WO2016032273A1 - 골절용 본 플레이트 - Google Patents

골절용 본 플레이트 Download PDF

Info

Publication number
WO2016032273A1
WO2016032273A1 PCT/KR2015/009043 KR2015009043W WO2016032273A1 WO 2016032273 A1 WO2016032273 A1 WO 2016032273A1 KR 2015009043 W KR2015009043 W KR 2015009043W WO 2016032273 A1 WO2016032273 A1 WO 2016032273A1
Authority
WO
WIPO (PCT)
Prior art keywords
bone
plate
fracture
screw
hole
Prior art date
Application number
PCT/KR2015/009043
Other languages
English (en)
French (fr)
Inventor
김두만
이창우
김광원
Original Assignee
주식회사 케이씨스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 케이씨스 filed Critical 주식회사 케이씨스
Publication of WO2016032273A1 publication Critical patent/WO2016032273A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/80Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/82Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin for bone cerclage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/84Fasteners therefor or fasteners being internal fixation devices
    • A61B17/86Pins or screws or threaded wires; nuts therefor

Definitions

  • the present invention relates to a bone plate for fracture used for the treatment of fracture, more specifically, to form a plurality of points in the hole that can give elasticity to improve the mechanical properties of the geometrical parameters, one
  • the present invention relates to a bone plate for fracture treatment in which a fixing screw or a conventional screw can be selectively used in a screw hole.
  • the bone graft means that the broken bones meet.
  • the name of golgol was used as massage, and it was called jeonggol as the medical system was established in the Geumwon period.
  • Osteotomy is to control dislocation, contusion, and fracture to promote the whole blood circulation and local blood circulation and smooth the circulation of meridians to remove the blood. It is widely applied to dislocation, fracture, contusion of each part, as well as arthritis, neuralgia, low back pain and shoulder pain. The person who does this is called osteopathy or osteopath. In recent years, it has contributed to the surgical treatment as an area of herbal physiotherapy, and has also been applied to orthopedic surgery.
  • the first type is called "tightly fixed bone graft". Osteotomy to firmly fix the bone is applied in the case of a joint fracture, a simple fracture of a bone shaft portion that is not practical to fix by nailing, or in the case of fracture.
  • the bones themselves support the stability of bone grafts, which allow patients to use damaged limbs faster and feel less pain when loaded on them. .
  • the advantage of a stable fixation of the fracture is evident when the blood circulation in the bone is severely reduced due to trauma.
  • the fractured bone In the case of fixing nonadhesive fractures or in the case of infection, the fractured bone must be stabilized in order to return to its original condition or to avoid any additional inflammation that may occur due to instability between fractured gaps.
  • the second type is called "elastic bone graft".
  • the greatest advantage of (biologically) flexible bone grafts should be considered in relation to complex fractures occurring in the shaft portion of long bones. In such complex fractures, the aim is to maintain the length of the bone and to fix the end of the bone joint in the correct position relative to another bone. No further reduction of the blood flowing through the bone as a result of the fracture zone itself not being fixed or manipulated directly occurs in this fracture zone.
  • the function of the bone plate can be compared with the nails inside the bone marrow which can only be fixed in the abstract area.
  • the entire joint piece is secured in the bone by means of a fixture in the body with the aid of an angled and rigid screw
  • such a joint can be compressed with the aid of a tension screw extending through the bone plate.
  • This will be useful.
  • Another application is the case of bone osteoporotic.
  • the bone plate can be secured by an angled, rigid screw in an extremely abstract debris, which allows the prosthetic assembly to prosthete the interosseous area in a stable manner such as supported by tension screws passing through the plate at the fracture area. Can be. Through this process, the fractured bone can be fundamentally restored.
  • An object of the present invention has been proposed to improve the conventional characteristics as described above, by forming a plurality of points in the hole that can give elastic force to improve the mechanical properties for geometric variables, one screw
  • a bone plate for fracture treatment in which a fixing screw or a conventional screw can be selectively used in a hole.
  • another object of the present invention is to use a plurality of screw holes formed in the bone plate to share both the fixing screw and the conventional screw for fracture treatment for significantly reducing the time and cost required to produce the bone plate In providing the plate.
  • the present invention has the following configuration to achieve the above object.
  • the bone fracture bone plate for bone osteotomy of the present invention
  • the plate body having a certain length;
  • a plurality of fastening parts vertically open along the plate body in a longitudinal direction and fastened with screws;
  • an elastic deformation part positioned between the fastening parts on the plate body and deformed by a constant force acting from the outside.
  • the fastening part is formed by overlapping a plurality of ellipses.
  • a thread is formed in any one of the plurality of ellipses.
  • the thread is also formed in an ellipse located outside of the plate body of the plurality of ellipses.
  • the fastening part is formed by overlapping the first screw hole to which the fixing screw is fastened and the second screw hole to which the conventional screw is fastened.
  • the plate body has a curved lower surface.
  • the elastic deformation part includes a first groove formed in the width direction of the upper surface of the plate body, a second groove formed at a position opposite to the first groove, and a through hole formed between the first groove and the second groove. Is done.
  • the through hole may include a horizontal hole opened in a horizontal direction and a vertical hole formed at both ends of the horizontal hole.
  • the vertical hole is curved at both ends.
  • a stress distribution unit for dispersing the stress at the contact with the bone is further formed.
  • a plurality of screw holes formed in the bone plate can be used by sharing both the fixing screw and the conventional screw has the effect of significantly reducing the time and cost required to produce the bone plate.
  • FIG. 1 is a perspective view showing a bone plate for bone graft according to the present invention.
  • Figure 2 is a view showing a cross section of the bone plate for bone osteotomy according to the present invention.
  • FIG. 4 is a view comparing the installation state of the screw hole formed in the bone plate and the bone plate of the present invention in general.
  • Figure 5 is a view showing a state in which the bone plate of the present invention installed on the bone.
  • FIG. 6 is a schematic structural diagram for comparing a flexible structure according to the present invention.
  • FIG. 7 is a modeling diagram for bending stress experiments according to the present invention.
  • FIG. 8 is a modeling diagram for an experiment of the recognition of the bone plate according to the present invention.
  • FIG. 9 is a graph showing a bending test load deformation curve of KCP-2 according to the present invention.
  • FIG. 10 is a graph showing a bending test load deformation curve of KCP-3 according to the present invention.
  • FIG. 11 is a graph showing a tensile test load deformation curve of KCP-2 according to the present invention.
  • FIG. 12 is a graph showing a tensile test load deformation curve of KCP-3 in accordance with the present invention.
  • FIG. 13 is a load deformation graph for bending test and analysis of KCP-2 according to the present invention.
  • 16 is a load deformation graph for the tensile test and analysis of KCP-3 in accordance with the present invention.
  • 17 is a conceptual diagram for stress shielding phenomenon analysis according to the present invention.
  • FIG. 18 is a conceptual diagram showing the cross-sectional stress distribution of bones related to KCP-2 and KCP-3 according to the present invention.
  • 19 is a graph of the cross-sectional stress distribution of bone over a dimensionless distance in accordance with the present invention.
  • first and / or second may be used to describe various components, but the components are not limited to the terms. The terms are only for the purpose of distinguishing one component from other components, for example, without departing from the scope of the rights according to the inventive concept, the first component may be called a second component, and For example, the second component may also be referred to as a first component.
  • This plate recovers fractured bones deformedly, minimizing the area of the screw hole, so that two screws can be used in one hole, and the locking screw can be secured at the same time. To make them available at the same time.
  • the plate body 110 having a predetermined length; A plurality of fastening parts 120 open vertically in the longitudinal direction of the plate body 110 to fasten screws; It includes; the elastic deformation portion 130 is positioned between the fastening portion 120 on the plate body 110 to deform by a constant force acting from the outside.
  • the plate body 110 is formed by heat-treating the SUS-316L material at a constant temperature and is configured to give ductility by lowering the elastic modulus and yield stress through heat treatment compared to other materials of the SUS series.
  • the bone grafting to give the ductility in order to prevent more than the load is applied to the bone by the bone plate can be seen that the physical properties as shown in Table 1 has more flexibility than the existing SUS.
  • the bottom surface 111 of the plate body 110 preferably has a curved shape. This is to improve the adhesion to the bone by having a corresponding shape because the outside of the bone is curved.
  • the fastening part 120 is formed by overlapping a plurality of ellipses.
  • a thread is formed on any one of the plurality of ellipses, and the thread is inclined in the direction of a virtual vertical axis A.
  • the screw thread is preferably formed in an ellipse located outside the plate body 110 of the plurality of ellipses. This is because the fastening force of the fixing screw can be further strengthened by forming the thread on the outside.
  • the fastening part 120 is formed such that the first screw hole 121 to which the fixing screw is fastened, and the second screw hole 122 to which the conventional screw is fastened overlap each other.
  • the conventional screw of case1 is located at the outside while the conventional screw of case2 is located inside.
  • the displacement in the A position is larger than the case 1, so that the conventional screw in the fastening portion maintains a high compressive force and thus enables effective grafting.
  • the elastic deformation unit 130 may include a first groove 131 formed in the width direction of the upper surface of the plate body 110, a second groove 132 formed at a position opposite to the first groove 131, and The through hole 133 is formed between the first groove 131 and the second groove 132.
  • the through hole 133 includes a horizontal hole 133a opened in a horizontal direction, and a vertical hole 133b formed at both ends of the horizontal hole 133a, and both ends of the vertical hole 133b have a curved shape. This allows the external stress to be evenly distributed.
  • the ratio of the thickness T1 of the horizontal hole 133a of the through hole 133 and the plate body thicknesses T2 and T3 of the upper part of the horizontal hole 133 may be about 1: 1. This is to satisfy bending performance, elastic modulus, bending structure rigidity, and bending strength with the target performance.
  • the bottom surface of the plate body 110 is further formed.
  • FIG. 5 is a view showing the bone fracture bone plate installed state of the present invention as shown in the state in which the plate body 110 in close contact with the bone (B) sequentially from the lower side (Locking Screw-LS) Inserted into the first screw hole 121 to be fixed to the bone, and fixed to the bone by inserting a conventional screw (CS) on the side of the second screw hole 122 of the other fastening portion 120 adjacent to .
  • CS conventional screw
  • the bone bone bone plate of the present invention when using the bone bone bone plate of the present invention selectively installs different types of screws through one fastening portion, it is possible to suppress the formation of unnecessary screw holes during the production of the bone plate, elastic deformation portion and stress distribution portion Through this, the plate body and the bones can suppress bone density factors and bone retardation delay of bone due to different loads.
  • the bone fracture bone plate of the present invention is superior to the conventional through the experiment.
  • KCP-2 and KCP-3 which are formed to have different sizes of holes in the elastic deformation portion of the present invention, were manufactured and compared by performing a bending test and a tensile test.
  • the test was performed by applying a load to the jig disposed above while the jig supporting the lower part and the jig supporting the upper part were disposed.
  • the experiment was to determine the state when the load of the upper jig is 25mm, the lower jig and the upper jig is 21.5mm, and the radius of the upper jig and the lower jig is 6mm.
  • Figure 9 shows the four-point bending test load deformation curve of KCP-2, and it can be seen that it can withstand up to 650 N load.
  • the vertical displacement of 0.12 mm can be seen as the elastic region.
  • Bending stiffness and bending structural stiffness can be obtained at 1291.0 N / mm and 5.87 N / m2, respectively.
  • the maximum bending strength of the test is 698N and 652N, respectively, using the equation (3) below.
  • Distance) is 21.5 mm, so the bending stiffness is 7.50 N-mm and 7.01 N-mm.
  • Fig. 10 shows the four-point bending test load deformation curve of KCP-3, which withstands a load of 2000 N, and the vertical displacement of 0.12 mm is regarded as the elastic region, using the above equations (1) and (2).
  • the structural stiffness was calculated to yield 2278.6 N / mm and 10.35 N / m2, respectively, and the bending strength was calculated using Equation (3) above to obtain 22.8 N-mm and 21.9 N-mm, respectively. .
  • FIG. 11 shows the tensile test load displacement curve of KCP-2, and all cases were broken at about 1 mm
  • FIG. 12 was the tensile test load displacement curve of KCP-3, and both cases were broken at about 9.9 mm.
  • Fig. 13 shows the load-strain graphs for the bending test and analysis of KCP-2.
  • the comparison between the analysis and the experiment shows a relatively good fit between low stresses, but increases with increasing load, which is a 3D model used in the analysis. This gap is appropriate when considering the processing error of the actual specimens and the analysis tends to be generally calculated to be more rigid than the test.
  • the strain is zero when the stress is 0, but the experiment is the same slope because the strain is not 0 when the stress is 0 due to internal error, but the experimental data is measured higher than the analysis data.
  • FIG. 15 shows a load-strain graph for bending test and analysis of KCP-3.
  • the data of the elastic region was used as in KCP-2, and a trend line was used to calculate the slope.
  • KCP-2 shows that the bending performance, modulus of elasticity, and bending structure stiffness meet the target performance when the target performance is compared with the experimental and analytical results.
  • KCP-3 can be seen that the bending stiffness, modulus of elasticity, bending structure stiffness, bending strength all satisfies the target performance.
  • the opening thickness of the through hole such as KCP-3
  • the opening thickness of the through hole such as KCP-3
  • the present invention is configured to improve the stress shielding performance.
  • the stress shielding phenomenon refers to a phenomenon in which stress is concentrated on an elastic body having a relatively higher rigidity when a load is applied in a structure in which elastic bodies having different stiffnesses are connected in parallel.
  • the load When the load is applied to the bone being recovered, the load is more concentrated when the bone plate is activated than when the bone is in normal condition, and the bone density is lowered and the risk of re-fracture at the fracture site is increased.
  • the load is more concentrated when the bone plate is activated than when the bone is in normal condition, and the bone density is lowered and the risk of re-fracture at the fracture site is increased.
  • the invention is to lower the rigidity and increase the flexibility to prevent this.
  • the stress distribution of the bone plate (KCP) of the present invention is more evenly distributed than the bone plate made of steel or titanium which is generally used.
  • the stress distribution mitigation effect means that the stress added to the bone is high, which means that it is mitigating the stress shielding phenomenon of the bone.
  • Table 5 is a comparison table for the stress distribution relaxation effect.
  • KCP can be seen to be effective in mitigating the superior stress shielding phenomenon compared to the existing bone plate.

Abstract

본 발명은 뼈골절용 본 플레이트에 관한 것으로, 그 구성은 뼈 절골의 위한 뼈골절용 본 플레이트에 있어서, 상기 본 플레이트는 일정한 각도를 가지는 제1경사공 내지 제3경사공으로 이루어진 다수개의 통공을 포함하며, 상기 제1경사공은 삽입되는 나사를 고정하고, 제2경사공은 삽입되는 나사를 결속하는 나사선이 형성되며, 제3경사공은 삽입되는 나사의 진입 각도를 확대할 수 있게 형성된다.

Description

골절용 본 플레이트
본 발명은 골절 치료를 위해 이용되는 골절용 본 플레이트에 관한 것으로, 더욱 상세하게는 탄성력을 부여할 수 있는 구멍에 다수개의 지점을 형성시켜 기하학적 변수들에 대한 기계적 특성을 향상시킬 수 있고, 하나의 나사구멍에 고정나사 또는 컨벤셜나사를 선택적으로 사용할 수 있는 골절 치료용 본 플레이트에 관한 것이다.
일반적으로 뼈 접골이란 말은 부러진 뼈를 맞춰서 접해준다는 뜻이다. 각국에서 자연적으로 발생하여 경험적으로 전승된 것으로, 한의학에서 접골술의 역사는 수천 년을 거슬러 올라간다. 접골의 명칭은 안마로 사용되다가 금원시대에 의학적인 체계가 확립되면서 정골이라고 했고, 접골은 일제강점기에 우리나라에 전해진 명칭이다.
접골은 탈구(dislocate), 좌상(contusion), 골절(fracture)을 조절함으로써 전신의 기혈순환과 국부(局部)의 혈액순환을 촉진시키고 경락의 유통을 원활하게 하여 어혈을 제거하는 것이다. 각 부위의 탈구·골절·좌상뿐 아니라 관절염·신경통·요통·견비통 등에 광범위하게 응용되고 주의사항은 지압요법에 준한다. 이것을 행하는 사람을 접골사 또는 정골사라고 한다. 근래에는 한방물리요법의 한 영역으로 외과치료에 기여하고 있으며, 정형외과에서도 일부 응용하고 있다.
접골을 위한 유형으로는,
첫 번째 유형 " 단단하게 고정된 뼈 접골(接骨)" 이라고 불린다. 뼈를 단단하게 고정하는 접골술은 관절부 골절이나, 못을 박아 고정하여서는 실용적이지 않는 뼈 샤프트(shaft) 부분의 단순한 골절을 고정하거나, 또는 골절술의 경우에 적용된다. 해부학적으로 탈구된 뼈를 고칠 수 있는 것 외에도, 환자가 손상된 손발을 보다 빨리 사용할 수 있고 그 위에 하중이 실려도 통증을 덜 느낄 수 있는 뼈 접골(接骨)의 안정성을 뼈 그 자체가 뒷받침하고 있다. 골절이 안정되게 고정되었을 때의 장점은 외상으로 인하여 뼈 속안에서의 혈액 순환이 심각하게 감소하는 경우에 명확하게 나타난다. 유착불능한 골절을 고정하거나 감염의 경우에, 골절된 뼈가 원상으로 회복되기 위하여, 또는 골절된 틈 사이에서 불안정성으로 인하여 발생할지 모를 소정의 추가적인 염증을 피하기 위하여 안정화되어야 한다.
두 번째 유형 " 신축성 있는 뼈 접골(接骨)" 이라고 불린다. (생물학적으로) 신축성 있는 뼈 접골(接骨)의 가장 큰 장점은 긴 뼈의 샤프트(shaft) 부분에서 발생하는 복합 골절과 관련하여 고찰되어야 한다. 이러한 복합 골절에 있어서는, 뼈의 길이를 유지하고 뼈 관절부의 끝부분을 또 다른 뼈에 대하여 올바른 위치에 고정시키는데 그 목적이 있다. 골절 대역 그 자체가 똑바로 고정되거나 조작되지 않는 결과로서 뼈 속을 관통하여 흐르는 혈액의 추가적인 감소는 이러한 골절 대역에서 발생하지 않는다. 뼈플레이트의 기능은 추상적인 영역에서만 고정될 수 있는 골수 내부의 못과 비교될 수 있다.
이와 같이 플레이트를 사용한 뼈 접골(接骨)의 (극단적인) 두 가지 사례를 고려해 본다면, 이러한 두 가지 사례들이 서로 어떻게 차이가 있는지에 대하여 누구나 쉽게 알 수 있을 것이다. 그러한 뼈 고정에 관한 한, 골절들은 위에서 언급한 뼈 접골(接骨)의 두 가지 사례 중 어느 하나로 명확히 나뉠 수 없는 일이 종종 있기 때문에, 외과의사는 위의 두 가지 방법을 효과적으로 결합하도록 허용된 임플란트(implant)가 존재하지 않는 동안에는 일반적으로 절충하여야 한다.
예컨대 전체적인 관절 조각이 각지고 견고한 스크류의 도움을 받아 체내의 고정물을 수단으로 전체적인 관절 조각이 골간에 고정되어 있는 한, 뼈플레이트를 관통하여 연장된 장력스크류의 도움으로 압착될 수 있는 곳에서는 그러한 결합이 유용할 것이다. 또 다른 응용은 뼈 포로틱(osteoporotic)과 같은 경우인 바. 그 곳에서는 뼈플레이트가 극히 추상적인 파편 안에서 각지고 견고한 스크류에 의하여 고정될 수 있으며 이로 인하여 보철 조립품은 골절 영역에서 플레이트를 관통하여 지나가는 장력 스크류에 의하여 지지되는 것과 같은 안정적인 방법으로 골간 영역을 보철화할 수 있다. 이러한 과정을 통하여 골절된 뼈를 근본적으로 복원할 수 있다.
이러한 상황의 결과로서, 뼈 접골(接骨)의 두 가지 유형을 위한 뼈 임플란트(implants)가 개발되었고 시장에 출시되었다.
그러나 종래의 뼈플레이트의 경우 뼈플레이트를 고정하는 고정나사나 뼈를 접골시키기 위한 컨벤셜 나사에 대해 각도 조절이 용이하지 않을 뿐만 아니라 나사의 위치를 조절할 수 없는 문제점이 있었어 다양한 뼈 크기에 대해 용이하게 대응하는 것이 어려운 문제점이 있었다.
또한 종래에는 고정나사와 컨벤셜 나사가 각각 다른 나사구멍에 체결되는 방식이어서 뼈플레이트에 고정나사용 나사구멍과 컨벤셜 나사용 나사구멍을 구분하여 형성하여야 함에 따라 뼈플레이트 제작에 많은 시간과 비용이 소요되는 문제점이 있었다.
본 발명의 목적은 상기한 바와 같은 종래의 특성을 개선하기 위하여 제안된 것으로서, 탄성력을 부여할 수 있는 구멍에 다수개의 지점을 형성시켜 기하학적 변수들에 대한 기계적 특성을 향상시킬 수 있고, 하나의 나사구멍에 고정나사 또는 컨벤셜나사를 선택적으로 사용할 수 있는 골절 치료용 본 플레이트를 제공함에 있다.
또한 본 발명의 다른 목적은 뼈플레이트에 형성되는 다수개의 나사구멍을 고정나사와 컨벤셜 나사 모두를 공유하여 사용할 수 있게 함으로써 뼈플레이트 제작에 소용되는 시간과 비용을 대폭 절감할 수 있게 하는 골절 치료용 본 플레이트를 제공함에 있다.
본 발명은 앞서 본 목적을 달성하기 위하여 다음과 같은 구성을 가진다.
본 발명의 뼈 접골을 위한 뼈골절용 본 플레이트에 있어서, 상기 뼈골절용 본 플레이트는, 일정한 길이를 갖는 플레이트 몸체; 상기 플레이트 몸체 길이 방향으로 따라 수직하게 개구되어 나사가 체결되는 다수개의 체결부; 및 상기 플레이트 몸체 상에서 상기 체결부의 사이에 위치되어 외부에서 작용하는 일정한 힘에 의해 변형하는 탄성변형부;를 포함한다.
그리고 상기 체결부는 복수의 타원이 중첩되어 형성된다.
또한 상기 복수의 타원 중 어느 하나에는 나사산이 형성된다.
그리고 상기 나사산은 가상의 수직축 방향으로 경사진다.
또한 상기 나사산은 복수의 타원 중 플레이트 몸체의 외측에 위치된 타원에 형성된다.
그리고 상기 체결부는 고정나사가 체결되는 제1나사공과, 컨벤셜나사가 체결되는 제2나사공이 서로 중첩되어 형성된다.
또한 상기 플레이트몸체는 하부면이 곡선 형태이다.
그리고 상기 탄성변형부는 플레이트몸체 상부면의 폭 방향으로 형성되는 제1홈과, 상기 제1홈과 대향되는 위치에 형성되는 제2홈과, 상기 제1홈과 제2홈 사이에 형성되는 통공으로 이루어진다.
또한 상기 통공은 수평 방향으로 개구된 수평공과, 상기 수평공의 양단에 형성되는 수직공으로 이루어진다.
그리고 상기 수직공은 양단이 곡선 형태이다.
또한 상기 플레이트 몸체 하부면에는 뼈와 접점시 응력을 분산시킬 수 있게 하는 응력분산부;가 더 형성된다.
본 발명에 따르면, 탄성력을 부여할 수 있는 구멍에 다수개의 지점을 형성시켜 기하학적 변수들에 대한 기계적 특성을 향상시킬 수 있는 효과가 있다.
또한 본 발명에 따르면, 뼈플레이트에 형성되는 다수개의 나사구멍을 고정나사와 컨벤셜 나사 모두를 공유하여 사용할 수 있게 함으로써 뼈플레이트 제작에 소용되는 시간과 비용을 대폭 절감할 수 있게 하는 효과가 있다.
도 1은 본 발명에 따른 뼈 접골용 본 플레이트는 나타내는 사시도.
도 2는 본 발명에 따른 뼈 절골용 본 플레이트의 단면을 나타내는 도면.
도 4는 일반적인 본 플레이트와 본 발명의 본 플레이트에 형성된 나사공의 설치 상태를 비교한 도면.
도 5는 본 발명의 본 플레이트를 뼈에 설치한 상태를 나타내는 도면.
도 6은 본 발명에 따른 유연구조를 비교하기 위한 개략적인 구조물 도면.
도 7은 본 발명에 따른 굽힘 응력 실험을 위한 모델링 도면.
도 8은 본 발명에 따른 본 플레이트의 인정 실험을 위한 모델링 도면.
도 9는 본 발명에 따른 KCP-2의 굽힘 실험 하중 변형 곡선을 나타내는 그래프.
도 10은 본 발명에 따른 KCP-3의 굽힘 실험 하중 변형 곡선을 나타내는 그래프.
도 11은 본 발명에 따른 KCP-2의 인장실험 하중 변형 곡선을 나타내는 그래프.
도 12는 본 발명에 따른 KCP-3의 인장실험 하중 변형 곡선을 나타내는 그래프.
도 13은 본 발명에 따른 KCP-2의 굽힘 실험과 해석에 대한 하중 변형 그래프.
도 14는 본 발명에 따른 KCP-2의 인장실험과 해석에 대한 하중 변형 그래프.
도 15는 본 발명에 따른 KCP-3의 굽힘 실험과 해석에 대한 하중 변형 그래프.
도 16은 본 발명에 따른 KCP-3의 인장실험과 해석에 대한 하중 변형 그래프.
도 17은 본 발명에 따른 응력 차폐 현상 해석을 위한 개념도.
도 18은 본 발명에 따른 KCP-2와 KCP-3에 관한 뼈의 단면 응력 분포를 나타내는 개념도.
도 19는 본 발명에 따른 무차원화된 거리에 대한 뼈의 단면 응력 분포를 나트내는 그래프.
상술한 본 발명의 목적, 특징 및 장점은 첨부된 도면과 관련한 다음의 실시예를 통하여 보다 분명해질 것이다.
이하의 특정한 구조 내지 기능적 설명들은 단지 본 발명의 개념에 따른 실시예를 설명하기 위한 목적으로 예시된 것으로, 본 발명의 개념에 따른 실시예들은 다양한 형태로 실시될 수 있으며, 본 명세서에 설명된 실시예들에 한정되는 것으로 해석되어서는 아니 된다.
본 발명의 개념에 따른 실시예는 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있으므로, 특정 실시예들은 도면에 예시하고 본 명세서에 상세하게 설명하고자 한다. 그러나, 이는 본 발명의 개념에 따른 실시예들을 특정한 개시 형태에 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경물, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1 및/또는 제2 등의 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 한정되지는 않는다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소들로부터 구별하는 목적으로만, 예컨대 본 발명의 개념에 따른 권리 범위로부터 이탈되지 않은 채, 제1 구성 요소는 제2 구성 요소로 명명될 수 있고, 유사하게 제2 구성 요소는 제1 구성 요소로도 명명될 수 있다.
어떠한 구성 요소가 다른 구성 요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성 요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성 요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떠한 구성 요소가 다른 구성 요소에 "직접 연결되어" 있다거나 또는 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성 요소가 존재하지 않는 것으로 이해되어야 할 것이다. 구성 요소들 간의 관계를 설명하기 위한 다른 표현들, 즉 "∼사이에"와 "바로 ∼사이에" 또는 "∼에 인접하는"과 "∼에 직접 인접하는" 등의 표현도 마찬가지로 해석되어야 한다.
본 명세서에서 사용하는 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로서, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서 "포함하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 갖는 것으로 해석되어야 하며, 본 명세서에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
본 플레이트는 골절된 뼈를 기형적으로 회복하는 것으로 나사구멍의 면적을 최소화하여 한개의 홀에 두 가지 나사를 사용할 수 있게 하고 일반 나사 사용시 전후방 삽입각을 최대로 확보할 수 있게 함과 동시에 잠금나사를 동시에 사용할 수 있게 하는 것이다.
도 1 내지 도 3에 도시된 바와 같이 본 발명의 뼈골절용 본 플레이트(100)는, 일정한 길이를 갖는 플레이트 몸체(110); 상기 플레이트 몸체(110) 길이 방향으로 따라 수직하게 개구되어 나사가 체결되는 다수개의 체결부(120); 상기 플레이트 몸체(110) 상에서 체결부(120)의 사이에 위치되어 외부에서 작용하는 일정한 힘에 의해 변형하는 탄성변형부(130);를 포함한다.
상기 플레이트 몸체(110)는 SUS-316L 소재를 일정한 온도에서 열처리하여 형성된 것으로 SUS계열의 다른 소재들에 비해 열처리를 통해 탄성계수와 항복응력에 대해 낮게 함으로써 연성이 부여한 구성이다.
즉, 뼈 접골시 본 플레이트에 의해 뼈에 필요이상의 하중이 작용하는 것을 방지하기 위하여 연성을 부여하는 것으로 표 1에서와 같은 물성값을 통해 기존의 SUS 보다 유연성을 갖게 됨을 알 수 있다.
또한 상기 플레이트 몸체(110) 바닥면(111)은 곡선 형태를 하는 것이 바람직하다. 이는 뼈의 외측이 곡선 형태를 하고 있기 때문에 이에 상응하는 형태를 가짐으로써 뼈와의 밀착성을 좋게 하기 위함이다.
일반적인 SUS-316L 열처리 전 열처리 후
탄성계수, E 193 GPa 135 GPa 103 GPa
항복응력 215 MPa 172 MPa 163 MPa
상기 체결부(120)는 복수의 타원이 중첩되어 형성된 것으로 상기 복수의 타원 중 어느 하나에는 나사산이 형성되고, 상기 나사산은 가상의 수직축(A) 방향으로 경사진 형태를 하고 있다.
또한 상기 나사산은 복수의 타원 중 플레이트 몸체(110)의 외측에 위치된 타원에 형성하는 것이 바람직하다. 이는 외측에 나사산을 형성함으로써 고정나사의 체결력을 더욱 견고히 할 수 있기 때문이다.
한편 상기 체결부(120)는 고정나사가 체결되는 제1나사공(121)과, 컨벤셜나사가 체결되는 제2나사공(122)이 서로 중첩되게 형성된다.
도 4에 도시된 바와 같이 case1(종래의 일반적인 체결부)과 case2(본 발명의 체결부)를 비교하여 보면 case1의 컨벤셜나사는 외부에 위치하고 있는 case2의 컨벤셜나사는 내부에 위치된 상태에서 두 나사의 미끄러짐이 같다고 하였을 때 A 위치에서의 변위는 case2가 case1에 비해 큼을 알 수 있듯이 체결부에서 컨벤셜나사가 내부에 위치되는 것이 높은 압축력을 유지할 수 있어 효율적인 접골이 가능해진다.
상기 탄성변형부(130)는 플레이트 몸체(110) 상부면의 폭 방향으로 형성되는 제1홈(131)과, 상기 제1홈(131)과 대향되는 위치에 형성되는 제2홈(132)과, 상기 제1홈(131)과 제2홈(132) 사이에 형성되는 통공(133)으로 구성되어 있다.
상기 통공(133)은 수평 방향으로 개구된 수평공(133a)과, 상기 수평공(133a)의 양단에 형성되는 수직공(133b)으로 이루어지고, 상기 수직공(133b)은 양단이 곡선 형태로 이루어져 외부의 응력을 균일하게 분산시킬 수 있게 하고 있다.
또한 상기 통공(133)의 수평공(133a)의 두께(T1)와 수평공 상부의 플레이트 몸체 두께(T2,T3) 비율을 대체로 1:1이 되도록 하는 것이 바람직하다. 이는 굽힘 강성, 탄성 계수, 굽힘 구조 강성, 굽힘 강도를 목표 성능에 만족시키기 위함이다.
한편 상기 플레이트 몸체(110) 바닥면에는 뼈와 접점시 응력을 분산시킬 수 있게 하는 응력분산부(140);가 더 형성되어 있다.
도 5는 본 발명의 뼈 골절용 본 플레이트가 설치된 상태를 나타낸 도면으로 도시된 바와 같이 뼈(B)에 플레이트 몸체(110)를 밀착시킨 상태에서 하측으로부터 순차적으로 고정나사(Locking Screw-LS)를 제1나사공(121)에 삽입하여 뼈에 고정되게 하고, 이웃한 다른 체결부(120)의 제2나사공(122) 측에 컨벤셜나사(Conventional Screw-CS)를 삽입하여 뼈에 고정시킨다. 같은 방식으로 고정나사와 컨벤셜나사를 교차 고정함으로써 플레이트 몸체를 뼈에 단단히 고정할 수 있게 된다.
이와 같이 본 발명의 뼈 절골용 본 플레이트를 이용할 경우 하나의 체결부를 통해 서로 다른 종류의 나사를 선택적으로 설치할 있게 되므로 본 플레이트 제작시 불필요한 나사공 형성을 억제할 수 있으며, 탄성변형부와 응력분산부를 통해 플레이트 몸체와 뼈가 서로 다른 하중에 따른 뼈의 골밀도 저해요소 및 접골지연 등을 억제할 수 있게 된다.
이하에서는 본 발명의 뼈 골절용 본 플레이트를 실험을 통해 종래에 비해 우수한다는 점을 설명하겠다.
<실험예>
도 6에 도시된 바와 같이 본 발명의 탄성변형부의 통공 형태를 각각 다른 크기로 형성되게 한 KCP-2와 KCP-3를 제작하여 굽힘 실험과 인장실험을 실시하여 비교하였다.
*굽힘 실험
도 7에 도시된 바와 같이 하부를 지지하는 지그와 상부를 지지하는 지그를 각각 배치한 상태에서 상부 배치된 지그에 하중을 부여하여 실험하였다.
실험은 상부지그의 거리를 25mm로 하고, 지지점이 되는 하부 지그와 상부 지그의 거리를 21.5mm로 하며, 상부 지그와 하부지그의 반지름은 6mm인 상태에서 하중을 가하였을 때의 상태를 확인하였다.
도 9는 KCP-2의 4포인트 굽힘 실험 하중 변형 곡선을 나타낸 것으로 650N의 하중까지 견디는 것을 알 수 있고, 수직변위 0.12mm까지를 탄성영역으로 본다면 아래 식(1)과 식(2)을 사용하여 굽힘 강성과 굽힘 구조 강성을 각각 1291.0 N/mm와 5.87 N/㎡의 결과를 얻을 수 있으며, 굽힘 강도는 아래 식(3)을 사용하여 실험의 최대 하중 값이 각각 698N, 652N이고 경계조건 h(거리)는 21.5mm 이므로 굽힘 강성은 7.50N-mm, 7.01N-mm의 값을 얻었다.
식(1)
Figure PCTKR2015009043-appb-I000001
식(2)
Figure PCTKR2015009043-appb-I000002
식(3)
Figure PCTKR2015009043-appb-I000003
도 10은 KCP-3의 4포인트 굽힘 실험 하중 변형 곡선을 나타낸 것으로 2000N의 하중까지 견디고, 수직 변위 0.12mm까지를 탄성영역으로 본다면, 위 식(1), (2)를 사용하여 굽힘 강성과 굽힘 구조 강성을 계산하여 각각 2278.6 N/mm와 10.35 N/㎡의 결과를 얻을 수 있으며, 굽힘 강도는 위 식(3)을 사용하여 계산한 결과 각각 22.8 N-mm, 21.9 N-mm의 값을 얻었다.
*인장실험
인장실험은 도 8에 도시된 바와 같이 탄성변형부의 형상을 제작한 후에 하중 10000N의 힘으로 인장하였을 때 탄성변형부의 변위를 측정하였다.
도 11은 KCP-2의 인장실험 하중 변위 곡선을 나타낸 것으로 케이스 모두 약 1mm에서 파단되었고, 도 12는 KCP-3의 인장실험 하중 변위 곡선을 나타낸 것으로 케이스 모두 약 9.9mm에서 파단되었다.
* KCP-2의 실험과 해석 결과 비교
도 13은 KCP-2의 굽힘 실험과 해석에 대한 하중-변형 그래프를 나타낸 것으로 해석과 실험을 비교하여 보면, 낮은 응력 사이에서 비교적 잘 맞지만 하중이 증가할수록 차이가 커지는데 이는 해석에 사용되는 3D모델과 실제 제작된 시편의 가공 오차와 일반적으로 해석이 실험보다 강성이 좀 더 높게 계산되는 경향이 있음을 고려할 때 이 격차는 적합한 것임을 알 수 있다.
KCP-2의 인장 실험과 해석을 도 14의 하중-변형 그래프에서 비교하여 보면, 데이터는 굽힘과 마찬가지로 탄성 영역 구간으로 각 데이터의 기울기를 계산하기 위해 추세선을 사용하였고, 실험과 해석결과 모두 비슷한 기울기를 가지고 있어 탄성 계수의 결과 값이 적합하게 구해지고 있음을 알 수 있다.
그러나 해석의 경우 응력이 0 일 때 변형률도 0 이지만 실험은 내부 오차로 인해 응력이 0 일 때 변형률도 0이 아니기 때문에 기울기는 같지만 실험 데이터가 해석 데이터보다 전반적으로 높게 측정됨을 알 수 있다.
*KCP-3의 실험과 해석 결과 비교
도 15는 KCP-3의 굽힘 실험과 해석에 대한 하중-변형 그래프를 나타낸 것으로 KCP-2와 동일하게 탄성 영역 구간의 데이터를 사용하였으며 기울기를 계산하기 위해 추세선을 사용하였다.
KCP-3의 해석과 실험결과를 KCP-2와 비교해 보면 KCP-2보다 실험과 해석결과의 오차가 줄어들었음을 알 수 있다.
마찬가지로, 도 16의 KCP-3의 인장 실험과 해석에 대한 하중-변형 그래프를 보면, KCP-2보다 실험 오차가 감소하였음을 알 수 있다.
*결론
KCP-2는 표 2에 도시된 바와 같이 목표 성능과 실험 및 해석 결과를 비교하면, 굽힘 강성과 탄성 계수, 굽힘 구조 강성은 목표 성능에 부합하지만, 굽힘 강도의 경우 실험 결과 목표 성능에 미달하였음을 알 수 있고, KCP-3는 표 3에 도시된 바와 같이 굽힘 강성과 탄성 계수, 굽힘 구조 강성, 굽힘 강도 모두 목표 성능에 만족함을 알 수 있다.
FEM Test-1 Test-2 목표 성능
Bending Stiffness (N/mm) 2088.1 1384.2 1291.9 44.4 이상
Structural Stiffness (N·) 9.491372 6.291823 5.872278 4.8 이상
Bending Strength(N-mm) 7.5035 7.009 7.3 이상
Elastic Modulus(GPa) 35.26 34.25 35.43 40 이하
FEM Test-1 Test-2 목표 성능
Bending Stiffness (N/mm) 2900.51 2278.62 2137.80 44.4 이상
Structural Stiffness (N·) 13.18 10.35 9.71 4.8 이상
Bending Strength(N-mm) 22.80 21.90 7.3 이상
Elastic Modulus(GPa) 39.57 38.65 37.49 40 이하
따라서 KCP-3와 같이 통공의 개구 두께를 플레이트 몸체 상하의 두께와 대체로 1:1의 비율로 형성할 경우 전체적으로 목표 성능을 만족할 수 있게 된다.
한편 본 발명은 응력 차폐 성능을 향상시키기 위하여 구성된 것이다.
응력 차폐현상이란 강성이 다른 탄성체가 병렬로 연결된 구조에서 하중이 작용하였을 때 상대적으로 더 높은 강성을 가지는 탄성체에 응력이 집중되는 현상을 말한다.
이처럼 회복 중인 뼈에 하중이 작용하면 뼈보다 강성이 높을 경우 정상적인 상태의 뼈일 때보다 본 플레이트가 작용되었을 때 본 플레이트에 더 많은 하중이 집중되어 골밀도가 낮아지거나 골절 부위의 재 골절 위험성이 높아지게 되므로 본 발명에서와 같이 강성을 낮추고 유연성을 높여 이를 방지하는 것이다.
*응력 차폐 현상 FEM 해석
1) 해설 조건
응력 차폐 현상은 회복중인 뼈의 상태를 가정하기 때문에 골절로 분리되지 않은 뼈를 가정하여 해석하였다. 응력 차폐 현상에 관한 해석은 도 17에서와 같이 뼈에 본 발명의 본 플레이트를 삽입한 상태로 양쪽에서 700N의 하중을 가하고, 이때 볼트와 볼트 사이의 단면에서 발생하는 응력 분포를 판단하였다. 좌측에서 볼 수 있는 바와 같이 뼈는 크게 중심에 있는 뼈기둥(Trabecular bone)과 외곽의 골피질(Cortical bone)로 나눌 수 있다. 뼈기둥은 강도가 약하여 하중에 저항하는 힘이 없으며 대부분의 하중은 골피질이 담당하게 된다.
FE 모델에 사용된 각 부분의 물성치는 표 4에서와 같다.
Elastic Modulus Poission Ratio
Plate 103 GPa 0.29
Bolt 205 Gpa 0.35
Cortical bone 18.4 GPa 0.12
Trabecularbone 1.061 GPa 0.225
2) 해석 결과
해석 결과로, 도 17의 1-0의 단면에 작용하는 응력 분포를 도 18에 도시된 KCP-2와 KCP-3로 나누어 도시하였다.
도 18에 도시된 바에 의하면, 전반적으로 응력 분포가 KCP-2가 KCP-3보다 고르게 분포되어 있음을 볼 수 있는데, 이는 앞선 실험에서 알 수 있듯이 KCP-2의 강성이 KCP-3 보다 낮아 응력 차폐 현상이 좀 더 완화되고 있는 것을 알 수 있다.
노멀라이즈(Normalize)된 거리에 대한 도 18에서 1-0 단면의 응력을 도 19에 그래프로 표시하였다.
일반적으로 사용되는 스틸 또는 티탄늄 소재의 본 플레이트이 비해 본 발명의 본 플레이트(KCP)의 응력 분포가 더 고르게 분포되어 있음을 알 수 있다.
응력분포 완화효과는 뼈에 부가되는 응력이 그만큼 높다는 높다는 것을 의미하며, 이는 뼈의 응력차폐현상을 완화시키고 있음을 의미한다.
표 5는 응력 분포 완화 효과에 대한 비교표이다.
Stress 응력 분포 완화 효과
LCP (Steel) 0.69124 -8.93%
LCP (Ti) 0.75909 0.00%
KCP-2 1.23849 63.15%
KCP-3 1.08517 42.96%
따라서 표 5에서 알 수 있듯이 KCP는 기존 본 플레이트에 비해 월등한 응력 차폐 현상 완화에 효과가 있음을 알 수 있다.
이상, 본 발명을 바람직한 실시예를 통해 설명하였으나, 이는 본 발명의 기술적 내용에 대한 이해를 돕고자 하는 것일 뿐 발명의 기술적 범위를 이에 한정하고자 함이 아니다.
즉, 본 발명의 기술적 요지를 벗어나지 않고도 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 다양한 변형이나 개조가 가능함은 물론이고, 그와 같은 변경이나 개조는 청구범위의 해석상 본 발명의 기술적 범위 내에 있음은 말할 나위가 없다.

Claims (11)

  1. 뼈 접골을 위한 뼈골절용 본 플레이트에 있어서,
    상기 뼈골절용 본 플레이트는,
    일정한 길이를 갖는 플레이트 몸체;
    상기 플레이트 몸체 길이 방향으로 따라 수직하게 개구되어 나사가 체결되는 다수개의 체결부;
    상기 플레이트 몸체 상에서 상기 체결부의 사이에 위치되어 외부에서 작용하는 일정한 힘에 의해 변형하는 탄성변형부;를 포함하는 것을 특징으로 하는 뼈골절용 본 플레이트.
  2. 제1항에 있어서,
    상기 체결부는 복수의 타원이 중첩되어 형성된 것을 특징으로 하는 뼈골절용 본 플레이트.
  3. 제2항에 있어서,
    상기 복수의 타원 중 어느 하나에는 나사산이 형성된 것을 특징으로 하는 뼈골절용 본 플레이트.
  4. 제3항에 있어서,
    상기 나사산은 가상의 수직축 방향으로 경사진 것을 특징으로 하는 뼈 골절용 본 플레이트.
  5. 제4항에 있어서,
    상기 나사산은 복수의 타원 중 플레이트 몸체의 외측에 위치된 타원에 형성된 것을 특징으로 하는 뼈 골절용 본 플레이트.
  6. 제1항에 있어서
    상기 체결부는 고정나사가 체결되는 제1나사공과, 컨벤셜나사가 체결되는 제2나사공이 서로 중첩되어 형성된 것을 특징으로 하는 뼈 골절용 본 플레이트.
  7. 제1항에 있어서,
    상기 플레이트몸체는 하부면이 곡선 형태인 것을 특징으로 하는 뼈 골절용 본 플레이트.
  8. 제1항에 있어서,
    상기 탄성변형부는 플레이트몸체 상부면의 폭 방향으로 형성되는 제1홈과, 상기 제1홈과 대향되는 위치에 형성되는 제2홈과, 상기 제1홈과 제2홈 사이에 형성되는 통공으로 이루어진 것을 특징으로 하는 뼈 골절용 본 플레이트.
  9. 제8항에 있어서,
    상기 통공은 수평 방향으로 개구된 수평공과, 상기 수평공의 양단에 형성되는 수직공으로 이루어진 것을 특징으로 하는 뼈 골절용 본 플레이트.
  10. 제9항에 있어서,
    상기 수직공은 양단이 곡선 형태인 것을 특징으로 하는 뼈 골절용 본 플레이트.
  11. 제1항에 있어서,
    상기 플레이트 몸체 하부면에는 뼈와 접점시 응력을 분산시킬 수 있게 하는 응력분산부;가 더 형성된 것을 특징으로 하는 뼈 골절용 본 플레이트.
PCT/KR2015/009043 2014-08-28 2015-08-28 골절용 본 플레이트 WO2016032273A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20140113029 2014-08-28
KR10-2014-0113029 2014-08-28
KR20140118819 2014-09-05
KR10-2014-0118819 2014-09-05

Publications (1)

Publication Number Publication Date
WO2016032273A1 true WO2016032273A1 (ko) 2016-03-03

Family

ID=55400072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/009043 WO2016032273A1 (ko) 2014-08-28 2015-08-28 골절용 본 플레이트

Country Status (1)

Country Link
WO (1) WO2016032273A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105662567A (zh) * 2016-03-16 2016-06-15 苏州瑞华医院有限公司 一种带凹槽的接骨板
CN106073879A (zh) * 2016-06-06 2016-11-09 河北医科大学第三医院 一种能减小应力并促进骨折愈合的弹性接骨板
WO2018106435A1 (en) * 2016-12-08 2018-06-14 DePuy Synthes Products, Inc. Cable saddle
CN108175493A (zh) * 2017-12-29 2018-06-19 臧顺利 一种智能防断骨科钢板
CN114469302A (zh) * 2022-02-11 2022-05-13 张永飞 腱骨联合部位固定器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7354441B2 (en) * 2000-01-27 2008-04-08 Synthes (U.S.A.) Bone plate
KR20080088611A (ko) * 2005-12-23 2008-10-02 아아프 임플란타테 아게 골절합용 플레이트
KR20090068225A (ko) * 2006-09-14 2009-06-25 워쏘우 오르쏘페딕 인코포레이티드 척주 안정화 장치의 요소
KR100974498B1 (ko) * 2010-04-27 2010-08-10 주식회사 지에스메디칼 경추 고정 장치
US7842037B2 (en) * 2006-09-27 2010-11-30 Dupuy Products, Inc. Flexible bone fixation device
KR101287837B1 (ko) * 2012-10-12 2013-07-19 주식회사 케이씨스 뼈 고정 플레이트

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7354441B2 (en) * 2000-01-27 2008-04-08 Synthes (U.S.A.) Bone plate
KR20080088611A (ko) * 2005-12-23 2008-10-02 아아프 임플란타테 아게 골절합용 플레이트
KR20090068225A (ko) * 2006-09-14 2009-06-25 워쏘우 오르쏘페딕 인코포레이티드 척주 안정화 장치의 요소
US7842037B2 (en) * 2006-09-27 2010-11-30 Dupuy Products, Inc. Flexible bone fixation device
KR100974498B1 (ko) * 2010-04-27 2010-08-10 주식회사 지에스메디칼 경추 고정 장치
KR101287837B1 (ko) * 2012-10-12 2013-07-19 주식회사 케이씨스 뼈 고정 플레이트

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105662567A (zh) * 2016-03-16 2016-06-15 苏州瑞华医院有限公司 一种带凹槽的接骨板
CN106073879A (zh) * 2016-06-06 2016-11-09 河北医科大学第三医院 一种能减小应力并促进骨折愈合的弹性接骨板
WO2018106435A1 (en) * 2016-12-08 2018-06-14 DePuy Synthes Products, Inc. Cable saddle
US10952781B2 (en) 2016-12-08 2021-03-23 DePuy Synthes Products, Inc. Cable saddle
US11751923B2 (en) 2016-12-08 2023-09-12 DePuy Synthes Products, Inc. Cable saddle
CN108175493A (zh) * 2017-12-29 2018-06-19 臧顺利 一种智能防断骨科钢板
CN108175493B (zh) * 2017-12-29 2021-04-16 臧顺利 一种智能防断骨科钢板
CN114469302A (zh) * 2022-02-11 2022-05-13 张永飞 腱骨联合部位固定器
CN114469302B (zh) * 2022-02-11 2024-04-02 张永飞 腱骨联合部位固定器

Similar Documents

Publication Publication Date Title
WO2016032273A1 (ko) 골절용 본 플레이트
EP1429674B1 (en) Fixation device
US7179260B2 (en) Bone plates and bone plate assemblies
EP1768582B1 (en) Transverse fixation device for spinal fixation systems
WO2015160021A1 (ko) 개방형 근위 경골 절골술을 위한 고정 기구
US6197029B1 (en) Intramedullary nail
US4943292A (en) Plate for broken bone fixation
WO2015160022A1 (ko) 개방형 근위 경골 절골술을 위한 고정 기구
US20130018424A1 (en) Osteotomy and arthrodesis treatment system
JP2015507953A (ja) 弾性的な骨接合術のための骨プレート
WO2014058098A1 (ko) 뼈 고정 플레이트
US20040097944A1 (en) Fixation device and method for treating contractures and other orthopedic indications
CN105342676B (zh) 组合式多功能生理骨加压骨外固定支架
WO2020122466A2 (ko) 삽입형 경추체간 자립 케이지
US20060200127A1 (en) Method and apparatus for external fixation of bone fractures
CN108261233A (zh) 一种股骨粗隆间骨折组合式夹板内固定装置及辅助瞄准器械
JPH0558340B2 (ko)
US8083740B2 (en) Device for facilitating the healing of bone including Olecranan
KR101687112B1 (ko) 골절용 본 플레이트
US20220338904A1 (en) Variable-dimension fixation rod and implantable stabilization system including a variable-dimension fixation rod
KR101687113B1 (ko) 골절용 본 플레이트
WO2022000440A1 (zh) 可从刚性渐变为轴向非刚性固定的骨骼固定系统
WO2018199451A1 (ko) 경추 1번용 임플란트 장치
WO2016089012A1 (ko) 폐쇄성 원위 대퇴골 절골술용 고정 기구
Korvick et al. The effects of screw removal on bone strain in an idealized plated bone model

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836686

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28.06.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15836686

Country of ref document: EP

Kind code of ref document: A1