WO2016034368A1 - Broche haute fréquence - Google Patents
Broche haute fréquence Download PDFInfo
- Publication number
- WO2016034368A1 WO2016034368A1 PCT/EP2015/068330 EP2015068330W WO2016034368A1 WO 2016034368 A1 WO2016034368 A1 WO 2016034368A1 EP 2015068330 W EP2015068330 W EP 2015068330W WO 2016034368 A1 WO2016034368 A1 WO 2016034368A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- radial
- bearing
- shaft
- spindle
- smooth
- Prior art date
Links
- 238000005553 drilling Methods 0.000 claims description 11
- 238000001816 cooling Methods 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q1/00—Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
- B23Q1/70—Stationary or movable members for carrying working-spindles for attachment of tools or work
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q1/00—Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
- B23Q1/25—Movable or adjustable work or tool supports
- B23Q1/26—Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members
- B23Q1/38—Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members using fluid bearings or fluid cushion supports
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C17/00—Sliding-contact bearings for exclusively rotary movement
- F16C17/02—Sliding-contact bearings for exclusively rotary movement for radial load only
- F16C17/026—Sliding-contact bearings for exclusively rotary movement for radial load only with helical grooves in the bearing surface to generate hydrodynamic pressure, e.g. herringbone grooves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C17/00—Sliding-contact bearings for exclusively rotary movement
- F16C17/10—Sliding-contact bearings for exclusively rotary movement for both radial and axial load
- F16C17/102—Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure
- F16C17/105—Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure with at least one bearing surface providing angular contact, e.g. conical or spherical bearing surfaces
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/06—Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
- F16C32/0603—Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
- F16C32/0614—Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being supplied under pressure, e.g. aerostatic bearings
- F16C32/0622—Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being supplied under pressure, e.g. aerostatic bearings via nozzles, restrictors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/10—Construction relative to lubrication
- F16C33/1005—Construction relative to lubrication with gas, e.g. air, as lubricant
- F16C33/101—Details of the bearing surface, e.g. means to generate pressure such as lobes or wedges
- F16C33/1015—Pressure generating grooves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C17/00—Sliding-contact bearings for exclusively rotary movement
- F16C17/26—Systems consisting of a plurality of sliding-contact bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2300/00—Application independent of particular apparatuses
- F16C2300/20—Application independent of particular apparatuses related to type of movement
- F16C2300/22—High-speed rotation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2322/00—Apparatus used in shaping articles
- F16C2322/39—General buildup of machine tools, e.g. spindles, slides, actuators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/06—Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
- F16C32/0681—Construction or mounting aspects of hydrostatic bearings, for exclusively rotary movement, related to the direction of load
- F16C32/0685—Construction or mounting aspects of hydrostatic bearings, for exclusively rotary movement, related to the direction of load for radial load only
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/06—Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
- F16C32/0681—Construction or mounting aspects of hydrostatic bearings, for exclusively rotary movement, related to the direction of load
- F16C32/0696—Construction or mounting aspects of hydrostatic bearings, for exclusively rotary movement, related to the direction of load for both radial and axial load
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/0011—Working of insulating substrates or insulating layers
- H05K3/0044—Mechanical working of the substrate, e.g. drilling or punching
- H05K3/0047—Drilling of holes
Definitions
- the present invention relates to bearing pins
- the solution provided by the non-contact gas bearings makes it possible to have very little dissipation.
- the problem of instability remains under certain conditions and from certain speeds.
- the solution provided by aerodynamic bearings with herringbone grooves used for several decades is one of the most successful and promising solutions for ultra-high speed spindles. Indeed, in recent years, applications in the field of energy, micro-energy (mini and micro-compressors heat pumps, batteries to fuels, mini-gas turbines), and medical demonstrate the interest of these bearings for small rotors designed to rotate at ultra-high speeds (up to 1.2 Mtpm). However complications related to geometry have been encountered.
- a solution combining a cylindrical bearing and a conical bearing to take radial loads and axial loads, allows a compact configuration.
- the positioning and the kinematics of the rotor in the conical bearing depend strongly on the machining tolerances of the bearing. Machining is therefore more complex and more expensive.
- DE4401262 discloses a motor bearing with surfaces of toric shapes. This document does not describe a complete pin.
- a pin typically has two bearings. The use of two bearings of this type, however, results in a hyperstatic system, that is to say a system in which the axial position of the rotor depends on each of the two bearings.
- GB1036659 discloses an electric motor comprising a rotary shaft and two gas bearings.
- the outer surface of the shaft portion in both bearings is a grinding wheel (sphere portion). This system is therefore also hyperstatic. It is not meant for a brooch.
- W09846894 discloses a rotary air bearing provided with an axis having two conical surfaces outwardly flaring and placed opposite a trunnion. However, the conical surfaces are not adjacent. The landing is again hyperstatic, since each of the two conical surfaces spaced apart from each other determines the axial position of the rotor. Deformations of the axis portion between the two conical surfaces, for example in case of expansion, bending, etc., therefore lead to a misalignment of the conical contact surfaces.
- An object of the present invention is to provide a non-contact bearing pin associating at least two bearings having a hybrid aerodynamic and aerostatic operation free of known limitations.
- a goal is also to avoid problems related to the hyperstatism in a spindle, including axial hyperstatism.
- an aerostatic and aerodynamic hybrid ultra-high speed bearing pin comprising at least two bearings and a rotary shaft mounted in said bearings, in which the first bearing is biconical, consisting of two half-pads of adjacent frustoconical surfaces and a biconical shaft portion formed of two frustoconical and adjacent portions, the second bearing (3) being a radial bearing.
- This aerostatic and aerodynamic hybrid solution has the advantage of allowing the contactless starting of the spindle from a zero rotation speed, also giving the possibility of controlling the operating conditions by means of aerostatic pressurization.
- the first biconical bearing allows to position the axis both radially and axially.
- the second radial bearing only allows to position the axis in the radial direction, without locking it axially. This avoids the problems of axial hyperstatism: the axial position of the tree is determined solely by the two adjacent biconical surfaces and thus unlikely to move relative to each other.
- Adjacent half-pads reduce the effects of dissipation and adjust axially and radially the biconical bearing.
- the half-bearings of the biconical bearing delimit between them preferably at least one radial passage for the circulation of a gas.
- this or these radial passages allow the evacuation of the gas flowing between the shaft and the two-half bearings of the biconical bearing.
- the radial passage has an adjustable axial dimension by changing the distance between the two half-pads.
- each half-pad has at least one radial duct for the circulation of a gas.
- this or these radial ducts allow the arrival of the pressurized gas from a source towards the space between the shaft and the two-half bearings of the biconical bearing.
- the passage or said duct has a diameter of less than 200 micrometers, preferably less than 100 micrometers.
- each radial duct opens or opens on a smooth portion of the corresponding frustoconical portion. This arrangement ensures the proper operation of the aerostatic mode.
- Each frustoconical portion of the biconical shaft portion is advantageously constituted by a smooth portion and a grooved portion.
- This solution has the advantage over the prior art to participate in the thermal stability and / or dynamic system.
- the grooves of each grooved portion have a helical shape, or consist of lines, in particular of rectilinear, sinusoidal, corrugated lines.
- each groove extends on a line forming a helical section on the surface of the grooved portion.
- the grooves are on the surface of a portion of each half-pad.
- the grooves occupy 20 to 80 percent of the length (the measurement along the x-axis of the shaft) of a frustoconical portion. This solution also has the advantage over the prior art of increasing rigidity and load capacity by optimizing the ratios of smooth and grooved surfaces.
- each frustoconical portion of the biconical shaft portion is advantageously constituted by a smooth portion, a grooved portion and a cylindrical smooth portion.
- the smooth cylindrical portion is disposed on the side of the large base.
- the cylindrical smooth portion is very short in length and is between 0.1 and 1 mm, preferably 0.25 mm.
- the grooved portions may be placed on either side of the cylindrical smooth parts.
- the smooth parts are placed on either side of the cylindrical smooth parts.
- the shaft is made of a material from: titanium, aluminum or one of their alloys, steel, a ceramic, a composite material.
- the shaft portion in the radial bearing preferably comprises at least one smooth portion and / or at least one grooved portion.
- the grooved portion of a radial shaft portion occupies 20 to 80 percent of the length of the radial portion of the shaft.
- the second radial bearing preferably comprises at least one radial duct for the passage of a gas.
- the radial duct of the radial bearing gives on a smooth part of the radial portion of the shaft.
- the flight height h is between 1 and 20 micrometers, preferably between 3 and 15 micrometers.
- the hybrid bearing spindle preferably comprises a pressurized air supply connected to the radial duct and whose pressure is adjustable during the aerostatic mode.
- the air supply is able to feed the radial duct during the aerodynamic mode.
- the invention also relates to a high speed drilling machine comprising an aerostatic and aerodynamic hybrid bearing pin such as that described above in which the biconical bearing is disposed on the tool side.
- FIG. 1 illustrates a hybrid bearing pin associating a radial bearing and a biconical bearing.
- FIG. 2 illustrates a close-up view of a frustoconical portion of the shaft of the bearing pin of FIG. 1 in a variant.
- FIG. 3 illustrates a close-up view of the radial portion of the shaft of the bearing pin of FIG. 1 in a variant.
- FIG. 4 illustrates an overall view of a drilling system equipped with the bearing pin of FIG. 1.
- the "axial” direction extends in the length of the shaft of the spindle, namely along the axis XX 'of FIG. 1, while the "radial” direction is extends in any direction orthogonal to this tree.
- frustoconical portion means a truncated cone, or a truncated cone whose large base is extended axially by a cylindrical portion 1 over a short distance less than or equal to 1 mm.
- the gap formed between the shaft and the bearing 20 or the half-bearings 1 1 and 1 1 ' determines the flight height h which corresponds to the difference (when the bearing pin is in operation and equilibrium without load) between the inner radius of the pad 20 or the half-pads 1 1 and 20 1 1 'and the corresponding outer radius of the shaft 4.
- FIG. 1 illustrates a spindle 1 with aerostatic and aerodynamic hybrid bearings at high speed according to an embodiment associating a biconic bearing and a radial bearing 3.
- a rotary shaft 4 of axis X-X ' In this figure 1 is shown a rotary shaft 4 of axis X-X '.
- the shaft 4 consists of five sections extending successively in an adjacent manner, namely: three portions with a smooth surface 30, 60 and 90 (the portions 30 and 90 represent the two end portions of the shaft 4 while the portion 60 represents the central portion of the shaft), a biconical portion P1 and a radial portion P2.
- the central portion 60 is about 20 mm
- the shaft 4 is between 40 mm and 80 mm.
- the radial portion P2 comprises a smooth portion 80 placed between two grooved portions 70 and 70 'with grooves arranged in chevrons as illustrated in Figures 1 and 3.
- the two grooved portions 70 and 70' occupy 20 to 80 % of the total length of the radial portion P2 of the shaft 4.
- the position along the radial portion P2 of the smooth portion 80 and the grooved portions 70 and 70 ' can be reversed, namely with a radial portion P2 having a grooved portion located between two smooth parts.
- the biconical shaft portion P1 comprises two adjacent frustoconical parts 40 and 50, the largest diameter of which is turned towards the other of the two frustoconical parts 40 and 50.
- the largest diameter of the portion of biconical tree P1 being in its central part.
- Each frustoconical portion 40 (50) is provided with a grooved portion 42 (52), a smooth portion 41 (51) and another cylindrical smooth portion 43 (53) as illustrated in Figure 1 .
- the grooves occupy from 20 to 80% of the length.
- the smooth cylindrical portion 43 is reduced to a zero axial dimension at the location of the large base of the frustoconical portion 40.
- the arrangement of the grooves on the two grooved portions 42 and 52 is such that the we obtain a form of chevrons.
- the two grooved portions 42 and 52 are placed on either side of the two cylindrical smooth parts 43 and 53.
- the two grooved portions 42 and 52 are adjacent so that the tip of the rafters is disposed at the boundary between the two frustoconical portions 40 and 50.
- each frustoconical portion 40 (50), the smooth portion 41 (51) and the grooved portion 42 (52) can be reversed.
- the smooth portion 41 (51) is located at the end of the frustoconical portion 50 (40) facing the other frustoconical portion.
- the grooves are only located on the inner surfaces s1, s1 ', s2 and s2' of the bearings 20 and / or half bearings 10 and 10 'in an axial distribution and arrangement.
- the grooves In high speed mode the grooves generate lift and rigidity, depending on the configurations, they also provide the dynamic stability and / or favor the evacuation of heat produced in the gas film, while the smooth part makes it possible to increase the rigidity and the load capacity of the system.
- the grooves may be oblique as shown in FIGS. 1, 2 and 3.
- the biconical bearing 2 consists of two conical half-bushings 10 and 10 'and the biconical shaft portion consists of two adjacent frustoconical portions 40 and 50.
- the maximum diameter of the biconical shaft portion P1 is less than 40 mm, and is preferably between 7 and 12 mm, while the minimum diameter of the biconical shaft portion P1 is equivalent to the nominal diameter of the tree given further.
- Each half-pad 10 and 10 ' is provided with at least one radial duct 1 1, 1 1' of about 100 micrometers in diameter, which allows the circulation of a gas such as air for example. This or these radial ducts open on the smooth portion of the frustoconical portion 41, 41 '.
- a number of radial ducts 1 1, 1 1 'greater than four the circumferential distribution of the air pressure is improved, which is a significant advantage in mode aerostatic.
- these radial conduits 1 1, 1 1 ' one can use a porous material to make each half-pad.
- the biconical bearing 2 is preferably placed on the demanding side more stability.
- the biconical bearing 2 will be placed on the tool side but it can also be placed on the opposite side to the tool.
- the radial bearing 3 consists of a radial bearing 20 and the radial shaft portion P1.
- the pad 20 of the radial bearing is also provided with at least one duct 21 of about 100 micrometers in diameter which allows the circulation of a gas such as air for example.
- This radial duct opens on the smooth part of the radial portion 80.
- this radial duct 21 is disposed on the same radial plane as the bearing 20.
- these radial ducts 21 are at least 4 in number, or at least The number of radial ducts greater than four, in particular, has a circumferential distribution of the air pressure, which is a significant advantage in aerostatic mode.
- this radial duct 21 is a pocket duct in that it has a large widening of its diameter in its end portion facing the shaft 4.
- a porous material can be used to make the pad.
- Each conduit has a diameter of less than 200 micrometers, preferably 100 micrometers. These ducts serve to create pressure drop.
- the shaft 4 is preferably hollowed by section over its entire length, which allows to lighten the bearing pin 1. Also preferably, the shaft 4 has a nominal diameter (portions 30, 60 and 90) less than 20 mm, preferably between 4 and 7 mm.
- FIG. 4 illustrates a drilling system 100 integrating the bearing pin previously described in relation to FIGS. 1 to 3.
- the shaft 4 is represented with the air inlets 1 1, 1 1 'and the outlets air (radial passage 12) communicating with the elements of the drilling system 100.
- the shaft 4 is equipped with a permanent magnet rotor 101 placed inside the shaft 4 as shown. This rotor 101 induces an electric field in the windings of the stator 108.
- Two balancing zones are found at the two end portions 30 and 90 of the shaft 4. The balancing is therefore left of Figure 4, at the portion 30 of the shaft, by axial screws 103 with unbalance and right of Figure 4, at the portion 90 of the shaft, by clamping screws 102. In this way, the dynamic balancing on the axis XX 'of the shaft 4 is provided by adjusting both ends of the shaft 4.
- the shaft 4 can be machined in different materials among: titanium, aluminum, one of their alloys, steel, a ceramic, or a composite material.
- the piezoelectric element 104 mounted on a disk structure which bears on the half-bushing 10 ', makes it possible to adjust the axial positioning of the one of the half-pads 10 'relative to the other half-pad 10 with a very high radial rigidity.
- This positioning can be fixed during operation of the spindle 1, by setting during startup, in aerostatic mode, or controlled by slaving according to the position deduced from the measurement of a position sensor, a sensor temperature, a speed sensor.
- a sensor may be capacitive, inductive or a laser sensor.
- the radial passage 12 has an axial dimension d adjustable by changing the distance between the two half-pads 10, 10 ', which allows to change the height of flight h of the biconical bearing.
- the pressure of this air supply is adjustable, especially when the aerostatic mode dominates.
- this air supply is able to feed the radial ducts 1 1, 1 1 ', 21 of the radial bearing 3 and / or of the biconical bearing 2 during the aerodynamic mode because good results were obtained with this configuration.
- the air cooling system 107 is used for the stator.
- a water cooling system is optionally used for the exterior of the stator 108.
- the bearings 20 or half-bearings 10 and 10 'of the radial bearings 3 and 2 biconical can be mounted on flexible supports, elastic and dissipative typically elastomer O-rings (located between the bearing 20 of the radial bearing 3, the half-bearings 10 and 10 'of the biconical bearing 2 and the elements connected to the body of the spindle) in order to allow the damping, dissipate the energy of the critical vibratory modes and increase the revolutions ranges operating the spindle.
- the flying height h is between 1 and 20 micrometers, preferably between 3 to 15 micrometers. These preferred values concern the biconical bearing, or the radial bearing or both the biconical bearing and the radial bearing. This flight height h makes it possible to control the dynamics of the rotor 101, to widen the operating range range of the spindle, makes it possible to increase the axial and radial load capacity punctually.
- the surfaces of the bearings can be machined so as to have specific shapes to compensate for this deformation.
- the radial bearing is not purely of cylindrical but concave shape and the frustoconical parts which have a concave shape generator.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Magnetic Bearings And Hydrostatic Bearings (AREA)
Abstract
Broche ultra-haute vitesse à paliers hybrides aérostatiques et aérodynamiques (1), comprenant au moins deux paliers (2, 3) et un arbre rotatif (4) monté dans les dits paliers. Le premier palier (2) est biconique et constitué de deux demi-coussinets de surfaces tronconiques adjacentes (10, 10') et d'une portion d'arbre biconique formée de deux parties tronconiques (40, 50) et adjacentes. Le deuxième palier (3) est un palier radial.
Description
Broche haute fréquence
Domaine technique
[0001] La présente invention concerne des broches à paliers
aérodynamiques et aérostatiques sans contact, à ultra haute vitesse de rotation.
Etat de la technique [0002] Il existe des besoins en perçage mécanique de diamètres de plus en plus petits. C'est notamment le cas dans le domaine des circuits imprimés, du fait de la miniaturisation des substrats, ou encore pour le perçage en masse des trous de diamètre inférieur à 100 micromètres. En théorie, pour un perçage optimal, la vitesse de rotation de la broche devrait être d'environ 800 ktpm (800 000 tours par minutes). Les avantages d'une grande vitesse de rotation sont multiples, à savoir en particulier : l'augmentation de la productivité par l'augmentation de la durée de vie des outils et donc de la réduction de la consommation du nombre d'outils par an, soit aussi la réduction de coûts. [0003] Pour atteindre ces ultra-hautes vitesses de rotation, le recours à d'autres technologies de paliers que ceux usuels est nécessaire.
[0004] La solution fournie par les paliers à gaz sans contact permet d'avoir très peu de dissipation. Cependant, le problème d'instabilité demeure sous certaines conditions et à partir de certaines vitesses. [0005] La solution fournie par les paliers aérodynamiques à gorges en chevrons utilisés depuis plusieurs décades est l'une des solutions les plus performantes et prometteuses pour les broches ultra-hautes vitesses. En effet, depuis quelques années, des applications dans le domaine de l'énergie, la micro-énergie (mini et micro-compresseurs de pompes à chaleur, piles à
combustibles, mini-turbines à gaz), et du médical démontrent l'intérêt de ces paliers pour des rotors de petites dimensions destinés à tourner à des ultrahautes vitesses (jusqu'à 1 .2 Mtpm). Cependant des complications liées à la géométrie ont été rencontrées. [0006] Une solution combinant un palier cylindrique et un palier conique pour reprendre des charges radiales et des charges axiales, permet d'avoir une configuration compacte. Cependant le positionnement et la cinématique du rotor dans le palier conique dépendent fortement des tolérances d'usinage du palier. L'usinage est donc plus complexe et plus coûteux.
[0007] Par exemple les documents FR1347907 et F 12I présentent des paliers associant un palier radial et un palier conique. Cependant les roulements à bille semblent incompatibles avec des ultra hautes vitesses. Avec ces systèmes les problèmes de stabilité de l'arbre et de contrainte dynamique sont souvent rencontrés.
[0008] Le document DE4401262 décrit un palier pour moteur avec des surfaces de formes toriques. Ce document ne décrit pas de broche complète. Une broche comporte typiquement deux paliers. L'utilisation de deux paliers de ce type résulte cependant en un système hyperstatique, c'est-à-dire un système dans lequel la position axiale du rotor dépend de chacun des deux paliers.
[0009] Le document GB1036659 décrit un moteur électrique comprenant un arbre rotatif et deux paliers à gaz. La surface externe de la portion d'arbre dans les deux paliers est en forme de meule (portion de sphère). Ce système est donc également hyperstatique. Il n'est pas destiné à une broche.
[0010] Le document W09846894 décrit un palier à air rotatif pourvu d'un axe présentant deux surfaces coniques évasées vers l'extérieur et placées à l'opposé d'un tourillon. Cependant, les surfaces coniques ne sont pas adjacentes. Le palier est à nouveau hyperstatique, puisque chacune des
deux surfaces coniques éloignées l'une de l'autre détermine la position axiale du rotor. Des déformations de la portion d'axe entre les deux surfaces coniques, par exemple en cas de dilatation, de flexion, etc, entraînent donc une erreur de positionnement des surfaces de contact coniques.
Bref résumé de l'invention [0011] Un but de la présente invention est de proposer une broche à paliers sans contact associant au moins deux paliers ayant un fonctionnement hybride aérodynamique et aérostatique exempt des limitations connues.
[0012] Un but est aussi d'éviter les problèmes liés à l'hyperstatisme dans une broche, notamment l'hyperstatisme axial.
[0013] Selon l'invention, ces buts sont atteints notamment au moyen d'une broche à palier ultra-haute vitesse hybride aérostatique et aérodynamique, comprenant au moins deux paliers et un arbre rotatif monté dans les dits paliers, dans laquelle le premier palier est biconique, constitué de deux demi-coussinets de surfaces tronconiques adjacentes et d'une portion d'arbre biconique formée de deux parties tronconiques et adjacentes, le deuxième palier (3) étant un palier radial..
[0014] Cette solution hybride aérostatique et aérodynamique a l'avantage de permettre le démarrage sans contact de la broche à partir d'une vitesse de rotation nulle, donnant aussi la possibilité de contrôler les conditions de fonctionnement au moyen de la pressurisation aérostatique.
[0015] Le premier palier biconique permet de positionner l'axe à la fois radialement et axialement. Le deuxième palier radial permet uniquement de positionner l'axe dans la direction radiale, sans le bloquer axialement. On évite ainsi les problèmes d'hyperstatisme axial : la position axiale de l'arbre
est déterminée uniquement par les deux surfaces biconiques adjacentes et donc peu susceptibles de se déplacer l'une par rapport à l'autre.
[0016] Les demi-coussinets adjacents permettent de diminuer les effets de dissipation et de régler axialement et radialement le palier biconique. [0017] Les demi-coussinets du palier biconique délimitent entre eux de préférence au moins un passage radial permettant la circulation d'un gaz. Avantageusement ce ou ces passages radiaux permettent l'évacuation du gaz circulant entre l'arbre et les deux-demi coussinets du palier biconique.
[0018] Le passage radial présente une dimension axiale réglable par modification de la distance entre les deux demi-coussinets.
[0019] De préférence, chaque demi-coussinet possède au moins un conduit radial permettant la circulation d'un gaz. Avantageusement ce ou ces conduits radiaux permettent l'arrivée du gaz sous pression provenant d'une source en direction de l'espace entre l'arbre et les deux-demi coussinets du palier biconique.
[0020] Le passage ou ledit conduit présente un diamètre inférieur à 200 micromètres, de préférence inférieur à 100 micromètres.
[0021] De préférence, chaque conduit radial débouche ou s'ouvre sur une partie lisse de la portion tronconique correspondante. Cette disposition permet d'assurer le bon fonctionnement du mode aérostatique.
[0022] Chaque partie tronconique de la portion d'arbre biconique est avantageusement constituée d'une partie lisse et d'une partie rainurée. Cette solution présente l'avantage par rapport à l'art antérieur de participer à la stabilité thermique et /ou dynamique du système.
[0023] Les rainures de chaque partie rainurée présentent une forme hélicoïdale, ou sont constituées de lignes, en particulier de lignes rectilignes, sinusoïdales, ondulées. De préférence, chaque rainure s'étend sur une ligne formant un tronçon hélicoïdal à la surface de la partie rainurée. Alternativement les rainures se trouvent à la surface d'une partie de chaque demi-coussinet.
[0024] Les rainures occupent de 20 à 80 pourcents de la longueur (la mesure selon l'axe x de l'arbre) d'une partie tronconique. Cette solution présente par ailleurs l'avantage par rapport à l'art antérieur d'augmenter la rigidité et la capacité de charge en optimisant les ratios de surfaces lisses et rainurées.
[0025] Dans un mode de réalisation, chaque partie tronconique de la portion d'arbre biconique est avantageusement constituée d'une partie lisse, d'une partie rainurée et d'une partie lisse cylindrique. La partie lisse cylindrique est disposée du côté de la grande base.
[0026] La partie lisse cylindrique est très courte de longueur et mesure entre 0.1 et 1 mm, de préférence 0.25 mm.
[0027] Les parties rainurées peuvent être placées de part et d'autre des parties lisses cylindriques. [0028] Alternativement les parties lisses sont placées de part et d'autre des parties lisses cylindriques.
[0029] L'arbre est réalisé dans un matériau parmi: le titane, l'aluminium ou un de leurs alliage, l'acier, une céramique, un matériau composite.
[0030] La portion d'arbre dans le palier radial comporte de préférence au moins une partie lisse et/ou au moins une partie rainurée.
[0031] Selon une disposition préférentielle, la partie rainurée d'une portion d'arbre radiale occupe de 20 à 80 pourcents de la longueur de la portion radiale de l'arbre.
[0032] Le deuxième palier radial comporte de préférence au moins un conduit radial pour le passage d'un gaz.
[0033] Avantageusement, le conduit radial du palier radial donne sur une partie lisse de la portion radiale de l'arbre.
[0034] Selon une disposition préférentielle, la hauteur de vol h est comprise entre 1 et 20 micromètres, de préférence entre 3 et 1 5 micromètres.
[0035] La broche à paliers hybrides comprend de préférence une alimentation en air sous pression reliée au conduit radial et dont la pression est réglable au cours du mode aérostatique.
[0036] L'alimentation en air est apte à alimenter le conduit radial pendant le mode aérodynamique.
[0037] L'invention a aussi pour objet une machine de perçage à grande vitesse comportant une broche à paliers hybrides aérostatique et aérodynamiques telle que celle précédemment décrite dans laquelle le palier biconique est disposé côté outil.
Brève description des figures [0038] Des exemples de mise en œuvre de l'invention sont indiqués dans la description illustrée par les figures annexées dans lesquelles :
-La figure 1 illustre une broche à paliers hybrides associant un palier radial et un palier biconique.
-La figure 2 illustre une vue rapprochée d'une portion tronconique de l'arbre de la broche à palier de la figure 1 selon une variante.
5 -La figure 3 illustre une vue rapprochée de la portion radiale de l'arbre de la broche à palier de la figure 1 selon une variante.
-La figure 4 illustre une vue d'ensemble d'un système de perçage équipé de la broche à paliers de la figure 1 .
Exemple(s) de mode de réalisation de l'invention
[0039] Dans le présent document la direction « axiale » s'étend dans la 10 longueur de l'arbre de la broche à paliers, à savoir selon l'axe X-X' de la figure 1, tandis que la direction « radiale » s'étend dans n'importe quelle direction orthogonale à cetarbre.
[0040] Par ailleurs, on entend par partie tronconique un tronc de cône, ou un tronc de cône dont la grande base se prolonge axialement par une partie 1 5 cylindrique sur une courte distance inférieure ou égale à 1 mm.
[0041] Sur les figures, l'interstice formé entre l'arbre et le coussinet 20 ou les demi-coussinets 1 1 et 1 1 ' détermine la hauteur de vol h qui correspond à l'écart (lorsque la broche à paliers est en fonctionnement et à l'équilibre sans charge) entre le rayon interne du coussinet 20 ou des demi-coussinets 1 1 et 20 1 1 ' et le rayon externe correspondant de l'arbre 4.
[0042] La figure 1 illustre une broche 1 à paliers hybrides aérostatique et aérodynamique à haute vitesse selon un mode de réalisation associant un palier biconique et 2 un palier radial 3.
[0043] Sur cette figure 1 est représenté un arbre rotatif 4 d'axe X-X'. L'arbre 4 est constitué de cinq tronçons s'étendant successivement de façon adjacente à savoir : trois portions avec surface lisse 30, 60 et 90 (les portions 30 et 90 représentent les deux portions d'extrémités de l'arbre 4 tandis que la portion 60 représente la portion centrale de l'arbre), une portion biconique P1 et une portion radiale P2. A titre d'exemple, la portion 60 centrale mesure environ 20 mm, tandis que l'arbre 4 mesure entre 40 mm et 80 mm.
[0044] La portion radiale P2 comprend une partie lisse 80 placée entre deux parties rainurées 70 et 70'avec des rainures agencées en chevrons tel qu'illustrées sur les figures 1 et 3. Les deux parties rainurées 70 et 70' occupent 20 à 80% de la longueur totale de la portion radiale P2 de l'arbre 4.
[0045] Dans une variante de réalisation, non représentée, la position le long de la portion radiale P2 de la partie lisse 80 et des partie rainurées 70 et 70' peuvent être inversées, à savoir avec une portion radiale P2 ayant une partie rainurée située entre deux parties lisses.
[0046] La portion d'arbre biconique P1 comporte deux parties tronconiques adjacentes 40 et 50, dont le plus grand diamètre est tourné en direction de l'autre des deux parties tronconiques 40 et 50. Le diamètre le plus grand de la portion d'arbre biconique P1 étant dans sa partie centrale.
[0047] Chaque partie tronconique 40 (50) est munie d'une partie rainurée 42 (52), d'une partie lisse 41 (51 ) et d'une autre partie lisse cylindrique 43 (53) tel qu'illustre la figure 1 . Sur chaque partie tronconique 40 (50), les rainures occupent de 20 à 80% de la longueur. Dans le cas de la figure 2, la partie lisse cylindrique 43 est réduite à une dimension axiale nulle à l'emplacement de la grande base de la partie tronconique 40. La disposition des rainures sur les deux parties rainurées 42 et 52 est telle que l'on obtient une forme de chevrons.
[0048] Sur la figure 1, les deux parties rainurées 42 et 52 sont placées de part et d'autre des deux parties lisses cylindriques 43 et 53. Dans une variante de réalisation partiellement représentée sur la figure 2, les deux parties rainurées 42 et 52 sont adjacentes de sorte que la pointe des chevrons est disposée à la frontière entre les deux parties tronconiques 40 et 50.
[0049] Dans une variante de réalisation particulière, non représentée, la position le long de chaque partie tronconique 40 (50), de la partie lisse 41 (51 ) et de la partie rainurée 42 (52) peut être inversée. Dans ce cas pour chaque partie tronconique 40 (50), la partie lisse 41 (51 ) est située à l'extrémité de la partie tronconique 50 (40) tournée vers l'autre partie tronconique. Dans cette variante ce sont donc les deux parties lisses 41 et 51 qui sont adjacentes ou bien seulement séparées par deux parties lisses cylindriques 43 et 53 précédemment décrites. [0050] Dans un autre mode de réalisation, non représenté, les rainures sont seulement situées sur les surfaces intérieures s1 , s1 ', s2 et s2' des coussinets 20 et/ou demi coussinets 10 et 10' dans une répartition et un agencement axiaux similaires avec ce qui est décrit précédemment pour les surfaces rainurées des portions biconique P1 et radiale P2 de l'arbre 4. [0051] En régime haute vitesse les rainures génèrent de la portance et de la rigidité, selon les configurations, elles apportent également de la stabilité dynamique et/ou favorisent l'évacuation de chaleur produite dans le film de gaz, tandis que la partie lisse permet d'augmenter la rigidité et la capacité de charge du système. [0052] Dans un mode de réalisation, les rainures peuvent être obliques comme le montrent les figures 1 , 2 et 3.
[0053] Le palier biconique 2 est constitué de deux demi-coussinets coniques 10 et 10' et la partie d'arbre biconique est constituée de deux portions tronconiques adjacentes 40 et 50.
[0054] Le diamètre maximal de la portion d'arbre biconique P1 est inférieur à 40 mm, et est de préférence compris entre 7 et 12 mm, tandis que le diamètre minimal de la portion d'arbre biconique P1 équivaut au diamètre nominal de l'arbre donné plus loin. [0055] Chaque demi-coussinet 10 et 10' est muni d'au moins un conduit radial 1 1 , 1 1 ' d'environ 100 micromètres de diamètre, qui permet la circulation d'un gaz tel que l'air par exemple. Ce ou ces conduits radiaux débouchent sur la partie lisse de la portion tronconique 41 , 41 '. De préférence ces conduits radiaux 1 1, 1 1 ' sont disposés sur un même plan radial de chaque demi-coussinet 10 et 10', au moins au nombre de 4, voire au moins au nombre de 8, et de préférence au moins au nombre de 14, et avantageusement au nombre de 15. En effet, avec un nombre de conduits radiaux 1 1 , 1 1 ' plus grand que quatre, la répartition circonférentielle de la pression d'air est améliorée, ce qui est un avantage significatif en mode aérostatique. En variante (cas de figure non représenté), ces conduits radiaux 1 1 , 1 1 ' sont des conduits à poches par le fait qu'ils présentent un élargissement important de leur diamètre dans leur tronçon terminal tourné vers l'arbre 4. En alternative à ces conduits radiaux 1 1 , 1 1 ', on peut utiliser un matériau poreux pour réaliser chaque demi-coussinet. [0056] En aérostatique l'air entre par les conduits 1 1 , 1 1 ' du palier biconique 2 et 21 du palier radial 3 et circulent vers les extrémités latérales desdits paliers. En aérodynamique l'air entre par le conduit 12 du palier biconique 2 et circule vers les extrémités latérales dudit palier. En aérodynamique l'air entre par les extrémités latérales du palier radial 3 et ressort par le conduit 21 dudit palier.
[0057] Le palier biconique 2 est placé de préférence du côté exigeant plus de stabilité. Par exemple dans une machine de perçage le palier biconique 2 sera placé côté outil mais il peut également être placé du côté opposé à l'outil.
[0058] Le palier radial 3 est constitué d'un coussinet radial 20 et de la portion d'arbre radiale P1 .
[0059] Le coussinet 20 du palier radial est également muni d'au moins un conduit 21 d'environ 100 micromètres de diamètre qui permet la circulation d'un gaz tel que l'air par exemple. Ce conduit radial débouche sur la partie lisse de la portion radiale 80. De préférence ce conduit radial 21 est disposé sur un même plan radial que le coussinet 20. De préférence, ces conduits radiaux 21 sont au moins au nombre de 4, voire au moins au nombre de 6 et de préférence au nombre de 8. En effet, avec un nombre de conduits radiaux plus grand que quatre, la répartition circonférentielle de la pression d'air est améliorée, ce qui est un avantage significatif en mode aérostatique. En variante (cas de figure non représenté), ce conduit radial 21 est un conduit à poches par le fait qu'il présente un élargissement important de son diamètre dans son tronçon terminal tourné vers l'arbre 4. En alternative à ce conduit radial 21 , on peut utiliser un matériau poreux pour réaliser le coussinet.
[0060] Chaque conduit a un diamètre inférieur à 200 micromètres, de préférence 100 micromètres. Ces conduits servent à créer de la perte de charge.
[0061] L'arbre 4 est de préférence évidé par tronçon sur toute sa longueur, ce qui permet d'alléger la broche à palier 1 . Egalement de préférence, l'arbre 4 présente un diamètre nominal (portions 30, 60 et 90) inférieur à 20 mm, de préférence entre 4 et 7 mm.
[0062] La figure 4 illustre un système de perçage 100 intégrant la broche à palier précédemment décrite en relation avec les figures 1 à 3. L'arbre 4 y est représenté avec les entrées d'air 1 1 , 1 1 ' et les sorties d'air (passage radial 12) communiquant avec les éléments du système de perçage 100. L'arbre 4 est équipé d'un rotor à aimant permanent 101 placé à l'intérieur de l'arbre 4 tel que représenté. Ce rotor 101 induit un champ électrique dans les enroulements du stator 108.
[0063] Deux zones d'équilibrage se trouvent aux deux portions d'extrémités 30 et 90 de l'arbre 4. L'équilibrage se fait donc à gauche de la figure 4, au niveau de la portion 30 de l'arbre, par des vis axiales 103 avec balourd et à droite de la figure 4, au niveau de la portion 90 de l'arbre, par des vis de serrage 102. De cette façon, l'équilibrage dynamique sur l'axe X-X' de l'arbre 4 est assuré par réglage des deux extrémités de l'arbre 4.
[0064] L'arbre 4 peut être usiné dans différents matériaux parmi : le titane, l'aluminium, un de leurs alliages, l'acier, une céramique, ou encore un matériau composite. [0065] En référence avec le système de perçage de la figure 4, l'élément piézo-électrique 104, monté sur une structure à disque qui vient en appui sur le demi-coussinet 10', permet de régler le positionnement axial de l'un des demi-coussinets 10' par rapport à l'autre demi-coussinet 10 avec une très grande rigidité radiale. Ce positionnement peut être fixe pendant le fonctionnement de la broche à paliers 1 , par réglage lors du démarrage, en mode aérostatique, ou bien réglé par asservissement en fonction de la position déduite de la mesure d'un capteur de position, d'un capteur de température, d'un capteur de vitesse. Un tel capteur peut être capacitif, inductif ou un capteur laser. [0066] Grâce à cette disposition, ou par tout autre agencement, le passage radial 12 présente une dimension axiale d réglable par modification de la distance entre les deux demi-coussinets 10, 10', ce qui permet de modifier la hauteur de vol h du palier biconique.
[0067] De préférence, on prévoit dans le palier radial 3 et/ou le palier biconique 2, une alimentation en air sous pression reliée auxdits conduits radiaux 1 1 , 1 1 ', 21 . Optionnellement la pression de cette alimentation en air est réglable, notamment lorsque le mode aérostatique domine. Optionnellement cette alimentation en air est apte à alimenter les conduits radiaux 1 1, 1 1 ', 21 du palier radial 3 et/ou du palier biconique 2 pendant le
mode aérodynamique car de bons résultats ont été obtenus avec cette configuration.
[0068] Le système de refroidissement à air 107 est utilisé pour le stator. Un système de refroidissement à eau est optionnellement utilisé pour l'extérieur du stator 108.
[0069] Dans un mode de réalisation non représenté, les coussinets 20 ou demi-coussinets 10 et 10' des paliers radial 3 et biconique 2 peuvent être montés sur des supports flexibles, élastiques et dissipatifs typiquement des joints toriques en élastomère (situés entre le coussinet 20 du palier radial 3, les demi-coussinets 10 et 10' du palier biconique 2 et les éléments reliés au corps de la broche) afin de permettre l'amortissement, dissiper l'énergie des modes vibratoires critiques et augmenter les plages de régime de fonctionnement de la broche.
[0070] La hauteur de vol h est comprise entre 1 et 20 micromètres, de préférence entre 3 à 15 micromètres. Ces valeurs préférentielles concernent le palier biconique, ou bien le palier radial ou bien à la fois le palier biconique et le palier radial. Cette hauteur de vol h permet de contrôler la dynamique du rotor 101 , d'élargir la plage de régime de fonctionnement de la broche, permet d'augmenter ponctuellement la capacité de charge axiale et radiale.
[0071] A haute vitesse, à cause de l'effet centrifuge, les surfaces vont se déformer. Pour cela les surfaces des paliers peuvent être usinées de façon à avoir des formes spécifiques pour compenser cette déformation. Dans ce cas de figure, au repos, le palier radial n'est pas purement de forme cylindrique mais concave ainsi que les parties tronconiques qui ont une génératrice de forme concave.
Numéros de référence employés sur les figures
1 Broche à paliers hybrides
2 Portion palier biconique
10 Demi-coussinet conique côté droit
10' Demi-coussinet conique côté gauche
1 1 Conduit radial d'alimentation de la portion palier biconique côté droit
1 1 ' Conduit radial d'alimentation de la portion palier biconique côté gauche
12 Conduit de distribution de la pression
S1 , Surfaces internes des deux demi-coussinets du palier biconique S1 '
3 Portion Palier radial
20 Coussinet du palier radial
21 Conduit d'alimentation du coussinet du palier radial
S2 et Surfaces internes du coussinet du palier radial
S2'
h Hauteur de vol
4 Arbre tournant
80 Partie lisse de la partie radiale de l'arbre située entre 70 et 70'
70 Partie avec rainures de la partie radiale de l'arbre côté droit
70' Partie rainurée de la partie avec rainures de la partie radiale de l'arbre côté gauche
X-X' L'axe longitudinal de l'arbre
P1 Portion tronconique de l'arbre 4
P2 Portion radiale de l'arbre 4
Partie tronconique de l'arbre côté gauche
Rainures de la partie tronconique de l'arbre côté gauche
Partie lisse de la partie tronconique de l'arbre côté gauche
Partie lisse et cylindrique de la partie tronconique de l'arbre côté gauche
Partie tronconique de l'arbre côté droit
Rainures de la partie tronconique de l'arbre côté droit
Partie lisse de la partie tronconique de l'arbre côté droit
Partie lisse et cylindrique de la partie tronconique de l'arbre côté droit
Portion lisse d'arbre située avant la partie tronconique 40 de l'arbre Portion lisse située entre les parties 50 et 70 de l'arbre
Portion lisse située après la partie 70'
Système de perçage.
Rotor
Vis de serrage
Vis axiale
Actionneur piézoélectrique
Système de refroidissement à air
Stator
Alimentations en air
Claims
1 . Broche ultra-haute vitesse à paliers hybrides aérostatiques et aérodynamiques (1 ), comprenant au moins deux paliers (2, 3) et un arbre rotatif (4) monté dans lesdits paliers, le premier palier (2) étant biconique, constitué de deux demi-coussinets de surfaces tronconiques adjacentes (10, 10') et d'une portion d'arbre biconique formée de deux parties tronconiques (40, 50) et adjacentes, le deuxième palier (3) étant un palier radial.
2. Broche (1), selon la revendication précédente, dans laquelle lesdits demi-coussinets (10, 10') délimitent entre eux au moins un passage radial (12) permettant la circulation d'un gaz.
3. Broche selon la revendication 2, dans laquelle ledit passage radial (12) présente une dimension axiale réglable par modification de la distance entre les deux demi-coussinets (10, 10').
4. Broche (1 ) selon l'une des revendications précédentes, dans laquelle chaque demi-coussinet (10, 10') possède au moins un conduit radial (1 1 , 1 1 ') permettant la circulation d'un gaz.
5. Broche selon la revendication précédente, dans laquelle ledit passage ou ledit conduit (1 1 , 1 1 ') présente un diamètre inférieur à 200 micromètres, de préférence à inférieur à 100 micromètres,
et dans laquelle chaque conduit radial (1 1 , 1 1 ') débouche ou s'ouvre sur une partie lisse de la portion tronconique (41 , 41 ')
correspondante.
6. Broche selon l'une quelconque des revendications précédentes, dans laquelle chaque partie tronconique (40, 50) de la portion d'arbre biconique (4) comprend une partie lisse (41 , 51 ) et une partie rainurée (42, 52).
7. Broche selon la revendication 6, dans laquelle la partie rainurée de chaque partie tronconique occupe de 20 à 80 pourcents de la longueur totale de cette partie tronconique.
8. Broche selon l'une quelconque des revendications 1 à 7, dans laquelle chaque partie tronconique (40, 50) de la portion d'arbre biconique comprend une première partie lisse (41 , 51 ), au moins une partie rainurée (42, 52) et une deuxième partie lisse cylindrique (43, 53), ladite deuxième partie lisse étant disposée du côté de la grande base de la partie
tronconique.
9. Broche selon la revendication précédente, dans laquelle ladite deuxième partie lisse (43, 53) mesure axialement entre 0 et 1 mm, de préférence entre 0 et 0,25 mm.
10. Broche selon l'une quelconque des revendications 1 à 9, dans laquelle le deuxième palier (3) est constitué :
d'un coussinet (20), et
d'une portion d'arbre radial.
1 1 . Broche selon la revendication précédente, dans laquelle la portion d'arbre dans le deuxième palier radial comporte au moins une partie lisse (80) et au moins une partie rainurée (70 et/ou 70').
12. Broche selon la revendication précédente, dans laquelle la partie rainurée de la portion d'arbre dans ledit palier radial occupe 20 à 80% de la longueur de la portion d'arbre dans ledit palier radial.
13. Broche selon l'une quelconque des revendications 1 1 à 12, dans laquelle le deuxième palier (3) radial a au moins un conduit (21) pour le passage d'un gaz,
le dit conduit (21 ) du palier radial (3) débouchant sur une partie lisse de la portion radiale de l'arbre.
14. Broche selon l'une quelconque des revendications précédentes, dans laquelle la hauteur de vol (h) est comprise entre 1 et 20 micromètres, de préférence entre 3 et 1 5 micromètres.
1 5. Broche selon la revendication 4 ou 13, comprenant en outre une alimentation en air (109) sous pression reliée audit conduit radial (1 1 , 1 1 ', 21 ) et dont la pression est réglable au cours du mode aérostatique.
16. Machine de perçage à grande vitesse comportant une broche à paliers hybrides aérostatiques et aérodynamiques (1 ) selon l'une
quelconque des revendications 1 à 1 5, dans laquelle le palier biconique (2) est disposé côté outil.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH01321/14 | 2014-09-02 | ||
CH01321/14A CH710120A1 (fr) | 2014-09-02 | 2014-09-02 | Broche à paliers aérostatiques et aérodynamiques. |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016034368A1 true WO2016034368A1 (fr) | 2016-03-10 |
Family
ID=51625747
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2015/068330 WO2016034368A1 (fr) | 2014-09-02 | 2015-08-10 | Broche haute fréquence |
Country Status (2)
Country | Link |
---|---|
CH (1) | CH710120A1 (fr) |
WO (1) | WO2016034368A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180214999A1 (en) * | 2015-06-15 | 2018-08-02 | Reishauer Ag | Spindle unit for a machine tool for fine-machining workpieces that have grooved-shaped profiles |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3557079A1 (fr) * | 2018-04-20 | 2019-10-23 | Belenos Clean Power Holding AG | Système de chauffage, ventilation et climatisation comprenant un compresseur de fluide |
EP3557081A1 (fr) | 2018-04-20 | 2019-10-23 | Belenos Clean Power Holding AG | Pile à combustible comprenant un compresseur de fluide |
EP3557080A1 (fr) | 2018-04-20 | 2019-10-23 | Belenos Clean Power Holding AG | Pompe à chaleur comprenant un compresseur de fluide |
EP3557078A1 (fr) | 2018-04-20 | 2019-10-23 | Belenos Clean Power Holding AG | Compresseur de fluide |
CH716546A1 (fr) | 2019-08-29 | 2021-03-15 | Haute Ecole Arc | Dispositif d'usinage laser et procédé de trépanation optique. |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1036659A (en) | 1963-10-10 | 1966-07-20 | Barden Corp | A gas bearing assembly |
FR1524941A (fr) * | 1966-06-03 | 1968-05-10 | Skf Svenska Kullagerfab Ab | Palier à glissement du type stato-dynamique |
EP0208122A1 (fr) * | 1985-06-10 | 1987-01-14 | INTERATOM Gesellschaft mit beschränkter Haftung | Palier aérostatique en forme de double cône |
DE4401262A1 (de) | 1994-01-18 | 1995-07-27 | Langenbeck Peter | Aerostatische und aerodynamische Lagerung eines Motors |
WO1998046894A1 (fr) | 1997-04-17 | 1998-10-22 | The Timken Company | Roulement a air rotatif et son procede de fabrication |
-
2014
- 2014-09-02 CH CH01321/14A patent/CH710120A1/fr not_active Application Discontinuation
-
2015
- 2015-08-10 WO PCT/EP2015/068330 patent/WO2016034368A1/fr active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1036659A (en) | 1963-10-10 | 1966-07-20 | Barden Corp | A gas bearing assembly |
FR1524941A (fr) * | 1966-06-03 | 1968-05-10 | Skf Svenska Kullagerfab Ab | Palier à glissement du type stato-dynamique |
EP0208122A1 (fr) * | 1985-06-10 | 1987-01-14 | INTERATOM Gesellschaft mit beschränkter Haftung | Palier aérostatique en forme de double cône |
DE4401262A1 (de) | 1994-01-18 | 1995-07-27 | Langenbeck Peter | Aerostatische und aerodynamische Lagerung eines Motors |
WO1998046894A1 (fr) | 1997-04-17 | 1998-10-22 | The Timken Company | Roulement a air rotatif et son procede de fabrication |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180214999A1 (en) * | 2015-06-15 | 2018-08-02 | Reishauer Ag | Spindle unit for a machine tool for fine-machining workpieces that have grooved-shaped profiles |
Also Published As
Publication number | Publication date |
---|---|
CH710120A1 (fr) | 2016-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016034368A1 (fr) | Broche haute fréquence | |
FR3034460B1 (fr) | Ensemble rotor et turbomachine tournant a tres grandes vitesses comportant un tel ensemble rotor | |
FR2945090A1 (fr) | Palier a roulement comportant une enveloppe de maintien d'une des bagues | |
CH619519A5 (fr) | ||
FR3055677A1 (fr) | Arbre de turbocompresseur modulaire | |
FR2867095A1 (fr) | Procede de fabrication d'une aube creuse pour turbomachine. | |
EP4034776A1 (fr) | Ensemble de soufflante de turbomachine comprenant un roulement à rouleaux et un roulement à double rangée de billes à contact oblique | |
WO2019229362A1 (fr) | Aube de turbomachine comprenant un passage interne d'écoulement de fluide équipé d'une pluralité d'éléments perturbateurs à agencement optimisé | |
FR2976615A1 (fr) | Structure de rotor comprenant un dispositif de tension hydraulique interne | |
WO2008149038A2 (fr) | Coussinet hydrodynamique a lobes asymetriques | |
FR2534989A1 (fr) | Butee a billes | |
FR3002271A1 (fr) | Roue de turbine, de compresseur ou de pompe. | |
EP3997353B1 (fr) | Recirculation de lubrifiant dans un palier a elements roulants de turbomachine | |
EP3204650A1 (fr) | Turbomachine tournant a des vitesses elevees | |
FR2809782A1 (fr) | Palier fluide hydrostatique alveole et son procede de fabrication | |
EP4077958B1 (fr) | Roulement à trois points de contact avec drain amélioré | |
FR3047776B1 (fr) | Turbomachine et son procede de montage | |
FR3086193A1 (fr) | Dispositif de bridage pour centrifugation | |
CA2801083C (fr) | Arbre de turbomachine | |
FR2999969A1 (fr) | Procede d’assemblage d’une bague de roulement sur une portee cylindrique et accessoire d’assemblage | |
EP2060747B1 (fr) | Fixation d'un palier supportant un rotor sur une turbomachine | |
FR3072740A1 (fr) | Rotule | |
FR2949858A1 (fr) | Dispositif et procede d'equilibrage | |
WO2024209053A1 (fr) | Atterrisseur d'aeronef comprenant une roue à dispositif de freinage magnetique integré | |
FR3081358A1 (fr) | Dispositif de bridage pour centrifugation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15757150 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15757150 Country of ref document: EP Kind code of ref document: A1 |