WO2016029635A1 - 冷热源互补空冷式多功能中央空调机 - Google Patents

冷热源互补空冷式多功能中央空调机 Download PDF

Info

Publication number
WO2016029635A1
WO2016029635A1 PCT/CN2015/071149 CN2015071149W WO2016029635A1 WO 2016029635 A1 WO2016029635 A1 WO 2016029635A1 CN 2015071149 W CN2015071149 W CN 2015071149W WO 2016029635 A1 WO2016029635 A1 WO 2016029635A1
Authority
WO
WIPO (PCT)
Prior art keywords
cold
heat source
heating
heat
refrigeration
Prior art date
Application number
PCT/CN2015/071149
Other languages
English (en)
French (fr)
Inventor
吕瑞强
Original Assignee
吕瑞强
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吕瑞强 filed Critical 吕瑞强
Publication of WO2016029635A1 publication Critical patent/WO2016029635A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • the utility model relates to an air-cooling multifunctional central air conditioner, in particular to a cold and heat source complementary air-cooling multifunctional central air conditioner, which is composed of a cold exchanger, a heat exchanger and a cold and heat source complementary device.
  • the heat source complementer recovers the waste heat discharged from the air conditioner during low-cost recovery, and produces domestic hot water to meet the hot water demand of public buildings such as hotels.
  • the cold and heat source complementary air-cooled multi-function central air conditioner has the functions of separate cooling and separate production of hot water. It is a low-carbon energy-saving technology.
  • Air conditioning often only considers the cooling process, and the heat generated by the condenser should be set to a heat dissipation system.
  • the object of the embodiments of the present invention is to provide a cold-heat source complementary air-cooling multifunctional central air conditioner with better reliability, and to heat the compression loop evaporation coil and the refrigeration compression.
  • the loop evaporation coils are arranged in the same shell to form a cold and heat source complement. Due to the heat absorption of the heating coil of the heating compression circuit and the heat dissipation of the cooling coil of the refrigeration compression circuit, the two sources complement the cold and heat sources in the cold and heat source complementary device, thereby achieving the purpose of cooling one end of the unit and producing hot water at the other end.
  • the fan is cooled or dissipated in the cold and heat source complementary device, and the hot compression circuit and the refrigeration compression circuit are controlled to operate smoothly and efficiently.
  • a cold and heat source complementary air-cooling multifunctional central air conditioner comprising a total controller, a cold exchanger, a heat exchanger and a cold and heat source complement, wherein the cold exchanger and the heat exchanger are respectively arranged in a cold heat source Between the two ends of the complement, and consisting of a heat exchanger, a 1-4 compressor, a condensing coil, a heating agent storage tank, an expansion valve, an evaporation coil, and a gas-liquid separator, one to four heating compression circuits are used.
  • the equipment also has a compressor at the heating end, a heating agent storage tank, an expansion valve at the heating end, a gas-liquid separator at the refrigeration end, a compressor, a refrigerant storage tank, an expansion valve at the refrigeration end, and a gas-liquid separator at the refrigeration end;
  • Fan switch controller and the overall controller of the associated output signal line; compression circuit heating and cooling circuit are respectively provided with a compression start controller, and the controller starts the overall controller associated output signal line.
  • the cold exchanger is selected to be one of a volumetric, shell-and-tube or plate heat exchanger.
  • the heat exchanger is selected to be one of a volumetric type, a shell-and-tube type, and a plate type heat exchanger.
  • the heat exchanger is a volumetric heat exchanger
  • the heat exchanger is internally provided with a temperature-controlled electric heater, and the number of temperature-controlled electric heaters is 1-4, and the temperature-controlled electric heater is controlled.
  • the device is connected to the output signal line of the overall controller.
  • the heating compression circuit is not limited to a road arrangement such as a refrigeration compression circuit.
  • the number of internal fans of the cold and heat source complement is 1-4, and the fan start controller is connected to the output signal line of the overall controller.
  • the refrigerating end of the unit is further provided with a four-way switching valve, and a cold exchanger, another 1-4 sets of compressors, a condenser, a refrigerant storage tank, an expansion valve, a condensing coil, and a gas-liquid separator. Together form one to four refrigeration compression circuits.
  • the present invention provides a cold-heat source complementary air-cooling multifunctional central air conditioner, which has the advantages of simple structure and convenient use, and is composed of a cold exchanger, a heat exchanger and a cold heat source.
  • the complementary device is composed of three parts, and the waste heat discharged from the air-conditioning and refrigeration is recovered at a low cost through the cold and heat source complementary device, and the domestic hot water is produced to meet the hot water demand of a public building such as a hotel, and the embodiment of the present invention has separate refrigeration and separate production.
  • the function of hot water belongs to low-carbon energy-saving technology.
  • the compressor can be operated at a low pressure under the premise of ensuring the cooling and heating efficiency, thereby reducing energy consumption.
  • FIG. 1 is a flow chart showing the principle of a cold and heat source complementary air-cooling multifunctional single-effect central air conditioner according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic flow chart of the principle of the cold and heat source complementary air-cooling multi-function double-effect central air conditioner of the second embodiment of the utility model.
  • FIG. 3 is a schematic flow chart of the heat exchanger and the cold exchanger of the embodiment 3 of the present invention, which are both cold and heat source complementary air-cooling multi-function double-effect central air conditioners.
  • FIG. 4 is a schematic flow chart of the refrigeration cycle and the heating cycle of the fourth embodiment of the present invention, which are two-way parallel cold-heat source complementary air-cooling multi-function double-effect central air conditioner.
  • single effect means that the refrigeration cycle of the refrigeration end of the unit does not have a four-way switching valve, and the functions of the evaporator and the condenser are not interchangeable.
  • double effect means that the refrigeration cycle of the unit is equipped with a four-way switching valve, and the evaporator and condenser can realize the function interchange.
  • Heat exchanger also called “cold water heater”
  • the dotted line indicates the control relationship of the total controller to the connected device.
  • the utility model relates to a cold and heat source complementary air-cooling multifunctional central air conditioner, which is arranged in the same shell side by the heating compression circuit evaporation coil and the refrigeration compression circuit condensing coil, and the heating end compressor and the heating Agent storage tank, heating end expansion valve, heating end gas-liquid separator, refrigeration end compressor, refrigerant storage tank, refrigeration end expansion valve, refrigeration end gas-liquid separator, four-way switching valve, etc.
  • the device also called “external host”
  • the heat source of the by-product of the refrigeration end is supplied as a heat source, and the cold and heat sources are complemented, thereby achieving the purpose of producing hot water at low cost by utilizing the waste heat discharged from the air conditioner.
  • one or more fans are placed in the cold and heat source complement (also called "external host").
  • the function of the fan is to discharge the cooling on the one hand, to ensure that the surplus cooling capacity does not affect the normal operation of the heating cycle of the heating end; on the other hand, the heat is exhausted to ensure that the surplus heat does not affect the normal operation of the refrigeration cycle of the refrigeration end. This ensures smooth and efficient operation of the entire system.
  • the total controller can control the smooth operation of the whole unit, on the other hand, it can control the independent operation of the cooling end and the heating end as well as the independent operation of the temperature-controlled electric heater.
  • the heating end alone performs "compression - condensation - throttling - evaporation - compression"
  • the cycle heats up the water in the condenser; the refrigeration end alone completes the "compression - condensation - throttling - evaporation - compression” cycle, and the heat is removed from the evaporator.
  • the refrigeration end When it is not necessary to produce hot water, the refrigeration end operates separately to realize the air conditioning function; when the refrigeration end is stopped, the heating end can independently operate to produce hot water; when the heating end heating cycle is not started, the temperature control can be started. Electric heaters produce hot water.
  • the stop operation of the heating cycle does not affect the normal operation of the refrigeration cycle; the shutdown of the refrigeration cycle does not affect the normal operation of the heating cycle.
  • the compression circuit operation of the cooling end and the heating end and the operation of the fan are all automatically controlled or selectively controlled by the overall controller.
  • the external host is installed outdoors, and the heat exchanger and cold exchanger are installed indoors.
  • single effect means that the refrigeration cycle of the refrigeration end of the unit does not have a four-way switching valve, and the functions of the evaporator and the condenser are not interchangeable.
  • double effect refers specifically to the four-way switching valve of the refrigeration cycle of the unit, and the evaporator and condenser can realize the function interchange.
  • Embodiment 1 A cold and heat source complementary air-cooled single-effect multi-function central air conditioner. see picture 1.
  • the heating end is composed of a compression circuit
  • the cooling end is composed of a compression circuit
  • the heating end and the refrigerating end are synchronously started or separately activated by the main controller 20.
  • the working principle of the cooling side is:
  • the refrigerant compressor 11 pressurizes the gaseous refrigerant and sends it to the refrigeration end condensing coil 13.
  • the refrigerant becomes liquid and radiates heat in the condensing coil 13 of the refrigerating end.
  • the condensed refrigerant enters the refrigerating end evaporation coil 18 through the refrigerant storage tank 16 and the refrigerating end expansion valve 17, and evaporates and vaporizes in the refrigerating end evaporating coil 18, and absorbs a large amount of heat while vaporizing, so that the cold exchanger 12 cool down.
  • the intercooled fluid enters the shell side of the cold exchanger 12 through the intercooling fluid inlet 15 and absorbs the cold amount to become a cryogenic fluid, which is led out through the cryogenic fluid outlet 14.
  • the vaporized refrigerant is removed by the refrigerant gas-liquid separator 22, and then sucked into the refrigerant compressor 11 for the next refrigeration cycle.
  • the working principle of the heating end is:
  • the heating end compressor 1 pressurizes the gaseous heating agent and feeds it into the heating end condensing coil 3.
  • the heating agent becomes liquid in the heating coil condensing coil 3 and emits heat, so that the water in the heat exchanger 2 is gradually heated.
  • the condensed heating agent enters the heating end evaporation coil 8 through the heating agent storage tank 6 and the heating end expansion valve 7, and evaporates and vaporizes in the evaporation coil 8 of the heating end, and absorbs heat and discharges and discharges during vaporization.
  • the cold amount enters the cold heat source complement (also called "external host") 10 shell side.
  • the vaporized heating agent is removed by the heating end gas-liquid separator 23 and then sucked into the heating end compressor 1 for the next heating cycle.
  • the medium-temperature water enters the shell side of the heat exchanger 2 through the medium-temperature water inlet 5, and absorbs heat to become high-temperature water, which is led out through the high-temperature water outlet 4.
  • the heat discharged from the cooling end condensing coil 13 and the heat absorbed by the heating end evaporation coil 8 are mutually in the cold heat source complementary device (also referred to as "external host") 10. Compensation, when the thermal balance cannot be reached, the external host fan 9 discharges the surplus heat or cooling into the air to ensure that the internal temperature of the cold and heat source complement (also called “external host”) 10 is within the normal range.
  • the refrigeration end cycle does not start.
  • the heating end cycle can start the production of hot water separately; in the case of the winter cold weather heating end cycle does not start, the temperature on the heat exchanger 2 can be separately started.
  • the electric heater 21 produces hot water. At this time, the heat exchanger 2 becomes an electric water heater.
  • the temperature-controlled electric heater 21 can be controlled to be activated by the overall controller 20 or manually.
  • Embodiment 2 A cold and heat source complementary air-cooled double-effect multifunctional central air conditioner. See Figure 2.
  • FIG. 2 is a schematic flow chart of a cold-heat source complementary air-cooling double-effect multi-function central air conditioner.
  • the refrigeration indoor cooling condition, the heating end working principle and the temperature compensation control principle are completely the same as those in the first embodiment, and will not be described here. The difference is: the cold-heat source complementary air-cooled double-effect multi-function central air conditioner refrigeration end compression circuit adds a four-way switching valve 19, with reverse cycle function, that is, the original refrigeration end condition changes after the summer, the function becomes cold
  • the exchanger generates heat and the external host side is chilled. Under these conditions, the cold and heat sources cannot be complemented.
  • the double-effect air conditioner can be switched to the cold heat exchanger by the four-way switching valve, and can be operated independently; the hot water can be independently operated by independently heating the heating end.
  • the temperature-controlled electric heater can also be operated independently to produce hot water.
  • Embodiment 3 The heat exchanger and the cold exchanger are both plate-changing cold and heat source complementary air-cooling multifunctional double-effect central air conditioners. See Figure 3.
  • Fig. 3 is a schematic flow chart of the principle of the cold-heat source complementary air-cooling multi-function double-effect central air conditioner with the heat exchanger and the cold exchanger being replaced by the plate, the refrigeration condition of the refrigeration end, the working principle of the heating end, the principle of temperature compensation control and Embodiment 2 is identical and will not be described here. The difference is that the heat exchanger 2 and the cold exchanger 12 in this system are both plate heat exchangers.
  • the heating end condensing coil 3 is transformed into a condensing chamber 3; the refrigerating end evaporating coil 18 is transformed into an evaporation chamber 18.
  • Embodiment 4 The refrigeration cycle and the heating cycle are two parallel parallel heat and cold source complementary air-cooling multi-function double-effect central air conditioners. See Figure 4.
  • Figure 4 is a schematic flow chart of the principle of a two-way parallel cooling and heat source complementary air-cooling multi-function double-effect central air conditioner in a refrigeration cycle and a heating cycle.
  • two refrigeration compression circuits are connected in parallel at the refrigeration end,
  • the single compression loop ratio has greater power and greater cooling capacity;
  • the heating end has two heating compression circuits connected in parallel, which has greater power and greater heating capacity than a single compression loop.
  • the cooling end refrigeration condition, the working principle of the heating end, and the temperature compensation control principle are the same as those in the second embodiment, and will not be described here.
  • the number of the refrigeration compression circuit and the heating compression circuit may be the same or different.

Abstract

一种冷热源互补空冷式多功能中央空调机,由冷交换器(12)、热交换器(2)和冷热源互补器(10)三部分组成。通过冷热源互补器(10)将空调制冷时排出的废热低成本回收,生产出生活热水满足酒店等公共建筑洗浴等需求。冷热源互补空冷式多功能中央空调机同时具备单独制冷和单独生产热水的功能。在冷热源互补器(10)壳程设置风扇(9)散冷或散热,调控制热压缩回路和制冷压缩回路平稳高效运行,从而避免制冷端冷凝盘管(13)产热和制热端蒸发盘管(8)吸热出现不平衡。

Description

冷热源互补空冷式多功能中央空调机 技术领域
本实用新型涉及一种空冷式多功能中央空调机,尤其涉及一种冷热源互补空冷式多功能中央空调机,由冷交换器、热交换器和冷热源互补器三部分组成,通过冷热源互补器将空调制冷时排出的废热低成本回收,生产出生活热水满足酒店等公共建筑的热水需求。
背景技术
冷热源互补空冷式多功能中央空调机同时具备单独制冷和单独生产热水的功能。属于低碳节能技术。
技术问题
随着科技和经济的发展,空调和热泵应用越来越广,技术越来越成熟,但在市场应用当中,也存在出一些问题,比如:
(1)空调往往只考虑制冷过程,冷凝器产生的热量要设置一套散热系统排热。
(2)热泵往往只考虑制热过程,副产冷量不易收集利用。
(3)现有的单级制冷或制热设备,如要实现深度制冷或制热,其能效比必然降低。
(4)目前市场上已出现将空调废热回收,直接加热冷水的技术,但其回收效率低,未能实现能量充分利用。
技术解决方案
针对现有技术中的上述缺陷和问题,本实用新型实施例的目的是提供一种可靠性更好的冷热源互补空冷式多功能中央空调机,将制热压缩回路蒸发盘管和制冷压缩回路蒸发盘管设置在同一壳程内构成冷热源互补器。由于制热压缩回路蒸发盘管吸热而制冷压缩回路冷凝盘管放热,所以二者在冷热源互补器内实现冷热源互补,从而达到机组一端制冷,另一端生产热水的目的。
考虑机组制冷端冷凝盘管产热和制热端冷凝盘管吸热可能出现不平衡,在冷热源互补器设置风扇散冷或者散热,调控制热压缩回路和制冷压缩回路平稳高效运行。为了达到上述目的,本实用新型实施例的技术方案如下:
一种冷热源互补空冷式多功能中央空调机,包括总控制器、冷交换器、热交换器和冷热源互补器,其特征是:冷交换器、热交换器分别设置在冷热源互补器两端,且由热交换器、1—4组压缩机、冷凝盘管、制热剂储罐、膨胀阀、蒸发盘管、气液分离器组成1—4个制热压缩回路,以此构成机组的制热端;由冷交换器、另外1—4组压缩机、冷凝盘管、制冷剂储罐、膨胀阀、蒸发盘管、气液分离器组成1—4个制冷压缩回路以此构成机组的制冷端;并且机组的制热端的蒸发盘管与机组的制冷端的冷凝盘管交错设置,共用一个开放壳程以构成冷热源互补器的主体;构成冷热源互补器的主要设备还有制热端的压缩机、制热剂储罐、制热端的膨胀阀、制冷端的气液分离器;压缩机、制冷剂储罐、制冷端的膨胀阀、制冷端的气液分离器;冷热源互补器上还设有风扇,风扇开关控制器与总控制器的输出信号线相联;制热压缩回路和制冷压缩回路均分别设置有启动控制器,且启动控制器与总控制器的输出信号线相联。
作为上述方案的优选,冷交换器选择设置为容积式、管壳式或者板式换热器三者之一。
作为上述方案的优选,热交换器选择设置为容积式、管壳式、板式换热器三者之一。
作为上述方案的优选,当热交换器为容积式换热器时,热交换器内部设置有温控电加热器,温控电加热器设置数量为1—4个,温控电加热器启动控制器与总控制器的输出信号线相联。
作为上述方案的优选,制热压缩回路不限于同制冷压缩回路等路设置。
作为上述方案的优选,冷热源互补器内部风扇设置数量为1—4个,风扇启动控制器与总控制器的输出信号线相联。
作为上述方案的优选,机组的制冷端还设有四通转换阀,与冷交换器、另外1—4组压缩机、冷凝器、制冷剂储罐、膨胀阀、冷凝盘管、气液分离器共同组成1—4个制冷压缩回路。
本实用新型实施例提供的一种冷热源互补空冷式多功能中央空调机,与现有技术相比,优点就在于:结构简单,方便使用,由冷交换器、热交换器和冷热源互补器三部分组成,通过冷热源互补器将空调制冷时排出的废热低成本回收,生产出生活热水满足酒店等公共建筑的热水需求,本实用新型实施例同时具备单独制冷和单独生产热水的功能,属于低碳节能技术。
有益效果
本实用新型的有益效果如下:
(1)、由于机组的制热端蒸发盘管吸热和制冷端冷凝管放热实现冷热源互补,所以在节能的前提下,达到了深度制冷和同步深度制热。热能和冷能都能得到有效利用。
(2)、压缩机工作温度范围窄,机组的制热端和制冷端效率提高,制冷、制热功耗降低。
(3)、与单纯热泵比,不需要依赖环境热源条件,系统简化,投资降低,能效比提高。
(4)、如选择合适的制冷剂(制热剂),在保证制冷制热功效的前提下能实现压缩机低压力工作,从而降低能耗。
附图说明
为了更清楚地说明本实用新型实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本实用新型实施例1的冷热源互补空冷式多功能单效中央空调机原理流程图。
图2是实用新型实施例2的冷热源互补空冷式多功能双效中央空调机原理流程图。
图3是本实用新型实施例3的热交换器、冷交换器均为板换的冷热源互补空冷式多功能双效中央空调机原理流程图。
图4是本实用新型实施例4的制冷循环、制热循环均为两路并联的冷热源互补空冷式多功能双效中央空调机原理流程图。
所谓“单效”,指机组的制冷端制冷循环不带四通转换阀,蒸发器、冷凝器功能不可互换。
所谓“双效”,特指机组的制冷端制冷循环带四通转换阀,蒸发器、冷凝器可实现功能互换。
图中:
1、制热端的压缩机
2、热交换器 (也叫“冷水加热器”)
3、制热端的冷凝盘管(冷凝腔)
4、高温水出口
5、中温水入口
6、制热剂储罐
7、制热端的膨胀阀
8、制热端的蒸发盘管
9、外置主机风扇
10、冷热源互补器(也叫“外置主机”)
11、制冷端的压缩机
12、冷交换器
13、制冷端的冷凝盘管
14、深冷流体出口
15、中冷流体入口
16、制冷剂储罐
17、制冷端的膨胀阀
18、制冷端的蒸发盘管(蒸发腔)
19、四通转换阀
20、总控制器
21、温控电加热器
22、制冷端的气液分离器
23、制热端的气液分离器
图中,虚线表示总控制器对所联接设备的控制关系。
本发明的最佳实施方式
下面将结合本实用新型的附图,对本实用新型的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
本实用新型涉及一种冷热源互补空冷式多功能中央空调机,将制热压缩回路蒸发盘管和制冷压缩回路冷凝盘管交错设置在同一壳程内,与制热端压缩机、制热剂储罐、制热端膨胀阀、制热端气液分离器、制冷端压缩机、制冷剂储罐、制冷端膨胀阀、制冷端气液分离器、四通转换阀等构成冷热源互补器(也叫“外置主机”),以此将制冷端副产的热量供给制热端作为热源,实现冷热源互补,从而达到利用空调制冷排出的废热低成本生产热水的目的。
考虑制冷端产热和制热端吸热可能出现不平衡,在冷热源互补器(也叫“外置主机”)内设置一个或多个风扇。风扇的作用一方面是排冷,保证富余冷量不影响制热端制热循环正常运行;另一方面是排热,保证富余热量不影响制冷端制冷循环正常运行。以此保证整个系统的平稳高效运行。
总控制器一方面可以控制整个机组平稳运行,另一方面可以控制制冷端独立运行和制热端以及温控电加热器独立运行。
根据公知的原理,制热端独自完成 “压缩——冷凝——节流——蒸发——压缩” 循环,在冷凝器放热加热水;制冷端独自完成 “压缩——冷凝——节流——蒸发——压缩” 循环,在蒸发器吸热排出冷量。
当不需要生产热水时,制冷端单独运行实现空调功能;当制冷端停运的情况下,制热端可独立运行生产热水;当制热端制热循环不启动时,可启动温控电加热器生产热水。
制热循环停止运行不影响制冷循环的正常运行;制冷循环停止运行也不影响制热循环的正常运行。
制冷端和制热端的压缩回路运行以及风扇的运转全部由总控制器自动控制或选择控制。
一般情况下,外置主机安装在室外,热交换器和冷交换器安装在室内。
所谓“单效”,指机组制冷端制冷循环不带四通转换阀,蒸发器、冷凝器功能不可互换。
所谓“双效”,特指机组制冷端制冷循环带四通转换阀,蒸发器、冷凝器可实现功能互换。
下面结合具体实施例,对本实用新型的具体实施方式进行说明:
实施例1:冷热源互补空冷式单效多功能中央空调机。见图1。
在冷热源互补空冷式单效多功能中央空调机中,制热端由一个压缩回路构成,制冷端由一个压缩回路构成。
制热端和制冷端通过总控制器20同步启动或单独启动。
制冷端的工作原理是:
制冷端压缩机11将气态的制冷剂加压并送入制冷端冷凝盘管13。制冷剂在制冷端冷凝盘管13内变成液态并放热。冷凝后的制冷剂经制冷剂储罐16、制冷端膨胀阀17进入制冷端蒸发盘管18,并在制冷端蒸发盘管18内蒸发汽化,汽化的同时要吸收大量的热量,使冷交换器12降温。中冷流体经中冷流体入口15进入冷交换器12壳程,吸收冷量后变为深冷流体,通过深冷流体出口14导出。汽化后的制冷剂经制冷端气液分离器22脱除液体后被吸入制冷端压缩机11进行下一个制冷循环。
制热端的工作原理是:
制热端压缩机1将气态的制热剂加压并送入制热端冷凝盘管3。制热剂在制热端冷凝盘管3内变成液态并放出热量,使热交换器2中的水逐渐加热。冷凝后的制热剂经制热剂储罐6、制热端膨胀阀7进入制热端蒸发盘管8,并在制热端蒸发盘管8内蒸发汽化,汽化时吸热排冷,排出冷量进入冷热源互补器(也叫“外置主机”)10壳程。汽化后的制热剂经制热端气液分离器23脱除液体后被吸入制热端压缩机1进行下一个制热循环。中温水经中温水入口5进入热交换器2壳程,吸收热量后变为高温水,通过高温水出口4导出。
制热循环和制冷循环同时运行的情况下,制冷端冷凝盘管13放出的热量与制热端蒸发盘管8吸收的热量在冷热源互补器(也叫“外置主机”)10内互相补偿,不能达到热平衡时由外置主机风扇9将富余的热量或冷量排至空气当中,保证冷热源互补器(也叫“外置主机”)10内部温度在正常范围之内。
当天气不热的情况下,制冷端循环不启动,此时制热端循环可单独启动生产热水;冬季严寒天气制热端循环不启动的情况下,可以单独启动热交换器2上的温控电加热器21生产热水。此时热交换器2变身为电热水器。
温控电加热器21可以由总控制器20控制启动,也可以手动开关。
本发明的实施方式
实施例2:冷热源互补空冷式双效多功能中央空调机。见图2。
图2是冷热源互补空冷式双效多功能中央空调机原理流程图,其制冷端室内制冷工况以及制热端工作原理、温度补偿控制原理与实施例1完全相同,这里就不赘述。所不同的是:冷热源互补空冷式双效多功能中央空调机制冷端压缩回路增加了四通转换阀19,具备逆循环功能,即夏季之后原来的制冷端工况变化,功能变为冷交换器产热,外置主机侧排冷。这种工况下不能实现冷热源互补。双效空调通过四通转换阀切换成冷交换器产热的工况,可以独立运行;制热端独立循环生产热水也可以独立运行。温控电加热器亦可以独立运行生产热水。
实施例3:热交换器、冷交换器均为板换的冷热源互补空冷式多功能双效中央空调机。见图3。
图3是热交换器、冷交换器均为板换的冷热源互补空冷式多功能双效中央空调机原理流程图,其制冷端制冷工况以及制热端工作原理、温度补偿控制原理与实施例2完全相同,这里就不赘述。所不同的是:这一系统中热交换器2和冷交换器12结构均为板式换热器。这里,制热端冷凝盘管3变身为冷凝腔3;制冷端蒸发盘管18变身为蒸发腔18。
实施例4:制冷循环、制热循环均为两路并联的冷热源互补空冷式多功能双效中央空调机。见图4。
图4是制冷循环、制热循环均为两路并联的冷热源互补空冷式多功能双效中央空调机原理流程图,在这一系统中,其制冷端有两个制冷压缩回路并联,与单压缩回路比,具有更大的功率和更强的制冷能力;制热端有两个制热压缩回路并联,与单压缩回路比,具有更大的功率和更强的制热能力。其制冷端制冷工况以及制热端工作原理、温度补偿控制原理与实施例2相同,这里就不赘述。
三压缩回路和四压缩回路以此类推。
在多压缩回路装置中,制冷压缩回路与制热压缩回路数目可以相同,也可以不同。
以上所述,仅为本实用新型的具体实施方式,但本实用新型的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本实用新型揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本实用新型的保护范围之内。因此,本实用新型的保护范围应所述以权利要求的保护范围为准。
工业实用性
序列表自由内容

Claims (7)

  1. 一种冷热源互补空冷式多功能中央空调机,包括总控制器、冷交换器、热交换器和冷热源互补器,其特征是:冷交换器、热交换器分别设置在冷热源互补器两端,且由热交换器、1—4组压缩机、冷凝盘管、制热剂储罐、膨胀阀、蒸发盘管、气液分离器组成1—4个制热压缩回路,以此构成机组的制热端;由冷交换器、另外1—4组压缩机、冷凝盘管、制冷剂储罐、膨胀阀、蒸发盘管、气液分离器组成1—4个制冷压缩回路以此构成机组的制冷端;并且制热端的蒸发盘管与制冷端的冷凝盘管交错设置,共用一个开放壳程以构成冷热源互补器的主体;构成冷热源互补器的主要设备还有制热端压缩机、制热剂储罐、制热端膨胀阀、制冷端气液分离器;压缩机、制冷剂储罐、制冷端膨胀阀、制冷端气液分离器;冷热源互补器上还设有风扇,风扇开关控制器与总控制器的输出信号线相联;制热压缩回路和制冷压缩回路均分别设置有启动控制器,且启动控制器与总控制器的输出信号线相联。
  2. 根据权利要求1所述的冷热源互补空冷式多功能中央空调机,其特征是:冷交换器选择设置为容积式、管壳式或者板式换热器三者之一。
  3. 根据权利要求1所述的冷热源互补空冷式多功能中央空调机,其特征是:热交换器选择设置为容积式、管壳式、板式换热器三者之一。
  4. 根据权利要求1所述的冷热源互补空冷式多功能中央空调机,其特征是:当热交换器为容积式换热器时,热交换器内部设置有温控电加热器,温控电加热器设置数量为1—4个,温控电加热器启动控制器与总控制器的输出信号线相联。
  5. 根据权利要求1所述的冷热源互补空冷式多功能中央空调机,其特征是:制热压缩回路不限于同制冷压缩回路等路设置。
  6. 根据权利要求1所述的冷热源互补空冷式多功能中央空调机,其特征是:冷热源互补器内部风扇设置数量为1—4个,风扇启动控制器与总控制器的输出信号线相联。
  7. 根据权利要求1所述的冷热源互补空冷式多功能中央空调机,其特征是:机组制冷端还设有四通转换阀,与冷交换器、另外1—4组压缩机、冷凝器、制冷剂储罐、膨胀阀、冷凝盘管、气液分离器共同组成1—4个制冷压缩回路。
PCT/CN2015/071149 2014-08-23 2015-01-20 冷热源互补空冷式多功能中央空调机 WO2016029635A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201420501121.X 2014-08-23
CN201420501121.XU CN204254937U (zh) 2014-08-23 2014-08-23 冷热源互补空冷式多功能中央空调机

Publications (1)

Publication Number Publication Date
WO2016029635A1 true WO2016029635A1 (zh) 2016-03-03

Family

ID=52959237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/071149 WO2016029635A1 (zh) 2014-08-23 2015-01-20 冷热源互补空冷式多功能中央空调机

Country Status (2)

Country Link
CN (1) CN204254937U (zh)
WO (1) WO2016029635A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106440445A (zh) * 2015-08-04 2017-02-22 吕瑞强 适用于低温环境的高效空气源热泵系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179924A (ja) * 1984-09-26 1986-04-23 Matsushita Electric Ind Co Ltd 空気調和機
CN2497237Y (zh) * 2001-09-04 2002-06-26 张珏今 列车用单元式双系统热泵型空调机
JP2003056495A (ja) * 2001-08-09 2003-02-26 Espec Corp ポンプ冷却装置
CN101210748A (zh) * 2006-12-28 2008-07-02 苏宇贵 空调热水复合机
CN103673123A (zh) * 2012-09-24 2014-03-26 Lg电子株式会社 用于加热和冷却的整体空调系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179924A (ja) * 1984-09-26 1986-04-23 Matsushita Electric Ind Co Ltd 空気調和機
JP2003056495A (ja) * 2001-08-09 2003-02-26 Espec Corp ポンプ冷却装置
CN2497237Y (zh) * 2001-09-04 2002-06-26 张珏今 列车用单元式双系统热泵型空调机
CN101210748A (zh) * 2006-12-28 2008-07-02 苏宇贵 空调热水复合机
CN103673123A (zh) * 2012-09-24 2014-03-26 Lg电子株式会社 用于加热和冷却的整体空调系统

Also Published As

Publication number Publication date
CN204254937U (zh) 2015-04-08

Similar Documents

Publication Publication Date Title
WO2012152199A1 (zh) 热泵热回收空调机组
CN102155813B (zh) 空调机组冷凝热驱动的热化学吸附制冷装置
CN101165435B (zh) 双效压缩式冷热水节能机组
CN102278795B (zh) 采用双套冷却盘管的中央空调供风系统
WO2011113295A1 (zh) 多功能空调、热水系统
CN112097356A (zh) 一种氟泵型机房风冷精密空调
WO2009018741A1 (fr) Type d'appareil de climatisation à semi-conducteurs thermoélectriques pour réfrigération et chauffage
WO2019140862A1 (zh) 一种隧道烘箱
WO2016029635A1 (zh) 冷热源互补空冷式多功能中央空调机
CN101398235A (zh) 三效多源式热泵机组
CN205332368U (zh) 一种自由冷却机房空调机组
WO2013010329A1 (zh) 热水空调系统
TW202113281A (zh) 相變蓄冷應急供冷系統
CN106352586A (zh) 一种双机头热源塔热泵机组
CN108518886B (zh) 消白烟高效烟气热水型溴化锂吸收式冷、热水机组
CN105258379A (zh) 热泵型太阳能蒸发式冷凝空调机组
CN113790486B (zh) 一体化机柜空调器及其控制方法
CN111156735B (zh) 一种升温型双效吸收-压缩复合式热泵余热回收系统
CN111351150B (zh) 一种热泵热回收型水风一体机组
CN2828612Y (zh) 电脑自动控制活塞式冷水机组制热水节能设备
CN203068704U (zh) 导风式直接蒸发分体热管换热器
CN206320879U (zh) 一种新型的地源空气源一体化空调机组
WO2020042459A1 (zh) 空调设备
CN201037714Y (zh) 高效多功能空气能源机组
CN206563448U (zh) 磁悬浮冷水机组与溴化锂热泵机组双运行系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836018

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15836018

Country of ref document: EP

Kind code of ref document: A1