo Electric Co Ltd 二次電池の特性検出方法および二次電池装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5519383A (en) * 1994-06-10 1996-05-21 De La Rosa; Pablito A. Battery and starter circuit monitoring system
JP2000215923A (ja) * 1999-01-25 2000-08-04 Matsushita Electric Ind Co Ltd 電池劣化判定装置
US6271645B1 (en) * 2000-02-11 2001-08-07 Delphi Technologies, Inc. Method for balancing battery pack energy levels
US7084589B1 (en) * 2005-03-11 2006-08-01 Ford Motor Company Vehicle and method for controlling power to wheels in a vehicle
US8643342B2 (en) * 2009-12-31 2014-02-04 Tesla Motors, Inc. Fast charging with negative ramped current profile
JP2012032267A (ja) * 2010-07-30 2012-02-16 Renesas Electronics Corp 残容量検出装置および電池制御ic
ITRM20120643A1 (it) * 2012-12-18 2014-06-19 Calbatt S R L Metodo per la caratterizzazione di accumulatori.
CN104737410B (zh) * 2013-09-27 2019-03-12 松下知识产权经营株式会社 配电装置和蓄电池包的诊断方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003134678A (ja) * 2001-10-17 2003-05-09 Toyota Motor Corp 車両用二次電池制御装置
JP2010019664A (ja) * 2008-07-10 2010-01-28 Nippon Soken Inc 電池劣化検出装置および方法
JP2011043460A (ja) * 2009-08-24 2011-03-03 Sanyo Electric Co Ltd 二次電池の特性検出方法および二次電池装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017194308A (ja) * 2016-04-19 2017-10-26 三菱自動車エンジニアリング株式会社 バッテリ容量測定装置及びバッテリ容量測定プログラム
CN107783042A (zh) * 2016-08-24 2018-03-09 神讯电脑(昆山)有限公司 管控电池电量的测试方法

Also Published As

Publication number Publication date
US20170254853A1 (en) 2017-09-07
JP2016058373A (ja) 2016-04-21
JPWO2016035337A1 (ja) 2017-07-20

Similar Documents

Publication Publication Date Title
KR100987606B1 (ko) 배터리팩의 잔류용량 측정의 수정장치와 방법
JP5395006B2 (ja) 電池制御システムとその制御方法並びに電池システム
US8319479B2 (en) Method of estimating battery recharge time and related device
CN110506215A (zh) 一种确定电池内短路的方法及装置
JP5618393B2 (ja) 蓄電システム及び二次電池制御方法
JP2020511737A (ja) バッテリーの内部抵抗を最適化するためのバッテリー管理システム及び方法
JP5119307B2 (ja) バッテリーパックの充電制御方法
JP4691140B2 (ja) 充放電システムおよび携帯式コンピュータ
JP2022516264A (ja) バッテリー管理装置、バッテリー管理方法、バッテリーパック及び電気車両
CN101443949B (zh) 用于控制电池的方法和装置
WO2016035337A1 (ja) 情報処理装置、情報処理方法、及び、記録媒体
TW201133985A (en) Predicting method of remaining capacity and remaining run-time of a battery device
CN110445215B (zh) 电池充电器
TWI397240B (zh) 智慧型電池裝置、對智慧型電池裝置的電池組充電的方法及智慧型電池裝置中產生近似於電池平均充滿時間的方法
WO2016038873A1 (ja) 制御装置、制御方法、及び記録媒体
JP6041040B2 (ja) 蓄電池、蓄電池の制御方法、制御装置及び制御方法
JP6749080B2 (ja) 蓄電システム、二次電池の制御システム及び二次電池の制御方法
JP6896965B2 (ja) バッテリーのための等価回路モデルのパラメータ推定方法及びバッテリー管理システム
JP2005269708A (ja) バッテリ装置及びバッテリ装置の放電制御方法
US9077197B2 (en) Battery residual amount measurement system, computer-readable medium storing battery residual amount measurement program, and battery residual amount measurement method
TWI528043B (zh) 電池之電量狀態及健康狀態的估測電路
US20140100802A1 (en) Method and computer system for measuring remaining battery capacity
CN105814770B (zh) 用于可再充电电池单体的快速充电的方法和系统
US10371755B2 (en) Reported state-of-charge scaling
CN104166097A (zh) 电池的电量量测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15838885

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016546325

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15505417

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15838885

Country of ref document: EP

Kind code of ref document: A1