WO2016031211A1 - Ship - Google Patents

Ship Download PDF

Info

Publication number
WO2016031211A1
WO2016031211A1 PCT/JP2015/004201 JP2015004201W WO2016031211A1 WO 2016031211 A1 WO2016031211 A1 WO 2016031211A1 JP 2015004201 W JP2015004201 W JP 2015004201W WO 2016031211 A1 WO2016031211 A1 WO 2016031211A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
pressure
engine
valve
regulating valve
Prior art date
Application number
PCT/JP2015/004201
Other languages
French (fr)
Japanese (ja)
Inventor
健治 長町
岳夫 宇井
信彦 杉山
崇嗣 安部
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to CN201580025565.8A priority Critical patent/CN106458310B/en
Priority to KR1020177001086A priority patent/KR20170015512A/en
Publication of WO2016031211A1 publication Critical patent/WO2016031211A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/38Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/12Use of propulsion power plant or units on vessels the vessels being motor-driven
    • B63H21/14Use of propulsion power plant or units on vessels the vessels being motor-driven relating to internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0203Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
    • F02M21/0215Mixtures of gaseous fuels; Natural gas; Biogas; Mine gas; Landfill gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0135Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/05Regasification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • F17C2265/066Fluid distribution for feeding engines for propulsion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system
    • Y02T70/5218Less carbon-intensive fuels, e.g. natural gas, biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a ship equipped with a plurality of diesel engines that use gas as fuel.
  • a multi-machine / multi-shaft ship which is equipped with a plurality of main engines and drives a main shaft provided with a propeller in each main engine.
  • Patent Document 1 discloses a two-machine two-shaft ship equipped with a low-speed dual-fuel diesel (DFD) engine as a gas-fired diesel engine and a propeller driven by the low-speed DFD engine.
  • This ship has a LNG tank for storing LNG, an LNG pump disposed in the LNG tank, LNG supplied from the LNG tank via the LNG pump to high pressure gas, and the LNG converted to high pressure gas is converted to a low speed DFD engine.
  • a high-pressure fuel gas supply system is provided.
  • the high-pressure gas supply system includes a high-pressure pump (pressure increase device) and a vaporizer.
  • the output required for each engine may differ.
  • there are individual differences at the time of manufacture in engines and propellers and there is a difference in output required when driving at the same rotational speed.
  • the rotational speeds of a plurality of propellers may be intentionally changed in order to move the hull straight in a crosswind or wave.
  • fuel gas is supplied to two engines from one high-pressure gas supply system, and fuel gases having different pressures cannot be supplied to the engines.
  • an object of the present invention is to provide a ship that can supply fuel gas of different pressures to two or more gas-fired diesel engines and can save space.
  • a ship includes a tank for storing liquefied gas, and a plurality of diesel engines that drive a main shaft provided with a propeller that uses evaporated gas vaporized from the liquefied gas as fuel. And a booster that boosts the liquefied gas or evaporated gas supplied from the tank so that the evaporated gas supplied to the diesel engine is higher than the highest required pressure among the required pressures of the plurality of diesel engines, A supply line extending from the booster to the plurality of diesel engines, the supply line including a main flow path connected to the booster and a plurality of branch paths connected to the plurality of diesel engines, and the plurality of branches And a pressure regulating valve provided in each of the paths.
  • the pressure regulating valve is provided in each of the branch passages connected to the diesel engine, the opening degree of the pressure regulating valve is adjusted, and the gas pressure supplied to the engine is required for each diesel engine.
  • the pressure can be adjusted according to the output.
  • fuel gas of different pressures can be supplied to a plurality of diesel engines with a single booster, so that a high pressure gas supply system is provided for each engine in order to supply fuel gas of different pressures to each engine. It is possible to save space on the ship.
  • the boosting device may be a pump that boosts the liquefied gas, and a vaporizer that vaporizes the liquefied gas discharged from the pump may be provided in the main flow path.
  • the control device that controls the pressure regulating valve according to the pressure required by each of the plurality of diesel engines, and a branch from the portion between the pump and the carburetor in the main flow path.
  • a recirculation line connected to the tank, and a flow rate control valve provided in the recirculation line, wherein the control device is configured to control the pump and the flow rate according to the pressure required by each of the plurality of diesel engines.
  • the control valve may be controlled.
  • the control device can control the pump and the flow rate control valve to adjust the pressure of the evaporated gas vaporized by the vaporizer, that is, the pressure on the primary side of the branching pressure regulating valve. .
  • the primary pressure of the pressure regulating valve can be appropriately changed in accordance with the required pressure of the engine so that the differential pressure at the pressure regulating valve is within a predetermined range.
  • the ship may further include a bypass passage that communicates a primary side and a secondary side of the pressure adjustment valve, and a pressure adjustment valve or an on-off valve provided in the bypass passage.
  • a pressure regulating valve is provided in the bypass flow path in parallel with the pressure regulating valve in the branch path, if the adjustable flow rate of these pressure regulating valves is different, the gas flow rate to the engine or the demand from the engine It is possible to appropriately adjust the supply gas pressure to the engine by changing the pressure regulating valve to be used according to the pressure.
  • an on-off valve is provided in the bypass flow path, the upstream side and the downstream side of the branch pressure adjusting valve can be made the same pressure by opening the on-off valve.
  • the ship includes a plurality of buffer tanks communicating with the plurality of branch passages on the downstream side of the pressure regulating valve, a downstream portion of the pressure regulating valve in each of the plurality of branch passages, and the plurality of buffer tanks. And a bleed line connected to each of the plurality of buffer tanks, and a bleed valve provided on the bleed line.
  • the buffer tank can be set to a low pressure by closing the opening / closing valve at the inlet of the buffer tank and opening the bleed valve provided in the bleed line. That is, when a gas pressure increase occurs in the supply line due to an engine trouble or the like, a sudden increase in pressure in the supply line can be prevented by opening the on-off valve and communicating the buffer tank that has been kept at a low pressure with the supply line. .
  • the ship includes a pressure regulating valve in a second branch path different from the first branch path of the plurality of branch paths and a downstream portion of the pressure regulation valve in the first branch path of the plurality of branch paths.
  • a cross feed line communicating with the downstream portion of the cross feed line and a cross feed valve provided in the cross feed line may be further provided. According to this configuration, even when a pressure regulating valve in one of the branch paths fails and gas pressure adjustment on the downstream side becomes impossible, the cross feed line is connected to the engine on the downstream side of the failed pressure regulating valve.
  • the gas can be supplied via Further, when the cross feed valve is a pressure regulating valve or a flow rate control valve, the gas pressure supplied to the engine on the downstream side of the failed pressure regulating valve can be adjusted.
  • the ship may further include a bleed line connected to the buffer tank of the cross feed line and a bleed valve provided in the bleed line.
  • a bleed line connected to the buffer tank of the cross feed line and a bleed valve provided in the bleed line.
  • the diesel engine can be switched between oil operation that uses only oil as fuel and gas operation that uses only oil or both oil and gas as fuel.
  • a dual fuel diesel engine that diffuses and burns gas may be used. According to this configuration, it is possible to quickly switch from oil operation to gas operation.
  • the diesel engine can be switched between oil operation that uses only oil as fuel and gas operation that uses only oil or both oil and gas as fuel.
  • a dual fuel diesel engine that premixes and burns gas may be used. According to this configuration, it is possible to quickly switch from oil operation to gas operation.
  • the required pressure may change according to the output of the diesel engine.
  • FIG. 1 shows a part of a ship 1A according to the first embodiment of the present invention.
  • the marine vessel 1A includes a first diesel engine 51a (hereinafter simply referred to as “first engine 51a”) and a second diesel engine 51b (hereinafter simply referred to as “second engine 51b”) as propulsion main engines. It is a two-machine two-axis type ship equipped.
  • the first engine 51a drives the main shaft 52a provided with the propeller 53a
  • the second engine 51b drives the main shaft 52b provided with the propeller 53b.
  • the first engine 51a and the second engine 51b are both DFD engines that can use both oil and gas as fuel.
  • This ship 1A has an oil supply system (not shown) for supplying oil to the engines 51a and 51b through the oil supply lines 54a and 54b, and a gas supply system 10A for supplying gas to the engines 51a and 51b. is doing.
  • the gas supply system 10A supplies the evaporated gas obtained by vaporizing the liquefied gas to the engines 51a and 51b as fuel.
  • the gas supply system 10A extends from the tank 2 that stores liquefied gas, the high-pressure pump (an example of the booster of the present invention) 41 that boosts the liquefied gas supplied from the tank 2, and the high-pressure pump 41 to the engines 51a and 51b.
  • a gas supply line 3 is included.
  • the gas supply line 3 is provided with a vaporizer 42 that vaporizes the liquefied gas discharged from the high-pressure pump 41.
  • Tank 2 is at least one of large transport tanks arranged in the direction of the length of ship 1A. However, when a suction drum is disposed between the transport tank and a high-pressure pump 41 described later, the tank 2 may be the suction drum.
  • the liquefied gas stored in the tank 2 in this embodiment is LNG, and the tank 2 has a heat insulation performance capable of maintaining a cryogenic state so that the LNG can be maintained in a liquid state of about ⁇ 162 ° C. under atmospheric pressure.
  • the liquefied gas is not necessarily LNG, and may be LPG or liquid hydrogen, for example.
  • the high pressure pump 41 is controlled by the control device 45 so that the evaporated gas vaporized by the vaporizer 42 supplied to the first engine 51a and the second engine 51b becomes higher than the required pressure (for example, 15 to 30 MPa).
  • the pressure of the liquefied gas supplied from the tank 2 is increased.
  • “the evaporated gas vaporized by the vaporizer 42 supplied to the first engine 51a and the second engine 51b becomes higher than the required pressure” means that the first engine 51a and the second engine 51b This means that the required pressure is higher than the highest required pressure.
  • the high-pressure pump 41 is, for example, a piston pump, and includes a plurality of pistons that are driven by a hydraulic motor to push out liquefied gas from the cylinder. Further, the high-pressure pump 41 is configured to be able to change the rotation speed (for example, the rotation speed of the hydraulic motor), and can change the pump discharge amount substantially in proportion to the rotation speed of the high-pressure pump 41.
  • the vaporizer 42 is, for example, a heat exchanger in which meandering tubes are arranged in a shell.
  • the shell is connected to a circulation line (not shown), and a heat medium such as glycol is circulated through the shell and the circulation line.
  • the gas supply line 3 includes a main channel 31 connected to the high-pressure pump 41 and two branch channels (first branch channel 32 and second branch channel 33) communicating with the main channel 31.
  • the first branch path 32 is connected to the first engine 51a, and the second branch path 33 is connected to the second engine 51b.
  • the vaporizer 42 is provided in the main flow path 31 in the gas supply line 3.
  • the gas supply system 10A includes a reflux line 44 that branches from a portion between the high pressure pump 41 and the vaporizer 42 in the main flow path 31 of the gas supply line 3 and connects to the tank 2, and a flow rate control provided in the reflux line 44. And a valve 43. A part of the liquefied gas boosted by the high-pressure pump 41 can be returned to the tank 2 through the reflux line 44, and the opening of the flow rate control valve 43 is changed by the control device 45. The flow rate of the liquefied gas passing therethrough can be adjusted.
  • the pressure of the evaporated gas vaporized by the vaporizer 42 on the downstream side of the high-pressure pump 41 can be adjusted.
  • the pressure of the evaporated gas vaporized by the carburetor 42 is a pressure higher than the higher required pressure of the first engine 51a and the second engine 51b by the pressure loss at the pressure regulating valve. is there.
  • the pressures of the evaporated gas vaporized by the vaporizer 42 are the first engine 51a and the second engine 51b so that it is not necessary to change the pressure of the evaporated gas vaporized by the vaporizer 42 according to the change in the required pressure.
  • the pressure may be adjusted to be higher by the pressure loss than the maximum operational pressure.
  • the first branch path 32 is provided with a first pressure regulating valve 61a
  • the second branch path 33 is provided with a second pressure regulating valve 61b.
  • the buffer tank 71a communicates with the downstream portion 322 of the first pressure regulating valve 61a in the first branch path 32, and the downstream side of the second pressure regulating valve 61b in the second branch path 33.
  • a buffer tank 71b communicates with the portion 332.
  • the buffer tanks 71a and 71b can prevent sudden pressure fluctuations in the gas supply line 3.
  • a first switching valve 63a which is an on-off valve
  • a second switching valve 63b which is an on-off valve
  • the first switching valve 63a is opened immediately before the gas operation of the first engine 51a
  • the second switching valve 63b is opened immediately before the gas operation of the second engine 51b.
  • an accumulator 64a is provided between the first switching valve 63a and the first engine 51a in the first branch path 32, and the second switching valve 63b and the second switching valve 63b in the second branch path 33 are provided.
  • An accumulator 64b is provided between the second engine 51b.
  • Each of the first engine 51a and the second engine 51b is an electronically controlled gas injection (ME-GI) DFD engine, which uses only oil as fuel by electronic control and only gas or oil. And gas operation using gas as fuel can be switched.
  • the first engine 51a and the second engine 51b each diffusively burn oil in the case of oil operation, and diffusively burn gas in the case of gas operation.
  • the first engine 51a and the second engine 51b are connected to an engine control unit (not shown) that controls gas injection pressure in the engine and switching between gas operation and oil operation.
  • the engine control unit requests the control device 45 of the gas supply system 10 ⁇ / b> A for evaporating gas having a pressure (hereinafter referred to as “required pressure”) corresponding to each engine output.
  • the opening degrees of the pressure adjustment valves 61a and 61b are adjusted so that the gas pressures (required pressures) required as the supply gas pressures to the first engine 51a and the second engine 51b are adjusted. Adjusted.
  • control lines between the respective components controlled by the control device 45 and the control device 45 are omitted.
  • the evaporated gas vaporized by the vaporizer 42 is the higher of these required pressures.
  • the pressure of the liquefied gas is increased by the high-pressure pump 41 so that the pressure is higher than the required pressure, for example, 29 MPa.
  • the opening degree of the first pressure adjustment valve 61a is adjusted by the control device 45 so that the gas pressure in the downstream portion 322 of the first branch path 32 from the first pressure adjustment valve 61a becomes 28 MPa.
  • the opening degree of the second pressure regulating valve 61b is adjusted so that the gas pressure in the downstream portion 332 of the second branch path 33 from the second pressure regulating valve 61b is 24 MPa.
  • the high-pressure pump 41 boosts the evaporated gas supplied to the first engine 51a and the second engine 51b so as to be higher than the required pressure in the engine.
  • Pressure regulating valves 61a and 61b are provided in the branch paths 32 and 33 connected to the first engine 51a and the second engine 51b, respectively. For this reason, even when the first engine 51a and the second engine 51b request the gas supply system 10A for fuel gas having different pressures, the opening degree of the pressure regulating valves 61a and 61b is adjusted respectively.
  • the gas pressure supplied to the engine can be a pressure corresponding to the output required for each engine.
  • the gas supply system 10A can supply the fuel gas having different pressures to the two engines 51a and 51b, the gas supply system is provided for each engine and the engine is supplied to the engine rather than the ship that supplies the fuel gas having different pressures. Space saving of the gas supply system can be achieved.
  • gas operation may be started one by one for a plurality of engines.
  • gas operation of another engine is started during gas operation of a certain engine, that is, gas consumption is started
  • the gas supply amount to the engine during gas operation also fluctuates immediately thereafter. For this reason, it is desirable to keep supplying gas stably to the engine which is continuing gas operation, receiving the change of the gas consumption at the time of gas operation start.
  • gas supply to other engines can be continued stably.
  • the first engine 51a when the first engine 51a is in gas operation and the gas operation of the second engine 51b is started, it is more than the second pressure regulating valve 61b in the second branch path 33.
  • the second switching valve 63b can be opened after the gas pressure in the upstream side of the second switching valve 63b and the buffer tank 71b is increased to the set pressure on the downstream side.
  • the gas upstream of the buffer tank 71b and the second switching valve 63b flows into the accumulator 64b on the downstream side of the second switching valve 63b, and is more than the second pressure regulating valve 61b in the second branch path 33.
  • the gas pressure in the downstream portion 332 will decrease. However, since the gas boosted to the set pressure is held in the buffer tank 71b, it is possible to prevent a sudden pressure drop when the second switching valve 63b is opened.
  • the second pressure regulating valve 61b Since the change in the flow rate of the gas flowing into the second branch passage 33 can be moderated, the gas can be stably supplied to the first engine 51a during the gas operation.
  • the gas pressure in the downstream portion 322 of the first branch path 32 from the first pressure regulating valve 61a suddenly decreases and does not deviate from the allowable range, and the second branch path 33 has the second pressure.
  • the pressure regulating valve 61a and the second pressure regulating valve 61b can be controlled. Thereby, the supply gas pressure to the 2nd engine 51b can be raised, suppressing the fluctuation
  • the gas supply system 10B includes a bypass channel that communicates the primary side and the secondary side of the first pressure regulating valve 61a of the first branch path 32. 34 a and a bypass flow path 34 b that communicates the primary side and the secondary side of the second pressure regulating valve 61 b of the second branch path 33.
  • the bypass flow path 34a is provided with a third pressure adjustment valve 62a having a flow rate adjustable from the first pressure adjustment valve 61a.
  • the path 34b is provided with a fourth pressure regulating valve 62b having an adjustable flow rate different from that of the second pressure regulating valve 61b.
  • a third pressure regulating valve 62a having a different adjustable flow rate from the first pressure regulating valve 61a is provided in the bypass flow path 34a, and the second pressure regulating valve 61b has an adjustable flow rate.
  • a fourth pressure regulating valve 62b having a different angle is provided in the bypass flow path 34b.
  • the gas pressure can be adjusted using the third pressure regulating valve 62a of the bypass channel 34a within the range of the adjustable flow rate.
  • the gas pressure supplied to the engine can be adjusted appropriately. For example, even when the gas consumption in the engine is small, the pressure can be adjusted stably.
  • the valves provided in the bypass channels 34a and 34b may be on-off valves.
  • the on-off valves are provided in the bypass passages 34a, 34b, the pressure adjustment valves 61a, 61b of the branch paths 32, 33 are not adjusted by opening the on-off valves, and the branch paths 32, 33 Pressure loss between the upstream side 321 and 331 and the downstream side 322 and 332 can be minimized.
  • the ship 1 ⁇ / b> C according to the third embodiment includes a downstream portion 322 of the first pressure regulating valve 61 a in the first branch path 32 and a second in the second branch path 33.
  • the cross feed valve 81 may be a flow control valve that enables gas flow in both directions of the cross feed line 82.
  • the cross feed valve 81 is a flow rate control valve
  • the gas flow rate is adjusted by the cross feed valve 81 so that the downstream portion 322 of the first pressure regulating valve 61a in the first branch path 32 and the second branch path. It is possible to adjust the downstream portion 332 of the second pressure regulating valve 61b at 33.
  • the cross feed valve 81 may be a pressure regulating valve.
  • the same effect as in the first embodiment can be obtained.
  • gas is supplied to the engine on the downstream side of the failed pressure adjustment valve via the cross feed line.
  • the pressure can be adjusted by a cross feed valve.
  • the second pressure regulating valve 61b of the second branch passage 33 fails and the gas pressure cannot be adjusted in the downstream portion 332 thereof, the second pressure regulating valve 61b on the downstream side of the failed second pressure regulating valve 61b.
  • the second engine 51 b can be supplied with gas via the cross feed line 82, and the gas pressure can be adjusted by the cross feed valve 81 of the cross feed line 82.
  • the marine vessel 1D according to the fourth embodiment includes a downstream portion 322 of the first pressure regulating valve 61a in the first branch path 32 and a second in the second branch path 33.
  • the cross feed line 94 is provided to communicate with the downstream portion 332 of the pressure regulating valve 61b.
  • the ship 1D according to the fourth embodiment has a cross feed line 94 instead of the buffer tank 71a communicated with the first branch path 32 and the buffer tank 71b communicated with the second branch path 33 of the first embodiment.
  • a buffer tank 91 is provided.
  • a first opening / closing valve 92 is provided in a portion 94 a between the buffer tank 91 and the first branch path 32 in the cross feed line 94, and the buffer tank 91 and the second branch path 33 in the cross feed line 94 are provided.
  • a second opening / closing valve 93 is provided in the portion 94b between the two.
  • the same effect as in the first embodiment can be obtained.
  • the second on-off valve 93 is opened to allow the buffer tank 91 and the gas supply line 3 to communicate with each other, so that the second branch path in the gas supply line 3 A rapid pressure increase of 33 can be prevented.
  • space saving in the ship can be achieved.
  • the ship 1E which concerns on 5th Embodiment of this invention is demonstrated.
  • the ship 1E according to the fifth embodiment includes a communication portion 72a between the downstream portion 322 of the first pressure regulating valve 61a and the buffer tank 71a in the first branch path 32.
  • the on-off valve 73a provided, and the on-off valve 73b provided in the communication portion 72b between the downstream portion 332 of the second pressure regulating valve 61b and the buffer tank 71b in the second branch path 33 are provided.
  • the ship 1E according to the fifth embodiment has bleed lines 75a and 75b connected to the buffer tanks 71a and 71b, respectively, and bleeds provided on the bleed lines 75a and 75b, respectively, so as to allow the evaporated gas in the buffer tank to escape. Valves 74a and 74b are further provided.
  • the bleed valves 74a and 74b are, for example, pressure regulating valves and flow control valves.
  • the downstream ends of the bleed lines 75a and 75b may be connected to the tank 2 so that a part of the evaporated gas in the buffer tank is returned to the tank 2 through the bleed lines 75a and 75b.
  • a part of the evaporated gas in the buffer tank is supplied as fuel for a power generation engine, a boiler (not shown) or the like through the bleed lines 75a and 75b. It may be connected to a power generation engine, a boiler, or the like.
  • the downstream ends of the bleed lines 75a and 75b may be connected to an incineration processing system (not shown) so that, for example, a part of the evaporated gas in the buffer tank is incinerated.
  • the buffer tanks 71a and 71b can be kept at a low pressure by closing the on-off valves 73a and 73b in advance and opening the bleed valves 74a and 74b provided on the bleed lines 75a and 75b.
  • the gas supply line 3 is made to communicate with the buffer tanks 71a and 71b that are kept at a low pressure by opening the on-off valves 73a and 73b. A sudden pressure increase in the line 3 can be prevented.
  • the pressure in the buffer tanks 71a and 71b can be made equal to the supply gas pressure to the engine. it can. Thereby, a pressure fluctuation can be reduced with respect to a sudden load increase of the engine.
  • the on-off valves 73a and 73b are opened, and the bleed valves 74a provided on the bleed lines 75a and 75b. , 74b can be used to decompress the entire gas supply line 3.
  • a ship 1F which concerns on 6th Embodiment of this invention is demonstrated.
  • a ship 1F according to the sixth embodiment is provided in a bleed line 96 and a bleed line 96 connected to the buffer tank 91 so as to release the evaporated gas in the buffer tank 91 in addition to the components of the fourth embodiment.
  • a bleed valve 95 is further provided.
  • the same effect as that of the fourth embodiment can be obtained.
  • the first on-off valve 92 and the second on-off valve 93 are closed and the bleed valve 95 provided on the bleed line 96 is opened, so that the buffer tank 91 can be kept at a low pressure. Effects similar to those of the fifth embodiment can be obtained.
  • the first on-off valve 92 and the second on-off valve 93 are opened, and the bleed valve 95 provided on the bleed line 96 is opened, whereby the entire gas supply line 3 is decompressed. be able to.
  • space saving in the ship can be achieved.
  • the first engine 51a has an engine output of 80% and a required pressure of 28 MPa.
  • the pressure of the evaporated gas vaporized by the vaporizer 42 is 29 MPa.
  • the supply gas pressure to the first engine 51 a is kept at 28 MPa. I'm leaning.
  • the second pressure regulating valve 61b of the second branch path 33 is fully closed, the first on-off valve 92 and the second on-off valve 93 are closed, and the bleed With the valve 95 opened, the gas pressure and the buffer tank 91 in the downstream portion 332 of the second branch path 33 from the second pressure regulating valve 61b are kept at a low pressure.
  • the second engine 51b While the second engine 51b is in the oil operation, keeping the standby state in which the gas pressure supplied to the second engine 51b is maintained at a constant high pressure (for example, a set pressure of 24 MPa) is the second engine 51b. This is preferable because the switching time from oil operation to gas operation can be shortened.
  • the bleed valve 95 In order to put the second engine 51b in the oil operation into the standby state, the bleed valve 95 is closed, the second on-off valve 93 is opened, and the supply gas pressure to the first engine 51a during the gas operation is suddenly increased.
  • the second pressure regulating valve 61b of the second branch path 33 is slightly opened so as not to fluctuate.
  • the gas pressure in the downstream portion 332 of the second branch path 33 relative to the second pressure regulating valve 61b is increased, and the second pressure regulating valve 61b is fully closed when, for example, the set pressure approaches 24 MPa.
  • the second engine 51b in the oil operation can be set to the standby state of the gas operation, and the switching time from the oil operation to the gas operation in the second engine 51b can be shortened.
  • the second switching valve 63b When the second engine 51b in the gas operation standby state (and in the oil operation) is switched to the gas operation, the second switching valve 63b is opened, so that the upstream side of the buffer tank 91 and the second switching valve 63b. Side gas flows into the accumulator 64b on the downstream side of the second switching valve 63b. As a result, the gas pressure in the downstream portion 332 of the second branch path 33 from the second pressure regulating valve 61b is lowered, but the gas raised to the set pressure was held in the buffer tank 91. Thus, it is possible to prevent a sudden pressure drop when the second switching valve 63b is opened.
  • the gas pressure in the downstream portion 322 of the first branch path 32 relative to the first pressure regulating valve 61a suddenly decreases and does not deviate from the allowable range, and the required pressure of the second engine 51b.
  • the rotation speed of the high-pressure pump 41, the opening degree of the flow control valve 43, the first pressure adjustment valve 61a, and the second pressure adjustment valve 61b are controlled so as to be adjusted to (for example, 25 MPa).
  • the second engine 51b can be switched from the oil operation to the gas operation.
  • the first engine 51a and the second engine 51b can be operated with different supply gas pressures.
  • the supply gas to the first engine 51a during the gas operation is adjusted by adjusting the first pressure adjustment valve 61a and the second pressure adjustment valve 61b.
  • the supply gas pressure to the second engine 51b can be increased while suppressing the pressure fluctuation within an allowable range. Thereby, the gas operation of the second engine 51b can be started while the gas supply to the first engine 51a during the gas operation is stably continued.
  • the second on-off valve 93 is closed and the bleed valve 95 is opened, so that the buffer tank 91 can be set to a low pressure, and a sudden pressure increase in the gas supply line occurs. It can cope with the case. Further, the second on-off valve 93 can be opened, the bleed valve 95 can be closed, and the pressure in the buffer tank 91 can be made the same as the supply gas pressure to the second engine 51b, which is caused by a sudden increase in engine output. Pressure fluctuation can be reduced.
  • Such switching from the oil operation to the gas operation has been described with respect to the ship 1F according to the sixth embodiment, but the first to fifth embodiments can also be performed by performing the same control as described above.
  • the above control method for switching between the oil operation and the gas operation is merely an example, and is not necessarily limited to the above control method, for example, timing for opening and closing the first on-off valve 92 and the second on-off valve 93.
  • the high-pressure pump 41 is configured so that the evaporation gas supplied to the first engine 51a and the second engine 51b is higher than the required pressure (for example, 15 to 30 MPa).
  • the pressure of the liquefied gas supplied from the tank 2 is increased, the pressure increasing device of the present invention is not limited to the high pressure pump 41.
  • FIG. 7 shows a modification of the gas supply system 10A in the ship according to the first embodiment.
  • the gas supply system 10A ′ of FIG. 7 includes a tank 2 that stores liquefied gas, and a compressor that boosts the boil-off gas that has accumulated in the upper portion of the tank 2 as a result of vaporization of the liquefied gas in the tank 2 (of the booster of the present invention).
  • One example) 46 and a gas supply line 3 extending from the compressor 46 to the engines 51a and 51b.
  • the gas supply line 3 includes a main flow path 31 connected to the compressor 46 and two branch paths (first branch path 32 and second branch path 33) communicating with the main flow path 31.
  • the gas supply system 10A ′ includes a reflux line 48 branched from the downstream side portion of the compressor 46 in the main flow path 31 of the gas supply line 3 and connected to the tank 2, a flow rate control valve 49 provided in the reflux line 48, and A reliquefaction device 47 is provided.
  • the boil-off gas in the tank 2 is pressurized by the compressor 46 so that the evaporated gas supplied to the engine becomes higher than the required pressure.
  • By adjusting the flow control valve 49 a part of the evaporated gas whose pressure has been increased by the compressor 46 can be reliquefied by the reliquefaction device 47 and returned to the tank 2.
  • a ship 1A ' having such a gas supply system 10A' can obtain the same effects as those of the first embodiment.
  • the gas supply system 10A ′ including the compressor 46 can be applied to the second to sixth embodiments.
  • the engines 51a and 51b are configured to diffuse and burn gas in the case of gas operation, but the present invention is not limited to this.
  • the engines 51a and 51b may be configured to premix and burn gas in the case of gas operation.
  • the required pressure of the engines 51a and 51b may be low, or a simple booster that boosts the required pressure may be used. .
  • a two-machine two-shaft type ship has been described as an example of a ship equipped with a plurality of diesel engines that drive a main shaft provided with a propeller.
  • the ship of the present invention is not limited to this.
  • the ship of the present invention may be, for example, a 3-machine 3-axis ship, a 4-machine 4-axis ship, or a 2-machine 1-axis or 4-machine 2-axis ship using a gear device.
  • first branch path means an arbitrary one of the plurality of branch paths
  • second branch path means the first branch of the plurality of branch paths. It means any one branch path different from the road.
  • first branch path means an arbitrary one of the plurality of branch paths
  • second branch path means the first branch of the plurality of branch paths. It means any one branch path different from the road.
  • the ship of the present invention is provided with a cross feed line between only two of the three branch paths. This includes not only a ship but also a ship in which a cross feed line is provided between any two of the three branches.
  • first branch path means any one of the plurality of branch paths
  • second branch path means the first branch path among the plurality of branch paths.
  • first branch path means any one of the plurality of branch paths
  • second branch path means the first branch path among the plurality of branch paths.
  • the ship of the present invention is provided with a cross feed line between only two of the three branch paths. This includes not only a ship but also a ship in which a cross-feed line is provided between any two of the three branches, and the ship of the present invention includes, for example, each of the three branches.
  • a cross feed line extending to one common buffer tank is provided, and a ship in which an open / close valve is provided in each cross feed line is also included.
  • the ship according to the first to third embodiments may not include a buffer tank.
  • FIGS. 2 to 6 can be appropriately combined.
  • the bypass channels 34a and 34b and the pressure regulating valves 62a and 62b shown in FIG. 2 may be added to the configurations in FIGS. .
  • the present invention can be applied to a multi-machine / multi-shaft type ship in which a diesel engine using gas as a fuel is used as a propulsion main unit, a plurality of main units are mounted, and a main shaft provided with a propeller is provided in each main unit. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

This ship is provided with: a tank that retains liquefied gas; a plurality of diesel engines that each drive a main shaft provided with a propeller; a booster that boosts the liquefied gas or evaporating gas supplied from the tank; and a supply line that extends from the booster to the plurality of diesel engines. The booster boosts the liquefied gas or evaporating gas supplied from the tank so that the evaporating gas to be supplied to the diesel engines becomes higher than the highest required pressure of the required pressures of the plurality of diesel engines. The supply line includes a main flow path connected to the booster, and a plurality of branch paths. Each of the plurality of branch paths is provided with a pressure-regulating valve.

Description

船舶Ship
 本発明は、ガスを燃料として使用する複数のディーゼルエンジンを搭載した船舶に関する。 The present invention relates to a ship equipped with a plurality of diesel engines that use gas as fuel.
 近年、環境負荷の観点から、天然ガスを燃料としたガス焚きディーゼルエンジンを推進用主機とする船舶が注目されている。ガス焚きディーゼルエンジンを搭載した船舶としては、複数台の主機を搭載し、各主機でプロペラが設けられた主軸を駆動する多機多軸式の船舶が知られている。 In recent years, from the viewpoint of environmental impact, ships using a gas-fired diesel engine that uses natural gas as a fuel for propulsion have attracted attention. As a ship equipped with a gas-fired diesel engine, a multi-machine / multi-shaft ship is known which is equipped with a plurality of main engines and drives a main shaft provided with a propeller in each main engine.
 例えば特許文献1には、ガス焚きディーゼルエンジンとしての低速二元燃料ディーゼル(DFD;Dual Fuel Diesel)エンジン及び低速DFDエンジンにより駆動するプロペラとを備えた2機2軸式の船舶が開示されている。この船舶は、LNGを貯蔵するLNGタンクと、LNGタンク内に配置されたLNGポンプと、LNGタンクからLNGポンプを介して供給されるLNGを高圧ガス化し、この高圧ガス化したLNGを低速DFDエンジンに供給する高圧燃料ガス供給システムを備える。なお、特許文献1には具体的に記載されていないが、高圧ガス供給システムは、高圧ポンプ(昇圧装置)と気化器を含むものであると推測される。 For example, Patent Document 1 discloses a two-machine two-shaft ship equipped with a low-speed dual-fuel diesel (DFD) engine as a gas-fired diesel engine and a propeller driven by the low-speed DFD engine. . This ship has a LNG tank for storing LNG, an LNG pump disposed in the LNG tank, LNG supplied from the LNG tank via the LNG pump to high pressure gas, and the LNG converted to high pressure gas is converted to a low speed DFD engine. A high-pressure fuel gas supply system is provided. Although not specifically described in Patent Document 1, it is presumed that the high-pressure gas supply system includes a high-pressure pump (pressure increase device) and a vaporizer.
特開2013-193503号公報JP2013-193503A
 ところで、ガス焚きディーゼルエンジンを搭載した多機多軸式の船舶では、各エンジンに要求される出力が異なる場合がある。例えば、エンジンやプロペラには製造時の個体差があり、同じ回転数で駆動させるときに必要な出力には差が生じる。また、横風や波浪の中で船体を直進させるために、意図的に複数のプロペラの回転数を変化させる場合もある。このような場合それぞれのエンジンに要求される出力に応じた圧力の燃料ガスを供給することが望まれる。しかしながら、特許文献1に開示された船舶では、1つの高圧ガス供給システムから2機のエンジンに燃料ガスを供給しており、各エンジンに異なる圧力の燃料ガスを供給することができない。異なる圧力の燃料ガスを供給するために、エンジンごとに高圧ガス供給システムを設けることが考えられるが、船内の設置スペースには限りがあるため、省スペースの観点から、高圧ポンプや気化器等を含む高圧ガス供給システムをエンジンごとに設けるのは好ましくない。 By the way, in a multi-machine / multi-shaft vessel equipped with a gas-fired diesel engine, the output required for each engine may differ. For example, there are individual differences at the time of manufacture in engines and propellers, and there is a difference in output required when driving at the same rotational speed. In addition, the rotational speeds of a plurality of propellers may be intentionally changed in order to move the hull straight in a crosswind or wave. In such a case, it is desirable to supply fuel gas having a pressure corresponding to the output required for each engine. However, in the ship disclosed in Patent Document 1, fuel gas is supplied to two engines from one high-pressure gas supply system, and fuel gases having different pressures cannot be supplied to the engines. In order to supply fuel gas at different pressures, it is conceivable to provide a high-pressure gas supply system for each engine.However, since there is a limited installation space on the ship, a high-pressure pump, a carburetor, etc. It is not preferable to provide a high-pressure gas supply system including each engine.
 そこで、本発明は、2機以上のガス焚きディーゼルエンジンに異なる圧力の燃料ガスを供給することができ、かつ、省スペース化を図ることができる船舶を提供することを目的とする。 Therefore, an object of the present invention is to provide a ship that can supply fuel gas of different pressures to two or more gas-fired diesel engines and can save space.
 前記課題を解決するために、本発明に係る船舶は、液化ガスを貯留するタンクと、前記液化ガスが気化した蒸発ガスを燃料として使用する、プロペラが設けられた主軸を駆動する複数のディーゼルエンジンと、前記タンクから供給される液化ガス又は蒸発ガスを、前記ディーゼルエンジンに供給される蒸発ガスが前記複数のディーゼルエンジンの要求圧のうち最も高い要求圧より高くなるように昇圧する昇圧装置と、前記昇圧装置から前記複数のディーゼルエンジンへ延びる供給ラインであって、前記昇圧装置に接続された主流路および前記複数のディーゼルエンジンに接続された複数の分岐路を含む供給ラインと、前記複数の分岐路のそれぞれに設けられた圧力調整弁と、を備えることを特徴とする。 In order to solve the above problems, a ship according to the present invention includes a tank for storing liquefied gas, and a plurality of diesel engines that drive a main shaft provided with a propeller that uses evaporated gas vaporized from the liquefied gas as fuel. And a booster that boosts the liquefied gas or evaporated gas supplied from the tank so that the evaporated gas supplied to the diesel engine is higher than the highest required pressure among the required pressures of the plurality of diesel engines, A supply line extending from the booster to the plurality of diesel engines, the supply line including a main flow path connected to the booster and a plurality of branch paths connected to the plurality of diesel engines, and the plurality of branches And a pressure regulating valve provided in each of the paths.
 上記構成によれば、ディーゼルエンジンにつながる分岐路のそれぞれに圧力調整弁が設けられているため、圧力調整弁の開度をそれぞれ調節して、エンジンへの供給ガス圧を各ディーゼルエンジンに要求される出力に応じた圧力にすることができる。また、複数のディーゼルエンジンに対して一つの昇圧装置で異なる圧力の燃料ガスを供給できるため、各エンジンに異なる圧力の燃料ガスを供給するためにエンジンごとに高圧ガス供給システムを設けた船舶よりも、船内の省スペース化を図ることができる。 According to the above configuration, since the pressure regulating valve is provided in each of the branch passages connected to the diesel engine, the opening degree of the pressure regulating valve is adjusted, and the gas pressure supplied to the engine is required for each diesel engine. The pressure can be adjusted according to the output. In addition, fuel gas of different pressures can be supplied to a plurality of diesel engines with a single booster, so that a high pressure gas supply system is provided for each engine in order to supply fuel gas of different pressures to each engine. It is possible to save space on the ship.
 上記の構成において、前記昇圧装置は、前記液化ガスを昇圧するポンプであり、前記主流路には、前記ポンプから吐出された液化ガスを気化させる気化器が設けられていてもよい。 In the above configuration, the boosting device may be a pump that boosts the liquefied gas, and a vaporizer that vaporizes the liquefied gas discharged from the pump may be provided in the main flow path.
 上記の構成において、前記複数のディーゼルエンジンのそれぞれが要求する圧力に応じて、前記圧力調整弁を制御する制御装置と、前記主流路における前記ポンプと前記気化器との間にある部分から分岐して前記タンクへつながる還流ラインと、前記還流ラインに設けられた流量制御弁と、を更に備え、前記制御装置は、前記複数のディーゼルエンジンのそれぞれが要求する圧力に応じて、前記ポンプ及び前記流量制御弁を制御してもよい。この構成によれば、制御装置により、ポンプ及び流量制御弁を制御して、気化器で気化された蒸発ガスの圧力、即ち、分岐路の圧力調整弁の一次側の圧力を調整することができる。このため、エンジンの要求圧に応じて、圧力調整弁での差圧が所定の範囲内に収まるように圧力調整弁の一次圧を適切に変更することができる。 In the above configuration, the control device that controls the pressure regulating valve according to the pressure required by each of the plurality of diesel engines, and a branch from the portion between the pump and the carburetor in the main flow path. A recirculation line connected to the tank, and a flow rate control valve provided in the recirculation line, wherein the control device is configured to control the pump and the flow rate according to the pressure required by each of the plurality of diesel engines. The control valve may be controlled. According to this configuration, the control device can control the pump and the flow rate control valve to adjust the pressure of the evaporated gas vaporized by the vaporizer, that is, the pressure on the primary side of the branching pressure regulating valve. . For this reason, the primary pressure of the pressure regulating valve can be appropriately changed in accordance with the required pressure of the engine so that the differential pressure at the pressure regulating valve is within a predetermined range.
 上記の船舶は、前記圧力調整弁の一次側と二次側を連通するバイパス流路と、前記バイパス流路に設けられた圧力調整弁又は開閉弁とを更に備えていてもよい。この構成によれば、分岐路の圧力調整弁と並列にバイパス流路に圧力調整弁を設けた場合、これらの圧力調整弁の調整可能流量が異なれば、エンジンへのガス流量やエンジンからの要求圧に応じて使用する圧力調整弁を変えて、エンジンへの供給ガス圧を適切に調整することができる。また、バイパス流路に開閉弁を設けた場合には、この開閉弁を開くことにより、分岐路の圧力調整弁の上流側と下流側を同圧にすることができる。 The ship may further include a bypass passage that communicates a primary side and a secondary side of the pressure adjustment valve, and a pressure adjustment valve or an on-off valve provided in the bypass passage. According to this configuration, when a pressure regulating valve is provided in the bypass flow path in parallel with the pressure regulating valve in the branch path, if the adjustable flow rate of these pressure regulating valves is different, the gas flow rate to the engine or the demand from the engine It is possible to appropriately adjust the supply gas pressure to the engine by changing the pressure regulating valve to be used according to the pressure. Further, when an on-off valve is provided in the bypass flow path, the upstream side and the downstream side of the branch pressure adjusting valve can be made the same pressure by opening the on-off valve.
 上記の船舶は、前記複数の分岐路に、前記圧力調整弁の下流側でそれぞれ連通する複数のバッファタンクと、前記複数の分岐路のそれぞれにおける圧力調整弁の下流側部分と前記複数のバッファタンクのそれぞれとの連通部分に設けられた開閉弁と、前記複数のバッファタンクのそれぞれに接続されたブリードラインと、前記ブリードラインに設けられたブリードバルブと、を更に備えてもよい。 The ship includes a plurality of buffer tanks communicating with the plurality of branch passages on the downstream side of the pressure regulating valve, a downstream portion of the pressure regulating valve in each of the plurality of branch passages, and the plurality of buffer tanks. And a bleed line connected to each of the plurality of buffer tanks, and a bleed valve provided on the bleed line.
 複数のディーゼルエンジンのうちの1つがエンジントラブルで停止した場合には、船全体におけるエンジンでのガス消費量以上にエンジン側にガスが供給されて、供給ラインのガス圧が上昇してしまう。これに対し、上記の構成によれば、バッファタンクの入口の開閉弁を閉じ、ブリードラインに設けられたブリードバルブを開くことで、バッファタンクを低圧にすることができる。すなわち、エンジントラブルなどにより供給ラインにガス圧上昇が生じるときには、開閉弁を開いて低圧に保たれていたバッファタンクと供給ラインとを連通させて、供給ラインの急激な圧力上昇を防ぐことができる。 When one of the diesel engines stops due to an engine trouble, the gas is supplied to the engine more than the gas consumption of the engine in the entire ship, and the gas pressure in the supply line increases. On the other hand, according to the above configuration, the buffer tank can be set to a low pressure by closing the opening / closing valve at the inlet of the buffer tank and opening the bleed valve provided in the bleed line. That is, when a gas pressure increase occurs in the supply line due to an engine trouble or the like, a sudden increase in pressure in the supply line can be prevented by opening the on-off valve and communicating the buffer tank that has been kept at a low pressure with the supply line. .
 上記の船舶は、前記複数の分岐路のうちの第1分岐路における圧力調整弁の下流側部分と前記複数の分岐路のうち前記第1分岐路とは別の第2分岐路における圧力調整弁の下流側部分とを連通するクロスフィードラインと、前記クロスフィードラインに設けられたクロスフィードバルブとを更に備えていてもよい。この構成によれば、いずれかの分岐路の圧力調整弁が故障してその下流側のガス圧調整ができなくなった場合でも、故障した圧力調整弁の下流側のエンジンには、クロスフィードラインを介してガス供給を行うことができる。また、クロスフィードバルブが圧力調整弁や流量制御弁である場合には、故障した圧力調整弁の下流側のエンジンへの供給ガス圧を調整することができる。 The ship includes a pressure regulating valve in a second branch path different from the first branch path of the plurality of branch paths and a downstream portion of the pressure regulation valve in the first branch path of the plurality of branch paths. A cross feed line communicating with the downstream portion of the cross feed line and a cross feed valve provided in the cross feed line may be further provided. According to this configuration, even when a pressure regulating valve in one of the branch paths fails and gas pressure adjustment on the downstream side becomes impossible, the cross feed line is connected to the engine on the downstream side of the failed pressure regulating valve. The gas can be supplied via Further, when the cross feed valve is a pressure regulating valve or a flow rate control valve, the gas pressure supplied to the engine on the downstream side of the failed pressure regulating valve can be adjusted.
 上記の船舶は、前記複数の分岐路のうちの第1分岐路における圧力調整弁の下流側部分と前記複数の分岐路のうちの前記第1分岐路とは別の第2分岐路における圧力調整弁の下流側部分とを連通するクロスフィードラインと、前記クロスフィードラインに設けられたバッファタンクと、前記クロスフィードラインにおける前記バッファタンクと前記第1分岐路との間の部分に設けられた第1開閉弁と、前記クロスフィードラインにおける前記バッファタンクと前記第2分岐路との間の部分に設けられた第2開閉弁とを更に備えていてもよい。この構成によれば、複数の分岐路に共通のバッファタンクが設けられているため、エンジンごとにバッファタンクを設ける必要がない。このため、船内の省スペース化を図ることができる。 In the above ship, the pressure adjustment in the second branch path different from the first branch path of the plurality of branch paths and the downstream portion of the pressure regulating valve in the first branch path of the plurality of branch paths. A cross feed line communicating with a downstream portion of the valve; a buffer tank provided in the cross feed line; and a first portion provided in the cross feed line between the buffer tank and the first branch passage. You may further provide 1 on-off valve and the 2nd on-off valve provided in the part between the said buffer tank and the said 2nd branch path in the said cross feed line. According to this configuration, since a common buffer tank is provided for the plurality of branch paths, it is not necessary to provide a buffer tank for each engine. For this reason, space saving in a ship can be achieved.
 上記の船舶は、前記クロスフィードラインの前記バッファタンクに接続されたブリードラインと、前記ブリードラインに設けられたブリードバルブとを更に備えていてもよい。複数のディーゼルエンジンのうちの1つがエンジントラブルで停止した場合には、船全体でのエンジンでのガス消費量以上にエンジン側にガスが供給されて、供給ラインのガス圧が上昇してしまう。これに対し、上記の構成によれば、バッファタンクの入口の開閉弁を閉じ、ブリードラインに設けられたブリードバルブを開くことで、バッファタンクを低圧にすることができる。すなわち、エンジントラブルなどによりガス圧上昇が生じるときには、開閉弁を開いて低圧に保たれていたバッファタンクと分岐路とを連通させて、供給ラインの急激な圧力上昇を防ぐことができる。 The ship may further include a bleed line connected to the buffer tank of the cross feed line and a bleed valve provided in the bleed line. When one of a plurality of diesel engines stops due to an engine trouble, the gas is supplied to the engine more than the gas consumption of the engine in the entire ship, and the gas pressure in the supply line increases. On the other hand, according to the above configuration, the buffer tank can be set to a low pressure by closing the opening / closing valve at the inlet of the buffer tank and opening the bleed valve provided in the bleed line. That is, when a gas pressure rises due to an engine trouble or the like, a sudden increase in pressure in the supply line can be prevented by opening the open / close valve to communicate with the buffer tank that has been kept at a low pressure.
 上記ディーゼルエンジンは、油のみを燃料として使用する油運転とガスのみ又は油とガスの両方を燃料として使用するガス運転とで切り換え可能であり、油運転の場合は油を拡散燃焼し、ガス運転の場合はガスを拡散燃焼する二元燃料ディーゼルエンジンであってもよい。この構成によれば、油運転からガス運転に速やかに切り換えることができる。 The diesel engine can be switched between oil operation that uses only oil as fuel and gas operation that uses only oil or both oil and gas as fuel. In this case, a dual fuel diesel engine that diffuses and burns gas may be used. According to this configuration, it is possible to quickly switch from oil operation to gas operation.
 上記ディーゼルエンジンは、油のみを燃料として使用する油運転とガスのみ又は油とガスの両方を燃料として使用するガス運転とで切り換え可能であり、油運転の場合は油を拡散燃焼し、ガス運転の場合はガスを予混合燃焼する二元燃料ディーゼルエンジンであってもよい。この構成によれば、油運転からガス運転に速やかに切り換えることができる。 The diesel engine can be switched between oil operation that uses only oil as fuel and gas operation that uses only oil or both oil and gas as fuel. In this case, a dual fuel diesel engine that premixes and burns gas may be used. According to this configuration, it is possible to quickly switch from oil operation to gas operation.
 また、上記ディーゼルエンジンは、ガス燃料にて運転する際に、ディーゼルエンジンの出力に応じて要求圧が変化してもよい。 Further, when the diesel engine is operated with gas fuel, the required pressure may change according to the output of the diesel engine.
 本発明によれば、2機以上のガス焚きディーゼルエンジンに異なる圧力の燃料ガスを供給することができ、かつ、省スペース化を図ることができる船舶を提供することができる。 According to the present invention, it is possible to provide a ship capable of supplying fuel gas having different pressures to two or more gas-fired diesel engines and saving space.
本発明の第1実施形態に係る船舶の一部を示す概略構成図である。It is a schematic structure figure showing some ships concerning a 1st embodiment of the present invention. 本発明の第2実施形態に係る船舶の一部を示す概略構成図である。It is a schematic block diagram which shows a part of ship which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る船舶の一部を示す概略構成図である。It is a schematic block diagram which shows a part of ship which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る船舶の一部を示す概略構成図である。It is a schematic block diagram which shows a part of ship which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る船舶の一部を示す概略構成図である。It is a schematic block diagram which shows a part of ship which concerns on 5th Embodiment of this invention. 本発明の第6実施形態に係る船舶の一部を示す概略構成図である。It is a schematic block diagram which shows a part of ship which concerns on 6th Embodiment of this invention. 図1の船舶におけるガス供給システムの変形例を示す図である。It is a figure which shows the modification of the gas supply system in the ship of FIG.
 以下、本発明の実施形態について図を参照しながら説明する。以下では、全ての図面を通じて同一又は相当する要素には同じ符号を付して、重複する説明は省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Below, the same code | symbol is attached | subjected to the element which is the same or it corresponds through all the drawings, and the overlapping description is abbreviate | omitted.
 <第1実施形態>
 図1に、本発明の第1実施形態に係る船舶1Aの一部を示す。この船舶1Aは、推進用主機として、第1のディーゼルエンジン51a(以下、単に「第1のエンジン51a」という)と第2のディーゼルエンジン51b(以下、単に「第2のエンジン51b」という)を備える2機2軸式の船舶である。第1のエンジン51aは、プロペラ53aが設けられた主軸52aを駆動し、第2のエンジン51bは、プロペラ53bが設けられた主軸52bを駆動する。
<First Embodiment>
FIG. 1 shows a part of a ship 1A according to the first embodiment of the present invention. The marine vessel 1A includes a first diesel engine 51a (hereinafter simply referred to as “first engine 51a”) and a second diesel engine 51b (hereinafter simply referred to as “second engine 51b”) as propulsion main engines. It is a two-machine two-axis type ship equipped. The first engine 51a drives the main shaft 52a provided with the propeller 53a, and the second engine 51b drives the main shaft 52b provided with the propeller 53b.
 また、第1のエンジン51a及び第2のエンジン51bは、いずれも油とガスの両方を燃料として利用できるDFDエンジンである。この船舶1Aは、油供給ライン54a,54bを通じて油をエンジン51a,51bに供給するための油供給システム(図示せず)と、ガスをエンジン51a,51bに供給するためのガス供給システム10Aを有している。 The first engine 51a and the second engine 51b are both DFD engines that can use both oil and gas as fuel. This ship 1A has an oil supply system (not shown) for supplying oil to the engines 51a and 51b through the oil supply lines 54a and 54b, and a gas supply system 10A for supplying gas to the engines 51a and 51b. is doing.
 ガス供給システム10Aは、液化ガスを気化した蒸発ガスを燃料としてエンジン51a,51bに供給する。ガス供給システム10Aは、液化ガスを貯留するタンク2と、タンク2から供給される液化ガスを昇圧する高圧ポンプ(本発明の昇圧装置の一例)41と、高圧ポンプ41からエンジン51a,51bへ延びるガス供給ライン3を含む。また、ガス供給ライン3には、高圧ポンプ41から吐出された液化ガスを気化させる気化器42が設けられている。 The gas supply system 10A supplies the evaporated gas obtained by vaporizing the liquefied gas to the engines 51a and 51b as fuel. The gas supply system 10A extends from the tank 2 that stores liquefied gas, the high-pressure pump (an example of the booster of the present invention) 41 that boosts the liquefied gas supplied from the tank 2, and the high-pressure pump 41 to the engines 51a and 51b. A gas supply line 3 is included. The gas supply line 3 is provided with a vaporizer 42 that vaporizes the liquefied gas discharged from the high-pressure pump 41.
 タンク2は、船舶1Aの船長方向に配列された大型の輸送タンクの少なくとも1つである。ただし、輸送タンクと後述する高圧ポンプ41との間にサクションドラムが配置される場合は、タンク2はそのサクションドラムであってもよい。この実施形態におけるタンク2に貯留される液化ガスはLNGであり、タンク2は、LNGが大気圧下の約-162℃の液体状態で保持できるように、極低温状態を保持可能な防熱性能を有する。なお、液化ガスは、必ずしもLNGである必要はなく、例えばLPGや液体水素であってもよい。 Tank 2 is at least one of large transport tanks arranged in the direction of the length of ship 1A. However, when a suction drum is disposed between the transport tank and a high-pressure pump 41 described later, the tank 2 may be the suction drum. The liquefied gas stored in the tank 2 in this embodiment is LNG, and the tank 2 has a heat insulation performance capable of maintaining a cryogenic state so that the LNG can be maintained in a liquid state of about −162 ° C. under atmospheric pressure. Have. Note that the liquefied gas is not necessarily LNG, and may be LPG or liquid hydrogen, for example.
 高圧ポンプ41は、制御装置45によって制御され、第1のエンジン51a及び第2のエンジン51bに供給される気化器42で気化された蒸発ガスが要求圧(例えば15~30MPa)より高くなるように、タンク2から供給される液化ガスを昇圧する。ここで、「第1のエンジン51a及び第2のエンジン51bに供給される気化器42で気化された蒸発ガスが要求圧より高くなる」とは、第1のエンジン51a及び第2のエンジン51bのそれぞれの要求圧のうち最も高い方の要求圧より高くなるという意味である。高圧ポンプ41は、例えば、ピストンポンプであり、油圧モータによって駆動されて液化ガスをシリンダから押し出す複数のピストンを含む。また、高圧ポンプ41は、その回転数(例えば、油圧モータの回転数)を変更可能に構成されており、高圧ポンプ41の回転数にほぼ比例してポンプ吐出量を変更することができる。 The high pressure pump 41 is controlled by the control device 45 so that the evaporated gas vaporized by the vaporizer 42 supplied to the first engine 51a and the second engine 51b becomes higher than the required pressure (for example, 15 to 30 MPa). The pressure of the liquefied gas supplied from the tank 2 is increased. Here, "the evaporated gas vaporized by the vaporizer 42 supplied to the first engine 51a and the second engine 51b becomes higher than the required pressure" means that the first engine 51a and the second engine 51b This means that the required pressure is higher than the highest required pressure. The high-pressure pump 41 is, for example, a piston pump, and includes a plurality of pistons that are driven by a hydraulic motor to push out liquefied gas from the cylinder. Further, the high-pressure pump 41 is configured to be able to change the rotation speed (for example, the rotation speed of the hydraulic motor), and can change the pump discharge amount substantially in proportion to the rotation speed of the high-pressure pump 41.
 気化器42は、例えば、蛇行したチューブがシェル内に配置された熱交換器である。シェルは、図略の循環ラインに接続されており、シェル及び循環ラインを通じて、例えばグリコールなどの熱媒体が循環させられる。 The vaporizer 42 is, for example, a heat exchanger in which meandering tubes are arranged in a shell. The shell is connected to a circulation line (not shown), and a heat medium such as glycol is circulated through the shell and the circulation line.
 ガス供給ライン3は、高圧ポンプ41に接続された主流路31、主流路31と連通する2つの分岐路(第1の分岐路32と第2の分岐路33)を含む。第1の分岐路32は、第1のエンジン51aと接続されており、第2の分岐路33は、第2のエンジン51bと接続されている。気化器42は、ガス供給ライン3における主流路31に設けられている。 The gas supply line 3 includes a main channel 31 connected to the high-pressure pump 41 and two branch channels (first branch channel 32 and second branch channel 33) communicating with the main channel 31. The first branch path 32 is connected to the first engine 51a, and the second branch path 33 is connected to the second engine 51b. The vaporizer 42 is provided in the main flow path 31 in the gas supply line 3.
 ガス供給システム10Aは、ガス供給ライン3の主流路31における高圧ポンプ41と気化器42との間にある部分から分岐してタンク2へつながる還流ライン44と、還流ライン44に設けられた流量制御弁43とを更に備えている。高圧ポンプ41で昇圧された液化ガスは、その一部をこの還流ライン44を介してタンク2に戻すことができ、制御装置45により流量制御弁43の開度を変更することによって還流ライン44を通過する液化ガスの流量を調整することができる。この実施形態では、高圧ポンプ41の回転数と流量制御弁43の開度を調整することにより、高圧ポンプ41の下流側にある気化器42で気化された蒸発ガスの圧力を調整することができる。気化器42で気化された蒸発ガスの圧力は、第1のエンジン51a及び第2のエンジン51bのそれぞれの要求圧のうち高い方の要求圧よりも圧力調整弁での圧力損失分だけ高い圧力である。また、要求圧の変化に応じて、気化器42で気化した蒸発ガスの圧力を変更しないですむように、気化器42で気化された蒸発ガスの圧力は、第1のエンジン51a及び第2のエンジン51bの運用上の最大の圧力よりも圧力損失分だけ高い圧力に調整されていてもよい。 The gas supply system 10A includes a reflux line 44 that branches from a portion between the high pressure pump 41 and the vaporizer 42 in the main flow path 31 of the gas supply line 3 and connects to the tank 2, and a flow rate control provided in the reflux line 44. And a valve 43. A part of the liquefied gas boosted by the high-pressure pump 41 can be returned to the tank 2 through the reflux line 44, and the opening of the flow rate control valve 43 is changed by the control device 45. The flow rate of the liquefied gas passing therethrough can be adjusted. In this embodiment, by adjusting the rotation speed of the high-pressure pump 41 and the opening degree of the flow control valve 43, the pressure of the evaporated gas vaporized by the vaporizer 42 on the downstream side of the high-pressure pump 41 can be adjusted. . The pressure of the evaporated gas vaporized by the carburetor 42 is a pressure higher than the higher required pressure of the first engine 51a and the second engine 51b by the pressure loss at the pressure regulating valve. is there. Further, the pressures of the evaporated gas vaporized by the vaporizer 42 are the first engine 51a and the second engine 51b so that it is not necessary to change the pressure of the evaporated gas vaporized by the vaporizer 42 according to the change in the required pressure. The pressure may be adjusted to be higher by the pressure loss than the maximum operational pressure.
 第1の分岐路32には、第1の圧力調整弁61aが設けられており、第2の分岐路33には、第2の圧力調整弁61bが設けられている。第1の圧力調整弁61aの開度を制御することにより、第1の分岐路32における第1の圧力調整弁61aの下流側部分322の圧力を変更することができる。また、第2の圧力調整弁61bの開度を制御することにより、第2の分岐路33における第2の圧力調整弁61bの下流側部分332の圧力を変更することができる。 The first branch path 32 is provided with a first pressure regulating valve 61a, and the second branch path 33 is provided with a second pressure regulating valve 61b. By controlling the opening degree of the first pressure regulating valve 61a, the pressure of the downstream portion 322 of the first pressure regulating valve 61a in the first branch path 32 can be changed. Moreover, the pressure of the downstream part 332 of the 2nd pressure regulation valve 61b in the 2nd branch path 33 can be changed by controlling the opening degree of the 2nd pressure regulation valve 61b.
 第1の分岐路32における第1の圧力調整弁61aの下流側部分322には、バッファタンク71aが連通しており、また、第2の分岐路33における第2の圧力調整弁61bの下流側部分332には、バッファタンク71bが連通している。バッファタンク71a,71bにより、ガス供給ライン3の急激な圧力変動を防ぐことができる。 The buffer tank 71a communicates with the downstream portion 322 of the first pressure regulating valve 61a in the first branch path 32, and the downstream side of the second pressure regulating valve 61b in the second branch path 33. A buffer tank 71b communicates with the portion 332. The buffer tanks 71a and 71b can prevent sudden pressure fluctuations in the gas supply line 3.
 また、第1の分岐路32におけるバッファタンク71aへの分岐点よりも下流側には、開閉弁である第1の切換弁63aが設けられており、第2の分岐路33におけるバッファタンク71bへの分岐点よりも下流側には、開閉弁である第2の切換弁63bが設けられている。第1の切換弁63aは、第1のエンジン51aのガス運転の直前に開かれ、第2の切換弁63bは、第2のエンジン51bのガス運転の直前に開かれる。また、第1の分岐路32における第1の切換弁63aと第1のエンジン51aとの間には、アキュムレータ64aが設けられており、第2の分岐路33における第2の切換弁63bと第2のエンジン51bとの間には、アキュムレータ64bが設けられている。 Further, a first switching valve 63a, which is an on-off valve, is provided on the downstream side of the branch point to the buffer tank 71a in the first branch path 32, and to the buffer tank 71b in the second branch path 33. A second switching valve 63b, which is an on-off valve, is provided downstream of the branch point. The first switching valve 63a is opened immediately before the gas operation of the first engine 51a, and the second switching valve 63b is opened immediately before the gas operation of the second engine 51b. In addition, an accumulator 64a is provided between the first switching valve 63a and the first engine 51a in the first branch path 32, and the second switching valve 63b and the second switching valve 63b in the second branch path 33 are provided. An accumulator 64b is provided between the second engine 51b.
 第1のエンジン51aと第2のエンジン51bは、いずれも電子制御式ガスインジェクション(ME-GI)方式のDFDエンジンであり、電子制御により油のみを燃料として使用する油運転と、ガスのみ又は油及びガスを燃料とするガス運転とを切り換えることができる。第1のエンジン51a及び第2のエンジン51bは、それぞれ、油運転の場合は油を拡散燃焼し、ガス運転の場合はガスを拡散燃焼する。 Each of the first engine 51a and the second engine 51b is an electronically controlled gas injection (ME-GI) DFD engine, which uses only oil as fuel by electronic control and only gas or oil. And gas operation using gas as fuel can be switched. The first engine 51a and the second engine 51b each diffusively burn oil in the case of oil operation, and diffusively burn gas in the case of gas operation.
 第1のエンジン51aと第2のエンジン51bには、エンジンでのガス噴射圧やガス運転と油運転との切り換えを制御するエンジン制御部(図示せず)が接続されている。エンジン制御部は、それぞれのエンジン出力に応じた圧力(以下、「要求圧」という)の蒸発ガスをガス供給システム10Aの制御装置45に要求する。ガス供給システム10Aでは、第1のエンジン51aと第2のエンジン51bへの供給ガス圧として要求されたガス圧(要求圧)に調整されるように、圧力調整弁61a,61bの開度がそれぞれ調整される。図1及びそれ以降の図面において、図面を簡略化するために、制御装置45により制御される各構成要素と制御装置45との間の制御線は省略されている。 The first engine 51a and the second engine 51b are connected to an engine control unit (not shown) that controls gas injection pressure in the engine and switching between gas operation and oil operation. The engine control unit requests the control device 45 of the gas supply system 10 </ b> A for evaporating gas having a pressure (hereinafter referred to as “required pressure”) corresponding to each engine output. In the gas supply system 10A, the opening degrees of the pressure adjustment valves 61a and 61b are adjusted so that the gas pressures (required pressures) required as the supply gas pressures to the first engine 51a and the second engine 51b are adjusted. Adjusted. In FIG. 1 and subsequent drawings, in order to simplify the drawings, control lines between the respective components controlled by the control device 45 and the control device 45 are omitted.
 例えば、第1のエンジン51aの要求圧が28MPaであって、第2のエンジン51bの要求圧が24MPaである場合、気化器42で気化された蒸発ガスが、これらの要求圧のうち高い方の要求圧より高い圧力、例えば29MPaとなるように、高圧ポンプ41で液化ガスを昇圧する。そして、制御装置45によって、第1の分岐路32における第1の圧力調整弁61aよりも下流側部分322のガス圧が28MPaとなるように、第1の圧力調整弁61aの開度が調整され、第2の分岐路33における第2の圧力調整弁61bよりも下流側部分332のガス圧が24MPaとなるように、第2の圧力調整弁61bの開度が調整される。 For example, when the required pressure of the first engine 51a is 28 MPa and the required pressure of the second engine 51b is 24 MPa, the evaporated gas vaporized by the vaporizer 42 is the higher of these required pressures. The pressure of the liquefied gas is increased by the high-pressure pump 41 so that the pressure is higher than the required pressure, for example, 29 MPa. Then, the opening degree of the first pressure adjustment valve 61a is adjusted by the control device 45 so that the gas pressure in the downstream portion 322 of the first branch path 32 from the first pressure adjustment valve 61a becomes 28 MPa. The opening degree of the second pressure regulating valve 61b is adjusted so that the gas pressure in the downstream portion 332 of the second branch path 33 from the second pressure regulating valve 61b is 24 MPa.
 以上説明したように、本実施形態の船舶1Aでは、高圧ポンプ41で第1のエンジン51aと第2のエンジン51bに供給される蒸発ガスをエンジンでの要求圧より高くなるように昇圧し、第1のエンジン51aと第2のエンジン51bにつながる分岐路32,33のそれぞれに圧力調整弁61a,61bが設けられている。このため、第1のエンジン51aと第2のエンジン51bが異なる圧力の燃料ガスをガス供給システム10Aに要求する場合であっても、圧力調整弁61a,61bの開度をそれぞれ調節して、エンジンへの供給ガス圧を各エンジンに要求される出力に応じた圧力にすることができる。また、2台のエンジン51a,51bに対してガス供給システム10Aで異なる圧力の燃料ガスを供給できるため、エンジンごとにガス供給システムを設けて異なる圧力の燃料ガスを供給する船舶よりも、エンジンへのガス供給システムの省スペース化を達成することができる。 As described above, in the marine vessel 1A according to the present embodiment, the high-pressure pump 41 boosts the evaporated gas supplied to the first engine 51a and the second engine 51b so as to be higher than the required pressure in the engine. Pressure regulating valves 61a and 61b are provided in the branch paths 32 and 33 connected to the first engine 51a and the second engine 51b, respectively. For this reason, even when the first engine 51a and the second engine 51b request the gas supply system 10A for fuel gas having different pressures, the opening degree of the pressure regulating valves 61a and 61b is adjusted respectively. The gas pressure supplied to the engine can be a pressure corresponding to the output required for each engine. In addition, since the gas supply system 10A can supply the fuel gas having different pressures to the two engines 51a and 51b, the gas supply system is provided for each engine and the engine is supplied to the engine rather than the ship that supplies the fuel gas having different pressures. Space saving of the gas supply system can be achieved.
 ところで、特許文献1に開示された船舶の構成においては、複数のエンジンについて1台ずつガス運転を開始していく場合がある。例えば、あるエンジンのガス運転中に他のエンジンでガス運転、すなわちガスの消費を開始すると、その直後にはガス運転中のエンジンへのガス供給量も変動してしまう。このため、ガス運転開始時のガス消費量の変化を受けつつも、ガス運転を継続しているエンジンには安定的にガスを供給し続けることが望ましい。また、複数のガス運転中のエンジンのうち、あるエンジンがトラブルなどにより急にガス運転をやめてしまう場合でも、他のエンジンには安定してガス供給を続けられることが望ましい。 By the way, in the configuration of the ship disclosed in Patent Document 1, gas operation may be started one by one for a plurality of engines. For example, if gas operation of another engine is started during gas operation of a certain engine, that is, gas consumption is started, the gas supply amount to the engine during gas operation also fluctuates immediately thereafter. For this reason, it is desirable to keep supplying gas stably to the engine which is continuing gas operation, receiving the change of the gas consumption at the time of gas operation start. Moreover, even when a certain engine suddenly stops the gas operation due to a trouble or the like among a plurality of engines during the gas operation, it is desirable that the gas supply to other engines can be continued stably.
 本実施形態の船舶1Aでは、第1のエンジン51aがガス運転中にあり、第2のエンジン51bのガス運転を開始させる場合に、第2の分岐路33における第2の圧力調整弁61bよりも下流側であって第2の切換弁63bの上流側部分とバッファタンク71bのガス圧を、設定された圧力まで昇圧させた後に、第2の切換弁63bを開くことができる。バッファタンク71b及び第2の切換弁63bの上流側のガスは、第2の切換弁63bの下流側のアキュムレータ64bに流入して、第2の分岐路33における第2の圧力調整弁61bよりも下流側部分332のガス圧は低下することになる。しかしながら、バッファタンク71bに設定圧力まで昇圧されたガスが保持されていたことにより、第2の切換弁63bを開いた時の急激な圧力の低下は防ぐことができる。 In the ship 1A of the present embodiment, when the first engine 51a is in gas operation and the gas operation of the second engine 51b is started, it is more than the second pressure regulating valve 61b in the second branch path 33. The second switching valve 63b can be opened after the gas pressure in the upstream side of the second switching valve 63b and the buffer tank 71b is increased to the set pressure on the downstream side. The gas upstream of the buffer tank 71b and the second switching valve 63b flows into the accumulator 64b on the downstream side of the second switching valve 63b, and is more than the second pressure regulating valve 61b in the second branch path 33. The gas pressure in the downstream portion 332 will decrease. However, since the gas boosted to the set pressure is held in the buffer tank 71b, it is possible to prevent a sudden pressure drop when the second switching valve 63b is opened.
 また、本実施形態の船舶1Aでは、第1のエンジン51aがガス運転中にあり、第2のエンジン51bがガス運転を開始したり停止したりする場合に、第2の圧力調整弁61bにて第2の分岐路33に流入するガス流量の変化を緩やかにできるので、ガス運転中の第1のエンジン51aに安定的にガスを供給することができる。 Further, in the ship 1A of the present embodiment, when the first engine 51a is in gas operation and the second engine 51b starts or stops gas operation, the second pressure regulating valve 61b Since the change in the flow rate of the gas flowing into the second branch passage 33 can be moderated, the gas can be stably supplied to the first engine 51a during the gas operation.
 すなわち、第1の分岐路32における第1の圧力調整弁61aよりも下流側部分322のガス圧が、急激に低下して許容範囲を逸脱しないように、且つ、第2の分岐路33における第2の圧力調整弁61bよりも下流側部分332のガス圧が、第2のエンジン51bの要求圧に調整されるように、高圧ポンプ41の回転数、流量制御弁43の開度、第1の圧力調整弁61a及び第2の圧力調整弁61bを制御することができる。これにより、ガス運転中の第1のエンジン51aへの供給ガス圧の変動を許容範囲内に抑えつつ、第2のエンジン51bへの供給ガス圧を上昇させることができる。従って、ガス運転中の第1のエンジン51aへのガス供給を安定的に継続させつつ、第2のエンジン51bのガス運転を開始することができる。 That is, the gas pressure in the downstream portion 322 of the first branch path 32 from the first pressure regulating valve 61a suddenly decreases and does not deviate from the allowable range, and the second branch path 33 has the second pressure. The rotational speed of the high-pressure pump 41, the opening degree of the flow control valve 43, the first pressure so that the gas pressure in the downstream portion 332 of the second pressure adjustment valve 61b is adjusted to the required pressure of the second engine 51b. The pressure regulating valve 61a and the second pressure regulating valve 61b can be controlled. Thereby, the supply gas pressure to the 2nd engine 51b can be raised, suppressing the fluctuation | variation of the supply gas pressure to the 1st engine 51a during a gas driving | operation within the tolerance | permissible_range. Therefore, the gas operation of the second engine 51b can be started while stably supplying the gas to the first engine 51a during the gas operation.
 <第2実施形態>
 次に、図2を参照して、本発明の第2実施形態に係る船舶1Bを説明する。第2実施形態に係るガス供給システム10Bは、第1実施形態の構成要素に加えて、第1の分岐路32の第1の圧力調整弁61aの一次側と二次側を連通するバイパス流路34aと、第2の分岐路33の第2の圧力調整弁61bの一次側と二次側を連通するバイパス流路34bとを備えている。また、第2実施形態に係るガス供給システム10Bにおいて、バイパス流路34aには、第1の圧力調整弁61aとは調整可能流量が異なる第3の圧力調整弁62aが設けられており、バイパス流路34bには、第2の圧力調整弁61bとは調整可能流量が異なる第4の圧力調整弁62bが設けられている。
Second Embodiment
Next, with reference to FIG. 2, the ship 1B which concerns on 2nd Embodiment of this invention is demonstrated. In addition to the components of the first embodiment, the gas supply system 10B according to the second embodiment includes a bypass channel that communicates the primary side and the secondary side of the first pressure regulating valve 61a of the first branch path 32. 34 a and a bypass flow path 34 b that communicates the primary side and the secondary side of the second pressure regulating valve 61 b of the second branch path 33. Further, in the gas supply system 10B according to the second embodiment, the bypass flow path 34a is provided with a third pressure adjustment valve 62a having a flow rate adjustable from the first pressure adjustment valve 61a. The path 34b is provided with a fourth pressure regulating valve 62b having an adjustable flow rate different from that of the second pressure regulating valve 61b.
 本実施形態でも、第1実施形態と同様の効果を得ることができる。また、本実施形態では、第1の圧力調整弁61aとは調整可能流量が異なる第3の圧力調整弁62aをバイパス流路34aに設けており、第2の圧力調整弁61bとは調整可能流量が異なる第4の圧力調整弁62bをバイパス流路34bに設けている。このため、エンジンの要求圧に応じて、圧力調整のために使用する圧力調整弁を適宜選択して、ガス圧を調整することができる。例えば第1のエンジン51aを低出力にして第1のエンジン51aへのガス流量が第1の圧力調整弁61aの調整可能流量の範囲外になった場合に、第1の圧力調整弁61aの代わりに、調整可能流量の範囲内にあるバイパス流路34aの第3の圧力調整弁62aを用いてガス圧を調整することができる。これにより、エンジンへの供給ガス圧を適切に調整することができ、例えば、エンジンでのガス消費量が少ない場合でも、安定的に圧力調整を行うことが可能である。 Also in this embodiment, the same effect as in the first embodiment can be obtained. In the present embodiment, a third pressure regulating valve 62a having a different adjustable flow rate from the first pressure regulating valve 61a is provided in the bypass flow path 34a, and the second pressure regulating valve 61b has an adjustable flow rate. A fourth pressure regulating valve 62b having a different angle is provided in the bypass flow path 34b. For this reason, it is possible to adjust the gas pressure by appropriately selecting a pressure adjustment valve used for pressure adjustment according to the required pressure of the engine. For example, when the first engine 51a is set to a low output and the gas flow rate to the first engine 51a falls outside the adjustable flow rate range of the first pressure regulating valve 61a, the first pressure regulating valve 61a is used instead. In addition, the gas pressure can be adjusted using the third pressure regulating valve 62a of the bypass channel 34a within the range of the adjustable flow rate. Thereby, the gas pressure supplied to the engine can be adjusted appropriately. For example, even when the gas consumption in the engine is small, the pressure can be adjusted stably.
 また、この実施形態において、バイパス流路34a,34bに設けられる弁は、開閉弁であってもよい。バイパス流路34a,34bに開閉弁を設けた場合には、この開閉弁を開くことにより、分岐路32,33の圧力調整弁61a,61bでの圧力調整を行わず、分岐路32,33の上流側321,331と下流側322,332との圧力損失を最小とすることができる。 In this embodiment, the valves provided in the bypass channels 34a and 34b may be on-off valves. When the on-off valves are provided in the bypass passages 34a, 34b, the pressure adjustment valves 61a, 61b of the branch paths 32, 33 are not adjusted by opening the on-off valves, and the branch paths 32, 33 Pressure loss between the upstream side 321 and 331 and the downstream side 322 and 332 can be minimized.
 <第3実施形態>
 次に、図3を参照して、本発明の第3実施形態に係る船舶1Cを説明する。第3実施形態に係る船舶1Cは、第1実施形態の構成要素に加えて、第1の分岐路32における第1の圧力調整弁61aの下流側部分322と第2の分岐路33における第2の圧力調整弁61bの下流側部分332とを連通するクロスフィードライン82と、クロスフィードライン82に設けられたクロスフィードバルブ81を備えている。
<Third Embodiment>
Next, with reference to FIG. 3, a ship 1C according to a third embodiment of the present invention will be described. In addition to the components of the first embodiment, the ship 1 </ b> C according to the third embodiment includes a downstream portion 322 of the first pressure regulating valve 61 a in the first branch path 32 and a second in the second branch path 33. A cross feed line 82 communicating with the downstream portion 332 of the pressure regulating valve 61b, and a cross feed valve 81 provided in the cross feed line 82.
 クロスフィードバルブ81は、クロスフィードライン82の双方向へのガスの流れを可能にする流量制御弁であってもよい。クロスフィードバルブ81が流量制御弁である場合、このクロスフィードバルブ81でガス流量を調整して、第1の分岐路32における第1の圧力調整弁61aの下流側部分322と第2の分岐路33における第2の圧力調整弁61bの下流側部分332を調整することが可能である。また、クロスフィードバルブ81は、圧力調整弁であってもよい。また、クロスフィードバルブ81及びクロスフィードライン82は、複数あってもよい。 The cross feed valve 81 may be a flow control valve that enables gas flow in both directions of the cross feed line 82. When the cross feed valve 81 is a flow rate control valve, the gas flow rate is adjusted by the cross feed valve 81 so that the downstream portion 322 of the first pressure regulating valve 61a in the first branch path 32 and the second branch path. It is possible to adjust the downstream portion 332 of the second pressure regulating valve 61b at 33. Further, the cross feed valve 81 may be a pressure regulating valve. Further, there may be a plurality of cross feed valves 81 and cross feed lines 82.
 本実施形態でも、第1実施形態と同様の効果を得ることができる。また、いずれかの分岐路の圧力調整弁が故障してその下流側のガス圧調整ができなくなった場合でも、故障した圧力調整弁の下流側のエンジンには、クロスフィードラインを介してガス供給を行い、クロスフィードバルブにより圧力調整を行うことができる。例えば、第2の分岐路33の第2の圧力調整弁61bが故障してその下流側部分332のガス圧調整ができなくなった場合でも、故障した第2の圧力調整弁61bの下流側の第2のエンジン51bには、クロスフィードライン82を介してガス供給を行い、クロスフィードライン82のクロスフィードバルブ81によりガス圧調整を行うことができる。 Also in this embodiment, the same effect as in the first embodiment can be obtained. In addition, even if the pressure adjustment valve in one of the branch passages fails and gas pressure adjustment on the downstream side becomes impossible, gas is supplied to the engine on the downstream side of the failed pressure adjustment valve via the cross feed line. The pressure can be adjusted by a cross feed valve. For example, even when the second pressure regulating valve 61b of the second branch passage 33 fails and the gas pressure cannot be adjusted in the downstream portion 332 thereof, the second pressure regulating valve 61b on the downstream side of the failed second pressure regulating valve 61b. The second engine 51 b can be supplied with gas via the cross feed line 82, and the gas pressure can be adjusted by the cross feed valve 81 of the cross feed line 82.
 <第4実施形態>
 次に、図4を参照して、本発明の第4実施形態に係る船舶1Dを説明する。第4実施形態に係る船舶1Dは、第1実施形態の構成要素に加えて、第1の分岐路32における第1の圧力調整弁61aの下流側部分322と第2の分岐路33における第2の圧力調整弁61bの下流側部分332とを連通するクロスフィードライン94を備えている。また、第4実施形態に係る船舶1Dは、第1実施形態の第1の分岐路32に連通したバッファタンク71aと第2の分岐路33に連通したバッファタンク71bの代わりに、クロスフィードライン94にバッファタンク91が設けられている。クロスフィードライン94におけるバッファタンク91と第1の分岐路32との間の部分94aには、第1開閉弁92が設けられており、クロスフィードライン94におけるバッファタンク91と第2の分岐路33との間の部分94bには、第2開閉弁93が設けられている。
<Fourth embodiment>
Next, with reference to FIG. 4, a ship 1D according to a fourth embodiment of the present invention will be described. In addition to the components of the first embodiment, the marine vessel 1D according to the fourth embodiment includes a downstream portion 322 of the first pressure regulating valve 61a in the first branch path 32 and a second in the second branch path 33. The cross feed line 94 is provided to communicate with the downstream portion 332 of the pressure regulating valve 61b. Further, the ship 1D according to the fourth embodiment has a cross feed line 94 instead of the buffer tank 71a communicated with the first branch path 32 and the buffer tank 71b communicated with the second branch path 33 of the first embodiment. A buffer tank 91 is provided. A first opening / closing valve 92 is provided in a portion 94 a between the buffer tank 91 and the first branch path 32 in the cross feed line 94, and the buffer tank 91 and the second branch path 33 in the cross feed line 94 are provided. A second opening / closing valve 93 is provided in the portion 94b between the two.
 本実施形態でも、第1実施形態と同様の効果を得ることができる。また、例えば第2のエンジン51bがエンジントラブルにより停止した場合、第2開閉弁93を開くことで、バッファタンク91とガス供給ライン3とを連通させて、ガス供給ライン3における第2の分岐路33の急激な圧力上昇を防ぐことができる。さらに、本実施形態では、エンジンごとにバッファタンクを設ける必要がないため、船内の省スペース化を図ることができる。 Also in this embodiment, the same effect as in the first embodiment can be obtained. Further, for example, when the second engine 51b is stopped due to an engine trouble, the second on-off valve 93 is opened to allow the buffer tank 91 and the gas supply line 3 to communicate with each other, so that the second branch path in the gas supply line 3 A rapid pressure increase of 33 can be prevented. Furthermore, in this embodiment, since it is not necessary to provide a buffer tank for each engine, space saving in the ship can be achieved.
 <第5実施形態>
 次に、図5を参照して、本発明の第5実施形態に係る船舶1Eを説明する。第5実施形態に係る船舶1Eは、第1実施形態の構成要素に加えて、第1の分岐路32における第1の圧力調整弁61aの下流側部分322とバッファタンク71aとの連通部分72aに設けられた開閉弁73aと、第2の分岐路33における第2の圧力調整弁61bの下流側部分332とバッファタンク71bとの連通部分72bに設けられた開閉弁73bとを備えている。また、第5実施形態に係る船舶1Eは、バッファタンク内の蒸発ガスを逃がすようにバッファタンク71a,71bにそれぞれ接続されたブリードライン75a,75bと、ブリードライン75a,75bにそれぞれ設けられたブリードバルブ74a,74bを更に備えている。
<Fifth Embodiment>
Next, with reference to FIG. 5, the ship 1E which concerns on 5th Embodiment of this invention is demonstrated. In addition to the components of the first embodiment, the ship 1E according to the fifth embodiment includes a communication portion 72a between the downstream portion 322 of the first pressure regulating valve 61a and the buffer tank 71a in the first branch path 32. The on-off valve 73a provided, and the on-off valve 73b provided in the communication portion 72b between the downstream portion 332 of the second pressure regulating valve 61b and the buffer tank 71b in the second branch path 33 are provided. Further, the ship 1E according to the fifth embodiment has bleed lines 75a and 75b connected to the buffer tanks 71a and 71b, respectively, and bleeds provided on the bleed lines 75a and 75b, respectively, so as to allow the evaporated gas in the buffer tank to escape. Valves 74a and 74b are further provided.
 ブリードバルブ74a,74bは、例えば圧力調整弁や流量制御弁である。ブリードライン75a,75bの下流側末端は、例えば、バッファタンク内の蒸発ガスの一部がブリードライン75a,75bを通じてタンク2に戻されるように、タンク2に接続されていてもよい。あるいは、ブリードライン75a,75bの下流側末端は、例えば、バッファタンク内の蒸発ガスの一部がブリードライン75a,75bを通じて発電用エンジン、ボイラー(図示せず)などの燃料として供給されるように、発電用エンジン、ボイラーなどに接続されていてもよい。あるいは、ブリードライン75a,75bの下流側末端は、例えば、バッファタンク内の蒸発ガスの一部が焼却されるように、焼却処理システム(図示せず)に接続されていてもよい。 The bleed valves 74a and 74b are, for example, pressure regulating valves and flow control valves. For example, the downstream ends of the bleed lines 75a and 75b may be connected to the tank 2 so that a part of the evaporated gas in the buffer tank is returned to the tank 2 through the bleed lines 75a and 75b. Alternatively, at the downstream end of the bleed lines 75a and 75b, for example, a part of the evaporated gas in the buffer tank is supplied as fuel for a power generation engine, a boiler (not shown) or the like through the bleed lines 75a and 75b. It may be connected to a power generation engine, a boiler, or the like. Alternatively, the downstream ends of the bleed lines 75a and 75b may be connected to an incineration processing system (not shown) so that, for example, a part of the evaporated gas in the buffer tank is incinerated.
 本実施形態でも、第1実施形態と同様の効果を得ることができる。 Also in this embodiment, the same effect as in the first embodiment can be obtained.
 ところで、第1のエンジン51aと第2のエンジン51bのうちの1つがエンジントラブルにより停止した場合、船全体におけるエンジンでのガス消費量は凡そ半分になり、ガス供給ライン3のガス圧が一時的に上昇してしまう。しかし、本実施形態では、あらかじめ開閉弁73a,73bを閉じ、ブリードライン75a,75bに設けられたブリードバルブ74a,74bを開くことで、バッファタンク71a,71bを低圧にしておくことができる。すなわち、エンジントラブルなどによりガス供給ライン3にガス圧上昇が生じるときには、開閉弁73a,73bを開いて低圧に保たれていたバッファタンク71a,71bとガス供給ライン3とを連通させて、ガス供給ライン3の急激な圧力上昇を防ぐことができる。 By the way, when one of the first engine 51a and the second engine 51b stops due to an engine trouble, the gas consumption of the engine in the entire ship is approximately halved, and the gas pressure in the gas supply line 3 is temporarily reduced. Will rise. However, in this embodiment, the buffer tanks 71a and 71b can be kept at a low pressure by closing the on-off valves 73a and 73b in advance and opening the bleed valves 74a and 74b provided on the bleed lines 75a and 75b. That is, when a gas pressure rises in the gas supply line 3 due to an engine trouble or the like, the gas supply line 3 is made to communicate with the buffer tanks 71a and 71b that are kept at a low pressure by opening the on-off valves 73a and 73b. A sudden pressure increase in the line 3 can be prevented.
 また、開閉弁73a,73bを開き、ブリードライン75a,75bに設けられたブリードバルブ74a,74bを閉じることで、バッファタンク71a,71b内の圧力をエンジンへの供給ガス圧と同等にすることができる。これにより、エンジンの急な負荷上昇に対して、圧力変動を少なくすることができる。 Further, by opening the on-off valves 73a and 73b and closing the bleed valves 74a and 74b provided on the bleed lines 75a and 75b, the pressure in the buffer tanks 71a and 71b can be made equal to the supply gas pressure to the engine. it can. Thereby, a pressure fluctuation can be reduced with respect to a sudden load increase of the engine.
 さらに、いずれのエンジンもガス運転中にないとき、例えばいずれのエンジンも油運転にある時や船舶1Eの停泊時には、開閉弁73a,73bを開き、ブリードライン75a,75bに設けられたブリードバルブ74a,74bを開くことで、ガス供給ライン3全体を減圧することができる。 Further, when none of the engines is in gas operation, for example, when any engine is in oil operation or when the ship 1E is anchored, the on-off valves 73a and 73b are opened, and the bleed valves 74a provided on the bleed lines 75a and 75b. , 74b can be used to decompress the entire gas supply line 3.
 <第6実施形態>
 次に、図6を参照して、本発明の第6実施形態に係る船舶1Fを説明する。第6実施形態に係る船舶1Fは、第4実施形態の構成要素に加えて、バッファタンク91内の蒸発ガスを逃がすようにバッファタンク91に接続されたブリードライン96と、ブリードライン96に設けられたブリードバルブ95を更に備えている。
<Sixth Embodiment>
Next, with reference to FIG. 6, the ship 1F which concerns on 6th Embodiment of this invention is demonstrated. A ship 1F according to the sixth embodiment is provided in a bleed line 96 and a bleed line 96 connected to the buffer tank 91 so as to release the evaporated gas in the buffer tank 91 in addition to the components of the fourth embodiment. A bleed valve 95 is further provided.
 本実施形態でも、第4実施形態と同様の効果を得ることができる。また、本実施形態でも、第1開閉弁92及び第2開閉弁93を閉じ、ブリードライン96に設けられたブリードバルブ95を開くことで、バッファタンク91を低圧にしておくことができるため、第5実施形態と同様の効果を得ることができる。さらに、いずれのエンジンもガス運転中にないときには、第1開閉弁92及び第2開閉弁93を開き、ブリードライン96に設けられたブリードバルブ95を開くことで、ガス供給ライン3全体を減圧することができる。さらに、本実施形態では、エンジンごとにバッファタンクを設ける必要がないため、船内の省スペース化を図ることができる。 In this embodiment, the same effect as that of the fourth embodiment can be obtained. Also in this embodiment, the first on-off valve 92 and the second on-off valve 93 are closed and the bleed valve 95 provided on the bleed line 96 is opened, so that the buffer tank 91 can be kept at a low pressure. Effects similar to those of the fifth embodiment can be obtained. Further, when none of the engines is in gas operation, the first on-off valve 92 and the second on-off valve 93 are opened, and the bleed valve 95 provided on the bleed line 96 is opened, whereby the entire gas supply line 3 is decompressed. be able to. Furthermore, in this embodiment, since it is not necessary to provide a buffer tank for each engine, space saving in the ship can be achieved.
 <油運転とガス運転の切り換え>
 上記第1~6実施形態は、複数のDFDエンジンについて油運転とガス運転との切り換えを一台ずつ行う場合に、あるエンジンがガス運転にあるときに、別のエンジンへの供給ガス圧を低圧にしたり設定圧に維持したりすることができるため、特に有益である。また、あるエンジンにてガス運転を継続している一方で、別のエンジンのガス運転を開始する場合には、ガス流量が急速に変化するが、その際にもガス運転を継続しているエンジンには安定的にガス燃料の供給を行うことができる。以下、一例として、第6実施形態に係る船舶1Fについての油運転とガス運転との切り換え方法を説明する。
<Switching between oil operation and gas operation>
In the first to sixth embodiments, when switching between oil operation and gas operation one by one for a plurality of DFD engines, when one engine is in gas operation, the gas pressure supplied to another engine is reduced. This is particularly advantageous because it can be set to a constant pressure or maintained at a set pressure. In addition, when the gas operation of one engine is continued while the gas operation of another engine is started, the gas flow rate changes rapidly. The gas fuel can be stably supplied. Hereinafter, as an example, a method of switching between oil operation and gas operation for the ship 1F according to the sixth embodiment will be described.
 第6実施形態に係る船舶1Fにおいて、第1のエンジン51aがガス運転にあり、第2のエンジン51bが油運転にある場合を考える。第1のエンジン51aは、エンジン出力が80%で、要求圧が28MPaである。気化器42で気化された蒸発ガスの圧力は、29MPaで、第1の分岐路32の第1の圧力調整弁61aを調節することにより、第1のエンジン51aへの供給ガス圧は28MPaに保たれている。一方、第2のエンジン51bが油運転にあるため、第2の分岐路33の第2の圧力調整弁61bを全閉にし、かつ、第1開閉弁92及び第2開閉弁93を閉じ、ブリードバルブ95を開いた状態にして、第2の分岐路33における第2の圧力調整弁61bよりも下流側部分332のガス圧やバッファタンク91は、低圧に保たれている。 Consider the case where the first engine 51a is in gas operation and the second engine 51b is in oil operation in the ship 1F according to the sixth embodiment. The first engine 51a has an engine output of 80% and a required pressure of 28 MPa. The pressure of the evaporated gas vaporized by the vaporizer 42 is 29 MPa. By adjusting the first pressure regulating valve 61 a of the first branch path 32, the supply gas pressure to the first engine 51 a is kept at 28 MPa. I'm leaning. On the other hand, since the second engine 51b is in oil operation, the second pressure regulating valve 61b of the second branch path 33 is fully closed, the first on-off valve 92 and the second on-off valve 93 are closed, and the bleed With the valve 95 opened, the gas pressure and the buffer tank 91 in the downstream portion 332 of the second branch path 33 from the second pressure regulating valve 61b are kept at a low pressure.
 第2のエンジン51bが油運転にある間に、第2のエンジン51bへの供給ガス圧を一定の高圧(例えば設定圧力24MPa)に維持したスタンバイ状態をとっておくことは、第2のエンジン51bにおける油運転からガス運転までの切換時間を短縮することができるため好適である。油運転にある第2のエンジン51bをスタンバイ状態にするために、ブリードバルブ95を閉じて、第2開閉弁93を開き、また、ガス運転中の第1のエンジン51aへの供給ガス圧が急激に変動しないように第2の分岐路33の第2の圧力調整弁61bを微開にする。こうして、第2の分岐路33における第2の圧力調整弁61bよりも下流側部分332のガス圧を上昇させ、例えば設定圧力24MPaに近づいたところで第2の圧力調整弁61bを全閉にする。これにより、油運転にある第2のエンジン51bをガス運転のスタンバイ状態にすることができ、第2のエンジン51bにおける油運転からガス運転への切換時間を短縮できる。 While the second engine 51b is in the oil operation, keeping the standby state in which the gas pressure supplied to the second engine 51b is maintained at a constant high pressure (for example, a set pressure of 24 MPa) is the second engine 51b. This is preferable because the switching time from oil operation to gas operation can be shortened. In order to put the second engine 51b in the oil operation into the standby state, the bleed valve 95 is closed, the second on-off valve 93 is opened, and the supply gas pressure to the first engine 51a during the gas operation is suddenly increased. The second pressure regulating valve 61b of the second branch path 33 is slightly opened so as not to fluctuate. In this way, the gas pressure in the downstream portion 332 of the second branch path 33 relative to the second pressure regulating valve 61b is increased, and the second pressure regulating valve 61b is fully closed when, for example, the set pressure approaches 24 MPa. As a result, the second engine 51b in the oil operation can be set to the standby state of the gas operation, and the switching time from the oil operation to the gas operation in the second engine 51b can be shortened.
 第2の圧力調整弁61bを全閉にしても、微量のガスが第2の圧力調整弁61bの二次側に漏れて、第2のエンジン51bへの供給ガス圧が徐々に上昇する場合には、ブリードバルブ95の開度を調整して、第2のエンジン51bへの供給ガス圧をスタンバイ状態の設定圧力(例えば設定圧力24MPa)に維持することができる。 Even when the second pressure regulating valve 61b is fully closed, a small amount of gas leaks to the secondary side of the second pressure regulating valve 61b, and the supply gas pressure to the second engine 51b gradually increases. Can adjust the opening degree of the bleed valve 95 to maintain the supply gas pressure to the second engine 51b at a set pressure in a standby state (for example, a set pressure of 24 MPa).
 ガス運転のスタンバイ状態にある(そして、油運転にある)第2のエンジン51bをガス運転に切り換える場合、第2の切換弁63bを開くことで、バッファタンク91及び第2の切換弁63bの上流側のガスは、第2の切換弁63bの下流側のアキュムレータ64bに流入する。これにより、第2の分岐路33における第2の圧力調整弁61bよりも下流側部分332のガス圧は低下することになるが、バッファタンク91に設定圧力まで上昇させたガスが保持されていたことにより、第2の切換弁63bを開いた時の急激な圧力の低下は防ぐことができる。 When the second engine 51b in the gas operation standby state (and in the oil operation) is switched to the gas operation, the second switching valve 63b is opened, so that the upstream side of the buffer tank 91 and the second switching valve 63b. Side gas flows into the accumulator 64b on the downstream side of the second switching valve 63b. As a result, the gas pressure in the downstream portion 332 of the second branch path 33 from the second pressure regulating valve 61b is lowered, but the gas raised to the set pressure was held in the buffer tank 91. Thus, it is possible to prevent a sudden pressure drop when the second switching valve 63b is opened.
 一方、第1の分岐路32における第1の圧力調整弁61aよりも下流側部分322のガス圧が、急激に低下して許容範囲を逸脱しないように、且つ、第2のエンジン51bの要求圧(例えば25MPa)に調整されるように、高圧ポンプ41の回転数、流量制御弁43の開度、第1の圧力調整弁61a及び第2の圧力調整弁61bが制御される。これにより、第2のエンジン51bを油運転からガス運転に切り換えることができる。また、第1のエンジン51aと第2のエンジン51bとを、異なる供給ガス圧でガス運転させることができる。また、第2のエンジン51bのガス運転を開始する際に、第1の圧力調整弁61a及び第2の圧力調整弁61bを調整することによって、ガス運転中の第1のエンジン51aへの供給ガス圧の変動を許容範囲内に抑えつつ、第2のエンジン51bへの供給ガス圧を上昇させることができる。これにより、ガス運転中の第1のエンジン51aへのガス供給を安定的に継続させつつ、第2のエンジン51bのガス運転を開始することができる。 On the other hand, the gas pressure in the downstream portion 322 of the first branch path 32 relative to the first pressure regulating valve 61a suddenly decreases and does not deviate from the allowable range, and the required pressure of the second engine 51b. The rotation speed of the high-pressure pump 41, the opening degree of the flow control valve 43, the first pressure adjustment valve 61a, and the second pressure adjustment valve 61b are controlled so as to be adjusted to (for example, 25 MPa). Thereby, the second engine 51b can be switched from the oil operation to the gas operation. In addition, the first engine 51a and the second engine 51b can be operated with different supply gas pressures. Further, when starting the gas operation of the second engine 51b, the supply gas to the first engine 51a during the gas operation is adjusted by adjusting the first pressure adjustment valve 61a and the second pressure adjustment valve 61b. The supply gas pressure to the second engine 51b can be increased while suppressing the pressure fluctuation within an allowable range. Thereby, the gas operation of the second engine 51b can be started while the gas supply to the first engine 51a during the gas operation is stably continued.
 また、第2のエンジン51bのガス運転中において、第2開閉弁93を閉じ、ブリードバルブ95を開くことで、バッファタンク91を低圧にすることができ、ガス供給ラインの急激な圧力上昇が生じた場合に対応できる。また、第2開閉弁93を開き、ブリードバルブ95を閉じて、バッファタンク91の圧力を第2のエンジン51bへの供給ガス圧と同じにしておくこともでき、急なエンジン出力の上昇に起因する圧力変動を少なくすることができる。 Further, during the gas operation of the second engine 51b, the second on-off valve 93 is closed and the bleed valve 95 is opened, so that the buffer tank 91 can be set to a low pressure, and a sudden pressure increase in the gas supply line occurs. It can cope with the case. Further, the second on-off valve 93 can be opened, the bleed valve 95 can be closed, and the pressure in the buffer tank 91 can be made the same as the supply gas pressure to the second engine 51b, which is caused by a sudden increase in engine output. Pressure fluctuation can be reduced.
 このような油運転からガス運転への切り換えは、第6実施形態に係る船舶1Fに関して説明されたが、上記第1~5実施形態についても上記と同様の制御を行うことにより行うことができる。また、油運転とガス運転の切り換えのための上記制御方法は、一例にすぎず、例えば第1開閉弁92及び第2開閉弁93を開閉するタイミングなど、必ずしも上記制御方法に限定されない。 Such switching from the oil operation to the gas operation has been described with respect to the ship 1F according to the sixth embodiment, but the first to fifth embodiments can also be performed by performing the same control as described above. Further, the above control method for switching between the oil operation and the gas operation is merely an example, and is not necessarily limited to the above control method, for example, timing for opening and closing the first on-off valve 92 and the second on-off valve 93.
 <その他の実施形態>
 本発明は、上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変形が可能である。
<Other embodiments>
The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention.
 例えば、上記実施形態に係る船舶のガス供給システムでは、第1のエンジン51a及び第2のエンジン51bに供給される蒸発ガスが要求圧(例えば15~30MPa)より高くなるように、高圧ポンプ41でタンク2から供給される液化ガスを昇圧したが、本発明の昇圧装置は高圧ポンプ41に限られない。 For example, in the ship gas supply system according to the above-described embodiment, the high-pressure pump 41 is configured so that the evaporation gas supplied to the first engine 51a and the second engine 51b is higher than the required pressure (for example, 15 to 30 MPa). Although the pressure of the liquefied gas supplied from the tank 2 is increased, the pressure increasing device of the present invention is not limited to the high pressure pump 41.
 例えば、図7に、第1実施形態に係る船舶におけるガス供給システム10Aの変形例が示されている。図7のガス供給システム10A’は、液化ガスを貯留するタンク2と、タンク2内の液化ガスが気化してタンク2の上部に溜まったボイルオフガスを昇圧する圧縮機(本発明の昇圧装置の一例)46と、圧縮機46からエンジン51a,51bへ延びるガス供給ライン3を含む。また、ガス供給ライン3は、圧縮機46に接続された主流路31、主流路31と連通する2つの分岐路(第1の分岐路32と第2の分岐路33)を含む。さらに、ガス供給システム10A’は、ガス供給ライン3の主流路31における圧縮機46の下流側部分から分岐してタンク2へつながる還流ライン48と、還流ライン48に設けられた流量制御弁49及び再液化装置47を備えている。このタンク2のボイルオフガスを圧縮機46により、エンジンに供給される蒸発ガスが要求圧より高くなるように昇圧する。流量制御弁49を調整することにより、圧縮機46で昇圧された蒸発ガスの一部を再液化装置47で再液化し、タンク2に戻すことができる。このようなガス供給システム10A’を有する船舶1A’でも、第1実施形態と同様の効果を得ることができる。また、圧縮機46を含むガス供給システム10A’は、第2~6実施形態にも適用可能である。 For example, FIG. 7 shows a modification of the gas supply system 10A in the ship according to the first embodiment. The gas supply system 10A ′ of FIG. 7 includes a tank 2 that stores liquefied gas, and a compressor that boosts the boil-off gas that has accumulated in the upper portion of the tank 2 as a result of vaporization of the liquefied gas in the tank 2 (of the booster of the present invention). One example) 46 and a gas supply line 3 extending from the compressor 46 to the engines 51a and 51b. The gas supply line 3 includes a main flow path 31 connected to the compressor 46 and two branch paths (first branch path 32 and second branch path 33) communicating with the main flow path 31. Further, the gas supply system 10A ′ includes a reflux line 48 branched from the downstream side portion of the compressor 46 in the main flow path 31 of the gas supply line 3 and connected to the tank 2, a flow rate control valve 49 provided in the reflux line 48, and A reliquefaction device 47 is provided. The boil-off gas in the tank 2 is pressurized by the compressor 46 so that the evaporated gas supplied to the engine becomes higher than the required pressure. By adjusting the flow control valve 49, a part of the evaporated gas whose pressure has been increased by the compressor 46 can be reliquefied by the reliquefaction device 47 and returned to the tank 2. A ship 1A 'having such a gas supply system 10A' can obtain the same effects as those of the first embodiment. Further, the gas supply system 10A ′ including the compressor 46 can be applied to the second to sixth embodiments.
 上記実施形態では、エンジン51a,51bが、ガス運転の場合にガスを拡散燃焼するように構成されていたが、これに限定されない。例えば、エンジン51a,51bは、ガス運転の場合にガスを予混合燃焼するように構成されていてもよい。エンジン51a,51bが予混合燃焼をするように構成されている場合、エンジン51a,51bの要求圧は低圧であってもよく、要求圧まで昇圧する昇圧装置として簡易なものを使用してもよい。 In the above embodiment, the engines 51a and 51b are configured to diffuse and burn gas in the case of gas operation, but the present invention is not limited to this. For example, the engines 51a and 51b may be configured to premix and burn gas in the case of gas operation. When the engines 51a and 51b are configured to perform premixed combustion, the required pressure of the engines 51a and 51b may be low, or a simple booster that boosts the required pressure may be used. .
 また、上記実施形態では、プロペラが設けられた主軸を駆動する複数のディーゼルエンジンを搭載した船舶の一例として2機2軸式の船舶が説明されたが、本発明の船舶はこれに限られない。本発明の船舶は、例えば3機3軸式の船舶や4機4軸式の船舶であってもよいし、歯車装置を用いて2機1軸や4機2軸の船舶でもよい。 In the above embodiment, a two-machine two-shaft type ship has been described as an example of a ship equipped with a plurality of diesel engines that drive a main shaft provided with a propeller. However, the ship of the present invention is not limited to this. . The ship of the present invention may be, for example, a 3-machine 3-axis ship, a 4-machine 4-axis ship, or a 2-machine 1-axis or 4-machine 2-axis ship using a gear device.
 上述の第3実施形態の説明は、3機以上のエンジンを備えた船舶にも適用される。この場合、上述の「第1の分岐路」は、複数の分岐路のうちの任意の1つの分岐路を意味し、「第2の分岐路」は、複数の分岐路のうち第1の分岐路とは別の任意の1つの分岐路を意味する。例えば、ガス供給ラインが3つの分岐路を含む3機3軸式の船舶の場合、本発明の船舶は、3つの分岐路のうち2つの分岐路のみの間にクロスフィードラインが設けられている船舶のみならず、3つの分岐路のうちのどの2つの分岐路の間にもクロスフィードラインが設けられている船舶も含む。 The description of the third embodiment described above also applies to a ship equipped with three or more engines. In this case, the above-mentioned “first branch path” means an arbitrary one of the plurality of branch paths, and “second branch path” means the first branch of the plurality of branch paths. It means any one branch path different from the road. For example, in the case of a three-machine three-axis ship where the gas supply line includes three branch paths, the ship of the present invention is provided with a cross feed line between only two of the three branch paths. This includes not only a ship but also a ship in which a cross feed line is provided between any two of the three branches.
 上述の第4実施形態及び第6実施形態の説明は、3機以上のエンジンを備えた船舶にも適用される。この場合、上述の「第1の分岐路」は、複数の分岐路のうちの任意の1つの分岐路を意味し、「第2の分岐路」は、複数の分岐路のうち第1分岐路とは別の任意の1つの分岐路を意味する。例えば、ガス供給ラインが3つの分岐路を含む3機3軸式の船舶の場合、本発明の船舶は、3つの分岐路のうち2つの分岐路のみの間にクロスフィードラインが設けられている船舶のみならず、3つの分岐路のうちのどの2つの分岐路の間にもクロスフィードラインが設けられている船舶も含み、また、本発明の船舶は、例えば、3つの分岐路のそれぞれに、1つの共通のバッファタンクに延びたクロスフィードラインが設けられており、各クロスフィードラインに開閉弁が設けられている船舶も含む。また、第1~3の実施形態に係る船舶は、バッファタンクを備えていなくてもよい。 The above description of the fourth and sixth embodiments is also applicable to a ship equipped with three or more engines. In this case, the above-mentioned “first branch path” means any one of the plurality of branch paths, and “second branch path” means the first branch path among the plurality of branch paths. Means any one other branch path. For example, in the case of a three-machine three-axis ship where the gas supply line includes three branch paths, the ship of the present invention is provided with a cross feed line between only two of the three branch paths. This includes not only a ship but also a ship in which a cross-feed line is provided between any two of the three branches, and the ship of the present invention includes, for example, each of the three branches. A cross feed line extending to one common buffer tank is provided, and a ship in which an open / close valve is provided in each cross feed line is also included. Further, the ship according to the first to third embodiments may not include a buffer tank.
 さらに、図2~図6の構成は、適宜組合せ可能であり、例えば、図2に示すバイパス流路34a,34b及び圧力調整弁62a,62bを、図3~図6の構成に加えてもよい。 Furthermore, the configurations in FIGS. 2 to 6 can be appropriately combined. For example, the bypass channels 34a and 34b and the pressure regulating valves 62a and 62b shown in FIG. 2 may be added to the configurations in FIGS. .
 本発明は、ガスを燃料としたディーゼルエンジンを推進用主機とし、複数台の主機を搭載し、各主機でプロペラが設けられた主軸を駆動する多機多軸式の船舶に適用することができる。 INDUSTRIAL APPLICABILITY The present invention can be applied to a multi-machine / multi-shaft type ship in which a diesel engine using gas as a fuel is used as a propulsion main unit, a plurality of main units are mounted, and a main shaft provided with a propeller is provided in each main unit. .
 1A~1F 船舶
 10A~10F ガス供給システム
 2 タンク
 3 ガス供給ライン
 31 主流路
 32,33 分岐路
 34a,34b バイパス流路
 41 高圧ポンプ(昇圧装置)
 42 気化器
 43 流量制御弁
 44 還流ライン
 51a,51b エンジン
 52a,52b 主軸
 53a,53b プロペラ
 54a,54b 油供給ライン
 61a,61b 圧力調整弁
 62a,62b 圧力調整弁
 71a,71b バッファタンク
 73a,73b 開閉弁
 74a,74b ブリードバルブ
 75a,75b ブリードライン
 81 クロスフィードバルブ
 82 クロスフィードライン
 91 バッファタンク
 92,93 開閉弁
 94 クロスフィードライン
 95 ブリードバルブ
 96 ブリードライン
 
1A to 1F Ship 10A to 10F Gas supply system 2 Tank 3 Gas supply line 31 Main flow path 32, 33 Branch path 34a, 34b Bypass flow path 41 High-pressure pump (pressure booster)
42 Vaporizer 43 Flow control valve 44 Recirculation line 51a, 51b Engine 52a, 52b Main shaft 53a, 53b Propeller 54a, 54b Oil supply line 61a, 61b Pressure adjustment valve 62a, 62b Pressure adjustment valve 71a, 71b Buffer tank 73a, 73b Open / close valve 74a, 74b Bleed valve 75a, 75b Bleed line 81 Cross feed valve 82 Cross feed line 91 Buffer tank 92, 93 On-off valve 94 Cross feed line 95 Bleed valve 96 Bleed line

Claims (11)

  1.  液化ガスを貯留するタンクと、
     前記液化ガスが気化した蒸発ガスを燃料として使用する、プロペラが設けられた主軸を駆動する複数のディーゼルエンジンと、
     前記タンクから供給される液化ガス又は蒸発ガスを、前記ディーゼルエンジンに供給される蒸発ガスが前記複数のディーゼルエンジンの要求圧のうち最も高い要求圧より高くなるように昇圧する昇圧装置と、
     前記昇圧装置から前記複数のディーゼルエンジンへ延びる供給ラインであって、前記昇圧装置に接続された主流路および前記複数のディーゼルエンジンに接続された複数の分岐路を含む供給ラインと、
     前記複数の分岐路のそれぞれに設けられた圧力調整弁と、を備える船舶。
    A tank for storing liquefied gas;
    A plurality of diesel engines that drive a main shaft provided with a propeller, using the evaporated gas vaporized from the liquefied gas as fuel;
    A booster that boosts the liquefied gas or evaporative gas supplied from the tank so that the evaporative gas supplied to the diesel engine is higher than the highest required pressure among the required pressures of the plurality of diesel engines;
    A supply line extending from the booster to the plurality of diesel engines, including a main flow path connected to the booster and a plurality of branches connected to the plurality of diesel engines;
    And a pressure regulating valve provided in each of the plurality of branch paths.
  2.  前記昇圧装置は、前記液化ガスを昇圧するポンプであり、前記主流路には、前記ポンプから吐出された液化ガスを気化させる気化器が設けられている、請求項1に記載の船舶。 The ship according to claim 1, wherein the booster is a pump that boosts the liquefied gas, and the main flow path is provided with a vaporizer that vaporizes the liquefied gas discharged from the pump.
  3.  前記複数のディーゼルエンジンのそれぞれが要求する圧力に応じて、前記圧力調整弁を制御する制御装置と、
     前記主流路における前記ポンプと前記気化器との間にある部分から分岐して前記タンクへつながる還流ラインと、
     前記還流ラインに設けられた流量制御弁と、を更に備え、
     前記制御装置は、前記複数のディーゼルエンジンのそれぞれが要求する圧力に応じて、前記ポンプ及び前記流量制御弁を制御する、請求項2に記載の船舶。
    A control device for controlling the pressure regulating valve according to the pressure required by each of the plurality of diesel engines;
    A reflux line branched from a portion between the pump and the vaporizer in the main flow path and connected to the tank;
    A flow rate control valve provided in the reflux line,
    The marine vessel according to claim 2, wherein the control device controls the pump and the flow control valve according to a pressure required by each of the plurality of diesel engines.
  4.  前記圧力調整弁の一次側と二次側を連通するバイパス流路と、
     前記バイパス流路に設けられた圧力調整弁又は開閉弁と、を更に備える、請求項1~3のいずれか一項に記載の船舶。
    A bypass passage communicating the primary side and the secondary side of the pressure regulating valve;
    The ship according to any one of claims 1 to 3, further comprising a pressure regulating valve or an on-off valve provided in the bypass flow path.
  5.  前記複数の分岐路に、前記圧力調整弁の下流側でそれぞれ連通する複数のバッファタンクと、
     前記複数の分岐路のそれぞれにおける圧力調整弁の下流側部分と前記複数のバッファタンクのそれぞれとの連通部分に設けられた開閉弁と、
     前記複数のバッファタンクのそれぞれに接続されたブリードラインと、
     前記ブリードラインに設けられたブリードバルブと、を更に備える、請求項1~3のいずれか一項に記載の船舶。
    A plurality of buffer tanks respectively communicating with the plurality of branch paths on the downstream side of the pressure regulating valve;
    An on-off valve provided in a communication portion between the downstream portion of the pressure regulating valve in each of the plurality of branch paths and each of the plurality of buffer tanks;
    A bleed line connected to each of the plurality of buffer tanks;
    The marine vessel according to any one of claims 1 to 3, further comprising a bleed valve provided on the bleed line.
  6.  前記複数の分岐路のうちの第1分岐路における圧力調整弁の下流側部分と前記複数の分岐路のうち前記第1分岐路とは別の第2分岐路における圧力調整弁の下流側部分とを連通するクロスフィードラインと、
     前記クロスフィードラインに設けられたクロスフィードバルブと、を更に備える、請求項1~3のいずれか一項に記載の船舶。
    A downstream portion of the pressure regulating valve in the first branch path of the plurality of branch paths, and a downstream portion of the pressure regulating valve in a second branch path different from the first branch path of the plurality of branch paths; A cross feed line that communicates with
    The ship according to any one of claims 1 to 3, further comprising a cross feed valve provided in the cross feed line.
  7.  前記複数の分岐路のうちの第1分岐路における圧力調整弁の下流側部分と前記複数の分岐路のうちの前記第1分岐路とは別の第2分岐路における圧力調整弁の下流側部分とを連通するクロスフィードラインと、
     前記クロスフィードラインに設けられたバッファタンクと、
     前記クロスフィードラインにおける前記バッファタンクと前記第1分岐路との間の部分に設けられた第1開閉弁と、
     前記クロスフィードラインにおける前記バッファタンクと前記第2分岐路との間の部分に設けられた第2開閉弁と、を更に備える、請求項1~3のいずれか一項に記載の船舶。
    The downstream portion of the pressure regulating valve in the first branch path of the plurality of branch paths and the downstream portion of the pressure regulating valve in the second branch path different from the first branch path of the plurality of branch paths. A cross-feed line that communicates with
    A buffer tank provided in the cross-feed line;
    A first on-off valve provided in a portion of the cross feed line between the buffer tank and the first branch path;
    The marine vessel according to any one of claims 1 to 3, further comprising a second on-off valve provided at a portion of the cross feed line between the buffer tank and the second branch path.
  8.  前記クロスフィードラインの前記バッファタンクに接続されたブリードラインと、
     前記ブリードラインに設けられたブリードバルブと、を更に備える、請求項7に記載の船舶。 
    A bleed line connected to the buffer tank of the cross-feed line;
    The ship according to claim 7, further comprising a bleed valve provided in the bleed line.
  9.  前記ディーゼルエンジンは、油のみを燃料として使用する油運転とガスのみ又は油とガスの両方を燃料として使用するガス運転とで切り換え可能であり、油運転の場合は油を拡散燃焼し、ガス運転の場合はガスを拡散燃焼する二元燃料ディーゼルエンジンである、請求項1~3のいずれか一項に記載の船舶。 The diesel engine can be switched between an oil operation using only oil as a fuel and a gas operation using only gas or both oil and gas as fuel. In the case of oil operation, the oil is diffusely burned and gas operation is performed. The ship according to any one of claims 1 to 3, which is a dual fuel diesel engine that diffuses and burns gas.
  10.  前記ディーゼルエンジンは、油のみを燃料として使用する油運転とガスのみ又は油とガスの両方を燃料として使用するガス運転とで切り換え可能であり、油運転の場合は油を拡散燃焼し、ガス運転の場合はガスを予混合燃焼する二元燃料ディーゼルエンジンである、請求項1~3のいずれか一項に記載の船舶。 The diesel engine can be switched between an oil operation using only oil as a fuel and a gas operation using only gas or both oil and gas as fuel. In the case of oil operation, the oil is diffusely burned and gas operation is performed. The ship according to any one of claims 1 to 3, which is a dual fuel diesel engine that premixes and burns gas.
  11.  前記ディーゼルエンジンは、ガス燃料にて運転する際に、前記ディーゼルエンジンの出力に応じて要求圧が変化することを特徴とする、請求項1~3のいずれか一項に記載の船舶。
     
     
     
    The ship according to any one of claims 1 to 3, wherein when the diesel engine is operated with gas fuel, a required pressure changes according to an output of the diesel engine.


PCT/JP2015/004201 2014-08-29 2015-08-21 Ship WO2016031211A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580025565.8A CN106458310B (en) 2014-08-29 2015-08-21 Ship
KR1020177001086A KR20170015512A (en) 2014-08-29 2015-08-21 Ship

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-176350 2014-08-29
JP2014176350A JP2016049881A (en) 2014-08-29 2014-08-29 Ship

Publications (1)

Publication Number Publication Date
WO2016031211A1 true WO2016031211A1 (en) 2016-03-03

Family

ID=55399127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004201 WO2016031211A1 (en) 2014-08-29 2015-08-21 Ship

Country Status (4)

Country Link
JP (1) JP2016049881A (en)
KR (1) KR20170015512A (en)
CN (1) CN106458310B (en)
WO (1) WO2016031211A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110939531A (en) * 2018-09-21 2020-03-31 罗伯特·博世有限公司 Fuel delivery device for internal combustion engine
CN110939532A (en) * 2018-09-21 2020-03-31 罗伯特·博世有限公司 Fuel delivery device for internal combustion engine
CN116557776A (en) * 2023-07-10 2023-08-08 亿昇(天津)科技有限公司 Magnetic suspension centrifugal air compressor system and control method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6648374B2 (en) * 2016-10-26 2020-02-14 株式会社三井E&Sマシナリー Fuel gas supply system, ship, and fuel gas supply method
JP6668566B2 (en) * 2017-03-31 2020-03-18 株式会社三井E&Sマシナリー Fuel gas supply system, ship, and fuel gas supply method
DE102017215886A1 (en) * 2017-09-08 2019-03-14 Man Diesel & Turbo Se More engine plant
JP6982439B2 (en) * 2017-09-08 2021-12-17 川崎重工業株式会社 Ship
JP7464478B2 (en) 2020-08-24 2024-04-09 三菱造船株式会社 Tank systems, ships
CN114576044A (en) * 2021-11-18 2022-06-03 上海江南长兴造船有限责任公司 Gas supply system of dual-fuel generator and ship comprising same
CN115303432A (en) * 2022-10-09 2022-11-08 中国海洋大学 Offshore exploration platform

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003227608A (en) * 2002-02-05 2003-08-15 Mitsubishi Heavy Ind Ltd Treatment apparatus for liquefied natural gas and carrying vessel for liquefied natural gas
JP2005308149A (en) * 2004-04-23 2005-11-04 Iwatani Internatl Corp Demand equipment interlocking type cryogenic liquefied gas feeder
JP2010173483A (en) * 2009-01-29 2010-08-12 Mitsubishi Heavy Ind Ltd Liquefied fuel carrying ship and propulsion system therefor
JP2013193503A (en) * 2012-03-16 2013-09-30 Kawasaki Heavy Ind Ltd Ship propelling system and ship
JP2013210148A (en) * 2012-03-30 2013-10-10 Mitsubishi Heavy Ind Ltd Ship, device for supplying fuel, method of supplying liquified fuel gas to propellant main engine
JP2014508889A (en) * 2011-03-11 2014-04-10 デウ シップビルディング アンド マリーン エンジニアリング カンパニー リミテッド Offshore structure fuel supply system with reliquefaction device and high pressure natural gas injection engine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59137345U (en) * 1983-03-03 1984-09-13 株式会社クボタ gas engine
JP2005083341A (en) * 2003-09-11 2005-03-31 Sumitomo Metal Ind Ltd Method for fuel gas supply and its device
CN201013456Y (en) * 2007-03-15 2008-01-30 李勇 Diesel oil-LNG electrically controlled dual-fuel engine system
CN103562536A (en) * 2011-03-22 2014-02-05 大宇造船海洋株式会社 Method and system for supplying fuel to high-pressure natural gas injection engine
KR20140001569A (en) * 2012-06-27 2014-01-07 삼성중공업 주식회사 Ship propelled by liquefied fuel gas
CN203162531U (en) * 2013-01-23 2013-08-28 国鸿液化气机械工程(大连)有限公司 High-pressure gas supply system of marine power plant

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003227608A (en) * 2002-02-05 2003-08-15 Mitsubishi Heavy Ind Ltd Treatment apparatus for liquefied natural gas and carrying vessel for liquefied natural gas
JP2005308149A (en) * 2004-04-23 2005-11-04 Iwatani Internatl Corp Demand equipment interlocking type cryogenic liquefied gas feeder
JP2010173483A (en) * 2009-01-29 2010-08-12 Mitsubishi Heavy Ind Ltd Liquefied fuel carrying ship and propulsion system therefor
JP2014508889A (en) * 2011-03-11 2014-04-10 デウ シップビルディング アンド マリーン エンジニアリング カンパニー リミテッド Offshore structure fuel supply system with reliquefaction device and high pressure natural gas injection engine
JP2013193503A (en) * 2012-03-16 2013-09-30 Kawasaki Heavy Ind Ltd Ship propelling system and ship
JP2013210148A (en) * 2012-03-30 2013-10-10 Mitsubishi Heavy Ind Ltd Ship, device for supplying fuel, method of supplying liquified fuel gas to propellant main engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110939531A (en) * 2018-09-21 2020-03-31 罗伯特·博世有限公司 Fuel delivery device for internal combustion engine
CN110939532A (en) * 2018-09-21 2020-03-31 罗伯特·博世有限公司 Fuel delivery device for internal combustion engine
CN116557776A (en) * 2023-07-10 2023-08-08 亿昇(天津)科技有限公司 Magnetic suspension centrifugal air compressor system and control method
CN116557776B (en) * 2023-07-10 2023-09-26 亿昇(天津)科技有限公司 Magnetic suspension centrifugal air compressor system and control method

Also Published As

Publication number Publication date
CN106458310B (en) 2018-08-28
JP2016049881A (en) 2016-04-11
CN106458310A (en) 2017-02-22
KR20170015512A (en) 2017-02-08

Similar Documents

Publication Publication Date Title
WO2016031211A1 (en) Ship
JP6873116B2 (en) Gas treatment system and ships including it
JP6630144B2 (en) Ship
JP5752804B2 (en) Fuel supply system and method of operating fuel supply system
WO2017104633A1 (en) Ship
JP6678077B2 (en) Ship
JP6389404B2 (en) Gas supply system and ship equipped with the same
KR20140138018A (en) Hybrid fuel supply system and method for a ship engine
JP6220432B2 (en) Method and system for electric steam supply system
JP7162380B2 (en) Space-intensive LNG fuel supply system for small ships
KR102453001B1 (en) Fuel gas supplying apparatus and method for vessel
JP6401544B2 (en) Gas supply system and ship equipped with the same
JP2017110797A (en) Marine vessel
KR20140052814A (en) Fuel supply system and method for ship engines
WO2017078155A1 (en) Ship
JP6670088B2 (en) Ship
JP6457760B2 (en) Ship
CN107208559B (en) System and method for controlling fuel supply of ship engine
KR102200368B1 (en) Gas Treatment System and Vessel having the same
KR102589458B1 (en) Hybrid generation and propulsion system and method for a vessel
JP6461541B2 (en) Ship
KR20150076484A (en) System for supplying fuel gas in ships
KR20150083665A (en) Vent master unit and lng carrier having the same
KR20120080337A (en) Compression system for reducing excessive boil off gas
KR102241820B1 (en) Gas Treatment System and Vessel having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836462

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177001086

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15836462

Country of ref document: EP

Kind code of ref document: A1