WO2016035168A1 - 病態判定支援装置、方法、プログラムおよび記録媒体 - Google Patents

病態判定支援装置、方法、プログラムおよび記録媒体 Download PDF

Info

Publication number
WO2016035168A1
WO2016035168A1 PCT/JP2014/073213 JP2014073213W WO2016035168A1 WO 2016035168 A1 WO2016035168 A1 WO 2016035168A1 JP 2014073213 W JP2014073213 W JP 2014073213W WO 2016035168 A1 WO2016035168 A1 WO 2016035168A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
mutation
gene
database
extracted
Prior art date
Application number
PCT/JP2014/073213
Other languages
English (en)
French (fr)
Inventor
木下 盛敏
諒 東山
古賀 大輔
Original Assignee
大塚製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大塚製薬株式会社 filed Critical 大塚製薬株式会社
Priority to US15/535,288 priority Critical patent/US20180032673A1/en
Priority to EP14901111.6A priority patent/EP3219809B1/en
Priority to JP2016546243A priority patent/JP6682439B2/ja
Priority to CA2974182A priority patent/CA2974182A1/en
Priority to PCT/JP2014/073213 priority patent/WO2016035168A1/ja
Priority to ES14901111T priority patent/ES2898435T3/es
Publication of WO2016035168A1 publication Critical patent/WO2016035168A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B50/00ICT programming tools or database systems specially adapted for bioinformatics
    • G16B50/30Data warehousing; Computing architectures
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B50/00ICT programming tools or database systems specially adapted for bioinformatics
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/24Querying
    • G06F16/245Query processing
    • G06F16/2458Special types of queries, e.g. statistical queries, fuzzy queries or distributed queries
    • G06F16/2465Query processing support for facilitating data mining operations in structured databases

Definitions

  • the present invention relates to a device that supports the determination of the pathological condition of a subject, and more specifically, information on gene mutation based on the gene sequence of the subject, and various medical data on the gene mutation recorded in a public database or the like.
  • the present invention relates to an apparatus that provides support when determining the pathological condition of a subject by displaying a list of information.
  • PTD polycystic kidney disease
  • ADPKD PKD1 gene and PKD2 gene have been identified as pathogenic genes.
  • PKD1 gene abnormalities about 85% of gene mutations are PKD1 gene abnormalities and about 15% are PKD2 gene abnormalities, and it is reported that the disease progression rate is faster in PKD1 gene abnormalities.
  • Non-patent document 1 Non-patent document 1
  • Patent document 1 and Non-patent document 2 Mutation can be detected by these methods.
  • the present invention has been made to solve the above-mentioned problems, and its purpose is to provide information on gene mutations based on the subject's gene sequence and various medical data concerning gene mutations recorded in public databases. Information in a list, and by referring to the information of the genetic mutation (polymorphism) database of healthy individuals that was originally constructed, it is easy to identify the pathogenic genetic mutation of the subject and assist in determining the pathological condition It is to provide a device or the like for performing.
  • a pathological condition determination support apparatus is a pathological condition determination support apparatus that supports determination of a pathological condition of multiple cystic kidneys, and includes multiple occurrences from sequence data describing a subject's gene sequence.
  • the extraction means for extracting information on gene mutations in a range related to cystic kidneys, and the extracted information from the plurality of databases in which genetic mutations and medical information are associated with each other using the extracted gene mutation information. It has an acquisition means for acquiring medical information corresponding to the gene mutation, a list display means for displaying the extracted information of the genetic mutation and the acquired medical information in a list.
  • it has a recording unit that records the database.
  • the gene mutation information is information based on chromosome position information, and includes a chromosome number, a mutation position, and a type of base after mutation.
  • the pathological condition determination support method is a pathological condition determination support method that supports determination of the pathological condition of multiple cyst kidneys, and includes a range related to multiple cystic kidneys from sequence data describing a gene sequence of a subject.
  • the program according to the present invention causes a computer to function as the extraction unit, the acquisition unit, and the list display unit of the above-described pathological condition determination support apparatus of the present invention.
  • the computer-readable recording medium records the above-described program according to the present invention.
  • the present invention it is possible to display a list of gene mutation information obtained from a subject and various medical information about the gene mutation recorded in a public database or the like. Various information necessary for determining the pathological condition of the subject based on the above can be comprehensively provided in a list.
  • the information provided comprehensively in the list is not limited to the existing public database, but also by providing information on the genetic mutation (polymorphism) database of healthy subjects, that is, a sequence of a predetermined number of healthy subjects.
  • the genetic mutation (polymorphism) database of healthy subjects that is, a sequence of a predetermined number of healthy subjects.
  • PTD polycystic kidney disease
  • FIG. 1 is a block diagram showing a schematic configuration of a disease state determination support apparatus 1 according to an embodiment of the present invention.
  • the disease state determination support apparatus 1 is realized as a computer system.
  • the pathological condition determination support apparatus 1 (hereinafter, also simply referred to as apparatus 1) includes a CPU 10 that processes data to be described later, a memory 11 that is used as a data processing work area, a recording unit 12 that records processing data, And an interface unit 14 (hereinafter referred to as an I / F unit) for inputting / outputting data to / from an external device.
  • the computer is also provided with operation means (such as a keyboard) and display means (such as a display) that are normally provided in a computer.
  • an internal database 12a in which information on gene mutation of a target disease (polycystic kidney disease; PKD) and medical information related to the gene mutation are associated is recorded in advance.
  • the device 1 may be connected to various public databases 3 via the Internet 2, and medical information obtained from the public database 3 and related to genetic mutation, and when the public database 3 is inquired, It can also be recorded as the internal database 12a in association with information on the gene mutation of the target disease.
  • FIG. 2 is a block diagram for explaining the function of the device 1 according to the embodiment of the present invention.
  • the apparatus 1 includes an extraction unit 21, an acquisition unit 22, and a list display unit 23. These functional blocks are realized by installing the program according to the present invention in the apparatus 1. These functions will be described later. 1) Information on gene mutation
  • gene mutation information is represented with reference to chromosome position information.
  • the information on gene mutation includes the number of the chromosome, the position of the mutation (start position and end position) in the chromosome indicated by this number, and the type of base after the mutation.
  • An example of gene mutation information in the case of polycystic kidney disease (PKD) is shown in Table 1.
  • PPD polycystic kidney disease
  • the column indicated by Contig indicates the chromosome number
  • the column indicated by Start pos and End pos indicates the mutation position (start position and end position)
  • the column indicated by Actual value is the base after the mutation. Indicates the type.
  • the column indicated by Ref value indicates the type of normal base that is not mutated at that position.
  • a known method for collecting a sample (for example, blood) from a predetermined number of healthy Japanese people (for example, 140 people) who are older than a predetermined age (for example, 35 years) and have no cyst in both kidneys The position information of the detected gene mutation (for example, single nucleotide polymorphism, SNP) is replaced with the position information based on the position information of the chromosome and recorded as the internal database 12a.
  • a sample for example, blood
  • a predetermined number of healthy Japanese people for example, 140 people
  • a predetermined age for example, 35 years
  • the database receives a query and the gene mutation to be queried is recorded as a record in the database, information on how many people in the given number of the gene mutation existed is referred to the database. Returns as a result.
  • the Cons score was created by quantifying the conserved state of each base of the PKD1 gene region and the PKD2 gene region, and this Cons score was associated with the position information based on the chromosome position information. It is recorded as the internal database 12a.
  • the Cons score is returned as the database inquiry result.
  • the Cons score is a real value from 0 to 1, and the closer the score is to 1, the better the conservation, and the index means that the pathogenicity is strong if the base has a mutation.
  • the pathogenic mutation data on the PKD1 mutation and PKD2 mutation published in the Mayo database is recorded as the internal database 12a in association with the position information based on the chromosome position information.
  • the judgment index used by the PKD Foundation is returned.
  • Examples of the determination index include “NonethelessfinitePathogenic” and “Highly Likely Pathogenic”.
  • PubMed is a database of bibliographic information created by the National Center for Biochemical Information (NCBI) in the United States. Pathogenic gene mutations are extracted in advance from past academic papers and the like accumulated in PubMed, and are recorded in the internal database 12a in association with position information based on chromosome position information.
  • NCBI National Center for Biochemical Information
  • PubMedID is a unique ID number assigned to a document stored in PubMed.
  • PKD1P1, PKD1P2, PKD1P3, PKD1P4, PKD1P5, PKD1P6, which are known for PKD, are picked up from various public databases and compared to the PKD1 gene. A part is extracted and associated with position information with reference to chromosome position information and recorded as an internal database 12a.
  • the database When the database is inquired and the target gene mutation is recorded as a record in the database, the fact that the inquired gene mutation is a pseudogene-derived mutation is returned as a database query result.
  • the pseudogene was amplified by long-range PCR, which will be described later, and the database serves as an index for quality control of genetic testing.
  • the position information of the gene mutations of the PKD1 gene and the PKD2 gene is replaced with the position information based on the position information of the chromosome and recorded as the internal database 12a.
  • the rs # number means Reference SNP ID number, which is a universally recognized SNP identification number defined by NCBI for each SNP.
  • processing performed by the device 1 actually means processing performed by the CPU 10 of the device 1.
  • the CPU 10 temporarily stores necessary data (intermediate data during processing, etc.) using the memory 11 as a work area, and appropriately records data to be stored for a long time, such as calculation results, in the recording unit 12.
  • the apparatus 1 executes a program according to the present invention, for example, in an execution format (for example, generated by being converted from a programming language such as C language by a compiler) in order to perform the processes of steps S1 to S4 described below.
  • the apparatus 1 performs processing using the program recorded in the recording unit 12.
  • the program may be installed in the apparatus 1 from a computer-readable recording medium such as a CD-ROM, or the program code of the program is downloaded via the Internet 2 by connecting the apparatus 1 to the Internet 2. Also good.
  • FIG. 3 is a flowchart showing the order of data processing performed by the disease state determination support apparatus according to the embodiment of the present invention.
  • data processing of the disease state determination support apparatus according to the embodiment of the present invention will be described in detail based on the flowchart shown in FIG.
  • step S1 the subject sequence data is read.
  • the sequence data is already created from a sample capable of gene analysis such as blood of a subject, for example, using a commercially available sequencer device as data in the FASTQ file format or VCF file format, for example, and is recorded in the recording unit 12 in advance. Yes.
  • the sequence data may be acquired and read from an external device via the I / F unit 14 or the Internet 2.
  • sequence data will be described.
  • the PKD1 gene and the PKD2 gene are relatively large genes. Sequencer devices that use the next-generation sequence analysis method are preferable to sequencer devices that use this method.
  • the Sanger method is a method for determining a base sequence by utilizing the principle that a nucleic acid extension reaction stops when a dideoxynucleotide is incorporated during DNA replication during a sequencing reaction.
  • the Sanger method has good sensitivity if it is a point mutation, but has a drawback that when a mutation different from a point mutation such as deletion or insertion of a base occurs, the base sequence after that site cannot be read. Further, in detection using the Sanger method, there is a limit to the chain length (about 500 bp) that allows base sequence determination with one kind of sequence primer. Therefore, even if only PKD1 is set as a detection target, it is necessary to use as many as 90 types of primers per sample, which is complicated and greatly increases the cost.
  • an analysis method called a next-generation sequence analysis method is to first prepare a library in which exons of the PKD1 gene are amplified by long range PCR using genomic DNA as a template, and fragmented to 35 bp to 400 bp. This is a method for determining a base sequence using a commercially available sequencer instrument.
  • the next-generation sequencing analysis method enables a large amount of sequencing, and is suitable for many analyzes such as sequencing and exome analysis of relatively large genes such as the PKD1 and PKD2 genes.
  • the sequence data is created in advance using, for example, a sequencer device that employs a next-generation sequence analysis method.
  • step S2 extraction step
  • the extraction unit 21 shown in FIG. 2 extracts gene mutations from the sequence data by mapping and aligning the sequence fragment lengths of the read sequence data (FASTQ format).
  • FASTQ format sequence fragment lengths of the read sequence data
  • known software for extracting SNP single nucleotide polymorphism
  • the extracted gene mutation information is expressed based on the chromosome position information.
  • the extracted gene mutation is a synonymous mutation in which the mutation exists, but the amino acid encoded by the gene mutation does not change and the protein function does not change.
  • genetic mutations polymorphisms
  • PTD disease polycystic kidney disease
  • the detection rate (the sequence fragment length set when extracting the gene mutation is about 75 bp longer than the conventional amplification range and the amplification cross section of the long range PCR (about 400 bp).
  • the correlation rate with ADPKD patients) is improved from 63% to 89%.
  • step S3 acquisition step
  • the acquisition unit 22 shown in FIG. 2 acquires medical information related to the gene mutation from the plurality of internal databases 12a using the gene mutation information extracted in step S2. Specifically, as information on gene mutation, a search is made in each of the plurality of internal databases 12a using the chromosome number, the position of the mutation in the chromosome indicated by this number, and the type of the base after the mutation as search keys. Queries whether there is a record that matches the key. When a record that matches the search key exists in the internal database 12a, information defined for each internal database 12a is returned as a query result.
  • the device 1 determines whether or not there is a record of information on this gene mutation in the Mayo database, and if this record exists, as a result of the inquiry to the internal database 12a,
  • medical information associated with the gene mutation is acquired. Medical information is, for example, in the case of a Japanese healthy person database, information on how many of the gene mutations exist in a given number of people, in the case of a Cons paper database, a Cons score, and in the GenBank database. Is the rs # number, and in the case of the PubMed ID database, it is PubMedID.
  • step S4 list display step
  • the list display unit 24 shown in FIG. 2 displays a list of gene mutation information extracted in step S2 and medical information acquired in step S3.
  • An example of the list display item is shown in Table 2.
  • the column indicated by Contig indicates the chromosome number
  • the column indicated by Start pos and End pos indicates the mutation position (start position and end position)
  • the column indicated by Actual value is the base after the mutation. Indicates the type.
  • the column indicated by Ref value indicates the type of normal base that is not mutated at that position.
  • the columns with the headings “Actual” and “DB” # 1 ”to“ DB # 5 ” indicate medical information acquired from the internal database 12a.
  • the rs # number based on the GenBank database, the percentage of the gene mutation held based on the Japanese healthy person database, the Cons score based on the Cons paper database, and the PubMedID based on the PubMed ID database.
  • Table 2 shows 1 to several tens of gene mutations extracted from the subject sequence data, and medical information obtained from the internal database 12a for each of these extracted gene mutations. Is displayed in association with the extracted gene mutation.
  • the information that is comprehensively displayed in these lists shown in Table 2 is various information from a medical standpoint that is required when trying to determine a patient's pathological condition.
  • the present invention it is possible to display a list of gene mutation information obtained from a subject and various medical information about the gene mutation recorded in a public database or the like. Various information required when trying to determine the pathological condition of the subject based on the information can be comprehensively provided in a list. Therefore, according to the present invention, it is not necessary to individually refer to the descriptions of a plurality of public databases and past academic papers for each gene mutation, and the labor involved in the determination of the condition of the subject can be reduced. It becomes possible.
  • step S4 the gene mutation information extracted in step S2 and the medical information acquired in step S3 are listed, but the gene mutation information displayed in a list is limited to these. Not.
  • mutation effect Effect
  • distinction between PKD1 and PKD2 genes Region
  • codon mutation Codon
  • amino acid mutation Aa
  • nucleotide mutation Nuc ch
  • Protein change Prot ch
  • the data processing shown in FIG. 3 is described as processing performed by the CPU 10, but the processing performed by the CPU 10 is classified into each function, and a dedicated electronic circuit is produced for each function. These electronic circuits may share and execute the data processing of FIG.
  • the internal database 12a is described as a stand-alone system that records in the recording unit 12 of the apparatus 1.
  • the storage location of the internal database 12a is not limited to the recording unit 12, A network-type system that can be accessed via the Internet 3 and stored in a computer device different from the device 1 may be used.
  • information on gene mutation of the target disease and medical information related to the gene mutation are associated and recorded in advance as the internal database 12a.
  • the information is not always constant, and may be dynamically updated periodically via the Internet 3, for example.
  • an automated program in which an update procedure is described in a script language is created.
  • This automation program is recorded in the recording unit 12 of the apparatus 1, and the automation program is periodically started to automatically access the public database 3, so that information necessary for updating the internal database 12a is made public. What is necessary is just to collect automatically from the database 3 and to update the content of the internal database 12a.
  • the operation means and the display means are described as separate configurations, but these may be integrated into a touch panel type configuration.
  • the information on the character string is displayed as the information on the items to be displayed as a list in step S4.
  • a predetermined process associated with the character string may be appropriately executed. For example, when PubMedID is displayed as a list display item, if the ID number of PubMedID is specified by, for example, an operation means (mouse), a data file of an academic document associated with the ID number may be displayed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Databases & Information Systems (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Evolutionary Biology (AREA)
  • Medical Informatics (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Bioethics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Data Mining & Analysis (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

 被験者の遺伝子配列を記載したシークエンスデータから抽出した遺伝子変異の情報と、公共データベース等に記録されている、当該遺伝子変異についての種々の医学的な情報とを一覧で表示することで、被験者の病原遺伝子変異を特定し、病態を判定する際の支援を行う装置を提供することを目的とする。 本発明に係る多発性嚢胞腎の病態の判定を支援する病態判定支援装置は、被験者の遺伝子配列を記載したシークエンスデータから、多発性嚢胞腎に関連する範囲の遺伝子変異の情報を抽出する抽出手段21と、抽出した遺伝子変異の情報を用いて、遺伝子変異と医学的な情報とを対応付けた複数のデータベースから、抽出した遺伝子変異に対応する医学的な情報を取得する取得手段22と、抽出した遺伝子変異の情報と、取得した医学的な情報とを一覧で表示する一覧表示手段23と、を有する。

Description

病態判定支援装置、方法、プログラムおよび記録媒体
 本発明は、被験者の病態の判定を支援する装置に関し、より詳細には、被験者の遺伝子配列に基づく遺伝子変異の情報と、公共データベース等に記録されている、当該遺伝子変異についての種々の医学的な情報とを一覧で表示することで、被験者の病態を判定する際の支援を行う装置に関する。
 近年、遺伝子の変異に関連する疾患に対して、患者が有する遺伝子情報の解析をはじめとして、疾患と遺伝子変異との関連性が盛んに研究されている。例えば、頻度の高い遺伝性の腎疾患であり、難病として知られている多発性嚢胞腎(polycystic kidney disease; PKD)のうち、常染色体優勢多発性嚢胞腎(autosomal dominant polycystic kidney disease; ADPKD)については、病因遺伝子としてPKD1遺伝子とPKD2遺伝子とが同定されている。ADPKDの場合、遺伝子変異の約85%がPKD1遺伝子の異常であり、約15%がPKD2遺伝子の異常であり、PKD1遺伝子異常において疾患の進行速度がより早いことが報告されている。遺伝子変異を検出する公知の方法としては、サンガーシークエンス法(非特許文献1)や次世代シークエンス解析法(特許文献1および非特許文献2)が知られており、PKD1遺伝子およびPKD2遺伝子についても、これらの方法により変異を検出することが可能となっている。
 一方で、近年では、種々の公共データベースにおいて、疾患と遺伝子変異との関連性についての研究結果が公開されている。例えば、多発性嚢胞腎財団(PKD財団)が運営するウェブサイト上では、Mayoクリニックが作成した病原変異のデータベース(以下、Mayoデータベースと記載する)が公開されている。また、米国生物工学情報センター(NCBI: National Center for Biotechnology Information)が運営するGenBankでは、種々の配列に関するデータベースが公開されている。これら公共データベース上では、遺伝子変異に関連する医学的な情報を取得することが可能となっている。
特開2009-11230号公報
F. Sanger et al., "A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase", Journal of Molecular Biology, 1975年4月, Volume 94, p.411-446 水島-菅野純子 他,"次世代シークエンサーの医療への応用と課題",モダンメディア,栄研化学株式会社,2011年8月,第57巻8号,p.1-5
 検出した遺伝子変異の情報に基づいて患者の病態の原因となる病原遺伝子変異を特定しようとする場合、当該遺伝子変異についての医学的な見地での種々の情報が必要とされる。そのため、一つの公共データベースを参照するだけでは、正確な病原遺伝子変異の特定に十分な程度の情報を得ることができない。また、1人の患者について数個から数十個の遺伝子変異が検出されると、これら数個から数十個の遺伝子変異のそれぞれについて、複数の公共データベースや過去の学術論文等の記載をその都度個別に参照する必要があり、非常に手間がかかる上、健常者データベースが無ければ十分に病原遺伝子変異を特定することができない。
 本発明は、上記課題を解決するためになされたものであり、その目的は、被験者の遺伝子配列に基づく遺伝子変異の情報と、公共データベース等に記録されている、遺伝子変異についての種々の医学的な情報とを一覧で表示し、独自に構築した健常者の遺伝子変異(多型)データベースの情報を参照することで、被験者の病原遺伝子変異を特定し易くし、病態を判定する際の支援を行う装置等を提供することにある。
 上記目的を達成するための、本発明に係る病態判定支援装置は、多発性嚢胞腎の病態の判定を支援する病態判定支援装置であって、被験者の遺伝子配列を記載したシークエンスデータから、多発性嚢胞腎に関連する範囲の遺伝子変異の情報を抽出する抽出手段と、前記抽出した前記遺伝子変異の情報を用いて、遺伝子変異と医学的な情報とを対応付けた複数のデータベースから、前記抽出した前記遺伝子変異に対応する医学的な情報を取得する取得手段と、前記抽出した前記遺伝子変異の情報と、前記取得した前記医学的な情報とを一覧で表示する一覧表示手段を有する。
 好ましくは、前記データベースを記録した記録部を有する。
 好ましくは、前記遺伝子変異の情報が、染色体の位置情報を基準とした情報であり、染色体の番号と、変異の位置と、変異後の塩基の種類とを含む。
 また、本発明に係る病態判定支援方法は、多発性嚢胞腎の病態の判定を支援する病態判定支援方法であって、被験者の遺伝子配列を記載したシークエンスデータから、多発性嚢胞腎に関連する範囲の遺伝子変異の情報を抽出する抽出ステップと、前記抽出した前記遺伝子変異の情報を用いて、遺伝子変異と医学的な情報とを対応付けた複数のデータベースから、前記抽出した前記遺伝子変異に対応する医学的な情報を取得する取得ステップと、前記抽出した前記遺伝子変異の情報と、前記取得した前記医学的な情報とを一覧で表示する一覧表示ステップと、を含む。
 また、本発明に係るプログラムは、上記した本発明の病態判定支援装置の前記抽出手段、前記取得手段、および前記一覧表示手段として、コンピュータを機能させる。
 また、本発明に係るコンピュータ読み取り可能な記録媒体は、上記した本発明に係るプログラムを記録する。
 本発明によると、被験者から得られる遺伝子変異の情報と、公共データベース等に記録されている、当該遺伝子変異についての種々の医学的な情報とを一覧で表示することができるので、遺伝子変異の情報に基づいて被験者の病態を判定しようとする際に必要となる種々の情報を、一覧で網羅的に提供することができる。
 さらに、一覧で網羅的に提供する情報として、既存の公共データベースに限らず、健常者の遺伝子変異(多型)データベースの情報もあわせて提供することにより、すなわち、所定の人数の健常者についてシークエンス解析を行って、新たに独自の健常人データベースを構築し、この独自に構築した健常者の遺伝子変異(多型)データベースを参照することにより、1人の患者について数個から数十個検出される遺伝子変異から、健常者に観察される正常な遺伝子変異(多型)を比較して除くことができるようになり、被験者の病原遺伝子変異をより特定し易くすることができる。なお、多発性嚢胞腎は産まれながらに腎嚢胞を有するものの、30~40歳まで無症状であることが多い。このため、健常者の遺伝子多型データベースを作成するためには、健常者を選択する際に、35歳以上で両腎に超音波検査で腎嚢胞を有しないことを確認した者を選択することが重要である。
本発明の実施の形態に係る病態判定支援装置の概略構成を示すブロック図である。 本発明の実施の形態に係る病態判定支援装置の機能を説明するためのブロック図である。 本発明の実施の形態に係る病態判定支援装置が行うデータ処理の順序を示すフローチャートである。
 以下、本発明の実施の形態を、添付の図面を参照して詳細に説明する。なお、以下の説明および図面において、同じ符号は同じまたは類似の構成要素を示すこととし、よって、同じまたは類似の構成要素に関する説明を省略する。
 なお、説明の簡略化のため、以下では判定対象とする疾患を多発性嚢胞腎(PKD)として説明する
 図1は、本発明の実施の形態に係る病態判定支援装置1の概略構成を示すブロック図である。本実施形態では、病態判定支援装置1はコンピュータ・システムとして実現されている。
 病態判定支援装置1(以下、単に装置1とも記す)は、後述するデータの処理を行うCPU10と、データ処理の作業領域に使用するメモリ11と、処理データを記録する記録部12と、各部の間でデータを伝送するバス13と、外部機器とのデータの入出力を行うインタフェース部14(以下、I/F部と記す)とを備えている。なお、図1では記載を省略しているが、コンピュータが通常備えている操作手段(キーボード等)や表示手段(ディスプレイ等)も備えている。
 記録部12内には、対象とする疾患(多発性嚢胞腎;PKD)の遺伝子変異の情報と、当該遺伝子変異に関連する医学的な情報とが関連付けられた内部データベース12aが予め記録されている。
 また、装置1はインターネット2を介して種々の公共データベース3に接続されていてもよく、公共データベース3から取得した、遺伝子変異に関連する医学的な情報と、公共データベース3に問い合わせた際の、対象とする疾患の遺伝子変異の情報とを関連付けて内部データベース12aとして記録することもできる。
 図2は、本発明の実施の形態に係る装置1の機能を説明するためのブロック図である。装置1は、抽出部21と、取得部22と、一覧表示部23とを備える。これらの機能ブロックは、本発明に係るプログラムを装置1にインストールすることにより実現されるものである。これらの機能については後述する。
1)遺伝子変異の情報
 本発明の実施の形態では、遺伝子変異の情報を、染色体の位置情報を基準として表す。遺伝子変異の情報は、染色体の番号と、この番号で示される染色体における変異の位置(開始位置および終了位置)と、変異後の塩基の種類とを含む。多発性嚢胞腎(PKD)の場合の遺伝子変異の情報の一例を表1に示す。PKDの場合、PKD1遺伝子の異常は16番染色体(chr16)に存在し、PKD2遺伝子の異常は4番染色体(chr4)に存在することが知られている。
Figure JPOXMLDOC01-appb-T000001
 表1中、Contigで示される列が染色体の番号を示し、Start posおよびEnd posで示される列が変異の位置(開始位置および終了位置)を示し、Actual valueで示される列が変異後の塩基の種類を示す。なお、Ref valueで示される列は、その位置での変異していない、正常な塩基の種類を示す。
2)内部データベース
 次に、予め作成しておく種々の内部データベース12aの一例として、次の6種類のデータベースについて説明する。
 ・日本人健常人データベース
 所定の年齢(例えば35歳)以上で両方の腎臓に嚢胞が認められない、所定の人数(例えば、140名)の健康な日本人を対象として、試料(例えば血液)を採取して公知の方法でシークエンス解析し、検出した遺伝子変異(例えば、一塩基多型、SNP)の位置情報を、染色体の位置情報を基準とした位置情報に読み替えて、内部データベース12aとして記録しておく。
 当該データベースが照会(query)を受け、照会対象の遺伝子変異が当該データベースにレコードとして記録されている場合には、所定の人数中何名にその遺伝子変異が存在したかの情報を、データベースの照会結果として返す。
 ・Cons論文データベース
 異種間で共通祖先が持っていた遺伝子が進化の過程で変化している場合、その遺伝子由来のタンパク質は共通の機能を持つことが多く、その異種間の相同性が高い領域を「良く保存された領域(conserved region)」と呼ぶ。この良く保存された領域はその蛋白質の機能において重要であると考えられている。Cons.論文はアダム・シーペルらの論文(Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genome. Genome Res 2005 15:1034-1050)を示しており、遺伝子領域の保存された状態を数値で示す方法を示している。Cons論文中の、PKD1遺伝子領域およびPKD2遺伝子領域のそれぞれの塩基の保存状態を数値化してConsスコアを作成し、このConsスコアと、染色体の位置情報を基準とした位置情報とを対応付けて、内部データベース12aとして記録しておく。
 当該データベースが照会を受け、照会対象の遺伝子変異が当該データベースにレコードとして記録されている場合には、Consスコアをデータベースの照会結果として返す。なお、Consスコアは0~1の実数値であり、スコアが1に近いほど、良く保存されており、その塩基に変異があると病原性が強いことを意味する指標である。
 ・Mayoデータベース
 Mayoデータベースにて公開されているPKD1変異およびPKD2変異についての病原変異のデータを、染色体の位置情報を基準とした位置情報と対応付けて、内部データベース12aとして記録しておく。
 当該データベースが照会を受け、照会対象の遺伝子変異が当該データベースにレコードとして記録されている場合には、PKD財団で使用されている判定指標を返す。判定指標とは、例えば「Definitely Pathogenic」および「Highly Likely Pathogenic」等である。
 ・PubMed IDデータベース
 PubMedとは、米国の国立生物化学情報センター(NCBI)が作成している文献情報のデータベースである。このPubMedに蓄積されている過去の学術論文等から病原遺伝子変異を予め抽出し、染色体の位置情報を基準とした位置情報と対応付けて、内部データベース12aとして記録しておく。
 当該データベースが照会を受け、照会対象の遺伝子変異が当該データベースにレコードとして記録されている場合には、PubMedIDを返す。PubMedIDとは、PubMedに蓄積されている文献に付された固有のID番号である。
 ・偽遺伝子配列データベース
 PKDについて知られている偽遺伝子配列PKD1P1, PKD1P2, PKD1P3, PKD1P4, PKD1P5, PKD1P6を、種々の公知の公共データベースからピックアップし、これらをPKD1遺伝子と比較してそれぞれ偽遺伝子と正常遺伝子PKD1の異なる変異部位を抽出し、染色体の位置情報を基準とした位置情報と対応付けて、内部データベース12aとして記録しておく。
 当該データベースが照会を受け、照会対象の遺伝子変異が当該データベースにレコードとして記録されている場合には、照会した遺伝子変異が偽遺伝子由来の変異である旨をデータベースの照会結果として返す。この偽遺伝子由来の遺伝子変異が複数検出された場合は、後述するロングレンジPCRで偽遺伝子を増幅した可能性があり、当該データベースは遺伝子検査の精度管理の指標となる。
 ・GenBankデータベース
 GenBankデータベースからPKD1遺伝子およびPKD2遺伝子の遺伝子変異の位置情報を、染色体の位置情報を基準とした位置情報に読み替えて、内部データベース12aとして記録しておく。
 当該データベースが照会を受け、照会対象の遺伝子変異が当該データベースにレコードとして記録されている場合には、rs#ナンバーをデータベースの照会結果として返す。rs#ナンバーとはReference SNP ID numberを意味し、NCBIが、各々のSNPに対して定義した、世界的に統一されたSNPの認識番号である。
3)病態判定支援装置の動作
 以下の説明においては、特に断らない限り装置1が行う処理は、実際には装置1のCPU10が行う処理を意味する。CPU10はメモリ11を作業領域として必要なデータ(処理途中の中間データ等)を一時記憶し、記録部12に演算結果等の長期保存するデータを適宜記録する。また、装置1は、以下で説明するステップS1~S4の処理を行うために、本発明に係るプログラムを、例えば実行形式(例えば、C言語等のプログラミング言語からコンパイラにより変換されて生成される)で記録部12に予め記録しており、装置1は、記録部12に記録したプログラムを使用して処理を行う。なお、上記プログラムは、CD-ROM等のコンピュータ読み取り可能な記録媒体から装置1にインストールしてもよいし、装置1をインターネット2と接続し、インターネット2を介してプログラムのプログラムコードをダウンロードしてもよい。
 図3は、本発明の実施の形態に係る病態判定支援装置が行うデータ処理の順序を示すフローチャートである。以下、本発明の実施の形態に係る病態判定支援装置のデータ処理について、図3に示すフローチャートに基づいて詳細に説明する。
 ステップS1において、被験者のシークエンスデータを読み込む。シークエンスデータは、例えば被験者の血液等の遺伝子解析可能な試料から、例えばFASTQファイル形式やVCFファイル形式のデータとして市販のシークエンサー機器を使用して既に作成されており、記録部12に予め記録されている。あるいは、シークエンスデータは、I/F部14またはインターネット2経由で外部機器から取得して読み込んでもよい。
 シークエンスデータの作成について説明すると、本実施形態で判定対象としている多発性嚢胞腎(PKD)の場合、PKD1遺伝子およびPKD2遺伝子はサイズが比較的大きな遺伝子であるので、遺伝子変異の検出には、サンガー法を採用したシークエンサー機器よりも、次世代のシークエンス解析法を採用したシークエンサー機器が望ましい。
 サンガー法は、シークエンシング反応中にDNA複製の際にジデオキシヌクレオチドが取り込まれると核酸伸長反応が停止する原理を利用して、塩基配列を決定する方法である。サンガー法は、点変異であれば感度は良好であるが、塩基の欠失や挿入といった点変異とは異なる変異が生じていた場合に、その部位以降の塩基配列が読めなくなるという欠点がある。また、サンガー法を用いた検出では、1種類のシークエンスプライマーで塩基配列決定が可能な鎖長(~500bp程度)に限界がある。したがって、仮にPKD1のみを検出対象とした場合でも、1検体あたり90種類ものプライマーを用いる必要があり、繁雑で費用が非常に増大する。
 一方、次世代のシークエンス解析法と呼ばれている解析方法は、最初にゲノムDNAを鋳型としてPKD1遺伝子のエクソンをロングレンジPCRにて増幅し、35bp~400bpに断片化したライブラリを調整し、その後市販のシークエンサー機器を用いて塩基配列を決定する方法である。次世代のシークエンス解析法によると、大量のシークエンシングが可能であり、PKD1遺伝子およびPKD2遺伝子のようなサイズが比較的大きな遺伝子のシークエンシングやエキソーム解析など多数の解析に向いている。
 本実施形態では、シークエンスデータは、例えば次世代のシークエンス解析法を採用したシークエンサー機器を用いて予め作成されている。
 ステップS2(抽出ステップ)において、図2に示す抽出部21が、読み込んだシークエンスデータ(FASTQ形式)のシークエンス断片長をマッピングおよびアライメントすることで、シークエンスデータから遺伝子の変異を抽出する。遺伝子変異を抽出する具体的な手段としては、例えばSNP(一塩基多型)を抽出する公知のソフトウェアを利用することができる。
 抽出した遺伝子変異の情報は、染色体の位置情報を基準として表されており、染色体の番号と、この番号で示される染色体における変異の位置(開始位置および終了位置)と、変異後の塩基の種類とを含んでいる。なお、この時点では、抽出した遺伝子変異には、変異が存在しているものの変異前と遺伝子変異によってもコードされるアミノ酸が変わらずタンパク機能も変わらないシノニマス(synonymous)変異や、判定対象とする疾患である多発性嚢胞腎(PKD)の病原遺伝子変異以外の遺伝子変異(多型)も含まれている。
 本実施形態では、遺伝子変異を抽出する際に設定するシークエンス断片長を、従来の約75bp程度から、ロングレンジPCRの増幅領域および増幅断面より長いもの(約400bp)とすることで、検出率(ADPKD患者との相関率)を63%から89%に向上させている。
 ステップS3(取得ステップ)において、図2に示す取得部22が、ステップS2において抽出した遺伝子変異の情報を用いて、遺伝子変異に関連する医学的な情報を、複数の内部データベース12aから取得する。具体的には、遺伝子変異の情報として、染色体の番号と、この番号で示される染色体における変異の位置と、変異後の塩基の種類とを検索キーとして、複数の内部データベース12aの各々に、検索キーに合致するレコードの有無を照会する。検索キーに合致するレコードが内部データベース12a内に存在する場合、各々の内部データベース12a毎に規定されている情報が、照会結果として返される。
 具体的に例を示すと、例えば16番染色体の2160494の位置に存在する変異「T」について、内部データベース12aにレコードの有無を照会する場合、照会する遺伝子変異の情報は、"Contig=chr16, Startpos=2160494, Endpos=2160494, Actual value= T"となる。Mayoデータベースを例とすると、装置1は、Mayoデータベース内に、この遺伝子変異の情報のレコードが存在するか否かを判定し、当該レコードが存在する場合、内部データベース12aへの照会結果として、当該遺伝子変異の情報"Contig=chr16, Startpos=2160494, Endpos=2160494, Actual value= T"に関連づけられた医学的な情報である、判定指標"Likely Neutral"を取得する。当該レコードが存在しない場合には、レコードが存在しない旨の情報(例えば、NULL)を取得する。
 他の内部データベース12aについてもMayoデータベースと同様に、取得部22は、"Contig=chr16, Startpos=2160494, Endpos=2160494, Actual value= T"で表される遺伝子変異の情報が、内部データベース12a内にレコードとして存在するか否かを判定し、当該レコードが存在する場合には、当該遺伝子変異に関連付けられた医学的な情報を取得する。医学的な情報とは、例えば日本人健常人データベースの場合は、所定の人数中何名にその遺伝子変異が存在したかの情報であり、Cons論文データベースの場合はConsスコアであり、GenBankデータベースの場合はrs#ナンバーであり、PubMed IDデータベースの場合はPubMedIDである。
 ステップS4(一覧表示ステップ)において、図2に示す一覧表示部24が、ステップS2において抽出した遺伝子変異の情報と、ステップS3において取得した医学的な情報とを一覧表示する。一覧表示項目の一例を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2中、Contigで示される列が染色体の番号を示し、Start posおよびEnd posで示される列が変異の位置(開始位置および終了位置)を示し、Actual valueで示される列が変異後の塩基の種類を示す。Ref valueで示される列は、その位置での変異していない、正常な塩基の種類を示す。"Actual"および"DB #1"~"DB #5"の見出しが付された列は、内部データベース12aから取得した医学的な情報を示しており、左側から順番に、Mayoデータベースによる判定指標、GenBankデータベースによるrs#ナンバー、日本人健常人データベースによる当該遺伝子変異の保有割合、Cons論文データベースによるConsスコア、PubMed IDデータベースによるPubMedIDである。
 例えば16番染色体の2160494の位置に存在する変異「T」について、表2を参照すると、"Contig=chr16, Startpos=2160494, Endpos=2160494, Actual value= T"で特定される行には、Mayoデータベースによる判定指標(Likely Neutral)と、rs#ナンバー(rs79884128)と、日本人の当該遺伝子変異の保有割合(54/140)と、Consスコア(0.023622)と、PubMedID(22185115)とが一覧で表示されている。
 また、表2には、被験者のシークエンスデータから抽出された1個から数十個の遺伝子変異が表示されており、これら抽出された遺伝子変異の各々について、内部データベース12aから取得した医学的な情報が、抽出された遺伝子変異と関連付けられて表示されている。表2に示すこれら一覧で網羅的に表示されている情報は、患者の病態を判定しようとする際に必要とされる、医学的な見地での種々の情報である。
 以上、本発明によると、被験者から得られる遺伝子変異の情報と、公共データベース等に記録されている、当該遺伝子変異についての種々の医学的な情報とを一覧で表示することができるので、遺伝子変異の情報に基づいて被験者の病態を判定しようとする際に必要となる種々の情報を、一覧で網羅的に提供することができる。したがって、本発明によれば、各遺伝子変異について、複数の公共データベースや過去の学術論文等の記載をその都度個別に参照する必要が無く、被験者の病態の判定作業に係る労力を軽減することが可能となる。
 また、判定作業に必要とされる情報が網羅的に表示されるので、複数の公共データベースや過去の学術論文等の記載を参照する度に判定作業が中断することもなく、判定作業に注力することが可能となる。
 以上、本発明を特定の実施の形態によって説明したが、本発明は上記した実施の形態に限定されるものではない。
 上記実施の形態では、ステップS4において、ステップS2において抽出した遺伝子変異の情報と、ステップS3において取得した医学的な情報とを一覧表示しているが、一覧表示する遺伝子変異の情報はこれらに限定されない。これらの情報に加えて、変異の効果(Effect)、PKD1遺伝子とPKD2遺伝子との区別(Region)、コドン変異(Codon)、アミノ酸変異(Aa)、ヌクレオチド変異(Nuc ch)、およびタンパク質変化(Prot ch)などから判定に必要なものを適宜選択して、表示列に追加して一覧表示してもよい。これら追加の表示項目を含めた一覧表示項目の一例を、表3に示す。
Figure JPOXMLDOC01-appb-T000003
 また、上記実施の形態では、図3に示すデータ処理をCPU10が行う処理として記載しているが、CPU10が行う処理をそれぞれの機能に分類して、各機能毎に専用の電子回路を作製し、これら電子回路が図3のデータ処理を分担して実行してもよい。
 また、上記実施の形態では、内部データベース12aを装置1の記録部12内に記録するスタンドアローン型のシステムとして説明しているが、内部データベース12aの保存場所は記録部12内に限定されず、インターネット3を介してアクセス可能な、装置1とは別のコンピュータ機器内に保存するネットワーク型のシステムとしてもよい。
 また、上記実施の形態では、対象とする疾患の遺伝子変異の情報と、当該遺伝子変異に関連する医学的な情報とを関連付けて、内部データベース12aとして予め記録しているが、内部データベース12aが記録している情報は常に一定ではなく、例えばインターネット3を介して定期的に動的に更新してもよい。内部データベース12aの内容を動的に更新する手段としては、例えばスクリプト言語により更新手順を記載した自動化プログラムを作成する。この自動化プログラムを装置1の記録部12内に記録しておき、定期的に自動化プログラムが起動して、公共データベース3に自動的にアクセスすることにより、内部データベース12aの更新に必要な情報を公共データベース3から自動的に収集して、内部データベース12aの内容を更新すればよい。
 また、上記実施の形態では、操作手段と表示手段とは個別の構成として記載しているが、これらを統合してタッチパネル型の構成としてもよい。
 また、上記実施の形態では、ステップS4にて一覧表示する項目の情報として、文字列の情報を表示しているが、この文字列に関連付けられた所定の処理を適宜実行してもよい。例えば、一覧表示項目としてPubMedIDが表示されている場合、PubMedIDのID番号を例えば操作手段(マウス)で指定すると、当該ID番号に関連付けられた学術文献のデータファイルを表示してもよい。
  1  病態判定支援装置
  2  インターネット
  3  公共データベース
 10  CPU
 11  メモリ
 12  記録部
 12a 内部データベース
 13  バス
 14  インタフェース部
 21  抽出部(抽出手段)
 22  取得部(取得手段)
 23  一覧表示部(一覧表示手段)

Claims (6)

  1.  多発性嚢胞腎の病態の判定を支援する病態判定支援装置であって、
     被験者の遺伝子配列を記載したシークエンスデータから、多発性嚢胞腎に関連する範囲の遺伝子変異の情報を抽出する抽出手段と、
     前記抽出した前記遺伝子変異の情報を用いて、遺伝子変異と医学的な情報とを対応付けた複数のデータベースから、前記抽出した前記遺伝子変異に対応する医学的な情報を取得する取得手段と、
     前記抽出した前記遺伝子変異の情報と、前記取得した前記医学的な情報とを一覧で表示する一覧表示手段と、
    を有する病態判定支援装置。
  2.  前記データベースを記録した記録部を有する請求項1に記載の病態判定支援装置。
  3.  前記遺伝子変異の情報が、染色体の位置情報を基準とした情報であり、
     染色体の番号と、変異の位置と、変異後の塩基の種類とを含む、請求項1または2に記載の病態判定支援装置。
  4.  多発性嚢胞腎の病態の判定を支援する病態判定支援方法であって、
     被験者の遺伝子配列を記載したシークエンスデータから、多発性嚢胞腎に関連する範囲の遺伝子変異の情報を抽出する抽出ステップと、
     前記抽出した前記遺伝子変異の情報を用いて、遺伝子変異と医学的な情報とを対応付けた複数のデータベースから、前記抽出した前記遺伝子変異に対応する医学的な情報を取得する取得ステップと、
     前記抽出した前記遺伝子変異の情報と、前記取得した前記医学的な情報とを一覧で表示する一覧表示ステップと、
    を含む病態判定支援方法。
  5.  請求項1~3のいずれかに記載の病態判定支援装置の前記抽出手段、前記取得手段、および前記一覧表示手段として、コンピュータを機能させるプログラム。
  6.  請求項5に記載のプログラムを記録した、コンピュータ読み取り可能な記録媒体。
     
PCT/JP2014/073213 2014-09-03 2014-09-03 病態判定支援装置、方法、プログラムおよび記録媒体 WO2016035168A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US15/535,288 US20180032673A1 (en) 2014-09-03 2014-09-03 Pathology determination assistance device, method and storage medium
EP14901111.6A EP3219809B1 (en) 2014-09-03 2014-09-03 Pathology determination assistance device, method, program and storage medium
JP2016546243A JP6682439B2 (ja) 2014-09-03 2014-09-03 病態判定支援装置、方法、プログラムおよび記録媒体
CA2974182A CA2974182A1 (en) 2014-09-03 2014-09-03 Pathology determination assistance device, method, program and storage medium
PCT/JP2014/073213 WO2016035168A1 (ja) 2014-09-03 2014-09-03 病態判定支援装置、方法、プログラムおよび記録媒体
ES14901111T ES2898435T3 (es) 2014-09-03 2014-09-03 Dispositivo de ayuda para la determinación de patología, método, programa y medio de almacenamiento

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/073213 WO2016035168A1 (ja) 2014-09-03 2014-09-03 病態判定支援装置、方法、プログラムおよび記録媒体

Publications (1)

Publication Number Publication Date
WO2016035168A1 true WO2016035168A1 (ja) 2016-03-10

Family

ID=55439269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073213 WO2016035168A1 (ja) 2014-09-03 2014-09-03 病態判定支援装置、方法、プログラムおよび記録媒体

Country Status (6)

Country Link
US (1) US20180032673A1 (ja)
EP (1) EP3219809B1 (ja)
JP (1) JP6682439B2 (ja)
CA (1) CA2974182A1 (ja)
ES (1) ES2898435T3 (ja)
WO (1) WO2016035168A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020144940A (ja) * 2020-05-28 2020-09-10 株式会社テンクー プログラム、情報処理装置および情報処理方法
WO2022024221A1 (ja) * 2020-07-28 2022-02-03 株式会社テンクー プログラム、学習モデル、情報処理装置、情報処理方法および学習モデルの生成方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109243534A (zh) * 2018-08-31 2019-01-18 郑州金域临床检验中心有限公司 基于ngs的突变基因的分析装置、设备及存储介质
CN109859847A (zh) * 2019-02-15 2019-06-07 京东方科技集团股份有限公司 电子设备、体重管理收益预测装置及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004504038A (ja) * 2000-07-13 2004-02-12 ザ ジョンズ ホプキンス ユニバーシティー スクール オブ メディシン 多発性嚢胞腎疾患の検出と治療
JP2010504579A (ja) * 2006-09-20 2010-02-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 分子診断判定サポートシステム
JP2010522537A (ja) * 2006-11-30 2010-07-08 ナビジェニクス インコーポレイティド 遺伝子分析系および方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6303297B1 (en) * 1992-07-17 2001-10-16 Incyte Pharmaceuticals, Inc. Database for storage and analysis of full-length sequences
JP2006254739A (ja) * 2005-03-15 2006-09-28 Univ Of Tokushima 糖尿病疾患感受性遺伝子、及び糖尿病罹患の難易を検出する方法
JP2011500041A (ja) * 2007-10-16 2011-01-06 エフ.ホフマン−ラ ロシュ アーゲー クローナルシークエンシングによる高分解能かつ高効率のhla遺伝子型決定法
JP5807894B2 (ja) * 2011-01-31 2015-11-10 国立研究開発法人理化学研究所 一塩基多型に基づく前立腺癌の検査方法
US9218450B2 (en) * 2012-11-29 2015-12-22 Roche Molecular Systems, Inc. Accurate and fast mapping of reads to genome

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004504038A (ja) * 2000-07-13 2004-02-12 ザ ジョンズ ホプキンス ユニバーシティー スクール オブ メディシン 多発性嚢胞腎疾患の検出と治療
JP2010504579A (ja) * 2006-09-20 2010-02-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 分子診断判定サポートシステム
JP2010522537A (ja) * 2006-11-30 2010-07-08 ナビジェニクス インコーポレイティド 遺伝子分析系および方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HITOSHI YOKOYAMA: "Epidemiological and clinicopathological studies based on web registration system (J-RBR/J-KDR", JAPANESE JOURNAL OF PEDIATRIC NEPHROLOGY, vol. 26, no. 2, 2013, pages 213 - 219, XP003032464 *
MINOSHIMA ET AL., NUCLEIC ACIDS RESEARCH, vol. 29, no. 1, 2001, pages 327 - 328, XP055394985 *
See also references of EP3219809A4 *
SHINSEI MINOSHIMA ET AL.: "Shikkan Idenshi Hen'i to Shikkan Kanren Tagata no Sogo Chishiki Base no Kochiku", XP055394978, Retrieved from the Internet <URL:http://lifesciencedb.jp/houkoku/pdf/001/b029.pdf> *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020144940A (ja) * 2020-05-28 2020-09-10 株式会社テンクー プログラム、情報処理装置および情報処理方法
WO2022024221A1 (ja) * 2020-07-28 2022-02-03 株式会社テンクー プログラム、学習モデル、情報処理装置、情報処理方法および学習モデルの生成方法

Also Published As

Publication number Publication date
EP3219809B1 (en) 2021-10-27
US20180032673A1 (en) 2018-02-01
CA2974182A1 (en) 2016-03-10
JPWO2016035168A1 (ja) 2017-06-29
ES2898435T3 (es) 2022-03-07
EP3219809A4 (en) 2018-05-30
JP6682439B2 (ja) 2020-04-15
EP3219809A1 (en) 2017-09-20

Similar Documents

Publication Publication Date Title
Wright et al. Paediatric genomics: diagnosing rare disease in children
De Coster et al. Towards population-scale long-read sequencing
Salgado et al. UMD‐predictor: a high‐throughput sequencing compliant system for pathogenicity prediction of any human cDNA substitution
Huddleston et al. An incomplete understanding of human genetic variation
Tang et al. Characterization of mitochondrial DNA heteroplasmy using a parallel sequencing system
US11043283B1 (en) Systems and methods for automating RNA expression calls in a cancer prediction pipeline
US20140249764A1 (en) Method for Assembly of Nucleic Acid Sequence Data
Goodman Biological data becomes computer literate: new advances in bioinformatics
JP2016540275A (ja) 配列変異体を検出するための方法およびシステム
Farrugia et al. Targeted next generation sequencing application in cardiac channelopathies: analysis of a cohort of autopsy-negative sudden unexplained deaths
JP2003021630A (ja) 臨床診断サービスを提供するための方法
JP7054133B2 (ja) 配列解析方法、配列解析装置、参照配列の生成方法、参照配列生成装置、プログラム、および記録媒体
JP6682439B2 (ja) 病態判定支援装置、方法、プログラムおよび記録媒体
JP6675164B2 (ja) 変異判定方法、変異判定プログラムおよび記録媒体
Daiger et al. Targeted high-throughput DNA sequencing for gene discovery in retinitis pigmentosa
JP2023031319A (ja) 分析装置、分析方法及びプログラム
Stockton et al. Rapid, highly accurate and cost‐effective open‐source simultaneous complete HLA typing and phasing of class I and II alleles using nanopore sequencing
JP2015089364A (ja) 体細胞多重変異によるがん診断方法、がん医薬開発方法及びがん診断装置
Steyaert et al. Future perspectives of genome-scale sequencing
US20170076047A1 (en) Systems and methods for genetic testing
JP2005522223A (ja) 変異の検出および同定
Yang et al. Alignment-free filtering for cfNA fusion fragments
Li et al. An evaluation of noncoding genome annotation tools through enrichment analysis of 15 genome-wide association studies
Steyaert et al. Comprehensive validation of a diagnostic strategy for sequencing genes with one or multiple pseudogenes using pseudoxanthoma elasticum as a model
De Summa et al. Basic Principles of Bioinformatics for Next-Generation Sequencing Molecular Testing in Oncology

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14901111

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016546243

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014901111

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2974182

Country of ref document: CA