WO2016027826A1 - 多孔質体の染色方法、光電極及び光電気モジュール - Google Patents

多孔質体の染色方法、光電極及び光電気モジュール Download PDF

Info

Publication number
WO2016027826A1
WO2016027826A1 PCT/JP2015/073211 JP2015073211W WO2016027826A1 WO 2016027826 A1 WO2016027826 A1 WO 2016027826A1 JP 2015073211 W JP2015073211 W JP 2015073211W WO 2016027826 A1 WO2016027826 A1 WO 2016027826A1
Authority
WO
WIPO (PCT)
Prior art keywords
dye
dyeing
semiconductor layer
substrate
base material
Prior art date
Application number
PCT/JP2015/073211
Other languages
English (en)
French (fr)
Inventor
壮一郎 鈴木
俊介 功刀
篤 生駒
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to KR1020177000315A priority Critical patent/KR20170044082A/ko
Priority to JP2016544227A priority patent/JPWO2016027826A1/ja
Priority to CN201580036635.XA priority patent/CN106471594A/zh
Publication of WO2016027826A1 publication Critical patent/WO2016027826A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for dyeing a porous body in a dye-sensitized solar cell, a photoelectrode produced using the dyeing method, and a photoelectric module including the photoelectrode.
  • a dye-sensitized solar cell has high photoelectric conversion efficiency and is inexpensive and easily mass-produced. Therefore, its structure and manufacturing method are widely studied.
  • a dye-sensitized solar cell includes a photoelectrode, a counter electrode, and an electrolytic solution or an electrolyte layer.
  • the photoelectrode is generally composed of a substrate, a transparent conductive layer, a semiconductor layer, and a sensitizing dye.
  • the semiconductor layer has a porous structure in many cases.
  • the main role of the sensitizing dye is to be excited by the irradiated light and emit electrons.
  • the main role of the semiconductor layer made of titanium oxide or the like is to accept the injection of electrons from the excited sensitizing dye and transport the electrons to the transparent conductive layer, and from the redox couple in the electrolyte or electrolyte layer to the sensitizing dye. It is to provide a reaction field that moves electrons.
  • Patent Document 1 discloses a dye sensitization that can be manufactured by forming a first electrode array and a pair of electrode arrays by RtoR method, assembling, sealing, and laminating these electrode arrays.
  • a solar cell array is disclosed (see FIGS. 15 and 20, etc.).
  • Patent Document 2 as described above, the sheet-like material wound up in a roll shape is unwound, the photovoltaic cell is processed on the upstream side while being transported, and wound again in the roll shape on the downstream side.
  • An apparatus for producing a dye-sensitized solar cell array having means for taking is disclosed.
  • the present invention has been made in view of the above circumstances, and uses a staining method for a porous body that enables the porous body to efficiently and easily carry a sufficient amount of a dye, and the staining method. It is an object of the present invention to provide a produced photoelectrode and a photoelectric module including the photoelectrode.
  • the method for dyeing a porous body of the present invention is a method for dyeing a porous body in which a porous body formed on the surface of a substrate is brought into contact with a solution containing a dye, and then the porous body is dried. And the step of bringing the porous body into contact with the solution installed along the transport path of the base material and drying the porous body downstream thereof while transporting the base material, The step is performed a plurality of times. According to the above method, the contact of the porous body with the solution and the drying can be repeated only by transporting the substrate.
  • the porous body dyeing method of the present invention is characterized in that, in the step, the transport direction (transport path) of the base material is meandered in the vertical direction. According to the said method, even if the length of a base material is expanded, the increase in the distance required for implementation of the dyeing
  • the porous body dyeing method of the present invention is characterized in that, in the step, the transport direction (transport path) of the base material is provided in a spiral shape.
  • the transport direction (transport path) of the base material is provided in a spiral shape.
  • the porous body dyeing method of the present invention is characterized in that the substrate is twisted around the center in the width direction of the substrate and is conveyed in one direction while being rotated. According to the above method, the substrate is twisted into a screw shape (that is, in a state of being squeezed starting from both ends in the longitudinal direction of the substrate), and conveyed while being rotated. Contact and drying can be repeated.
  • the photoelectrode of the present invention is produced using the method for staining a porous material.
  • the photoelectric module of the present invention includes the photoelectrode. According to the said structure, the photoelectrode with which sufficient quantity of pigment
  • a porous body dyeing method in which a porous body is efficiently and simply loaded with a sufficient amount of a dye, and a photoelectrode and a photoelectric module produced using the dyeing method.
  • the present invention achieves both a sufficient amount of dye support and improved production efficiency.
  • staining method a porous body staining method (hereinafter simply referred to as “staining method”), which is an embodiment to which the present invention is applied, will be described with reference to the drawings.
  • the drawings used in the following description are schematic, and the length, width, thickness ratio, and the like are not necessarily the same as the actual ones, and can be changed as appropriate.
  • the dyeing method of the present invention is preferably applied when a dye-sensitized solar cell is produced by the RtoR method, and a sufficient amount of a sensitizing dye is supported efficiently and simply on a porous semiconductor layer.
  • “Supporting a dye” means “dyeing”.
  • the dye is carried, for example, by adsorption of the dye. Therefore, in each embodiment to which the present invention described below is applied, an object manufactured using a dyeing method is described as a dye-sensitized solar cell.
  • the dye-sensitized solar cell is an example of an object manufactured using the dyeing method of the present invention, and the object is not limited to the dye-sensitized solar cell.
  • a sensitizing dye is also an example of a dye used in the staining method of the present invention, and the dye used in the staining method of the present invention is not particularly limited.
  • a conductive layer and a semiconductor layer made of porous titanium oxide or the like are laminated in this order on the surface of a substrate, and the sensitizing dye (dye) is supported on the titanium oxide layer.
  • a photoelectrode for a dye-sensitized solar cell and a counter electrode on which a conductive thin film such as platinum (Pt) is formed on the surface of the substrate are arranged at a predetermined interval, and an electrolyte solution is filled in the gap. It has the structure.
  • a semiconductor layer formed on the surface of a substrate is contacted with a solution containing a sensitizing dye (hereinafter referred to as “dye solution”), and the substrate is made porous downstream thereof.
  • a step of drying the body is referred to as “dyeing process”.
  • the porous body is contacted with the dye solution installed along the transport path while transporting the substrate, and the porous body is dried downstream thereof a plurality of times. Do.
  • drying does not necessarily require complete removal of the solvent used in the dye solution, and the solvent may remain as long as the object of the present invention can be achieved.
  • the amount of the solvent contained in the substrate after drying relative to the amount of the solvent contained in the substrate before drying (the mass of the substrate immediately before drying ⁇ the mass of the substrate before contacting with the dye solution)
  • the amount of residual solvent defined as a ratio (mass%) of the mass of the substrate to the mass of the substrate after drying is 90% by mass or less, it is included in the dried state.
  • the residual solvent amount is 60% by mass or less, more preferably 30% by mass or less, still more preferably 10% by mass or less, It is particularly preferable that the content be 3% by mass or less.
  • the residual solvent amount is about 3% by mass or less, it is difficult to transfer the solvent to the transport roll, which is preferable.
  • the residual solvent amount is about 2% by mass or less.
  • the specific drying method natural drying, air drying, heat drying, or a known method using an air knife or a hot lami roll as described below, and the residual solvent as described above.
  • the conditions can be selected as appropriate so as to obtain an amount.
  • FIG. 1 is a schematic diagram for explaining the staining method of the present embodiment.
  • the dyeing method of the present embodiment includes a porous semiconductor layer 11 (porous body) and a dye solution 12 formed on at least one of the front surface 10 a and the back surface 10 b of the substrate 10. And the step of drying the semiconductor layer 11 at the subsequent stage.
  • the “surface” refers to the plate surface of the substrate 10 facing upward at the start of the dyeing process.
  • the “back surface” refers to the plate surface of the base material 10 facing downward at the start of the dyeing process.
  • the material of the substrate 10 is not particularly limited as long as it is a material that can be processed into a long length and can be bent or wound, and is suitable for continuous production of a dye-sensitized solar cell by the RtoR method.
  • a material is preferably flexible. Specific examples include polyethylene terephthalate (PET).
  • a conductive layer (not shown) and the semiconductor layer 11 are laminated in this order on the surface that is dyed by applying the dyeing method of the present embodiment.
  • the material of the conductive layer include indium oxide / tin oxide (ITO), fluorine-doped tin oxide (FTO), zinc oxide, tin oxide, antimony-doped tin oxide (ATO), indium oxide / zinc oxide (IZO), and oxidation.
  • Transparent conductors such as gallium / zinc oxide (GZO) and titanium oxide, metals such as titanium, platinum, gold, silver, copper, chromium, nickel, tungsten, iron, and aluminum processed into mesh shapes, or these metals Among these, two or more kinds of alloys are exemplified, but not particularly limited. Among these materials, ITO is preferable in terms of high conductivity and transparency, and FTO is particularly preferable in terms of excellent heat resistance and weather resistance.
  • the material and thickness of the semiconductor layer 11 are not particularly limited, and are appropriately selected in consideration of the performance and design of the dye-sensitized solar cell.
  • An example of the material of the semiconductor layer 11 is titanium oxide (TiO 2 ).
  • the thickness of the semiconductor layer 11 is preferably 1 ⁇ m or more and 30 ⁇ m or less, and more preferably 3 ⁇ m or more and 20 ⁇ m or less.
  • the semiconductor layer 11 is a porous titanium oxide layer made of titanium oxide, it can be formed, for example, by applying a titanium oxide-containing paste on the conductive layer and performing a heat treatment (that is, firing).
  • the application method of the titanium oxide-containing paste is not particularly limited, and examples thereof include known methods such as a screen printing method, a spin coating method, a squeegee method, and a doctor blade method.
  • As the titanium oxide-containing paste a paste containing titanium oxide particles, an organic binder resin and a solvent is preferable. Furthermore, if necessary, these materials may be blended with heat extinguishing resin particles for forming voids in the porous titanium oxide layer and various additives.
  • the porous titanium oxide layer can carry the sensitizing dye more efficiently as the surface area is larger. Therefore, the larger the surface area of the titanium oxide particles as the raw material, the better.
  • the primary particle diameter (volume average particle diameter) of titanium oxide is preferably as small as possible.
  • the primary particle diameter of the titanium oxide particles is preferably 3 nm or more and 500 nm or less, and more preferably 3 nm or more and 200 nm or less.
  • the crystal form of the titanium oxide particles may be any of anatase type, rutile type and brookite type.
  • the reaction activity is higher than that of the rutile type, and electron injection from the sensitizing dye is performed. This is preferable because it becomes more efficient.
  • suitable conditions such as the organic binder resin and the solvent used for adjusting the content of the primary particle size in the titanium oxide particles, the shape of the titanium oxide particles, and the year of the titanium oxide-containing paste, see, for example, Japanese Patent No. 5444195. It is disclosed in the publication.
  • the porous titanium oxide layer may be formed by performing a heat treatment using a titanium oxide-containing paste as described above.
  • the titanium oxide fine particles can be formed at a high speed by using a carrier gas such as helium. It may be formed by an aerosol deposition method (AD method) in which a thin film layer is formed by spraying on a substrate.
  • AD method aerosol deposition method
  • the formation method of the semiconductor layer 11 is suitable for the material of the semiconductor layer 11 and the manufacturing method of a dye-sensitized solar cell, it is not limited to baking or AD method.
  • the sensitizing dye (not shown) carried on the semiconductor layer 11 is not particularly limited, and is appropriately selected in consideration of the material of the semiconductor layer 11 and the performance and design of the dye-sensitized solar cell.
  • Suitable sensitizing dyes supported on a semiconductor include, for example, cis-di (thiocyanato) -bis (2,2′-bipyridyl-4,4′-dicarboxylic acid) ruthenium (II), cis-di (thiocyanato)- Bis (2,2′-bipyridyl-4,4′-dicarboxylic acid) ruthenium (II) bis-tetrabutylammonium salt (hereinafter abbreviated as N719), tri (thiocyanato)-(4,4 ′, 4 ′ Ruthenium-based dyes such as' -tricarboxy-2,2 ': 6', 2'-terpyridine) ruthenium tris-tetrabutylam
  • Sensitizing dyes may be used alone or in combination of two or more. When using 2 or more types together, the combination and ratio of various materials should just be selected suitably according to the objective.
  • the solvent component in the dye solution is not particularly limited as long as it is appropriately selected according to the type of sensitizing dye to be used. For example, alcohols, nitriles, ethers, esters, ketones, carbonization And hydrogen and halogenated hydrocarbons.
  • the solvent in the dye solution is preferably as low as the water content, and is preferably dehydrated using a desiccant or the like. By reducing the water content, inhibition of the loading of the sensitizing dye is further suppressed, and the sensitizing dye is supported on the semiconductor layer 11 in a good state.
  • the concentration of the sensitizing dye in the dye solution is preferably less than 10 mmol / L, more preferably 2 mmol / L or less, further preferably 1 mmol / L or less, and 0.8 mmol / L or less. Particularly preferred is 0.5 mmol / L or less.
  • the lower limit of the concentration of the sensitizing dye is not particularly limited, but the lower limit of the concentration of the sensitizing dye is preferably 0.1 mM from the viewpoint that the sensitizing dye is efficiently supported by the semiconductor layer 11.
  • the transport path of the base material 10 is meandered in the vertical direction with respect to the direction of the arrow D1.
  • the “vertical direction” is the direction of the arrow D2 shown in FIG.
  • the conveyance speed of the base material 10 is assumed to be, for example, 0.01 m / min or more and 200 m / min or less, it is set in consideration of the size and performance of the apparatus for carrying out the dyeing method of the present embodiment. Is not particularly limited.
  • the conductive layer and the semiconductor layer 11 are sequentially laminated on the surface 10a of the base material 10 in advance, and then the base material 10 is unwound from the roll-shaped base material 10R1 wound up in a roll shape.
  • a configuration is illustrated in which the sheet is meandered up and down, wound up in a roll shape through a plurality of dyeing steps, and again formed into a roll-shaped substrate 10R2.
  • the conductive layer and the semiconductor layer 11 may be formed after the base material 10 is unwound from the roll base material 10R1 and before the dyeing process is performed.
  • the dye solution 12 is installed along the conveyance path of the base material 10 that meanders in the vertical direction.
  • the transport rolls R, R,..., R are provided at equal intervals in the transport direction of the base material 10 (arrow D1 direction). Adjacent transport rolls R, R are arranged at different positions in the vertical direction (arrow D2 direction).
  • the transport roll R disposed on the upper side and the transport roll R disposed on the lower side are set with a predetermined distance therebetween.
  • the lower transport roll R is installed at a predetermined depth with respect to the solution tank 18.
  • the upper transport roll R is installed above the opening of the solution tank 18.
  • the base material 10 passes under the lower conveyance roll R, and is alternately hung on the adjacent conveyance roll R so that the upper side of the upper conveyance roll R may be covered next.
  • the transport rolls R, R,..., R and the base material 10 when the base material 10 is transported toward the roll-shaped base material 10R2, the base material 10 is sent out downward, Thereafter, a conveyance path is formed by repeatedly bending the substrate and feeding it upward (that is, meandering up and down).
  • the lower transport roll R is arranged in the solution tank 18 in which the dye solution 12 is accommodated, so that the semiconductor layer 11 and the dye solution 12 are in contact between the position P1 and the position P2. (Ie, the base material 10 is immersed in the dye solution 12) is a contact portion 35, and the base material 10 is pulled up from the dye solution 12 and dried from the position P2 to the position P1. ing.
  • the substrate 10 when the substrate 10 is conveyed in the direction of the arrow D1, the substrate 10 is placed in the dye solution 12 at a position P1 where the substrate 10 is in contact with the upper surface (liquid surface) of the dye solution 12.
  • the dye solution 12 comes into contact with the semiconductor layer 11 as it enters.
  • the substrate 10 is separated from the dye solution 12 at the position P2 in contact with the upper surface of the dye solution 12 while the transport direction of the substrate 10 is directed upward, and the semiconductor layer 11 is exposed to air.
  • the semiconductor layer 11 is dried by exposing the semiconductor layer 11 to air.
  • the position P1 is a position where the contact of the semiconductor layer 11 with the dye solution 12 is started
  • the position P2 is a position where the contact with the dye solution 12 is finished and the drying of the semiconductor layer 11 is started. .
  • a washing step may be appropriately performed after the staining step.
  • the cleaning process is a process performed for the purpose of removing excess sensitizing dye carried on the semiconductor layer 11, and all the processes performed for this purpose are applicable. Examples of the method for removing excess sensitizing dye from the semiconductor layer 11 include ultrasonic cleaning, cleaning using an organic solvent such as ethanol, rubbing with a brush, or a combination of these methods. It is not limited to.
  • the washing process may be performed every time after the dyeing process, or may be performed after performing a predetermined number of dyeing processes. That is, the timing for performing the cleaning process is not particularly limited. By performing the cleaning process, the aesthetics of the semiconductor layer 11 are enhanced.
  • the contact portion 35 and the drying portion 36 are formed by alternately repeating the contact portion 35 and the drying portion 36 a plurality of times in the vertical direction, and the conveying direction of the substrate 10 is changed between the contact portion 35 and the drying portion 36. Switch between.
  • the dyeing process is performed a plurality of times by simply placing the substrate 10 on the transport path, bringing the semiconductor layer 11 into contact with the dye solution 12 in the contact portion 35 and drying it in the drying portion 36 provided downstream thereof. It can be carried out.
  • the semiconductor layer 11 is immersed in the dye solution 12 from the initial position P1 to the position P2 closest to the downstream side from the start of conveyance, and the whole area where the semiconductor layer 11 is immersed is surely increased.
  • the dye is supported.
  • the semiconductor layer 11 is separated from the dye solution 12 at the first position P2 from the start of conveyance of the substrate 10, and dried from the position P2 to the position P1 closest to the downstream side, so that only the solvent in the dye solution 12 is obtained. Is removed quickly.
  • the semiconductor layer 11 is immersed again in the dye solution 12 at the next position P1.
  • the sensitizing dye in the dye solution 12 soaks into the semiconductor layer 11 again and is strongly bonded to and supported by the semiconductor.
  • the semiconductor layer 11 in such a state is separated from the dye solution 12 and dried at a position P2 closest to the downstream side of the position P1 for the second time from the start of conveyance of the base material 10, and is again dried. Only is removed quickly.
  • the sensitizing dye in the dye solution 12 is surely reached to the inside of the semiconductor layer 11, and at the time of manufacturing the dye-sensitized solar cell by the RtoR method
  • the sensitizing dye can be efficiently carried on the semiconductor layer 11 in a short time.
  • the method of the present invention is basically a continuous manufacturing method, and even if this number is increased, the manufacturing time becomes long, or the problem that the manufacturing process becomes complicated does not easily occur.
  • the advantages of the present invention that even if the number of times of performing the dyeing process is increased, problems such as an increase in manufacturing time, an increase in labor, and a decrease in efficiency hardly occur.
  • the conveyance direction (conveyance path) of the base material 10 is made to meander up and down, even if the length of the base material 10 is expanded, it is required for implementation of the dyeing method. Increase in the distance can be suppressed. That is, it is possible to save space for an apparatus and equipment for carrying out the staining method of the present embodiment. Therefore, the manufacturing efficiency of the dye-sensitized solar cell using the dyeing process of the sensitizing dye to the semiconductor layer 11 and the dyeing method of this embodiment can be increased.
  • FIGS. 2 to 13 are schematic views for explaining a modification of the staining method of the present embodiment.
  • the same components as those shown in FIG. 1 for explaining the staining method of this embodiment are denoted by the same reference numerals. The description is omitted.
  • the meandering shape of the base material 10, the method of meandering the base material 10, the installation position of the transport roll R, and the way of passing the base material 10 are not particularly limited.
  • the transport rolls R, R,..., R may not be provided at regular intervals in the transport direction of the base material 10 (arrow D1 direction). Adjacent transport rolls R, R may not necessarily be arranged at different positions in the vertical direction.
  • the base material 10 can meander up and down, arrangement
  • the practicality of the staining method of the present embodiment is further increased.
  • the solution tank 18 may be installed close to the transport path of the base material 10 so that the semiconductor layer 11 contacts the dye solution 12 for a predetermined time. As shown in FIG. 2, for example, when the semiconductor layer 11 is provided on the back surface 10b of the base material 10 and the back surface 10b side is dyed, the upper surface of the dye solution 12 in the solution tank 18 can be brought into contact with the back surface 10b. You may set the position of the solution tank 18 with respect to the conveyance position of the base material 10. FIG.
  • the contact area between the back surface 10b and the dye solution 12 is reduced by changing the relative position of the solution tank 18 with respect to the conveyance path of the base material 10 (that is, setting the contact portion 35 to a minimum). Therefore, the effect that the manufacturing cost of the dye-sensitized solar cell can be significantly reduced by suppressing the amount of the dye solution 12 used can be obtained.
  • the lower conveyance roll R is disposed at a predetermined depth in the dye solution 12, What is necessary is just to enlarge the ratio of the contact part 35 with respect to the drying part 36.
  • the substrate 10 is conveyed at a predetermined timing and length of time during the conveyance of the substrate 10.
  • the path may be temporarily separated in the direction of the arrow D4 relative to the solution tank 18, and the drying unit 36 may be intermittently enlarged.
  • the conveyance path of the base material 10 may be fixed, and the solution tank 18 may be moved closer to or away from the path in the direction of the arrow D4. You may make the conveyance path
  • the staining method is carried out by alternately repeating the state shown in FIG. 1 and the state shown in FIG.
  • the expansion of the drying unit 36 by relative movement between the transport path and the solution tank 18 may be performed while transporting the base material 10, or the base material 10 is transported intermittently and the transport of the base material 10 is performed. You may go while you are stopped.
  • the drying unit 36 is enlarged by relative movement between the transport path and the solution tank 18 while transporting the base material 10, the semiconductor layer 11 (porous body) is placed at any position in the longitudinal direction of the base material 10.
  • the solution tank 28 illustrated in FIG. 4 in which the hole portion 29 that accommodates the dye solution 12 and discharges the dye solution 12 is formed at a predetermined position. May be used.
  • the solution tank 28 is installed at an appropriate position relative to the transport path of the base material 10 so that the plate surface of the base material 10 on which the semiconductor layer 11 is formed can be brought into contact with the hole 29.
  • a hole 29 is formed in the bottom surface of the solution tank 28, and the solution tank 28 so that the semiconductor layer 11 formed on the surface 10 a contacts the hole 29 at the contact portion 35 of the substrate 10 being conveyed.
  • the structure corresponding to the case of installing is illustrated.
  • the shape of the solution tank 28 is not limited to the shape shown in FIG.
  • the dye solution 12 is held with little contact with the outside air, and thus, for example, moisture absorption in the dye solution 12 having hygroscopicity is suppressed. The effect that deterioration of the dye solution 12 can be suppressed is obtained.
  • 1 to 4 illustrate a configuration corresponding to the case where one solution tank 18 or solution tank 28 is used for one base material 10, but a plurality of solution tanks 18 may be used as necessary.
  • the solution tank 28 may be used.
  • the solution tank 18 or the solution tank 28 may be installed for each contact portion 35. Thereby, the usage-amount of the pigment
  • the method of bringing the dye solution 12 into contact with the semiconductor layer 11 is changed.
  • the method for bringing the dye solution 12 into contact with the semiconductor layer 11 is not particularly limited.
  • a liquid such as a dropping method, a coating method, or a printing method is brought into contact with the substrate.
  • a general method can be used.
  • a dropping method may be selected as a method of bringing the dye solution 12 into contact with the semiconductor layer 11.
  • the dye solution 12 is dropped onto the semiconductor layer 11 using the dropping unit 14 at the position P ⁇ b> 1 that is the boundary between the contact part 35 and the drying part 36 of the substrate 10.
  • the dye solution 12 can be brought into contact with the semiconductor layer 11.
  • the position of the dropping of the dye solution 12 using the dropping unit 14 is not particularly limited, and may be a boundary position between the contact part 35 and the drying part 36 on the downstream side thereof.
  • the dropping amount and dropping speed of the dye solution 12 from the dropping means 14 are preferably set in consideration of the conveyance speed of the substrate 10 and the like.
  • a coating method may be selected as a method for bringing the dye solution 12 into contact with the semiconductor layer 11.
  • the dye solution 12 is applied to the semiconductor layer 11 by using an application means, thereby bringing the dye solution 12 into contact with the semiconductor layer 11.
  • the application means include a spray device 15 shown in FIG. 6, a gravure roll 21 or sponge roll 22 shown in FIGS. 7 and 10, a transfer device such as a stamp 24 shown in FIG. 8, and a die 26 shown in FIG.
  • the spray device 15 is used as the application means, the amount of the dye solution 12 used can be greatly reduced to the necessary minimum.
  • the coating amount and coating speed of the dye solution 12 by the coating means are preferably set in consideration of the transport speed of the substrate 10 and the like.
  • the semiconductor layers 11 at a plurality of locations of the substrate 10 can be brought into contact with one gravure roll 21 or the sponge roll 22.
  • one gravure roll 21 or sponge roll 22 is interposed between contact portions 35 and 35 adjacent to each other in the direction of arrow D1, and the semiconductor layer 11 formed on the back surface 10b is connected to the adjacent contact portions 35 and 35.
  • the structure corresponding to the case where each is brought into contact with the surface of the gravure roll 21 or the sponge roll 22 is illustrated.
  • two or more methods among the above-described general methods for bringing the liquid into contact with the substrate may be combined.
  • a method of bringing the dye solution 12 into contact with the semiconductor layer 11 an immersion method and a dropping method may be combined.
  • the dye solution 12 can be dropped using the dropping means 14 onto the contact portion 35 of the substrate 10 being conveyed, and the semiconductor layer 11 can be immersed.
  • a predetermined amount of the dye solution 12 is stored inside the bent portion of the substrate 10. Then, the semiconductor layer 11 may be dried while the base material 10 is separated from the stored dye solution 12 and the transport direction is the upward direction.
  • a drying means is installed between the position P2 and the position P1 closest to the downstream side of the transport path of the base material 10, and heads from the front surface 10a to the back surface 10b. It is preferable to blow or heat the semiconductor layer 11 from the outside of the substrate 10 in the direction. By such a method, the solvent of the dye solution 12 immersed in the semiconductor layer 11 can be instantaneously removed.
  • the drying means is not particularly limited as long as it is a means capable of removing the solvent in the dye solution 12.
  • the drying means include an air knife 16 and a thermal lamellar roll 40 that extend in the width direction of the substrate 10 (that is, the direction of the arrow D3 shown in FIGS. 11 and 12).
  • FIG. 11 the structure corresponding to the dyeing
  • FIG. 12 exemplifies a configuration corresponding to a dyeing method in which a thermal lamellar roll 40 is used as a drying unit, a coating method is employed as a method for bringing the dye solution 12 into contact with the semiconductor layer 11, and a die 26 is used as the coating unit. ing.
  • the semiconductor layer 11 is formed in advance on the opposite back surface 10b and front surface 10a of the two base materials 10A and 10B. Subsequently, the dye solution 12 is injected from the die 26 between the back surface 10 b and the front surface 10 a, and the dye solution 12 is brought into contact with the semiconductor layer 11.
  • the protective resin film 34 is coated on the back surface 10b of the substrate 10A opposite to the back surface 10b and the surface 10a in contact with the dye solution 12 and the back surface 10b of the substrate 10B. Then, the semiconductor layer 11 can be dried by applying the thermal lamellar roll 40 to the two base materials 10 ⁇ / b> A and 10 ⁇ / b> B via the resin film 34.
  • a water absorbing roll (not shown) in which the surface is provided with water absorption by a method such as attaching a non-woven fabric to the surface of the transport roll R can be cited.
  • a water absorbing roll When a water absorbing roll is used, the surface of the water absorbing roll may be brought into contact with the semiconductor layer 11 brought into contact with the dye solution 12.
  • the drying means as described above By providing the drying means as described above, the effect of the dyeing method of the present embodiment described above can be obtained, and in particular, in a state where the solvent of the dye solution 12 in the semiconductor layer 11 is reliably removed after each dyeing step.
  • the penetration of the dye solution 12 into the semiconductor layer 11 is quick and good, and the effect that the dyeing time can be shortened is obtained.
  • the drying time of the semiconductor layer 11 is shortened, the size of the apparatus is reduced, and an effect that it is practical can be obtained.
  • FIG. 11 illustrates a case where the air knife 16 is installed in the drying unit 36 of the base material 10 being transported while the transport direction of the base material 10 is set upward.
  • the air knife 16 may be installed in the drying unit 36 of the base material 10 while the transport direction of the base material 10 is set downward in consideration of the apparatus configuration and the like. .
  • the semiconductor layer 11 moves from the contact part 35 of the base material 10 to the drying part 36 and leaves the dye solution 12 until it is blown by the air knife 16
  • the air drying time becomes longer.
  • the effect that the amount of air blown by the air knife 16 can be suppressed is obtained.
  • a dropping method is selected as a method of bringing the dye solution 12 into contact with the semiconductor layer 11, and the dye solution 12 is dropped onto the semiconductor layer 11 from the dropping means 14 at the position P1, and an air knife as a drying means at the position P2.
  • staining method which dries the semiconductor layer 11 using 16 is illustrated.
  • the configuration and equipment can be freely designed, and the space of these devices and equipment can be saved.
  • FIG. 14 is a schematic diagram for explaining the staining method of the present embodiment.
  • the same components as those in FIGS. 1 to 13 for describing the staining method of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the conveyance direction of the base material 10 is provided in a spiral shape.
  • the substrate 10 is spirally transported using a transport roll R (not shown).
  • the base material 10 advances in both directions of the direction opposite to the direction of the arrow D1 and the direction of the arrow D3 shown in FIG. 14 (that is, the direction from the back to the front of the paper) from the start of conveyance.
  • the dye solution 12 is installed along the conveyance path
  • the solution tank 18 is installed in a relatively suitable position with respect to the conveyance path
  • FIG. With this arrangement, when the base material 10 is spirally transported in the direction of the arrow D1, the position P1 in contact with the upper surface of the dye solution 12 before and after the transport direction of the base material 10 is switched from the downward direction to the upward direction. The substrate 10 is immersed in the dye solution 12, and the dye solution 12 contacts the semiconductor layer 11.
  • the sensitizing dye in the semiconductor solution 11 is dye
  • a sensitizing dye can be supported.
  • the base material 10 since the conveyance direction of the base material 10 is provided in the spiral, the base material 10 repeats forward and backward alternately. Thereby, even if the length of the base material 10 is expanded, an increase in the distance required for carrying out the staining method can be further suppressed. Therefore, similarly to the dyeing method of the first embodiment, the space for the equipment and equipment for carrying out the dyeing method of this embodiment can be saved, and the dyeing process of the sensitizing dye to the semiconductor layer 11 and this embodiment can be achieved. The production efficiency of the dye-sensitized solar cell using this dyeing method can be increased.
  • the base material 10 advances not only in the direction of the arrow D1 but also in the direction opposite to the direction of the arrow D3 from the start of conveyance, it is possible to install an apparatus or equipment. It is preferable to set the dimension of the conveyance path of the spiral base material 10 in accordance with both the length and width of the space.
  • a modification similar to the modification of the dyeing method of the first embodiment can be considered as long as there is no inconvenience in implementation.
  • FIG. 15 is a schematic diagram for explaining the staining method of the present embodiment.
  • the same components as those in FIGS. 1 to 13 for describing the staining method of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the dyeing method of this embodiment has the same dyeing process as the dyeing method of the first embodiment, and as shown in FIG. 15, the center in the width direction of the base material 10 (that is, the arrow D3 direction shown in FIG. 15). Is the axis A, and the substrate 10 is twisted in the direction of arrow D5 shown in FIG. 15 and conveyed in the direction of arrow D1 while being rotated. Further, the solution tank 18 in which the dye solution 12 is stored is installed at a relatively appropriate position along the conveyance path of the base material 10. FIG. 15 corresponds to the case where the solution tank 18 is disposed relative to the conveyance path of the substrate 10 so that the lower half of the twisted substrate 10 from the axis A can be immersed in the dye solution 12.
  • the structure which performs is illustrated. With this arrangement, when the substrate 10 is twisted about the axis A in the direction of the arrow D1 and conveyed while being rotated, the semiconductor layer 11 formed in advance on the substrate 10 below the axis A is formed. The semiconductor layer 11 previously formed on the base material 10 above the axis A is exposed to the air in contact with the dye solution 12.
  • the base material 10 below the axis A is between the position P1 and the position P2 closest to the downstream side.
  • the semiconductor layer 11 formed in the above is immersed in the dye solution 12 to carry the sensitizing dye. From the position P1 to the position P2, the semiconductor layer 11 is immersed in the dye solution 12, and the dye solution 12 soaks inward from the surface of the semiconductor layer 11 on the dye solution 12 side.
  • permeates the inside of the semiconductor layer 11 rather than a sensitizing dye.
  • the semiconductor layer 11 formed on the substrate 10 located below the axis A as described above becomes the substrate position P2.
  • the position P1 closest to the downstream side it is located above the axis A and exposed to the air.
  • the solvent in the dye solution 12 evaporates rapidly.
  • the semiconductor layer 11 formed on the substrate 10 reaching below the axis A is newly immersed in the dye solution 12.
  • the sensitizing dye in the dye solution 12 penetrates into the semiconductor layer 11 and is supported on the semiconductor.
  • the sensitizing dye in the dye solution 12 is surely reached to the inside of the semiconductor layer 11, and the dye-sensitized solar by the RtoR method is used. Even when the substrate 10 is transported at a high speed as in the production of a battery, the sensitizing dye can be efficiently carried on the semiconductor layer 11 in a short time.
  • the length of the base material 10 is increased. Even so, an increase in distance and an increase in height required for carrying out the staining method can be suppressed at the same time. Therefore, similarly to the dyeing method of the first embodiment, an effect that space saving of an apparatus and equipment for carrying out the dyeing method of the present embodiment can be obtained. As a result, the manufacturing efficiency of the dye-sensitized solar cell using the dyeing process of the sensitizing dye to the semiconductor layer 11 and the dyeing method of the present embodiment can be increased.
  • a modification similar to the modification of the dyeing method of the first embodiment can be considered as long as there is no inconvenience in implementation.
  • the photoelectrode to which the present invention is applied is produced using a staining method to which the present invention is applied.
  • the semiconductor layer 11 formed in an arbitrary pattern on the plate surface of the substrate 10 only by placing the substrate 10 on the transport path. Is a photoelectrode layer 13 on which a sufficient sensitizing dye is supported. According to the above, a photoelectrode suitable for continuous production and having a high photoelectric conversion rate can be obtained.
  • An optoelectric module to which the present invention is applied includes the above-described photoelectrode.
  • Examples of such a photoelectric module include the above-described dye-sensitized solar cell, and any module that can generate a current from a light electrode from irradiated light and utilize the current is not particularly limited.
  • the base material 10 and the base material for counter electrodes are arrange
  • an optoelectric module suitable for continuous production and having a high photoelectric conversion rate can be obtained.
  • the conveyance path of the substrate 10 may not be linear, may be a path having a plurality of bent parts, or a path having a curved part, and may be designed in an arbitrary shape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)
  • Optical Filters (AREA)

Abstract

 基材の表面に形成された多孔質体と、色素を含有する溶液とを接触させ、その後前記多孔質体を乾燥させる多孔質体の染色方法であって、 前記基材を搬送しつつ、当該基材の搬送経路に沿って設置した前記溶液に対して前記多孔質体を接触させ、その下流で当該多孔質体を乾燥させる工程を有し、 当該工程を複数回行うこと、 を特徴とする多孔質体の染色方法。

Description

多孔質体の染色方法、光電極及び光電気モジュール
 本発明は、色素増感太陽電池における多孔質体の染色方法、当該染色方法を用いて作製した光電極及び当該光電極を備えた光電気モジュールに関する。
 本願は、2014年8月19日に日本に出願された特願2014-166630号に基づき優先権を主張し、その内容をここに援用する。
 近年、クリーンエネルギーの発電装置として太陽電池が注目され、シリコン系太陽電池及び色素増感太陽電池の開発が進められている。色素増感太陽電池は、高い光電変換効率を有するとともに安価で量産しやすいため、その構造及び製造方法が広く研究されている。
 一般に、色素増感太陽電池は、光電極と、対向電極と、電解液又は電解質層と、を備えて構成されている。光電極としては、基材、透明導電層、半導体層、増感色素で構成されることが一般的である。半導体層は、多くの場合において多孔質構造とされている。
 色素増感太陽電池において、増感色素の主な役割は、照射された光によって励起され、電子を放出することである。また、酸化チタン等からなる半導体層の主な役割は、励起した増感色素から電子の注入を受け入れ、透明導電層へ電子を輸送すると共に、電解液又は電解質層における酸化還元対から増感色素へ電子を移動させる反応場を提供することである。
 上記説明した色素増感太陽電池の実用化に向けて、最近では、ロール状に巻いた基材を解き、一方向に搬送しながら、各種工程により基材上に構成要素を形成した後、或いは二以上の基材同士の貼り合わせや組み立て等を行った後に再びロールに巻き取るロール・トゥ・ロール方式(以下、RtoR方式と記載する)を導入した色素増感太陽電池の連続生産が進められている。
 例えば、特許文献1には、RtoR方式で第一の電極アレイと対の電極アレイとをそれぞれ形成し、これらの電極アレイを組み立て、封止すると共にラミネート加工を行うことで製造可能な色素増感太陽電池アレイが開示されている(図15及び図20等を参照)。
 また、特許文献2には、上記説明したように、ロール状に巻き取られたシート状の材料を解き、搬送しながら上流側で光電池セルの加工等を行い、下流側で再びロール状に巻き取る手段を備えた色素増感太陽電池アレイの製造装置が開示されている。
国際公開第2008/093117号 国際公開第2008/093111号
 色素増感太陽電池の製造時には、上述のように、多孔質構造の半導体層に増感色素を担持させる、即ち染色することが必要となる。従来は、増感色素を含む溶液との一回の接触で、半導体層に効率良く増感色素を担持させることが試みられていたが、充分な量の増感色素を担持させられない、または充分な量の増感色素を担持させようとすると工程時間が長くなってしまう、或いは製造工程が複雑になるという問題があった。
 上記の問題をふまえて種々の検討がなされ、最近では、より効果的に半導体層に増感色素を担持させる方法として、増感色素を含有する溶液を多孔質体に接触させ、次いで乾燥させて、増感色素を多孔質体に担持させる工程を複数回行う染色方法が知られている。
 しかしながら、多孔質体の色素への接触と乾燥との反復を効果的、効率的かつ簡便に行う具体的な染色方法は提案されていない。
 本発明は、上記事情を鑑みてなされたものであり、多孔質体に効率良くかつ簡便に充分な量の色素を担持させることを可能とする多孔質体の染色方法、当該染色方法を用いて作製した光電極及び当該光電極を備えた光電気モジュールの提供を課題とする。
 本発明の多孔質体の染色方法は、基材の表面に形成された多孔質体と、色素を含有する溶液とを接触させ、その後前記多孔質体を乾燥させる多孔質体の染色方法であって、前記基材を搬送しつつ、当該基材の搬送経路に沿って設置した前記溶液に対して前記多孔質体を接触させ、その下流で当該多孔質体を乾燥させる工程を有し、当該工程を複数回行うこと、を特徴とする。
 上記方法によれば、基材を搬送するだけで多孔質体の溶液への接触と乾燥を繰り返すことができる。
 本発明の多孔質体の染色方法では、前記工程において、前記基材の搬送方向(搬送経路)を上下方向に蛇行させていることを特徴とする。
 上記方法によれば、基材の長さを拡大しても、本発明の染色方法の実施に必要とされる距離の増大を抑えることができる。
 本発明の多孔質体の染色方法では、前記工程において、前記基材の搬送方向(搬送経路)を螺旋状に設けていることを特徴とする。
 上記方法によれば、前記基材の幅方向に延びる、搬送経路が形成する螺旋の軸が、螺旋の一巻き毎に基材の進行方向にずれるように構成されているため、基材を螺旋状に回転させて前進と後進とを交互に繰り返して搬送するので、本発明の染色方法の実施に必要とされる距離の増大をより抑えることができる。
 本発明の多孔質体の染色方法では、前記基材の幅方向中心を軸線として前記基材を捻じり、回転させながら一方向に搬送することを特徴とする。
 上記方法によれば、基材をスクリュー状に捻じり(即ち、基材の長手方向の両端部を起点にして絞った状態にし)、回転させながら搬送することで、多孔質体の溶液への接触と、乾燥とを繰り返すことが可能となる。
 本発明の光電極は、前記多孔質体の染色方法を用いて作製されたことを特徴とする。
 また、本発明の光電気モジュールは、前記光電極を備えていることを特徴とする。
 上記構成によれば、基材を搬送し、多孔質体の溶液への接触と乾燥を繰り返すことで多孔質体に充分な量の色素が担持した光電極が得られる。また、このような光電極を備え、連続生産に好適な光電気モジュールが得られる。
 本発明によれば、多孔質体に効率良く且つ簡便に充分な量の色素を担持させる多孔質体の染色方法及び当該染色方法を用いて作製した光電極、光電気モジュールが提供される。本発明は、充分な量の色素担持と生産効率向上の両立を実現したものである。
本発明の第一実施形態である多孔質体の染色方法を説明するための概略図である。 本発明の第一実施形態である多孔質体の染色方法の変形例を説明するための概略図である。 本発明の第一実施形態である多孔質体の染色方法の変形例を説明するための概略図である。 本発明の第一実施形態である多孔質体の染色方法の変形例を説明するための概略図である。 本発明の第一実施形態である多孔質体の染色方法の変形例を説明するための概略図である。 本発明の第一実施形態である多孔質体の染色方法の変形例を説明するための概略図である。 本発明の第一実施形態である多孔質体の染色方法の変形例を説明するための概略図である。 本発明の第一実施形態である多孔質体の染色方法の変形例を説明するための概略図である。 本発明の第一実施形態である多孔質体の染色方法の変形例を説明するための概略図である。 本発明の第一実施形態である多孔質体の染色方法の変形例を説明するための概略図である。 本発明の第一実施形態である多孔質体の染色方法の変形例を説明するための概略図である。 本発明の第一実施形態である多孔質体の染色方法の変形例を説明するための概略図である。 本発明の第一実施形態である多孔質体の染色方法の変形例を説明するための概略図である。 本発明の第二実施形態である多孔質体の染色方法を説明するための概略図である。 本発明の第三実施形態である多孔質体の染色方法を説明するための概略図である。
 以下、本発明を適用した実施形態である多孔質体の染色方法(以下、単に「染色方法」と記載する)について、図面を参照して説明する。なお、以下の説明で用いる図面は模式的なものであり、長さ、幅、及び厚みの比率等は実際のものと同一とは限らず、適宜変更することができる。
 本発明の染色方法は、色素増感太陽電池をRtoR方式で製造する際に適用することが好適であり、多孔質構造の半導体層に効率良くかつ簡便に充分な量の増感色素を担持させることが可能な方法である。「色素を担持させること」とは、「染色」を意味する。そして、色素の担持は、例えば、色素の吸着により行われる。
 従って、以下説明する本発明を適用した各実施形態では、染色方法を用いて製造する対象物を色素増感太陽電池として説明する。但し、色素増感太陽電池は本発明の染色方法を用いて製造する対象物の一例であり、対象物は色素増感太陽電池に限定されない。また、増感色素も本発明の染色方法で用いる色素の一例であり、本発明の染色方法で用いる色素は特に制限されない。
 色素増感太陽電池(図示略)は、基材の表面に導電層と多孔質構造の酸化チタン等からなる半導体層とをこの順に積層し、酸化チタン層に増感色素(色素)を担持させた色素増感太陽電池用の光電極と、基材の表面に白金(Pt)等の導電体薄膜を形成した対向電極とを所定の間隔をおいて配置し、これらの隙間に電解液を充填した構造を備えている。
 本発明の染色方法は、基材の表面に形成された半導体層と増感色素を含有する溶液(以下、「色素溶液」と記載する)とを接触させ、その下流で前記基材を多孔質体を乾燥させる工程を有する。以下では、当該工程を「染色工程」と記載する。また、本発明の染色方法では、基材を搬送しつつ、搬送経路に沿って設置した色素溶液に対して前記多孔質体を接触させ、その下流で当該多孔質体を乾燥させることを複数回行う。
 ここで「乾燥させる」とは、必ずしも色素溶液に使用されている溶媒を完全に除去することを要せず、本発明の目的が達成できる限り、溶媒が残留していても良い。例えば、乾燥前の基材に含まれる溶媒の量(乾燥直前の基材の質量-色素溶液と接触させる前の基材の質量)に対する乾燥後の基材に含まれる溶媒の量(乾燥直前の基材の質量-乾燥後の基材の質量)の割合(質量%)として定義される残留溶媒量が、90質量%以下である場合も乾燥させた状態に含むものとする。 
 通常は、残留溶媒量が、60質量%以下となるように乾燥することが好ましく、30質量%以下となるようにすることがより好ましく、10質量%以下となるようにすることが更に好ましく、3質量%以下となるようにすることが特に好ましい。残留溶媒量が約3質量%以下となると、搬送ロールへ溶剤の転写が生じ難くくなり、好ましい。更に好ましくは残留溶媒量が約2質量%以下である。
 また、具体的な乾燥方法については特に制限はなく、自然乾燥、送風乾燥、加熱乾燥、又は後述するようなエアナイフや熱ラミロール等を利用した公知の方法を採用して、上述したような残留溶媒量となるよう適宜条件を選択して行うことができる。
(第一実施形態)
 以下、本発明の第一実施形態について、図1~図13を参照して説明する。図1は、本実施形態の染色方法を説明するための概略図である。
 図1に示すように、本実施形態の染色方法は、基材10の表面10a、裏面10bのうち少なくとも一方の面に形成された多孔質構造の半導体層11(多孔質体)と色素溶液12とを接触させ、その後段で半導体層11を乾燥させる工程を有する。ここで、「表面」とは、染色工程の開始時において上方向に向ける基材10の板面をいう。これに対し、「裏面」とは、染色工程の開始時において下方向に向ける基材10の板面をいう。
 基材10の材質としては、長尺に加工すると共に、曲げたり巻いたりすることができ、RtoR方式による色素増感太陽電池の連続生産に適した材質であれば、特に限定されない。このような材質としては、可撓性を有するものであることが好ましい。具体例としては、ポリエチレンテレフタレート(PET)が挙げられる。
 基材10の表面10a、裏面10bのうち、本実施形態の染色方法を適用して染色を行う面には、導電層(図示略)と半導体層11とがこの順に積層形成されている。
 導電層の材質としては、例えば、酸化インジウム/酸化スズ(ITO)、フッ素ドープ酸化スズ(FTO)、酸化亜鉛、酸化スズ、アンチモンドープ酸化スズ(ATO)、酸化インジウム/酸化亜鉛(IZO)、酸化ガリウム/酸化亜鉛(GZO)、酸化チタン等の透明導電体や、メッシュ形状に加工されたチタン、白金、金、銀、銅、クロム、ニッケル、タングステン、鉄、アルミニウム等の金属、或いはこれらの金属のうち二種以上の合金等が挙げられるが、特に限定されない。これらの材質の中でも、伝導度と透明度が高い点ではITOが好ましく、耐熱性及び耐候性に優れている点ではFTOが特に好ましい。
 半導体層11の材質及び厚さは、特に限定されず、色素増感太陽電池の性能及び設計等を勘案して適宜選択されているものである。半導体層11の材質としては、例えば酸化チタン(TiO)が挙げられる。その場合、半導体層11の厚さは、1μm以上30μm以下であることが好ましく、3μm以上20μm以下であることがより好ましい。半導体層11の厚さを上記範囲内とすることにより、色素増感太陽電池における光電変換効率が向上する。
 半導体層11が酸化チタンで構成されている多孔質酸化チタン層であれば、例えば、導電層上に酸化チタン含有ペーストを塗布し、加熱処理を行う(即ち、焼成する)ことにより形成できる。
 酸化チタン含有ペーストの塗布方法は特に限定されず、スクリーン印刷法、スピンコート法、スキージ法、ドクターブレード法等の公知の方法が例示できる。
 酸化チタン含有ペーストとしては、酸化チタン粒子、有機バインダ樹脂及び溶剤が配合されたものが好ましい。さらに、必要に応じて、これらの材料に、多孔質酸化チタン層に空隙部を形成するための加熱消滅性樹脂粒子や、各種添加剤が配合されていてもよい。
 多孔質酸化チタン層は、表面積が大きい程、増感色素を効率良く担持できる。従って、原料である酸化チタン粒子の表面積は大きいほど好ましい。酸化チタン粒子の表面積を大きくする目的から、酸化チタンの一次粒子径(体積平均粒子径)は小さいほど好ましい。
 例えば、酸化チタン粒子の一次粒子径は、3nm以上500nm以下であることが好ましく、3nm以上200nm以下であることがより好ましい。
 酸化チタン粒子の結晶型は、アナターゼ型、ルチル型及びブルカイト型のいずれでもよい。酸化チタン粒子の結晶型がアナターゼ型であれば、本実施形態のように色素増感太陽電池の製造に利用する際に、ルチル型よりも反応活性が高くなり、増感色素からの電子注入がより一層効率的になるため、好適である。
 酸化チタン粒子中の一次粒子径の含有率や酸化チタン粒子の形状、酸化チタン含有ペーストの年度を調整するために用いる有機バインダ樹脂や溶剤等の詳細及び好適な条件については、例えば特許第5444195号公報に開示されている。
 多孔質酸化チタン層は、上述のように酸化チタン含有ペーストを使用して、加熱処理を行うことにより形成されたものであってもよいが、ヘリウム等の搬送ガスによって、酸化チタン微粒子を高速で基材に吹き付けて薄膜層を形成する、エアロゾルデポジション法(AD法)によって形成されたものであってもよい。このように、半導体層11の形成方法は、半導体層11の材質及び色素増感太陽電池の製造方法に好適であれば、焼成やAD法に限定されない。
 半導体層11に担持させる増感色素(図示略)は、特に限定されず、半導体層11の材質や色素増感太陽電池の性能及び設計等を勘案して適宜選択されているものである。
 半導体に担持させる好適な増感色素としては、例えば、シス-ジ(チオシアナト)-ビス(2,2’-ビピリジル-4,4’-ジカルボン酸)ルテニウム(II)、シス-ジ(チオシアナト)-ビス(2,2’-ビピリジル-4,4’-ジカルボン酸)ルテニウム(II)のビス-テトラブチルアンモニウム塩(以下、N719と略記する)、トリ(チオシアナト)-(4,4’,4’ ’-トリカルボキシ-2,2’:6’,2’ ’-ターピリジン)ルテニウムのトリス-テトラブチルアンモニウム塩(ブラックダイ)等のルテニウム系色素が挙げられる。これらの中でも、特に好ましいルテニウム系色素としては、N719が挙げられる。
 増感色素は、一種を単独で使用してもよく、二種以上を併用してもよい。二種以上を併用する場合において、各種材料の組み合わせ及び比率は、目的に応じて適宜選択されていればよい。
 色素溶液中の溶媒成分は、使用する増感色素の種類に応じて適宜選択されていれば、特に制限されるものではなく、例えばアルコール類、ニトリル類、エーテル類、エステル類、ケトン類、炭化水素類、ハロゲン化炭化水素類等である。
 色素溶液中の溶媒は、水分含量が低いほど好ましく、乾燥剤等を使用して無水化処理したものが好ましい。水分含量を低減することで、増感色素の担持阻害が一層抑制され、増感色素が良好な状態で半導体層11に担持される。
 色素溶液の増感色素の濃度は、10mmol/L未満であることが好ましく、2mmol/L以下であることがより好ましく、1mmol/L以下であることがさらに好ましく、0.8mmol/L以下であることが特に好ましく、0.5mmol/L以下であることがとりわけ好ましい。増感色素の濃度の上限値を上記の値に設定することで、染色工程、特に乾燥時における色素の析出が一層抑制され、より良好な状態で色素が半導体層11に担持される。増感色素の濃度の下限値は特に制限されないが、増感色素を半導体層11により効率的に担持させる点から、増感色素の濃度の下限値は0.1mMであることが好ましい。
 本実施形態の染色工程では、図1に示すように、矢印D1方向に基材10を搬送する際に、基材10の搬送経路を矢印D1方向に対して上下方向に蛇行させている。ここで、「上下方向」は、図1に示す矢印D2方向である。基材10の搬送速度は、例えば0.01m/分以上200m/分以下が想定されるが、本実施形態の染色方法を実施するための装置の大きさ及び性能を勘案して設定されていることが好ましく、特に制限されない。
 図1には、基材10の表面10aに導電層及び半導体層11を順次積層して予め形成し、その後にロール状に巻き取ったロール状基材10R1から基材10を解き、矢印D1方向に対して上下に蛇行させ、複数回の染色工程を経てロール状に巻き取り、再びロール状基材10R2とする構成を例示している。しかしながら、導電層及び半導体層11の形成は、ロール状基材10R1から基材10を解いた後、且つ染色工程の実施前に行ってもよい。
 本実施形態の染色工程では、上下方向に蛇行させる基材10の搬送経路に沿って、色素溶液12を設置する。
 搬送ロールR,R,…,Rは、基材10の搬送方向(矢印D1方向)に等間隔で設けられている。隣り合う搬送ロールR,R同士は、鉛直方向(矢印D2方向)に異なる位置に配置されている。
 上側に配置された搬送ロールRと下側に配置された搬送ロールRは、所定の距離をあけて設定されている。
 下側の搬送ロールRは、溶液槽18に対して所定の深さ位置で設置されている。
 上側の搬送ロールRは、溶液槽18の開口部よりも上方に設置している。
 基材10は、下側の搬送ロールRの下方をくぐり、次に上側の搬送ロールRの上方を覆うように、隣り合う搬送ロールRに交互に掛けている。
 このように搬送ロールR,R,…,Rと基材10とを設置することで、基材10をロール状基材10R2に向けて搬送した際に、基材10を下方に向けて送り出し、その後基材を曲げて上方に送り出す(すなわち上下方向に蛇行させる)ことを反復させる搬送経路が形成される。
 この搬送経路では、色素溶液12が収容された溶液槽18内に下側の搬送ロールRが配置されていることにより、位置P1から位置P2までの間に半導体層11と色素溶液12とが接触する(即ち、色素溶液12に基材10を浸漬する)接触部35となっており、位置P2から位置P1までの間に基材10が色素溶液12から引き上げられて乾燥する乾燥部36となっている。
 このような配置にすることにより、基材10を矢印D1方向に向けて搬送すると、基材10が色素溶液12の上面(液面)に接する位置P1において、基材10が色素溶液12内に進入していき、半導体層11に色素溶液12が接触していく。
 続いて、基材10の搬送方向が上方向に向いている間に色素溶液12の上面に接する位置P2において、基材10が色素溶液12から離反し、半導体層11が空気に曝される。
 半導体層11が空気に曝されることで、半導体層11が乾燥する。
 上記のように、位置P1は半導体層11の色素溶液12への接触を開始する位置であって、位置P2は色素溶液12との接触を終了して半導体層11の乾燥を開始する位置である。
 本実施形態の染色工程では、基材10を搬送するだけで、色素溶液12に接触する接触部35と接触部35から引き上げられて乾燥される乾燥部36とを交互に反復する搬送経路を通るようになっている。
 本実施形態の染色方法では、染色工程を行った後に、適宜、洗浄工程を行ってもよい。
 洗浄工程は、半導体層11に担持された余分な増感色素を落とすことを目的として行う工程であり、当該目的のための行う処理は全て該当する。半導体層11の余分な増感色素を落とす方法としては、例えば超音波洗浄、エタノール等の有機溶媒を用いた洗浄、ブラシでこする、或いはこれらの方法の組み合わせ等が挙げられるが、これらの方法に限定されない。洗浄工程は、染色工程後に毎回行ってもよく、所定の回数の染色工程を行った後に実施してもよい。即ち、洗浄工程を行うタイミングは、特に制限されない。
 洗浄工程を行うことにより、半導体層11の美観性が高まる。
 以上説明したように、本実施形態の染色方法では、接触部35と乾燥部36とを上下方向に交互に複数回繰り返して形成しながら基材10の搬送方向を接触部35と乾燥部36との間で切り替える。これにより、基材10を搬送経路に載せるだけで、接触部35において色素溶液12に対して半導体層11を接触させ、その下流に設けられた乾燥部36において乾燥させることで染色工程を複数回行うことができる。
 上記の染色方法によれば、搬送開始から最初の位置P1から下流側直近の位置P2に至るまで、半導体層11が色素溶液12に浸漬し、半導体層11の浸漬した部分全体に、確実に増感色素が担持される。次いで、半導体層11を基材10の搬送開始から最初の位置P2において色素溶液12から離反させ、その位置P2から下流側直近の位置P1に至るまで乾燥させることで、色素溶液12中の溶媒のみが迅速に除去される。
 引き続き、基材10の搬送方向を上下方向に変更しながら基材10を蛇行させて搬送すると、次の位置P1において、半導体層11が再び色素溶液12に浸漬する。この際、色素溶液12中の増感色素が再び半導体層11に浸み込み、半導体に強く結合して担持される。このような状態の半導体層11を基材10の搬送開始から二回目の位置P1の下流側直近の位置P2において、色素溶液12から離反させ、乾燥させることで、再度、色素溶液12中の溶媒のみが迅速に除去される。
 半導体層11への増感色素の染色を複数回行うことで、色素溶液12中の増感色素を半導体層11の内部に至るまで確実に到達させ、RtoR方式による色素増感太陽電池の製造時のように、基材10を高速に搬送しても、半導体層11に短時間で効率良く増感色素を担持させることができる。
 なお、染色工程を行う回数は、増感色素の種類や半導体層11の組成、基材10の搬送速度等を勘案して設定することが好ましい。充分な量の色素を担持させる観点からは、2回以上染色工程を行うことが好ましく、3回以上行うことがより好ましい。この回数の上限については、本発明の方法は基本的に連続的な製造方法であり、この回数を増やしても製造時間が長くなってしまう、或いは製造工程が複雑になるという問題が生じ難いため特に制限はない。即ち、染色工程を行う回数を増やしても、製造の長時間化、手間の増加、効率低下などの問題が発生し難いということも本発明の利点の一つである。
 また、本実施形態の染色方法では、基材10の搬送方向(搬送経路)を上下方向に蛇行させているので、基材10の長さを拡大しても、染色方法の実施に必要とされる距離の増大を抑えることができる。即ち、本実施形態の染色方法を実施するための装置、設備の省スペース化が図られる。
 従って、半導体層11への増感色素の染色工程及び本実施形態の染色方法を用いた色素増感太陽電池の製造効率を高めることができる。
 次いで、本実施形態の染色方法の変形例について説明する。図2~図13は、本実施形態の染色方法の変更例を説明するための概略図である。なお、図2~図13の本実施形態の染色方法の変形例を示す図面において、本実施形態の染色方法を説明するための図1に示す構成要素と同一の構成要素については、同一の符号を付し、その説明を省略する。
 本実施形態の染色方法において、基材10を上下方向に蛇行させる際に、図1に例示したように隣り合う搬送ロールRに必ずしも交互に掛けなくてもよい。図示していないが、搬送経路のうち、所定の部分において、上側の搬送ロールRをとばして下側の隣接する搬送ロールRの下方を通過させてもよい。このように、基材10の蛇行形状や基材10を蛇行させる方法、搬送ロールRの設置位置、基材10のくぐらせ方は、特に制限されない。
 また、搬送ロールR,R,…,Rは、基材10の搬送方向(矢印D1方向)に等間隔で設けられていなくてもよい。隣り合う搬送ロールR,R同士は、鉛直方向に必ずしも異なる位置に配置されていなくてもよい。基材10を上下方向に蛇行させることができれば、搬送ロールR,R,…,Rの配置は、特に制限されない。このような自由度の大きい搬送経路の設定により、本実施形態の染色方法の実用性がより高まる。
 また、本実施形態の染色方法において、溶液槽18は、半導体層11が色素溶液12に所定時間接触するように、基材10の搬送経路に近接させて設置すればよい。図2に示すように、例えば基材10の裏面10bに半導体層11を設け、裏面10b側を染色する場合は、溶液槽18の色素溶液12の上面を裏面10bに接触可能とするように、基材10の搬送位置に対する溶液槽18の位置を設定してもよい。
 図2に示すように、溶液槽18の基材10の搬送経路に対する相対位置を変更する(即ち接触部35を最小限に設定する)ことで、裏面10bと色素溶液12との接触面積が縮小するので、色素溶液12の使用量を抑えて色素増感太陽電池の製造コストを大幅に低減することができるという効果が得られる。
 また、例えば、搬送経路の接触部35を可及的に長く設定し、乾燥部36を短く設定したい場合には、下側の搬送ロールRを色素溶液12内の所定の深さに配置し、乾燥部36に対して接触部35の割合を大きくすればよい。
 また、本実施形態の染色方法で乾燥時間をより多く取りたい場合には、図3に示すように、基材10の搬送中に、所定のタイミング及び時間の長さで、基材10の搬送経路を溶液槽18に対して相対的に矢印D4方向に一時的に離間させ、乾燥部36を断続的に拡大させてもよい。この場合、基材10の搬送経路を固定し、その経路に対して溶液槽18を矢印D4方向に近接又は離反させてもよいし、溶液槽18の設置位置を固定し、その位置に対して基材10の搬送経路を矢印D4方向に近接又は離反させてもよい。この場合、通常は、図1に示す状態と図2に示す状態とを交互に繰り返すことにより、染色方法を実施する。
 また、搬送経路と溶液槽18との相対移動による乾燥部36の拡大は、基材10を搬送させながら行ってもよく、又は、基材10を間欠的に搬送し、基材10の搬送が停止している間に行ってもよい。基材10を搬送させながら搬送経路と溶液槽18との相対移動による乾燥部36の拡大を行う場合には、半導体層11(多孔質体)を、基材10の長手方向のどの位置においても同じ時間色素溶液12に接触させ、且つ同じ時間乾燥させるように、相対移動のタイミングを考慮する。
 いずれの方法においても、図3に示すように基材10の搬送経路と溶液槽18の色素溶液12が非接触である状態から、図1に示すように基材10の搬送経路の一部と溶液槽18の色素溶液12が接触している状態になった際に、色素溶液12に浸漬した半導体層11に増感色素が担持される。
 図3に示すように、基材10と溶液槽18との相対位置を変更することで、色素溶液12の半導体層11への接触回数を容易に制御することができるという効果が得られる。この効果により、色素溶液12の半導体層11への接触回数を適宜増減させ、染色時間を短縮することができ、装置の大きさを縮小しても接触回数を増やすことができる。
 また、本実施形態の染色方法では、溶液槽18に替えて、色素溶液12を収容すると共に色素溶液12を排出可能な孔部29が所定の位置に形成された図4に例示する溶液タンク28を用いてもよい。この場合、半導体層11が形成された基材10の板面を孔部29に当接可能とするように、基材10の搬送経路に対して相対的に適切な位置に溶液タンク28を設置する。図4には、溶液タンク28の底面に孔部29を形成し、表面10aに形成された半導体層11が搬送中の基材10の接触部35において孔部29に当接するように溶液タンク28を設置した場合に対応する構成を例示している。なお、溶液タンク28の形状は、図4に示す形状に限定されない。
 図4に示すように、溶液槽18に替えて溶液タンク28を用いることで、色素溶液12が外気に殆ど触れることなく保持されるので、例えば吸湿性を有する色素溶液12における吸湿を抑える等、色素溶液12の劣化を抑えることができるという効果が得られる。
 なお、図1~図4には一つの基材10に対して一つの溶液槽18又は溶液タンク28を使用した場合に対応する構成を例示しているが、必要に応じて複数の溶液槽18又は溶液タンク28を使用してもよく、例えば接触部35毎に溶液槽18又は溶液タンク28を設置してもよい。これにより、色素溶液12の使用量をより削減することができる。
 本実施形態の染色方法の別の変形例として、色素溶液12を半導体層11に接触させる方法を変更した例が挙げられる。本実施形態の染色工程において、色素溶液12を半導体層11に接触させる方法は特に制限されず、前述した浸漬法の他に、滴下法、塗布法、印刷法等の液体を基材に接触させる一般的な方法を用いることができる。
 例えば、色素溶液12を半導体層11に接触させる方法として、滴下法を選択してもよい。この場合、図5に示すように、基材10の接触部35と乾燥部36との境界となっている位置P1において、半導体層11に滴下手段14を用いて色素溶液12を滴下することで、半導体層11に色素溶液12を接触させることができる。なお、滴下手段14を用いた色素溶液12の滴下の位置は、特に限定されず、接触部35とその下流側の乾燥部36との境界位置としてもよい。滴下手段14からの色素溶液12の滴下量及び滴下速度は、基材10の搬送速度等を勘案して設定することが好ましい。
 また、色素溶液12を半導体層11に接触させる方法として、塗布法を選択してもよい。この場合、半導体層11に塗布手段を用いて色素溶液12を塗布することで、半導体層11に色素溶液12を接触させる。塗布手段としては、例えば図6に示すスプレー装置15や、図7及び図10に示すグラビアロール21或いはスポンジロール22、図8に示すスタンプ24等の転写装置、図9に示すダイ26が挙げられるが、特にこれらに限定されない。塗布手段としてスプレー装置15を用いた場合、色素溶液12の使用量を必要最小限まで大幅に削減することができる。塗布手段による色素溶液12の塗布量及び塗布速度は、基材10の搬送速度等を勘案して設定することが好ましい。
 なお、図7及び図10に例示したグラビアロール21或いはスポンジロール22の表面に色素溶液12を含浸させる方法としては、例えば、図7に示すように溶液槽18への浸漬、溶液タンク28の孔部29との接触、滴下手段14による滴下、スプレー装置15による供給等が挙げられるが、これらの方法に限定されない。
 塗布手段としてグラビアロール21或いはスポンジロール22を選択した場合、例えば一つのグラビアロール21或いはスポンジロール22に基材10の複数箇所の半導体層11を接触させることもできる。図10には、一つのグラビアロール21或いはスポンジロール22を矢印D1方向に隣接する接触部35,35の間に介在させ、裏面10bに形成された半導体層11を隣接する接触部35,35の各々においてグラビアロール21或いはスポンジロール22の表面に当接させた場合に対応する構成を例示している。
 さらに、色素溶液12を半導体層11に接触させる方法として、前述した液体を基材に接触させる一般的な方法のうち、二種以上の方法を組み合わせてもよい。例えば、図示していないが、色素溶液12を半導体層11に接触させる方法として、浸漬法と滴下法とを組み合わせてもよい。この組み合わせを採用し、表面10aに半導体層11を形成した場合、例えば搬送中の基材10の接触部35に、滴下手段14を用いて色素溶液12を滴下すると共に、半導体層11を浸漬可能とする所定量の色素溶液12を基材10の曲がった部分の内側に貯留させる。そして、基材10が貯留された色素溶液12から離反し、その搬送方向を上方向としている間に、半導体層11を乾燥させてもよい。
 上記のように色素溶液12を半導体層11に接触させる方法を変更することで、上述した本実施形態の染色方法の作用効果が得られることに加え、色素溶液12の使用量の削減及び色素増感太陽電池の製造コストの低減という効果が得られる。
 また、本実施形態の染色方法では、図11に示すように、位置P2と基材10の搬送経路の下流側直近の位置P1との間に乾燥手段を設置し、表面10aから裏面10bに向かう方向に基材10の外方から半導体層11に送風や加熱を行うことが好ましい。このような方法により、半導体層11に浸み込んだ色素溶液12の溶媒を瞬時に除去することができる。
 乾燥手段は、色素溶液12中の溶媒を除去することが可能な手段であれば、特に制限されない。乾燥手段としては、例えば基材10の幅方向(即ち、図11及び図12に示す矢印D3方向)に延在するエアナイフ16、熱ラミロール40等が挙げられる。図11には、乾燥手段としてエアナイフ16を用いた染色方法に対応する構成を例示している。図12には、乾燥手段として熱ラミロール40を用いると共に、半導体層11に色素溶液12を接触させる方法として塗布法を採用し、塗布手段としてダイ26を使用した染色方法に対応する構成を例示している。図12に例示した染色方法では、半導体層11は予め二枚の基材10A,10Bの対向する裏面10bと表面10aに形成する。続いて、裏面10bと表面10aとの間にダイ26から色素溶液12を注入し、半導体層11に色素溶液12を接触させる。色素溶液12と接触している裏面10b及び表面10aとは反対側の基材10Aの表面10a及び基材10Bの裏面10bに保護用の樹脂フィルム34を被覆する。そして、樹脂フィルム34を介して、熱ラミロール40を二枚の基材10A,10Bに当てることで、半導体層11を乾燥させることができる。
 また、別の乾燥手段として、搬送ロールRの表面に不織布を装着する等の方法で当該表面に吸水性を持たせた吸水ロール(図示略)が挙げられる。吸水ロールを用いる場合には、色素溶液12に接触させた半導体層11に吸水ロールの表面を当接させればよい。
 また、乾燥手段としては、前述したエアナイフや吸水ロール等をはじめとする溶媒を瞬時に除去することが可能な方法のうち、二種以上の方法を組み合わせてもよい。
 上記のように乾燥手段を設けることで、上述した本実施形態の染色方法の作用効果が得られ、特に、各染色工程後に半導体層11中の色素溶液12の溶媒を確実に除去した状態で順次染色工程を行うことで、色素溶液12の半導体層11への浸透が迅速かつ良好になり、染色時間を短縮することができるという効果が得られる。また、半導体層11の乾燥時間が短縮されるので、装置の大きさが縮小され、実用的であるという効果も得られる。
 さらに別の変形例として、図示していないが、基材10の搬送位置に対する溶液槽18の相対位置を変えずに、乾燥手段の設置位置を変更した例が挙げられる。例えば、図11には、搬送中の基材10の乾燥部36において、基材10の搬送方向を上方向としている間に、エアナイフ16を設置した場合について例示している。しかしながら、本実施形態の染色方法を行うにあたって、装置構成等を勘案し、エアナイフ16を、基材10の乾燥部36において、基材10の搬送方向を下方向としている間に設置してもよい。その場合、半導体層11が基材10の接触部35から乾燥部36に移動して色素溶液12を離反してからエアナイフ16によって送風されるまでの空気乾燥の時間がより長くなるので、上述した本実施形態の染色方法の作用効果が得られることに加え、エアナイフ16における送風量を抑えることができるという効果が得られる。
 なお、上記説明した本実施形態の染色方法の変形例は、二種以上の例を組み合わせて用いてもよい。図13には、色素溶液12を半導体層11に接触させる方法として滴下法を選択し、位置P1において滴下手段14から色素溶液12を半導体層11に滴下すると共に、位置P2において乾燥手段であるエアナイフ16を用いて半導体層11を乾燥させる染色方法に対応する構成を例示している。このように、本実施形態の染色方法及びその変形例を適宜組み合わせることで、基材10の材質及び形状や色素溶液12の特性等を勘案した、本実施形態の染色方法を実施するための装置の構成や設備を自在に設計することができ、これらの装置や設備の省スペース化が図られる。
(第二実施形態)
 以下、本発明の第二実施形態について、図14を参照して説明する。
 図14は、本実施形態の染色方法を説明するための概略図である。なお、図14において、第一実施形態の染色方法を説明するための図1~図13の構成要素と同一の構成要素については、同一の符号を付し、その説明を省略する。
 本実施形態の染色方法では、図14に示すように、基材10の搬送方向を螺旋状に設けている。具体的には、不図示の搬送ロールR等を用いて、基材10を螺旋状に搬送する。
 基材10は、搬送開始から図14に示す矢印D1方向と矢印D3方向の反対方向(即ち、紙面の奥から手前に向かう方向)との両方向に進行する。
 また、貯留させた溶液槽18を螺旋状に搬送する基材10の搬送経路に沿って、色素溶液12を設置する。そして、螺旋の接触部35に搬送された半導体層11が色素溶液12に浸漬するように、基材10の搬送経路に対して相対的に適切な位置に溶液槽18を設置する。このような配置にすることにより、基材10を矢印D1方向に向けて螺旋状に搬送すると、基材10の搬送方向が下方向から上方向に切り替わる前後において色素溶液12の上面に接する位置P1において、基材10が色素溶液12に浸漬し、半導体層11に色素溶液12が接触する。
 上記の染色方法によれば、第一実施形態の染色方法と同様の原理に基づき、半導体層11への増感色素の染色を複数回行うことで、色素溶液12中の増感色素を半導体層11の内部に至るまで確実に到達させ、RtoR方式による色素増感太陽電池の製造時のように、基材10を高速に搬送しても、半導体層11に短時間で効率良く充分な量の増感色素を担持させることができる。
 また、本実施形態の染色方法では、基材10の搬送方向を螺旋状に設けているので、基材10が前進と後進とを交互に繰り返す。これにより、基材10の長さを拡大しても、染色方法の実施に必要とされる距離の増大をより一層抑えることができる。従って、第一実施形態の染色方法と同様に、本実施形態の染色方法を実施するための装置、設備の省スペース化が図られ、半導体層11への増感色素の染色工程及び本実施形態の染色方法を用いた色素増感太陽電池の製造効率を高めることができる。
 但し、本実施形態の染色方法では、前述のように、搬送開始から基材10が矢印D1方向だけではなく、矢印D3方向とは反対方向にも進行するので、装置や設備等の設置可能なスペースの長さと幅の双方に合わせて、螺旋状の基材10の搬送経路の寸法を設定することが好ましい。
 本実施形態の染色方法では、実施する際に不都合が生じなければ、第一実施形態の染色方法の変形例と同様の変形例が考えられる。
(第三実施形態)
 以下、本発明の第三実施形態について、図15を参照して説明する。
 図15は、本実施形態の染色方法を説明するための概略図である。なお、図15において、第一実施形態の染色方法を説明するための図1~図13の構成要素と同一の構成要素については、同一の符号を付し、その説明を省略する。
 本実施形態の染色方法では、第一実施形態の染色方法と同様の染色工程を有し、図15に示すように、基材10の幅方向(即ち、図15に示す矢印D3方向)の中心を軸線Aとして、基材10を図15に示す矢印D5方向に捻じり、回転させながら矢印D1方向に搬送する。
 また、色素溶液12を貯留させた溶液槽18を基材10の搬送経路に沿って相対的に適切な位置に設置する。図15には、捻じられた基材10の軸線Aより下半分が色素溶液12に浸漬可能となるように、溶液槽18を基材10の搬送経路に対して相対的に配置した場合に対応する構成を例示している。このような配置にすることにより、基材10を矢印D1方向に向けて軸線Aを中心に捻じり、回転させながら搬送すると、軸線Aより下方の基材10に予め形成された半導体層11が色素溶液12に接触し、軸線Aより上方の基材10に予め形成された半導体層11が空気中に曝される。
 上記の染色方法によれば、搬送開始から基材10が上流側最初の位置P1まで搬送された後、位置P1からその下流側直近の位置P2までの間に、軸線Aより下方の基材10に形成された半導体層11が色素溶液12に浸漬し、増感色素が担持される。位置P1から位置P2に至るまで、半導体層11は色素溶液12に浸漬され、色素溶液12側の半導体層11の表面から内部に向かって色素溶液12が浸み込む。この際、第一実施形態の染色方法と同様の原理に基づき、色素溶液12中の溶媒は、増感色素よりも半導体層11のより内部に浸透する。
 引き続き、軸線Aを中心に搬送方向を捻じり、回転させながら基材10を搬送すると、上記で軸線Aより下方に位置していた基材10に形成された半導体層11が、基材位置P2から下流側直近の位置P1までの間に、軸線Aより上方に位置して空気中に曝される。
 これにより、色素溶液12中の溶媒のみが迅速に蒸発する。同時に、軸線Aより下方に到達した基材10に形成された半導体層11が新たに色素溶液12に浸漬する。この際、色素溶液12中の溶媒の浸透力に伴い、色素溶液12中の増感色素が半導体層11の内部まで浸透し、半導体に担持される。
 上記のように半導体層11への増感色素の染色を複数回行うことで、色素溶液12中の増感色素を半導体層11の内部に至るまで確実に到達させ、RtoR方式による色素増感太陽電池の製造時のように、基材10を高速に搬送しても、半導体層11に短時間で効率良く増感色素を担持させることができる。
 また、本実施形態の染色方法では、染色工程において、基材10の矢印D3方向の中心を軸線Aとして基材10を捻じりながら矢印D1方向に搬送するので、基材10の長さを拡大しても、染色方法の実施に必要とされる距離の増大と高さの増大とを同時に抑えることができる。従って、第一実施形態の染色方法と同様に、本実施形態の染色方法を実施するための装置、設備の省スペース化が図られるという効果が得られる。その結果、半導体層11への増感色素の染色工程及び本実施形態の染色方法を用いた色素増感太陽電池の製造効率を高めることができる。
 本実施形態の染色方法では、実施する際に不都合が生じなければ、第一実施形態の染色方法の変形例と同様の変形例が考えられる。
 次いで、本発明を適用した光電極について説明する。
 本発明を適用した光電極は、本発明を適用した染色方法を用いて作製されたものである。例えば、本実施形態の光電極は、図1~図15を参照するとわかるように、基材10を搬送経路に載せるだけで、基材10の板面に任意のパターンで形成された半導体層11に対して充分な増感色素が担持されてなる光電極層13である。
 上記によれば、連続生産に好適であり、且つ高い光電変換率を有する光電極が得られる。
 次いで、本発明を適用した光電気モジュールについて説明する。
 本発明を適用した光電気モジュールは、上記説明した光電極を備えているものである。
このような光電気モジュールとしては、前述した色素増感太陽電池が挙げられるが、照射した光から光電極で電流を発生させ、当該電流を活用可能なモジュールであればよく、特に制限されない。
 本発明を適用した染色方法を用いて色素増感太陽電池を製造する場合は、染色工程を行う前に、基材10の板面に所定のパターンで導電層と半導体層11とをこの順に積層して形成する。また、染色工程を行った後に、光電極層11と別途形成した対向電極とを所定間隔をおいて対向させるように基材10と対向電極用基材とを配置する。続いて、光電極層11と対向電極との間に、電解液を充填すればよい。なお、染色工程の前後に行う各工程では、一般に知られている手順や材料を用いることができる。
 上記によれば、連続生産に好適であり、且つ高い光電変換率を有する光電気モジュールが得られる。
 以上、本発明の好ましい形態について詳述したが、本発明は係る特定の実施形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
 例えば、基材10の搬送経路は直線状でなくてもよく、複数の屈曲部を有する経路、或いは湾曲部を有する経路であってもよく、任意の形状に設計されていてよい。
 10…基材
 11…半導体層(多孔質体)
 12…色素溶液(溶液)
 A…軸線
 D1,D3…方向

Claims (6)

  1.  基材の表面に形成された多孔質体と、色素を含有する溶液とを接触させ、その後前記多孔質体を乾燥させる多孔質体の染色方法であって、
     前記基材を搬送しつつ、当該基材の搬送経路に沿って設置した前記溶液に対して前記多孔質体を接触させ、その下流で当該多孔質体を乾燥させる工程を有し、
     当該工程を複数回行うこと、
    を特徴とする多孔質体の染色方法。
  2.  前記工程において、
     前記基材の搬送方向を上下方向に蛇行させていることを特徴とする請求項1に記載の多孔質体の染色方法。
  3.  前記工程において、
     前記基材の搬送方向を螺旋状に設けていることを特徴とする請求項1に記載の多孔質体の染色方法。
  4.  前記基材の幅方向中心を軸線として前記基材を捻じり、回転させながら搬送することを特徴とする請求項1に記載の多孔質体の染色方法。
  5.  請求項1~4に記載の多孔質体の染色方法を用いて作製されたことを特徴とする光電極。
  6.  請求項5に記載の光電極を備えていることを特徴とする光電気モジュール。
PCT/JP2015/073211 2014-08-19 2015-08-19 多孔質体の染色方法、光電極及び光電気モジュール WO2016027826A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177000315A KR20170044082A (ko) 2014-08-19 2015-08-19 다공질체의 염색 방법, 광 전극 및 광 전기 모듈
JP2016544227A JPWO2016027826A1 (ja) 2014-08-19 2015-08-19 多孔質体の染色方法、光電極及び光電気モジュール
CN201580036635.XA CN106471594A (zh) 2014-08-19 2015-08-19 多孔质体的染色方法、光电极及光电模块

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014166630 2014-08-19
JP2014-166630 2014-08-19

Publications (1)

Publication Number Publication Date
WO2016027826A1 true WO2016027826A1 (ja) 2016-02-25

Family

ID=55350770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073211 WO2016027826A1 (ja) 2014-08-19 2015-08-19 多孔質体の染色方法、光電極及び光電気モジュール

Country Status (5)

Country Link
JP (1) JPWO2016027826A1 (ja)
KR (1) KR20170044082A (ja)
CN (1) CN106471594A (ja)
TW (1) TW201613126A (ja)
WO (1) WO2016027826A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008093576A (ja) * 2006-10-12 2008-04-24 Lintec Corp 多層膜の製造方法及び成膜装置
JP2010505659A (ja) * 2006-10-03 2010-02-25 ザ プロクター アンド ギャンブル カンパニー 表面に色を塗布するための物品及び方法
US20110159628A1 (en) * 2009-07-02 2011-06-30 Kee-Hyun Shin System and method for producing flexible dye-sensitized solar cells by a roll-to-roll printing process
JP2012113954A (ja) * 2010-11-24 2012-06-14 Sekisui Chem Co Ltd 多孔質体の染色方法
CN102873971A (zh) * 2012-09-18 2013-01-16 四川汇利实业有限公司 新型聚氯乙烯/聚偏二氯乙烯药用复合片加工涂敷干燥机及使用方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011132288A1 (ja) * 2010-04-22 2011-10-27 日立造船株式会社 光電変換素子用電極の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010505659A (ja) * 2006-10-03 2010-02-25 ザ プロクター アンド ギャンブル カンパニー 表面に色を塗布するための物品及び方法
JP2008093576A (ja) * 2006-10-12 2008-04-24 Lintec Corp 多層膜の製造方法及び成膜装置
US20110159628A1 (en) * 2009-07-02 2011-06-30 Kee-Hyun Shin System and method for producing flexible dye-sensitized solar cells by a roll-to-roll printing process
JP2012113954A (ja) * 2010-11-24 2012-06-14 Sekisui Chem Co Ltd 多孔質体の染色方法
CN102873971A (zh) * 2012-09-18 2013-01-16 四川汇利实业有限公司 新型聚氯乙烯/聚偏二氯乙烯药用复合片加工涂敷干燥机及使用方法

Also Published As

Publication number Publication date
CN106471594A (zh) 2017-03-01
JPWO2016027826A1 (ja) 2017-06-01
TW201613126A (en) 2016-04-01
KR20170044082A (ko) 2017-04-24

Similar Documents

Publication Publication Date Title
Gui et al. Enhanced photoelectrochemical water splitting performance of anodic TiO2 nanotube arrays by surface passivation
Hashmi et al. Review of materials and manufacturing options for large area flexible dye solar cells
US20160071655A1 (en) Electrochemical solar cells
CN102369630B (zh) 染料敏化太阳能电池
KR20110002802A (ko) 롤투롤 연속공정을 통한 염료감응형 태양전지의 생산장치 및 생산방법
Punnoose et al. Highly catalytic nickel sulfide counter electrode for dye-sensitized solar cells
JP4665426B2 (ja) 色素増感太陽電池及びその製造方法
Wang et al. CdS quantum dot-decorated titania/graphene nanosheets stacking structures for enhanced photoelectrochemical solar cells
KR101509306B1 (ko) 염료감응형 태양전지 및 이의 제조방법
TW201101556A (en) Method and device for dye adsorption for photosensitizing dye, process and apparatus for producing dye-sensitized solar cell, and dye-sensitized solar cell
JP4710251B2 (ja) 金属酸化物膜の製造方法
JP5332378B2 (ja) 対極基材、及びそれを用いた色素増感型太陽電池
JP2013503966A (ja) 色素増感太陽電池用の低温プラチナイズ(platinisation)
Wang et al. Silver/titania nanocable as fast electron transport channel for dye-sensitized solar cells
CN105551834B (zh) 一种柔性染料敏化太阳电池的低温低压制备方法
Kim et al. Dye-sensitized solar cells based on trench structured TiO2 nanotubes in Ti substrate
JP4836473B2 (ja) 光電変換装置およびその製造方法ならびに光発電装置
JP2003297158A (ja) グリッド電極を有する透明導電膜及びその製造方法
WO2016027826A1 (ja) 多孔質体の染色方法、光電極及び光電気モジュール
TW201214717A (en) Working electrode, method for fabricating the same and dye-sensitized solar cell containing the same
JP2010238395A (ja) 光電変換素子及びその製造方法
Jo et al. Improved performance of dye-sensitized solar cells with novel conjugated organic dye using aluminum oxide-coated nanoporous titanium oxide films
TWI536591B (zh) 經染料敏化之太陽能電池及其製造方法
JP5212750B2 (ja) 色素増感型太陽電池セルの製造方法および色素増感型太陽電池モジュールの製造方法
CN110383407B (zh) 层叠体和有机太阳能电池的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15833386

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177000315

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2016544227

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15833386

Country of ref document: EP

Kind code of ref document: A1