WO2016027583A1 - Electrolyte solution for nonaqueous secondary batteries, nonaqueous secondary battery, and additive used for electrolyte solution for nonaqueous secondary batteries - Google Patents

Electrolyte solution for nonaqueous secondary batteries, nonaqueous secondary battery, and additive used for electrolyte solution for nonaqueous secondary batteries Download PDF

Info

Publication number
WO2016027583A1
WO2016027583A1 PCT/JP2015/069655 JP2015069655W WO2016027583A1 WO 2016027583 A1 WO2016027583 A1 WO 2016027583A1 JP 2015069655 W JP2015069655 W JP 2015069655W WO 2016027583 A1 WO2016027583 A1 WO 2016027583A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
secondary battery
atom
carbon atoms
electrolyte solution
Prior art date
Application number
PCT/JP2015/069655
Other languages
French (fr)
Japanese (ja)
Inventor
吉憲 金澤
郁雄 木下
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2016543861A priority Critical patent/JP6376709B2/en
Publication of WO2016027583A1 publication Critical patent/WO2016027583A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F19/00Metal compounds according to more than one of main groups C07F1/00 - C07F17/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolyte for a non-aqueous secondary battery, a non-aqueous secondary battery using the same, and an additive used in these.
  • Lithium ion secondary batteries can achieve a large energy density in charge and discharge compared to lead batteries and nickel cadmium batteries. Utilizing this characteristic, application to portable electronic devices such as mobile phones and notebook personal computers is widespread. Recently, development of a secondary battery that is particularly lightweight and capable of obtaining a high energy density has been underway. Further, there is a demand for miniaturization and long life.
  • Lithium ion secondary batteries have a wide variety of applications and are increasingly expanding. Therefore, further improvement in battery performance is desired, and in particular, improvement in cycle characteristics is desired. In addition, from the diversification of applications, a battery having higher reliability and better battery performance is desired.
  • An object of the present invention is to provide an electrolyte for a non-aqueous secondary battery that can improve cycle characteristics in a non-aqueous secondary battery, and an additive used therefor. Furthermore, an object of the present invention is to provide an electrolyte for a non-aqueous secondary battery that can improve cycle characteristics and improve flame retardancy, and an additive used therefor. It is another object of the present invention to provide a non-aqueous secondary battery using an electrolytic solution having such excellent characteristics.
  • M represents a metal element.
  • R 1 and R 2 each independently represents a substituent. When there are a plurality of R 1 and R 2 , a plurality of R 1 or a plurality of R 2 may be bonded to each other to form an aliphatic or aromatic ring.
  • X and Y each independently represent a hydrogen atom or a substituent.
  • X and Y, or a plurality of Xs or Ys in the case where a plurality exist may be bonded to each other to form a ring.
  • L represents a linking group.
  • a and b each independently represents an integer of 0 to 4.
  • m and n represent integers satisfying 0 ⁇ m + n ⁇ 3.
  • (2) L includes a hydrocarbon group having 1 to 20 carbon atoms, a group containing a halogen atom, a group containing a silicon atom, a group containing a nitrogen atom, a group containing a phosphorus atom, a group containing a titanium atom, or a zirconium atom Electrolyte for non-aqueous secondary batteries as described in (1) which is group.
  • R 1 and R 2 are each independently an alkyl group, alkenyl group, alkynyl group, alkoxy group, alkylthio group, aryloxy group, amino group, group containing an amide bond, group containing an ester bond, cyano group , A carboxyl group, a group containing a carbonyl bond, a group containing a sulfonyl bond, a phosphino group, or a halogen atom, (1) or (2).
  • X and Y are each independently a hydrogen atom, alkyl group, alkenyl group, alkynyl group, alkoxy group, aryloxy group, alkylamino group, silylamino group, sulfo group, isocyanate group, isothiocyanate group, sulfanyl group,
  • the electrolyte solution for a non-aqueous secondary battery according to any one of (1) to (3), which is a phosphinyl group, a group containing a carbonyl bond, a halogen atom, an aryl group, or a heteroaryl group.
  • R 3 represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, an aryloxy group, an alkylamino group, a silylamino group, a sulfo group, an isocyanate group, an isothiocyanate group, It represents a sulfanyl group, a phosphinyl group, a group containing a carbonyl bond, a halogen atom, an aryl group or a heteroaryl group.
  • the plurality of R 3 may be the same even if different from each other.
  • a plurality of R 3 may be bonded to each other to form a ring.
  • Ra 11 to Ra 16 and Ra 21 to Ra 28 each independently represent a monovalent substituent.
  • the adjacent Ra 11 to Ra 16 and Ra 21 to Ra 28 may be bonded to each other to form a ring.
  • (9) The electrolyte solution for a non-aqueous secondary battery according to (8), wherein the compound represented by the formula (A1) is a fluorinated phosphazene compound represented by the following formula (A1-1).
  • Ra 41 represents an alkoxy group or a dialkylamino group.
  • M represents a metal element.
  • R 1 and R 2 each independently represents a substituent. When there are a plurality of R 1 and R 2 , a plurality of R 1 or a plurality of R 2 may be bonded to each other to form an aliphatic or aromatic ring.
  • X and Y each independently represent a hydrogen atom or a substituent.
  • X and Y, or a plurality of Xs or Ys in the case where a plurality exist may be bonded to each other to form a ring.
  • L represents a linking group.
  • a and b each independently represents an integer of 0 to 4.
  • m and n represent integers satisfying 0 ⁇ m + n ⁇ 3.
  • substituents and the like may be the same as or different from each other. Further, when a plurality of substituents and the like are close to each other, they may be bonded to each other to form a ring. In the case of a substituent on the ring, a plurality of substituents are bonded to form a ring, and the original ring And may form a condensed ring. Further, in the present specification, when simply referred to as a substituent, the substituent T is referred to. In the present specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the electrolyte solution for a non-aqueous secondary battery and the additive of the present invention can improve cycle characteristics in the non-aqueous secondary battery. Moreover, cycle characteristics can be improved and flame retardancy can be improved. Thereby, the non-aqueous secondary battery of the present invention exhibits excellent cycle characteristics and reliability as well as good battery performance.
  • the electrolyte solution for non-aqueous secondary batteries of the present invention (also referred to as electrolyte solution) contains an organometallic compound represented by the following formula (I).
  • the additive (also referred to as an electrolyte additive) used in the electrolyte solution for non-aqueous secondary batteries of the present invention is an organometallic compound represented by the following formula (I).
  • M represents a metal element.
  • R 1 and R 2 each independently represents a substituent. When there are a plurality of R 1 and R 2 , a plurality of R 1 or a plurality of R 2 may be bonded to each other to form an aliphatic or aromatic ring.
  • X and Y each independently represent a hydrogen atom or a substituent.
  • X and Y, or a plurality of Xs or Ys in the case where a plurality exist may be bonded to each other to form a ring.
  • L represents a linking group.
  • a and b each independently represents an integer of 0 to 4.
  • m and n represent integers satisfying 0 ⁇ m + n ⁇ 3.
  • M represents a metal element.
  • M is preferably a transition element or a rare earth element, more preferably a transition element of Group 4 to Group 8 or a lanthanoid, still more preferably a transition element of Group 4, 5 or 8, and a group 4 or 8 Group transition elements are particularly preferred, and Group 8 transition elements are most preferred.
  • M is preferably Fe, Ru, Cr, V, Ta, Mo, Ti, Zr, Hf, Y, La, Ce, Sw, Nd, Lu, Er, Yb, Gd, and Ti, Zr, Hf, V, Nb, Fe, and Ru are more preferable, Ti, Zr, Fe, and V are more preferable, Ti, Zr, and Fe are particularly preferable, and Fe is most preferable.
  • R 1 , R 2 R 1 and R 2 represent a substituent.
  • substituents include the substituent T described later.
  • a linear or branched substituent may be an aliphatic or aromatic ring or a group containing such a ring.
  • ring groups include hydrocarbon ring groups such as cycloalkyl groups, cycloalkenyl groups, cycloalkynyl groups, and aryl groups (eg, phenyl, naphthyl), and nitrogen-containing heterocycles.
  • a heterocyclic group or a heteroaryl ring group (preferably a ring-constituting hetero atom is preferably an oxygen atom, a sulfur atom or a nitrogen atom, preferably a 5- or 6-membered ring group, and other ring (preferably a benzene ring or a hetero ring) ) May be condensed.).
  • R 1 and R 2 are preferably an alkyl group (preferably having 1 to 6 carbon atoms, more preferably 1 to 3 carbon atoms), an alkylsilyl group (preferably having 1 to 6 carbon atoms, more preferably 1 to 3 carbon atoms).
  • An alkenyl group (preferably 2 to 6 carbon atoms, more preferably 2 or 3 carbon atoms), an alkynyl group (preferably 2 to 6 carbon atoms, more preferably 2 or 3 carbon atoms), an alkoxy group (preferably carbon atoms) 1 to 6, more preferably 1 to 3 carbon atoms, an alkylthio group (preferably 1 to 6 carbon atoms, more preferably 1 to 3 carbon atoms), an aryloxy group (preferably 6 to 12 carbon atoms, more preferably Has 6 to 10 carbon atoms), an amino group (including an alkylamino group) (the carbon number is preferably 0 to 6, more preferably 1 to 6, still more preferably 2 to 6, and particularly preferably 2 to 4).
  • Amide A group containing a group (a carbamoyl group, an acylamino group, a ureido group and a urethane group are preferred, a carbamoyl group and an acylamino group are more preferred.
  • the number of carbon atoms is preferably 1 to 6, more preferably 1 to 3, more specifically, A group represented by C ( ⁇ O) —N (Ra) 2 , —N (Ra) —C ( ⁇ O) Ra), a group containing an ester bond (acyloxy group or oxycarbonyl group is preferred, carbon
  • the number is preferably 1 to 6, more preferably 1 to 4, and specifically, a group represented by —OC ( ⁇ O) —Ra, —C ( ⁇ O) —ORa is preferred), a cyano group, Carboxy group, group containing a carbonyl bond (acyl group is preferred, carbon number is preferably 2-7, more preferably 2-4, specifically, a group represented by —C ( ⁇ O) —Ra is preferred.
  • sulfonyl bonds (A sulfonyl group, a sulfonamido group, a sulfamoyl group are preferred, a sulfonyl group is more preferred.
  • the number of carbon atoms is preferably from 1 to 6, more preferably 1 to 3, specifically, the group represented by -SO 2 -Ra ),
  • Ra represents a hydrogen atom or a substituent, and examples of such a substituent include the substituent T described later.
  • a preferable substituent of the “substituent” includes the substituent T described later.
  • R 1 and R 2 are preferably an alkyl group, an alkylsilyl group, a phosphino group, and an amino group, and particularly preferably an alkyl group.
  • Specific preferred groups include a methyl group, an n-butyl group, a t-butyl group, a trimethylsilyl group, a dimethylphosphino group, a diethylphosphino group, a methylamino group, and an ethylamino group. Most preferred.
  • a and b each independently represents an integer of 0 to 4, preferably an integer of 0 to 3, and particularly preferably 0.
  • ⁇ X, Y X and Y each independently represent a hydrogen atom or a substituent.
  • substituent include the substituent T described later.
  • X and Y are an alkyl group (preferably having 1 to 8 carbon atoms, more preferably 1 to 3 carbon atoms), an alkenyl group (preferably having 2 to 8 carbon atoms, more preferably 2 to 6 carbon atoms), an alkynyl group ( Preferably 2 to 8 carbon atoms, more preferably 2 to 6 carbon atoms), an alkoxy group (preferably 1 to 12 carbon atoms, more preferably 1 to 10 carbon atoms), an aryloxy group (preferably 6 to 12 carbon atoms).
  • an alkylamino group preferably 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms
  • a silylamino group preferably 0 to 10 carbon atoms, more preferably 2 carbon atoms.
  • the number of carbon atoms is preferably 1 to 6, more preferably 1 to 3.
  • — C ( ⁇ O) —Ra, —O—C ( ⁇ O) —Ra is preferred
  • a halogen atom is preferred
  • an aryl group preferably having 6 to 22 carbon atoms, more preferably 6 to 10 carbon atoms
  • hetero Aryl group ring hetero atom is preferably oxygen atom, sulfur atom, nitrogen atom, ring member is preferably 5 or 6 member, and may be condensed with benzene ring or hetero ring. 2-4 are preferred There.
  • Ra represents a hydrogen atom or a substituent.
  • X and Y may be bonded to each other to form a ring.
  • the ring formed when X and Y are bonded to each other is preferably a ring including an M atom.
  • the bond forming the ring may be a single bond or a multiple bond.
  • a plurality of sulfanyl groups may be bonded and coordinated as a cyclic polysulfide.
  • An alkenyl group (butadiene coordination type metallacycle), a cyclic cumulene group in which a ring is formed by a double bond is preferable, an alkoxy group, a phenoxy group, and a cyclic alkenyl group in which X and Y form a ring by a single bond (butadiene coordination type) (Metallacycle), a cyclic cumulene group in which a ring is formed by a double bond is more preferable, a cyclic alkenyl group (butadiene-coordinated metallacycle) in which X and Y form a ring by a single bond, and a ring is formed by a double bond
  • a cyclic cumulene group is particularly preferred.
  • X and Y may further have a substituent, and examples thereof include the following substituent T.
  • R XY1 to R XY4 each independently represents a hydrogen atom or a substituent, and ** represents a bonding point for bonding to M.
  • R XY1 to R XY4 are preferably a hydrogen atom, an alkyl group, or a silyl group.
  • R XY1 and R XY4 are preferably sterically bulky groups, and tertiary alkyl groups (preferably t-butyl groups) and silyl groups (preferably trialkylsilyl groups) are particularly preferable.
  • n m and n are integers satisfying 0 ⁇ m + n ⁇ 3.
  • m + n is preferably 2 or less.
  • the plurality of groups defined therein may be the same as or different from each other.
  • M Fe
  • M is a metal element other than Fe, for example, Zr, V, and Ti
  • ⁇ L L represents a linking group.
  • a divalent hydrocarbon group having 1 to 20 carbon atoms, a group containing a halogen atom, a group containing a silicon atom, a group containing a nitrogen atom, a group containing a phosphorus atom, a group containing a titanium atom, or zirconium Groups containing atoms are preferred.
  • a divalent hydrocarbon group having 1 to 20 carbon atoms, a group containing a silicon atom, a group containing a phosphorus atom, a group containing a titanium atom or a group containing a zirconium atom is more preferred, and a divalent group having 1 to 20 carbon atoms.
  • hydrocarbon group More preferred are a hydrocarbon group, a group containing a silicon atom or a group containing a phosphorus atom, and a divalent hydrocarbon group having 1 to 20 carbon atoms and a group containing a silicon atom are particularly preferred.
  • L is preferably a group represented by any one of the following formulas (i) to (viii), and the formulas (i), (iii), (iv), (v), (vi), (vii), (viii) ) Is more preferred, and groups represented by formulas (i), (iii), (v), (vi), (vii), (viii) are more preferred, and formulas (i), (iii) ), (Vi), groups represented by (vii) are particularly preferred, and groups represented by formulas (i), (vi) are most preferred.
  • the following * indicates the point of attachment to each of the two cyclopentadienyl rings.
  • the bond between Ti or Zr and R 3 may be a single bond, an ionic bond, or a coordination bond via a ⁇ electron, but may be coordinated via a ⁇ electron.
  • a coordinate bond is preferred.
  • R 3 is a hydrogen atom, an alkyl group (preferably having 1 to 8 carbon atoms, more preferably 1 to 3 carbon atoms), an alkenyl group (preferably having 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms), an alkynyl group (preferably 2 to 8 carbon atoms, more preferably 2 to 6 carbon atoms), an alkoxy group (preferably 1 to 12 carbon atoms, more preferably 1 to 10 carbon atoms), An aryloxy group (preferably having 6 to 12 carbon atoms, more preferably 6 to 10 carbon atoms), an alkylamino group (preferably 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms), a silylamino group (preferably carbon atoms) having 0 to 10, more preferably 2 to 6 carbon atoms), a sulfo group, an isocyanate group (-NCO), isothiocyanate group (-NCS), sulfanyl
  • the ring may be condensed with a benzene ring or a hetero ring, and the number of carbon atoms is preferably 2 to 8, more preferably 2 to 4.
  • the aryl group in R 3 includes an aryl ring, and the heteroaryl group includes a heteroaryl ring. Preferred ranges thereof are also the same as the aryl group and heteroaryl group, respectively.
  • the aryl group herein includes a cyclopentadienyl group.
  • Ra represents a hydrogen atom or a substituent.
  • Each group of R 3 may further have a substituent, and examples of such a substituent include the substituent T described later.
  • R 3 is preferably a hydrogen atom, an alkyl group, an aryl group, an aryl ring, an alkoxy group, an aryloxy group, a heteroaryl group or a heteroaryl ring, and a hydrogen atom, a methyl group, an ethyl group, an isopropyl group, a phenyl group, A methoxy group, an ethoxy group, an isopropoxy group, a phenoxy group, a cyclopentadienyl group, or a cyclopentadiene ring is more preferable.
  • a plurality of R 3 present in the linking group may be different from each other or the same.
  • a plurality of R 3 may be bonded to each other to form a ring.
  • TMS is a trimethylsilyl group [—Si (CH 3 ) 3 ]
  • t-Bu is a t-butyl group [—C 4 H 9 -t ]
  • Et is an ethyl group [—C 2 H 5 ].
  • the method for producing the organometallic compound represented by the general formula (I) of the present invention is not particularly limited.
  • the organometallic compound represented by the formula (I) of the present invention may be used alone or in combination of two or more.
  • Content in the electrolyte solution for non-aqueous secondary batteries of the organometallic compound represented by Formula (I) is more than 0 mass% and 1 mass% or less with respect to the whole quantity containing an electrolyte. By making it in such a range, the effect of improving battery characteristics is effectively exhibited. In particular, 1% by mass or less is preferable because battery performance is not impaired.
  • the content of the organometallic compound represented by the formula (I) is preferably 0.001% by mass or more and 1% by mass or less, more preferably 0.005% by mass or more and 1% by mass or less, and still more preferably. Is preferably 0.01% by mass or more and 1% by mass or less, particularly preferably. It is 0.01 mass% or more and 0.5 mass% or less, Most preferably, it is 0.01 mass% or more and 0.2 mass% or less.
  • the organometallic compound represented by the formula (I) of the present invention crosslinks the cyclopentadiene ring of the metallocene, thereby giving distortion and destabilizing the compound itself, thereby oxidatively decomposing the metal compound of the present invention. Is promoted. As a result, even a battery with a low driving voltage could form a film on the positive electrode, and it seems that the cycle characteristics were greatly improved and the resistance was reduced.
  • the electrolyte for a non-aqueous secondary battery of the present invention preferably further contains a phosphazene compound.
  • the phosphazene compound used in the electrolyte solution for a non-aqueous secondary battery of the present invention is preferably a compound represented by the following formula (A1) or the following formula (A2).
  • Ra 11 to Ra 16 and Ra 21 to Ra 28 each independently represent a monovalent substituent.
  • the adjacent Ra 11 to Ra 16 and Ra 21 to Ra 28 may be bonded to each other to form a ring.
  • Ra 11 to Ra 16 and Ra 21 to Ra 28 include a halogen atom (a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, particularly preferably a fluorine atom), an alkyl group (preferably having 1 to 12 carbon atoms, 1 to 6 are more preferable, and 1 to 3 are particularly preferable), an alkoxy group (including an alkoxy group substituted with an aryl group, an alkoxy group substituted with a fluorine atom, preferably having 1 to 12 carbon atoms, and preferably having 1 to 6 carbon atoms) More preferably, 1 to 3 is particularly preferable, an alkylthio group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 and particularly preferably 1 to 3), an aryloxy group (preferably having 6 to 22 carbon atoms, 6 To 14 are more preferred), an arylthio group (preferably having 6 to 22 carbon atoms, more preferably 6 to 14 carbon atoms), an aral
  • Ra 11 to Ra 16 and Ra 21 to Ra 28 are preferably a halogen atom, an alkyl group, an alkoxy group, an alkylthio group, an aryloxy group, an arylthio group, an aralkyl group or an amino group, and a halogen atom, an alkoxy group, an aryloxy group or An amino group is more preferable.
  • an unsubstituted alkoxy group such as a methoxy group, an ethoxy group, or a butoxy group, or a 2,2,2-trifluoroethoxy group, a 1,1,1,3,3,3-hexafluoroisopropoxy group
  • An alkoxy group substituted with a fluorine atom such as a perfluorobutylethyl group is preferred.
  • the aryloxy group is preferably a phenoxy group or a phenoxy group substituted with a fluorine atom.
  • 3 to 6 (preferably 4 or 5, more preferably 5) of Ra 11 to Ra 16 are fluorine atoms, and 0 to 3 (preferably 1 Or two, more preferably one) is preferably an alkoxy group, an aryloxy group or an amino group.
  • 5 to 8 (preferably 6 or 7, more preferably 7) of Ra 21 to Ra 28 are fluorine atoms, and 0 to 3 (preferably 1 Or two, more preferably one) is preferably an alkoxy group, an aryloxy group or an amino group.
  • the amino group in Ra 11 to Ra 16 and Ra 21 to Ra 28 preferably has a structure represented by the following formula (N1).
  • Ra 31 and Ra 32 are each independently a monovalent substituent, an alkyl group (preferably an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, An alkyl group having 1 to 3 carbon atoms, an acyl group (an acyl group having 1 to 12 carbon atoms is preferable, an acyl group having 1 to 6 carbon atoms is more preferable, and an acyl group having 1 to 3 carbon atoms is particularly preferable) Or an aryl group (an aryl group having 6 to 22 carbon atoms is preferable, an aryl group having 6 to 14 carbon atoms is more preferable, and an aryl group having 6 to 10 carbon atoms is particularly preferable).
  • an alkyl group preferably an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, An alkyl group having 1 to 3 carbon atoms, an acyl group (an acyl group having
  • Ra 31 and Ra 32 may be bonded to each other or condensed to form a ring.
  • a hetero atom such as a nitrogen atom, an oxygen atom, or a sulfur atom may be incorporated.
  • the ring formed is preferably a 5-membered ring or a 6-membered ring.
  • the 5-membered ring is preferably a compound containing a nitrogen-containing 5-membered ring, such as pyrrole, imidazole, pyrazole, indazole, indole, benzimidazole, pyrrolidine, imidazolidine, pyrazolidine, indoline, carbazole, or derivatives thereof (all N substitution).
  • Preferred examples of the 6-membered ring include piperidine, morpholine, piperazine, and derivatives thereof (all are N-substituted).
  • the compound represented by the above formula (A1) is preferably a fluorinated phosphazene compound represented by the following formula (A1-1) or the following formula (A1-2).
  • Ra 41 and Ra 42 have the same meaning as Ra 11 and are preferably an alkoxy group, an aryloxy group, a fluorine atom or an amino group. From the viewpoint of imparting flame retardancy to the electrolytic solution, Ra 41 and Ra 42 are preferably an alkoxy group or a dialkylamino group, and more preferably a dialkylamino group. As the dialkylamino group, an amino group represented by the above formula (N1) is preferably applied.
  • the phosphazene compound represented by the above formula (A1) is more preferably a fluorinated phosphazene compound represented by the above formula (A1-1) from the viewpoint of imparting flame retardancy to the electrolytic solution.
  • Me is a methyl group
  • Et is an ethyl group
  • Bu is a butyl group
  • Ph is a phenyl group.
  • the phosphazene compounds used in the present invention may be used singly or in combination of two or more. Further, the concentration of the phosphazene compound in the electrolyte solution for non-aqueous secondary batteries is not particularly limited, but the total amount including the electrolyte is preferably 0.5% by mass or more, and preferably 1% by mass or more. More preferred is 3% by mass or more. The upper limit is preferably 30% by mass or less, more preferably 20% by mass or less, and particularly preferably 10% by mass or less. By blending the phosphazene compound at the lower limit value or more, sufficient flame retardancy can be imparted, and good charge / discharge performance can be realized in battery performance.
  • phosphazene compound used in the present invention a commercially available compound can be used, or a compound obtained by modifying it can be used.
  • a fluorinated phosphazene compound substituted with an alkoxy group is a fluorinated phosphazene compound represented by (PNF 2 ) na (na represents 3 or 4).
  • R-OM r R is an alkyl group, M r in.
  • the electrolyte used in the electrolytic solution of the present invention is preferably a salt of a metal ion belonging to Group 1 or Group 2 of the periodic table.
  • the metal ion salt to be used is appropriately selected depending on the intended use of the electrolytic solution.
  • lithium salt, potassium salt, sodium salt, calcium salt, magnesium salt and the like can be mentioned.
  • lithium salt is preferable from the viewpoint of output.
  • a lithium salt may be selected as a metal ion salt.
  • the lithium salt normally used for the electrolyte of the nonaqueous electrolyte solution for lithium secondary batteries is preferable, For example, what is described below is preferable.
  • Inorganic lithium salts inorganic fluoride salts such as LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 ; perhalogenates such as LiClO 4 , LiBrO 4 , LiIO 4 ; inorganic chloride salts such as LiAlCl 4 etc
  • Oxalatoborate salt lithium bis (oxalato) borate, lithium difluorooxalatoborate, etc.
  • LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 , LiClO 4 , Li (Rf 1 SO 3 ), LiN (Rf 1 SO 2 ) 2 , LiN (FSO 2 ) 2 , and LiN (Rf 1 SO 2 ) (Rf 2 SO 2 ) are preferred, and lithium imides such as LiPF 6 , LiBF 4 , LiN (Rf 1 SO 2 ) 2 , LiN (FSO 2 ) 2 and LiN (Rf 1 SO 2 ) (Rf 2 SO 2 ) More preferred are salts.
  • Rf 1 and Rf 2 each represent a perfluoroalkyl group.
  • the electrolyte used for electrolyte solution may be used individually by 1 type, or may combine 2 or more types arbitrarily.
  • the electrolyte in the electrolytic solution (preferably a metal ion belonging to Group 1 or Group 2 of the periodic table or a metal salt thereof) is added in such an amount that a preferable salt concentration described below in the method for preparing the electrolytic solution is obtained. It is preferable.
  • the salt concentration is appropriately selected depending on the intended use of the electrolytic solution, but is generally 10% to 50% by mass, more preferably 15% to 30% by mass, based on the total mass of the electrolytic solution.
  • the molar concentration is preferably 0.5M to 1.5M.
  • concentration of ion what is necessary is just to calculate by salt conversion with the metal applied suitably.
  • Non-aqueous solvent As the non-aqueous solvent used in the present invention, an aprotic organic solvent is preferable, and an aprotic organic solvent having 2 to 10 carbon atoms is particularly preferable.
  • Such non-aqueous solvents include carbonate compounds, lactone compounds, chain or cyclic ether compounds, ester compounds, nitrile compounds, amide compounds, oxazolidinone compounds, nitro compounds, chain or cyclic sulfone or sulfoxide compounds, phosphoric acid. Examples include esters.
  • a compound having an ether bond, a carbonyl bond, an ester bond or a carbonate bond is preferable. These compounds may have a substituent, for example, the below-mentioned substituent T is mentioned.
  • non-aqueous solvent examples include ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, ⁇ -butyrolactone, ⁇ -valerolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2 -Methyltetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, 1,3-dioxane, 1,4-dioxane, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, butyric acid Methyl, methyl isobutyrate, methyl trimethylacetate, ethyl trimethylacetate, acetonitrile, glutaronitrile, adiponitrile, methoxyacetonitrile, 3-
  • ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate, and ⁇ -butyrolactone is preferable.
  • high viscosity high dielectric constant
  • ethylene carbonate or propylene carbonate A combination of a solvent (for example, relative dielectric constant ⁇ ⁇ 30) and a low viscosity solvent (for example, viscosity ⁇ 1 mPa ⁇ s) such as dimethyl carbonate, ethyl methyl carbonate, or diethyl carbonate is more preferable.
  • a mixed solvent of such a combination the dissociation property of the electrolyte salt and the ion mobility are improved.
  • the nonaqueous solvent used in the present invention is not limited to these.
  • the electrolyte solution of the present invention preferably contains various functional additives in order to improve flame retardancy, improve cycle characteristics, improve capacity characteristics, and the like. Examples of functional additives that are preferably applied to the electrolytic solution of the present invention are shown below.
  • Aromatic compounds include biphenyl compounds and alkyl-substituted benzene compounds.
  • the biphenyl compound has a partial structure in which two benzene rings are bonded by a single bond, and the benzene ring may have a substituent.
  • Preferred substituents are alkyl groups having 1 to 4 carbon atoms (for example, Methyl, ethyl, propyl, t-butyl, etc.) and aryl groups having 6 to 10 carbon atoms (eg, phenyl, naphthyl, etc.).
  • the biphenyl compound examples include biphenyl, o-terphenyl, m-terphenyl, p-terphenyl, 4-methylbiphenyl, 4-ethylbiphenyl, and 4-tert-butylbiphenyl.
  • the alkyl-substituted benzene compound is preferably a benzene compound substituted with an alkyl group having 1 to 10 carbon atoms, and specifically includes ethylbenzene, isopropylbenzene, cyclohexylbenzene, t-amylbenzene, t-butylbenzene, and tetrahydrohydronaphthalene. Can be mentioned.
  • the halogen atom contained in the compound having a halogen atom is preferably a fluorine atom, a chlorine atom or a bromine atom, and more preferably a fluorine atom.
  • the number of halogen atoms is preferably 1 to 6, more preferably 1 to 3.
  • the compound having a halogen atom is preferably a carbonate compound substituted with a fluorine atom, a polyether compound having a fluorine atom, or a fluorine-substituted aromatic compound.
  • the carbonate compound substituted with halogen may be either linear or cyclic.
  • a cyclic carbonate compound having a high coordination property of an electrolyte salt for example, lithium ion
  • a 5-membered cyclic carbonate compound is particularly preferable.
  • Preferred specific examples of the carbonate compound substituted with a halogen atom are shown below. Among these, compounds of Bex1 to Bex4 are particularly preferable, and Bex1 is most preferable.
  • a compound having a carbon-carbon double bond is preferable.
  • a carbonate compound having a double bond such as vinylene carbonate or vinyl ethylene carbonate, an acryloyloxy group, a methacryloyloxy group, a cyanoacryloyloxy group, ⁇ -CF 3
  • a compound having a group selected from an acryloyloxy group and a compound having a styryl group are preferred, and a carbonate compound having a double bond or a compound having two or more polymerizable groups in the molecule is more preferred.
  • the compound having a sulfur atom is preferably a compound containing a sulfur atom and having a —SO 2 —, —SO 3 —, —OS ( ⁇ O) O— bond, such as propane sultone, propene sultone, and ethylene sulfite. Cyclic sulfur-containing compounds and sulfonic acid esters are preferred.
  • sulfur-containing cyclic compound a compound represented by the following formula (E1) or (E2) is preferable.
  • X 1 and X 2 each independently represent —O— or —C (Ra1) (Rb1) —.
  • Ra1 and Rb1 each independently represent a hydrogen atom or a substituent.
  • the substituent is preferably an alkyl group having 1 to 8 carbon atoms, a fluorine atom, or an aryl group having 6 to 12 carbon atoms.
  • represents an atomic group necessary for forming a 5- to 6-membered ring.
  • the skeleton of ⁇ may contain a sulfur atom, an oxygen atom, etc. in addition to a carbon atom.
  • may be substituted, and examples of the substituent include a substituent T, preferably an alkyl group, a fluorine atom, and an aryl group.
  • R F1 represents an alkyl group, an alkenyl group, an acyl group, an acyloxy group, or an alkoxycarbonyl group.
  • R F2 represents an alkyl group, an alkenyl group, an alkynyl group or an alkoxy group.
  • a plurality of R F1 and R F2 in one formula may be different from each other or the same.
  • nitrile compound a compound represented by the following formula (G) is preferable.
  • R G1 to R G3 each independently represent a hydrogen atom, an alkyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, a cyano group, a carbamoyl group, a sulfonyl group, a halogen atom or a phosphonyl group.
  • Preferred examples of each substituent can refer to the examples described in the corresponding group of the substituent T described later.
  • a nitrile compound in which any one of R G1 to R G3 contains a cyano group can be used. preferable.
  • Ng represents an integer from 1 to 8.
  • Specific examples of the compound represented by the formula (G) include acetonitrile, propionitrile, isobutyronitrile, succinonitrile, malononitrile, glutaronitrile, adiponitrile, 2-methylglutanonitrile, hexanetricarbonitrile, Propanetetracarbonitrile and the like are preferable. Particularly preferred are succinonitrile, malononitrile, glutaronitrile, adiponitrile, 2-methylglutanonitrile, hexanetricarbonitrile, and propanetetracarbonitrile.
  • the compound having a boron atom is preferably a compound represented by the following formulas (H1) to (H3).
  • R H1 and R H4 to R H11 are each independently an alkyl group, an alkoxy group, an alkylcarbonyloxy group, an aryl group, an aryloxy group, an arylcarbonyloxy group, a heteroaryl group, A heteroaryloxy group, a heteroarylcarbonyloxy group, an alkylamino group, an arylamino group, a cyano group, a carbamoyl group or a halogen atom;
  • a plurality of groups may be bonded to each other to form a ring.
  • R H2 and R H3 each independently represents an alkyl group, an alkylcarbonyl group, an aryl group, an arylcarbonyl group, a heteroaryl group, a heteroarylcarbonyl group, or a boron atom.
  • Z + represents an inorganic or organic cation, and is preferably an ammonium cation, Li + , Na + , or K + .
  • Specific examples of the compound having a boron atom include the following structures, more preferably Hex1, Hex2 or Hex10, and further preferably Hex10.
  • ⁇ Metal complex compound> In this invention, you may contain the metal complex compound different from the organometallic compound represented by Formula (I) with the organometallic compound represented by Formula (I) of this invention.
  • a metal complex compound a transition metal complex or a rare earth complex is preferable.
  • complexes represented by any of the following formulas (H-1) to (H-3) are preferred.
  • X H and Y H each independently represent a methyl group, an n-butyl group, a bis (trimethylsilyl) amino group or a thioisocyanate group.
  • X H and Y H are bonded to one another, with M H, it may form a cyclic alkenyl group (butadiene coordinated metallacycle).
  • MH represents a transition element or a rare earth element. Specifically, MH is preferably Fe, Ru, Cr, V, Ta, Mo, Ti, Zr, Hf, Y, La, Ce, Sw, Nd, Lu, Er, Yb, and Gd.
  • n H and n H are integers satisfying 0 ⁇ m H + n H ⁇ 3.
  • n H + m H is preferably 1 or more.
  • the 2 or more groups defined therein may be different from each other.
  • the metal complex compound is also preferably a compound having a partial structure represented by the following formula (H-4).
  • MH represents a transition element or a rare earth element, and is synonymous with the formulas (H-1) to (H-3), and the preferred range is also the same.
  • R 1H and R 2H are each a hydrogen atom, an alkyl group (preferably having 1 to 6 carbon atoms), an alkenyl group (preferably having 2 to 6 carbon atoms), an alkynyl group (preferably having 2 to 6 carbon atoms), an aryl group (preferably carbon atoms). The number represents 6 to 14), a heteroaryl group (preferably 3 to 6 carbon atoms), an alkylsilyl group (preferably 1 to 6 carbon atoms) or a halogen atom.
  • R 1H and R 2H may be bonded to each other to form a ring.
  • Such a ring is preferably a 5- to 6-membered ring, and examples thereof include a pyrrolidine ring, a piperidine ring, a piperazine ring, a morpholine ring, and a thiomorpholine ring.
  • R 1H and R 2H include examples of the substituent T described later. Of these, a methyl group, an ethyl group, and a trimethylsilyl group are preferable.
  • q H represents an integer of 1 to 4, preferably an integer of 2 to 4. More preferably, it is 2 or 4. When q H is 2 or more, where a plurality of groups as defined may be the same or different from each other.
  • the metal complex compound is also preferably a compound represented by any of the following formulas.
  • the central metal M h is, Ti, Zr, ZrO, Hf , V, Cr, Fe, Ce is particularly preferred, Ti, Zr, Hf, V , Cr is the most preferred.
  • R 3h , R 5h and R 7h to R 10h R 3h , R 5h and R 7h to R 10h represent a substituent.
  • an alkyl group, an alkoxy group, an aryl group, an alkenyl group, and a halogen atom are preferable.
  • alkenyl groups of 6 to 6 and methyl, ethyl, propyl, isopropyl, isobutyl, t-butyl, perfluoromethyl, methoxy, phenyl and ethenyl are further preferred.
  • R 33h and R 55h represent a hydrogen atom or a substituent of R 3h .
  • Examples of the substituent for R 3h include the substituent T described later.
  • Y h is preferably an alkyl group having 1 to 6 carbon atoms or a bis (trialkylsilyl) amino group, and more preferably a methyl group or a bis (trimethylsilyl) amino group.
  • ⁇ L h, m h and o h l h, m h and o h represents an integer of 0-3, an integer of 0 to 2 is preferred.
  • l h , m h and o h are 2 or more, the plurality of structural portions defined therein may be the same as or different from each other.
  • L h is preferably an alkylene group, a cycloalkylene group or an arylene group, more preferably a cycloalkylene group having 3 to 6 carbon atoms or an arylene group having 6 to 14 carbon atoms, and further preferably cyclohexylene or phenylene.
  • an imide compound in which all of the hydrogen atoms on the carbon atom are fluorinated is preferable, and a perfluorinated sulfonimide compound is preferable, specifically, perfluorinated.
  • a sulfoimide lithium compound is mentioned.
  • Specific examples of the imide compound include the following structures, and Cex1 and Cex2 are more preferable.
  • the electrolytic solution of the present invention may contain at least one selected from the above, a negative electrode film forming agent, a flame retardant, an overcharge preventing agent and the like.
  • the content ratio of these functional additives in the nonaqueous electrolytic solution is not particularly limited, and is preferably 0.001% by mass to 10% by mass with respect to the entire nonaqueous electrolytic solution (including the electrolyte).
  • a substituent that does not specify substitution / non-substitution means that the group may have an arbitrary substituent. This is also synonymous for compounds that do not specify substitution / non-substitution.
  • Preferred substituents include the following substituent T.
  • substituent T examples include the following.
  • An alkyl group preferably an alkyl group having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.
  • alkenyl A group preferably an alkenyl group having 2 to 20 carbon atoms such as vinyl, allyl, oleyl and the like
  • an alkynyl group preferably an alkynyl group having 2 to 20 carbon atoms such as ethynyl, butynediynyl, phenylethynyl and the like
  • a cycloalkyl group preferably a cycloalkyl group having 3 to 20 carbon atoms, such as cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclo
  • each group may be further substituted with the above-described substituent T.
  • substituent T For example, an aralkyl group in which an aryl group is substituted for an alkyl group.
  • a compound or a substituent / linking group includes an alkyl group / alkylene group, an alkenyl group / alkenylene group, an alkynyl group / alkynylene group, etc., these may be cyclic or linear, and may be linear or branched These may be substituted as described above or may be unsubstituted.
  • the nonaqueous electrolytic solution of the present invention is prepared by a conventional method by dissolving each of the above components in the nonaqueous electrolytic solution solvent, including an example in which a lithium salt is used as a metal ion salt.
  • non-water means that water is not substantially contained, and a trace amount of water may be contained as long as the effect of the invention is not hindered.
  • substantially not containing means that the concentration of water is 200 ppm (mass basis) or less, preferably 100 ppm or less, more preferably 20 ppm or less. Actually, it is difficult to make it completely anhydrous, and 1 ppm or more is included.
  • the viscosity of the electrolytic solution of the present invention is not particularly limited. At 25 ° C., 10 to 0.1 mPa ⁇ s is preferable, and 5 to 0.5 mPa ⁇ s is more preferable.
  • the viscosity of the electrolytic solution is measured using 1 mL of a sample in a rheometer (for example, CLS 500 manufactured by TA Instruments) and using Steel Cone (for example, manufactured by TA Instruments) having a diameter of 4 cm / 2 °.
  • the sample is kept warm in advance until the temperature becomes constant at the measurement start temperature, and the measurement starts thereafter.
  • the measurement temperature is 25 ° C.
  • the nonaqueous secondary battery of the present invention uses the above-described nonaqueous electrolyte of the present invention.
  • a lithium ion secondary battery will be described with reference to FIG.
  • the lithium ion secondary battery 10 of the present embodiment includes the electrolyte solution 5 for a non-aqueous secondary battery of the present invention and a positive electrode C capable of inserting and releasing lithium ions (a positive electrode current collector 1 and a positive electrode active material layer 2). And a negative electrode A (negative electrode current collector 3, negative electrode active material layer 4) capable of inserting and releasing lithium ions or dissolving and depositing lithium ions.
  • the separator 9 disposed between the positive electrode and the negative electrode, a current collecting terminal (not shown), an outer case, etc. ).
  • a protective element may be attached to at least one of the inside of the battery and the outside of the battery.
  • the battery shape to which the lithium secondary battery of the present embodiment is applied is not particularly limited, and examples thereof include a bottomed cylindrical shape, a bottomed square shape, a thin shape, a sheet shape, and a paper shape. Any of these may be used. Further, it may be of a different shape such as a horseshoe shape or a comb shape considering the shape of the system or device to be incorporated. Among them, from the viewpoint of efficiently releasing the heat inside the battery to the outside, a square shape such as a bottomed square shape or a thin shape having at least one surface that is relatively flat and has a large area is preferable.
  • FIG. 2 is an example of a bottomed cylindrical lithium secondary battery 100.
  • This battery is a bottomed cylindrical lithium secondary battery 100 in which a positive electrode sheet 14 and a negative electrode sheet 16 overlapped with a separator 12 are wound and accommodated in an outer can 18.
  • the 2S / T value is preferably 100 or more, and more preferably 200 or more.
  • the lithium secondary battery according to the present embodiment is configured to include the electrolytic solution 5, the positive electrode and negative electrode electrode mixture C and A, and the separator basic member 9, based on FIG. 1. Hereinafter, each of these members will be described.
  • Electrode mixture The electrode mixture is obtained by applying a dispersion of an active material and a conductive agent, a binder, a filler, etc. on a current collector (electrode substrate).
  • the active material is a positive electrode active material. It is preferable to use a negative electrode mixture in which the positive electrode mixture and the active material are negative electrode active materials.
  • each component in the dispersion (electrode composition) constituting the electrode mixture will be described.
  • a transition metal oxide for the positive electrode active material, and in particular, it has a transition element M a (one or more elements selected from Co, Ni, Fe, Mn, Cu, V). Is preferred. Further, mixed element M b (elements of the first (Ia) group of the metal periodic table other than lithium, elements of the second (IIa) group, Al, Ga, In, Ge, Sn, Pb, Sb, Bi, Si , P, B, etc.) may be mixed. Examples of such transition metal oxides include specific transition metal oxides including those represented by any of the following formulas (MA) to (MC), or other transition metal oxides such as V 2 O 5 , MnO 2. Etc.
  • a particulate positive electrode active material may be used. Specifically, a transition metal oxide capable of reversibly inserting and releasing lithium ions can be used, but the above-described specific transition metal oxide is preferably used.
  • the transition metal oxides, oxides containing the above transition element M a is preferably exemplified.
  • a mixed element M b (preferably Al) or the like may be mixed.
  • the mixing amount is preferably 0 to 30 mol% with respect to the amount of the transition metal. Further, it is more preferable that the molar ratio of Li / M a was synthesized were mixed so that 0.3 to 2.2.
  • M 1 are as defined above M a, and the preferred range is also the same.
  • aa represents 0 to 1.2, preferably 0.1 to 1.15, more preferably 0.6 to 1.1.
  • bb represents 1 to 3 and is preferably 2.
  • a part of M 1 may be substituted with the mixed element M b .
  • the transition metal oxide represented by the formula (MA) typically has a layered rock salt structure.
  • the transition metal oxide is more preferably represented by the following formulas.
  • g has the same meaning as the above aa, and the preferred range is also the same.
  • j represents 0.1 to 0.9.
  • i represents 0 to 1; However, 1-ji is 0 or more.
  • k has the same meaning as the above bb, and the preferred range is also the same.
  • transition metal compounds represented by the formulas (MA-1) to (MA-7) include LiCoO 2 (lithium cobaltate [LCO]), LiNi 2 O 2 (lithium nickelate) LiNi 0.85 Co 0.1 Al 0.05 O 2 (nickel cobalt lithium aluminum oxide [NCA]), LiNi 0.33 Co 0.33 Mn 0.33 O 2 (nickel manganese lithium cobalt oxide [NMC]), LiNi 0.5 Mn 0.5 O 2 (lithium manganese nickelate).
  • transition metal oxide represented by the formula (MA) partially overlaps, but when expressed in different notations, the following are also preferable examples.
  • M 2 are as defined above M a, and their preferable ranges are also the same.
  • c represents 0 to 2, preferably 0.1 to 1.15, and more preferably 0.6 to 1.5.
  • d represents 3 to 5 and is preferably 4.
  • the transition metal oxide represented by the formula (MB) is more preferably represented by the following formulas.
  • mm is synonymous with c, and the preferred range is also the same.
  • nn has the same meaning as d, and the preferred range is also the same.
  • p represents 0-2.
  • Specific examples of the transition metal compound include LiMn 2 O 4 and LiMn 1.5 Ni 0.5 O 4 .
  • transition metal oxide represented by the formula (MB) those represented by the following are also preferable examples.
  • an electrode containing Ni is more preferable from the viewpoint of high capacity and high output.
  • Transition metal oxide represented by formula (MC) As the lithium-containing transition metal oxide, it is also preferable to use a lithium-containing transition metal phosphor oxide, and among them, one represented by the following formula (MC) is also preferable.
  • e 0 to 2, preferably 0.1 to 1.15, and more preferably 0.5 to 1.5.
  • f represents 1 to 5, preferably 0.5 to 2.
  • M 3 represents one or more elements selected from V, Ti, Cr, Mn, Fe, Co, Ni, and Cu.
  • M 3 represents, in addition to the mixing element M b above, Ti, Cr, Zn, Zr, may be substituted by other metals such as Nb.
  • Specific examples include, for example, olivine-type iron phosphates such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , cobalt phosphates such as LiCoPO 4 , and Li 3.
  • Monoclinic Nasicon type vanadium phosphate salts such as V 2 (PO 4 ) 3 (lithium vanadium phosphate) can be mentioned.
  • said aa, c, g, mm, and e value showing the composition of Li are the values which change by charging / discharging, and are typically evaluated by the value of the stable state when Li is contained.
  • the composition of Li is shown as a specific value, but this also varies depending on the operation of the battery.
  • a positive electrode active material containing Ni and / or Mn atoms is preferably used, and a positive electrode active material containing both Ni and Mn atoms is more preferably used.
  • particularly preferable positive electrode active materials include the following.
  • LiNi 0.33 Co 0.33 Mn 0.33 O 2 LiNi 0.6 Co 0.2 Mn 0.2 O 2 LiNi 0.5 Co 0.3 Mn 0.2 O 2 LiNi 0.5 Mn 0.5 O 2 LiNi 0.5 Mn 1.5 O 4
  • the battery capacity can be increased, and even when used at a high potential, the capacity retention rate is high, which is particularly preferable.
  • a positive electrode active material having a charging region capable of oxidizing the organometallic compound represented by the formula (I) of the present invention.
  • the positive potential is more preferably 3.8 V or more, further preferably 3.9 V or more, and particularly preferably 4 V or more.
  • the positive potential is preferably 4.1 V or higher, and most preferably 4.2 V or higher.
  • the upper limit is not particularly limited. However, 5V or less is practical. By setting it as such a range, cycling characteristics and high-rate discharge characteristics can be improved.
  • the positive electrode potential (Li / Li + reference) at the time of charging / discharging is represented by the following formula.
  • the negative electrode potential is 1.55V.
  • the negative electrode potential is 0.1V. The battery voltage is observed during charging and the positive electrode potential is calculated.
  • the non-aqueous electrolyte of the present invention is particularly preferably used in combination with a high potential positive electrode.
  • a positive electrode with a high potential When a positive electrode with a high potential is used, the cycle characteristics tend to be greatly reduced.
  • the nonaqueous electrolyte can maintain good performance with this decrease suppressed. .
  • the average particle diameter of the positive electrode active material used is not particularly limited, but is preferably 0.1 ⁇ m to 50 ⁇ m.
  • the specific surface area is not particularly limited, but is preferably 0.01 m 2 / g to 50 m 2 / g by the BET method.
  • the pH of the supernatant when 5 g of the positive electrode active material is dissolved in 100 ml of distilled water is preferably 7 or more and 12 or less.
  • a well-known grinder or classifier is used.
  • a mortar, a ball mill, a vibration ball mill, a vibration mill, a satellite ball mill, a planetary ball mill, a swirling air flow type jet mill, a sieve, or the like is used.
  • the blending amount of the positive electrode active material is not particularly limited, but is preferably 60 to 98% by mass, more preferably 70 to 95% by mass in 100% by mass of the solid component in the dispersion (mixture) for constituting the active material layer. preferable.
  • -Negative electrode active material As a negative electrode active material, what can insert and discharge
  • a carbonaceous material or a lithium composite oxide is preferable from the viewpoint of reliability.
  • the metal composite oxide is preferably one that can occlude and release lithium, and preferably contains titanium and / or lithium as a constituent component from the viewpoint of high current density charge / discharge characteristics.
  • the carbonaceous material used as the negative electrode active material is a material substantially made of carbon.
  • Examples thereof include carbonaceous materials obtained by firing artificial graphite such as petroleum pitch, natural graphite, and vapor-grown graphite, and various synthetic resins such as PAN-based resins and furfuryl alcohol resins.
  • various carbon fibers such as PAN-based carbon fiber, cellulose-based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, dehydrated PVA-based carbon fiber, lignin carbon fiber, glassy carbon fiber, activated carbon fiber, mesophase micro
  • Examples thereof include spheres, graphite whiskers, and flat graphite.
  • carbonaceous materials can be divided into non-graphitizable carbon materials and graphite-based carbon materials depending on the degree of graphitization. Further, the carbonaceous material may have an interplanar spacing, density, and crystallite size as described in JP-A-62-222066, JP-A-2-6856, and 3-45473. preferable.
  • the carbonaceous material does not need to be a single material, and a mixture of natural graphite and artificial graphite described in JP-A-5-90844, graphite having a coating layer described in JP-A-6-4516, and the like. It can also be used.
  • the metal oxide and metal composite oxide which are negative electrode active materials used in the nonaqueous secondary battery of the present invention, preferably contain at least one of these.
  • amorphous oxides are preferable, and chalcogenite, which is a reaction product of a metal element and an element of Group 16 of the periodic table, is also preferably used.
  • chalcogenite which is a reaction product of a metal element and an element of Group 16 of the periodic table.
  • amorphous as used herein means an X-ray diffraction method using CuK ⁇ rays, which has a broad scattering band having a peak in the region of 20 ° to 40 ° in terms of 2 ⁇ , and is a crystalline diffraction line. You may have.
  • the strongest intensity of the crystalline diffraction lines seen from 2 ° to 40 ° to 70 ° is 100 times the diffraction line intensity at the peak of the broad scattering band seen from 2 ° to 20 °. Is preferably 5 times or less, and particularly preferably has no crystalline diffraction line.
  • the amorphous oxide and chalcogenide of the semimetal element are more preferable, and the elements of Groups 13 (IIIB) to 15 (VB) of the periodic table, Al , Ga, Si, Sn, Ge, Pb, Sb, Bi alone or in combination of two or more thereof, and chalcogenide are particularly preferable.
  • preferable amorphous oxides and chalcogenides include, for example, Ga 2 O 3 , SiO, GeO, SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , Bi 2 O 3 , Bi 2 O 4 , SnSiO 3 , GeS, SnS, SnS 2 , PbS, PbS 2 , Sb 2 S 3 , Sb 2 S 5 , such as SnSiS 3 may preferably be mentioned. Moreover, these may be a complex oxide with lithium oxide, for example, Li 2 SnO 2 .
  • the average particle diameter of the negative electrode active material is preferably 0.1 ⁇ m to 60 ⁇ m.
  • a well-known pulverizer or classifier is used.
  • a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling air flow type jet mill or a sieve is preferably used.
  • wet pulverization in the presence of water or an organic solvent such as methanol can be performed as necessary.
  • classification is preferably performed.
  • the classification method is not particularly limited, and a sieve, an air classifier, or the like can be used as necessary. Classification can be used both dry and wet.
  • the chemical formula of the compound obtained by the above firing method can be calculated from an inductively coupled plasma (ICP) emission spectroscopic analysis method as a measurement method, and from a mass difference between powders before and after firing as a simple method.
  • ICP inductively coupled plasma
  • the negative electrode active material that can be used in combination with the amorphous oxide negative electrode active material centering on Sn, Si, and Ge includes carbon materials that can occlude and release lithium ions or lithium metal, lithium, lithium alloy, lithium, and the like.
  • An alloyable metal is preferable.
  • the electrolytic solution of the present invention is preferably combined with a high potential negative electrode (preferably lithium / titanium oxide, a potential of 1.55 V vs. Li metal) and a low potential negative electrode (preferably a carbon material, a silicon-containing material, Excellent characteristics are exhibited in any combination with a potential of about 0.1 V vs. Li metal.
  • metal or metal oxide negative electrodes preferably Si, Si oxide, Si / Si oxide, Sn, Sn oxide, SnB x P y O z , Cu, which can be alloyed with lithium, which are being developed for higher capacity
  • a battery using a composite of these metals or metal oxides and a carbon material as a negative electrode it is particularly preferable to use a negative electrode active material containing at least one selected from carbon, silicon (Si), titanium, and tin.
  • the non-aqueous electrolyte of the present invention is particularly preferably used in combination with a high potential negative electrode.
  • the high potential negative electrode is often used in combination with the above high potential positive electrode, and can suitably cope with large capacity charge / discharge.
  • the conductive material is preferably an electron conductive material that does not cause a chemical change in the configured secondary battery, and a known conductive material can be arbitrarily used.
  • natural graphite scale-like graphite, scale-like graphite, earth-like graphite, etc.
  • artificial graphite carbon black, acetylene black, ketjen black, carbon fiber and metal powder (copper, nickel, aluminum, silver (Japanese Patent Laid-Open No. Sho 63-63)) , Etc.), etc.
  • metal fibers or polyphenylene derivatives (described in JP-A-59-20971) can be contained as one kind or a mixture thereof.
  • the addition amount of the conductive agent is preferably 11 to 50% by mass, and more preferably 2 to 30% by mass. In the case of carbon black or graphite, 2 to 15% by mass is particularly preferable.
  • the binder (hereinafter also referred to as a binder) includes polysaccharides, thermoplastic resins, and polymers having rubber elasticity. Among them, for example, starch, carboxymethylcellulose, cellulose, diacetylcellulose, Methylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, sodium alginate, polyacrylic acid, sodium polyacrylate, polyvinylphenol, polyvinylmethylether, polyvinyl alcohol, polyvinylpyrrolidone, polyacrylonitrile, polyacrylamide, polyhydroxy (meth) acrylate, styrene-maleine Water-soluble polymers such as acid copolymers, polyvinyl chloride, polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene-hex Safluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene-hexafluoropropylene copolymer, polyethylene
  • Binders can be used alone or in combination of two or more.
  • the amount of the binder added is small, the holding power and cohesive force of the electrode mixture are weakened. If the amount is too large, the electrode volume increases and the capacity per electrode unit volume or unit mass decreases. For this reason, the addition amount of the binder is preferably 1 to 30% by mass, and more preferably 2 to 10% by mass.
  • the electrode compound material may contain the filler.
  • the material forming the filler is preferably a fibrous material that does not cause a chemical change in the non-aqueous secondary battery of the present invention.
  • fibrous fillers made of materials such as olefin polymers such as polypropylene and polyethylene, glass, and carbon are used.
  • the addition amount of the filler is not particularly limited, but is preferably 0 to 30% by mass in the dispersion.
  • the positive / negative current collector an electron conductor that does not cause a chemical change is preferably used.
  • the current collector of the positive electrode in addition to aluminum, stainless steel, nickel, titanium, etc., the surface of aluminum or stainless steel is preferably treated with carbon, nickel, titanium, or silver. Among them, aluminum and aluminum alloys are preferable. More preferred.
  • the negative electrode current collector aluminum, copper, stainless steel, nickel and titanium are preferable, and aluminum, copper and copper alloy are more preferable.
  • a film sheet is usually used, but a net, a punched one, a lath body, a porous body, a foamed body, a molded body of a fiber group, and the like can also be used.
  • the thickness of the current collector is not particularly limited. 1 ⁇ m to 500 ⁇ m is preferable.
  • the current collector surface is roughened by surface treatment.
  • An electrode mixture of the lithium secondary battery is formed by a member appropriately selected from these materials.
  • the separator used in the non-aqueous secondary battery of the present invention is made of a material that mechanically insulates the positive electrode and the negative electrode, has ion permeability, and has oxidation / reduction resistance at the contact surface between the positive electrode and the negative electrode.
  • a material a porous polymer material, an inorganic material, an organic-inorganic hybrid material, glass fiber, or the like is used.
  • These separators preferably have a shut-down function for ensuring reliability, that is, a function of closing a gap at 80 ° C. or higher to increase resistance and interrupting current, and the plugging temperature is preferably 90 ° C. or higher and 180 ° C. or lower. .
  • the shape of the separator holes is usually circular or elliptical, and the size is preferably 0.05 ⁇ m to 30 ⁇ m, more preferably 0.1 ⁇ m to 20 ⁇ m. Furthermore, it may be a rod-like or irregular-shaped hole as in the case of making by a stretching method or a phase separation method.
  • the ratio of these gaps, that is, the porosity, is preferably 20% to 90%, and more preferably 35% to 80%.
  • the polymer material may be a single material such as a cellulose nonwoven fabric, polyethylene, or polypropylene, or may be a material using two or more composite materials. What laminated
  • oxides such as alumina and silicon dioxide, nitrides such as aluminum nitride and silicon nitride, and sulfates such as barium sulfate and calcium sulfate are used, and those having a particle shape or fiber shape are used.
  • a thin film shape such as a non-woven fabric, a woven fabric, or a microporous film is used.
  • the thin film shape those having a pore diameter of 0.01 ⁇ m to 1 ⁇ m and a thickness of 5 ⁇ m to 50 ⁇ m are preferably used.
  • a separator formed by forming a composite porous layer containing inorganic particles on the surface layer of the positive electrode and / or the negative electrode using a resin binder can be used.
  • alumina particles having a 90% particle diameter of less than 1 ⁇ m are formed on both surfaces of the positive electrode as a porous layer using a fluororesin binder.
  • the shape of the nonaqueous secondary battery of the present invention can be applied to any shape such as a sheet shape, a square shape, and a cylinder shape.
  • a positive electrode active material or a mixture of negative electrode active materials is mainly used after being applied (coated), dried and compressed on a current collector.
  • FIG. 2 shows an example of a bottomed cylindrical lithium secondary battery 100.
  • This battery is a bottomed cylindrical lithium secondary battery 100 in which a positive electrode sheet 14 and a negative electrode sheet 16 overlapped with a separator 12 are wound and accommodated in an outer can 18.
  • 20 is an insulating plate
  • 22 is a sealing plate
  • 24 is a positive electrode current collector
  • 26 is a gasket
  • 28 is a pressure sensitive valve body
  • 30 is a current interruption element.
  • each member corresponds to the whole drawing by reference numerals.
  • a negative electrode active material is mixed with a binder or filler used as desired in an organic solvent to prepare a slurry or paste negative electrode mixture.
  • the obtained negative electrode mixture is uniformly applied over the entire surface of both surfaces of the metal core as a current collector, and then the organic solvent is removed to form a negative electrode mixture layer.
  • the laminate of the current collector and the negative electrode composite material layer is rolled with a roll press or the like to prepare a predetermined thickness to obtain a negative electrode sheet (electrode sheet).
  • the coating method of each agent, the drying of the coated material, and the method of forming the positive and negative electrodes may be in accordance with conventional methods.
  • a cylindrical battery is taken as an example, but the present invention is not limited to this.
  • the positive and negative electrode sheets produced by the above method are overlapped with a separator and then processed into a sheet battery as it is, or after being folded and inserted into a rectangular can, the can and the sheet After the electrical connection, the electrolyte may be injected, and the opening may be sealed using a sealing plate to produce a square battery.
  • the safety valve can be used as a sealing plate for sealing the opening.
  • the sealing member may be provided with various conventionally known safety elements.
  • a fuse, bimetal, PTC element, or the like is preferably used as the overcurrent prevention element.
  • a method of cutting the battery can a method of cracking the gasket, a method of cracking the sealing plate, or a method of cutting the lead plate can be used.
  • the charger may be provided with a protection circuit incorporating measures against overcharge and overdischarge, or may be connected independently.
  • a metal or alloy having electrical conductivity can be used.
  • metals such as iron, nickel, titanium, chromium, molybdenum, copper, and aluminum, or alloys thereof are preferably used.
  • a known method for example, direct current or alternating current electric welding, laser welding, or ultrasonic welding
  • the cap, can, sheet, and lead plate can be used as the cap, can, sheet, and lead plate.
  • the sealing agent for sealing a conventionally known compound or mixture such as asphalt can be used.
  • lithium batteries are secondary batteries that use the insertion and extraction of lithium for charge / discharge reactions (lithium ion secondary batteries), and secondary batteries that use precipitation and dissolution of lithium (lithium metal secondary batteries). ). In the present invention, application as a lithium ion secondary battery is preferable.
  • the non-aqueous secondary battery of the present invention can be applied to various uses.
  • the application mode for example, when installed in an electronic device, a notebook computer, a pen input personal computer, a mobile personal computer, an electronic book player, a mobile phone, a cordless phone, a pager, a handy terminal, a mobile fax machine, a mobile phone Copy, portable printer, headphone stereo, video movie, LCD TV, handy cleaner, portable CD, minidisc, electric shaver, transceiver, electronic notebook, calculator, memory card, portable tape recorder, radio, backup power supply, memory card, etc. It is done.
  • Other consumer products include automobiles, electric vehicles, motors, lighting equipment, toys, game equipment, road conditioners, watches, strobes, cameras, medical equipment (such as pacemakers, hearing aids, and shoulder grinders). Furthermore, it can be used for various military purposes and space. Moreover, it can also combine with a solar cell.
  • Organometallic compound I (2) was synthesized by the following synthesis scheme.
  • the reaction solution was concentrated, 40 ml of toluene was added, and the mixture was stirred for 5 minutes.
  • the obtained suspension was filtered through Celite, and then toluene was distilled off again with an evaporator.
  • the obtained crude product is dissolved in 200 ml of hexane, cooled to ⁇ 70 ° C. or lower with a dry ice-methanol bath, the precipitated recrystallized product is filtered off, and the organometallic compound I (2) of the present invention: 9.1 g was obtained.
  • Organometallic compound I (4) was synthesized by the following synthesis scheme.
  • Compound X (1) 10.45 g and dehydrated toluene: 100 ml were added to a 200 ml three-necked flask. Next, after cooling to ⁇ 70 ° C. or less with a dry ice-methanol bath, 37.5 ml of n-butyllithium (1.6M: manufactured by Kanto Chemical Co., Inc.) was added dropwise over 30 minutes. Stir. 2,2,7,7-Tetramethylocta-3,5-diyne: 4.87 g (manufactured by ALDRICH) was added, and the reaction solution was warmed to room temperature and further reacted for 3 hours.
  • n-butyllithium 1.5M: manufactured by Kanto Chemical Co., Inc.
  • Organometallic compound I (7) was synthesized according to the following synthesis scheme.
  • Organometallic compound I (8) was synthesized by the following synthesis scheme.
  • Organometallic compounds I (1), (9) to (12) and (14) were synthesized by the same synthesis method as the organometallic compound of the present invention synthesized above.
  • 1M LiPF 6 ethylene carbonate / ethyl methyl carbonate (volume ratio 1 to 2) electrolyte solution an organometallic compound shown in Table 1 below was added in the amount shown in Table 1, and a test electrolyte solution was added.
  • the positive electrode is composed of 85% by mass of active material: lithium manganate (LiMn 2 O 4 ), conductive auxiliary agent: 7% by mass of carbon black, binder: 8% by mass of PVDF (polyvinylidene fluoride). It was made with.
  • a negative electrode was produced with a composition of 92% by mass of active material: Gr (natural graphite) and 8% by mass of binder: PVDF.
  • As the separator a polypropylene separator having a thickness of 25 ⁇ m was prepared. Using the positive and negative electrodes and separators described above, each test electrolyte solution prepared was used to produce a 2032 type coin battery.
  • Discharge capacity maintenance rate (%) (Discharge capacity at the 300th cycle / discharge capacity at the first cycle) ⁇ 100
  • the 2032 type coin battery (101 to 114) of the present invention has a discharge capacity maintenance rate of 76 to 95%.
  • the comparison without using the organometallic compound is performed.
  • the discharge capacity retention rate is improved by 11% or more.
  • the 2032 type coin battery (c02) using the ferrocene of the comparative example it is presumed that the self-discharge progresses due to the redox shuttle and the capacity maintenance rate is lowered. It seems that ferrocene cannot form a film on the positive electrode in a battery having a low driving voltage, and the capacity retention rate is lowered. As a result, it can be seen that the present invention can achieve high cycle characteristics in the lithium ion secondary battery.
  • Example 2 and Comparative Example 2 Preparation of electrolyte solution 1.1M LiPF 6 ethylene carbonate / ethyl methyl carbonate (volume ratio 1 to 2) To the electrolyte solution, an organometallic compound and a phosphazene compound were added in amounts shown in Table 2, and further vinylene was added. An electrolytic solution for each test was prepared by adding 1% by mass of carbonate to the total electrolytic solution and 1% by mass of lithium bisoxalate borate with respect to the total electrolytic solution. All the prepared electrolyte solutions had a viscosity at 25 ° C. of 5 mPa ⁇ s or less, and the water content measured by the Karl Fischer method (JIS K0113) was 20 ppm or less.
  • the flame retardancy of the prepared electrolyte was evaluated as follows at 25 ° C. in the atmosphere. The evaluation was carried out under the following test conditions with reference to the UL-94HB horizontal combustion test. A glass filter paper (ADVANTEC GA-100) having a width of 13 mm and a length of 110 mm was cut out, and 1.5 ml of the prepared electrolyte was evenly dropped onto the glass filter paper. After the electrolyte solution was sufficiently infiltrated into the glass filter paper, the excess electrolyte solution was wiped off and suspended so that the minor axis was vertical.
  • a glass filter paper ADVANTEC GA-100 having a width of 13 mm and a length of 110 mm was cut out, and 1.5 ml of the prepared electrolyte was evenly dropped onto the glass filter paper. After the electrolyte solution was sufficiently infiltrated into the glass filter paper, the excess electrolyte solution was wiped off and suspended so that the minor axis was vertical.
  • the butane gas burner adjusted to 2 cm in total flame length ignites for 3 seconds at the position where it touches the tip of the glass filter paper, and the behavior after releasing the flame (ignition / non-ignition, extinguishing after ignition, flame from ignition point to the other end) was evaluated as follows. Test No. with no additive added. In the glass filter paper using the electrolytic solution of C201, the time for the flame to reach from the ignition point to the other end was less than 5 seconds.
  • the positive electrode is made of active material: lithium nickel manganese cobaltate (LiNi 1/3 Mn 1/3 Co 1/3 O 2 ) 95% by mass, conductive auxiliary agent: carbon black 2% by mass, binder: PVDF (polyvinylidene fluoride) was prepared with a composition of 3% by mass.
  • a negative electrode was prepared with a composition of 97% by mass of active material: graphite, 2% by mass of binder: styrene butadiene rubber (SBR), and 1% by mass of thickener: sodium carboxymethylcellulose (CMC).
  • SBR styrene butadiene rubber
  • CMC sodium carboxymethylcellulose
  • As the separator a polypropylene separator having a thickness of 25 ⁇ m was prepared. Using the positive and negative electrodes and separators described above, each test electrolyte solution prepared was used to produce a 2032 type coin battery.
  • discharge capacity after cycle test The battery after the cycle test was charged and discharged under the same conditions as those for the initial discharge capacity (W 1 ), and the discharge capacity after the cycle test (W 300 ) was measured.
  • Discharge capacity maintenance rate after cycle test Discharge capacity after cycle test (W 300 ) / initial discharge capacity (W 1 )
  • the obtained discharge capacity maintenance rate was evaluated as follows. The larger the value, the higher the capacity is maintained even under severe test conditions.
  • the organometallic compound and the phosphazene compound are specific examples of the organometallic compound represented by the formula (I) and the phosphazene compound described in the specification. Further, the discharge capacity maintenance rate after the cycle test is abbreviated as “discharge capacity maintenance rate”.
  • Example 4 and Comparative Example 4 The electrolyte solution was changed to 1.1M LiPF 6 ethylene carbonate / dimethyl carbonate (volume ratio 1 to 2), and the organometallic compounds and phosphazene compounds shown in Table 4 below were added in the amounts shown in Table 4. The same operations as in Example 2 and Comparative Example 2 were performed. The results are shown in Table 4.
  • Example 5 and Comparative Example 5 The electrolyte is 0.9M LiBF 4 ethylene carbonate / diethyl carbonate (volume ratio 1: 1), the positive electrode active material is nickel cobalt lithium aluminumate (LiNi 0.8 Co 0.15 Al 0.05 O 2 ), vinylene carbonate Was changed to fluoroethylene carbonate, and the same operations as in Example 2 and Comparative Example 2 were carried out except that the organometallic compounds and phosphazene compounds shown in Table 5 below were added in the amounts shown in Table 5. The results are shown in Table 5.
  • the lithium ion secondary battery using the organometallic compound of the present invention shows a good discharge capacity retention rate. It can also be seen that by using the phosphazene compound represented by the formula (A1) or (A2) in combination, a high discharge capacity retention rate can be achieved even under severe use conditions while realizing high flame retardancy.

Abstract

An electrolyte solution for nonaqueous secondary batteries, which contains more than 0% by mass but 1% by mass or less of an organic metal compound represented by formula (I); an additive for electrolyte solutions; and a nonaqueous secondary battery. In formula (I), M represents a metal element; each of R1 and R2 represents a substituent; if there are a plurality of R1 moieties and a plurality of R2 moieties, the plurality of R1 moieties or the plurality of R2 moieties may combine together to form an aliphatic or aromatic ring; each of X and Y represents a hydrogen atom or a substituent; if there are a plurality of X moieties and a plurality of Y moieties, the plurality of X moieties or the plurality of Y moieties may combine together to form a ring; L represents a linking group; each of a and b represents an integer of 0-4; and m and n represent integers satisfying 0 ≤ m + n ≤ 3.

Description

非水二次電池用電解液および非水二次電池、これらに用いられる添加剤Non-aqueous secondary battery electrolyte and non-aqueous secondary battery, and additives used therefor
 本発明は非水二次電池用電解液およびそれを用いた非水二次電池、これらに用いられる添加剤に関する。 The present invention relates to an electrolyte for a non-aqueous secondary battery, a non-aqueous secondary battery using the same, and an additive used in these.
 リチウムイオン二次電池は、鉛電池やニッケルカドミウム電池と比較して、充放電において、大きなエネルギー密度を実現することができる。この特性を利用して、携帯電話あるいはノートパソコンなどのポータブル電子機器への適用が広く普及している。最近では、特に軽量で高エネルギー密度が得られる二次電池の開発が進められている。さらに、その小型化および長寿命化等が求められている。 Lithium ion secondary batteries can achieve a large energy density in charge and discharge compared to lead batteries and nickel cadmium batteries. Utilizing this characteristic, application to portable electronic devices such as mobile phones and notebook personal computers is widespread. Recently, development of a secondary battery that is particularly lightweight and capable of obtaining a high energy density has been underway. Further, there is a demand for miniaturization and long life.
 リチウムイオン二次電池の電解液としては、プロピレンカーボネートあるいはジエチルカーボネートなどのカーボネート系の溶媒と、六フッ化リン酸リチウムなどの電解質塩との組み合わせが広く用いられている。これらの物質は導電率が高く、電位的にも安定である。この電解液に、さらに種々の機能性の添加剤を含有させて、電池性能を向上させることが試みられている(特許文献1~5参照)。 As an electrolytic solution for a lithium ion secondary battery, a combination of a carbonate solvent such as propylene carbonate or diethyl carbonate and an electrolyte salt such as lithium hexafluorophosphate is widely used. These substances have high conductivity and are stable in potential. It has been attempted to improve battery performance by further adding various functional additives to the electrolytic solution (see Patent Documents 1 to 5).
 また、上記のカーボネート系の溶媒は可燃性有機溶媒化合物を成分に含むため、信頼性の観点からその難燃性の付与が重要である。この改善を目的として、電解液中にホスファゼン化合物を含有させる技術が提案されている(特許文献6~11参照)。 In addition, since the above carbonate-based solvent contains a combustible organic solvent compound as a component, it is important to impart flame retardancy from the viewpoint of reliability. For the purpose of this improvement, a technique for containing a phosphazene compound in an electrolytic solution has been proposed (see Patent Documents 6 to 11).
特開2003-151621号公報JP 2003-151621 A 特開2003-031259号公報JP 2003-031259 A 特許第3787923号公報Japanese Patent No. 3787923 特表2008-538448号公報Special table 2008-538448 特開2014-029827号公報JP 2014-029827 A 特開2005-190873号公報JP 2005-190873 A 国際公開第2010/101179号パンフレットInternational Publication No. 2010/101179 Pamphlet 特許第4458841号明細書Japanese Patent No. 4458841 特開2006-286571号公報JP 2006-286571 A 特開2009-161559号公報JP 2009-161559 A 国際公開第2013/047342号パンフレットInternational Publication No. 2013/047342 Pamphlet
 リチウムイオン二次電池は用途が多岐にわたり、益々拡大傾向であることから、さらなる電池性能の向上が望まれており、とくにサイクル特性の向上が望まれている。また、用途の多様化から、より信頼性の高く、電池性能がよい電池が望まれている。 Lithium ion secondary batteries have a wide variety of applications and are increasingly expanding. Therefore, further improvement in battery performance is desired, and in particular, improvement in cycle characteristics is desired. In addition, from the diversification of applications, a battery having higher reliability and better battery performance is desired.
 本発明は、非水二次電池においてサイクル特性を良化することのできる非水二次電池用電解液、これに用いられる添加剤の提供を目的とする。さらに本発明は、サイクル特性を良化することができ、難燃性を向上させることができる非水二次電池用電解液、これに用いられる添加剤の提供を目的とする。また、このような優れた特性を有する電解液を用いた非水二次電池の提供を目的とする。 An object of the present invention is to provide an electrolyte for a non-aqueous secondary battery that can improve cycle characteristics in a non-aqueous secondary battery, and an additive used therefor. Furthermore, an object of the present invention is to provide an electrolyte for a non-aqueous secondary battery that can improve cycle characteristics and improve flame retardancy, and an additive used therefor. It is another object of the present invention to provide a non-aqueous secondary battery using an electrolytic solution having such excellent characteristics.
 上記の課題は以下の手段により解決された。
(1)下記式(I)で表される有機金属化合物を含有し、この有機金属化合物の含有量が0質量%を超え1質量%以下である非水二次電池用電解液。
The above problem has been solved by the following means.
(1) An electrolyte solution for a non-aqueous secondary battery containing an organometallic compound represented by the following formula (I), wherein the content of the organometallic compound is more than 0% by mass and 1% by mass or less.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(I)において、Mは金属元素を表す。
 RおよびRは各々独立に置換基を表す。RおよびRは、各々において、複数存在する場合、複数のR同士もしくは複数のR同士が互いに結合して脂肪族性または芳香族性の環を形成してもよい。XおよびYは各々独立に水素原子または置換基を表す。XとY、複数存在する場合のX同士もしくはY同士が互いに結合して環を形成してもよい。Lは連結基を表す。
 aおよびbは各々独立に0~4の整数を表す。
 mおよびnは、0≦m+n≦3を満たす整数を表す。
In the formula (I), M represents a metal element.
R 1 and R 2 each independently represents a substituent. When there are a plurality of R 1 and R 2 , a plurality of R 1 or a plurality of R 2 may be bonded to each other to form an aliphatic or aromatic ring. X and Y each independently represent a hydrogen atom or a substituent. X and Y, or a plurality of Xs or Ys in the case where a plurality exist, may be bonded to each other to form a ring. L represents a linking group.
a and b each independently represents an integer of 0 to 4.
m and n represent integers satisfying 0 ≦ m + n ≦ 3.
(2)Lが、炭素数1~20の炭化水素基、ハロゲン原子を含む基、ケイ素原子を含む基、窒素原子を含む基、リン原子を含む基、チタン原子を含む基またはジルコニウム原子を含む基である(1)に記載の非水二次電池用電解液。
(3)RおよびRが、各々独立に、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールオキシ基、アミノ基、アミド結合を含む基、エステル結合を含む基、シアノ基、カルボキシ基、カルボニル結合を含む基、スルホニル結合を含む基、ホスフィノ基またはハロゲン原子である(1)または(2)に記載の非水二次電池用電解液。
(4)XおよびYが、各々独立に水素原子、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アリールオキシ基、アルキルアミノ基、シリルアミノ基、スルホ基、イソシアネート基、イソチオシアネート基、スルファニル基、ホスフィニル基、カルボニル結合を含む基、ハロゲン原子、アリール基またはヘテロアリール基である(1)~(3)のいずれか1つに記載の非水二次電池用電解液。
(5)Mが、第4族~第8族の遷移元素である(1)~(4)のいずれか1つに記載の非水二次電池用電解液。
(6)Lが、下記式(i)~(viii)で表される基のいずれか1つである(1)~(5)のいずれか1つに記載の非水二次電池用電解液。
(2) L includes a hydrocarbon group having 1 to 20 carbon atoms, a group containing a halogen atom, a group containing a silicon atom, a group containing a nitrogen atom, a group containing a phosphorus atom, a group containing a titanium atom, or a zirconium atom Electrolyte for non-aqueous secondary batteries as described in (1) which is group.
(3) R 1 and R 2 are each independently an alkyl group, alkenyl group, alkynyl group, alkoxy group, alkylthio group, aryloxy group, amino group, group containing an amide bond, group containing an ester bond, cyano group , A carboxyl group, a group containing a carbonyl bond, a group containing a sulfonyl bond, a phosphino group, or a halogen atom, (1) or (2).
(4) X and Y are each independently a hydrogen atom, alkyl group, alkenyl group, alkynyl group, alkoxy group, aryloxy group, alkylamino group, silylamino group, sulfo group, isocyanate group, isothiocyanate group, sulfanyl group, The electrolyte solution for a non-aqueous secondary battery according to any one of (1) to (3), which is a phosphinyl group, a group containing a carbonyl bond, a halogen atom, an aryl group, or a heteroaryl group.
(5) The electrolyte solution for a non-aqueous secondary battery according to any one of (1) to (4), wherein M is a Group 4 to Group 8 transition element.
(6) The electrolyte solution for a nonaqueous secondary battery according to any one of (1) to (5), wherein L is any one of groups represented by the following formulas (i) to (viii): .
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(i)~(viii)において、Rは、水素原子、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アリールオキシ基、アルキルアミノ基、シリルアミノ基、スルホ基、イソシアネート基、イソチオシアネート基、スルファニル基、ホスフィニル基、カルボニル結合を含む基、ハロゲン原子、アリール基またはヘテロアリール基を表す。連結基中にRが複数存在するとき、複数のRは各々異なっていても同じであってもよい。また、複数のRが互いに結合して環を形成してもよい。 In the formulas (i) to (viii), R 3 represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, an aryloxy group, an alkylamino group, a silylamino group, a sulfo group, an isocyanate group, an isothiocyanate group, It represents a sulfanyl group, a phosphinyl group, a group containing a carbonyl bond, a halogen atom, an aryl group or a heteroaryl group. When R 3 is more present in the linking group, the plurality of R 3 may be the same even if different from each other. A plurality of R 3 may be bonded to each other to form a ring.
(7)さらに、ホスファゼン化合物を少なくとも1種含有する(1)~(6)のいずれか1つに記載の非水二次電池用電解液。
(8)ホスファゼン化合物が、下記式(A1)または(A2)で表される(7)に記載の非水二次電池用電解液。
(7) The electrolyte solution for a non-aqueous secondary battery according to any one of (1) to (6), further comprising at least one phosphazene compound.
(8) The electrolyte solution for nonaqueous secondary batteries according to (7), wherein the phosphazene compound is represented by the following formula (A1) or (A2).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式(A1)および(A2)において、Ra11~Ra16およびRa21~Ra28はそれぞれ独立に1価の置換基を表す。近接のRa11~Ra16およびRa21~Ra28は置換基同士が結合して環を形成していてもよい。
(9)式(A1)で表される化合物が、下記式(A1-1)で表されるフッ素化ホスファゼン化合物である(8)に記載の非水二次電池用電解液。
In the formulas (A1) and (A2), Ra 11 to Ra 16 and Ra 21 to Ra 28 each independently represent a monovalent substituent. The adjacent Ra 11 to Ra 16 and Ra 21 to Ra 28 may be bonded to each other to form a ring.
(9) The electrolyte solution for a non-aqueous secondary battery according to (8), wherein the compound represented by the formula (A1) is a fluorinated phosphazene compound represented by the following formula (A1-1).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式(A1-1)において、Ra41はアルコキシ基またはジアルキルアミノ基を表す。 In the formula (A1-1), Ra 41 represents an alkoxy group or a dialkylamino group.
(10)Ra41がジアルキルアミノ基である(9)に記載の非水二次電池用電解液。
(11)正極、負極および(1)~(10)のいずれか1つに記載の非水二次電池用電解液を具備する非水二次電池。
(12)下記式(I)で表される、非水二次電池用の電解液に用いられる添加剤。
(10) The electrolyte solution for nonaqueous secondary batteries according to (9), wherein Ra 41 is a dialkylamino group.
(11) A non-aqueous secondary battery comprising the positive electrode, the negative electrode, and the electrolyte solution for a non-aqueous secondary battery according to any one of (1) to (10).
(12) The additive used for the electrolyte solution for non-aqueous secondary batteries represented by the following formula (I).
 式(I)において、Mは金属元素を表す。
 RおよびRは各々独立に置換基を表す。RおよびRは、各々において、複数存在する場合、複数のR同士もしくは複数のR同士が互いに結合して脂肪族性または芳香族性の環を形成してもよい。XおよびYは各々独立に水素原子または置換基を表す。XとY、複数存在する場合のX同士もしくはY同士が互いに結合して環を形成してもよい。Lは連結基を表す。
 aおよびbは各々独立に0~4の整数を表す。
 mおよびnは、0≦m+n≦3を満たす整数を表す。
In the formula (I), M represents a metal element.
R 1 and R 2 each independently represents a substituent. When there are a plurality of R 1 and R 2 , a plurality of R 1 or a plurality of R 2 may be bonded to each other to form an aliphatic or aromatic ring. X and Y each independently represent a hydrogen atom or a substituent. X and Y, or a plurality of Xs or Ys in the case where a plurality exist, may be bonded to each other to form a ring. L represents a linking group.
a and b each independently represents an integer of 0 to 4.
m and n represent integers satisfying 0 ≦ m + n ≦ 3.
 本明細書において、特定の符号で表示された置換基や連結基等が複数あるとき、あるいは複数の置換基等(置換基数の規定も同様)を同時もしくは択一的に規定するときには、それぞれの置換基等は互いに同一でも異なっていてもよい。また、複数の置換基等が近接するときにはそれらが互いに結合して環を形成してもよく、また環上の置換基の場合、複数の置換基が結合して環を形成し、元の環と縮合環を形成していてもよい。
 また、本明細書で、単に置換基と称した場合、置換基Tを参照するものである。
 本明細書において「~」を用いて表される数値範囲は「~」前後に記載される数値を下限値および上限値として含む範囲を意味する。
In this specification, when there are a plurality of substituents or linking groups indicated by a specific symbol, or when a plurality of substituents etc. (same definition of the number of substituents) are specified simultaneously or alternatively, The substituents and the like may be the same as or different from each other. Further, when a plurality of substituents and the like are close to each other, they may be bonded to each other to form a ring. In the case of a substituent on the ring, a plurality of substituents are bonded to form a ring, and the original ring And may form a condensed ring.
Further, in the present specification, when simply referred to as a substituent, the substituent T is referred to.
In the present specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
 本発明の非水二次電池用電解液およびその添加剤は、非水二次電池においてサイクル特性を良化することができる。また、サイクル特性を良化することができ、難燃性を向上させることができる。これにより、本発明の非水二次電池は良好な電池性能とともに優れたサイクル特性、信頼性を発揮する。
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
The electrolyte solution for a non-aqueous secondary battery and the additive of the present invention can improve cycle characteristics in the non-aqueous secondary battery. Moreover, cycle characteristics can be improved and flame retardancy can be improved. Thereby, the non-aqueous secondary battery of the present invention exhibits excellent cycle characteristics and reliability as well as good battery performance.
The above and other features and advantages of the present invention will become more apparent from the following description, with reference where appropriate to the accompanying drawings.
本発明の好ましい実施形態に係るリチウム二次電池の機構を模式化して示す断面図である。It is sectional drawing which shows typically the mechanism of the lithium secondary battery which concerns on preferable embodiment of this invention. 本発明の好ましい実施形態に係るリチウム二次電池の具体的な構成を示す断面図である。It is sectional drawing which shows the specific structure of the lithium secondary battery which concerns on preferable embodiment of this invention.
 以下において、本発明について詳細に説明する。
 なお、以下に記載する構成要件の説明は、代表的な実施形態や具体例に基づいてなされることがある。ただし、本発明はそのような実施形態に限定されるものではない。
 本発明の非水二次電池用電解液(電解液とも称す。)は、下記式(I)で表される有機金属化合物を含有する。また、本発明の非水二次電池用電解液に用いられる添加剤(電解液用添加剤とも称す。)は、下記式(I)で表される有機金属化合物である。
Hereinafter, the present invention will be described in detail.
In addition, description of the component requirement described below may be made | formed based on typical embodiment and a specific example. However, the present invention is not limited to such an embodiment.
The electrolyte solution for non-aqueous secondary batteries of the present invention (also referred to as electrolyte solution) contains an organometallic compound represented by the following formula (I). The additive (also referred to as an electrolyte additive) used in the electrolyte solution for non-aqueous secondary batteries of the present invention is an organometallic compound represented by the following formula (I).
[本発明の有機金属化合物] [Organic metal compound of the present invention]
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式(I)において、Mは金属元素を表す。RおよびRは各々独立に置換基を表す。RおよびRは、各々において、複数存在する場合、複数のR同士もしくは複数のR同士が互いに結合して脂肪族性または芳香族性の環を形成してもよい。XおよびYは各々独立に水素原子または置換基を表す。XとY、複数存在する場合のX同士もしくはY同士が互いに結合して環を形成してもよい。Lは連結基を表す。aおよびbは各々独立に0~4の整数を表す。mおよびnは、0≦m+n≦3を満たす整数を表す。 In the formula (I), M represents a metal element. R 1 and R 2 each independently represents a substituent. When there are a plurality of R 1 and R 2 , a plurality of R 1 or a plurality of R 2 may be bonded to each other to form an aliphatic or aromatic ring. X and Y each independently represent a hydrogen atom or a substituent. X and Y, or a plurality of Xs or Ys in the case where a plurality exist, may be bonded to each other to form a ring. L represents a linking group. a and b each independently represents an integer of 0 to 4. m and n represent integers satisfying 0 ≦ m + n ≦ 3.
 以下に、式(I)における各基および本発明の有機金属化合物を詳細に説明する。 Hereinafter, each group in formula (I) and the organometallic compound of the present invention will be described in detail.
・M
 Mは金属元素を表す。Mは遷移元素または希土類元素が好ましく、第4族~第8族の遷移元素またはランタノイドがより好ましく、第4族、第5族もしくは第8族の遷移元素がさらに好ましく、第4族もしくは第8族の遷移元素が特に好ましく、第8族の遷移元素が最も好ましい。具体的にMは、Fe、Ru、Cr、V、Ta、Mo、Ti、Zr、Hf、Y、La、Ce、Sw、Nd、Lu、Er、Yb、Gdが好ましく、Ti、Zr、Hf、V、Nb、Fe、Ruがより好ましく、Ti、Zr、Fe、Vがさらに好ましく、Ti、Zr、Feが特に好ましく、Feが最も好ましい。
・ M
M represents a metal element. M is preferably a transition element or a rare earth element, more preferably a transition element of Group 4 to Group 8 or a lanthanoid, still more preferably a transition element of Group 4, 5 or 8, and a group 4 or 8 Group transition elements are particularly preferred, and Group 8 transition elements are most preferred. Specifically, M is preferably Fe, Ru, Cr, V, Ta, Mo, Ti, Zr, Hf, Y, La, Ce, Sw, Nd, Lu, Er, Yb, Gd, and Ti, Zr, Hf, V, Nb, Fe, and Ru are more preferable, Ti, Zr, Fe, and V are more preferable, Ti, Zr, and Fe are particularly preferable, and Fe is most preferable.
・R、R
 RおよびRは置換基を表す。これらの置換基としては、後述の置換基Tが挙げられる。ここで、置換基のうち、直鎖状、分岐鎖状の置換基でも、脂肪族性もしくは芳香族性の環もしくはこのような環を含む基であってもよい。このような環の基としては、例えば、炭化水素環の基としては、シクロアルキル基、シクロアルケニル基、シクロアルキニル基、アリール基(例えば、フェニル、ナフチル)が挙げられ、含窒素複素環としては、ヘテロ環基もしくはヘテロアリール環基(好ましくは、環構成ヘテロ原子が酸素原子、硫黄原子、窒素原子が好ましく、5または6員環の基が好ましく、他の環(好ましくはベンゼン環またはヘテロ環)で縮環していてもよい。)が挙げられる。
・ R 1 , R 2
R 1 and R 2 represent a substituent. Examples of these substituents include the substituent T described later. Here, among the substituents, a linear or branched substituent may be an aliphatic or aromatic ring or a group containing such a ring. Examples of such ring groups include hydrocarbon ring groups such as cycloalkyl groups, cycloalkenyl groups, cycloalkynyl groups, and aryl groups (eg, phenyl, naphthyl), and nitrogen-containing heterocycles. A heterocyclic group or a heteroaryl ring group (preferably a ring-constituting hetero atom is preferably an oxygen atom, a sulfur atom or a nitrogen atom, preferably a 5- or 6-membered ring group, and other ring (preferably a benzene ring or a hetero ring) ) May be condensed.).
 RおよびRは好ましくは、アルキル基(好ましくは炭素数1~6、より好ましくは炭素数1~3)、アルキルシリル基(好ましくは炭素数1~6、より好ましくは炭素数1~3)、アルケニル基(好ましくは炭素数2~6、より好ましくは炭素数2または3)、アルキニル基(好ましくは炭素数2~6、より好ましくは炭素数2または3)、アルコキシ基(好ましくは炭素数1~6、より好ましくは炭素数1~3)、アルキルチオ基(好ましくは炭素数1~6、より好ましくは炭素数1~3)、アリールオキシ基(好ましくは炭素数6~12、より好ましくは炭素数6~10)、アミノ基(アルキルアミノ基を含む)(炭素数は0~6が好ましく、1~6がより好ましく、2~6がさらに好ましく、2~4が特に好ましい。)、アミド結合を含む基(カルバモイル基、アシルアミノ基、ウレイド基、ウレタン基が好ましく、カルバモイル基、アシルアミノ基がより好ましい。炭素数は1~6が好ましく、1~3がより好ましく、具体的には、-C(=O)-N(Ra)、-N(Ra)-C(=O)Raで表される基が好ましい。)、エステル結合を含む基(アシルオキシ基またはオキシカルボニル基が好ましく、炭素数は1~6が好ましく、1~4がより好ましく、具体的には、-OC(=O)-Ra、-C(=O)-ORaで表される基が好ましい。)、シアノ基、カルボキシ基、カルボニル結合を含む基(アシル基が好ましく、炭素数は2~7が好ましく、2~4がより好ましく、具体的には、-C(=O)-Raで表される基が好ましい。)、スルホニル結合を含む基(スルホニル基、スルホンアミド基、スルファモイル基が好ましく、スルホニル基がより好ましい。炭素数は1~6が好ましく、1~3がより好ましく、具体的には、-SO-Raで表される基が好ましい。)、ホスフィノ基[-P(Rb):Rbは水素原子またはアルキル基](炭素数は0~6が好ましく、1~6がより好ましく、1~3がさらに好ましく、2または3が特に好ましい)、またはハロゲン原子(フッ素原子、塩素原子、臭素原子等)を表す。
 ここで、Raは水素原子または置換基を表し、このような置換基としては、後述の置換基Tが挙げられる。Ra以外の場合も以下同様に、「置換基」の好ましい置換基は後述の置換基Tが挙げられる。
 RおよびRは、各々において、複数存在する場合、複数のR同士もしくは複数のR同士が互いに結合して脂肪族性または芳香族性の環を形成してもよい。このような環としては、RおよびRにおける置換基における、脂肪族性もしくは芳香族性の環もしくはこのような環を含む基で挙げた環もしくは環状の基が挙げられる。
R 1 and R 2 are preferably an alkyl group (preferably having 1 to 6 carbon atoms, more preferably 1 to 3 carbon atoms), an alkylsilyl group (preferably having 1 to 6 carbon atoms, more preferably 1 to 3 carbon atoms). ), An alkenyl group (preferably 2 to 6 carbon atoms, more preferably 2 or 3 carbon atoms), an alkynyl group (preferably 2 to 6 carbon atoms, more preferably 2 or 3 carbon atoms), an alkoxy group (preferably carbon atoms) 1 to 6, more preferably 1 to 3 carbon atoms, an alkylthio group (preferably 1 to 6 carbon atoms, more preferably 1 to 3 carbon atoms), an aryloxy group (preferably 6 to 12 carbon atoms, more preferably Has 6 to 10 carbon atoms), an amino group (including an alkylamino group) (the carbon number is preferably 0 to 6, more preferably 1 to 6, still more preferably 2 to 6, and particularly preferably 2 to 4). Amide A group containing a group (a carbamoyl group, an acylamino group, a ureido group and a urethane group are preferred, a carbamoyl group and an acylamino group are more preferred. The number of carbon atoms is preferably 1 to 6, more preferably 1 to 3, more specifically, A group represented by C (═O) —N (Ra) 2 , —N (Ra) —C (═O) Ra), a group containing an ester bond (acyloxy group or oxycarbonyl group is preferred, carbon The number is preferably 1 to 6, more preferably 1 to 4, and specifically, a group represented by —OC (═O) —Ra, —C (═O) —ORa is preferred), a cyano group, Carboxy group, group containing a carbonyl bond (acyl group is preferred, carbon number is preferably 2-7, more preferably 2-4, specifically, a group represented by —C (═O) —Ra is preferred. ), Including sulfonyl bonds (A sulfonyl group, a sulfonamido group, a sulfamoyl group are preferred, a sulfonyl group is more preferred. The number of carbon atoms is preferably from 1 to 6, more preferably 1 to 3, specifically, the group represented by -SO 2 -Ra ), A phosphino group [—P (Rb) 2 : Rb is a hydrogen atom or an alkyl group] (the carbon number is preferably 0 to 6, more preferably 1 to 6, still more preferably 1 to 3, and further preferably 2 or 3). Is particularly preferred) or a halogen atom (fluorine atom, chlorine atom, bromine atom, etc.).
Here, Ra represents a hydrogen atom or a substituent, and examples of such a substituent include the substituent T described later. In the case of other than Ra as well, a preferable substituent of the “substituent” includes the substituent T described later.
When there are a plurality of R 1 and R 2 , a plurality of R 1 or a plurality of R 2 may be bonded to each other to form an aliphatic or aromatic ring. Examples of such a ring include an aliphatic or aromatic ring in the substituents for R 1 and R 2, and a ring or a cyclic group exemplified in a group containing such a ring.
 RおよびRはアルキル基、アルキルシリル基、ホスフィノ基、アミノ基がなかでも好ましく、アルキル基が特に好ましい。具体的に好ましい基としては、メチル基、n-ブチル基、t-ブチル基、トリメチルシリル基、ジメチルホスフィノ基、ジエチルホスフィノ基、メチルアミノ基、エチルアミノ基が挙げられ、なかでもメチル基が最も好ましい。 R 1 and R 2 are preferably an alkyl group, an alkylsilyl group, a phosphino group, and an amino group, and particularly preferably an alkyl group. Specific preferred groups include a methyl group, an n-butyl group, a t-butyl group, a trimethylsilyl group, a dimethylphosphino group, a diethylphosphino group, a methylamino group, and an ethylamino group. Most preferred.
 aおよびbは各々独立に0~4の整数を表し、0~3の整数が好ましく、0が特に好ましい。 A and b each independently represents an integer of 0 to 4, preferably an integer of 0 to 3, and particularly preferably 0.
・X、Y
 XおよびYは各々独立に水素原子または置換基を表す。置換基としては、後述の置換基Tが挙げられる。XおよびYは、アルキル基(好ましくは炭素数1~8、より好ましくは炭素数1~3)、アルケニル基(好ましくは炭素数2~8、より好ましくは炭素数2~6)、アルキニル基(好ましくは炭素数2~8、より好ましくは炭素数2~6)、アルコキシ基(好ましくは炭素数1~12、より好ましくは炭素数1~10)、アリールオキシ基(好ましくは炭素数6~12、より好ましくは炭素数6~10)、アルキルアミノ基(好ましくは炭素数2~10、より好ましくは炭素数2~6)、シリルアミノ基(好ましくは炭素数0~10、より好ましくは炭素数2~6)、スルホ基、イソシアネート基(-NCO)、イソチオシアネート基(-NCS)、スルファニル基(-(S)α-Ra)(好ましくは炭素数1~6、より好ましくは炭素数1~3、αは1~8の整数を表す。)、ホスフィニル基(-P(=O)(Ra)ORa)(好ましくは炭素数0~10、より好ましくは炭素数0~6)、カルボニル結合を含む基(好ましくはアシル基、アシルオキシ基、オキシカルボニル基で、より好ましくはアシル基、アシルオキシ基である。炭素数は1~6が好ましく、1~3がより好ましい。具体的には、-C(=O)-Ra、-O-C(=O)-Raが好ましい。)、ハロゲン原子、アリール基(好ましくは、炭素数6~22、より好ましくは炭素数6~10)、またはヘテロアリール基(環構成ヘテロ原子が酸素原子、硫黄原子、窒素原子が好ましく、環員数は5または6員が好ましく、ベンゼン環やヘテロ環で縮環していてもよい。炭素数は2~8が好ましく、2~4がより好ましい。)が好ましい。
 ここで、Raは水素原子または置換基を表す。
・ X, Y
X and Y each independently represent a hydrogen atom or a substituent. Examples of the substituent include the substituent T described later. X and Y are an alkyl group (preferably having 1 to 8 carbon atoms, more preferably 1 to 3 carbon atoms), an alkenyl group (preferably having 2 to 8 carbon atoms, more preferably 2 to 6 carbon atoms), an alkynyl group ( Preferably 2 to 8 carbon atoms, more preferably 2 to 6 carbon atoms), an alkoxy group (preferably 1 to 12 carbon atoms, more preferably 1 to 10 carbon atoms), an aryloxy group (preferably 6 to 12 carbon atoms). More preferably 6 to 10 carbon atoms), an alkylamino group (preferably 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms), a silylamino group (preferably 0 to 10 carbon atoms, more preferably 2 carbon atoms). To 6), sulfo group, isocyanate group (—NCO), isothiocyanate group (—NCS), sulfanyl group (— (S) α —Ra) (preferably having 1 to 6 carbon atoms, more preferably 1 carbon atom) -3, α represents an integer of 1-8, phosphinyl group (—P (═O) (Ra) ORa) (preferably having 0 to 10 carbon atoms, more preferably 0 to 6 carbon atoms), carbonyl bond (Preferably an acyl group, an acyloxy group or an oxycarbonyl group, more preferably an acyl group or an acyloxy group. The number of carbon atoms is preferably 1 to 6, more preferably 1 to 3. Specifically, — C (═O) —Ra, —O—C (═O) —Ra is preferred), a halogen atom, an aryl group (preferably having 6 to 22 carbon atoms, more preferably 6 to 10 carbon atoms), or hetero Aryl group (ring hetero atom is preferably oxygen atom, sulfur atom, nitrogen atom, ring member is preferably 5 or 6 member, and may be condensed with benzene ring or hetero ring. 2-4 are preferred There.) Is preferred.
Here, Ra represents a hydrogen atom or a substituent.
 XとY、複数存在する場合のX同士もしくはY同士が互いに結合して環を形成してもよい。ここで、XとYが互いに結合して形成する場合の環は、M原子を含めた環であることが好ましい。
 なお、環を形成する結合は、単結合でも多重結合でもよい。例えば、複数のスルファニル基が結合し、環状のポリスルフィドとして配位していてもよい。なかでも、メチル基、n-ブチル基、ジアルキルアミノ基、ビス(トリアルキルシリル)アミノ基、イソチオシアネート(-NCS)基、アルコキシ基、フェノキシ基、XとYが単結合で環を形成した環状アルケニル基(ブタジエン配位型メタラサイクル)、二重結合で環を形成した環状クムレン基が好ましく、アルコキシ基、フェノキシ基、XとYが単結合で環を形成した環状アルケニル基(ブタジエン配位型メタラサイクル)、二重結合で環を形成した環状クムレン基がより好ましく、XとYが単結合で環を形成した環状アルケニル基(ブタジエン配位型メタラサイクル)、二重結合で環を形成した環状クムレン基が特に好ましい。
 XおよびYは、さらに置換基を有していてもよく、後述の記置換基Tが挙げられる。
X and Y, or a plurality of Xs or Ys in the case where a plurality exist, may be bonded to each other to form a ring. Here, the ring formed when X and Y are bonded to each other is preferably a ring including an M atom.
Note that the bond forming the ring may be a single bond or a multiple bond. For example, a plurality of sulfanyl groups may be bonded and coordinated as a cyclic polysulfide. Among them, a methyl group, an n-butyl group, a dialkylamino group, a bis (trialkylsilyl) amino group, an isothiocyanate (—NCS) group, an alkoxy group, a phenoxy group, and a ring in which X and Y form a single bond to form a ring. An alkenyl group (butadiene coordination type metallacycle), a cyclic cumulene group in which a ring is formed by a double bond is preferable, an alkoxy group, a phenoxy group, and a cyclic alkenyl group in which X and Y form a ring by a single bond (butadiene coordination type) (Metallacycle), a cyclic cumulene group in which a ring is formed by a double bond is more preferable, a cyclic alkenyl group (butadiene-coordinated metallacycle) in which X and Y form a ring by a single bond, and a ring is formed by a double bond A cyclic cumulene group is particularly preferred.
X and Y may further have a substituent, and examples thereof include the following substituent T.
 XとYが互いに結合した場合、具体的には、**-C(RXY1)=C(RXY2)-C(RXY3)=C(RXY4)-**、**-C(RXY1)=C=C=C(RXY4)-**、**-C(RXY1-エチニレン-C(RXY4-**が好ましい。ここで、RXY1~RXY4は各々独立に、水素原子または置換基を表し、**はMと結合する結合点を示す。RXY1~RXY4は水素原子、アルキル基、シリル基が好ましい。特に、RXY1とRXY4は、立体的に嵩高い基が好ましく、第三級アルキル基(好ましくはt-ブチル基)、シリル基(好ましくは、トリアルキルシリル基)が、なかでも好ましい。 If X and Y are bonded to each other, specifically, ** - C (R XY1) = C (R XY2) -C (R XY3) = C (R XY4) - **, ** - C (R XY1 ) = C = C = C ( RXY4 )-**, **-C ( RXY1 ) 2 -ethynylene-C ( RXY4 ) 2 -** is preferable. Here, R XY1 to R XY4 each independently represents a hydrogen atom or a substituent, and ** represents a bonding point for bonding to M. R XY1 to R XY4 are preferably a hydrogen atom, an alkyl group, or a silyl group. In particular, R XY1 and R XY4 are preferably sterically bulky groups, and tertiary alkyl groups (preferably t-butyl groups) and silyl groups (preferably trialkylsilyl groups) are particularly preferable.
・m,n
 mおよびnは0≦m+n≦3を満たす整数である。m+nは2以下が好ましい。m=1かつn=1、またはm+n=0がより好ましく、m+n=0が特に好ましい。mおよびnが2以上のとき、そこで規定される複数の基は互いに同じでも異なっていてもよい。
 特に、MがFeの場合、m+n=0が好ましく、MがFe以外の金属元素、例えば、Zr、V、Tiでは、m=1かつn=1が好ましい。
・ M, n
m and n are integers satisfying 0 ≦ m + n ≦ 3. m + n is preferably 2 or less. m = 1 and n = 1, or m + n = 0 is more preferable, and m + n = 0 is particularly preferable. When m and n are 2 or more, the plurality of groups defined therein may be the same as or different from each other.
In particular, when M is Fe, m + n = 0 is preferable, and when M is a metal element other than Fe, for example, Zr, V, and Ti, m = 1 and n = 1 are preferable.
・L
 Lは連結基を表す。連結基としては、2価の、炭素数1~20の炭化水素基、ハロゲン原子を含む基、ケイ素原子を含む基、窒素原子を含む基、リン原子を含む基、チタン原子を含む基またはジルコニウム原子を含む基が好ましい。2価の、炭素数1~20の炭化水素基、ケイ素原子を含む基、リン原子を含む基、チタン原子を含む基またはジルコニウム原子を含む基がより好ましく、2価の、炭素数1~20の炭化水素基、ケイ素原子を含む基またはリン原子を含む基がさらに好ましく、2価の、炭素数1~20の炭化水素基、ケイ素原子を含む基が特に好ましい。
・ L
L represents a linking group. As the linking group, a divalent hydrocarbon group having 1 to 20 carbon atoms, a group containing a halogen atom, a group containing a silicon atom, a group containing a nitrogen atom, a group containing a phosphorus atom, a group containing a titanium atom, or zirconium Groups containing atoms are preferred. A divalent hydrocarbon group having 1 to 20 carbon atoms, a group containing a silicon atom, a group containing a phosphorus atom, a group containing a titanium atom or a group containing a zirconium atom is more preferred, and a divalent group having 1 to 20 carbon atoms. More preferred are a hydrocarbon group, a group containing a silicon atom or a group containing a phosphorus atom, and a divalent hydrocarbon group having 1 to 20 carbon atoms and a group containing a silicon atom are particularly preferred.
 Lは、下記式(i)~(viii)のいずれかで表される基が好ましく、式(i)、(iii)、(iv)、(v)、(vi)、(vii)、(viii)で表される基がより好ましく、式(i)、(iii)、(v)、(vi)、(vii)、(viii)で表される基がさらに好ましく、式(i)、(iii)、(vi)、(vii)で表される基が特に好ましく、式(i)、(vi)で表される基が最も好ましい。
 ここで、下記の*は2つのシクロペンタジエニル環とのそれぞれの結合点を示す。
L is preferably a group represented by any one of the following formulas (i) to (viii), and the formulas (i), (iii), (iv), (v), (vi), (vii), (viii) ) Is more preferred, and groups represented by formulas (i), (iii), (v), (vi), (vii), (viii) are more preferred, and formulas (i), (iii) ), (Vi), groups represented by (vii) are particularly preferred, and groups represented by formulas (i), (vi) are most preferred.
Here, the following * indicates the point of attachment to each of the two cyclopentadienyl rings.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 ここで、式(vi)または(vii)において、TiまたはZrとRとの結合は、単結合でもイオン結合でも、π電子を介した配位結合でもかまわないが、π電子を介した配位結合が好ましい。 Here, in the formula (vi) or (vii), the bond between Ti or Zr and R 3 may be a single bond, an ionic bond, or a coordination bond via a π electron, but may be coordinated via a π electron. A coordinate bond is preferred.
 式(i)~(viii)において、Rは水素原子、アルキル基(好ましくは炭素数1~8、より好ましくは炭素数1~3)、アルケニル基(好ましくは炭素数2~10、より好ましくは炭素数2~6)、アルキニル基(好ましくは炭素数2~8、より好ましくは炭素数2~6)、アルコキシ基(好ましくは炭素数1~12、より好ましくは炭素数1~10)、アリールオキシ基(好ましくは炭素数6~12、より好ましくは炭素数6~10)、アルキルアミノ基(好ましくは炭素数2~10、より好ましくは炭素数2~6)、シリルアミノ基(好ましくは炭素数0~10、より好ましくは炭素数2~6)、スルホ基、イソシアネート基(-NCO)、イソチオシアネート基(-NCS)、スルファニル基(-(S)α-Ra)(好ましくは炭素数1~6、より好ましくは炭素数1~3、αは1~8の整数を表す。)、ホスフィニル基(-P(=O)(Ra)ORa)(好ましくは炭素数0~10、より好ましくは炭素数0~6)、カルボニル結合を含む基(-C(=O)-Ra、-O-C(=O)-Ra)(好ましくは、炭素数1~6、より好ましくは炭素数1~3)、ハロゲン原子、アリール基(好ましくは、炭素数5~22、より好ましくは炭素数5~10)またはヘテロアリール基(環構成ヘテロ原子が酸素原子、硫黄原子、窒素原子が好ましく、環員数は5または6員が好ましく、ベンゼン環やヘテロ環で縮環していてもよい。炭素数は2~8が好ましく、2~4がより好ましい。)を表す。
 なお、Rにおけるアリール基はアリール環を、ヘテロアリール基はヘテロアリール環をそれぞれ含むものであり、好ましい範囲もそれぞれアリール基、ヘテロアリール基と同じである。ここでのアリール基はシクロペンタジエニル基を含むものとする。
 ここで、Raは水素原子または置換基を表す。
 Rの各基は、さらに置換基を有していてもよく、このような置換基としては、後述の置換基Tが挙げられる。
 Rはなかでも、水素原子、アルキル基、アリール基、アリール環、アルコキシ基、アリールオキシ基、ヘテロアリール基もしくはヘテロアリール環が好ましく、水素原子、メチル基、エチル基、イソプロピル基、フェニル基、メトキシ基、エトキシ基、イソプロポキシ基、フェノキシ基、シクロペンタジエニル基もしくはシクロペンタジエン環がより好ましい。
In the formulas (i) to (viii), R 3 is a hydrogen atom, an alkyl group (preferably having 1 to 8 carbon atoms, more preferably 1 to 3 carbon atoms), an alkenyl group (preferably having 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms), an alkynyl group (preferably 2 to 8 carbon atoms, more preferably 2 to 6 carbon atoms), an alkoxy group (preferably 1 to 12 carbon atoms, more preferably 1 to 10 carbon atoms), An aryloxy group (preferably having 6 to 12 carbon atoms, more preferably 6 to 10 carbon atoms), an alkylamino group (preferably 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms), a silylamino group (preferably carbon atoms) having 0 to 10, more preferably 2 to 6 carbon atoms), a sulfo group, an isocyanate group (-NCO), isothiocyanate group (-NCS), sulfanyl group (- (S) α -Ra) ( preferably 1 to 6 carbon atoms, more preferably 1 to 3 carbon atoms, α represents an integer of 1 to 8), a phosphinyl group (—P (═O) (Ra) ORa) (preferably having 0 to 10 carbon atoms, More preferably, it has 0 to 6 carbon atoms, and a group containing a carbonyl bond (—C (═O) —Ra, —O—C (═O) —Ra) (preferably having 1 to 6 carbon atoms, more preferably carbon 1 to 3), a halogen atom, an aryl group (preferably 5 to 22 carbon atoms, more preferably 5 to 10 carbon atoms) or a heteroaryl group (the ring-forming hetero atom is preferably an oxygen atom, a sulfur atom, or a nitrogen atom) The number of ring members is preferably 5 or 6. The ring may be condensed with a benzene ring or a hetero ring, and the number of carbon atoms is preferably 2 to 8, more preferably 2 to 4.
The aryl group in R 3 includes an aryl ring, and the heteroaryl group includes a heteroaryl ring. Preferred ranges thereof are also the same as the aryl group and heteroaryl group, respectively. The aryl group herein includes a cyclopentadienyl group.
Here, Ra represents a hydrogen atom or a substituent.
Each group of R 3 may further have a substituent, and examples of such a substituent include the substituent T described later.
Among these, R 3 is preferably a hydrogen atom, an alkyl group, an aryl group, an aryl ring, an alkoxy group, an aryloxy group, a heteroaryl group or a heteroaryl ring, and a hydrogen atom, a methyl group, an ethyl group, an isopropyl group, a phenyl group, A methoxy group, an ethoxy group, an isopropoxy group, a phenoxy group, a cyclopentadienyl group, or a cyclopentadiene ring is more preferable.
 連結基中に複数存在するRは互いに異なっていても同一であってもよい。また、複数のRが互いに結合して環を形成していてもよい。 A plurality of R 3 present in the linking group may be different from each other or the same. A plurality of R 3 may be bonded to each other to form a ring.
 以下に、本発明の一般式(I)で表される有機金属化合物の具体例を挙げる。なお、本発明はこれらに限定して解釈されるものではない。
 ここで、TMSはトリメチルシリル基〔-Si(CH〕、t-Buはt-ブチル基〔-C -t〕、Etはエチル基〔-C〕である。
Specific examples of the organometallic compound represented by the general formula (I) of the present invention are given below. In addition, this invention is limited to these and is not interpreted.
Here, TMS is a trimethylsilyl group [—Si (CH 3 ) 3 ], t-Bu is a t-butyl group [—C 4 H 9 -t ], and Et is an ethyl group [—C 2 H 5 ].
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 本発明の一般式(I)で表される有機金属化合物の製造方法は特に限定されるものではなく、例えば、国際公開第2009/066689号パンフレット、Organometallics,1982,1,1275-1282、同,1984,3,1470-1478、同,1999,18,2491-2496、J.Am.Chem.Soc.,1998,120,9533-9540などに記載の方法を参考にして合成することができる。 The method for producing the organometallic compound represented by the general formula (I) of the present invention is not particularly limited. For example, International Publication No. 2009/066669, Organometallics, 1982, 1,1275-1282, 1984, 3, 1470-1478, 1999, 18, 2491-2496, J. Am. Am. Chem. Soc. , 1998, 120, 9533-9540, and the like.
 本発明の式(I)で表される有機金属化合物は1種を単独で用いても、2種以上を組み合わせて用いてもよい。 The organometallic compound represented by the formula (I) of the present invention may be used alone or in combination of two or more.
 式(I)で表される有機金属化合物の非水二次電池用電解液中の含有量は、電解質を含む全量に対して、0質量%を超え1質量%以下である。
 このような範囲にすることで、電池特性の向上作用を効果的に発揮する。特に1質量%以下であると、電池性能を阻害しないため好ましい。
 式(I)で表される有機金属化合物の含有量は、好ましくは、0.001質量%以上1質量%以下であり、より好ましくは0.005質量%以上1質量%以下であり、さらに好ましくは0.01質量%以上1質量%以下であり、特に好ましくは。0.01質量%以上0.5質量%以下であり、最も好ましくは、0.01質量%以上0.2質量%以下である。
Content in the electrolyte solution for non-aqueous secondary batteries of the organometallic compound represented by Formula (I) is more than 0 mass% and 1 mass% or less with respect to the whole quantity containing an electrolyte.
By making it in such a range, the effect of improving battery characteristics is effectively exhibited. In particular, 1% by mass or less is preferable because battery performance is not impaired.
The content of the organometallic compound represented by the formula (I) is preferably 0.001% by mass or more and 1% by mass or less, more preferably 0.005% by mass or more and 1% by mass or less, and still more preferably. Is preferably 0.01% by mass or more and 1% by mass or less, particularly preferably. It is 0.01 mass% or more and 0.5 mass% or less, Most preferably, it is 0.01 mass% or more and 0.2 mass% or less.
 本発明の式(I)で表される有機金属化合物は、メタロセンのシクロペンタジエン環を架橋することで、歪みを与えて、化合物自体を不安定化することで、本発明の金属化合物の酸化分解が促進される。この結果、駆動電圧の低い電池でも正極上で皮膜を形成させることができ、サイクル特性の大幅な改良および低抵抗化が実現できたものと思われる。 The organometallic compound represented by the formula (I) of the present invention crosslinks the cyclopentadiene ring of the metallocene, thereby giving distortion and destabilizing the compound itself, thereby oxidatively decomposing the metal compound of the present invention. Is promoted. As a result, even a battery with a low driving voltage could form a film on the positive electrode, and it seems that the cycle characteristics were greatly improved and the resistance was reduced.
 また、本発明の非水二次電池用電解液は、上記の有機金属化合物に加えて、さらにホスファゼン化合物を含有することも好ましい。 In addition to the organometallic compound, the electrolyte for a non-aqueous secondary battery of the present invention preferably further contains a phosphazene compound.
[ホスファゼン化合物]
 本発明の非水二次電池用電解液に用いられるホスファゼン化合物は、下記式(A1)または下記式(A2)で表される化合物が好ましい。
[Phosphazene compounds]
The phosphazene compound used in the electrolyte solution for a non-aqueous secondary battery of the present invention is preferably a compound represented by the following formula (A1) or the following formula (A2).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 式(A1)および(A2)において、Ra11~Ra16およびRa21~Ra28はそれぞれ独立に1価の置換基を表す。近接のRa11~Ra16およびRa21~Ra28は置換基同士が結合して環を形成していてもよい。 In the formulas (A1) and (A2), Ra 11 to Ra 16 and Ra 21 to Ra 28 each independently represent a monovalent substituent. The adjacent Ra 11 to Ra 16 and Ra 21 to Ra 28 may be bonded to each other to form a ring.
 Ra11~Ra16およびRa21~Ra28としては、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられ、特にフッ素原子が好ましい)、アルキル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)、アルコキシ基(アリール基で置換されたアルコキシ基、フッ素原子で置換されたアルコキシ基を含み、炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)、アルキルチオ基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)、アリールオキシ基(炭素数6~22が好ましく、6~14がより好ましい)、アリールチオ基(炭素数6~22が好ましく、6~14がより好ましい)、アラルキル基(炭素数7~23が好ましく、7~15がより好ましい)、アリール基(炭素数6~22が好ましく、6~14がより好ましい)、アミノ基(アミノ基、アルキル基またはアリール基で置換されたアミノ基を含み、炭素数0~24が好ましく、0~12がより好ましく、0~6がさらに好ましく、0~3が特に好ましい)およびアシルアミノ基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)が挙げられる。 Ra 11 to Ra 16 and Ra 21 to Ra 28 include a halogen atom (a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, particularly preferably a fluorine atom), an alkyl group (preferably having 1 to 12 carbon atoms, 1 to 6 are more preferable, and 1 to 3 are particularly preferable), an alkoxy group (including an alkoxy group substituted with an aryl group, an alkoxy group substituted with a fluorine atom, preferably having 1 to 12 carbon atoms, and preferably having 1 to 6 carbon atoms) More preferably, 1 to 3 is particularly preferable, an alkylthio group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 and particularly preferably 1 to 3), an aryloxy group (preferably having 6 to 22 carbon atoms, 6 To 14 are more preferred), an arylthio group (preferably having 6 to 22 carbon atoms, more preferably 6 to 14 carbon atoms), an aralkyl group (preferably having 7 to 23 carbon atoms, To 15 is more preferable), an aryl group (preferably having 6 to 22 carbon atoms, more preferably 6 to 14), an amino group (including an amino group substituted with an amino group, an alkyl group or an aryl group, and having 0 to 24 is preferable, 0 to 12 is more preferable, 0 to 6 is further preferable, and 0 to 3 is particularly preferable.) And an acylamino group (1 to 12 carbon atoms are preferable, 1 to 6 are more preferable, and 1 to 3 are particularly preferable) ).
 Ra11~Ra16およびRa21~Ra28は、ハロゲン原子、アルキル基、アルコキシ基、アルキルチオ基、アリールオキシ基、アリールチオ基、アラルキル基またはアミノ基が好ましく、ハロゲン原子、アルコキシ基、アリールオキシ基またはアミノ基がより好ましい。
 アルコキシ基としてはメトキシ基、エトキシ基、ブトキシ基などの無置換アルコキシ基、または、2、2、2-トリフルオロエトキシ基、1,1,1,3,3,3-ヘキサフルオロイソプロポキシ基、パーフルオロブチルエチル基などのフッ素原子で置換されたアルコキシ基が好ましい。アリールオキシ基としてはフェノキシ基またはフッ素原子で置換されたフェノキシ基が好ましい。
Ra 11 to Ra 16 and Ra 21 to Ra 28 are preferably a halogen atom, an alkyl group, an alkoxy group, an alkylthio group, an aryloxy group, an arylthio group, an aralkyl group or an amino group, and a halogen atom, an alkoxy group, an aryloxy group or An amino group is more preferable.
As the alkoxy group, an unsubstituted alkoxy group such as a methoxy group, an ethoxy group, or a butoxy group, or a 2,2,2-trifluoroethoxy group, a 1,1,1,3,3,3-hexafluoroisopropoxy group, An alkoxy group substituted with a fluorine atom such as a perfluorobutylethyl group is preferred. The aryloxy group is preferably a phenoxy group or a phenoxy group substituted with a fluorine atom.
 式(A1)で表される化合物は、Ra11~Ra16のうち3~6個(好ましくは4または5個、より好ましくは5個)がフッ素原子であり、0~3個(好ましくは1または2個、より好ましくは1個)がアルコキシ基、アリールオキシ基またはアミノ基であることが好ましい。
 式(A2)で表される化合物は、Ra21~Ra28のうち5~8個(好ましくは6または7個、より好ましくは7個)がフッ素原子であり、0~3個(好ましくは1または2個、より好ましくは1個)がアルコキシ基、アリールオキシ基またはアミノ基であることが好ましい。
In the compound represented by the formula (A1), 3 to 6 (preferably 4 or 5, more preferably 5) of Ra 11 to Ra 16 are fluorine atoms, and 0 to 3 (preferably 1 Or two, more preferably one) is preferably an alkoxy group, an aryloxy group or an amino group.
In the compound represented by the formula (A2), 5 to 8 (preferably 6 or 7, more preferably 7) of Ra 21 to Ra 28 are fluorine atoms, and 0 to 3 (preferably 1 Or two, more preferably one) is preferably an alkoxy group, an aryloxy group or an amino group.
 Ra11~Ra16およびRa21~Ra28におけるアミノ基は、下記式(N1)で表される構造が好ましい。 The amino group in Ra 11 to Ra 16 and Ra 21 to Ra 28 preferably has a structure represented by the following formula (N1).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 式(N1)において、Ra31およびRa32は、それぞれ独立に一価の置換基であり、アルキル基(炭素数1~12のアルキル基が好ましく、炭素数1~6のアルキル基がより好ましく、炭素数1~3のアルキル基が特に好ましい)、アシル基(炭素数1~12のアシル基が好ましく、炭素数1~6のアシル基がより好ましく、炭素数1~3のアシル基が特に好ましい)、またはアリール基(炭素数6~22のアリール基が好ましく、炭素数6~14のアリール基がより好ましく、炭素数6~10のアリール基が特に好ましい)が好ましい。Ra31およびRa32は互いに結合してまたは縮合して環を形成していてもよい。このとき、窒素原子、酸素原子、硫黄原子などのヘテロ原子を取り込んでいてもよい。形成される環としては、5員環または6員環が好ましい。5員環としては、含窒素の5員環を含む化合物が好ましく、ピロール、イミダゾール、ピラゾール、インダゾール、インドール、ベンゾイミダゾール、ピロリジン、イミダゾリジン、ピラゾリジン、インドリン、カルバゾール、またはこれらの誘導体など(いずれもN置換)が挙げられる。6員環としては、ピペリジン、モルホリン、ピペラジン、またはこれらの誘導体など(いずれもN置換)が挙げられ、好ましい。 In the formula (N1), Ra 31 and Ra 32 are each independently a monovalent substituent, an alkyl group (preferably an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, An alkyl group having 1 to 3 carbon atoms, an acyl group (an acyl group having 1 to 12 carbon atoms is preferable, an acyl group having 1 to 6 carbon atoms is more preferable, and an acyl group having 1 to 3 carbon atoms is particularly preferable) Or an aryl group (an aryl group having 6 to 22 carbon atoms is preferable, an aryl group having 6 to 14 carbon atoms is more preferable, and an aryl group having 6 to 10 carbon atoms is particularly preferable). Ra 31 and Ra 32 may be bonded to each other or condensed to form a ring. At this time, a hetero atom such as a nitrogen atom, an oxygen atom, or a sulfur atom may be incorporated. The ring formed is preferably a 5-membered ring or a 6-membered ring. The 5-membered ring is preferably a compound containing a nitrogen-containing 5-membered ring, such as pyrrole, imidazole, pyrazole, indazole, indole, benzimidazole, pyrrolidine, imidazolidine, pyrazolidine, indoline, carbazole, or derivatives thereof (all N substitution). Preferred examples of the 6-membered ring include piperidine, morpholine, piperazine, and derivatives thereof (all are N-substituted).
 上記式(A1)で表される化合物は、下記式(A1-1)または下記式(A1-2)で表されるフッ素化ホスファゼン化合物が好ましい。 The compound represented by the above formula (A1) is preferably a fluorinated phosphazene compound represented by the following formula (A1-1) or the following formula (A1-2).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 式(A1-1)および(A1-2)において、Ra41およびRa42はRa11と同義であり、好ましくはアルコキシ基、アリールオキシ基、フッ素原子またはアミノ基である。電解液への難燃性付与の観点から、Ra41およびRa42はアルコキシ基またはジアルキルアミノ基が好ましく、ジアルキルアミノ基がより好ましい。
 ジアルキルアミノ基としては、上記式(N1)で表されるアミノ基が好ましく適用される。
In the formulas (A1-1) and (A1-2), Ra 41 and Ra 42 have the same meaning as Ra 11 and are preferably an alkoxy group, an aryloxy group, a fluorine atom or an amino group. From the viewpoint of imparting flame retardancy to the electrolytic solution, Ra 41 and Ra 42 are preferably an alkoxy group or a dialkylamino group, and more preferably a dialkylamino group.
As the dialkylamino group, an amino group represented by the above formula (N1) is preferably applied.
 上記式(A1)で表されるホスファゼン化合物は、上記式(A1-1)で表されるフッ素化ホスファゼン化合物が、電解液への難燃性付与の観点から、さらに好ましい。 The phosphazene compound represented by the above formula (A1) is more preferably a fluorinated phosphazene compound represented by the above formula (A1-1) from the viewpoint of imparting flame retardancy to the electrolytic solution.
 本発明に用いられるホスファゼン化合物の好ましい具体例を以下に示すが、これにより本発明が限定して解釈されるものではない。 Preferred specific examples of the phosphazene compound used in the present invention are shown below, but the present invention is not construed as being limited thereto.
Figure JPOXMLDOC01-appb-C000017
Meはメチル基、Etはエチル基、Buはブチル基、Phはフェニル基である。
Figure JPOXMLDOC01-appb-C000017
Me is a methyl group, Et is an ethyl group, Bu is a butyl group, and Ph is a phenyl group.
 本発明に用いられるホスファゼン化合物は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 また、ホスファゼン化合物の非水二次電池用電解液中の濃度は特に限定されないが、電解質を含む量を全量として、0.5質量%以上であることが好ましく、1質量%以上であることがより好ましく、3質量%以上であることが特に好ましい。上限側の規定としては、30質量%以下であることが好ましく、20質量%以下であることがより好ましく、10質量%以下であることが特に好ましい。ホスファゼン化合物をこの下限値以上で配合することにより、十分な難燃性を付与することができ、かつ電池性能においても良好な充放電性を実現することができる。
The phosphazene compounds used in the present invention may be used singly or in combination of two or more.
Further, the concentration of the phosphazene compound in the electrolyte solution for non-aqueous secondary batteries is not particularly limited, but the total amount including the electrolyte is preferably 0.5% by mass or more, and preferably 1% by mass or more. More preferred is 3% by mass or more. The upper limit is preferably 30% by mass or less, more preferably 20% by mass or less, and particularly preferably 10% by mass or less. By blending the phosphazene compound at the lower limit value or more, sufficient flame retardancy can be imparted, and good charge / discharge performance can be realized in battery performance.
 本発明に用いられるホスファゼン化合物は、市販のものを利用する、あるいはそれを修飾して所望の構造とした化合物を用いることができる。
 ホスファゼン化合物に特定の置換基を導入する方法としては、例えばアルコキシ基で置換されたフッ素化ホスファゼン化合物は、(PNF)naで表されるフッ素化ホスファゼン化合物(naは3または4を示す。)と、R-OM(Rはアルキル基、Mはアルカリ金属を示す。)で表されるアルコラート、あるいはR-OH(Rは上記アルコラートと同義。)で表されるアルコールを、無触媒下、あるいは炭酸ナトリウム、炭酸カリウム等の塩基性触媒の存在下に反応させる方法等が提案されている(特開2009-161559号公報、特開2001-335590号公報、特開2001-139584号公報、国際公開第03/005479号パンフレット、特表2001-516492号公報)。また、アミノ基で置換されたフッ素化ホスファゼン化合物の合成については、(PNF)naで表されるフッ素化ホスファゼン化合物(naは3または4を示す。)と、2当量のアミンを反応させる方法(Journal of the Chemical Society [Section] A:Inorganic,Physical,Theoretical,1970 ,p.2324-2329)が知られている。
As the phosphazene compound used in the present invention, a commercially available compound can be used, or a compound obtained by modifying it can be used.
As a method for introducing a specific substituent into the phosphazene compound, for example, a fluorinated phosphazene compound substituted with an alkoxy group is a fluorinated phosphazene compound represented by (PNF 2 ) na (na represents 3 or 4). When, R-OM r (R is an alkyl group, M r in. which an alkali metal) alcoholate represented by, or an alcohol (R in which the alcoholate synonymous.) R-OH represented by the absence of a catalyst Or a method of reacting in the presence of a basic catalyst such as sodium carbonate or potassium carbonate (JP 2009-161559 A, JP 2001-335590 A, JP 2001-139854 A, (International Publication No. 03/005479 pamphlet, JP 2001-516492 A). Further, the method for the synthesis of fluorinated phosphazene compounds substituted by an amino group, is reacted with (PNF 2) fluorinated phosphazene compound represented by na and (na represents 3 or 4.), 2 equivalents of an amine (Journal of the Chemical Society [Section] A: Inorganic, Physical, Theoretical, 1970, p. 2324-2329) is known.
(電解質)
 本発明の電解液に用いる電解質は周期律表第1族または第2族に属する金属イオンの塩が好ましい。使用する金属イオンの塩は電解液の使用目的により適宜選択される。例えば、リチウム塩、カリウム塩、ナトリウム塩、カルシウム塩、マグネシウム塩などが挙げられ、二次電池などに使用される場合には、出力の観点からリチウム塩が好ましい。本発明の電解液をリチウム二次電池用非水系電解液として用いる場合には、金属イオンの塩としてリチウム塩を選択すればよい。リチウム塩としては、リチウム二次電池用非水系電解液の電解質に通常用いられるリチウム塩が好ましく、例えば、以下に述べるものが好ましい。
(Electrolytes)
The electrolyte used in the electrolytic solution of the present invention is preferably a salt of a metal ion belonging to Group 1 or Group 2 of the periodic table. The metal ion salt to be used is appropriately selected depending on the intended use of the electrolytic solution. For example, lithium salt, potassium salt, sodium salt, calcium salt, magnesium salt and the like can be mentioned. When used in a secondary battery or the like, lithium salt is preferable from the viewpoint of output. When the electrolytic solution of the present invention is used as a non-aqueous electrolytic solution for a lithium secondary battery, a lithium salt may be selected as a metal ion salt. As a lithium salt, the lithium salt normally used for the electrolyte of the nonaqueous electrolyte solution for lithium secondary batteries is preferable, For example, what is described below is preferable.
(L-1)無機リチウム塩:LiPF、LiBF、LiAsF、LiSbF等の無機フッ化物塩;LiClO、LiBrO、LiIO等の過ハロゲン酸塩;LiAlCl等の無機塩化物塩等 (L-1) Inorganic lithium salts: inorganic fluoride salts such as LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 ; perhalogenates such as LiClO 4 , LiBrO 4 , LiIO 4 ; inorganic chloride salts such as LiAlCl 4 etc
(L-2)含フッ素有機リチウム塩:LiCFSO等のパーフルオロアルカンスルホン酸塩;LiN(CFSO、LiN(CFCFSO、LiN(FSO、LiN(CFSO)(CSO)等のパーフルオロアルカンスルホニルイミド塩;LiC(CFSO等のパーフルオロアルカンスルホニルメチド塩;Li[PF(CFCFCF)]、Li[PF(CFCFCF]、Li[PF(CFCFCF]、Li[PF(CFCFCFCF)]、Li[PF(CFCFCFCF]、Li[PF(CFCFCFCF]等のフルオロアルキルフッ化リン酸塩等 (L-2) Fluorine-containing organic lithium salt: perfluoroalkane sulfonate such as LiCF 3 SO 3 ; LiN (CF 3 SO 2 ) 2 , LiN (CF 3 CF 2 SO 2 ) 2 , LiN (FSO 2 ) 2 , Perfluoroalkanesulfonylimide salts such as LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ); perfluoroalkanesulfonylmethide salts such as LiC (CF 3 SO 2 ) 3 ; Li [PF 5 (CF 2 CF 2 CF 3 )], Li [PF 4 (CF 2 CF 2 CF 3 ) 2 ], Li [PF 3 (CF 2 CF 2 CF 3 ) 3 ], Li [PF 5 (CF 2 CF 2 CF 2 CF 3 )], Li [PF 4 ( CF 2 CF 2 CF 2 CF 3) 2], Li [PF 3 (CF 2 CF 2 CF 2 CF 3) 3] fluoroalkyl fluoride such as potash Acid salt, etc.
(L-3)オキサラトボレート塩:リチウムビス(オキサラト)ボレート、リチウムジフルオロオキサラトボレート等 (L-3) Oxalatoborate salt: lithium bis (oxalato) borate, lithium difluorooxalatoborate, etc.
 これらのなかで、LiPF、LiBF、LiAsF、LiSbF、LiClO、Li(RfSO)、LiN(RfSO、LiN(FSO、及びLiN(RfSO)(RfSO)が好ましく、LiPF、LiBF、LiN(RfSO、LiN(FSOおよびLiN(RfSO)(RfSO)などのリチウムイミド塩がさらに好ましい。ここで、Rf、Rfはそれぞれパーフルオロアルキル基を示す。
 なお、電解液に用いる電解質は、1種を単独で使用しても、2種以上を任意に組み合わせてもよい。
Among these, LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 , LiClO 4 , Li (Rf 1 SO 3 ), LiN (Rf 1 SO 2 ) 2 , LiN (FSO 2 ) 2 , and LiN (Rf 1 SO 2 ) (Rf 2 SO 2 ) are preferred, and lithium imides such as LiPF 6 , LiBF 4 , LiN (Rf 1 SO 2 ) 2 , LiN (FSO 2 ) 2 and LiN (Rf 1 SO 2 ) (Rf 2 SO 2 ) More preferred are salts. Here, Rf 1 and Rf 2 each represent a perfluoroalkyl group.
In addition, the electrolyte used for electrolyte solution may be used individually by 1 type, or may combine 2 or more types arbitrarily.
 電解液における電解質(好ましくは周期律表第1族または第2族に属する金属のイオンもしくはその金属塩)は、以下に電解液の調製法で述べる好ましい塩濃度となるような量で添加されることが好ましい。塩濃度は電解液の使用目的により適宜選択されるが、一般的には電解液全質量中10質量%~50質量%であり、さらに好ましくは15質量%~30質量%である。モル濃度としては0.5M~1.5Mが好ましい。なお、イオンの濃度として評価するときには、その好適に適用される金属との塩換算で算定すればよい。 The electrolyte in the electrolytic solution (preferably a metal ion belonging to Group 1 or Group 2 of the periodic table or a metal salt thereof) is added in such an amount that a preferable salt concentration described below in the method for preparing the electrolytic solution is obtained. It is preferable. The salt concentration is appropriately selected depending on the intended use of the electrolytic solution, but is generally 10% to 50% by mass, more preferably 15% to 30% by mass, based on the total mass of the electrolytic solution. The molar concentration is preferably 0.5M to 1.5M. In addition, when evaluating as a density | concentration of ion, what is necessary is just to calculate by salt conversion with the metal applied suitably.
(非水溶剤)
 本発明に用いられる非水溶剤としては、非プロトン性有機溶媒が好ましく、なかでも炭素数2~10の非プロトン性有機溶媒が好ましい。
 このような非水溶剤としては、カーボネート化合物、ラクトン化合物、鎖状もしくは環状のエーテル化合物、エステル化合物、ニトリル化合物、アミド化合物、オキサゾリジノン化合物、ニトロ化合物、鎖状または環状のスルホンもしくはスルホキシド化合物、リン酸エステルが挙げられる。
 なお、好ましい結合で示せば、エーテル結合、カルボニル結合、エステル結合またはカーボネート結合を有する化合物が好ましい。これらの化合物は置換基を有していてもよく、例えば後述の置換基Tが挙げられる。
(Non-aqueous solvent)
As the non-aqueous solvent used in the present invention, an aprotic organic solvent is preferable, and an aprotic organic solvent having 2 to 10 carbon atoms is particularly preferable.
Such non-aqueous solvents include carbonate compounds, lactone compounds, chain or cyclic ether compounds, ester compounds, nitrile compounds, amide compounds, oxazolidinone compounds, nitro compounds, chain or cyclic sulfone or sulfoxide compounds, phosphoric acid. Examples include esters.
In addition, as a preferable bond, a compound having an ether bond, a carbonyl bond, an ester bond or a carbonate bond is preferable. These compounds may have a substituent, for example, the below-mentioned substituent T is mentioned.
 非水溶剤としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、γ-ブチロラクトン、γ-バレロラクトン、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、テトラヒドロピラン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、1,3-ジオキサン、1,4-ジオキサン、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、イソ酪酸メチル、トリメチル酢酸メチル、トリメチル酢酸エチル、アセトニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリル、3-メトキシプロピオニトリル、N,N-ジメチルホルムアミド、N-メチルピロリジノン、N-メチルオキサゾリジノン、N,N’-ジメチルイミダゾリジノン、ニトロメタン、ニトロエタン、スルホラン、リン酸トリメチル、ジメチルスルホキシドあるいはジメチルスルホキシドリン酸などが挙げられる。これらは、1種単独で用いても2種以上を併用してもよい。なかでも、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネートおよびエチルメチルカーボネート、γ-ブチロラクトンからなる群のうちの少なくとも1種が好ましく、特に、エチレンカーボネートまたはプロピレンカーボネートなどの高粘度(高誘電率)溶媒(例えば、比誘電率ε≧30)とジメチルカーボネート、エチルメチルカーボネートまたはジエチルカーボネートなどの低粘度溶媒(例えば、粘度≦1mPa・s)との組み合わせがより好ましい。このような組み合わせの混合溶剤とすることで、電解質塩の解離性およびイオンの移動度が向上する。
 なお、本発明に用いられる非水溶剤は、これらに限定されるものではない。
Examples of the non-aqueous solvent include ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, γ-butyrolactone, γ-valerolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2 -Methyltetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, 1,3-dioxane, 1,4-dioxane, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, butyric acid Methyl, methyl isobutyrate, methyl trimethylacetate, ethyl trimethylacetate, acetonitrile, glutaronitrile, adiponitrile, methoxyacetonitrile, 3-methoxypropionitrile, N, Examples thereof include N-dimethylformamide, N-methylpyrrolidinone, N-methyloxazolidinone, N, N′-dimethylimidazolidinone, nitromethane, nitroethane, sulfolane, trimethyl phosphate, dimethyl sulfoxide, and dimethyl sulfoxide. These may be used alone or in combination of two or more. Among these, at least one member selected from the group consisting of ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate, and γ-butyrolactone is preferable. Particularly, high viscosity (high dielectric constant) such as ethylene carbonate or propylene carbonate. A combination of a solvent (for example, relative dielectric constant ε ≧ 30) and a low viscosity solvent (for example, viscosity ≦ 1 mPa · s) such as dimethyl carbonate, ethyl methyl carbonate, or diethyl carbonate is more preferable. By using a mixed solvent of such a combination, the dissociation property of the electrolyte salt and the ion mobility are improved.
The nonaqueous solvent used in the present invention is not limited to these.
(機能性添加剤)
 本発明の電解液には、難燃性の向上、サイクル特性の良化、容量特性の改善などのため、各種の機能性添加剤を含有させることが好ましい。
 以下に、本発明の電解液に適用することが好ましい機能性添加剤の例を示す。
(Functional additives)
The electrolyte solution of the present invention preferably contains various functional additives in order to improve flame retardancy, improve cycle characteristics, improve capacity characteristics, and the like.
Examples of functional additives that are preferably applied to the electrolytic solution of the present invention are shown below.
<芳香族性化合物>
 芳香族性化合物は、ビフェニル化合物、アルキル置換ベンゼン化合物が挙げられる。ビフェニル化合物は2つのベンゼン環が単結合で結合している部分構造を有しておりベンゼン環は置換基を有してもよく、好ましい置換基は、炭素原子数1~4のアルキル基(例えば、メチル、エチル、プロピル、t-ブチルなど)、炭素原子数6~10のアリール基(例えば、フェニル、ナフチルなど)である。
 ビフェニル化合物としては、具体的に、ビフェニル、o-テルフェニル、m-テルフェニル、p-テルフェニル、4-メチルビフェニル、4-エチルビフェニル、及び4-tert-ブチルビフェニルを挙げることができる。
 アルキル置換ベンゼン化合物は、炭素数1~10のアルキル基で置換されたベンゼン化合物が好ましく、具体的には、エチルベンゼン、イソプロピルベンゼン、シクロヘキシルベンゼン、t-アミルベンゼン、t-ブチルベンゼン、テチラヒドロナフタレンを挙げることができる。
<Aromatic compounds>
Aromatic compounds include biphenyl compounds and alkyl-substituted benzene compounds. The biphenyl compound has a partial structure in which two benzene rings are bonded by a single bond, and the benzene ring may have a substituent. Preferred substituents are alkyl groups having 1 to 4 carbon atoms (for example, Methyl, ethyl, propyl, t-butyl, etc.) and aryl groups having 6 to 10 carbon atoms (eg, phenyl, naphthyl, etc.).
Specific examples of the biphenyl compound include biphenyl, o-terphenyl, m-terphenyl, p-terphenyl, 4-methylbiphenyl, 4-ethylbiphenyl, and 4-tert-butylbiphenyl.
The alkyl-substituted benzene compound is preferably a benzene compound substituted with an alkyl group having 1 to 10 carbon atoms, and specifically includes ethylbenzene, isopropylbenzene, cyclohexylbenzene, t-amylbenzene, t-butylbenzene, and tetrahydrohydronaphthalene. Can be mentioned.
<ハロゲン原子を有する化合物>
 ハロゲン原子を有する化合物が有するハロゲン原子としてはフッ素原子、塩素原子または臭素原子が好ましく、フッ素原子がより好ましい。ハロゲン原子の数は1~6個が好ましく、1~3個がさらに好ましい。ハロゲン原子を有する化合物は、フッ素原子で置換されたカーボネート化合物、フッ素原子を有するポリエーテル化合物、フッ素置換芳香族化合物が好ましい。
 ハロゲンで置換されたカーボネート化合物は鎖状または環状いずれでもよい。なお、イオン伝導性の観点から、電解質塩(例えばリチウムイオン)の配位性が高い環状カーボネート化合物が好ましく、5員環環状カーボネート化合物が特に好ましい。
 ハロゲン原子が置換したカーボネート化合物の好ましい具体例を以下に示す。この中でもBex1~Bex4の化合物が特に好ましく、Bex1が最も好ましい。
<Compound having a halogen atom>
The halogen atom contained in the compound having a halogen atom is preferably a fluorine atom, a chlorine atom or a bromine atom, and more preferably a fluorine atom. The number of halogen atoms is preferably 1 to 6, more preferably 1 to 3. The compound having a halogen atom is preferably a carbonate compound substituted with a fluorine atom, a polyether compound having a fluorine atom, or a fluorine-substituted aromatic compound.
The carbonate compound substituted with halogen may be either linear or cyclic. From the viewpoint of ion conductivity, a cyclic carbonate compound having a high coordination property of an electrolyte salt (for example, lithium ion) is preferable, and a 5-membered cyclic carbonate compound is particularly preferable.
Preferred specific examples of the carbonate compound substituted with a halogen atom are shown below. Among these, compounds of Bex1 to Bex4 are particularly preferable, and Bex1 is most preferable.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
<重合性化合物>
 重合性化合物としては炭素-炭素二重結合を有する化合物が好ましく、ビニレンカーボネート、ビニルエチレンカーボネートなどの二重結合を有するカーボネート化合物、アクリロイルオキシ基、メタクリロイルオキシ基、シアノアクリロイルオキシ基、α-CFアクリロイルオキシ基から選ばれる基を有する化合物、スチリル基を有する化合物が好ましく、二重結合を有するカーボネート化合物、あるいは重合性基を分子内に2つ以上有する化合物がさらに好ましい。
<Polymerizable compound>
As the polymerizable compound, a compound having a carbon-carbon double bond is preferable. A carbonate compound having a double bond such as vinylene carbonate or vinyl ethylene carbonate, an acryloyloxy group, a methacryloyloxy group, a cyanoacryloyloxy group, α-CF 3 A compound having a group selected from an acryloyloxy group and a compound having a styryl group are preferred, and a carbonate compound having a double bond or a compound having two or more polymerizable groups in the molecule is more preferred.
<硫黄原子を有する化合物>
 硫黄原子を有する化合物は、硫黄原子を含み、-SO-、-SO-、-OS(=O)O-結合を有する化合物が好ましく、プロパンサルトン、プロペンサルトン、エチレンサルファイトなどの環状含硫黄化合物、スルホン酸エステル類が好ましい。
<Compound having a sulfur atom>
The compound having a sulfur atom is preferably a compound containing a sulfur atom and having a —SO 2 —, —SO 3 —, —OS (═O) O— bond, such as propane sultone, propene sultone, and ethylene sulfite. Cyclic sulfur-containing compounds and sulfonic acid esters are preferred.
 含硫黄環状化合物としては、下記式(E1)または(E2)で表される化合物が好ましい。 As the sulfur-containing cyclic compound, a compound represented by the following formula (E1) or (E2) is preferable.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 式(E1)および(E2)において、XおよびXは各々独立に、-O-または-C(Ra1)(Rb1)-を表す。ここで、Ra1およびRb1は各々独立に、水素原子または置換基を表す。置換基として、好ましくは炭素原子数1~8のアルキル基、フッ素原子、炭素原子数の6~12のアリール基である。αは5~6員環を形成するのに必要な原子群を表す。αの骨格は炭素原子のほか、硫黄原子、酸素原子などを含んでもよい。αは置換されていてもよく、置換基としては置換基Tが挙げられ、好ましくはアルキル基、フッ素原子、アリール基である。 In the formulas (E1) and (E2), X 1 and X 2 each independently represent —O— or —C (Ra1) (Rb1) —. Here, Ra1 and Rb1 each independently represent a hydrogen atom or a substituent. The substituent is preferably an alkyl group having 1 to 8 carbon atoms, a fluorine atom, or an aryl group having 6 to 12 carbon atoms. α represents an atomic group necessary for forming a 5- to 6-membered ring. The skeleton of α may contain a sulfur atom, an oxygen atom, etc. in addition to a carbon atom. α may be substituted, and examples of the substituent include a substituent T, preferably an alkyl group, a fluorine atom, and an aryl group.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
<ケイ素原子を有する化合物>
 ケイ素原子を有する化合物としては、下記式(F1)または(F2)で表される化合物が好ましい。
<Compound having a silicon atom>
As the compound having a silicon atom, a compound represented by the following formula (F1) or (F2) is preferable.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 式(F1)および(F2)において、RF1はアルキル基、アルケニル基、アシル基、アシルオキシ基またはアルコキシカルボニル基を表す。
 RF2はアルキル基、アルケニル基、アルキニル基またはアルコキシ基を表す。
 なお、1つの式に複数あるRF1およびRF2は各々互いに異なっていても同一であってもよい。
In the formulas (F1) and (F2), R F1 represents an alkyl group, an alkenyl group, an acyl group, an acyloxy group, or an alkoxycarbonyl group.
R F2 represents an alkyl group, an alkenyl group, an alkynyl group or an alkoxy group.
A plurality of R F1 and R F2 in one formula may be different from each other or the same.
<ニトリル化合物>
 ニトリル化合物としては、下記式(G)で表される化合物が好ましい。
<Nitrile compound>
As the nitrile compound, a compound represented by the following formula (G) is preferable.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 式(G)において、RG1~RG3は各々独立に、水素原子、アルキル基、アルコキシカルボニル基、アリールオキシカルボニル基、シアノ基、カルバモイル基、スルホニル基、ハロゲン原子またはホスホニル基を表す。各置換基の好ましいものは、後述の置換基Tの対応する基に記載の例を参照することができ、なかでも、RG1~RG3のいずれか一つ以上がシアノ基を含むニトリル化合物が好ましい。 In the formula (G), R G1 to R G3 each independently represent a hydrogen atom, an alkyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, a cyano group, a carbamoyl group, a sulfonyl group, a halogen atom or a phosphonyl group. Preferred examples of each substituent can refer to the examples described in the corresponding group of the substituent T described later. Among them, a nitrile compound in which any one of R G1 to R G3 contains a cyano group can be used. preferable.
 ngは1~8の整数を表す。 Ng represents an integer from 1 to 8.
 式(G)で表される化合物の具体例としては、アセトニトリル、プロピオニトリル、イソブチロニトリル、スクシノニトリル、マロノニトリル、グルタロニトリル、アジポニトリル、2-メチルグルタノニトリル、ヘキサントリカルボニトリル、プロパンテトラカルボニトリル等が好ましい。特に好ましくは、スクシノニトリル、マロノニトリル、グルタロニトリル、アジポニトリル、2-メチルグルタノニトリル、ヘキサントリカルボニトリル、プロパンテトラカルボニトリルである。 Specific examples of the compound represented by the formula (G) include acetonitrile, propionitrile, isobutyronitrile, succinonitrile, malononitrile, glutaronitrile, adiponitrile, 2-methylglutanonitrile, hexanetricarbonitrile, Propanetetracarbonitrile and the like are preferable. Particularly preferred are succinonitrile, malononitrile, glutaronitrile, adiponitrile, 2-methylglutanonitrile, hexanetricarbonitrile, and propanetetracarbonitrile.
<ホウ素原子を有する化合物>
 ホウ素原子を有する化合物は、下記式(H1)~(H3)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000023
<Compound having boron atom>
The compound having a boron atom is preferably a compound represented by the following formulas (H1) to (H3).
Figure JPOXMLDOC01-appb-C000023
 式(H1)~(H3)において、RH1、RH4~RH11は各々独立に、アルキル基、アルコキシ基、アルキルカルボニルオキシ基、アリール基、アリールオキシ基、アリールカルボニルオキシ基、ヘテロアリール基、ヘテロアリールオキシ基、ヘテロアリールカルボニルオキシ基、アルキルアミノ基、アリールアミノ基、シアノ基、カルバモイル基またはハロゲン原子を表す。ここで、複数の基が互いに結合して環を形成してもよい。RH2およびRH3は各々独立に、アルキル基、アルキルカルボニル基、アリール基、アリールカルボニル基、ヘテロアリール基、ヘテロアリールカルボニル基またはホウ素原子を表す。ここで、複数の基が互いに結合して環を形成してもよい。Zは無機もしくは有機カチオンを表し、好ましくはアンモニウムカチオン、Li、Na、Kである。
 ホウ素原子を有する化合物として、具体的には下記の構造が挙げられ、より好ましくはHex1、Hex2またはHex10であり、さらに好ましくはHex10である。
In the formulas (H1) to (H3), R H1 and R H4 to R H11 are each independently an alkyl group, an alkoxy group, an alkylcarbonyloxy group, an aryl group, an aryloxy group, an arylcarbonyloxy group, a heteroaryl group, A heteroaryloxy group, a heteroarylcarbonyloxy group, an alkylamino group, an arylamino group, a cyano group, a carbamoyl group or a halogen atom; Here, a plurality of groups may be bonded to each other to form a ring. R H2 and R H3 each independently represents an alkyl group, an alkylcarbonyl group, an aryl group, an arylcarbonyl group, a heteroaryl group, a heteroarylcarbonyl group, or a boron atom. Here, a plurality of groups may be bonded to each other to form a ring. Z + represents an inorganic or organic cation, and is preferably an ammonium cation, Li + , Na + , or K + .
Specific examples of the compound having a boron atom include the following structures, more preferably Hex1, Hex2 or Hex10, and further preferably Hex10.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
<金属錯体化合物>
 本発明では、本発明の式(I)で表される有機金属化合物とともに、式(I)で表される有機金属化合物とは異なる金属錯体化合物を含有してもよい。
 このような金属錯体化合物としては、遷移金属錯体もしくは希土類錯体が好ましい。なかでも、下記式(H-1)~(H-3)のいずれかで表される錯体が好ましい。
<Metal complex compound>
In this invention, you may contain the metal complex compound different from the organometallic compound represented by Formula (I) with the organometallic compound represented by Formula (I) of this invention.
As such a metal complex compound, a transition metal complex or a rare earth complex is preferable. Of these, complexes represented by any of the following formulas (H-1) to (H-3) are preferred.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 式(H-1)~(H-3)において、XおよびYは各々独立に、メチル基、n-ブチル基、ビス(トリメチルシリル)アミノ基またはチオイソシアネート基を表す。ここで、XとYが互いに結合して、Mとともに、環状アルケニル基(ブタジエン配位型メタラサイクル)を形成してもよい。
 Mは遷移元素または希土類元素を表す。具体的にMは、Fe、Ru、Cr、V、Ta、Mo、Ti、Zr、Hf、Y、La、Ce、Sw、Nd、Lu、Er、Yb、Gdが好ましい。mとnは0≦m+n≦3を満たす整数である。n+mは1以上が好ましい。n、mが2以上であるとき、そこで規定される2以上の基はそれぞれ異なっていてもよい。
In formulas (H-1) to (H-3), X H and Y H each independently represent a methyl group, an n-butyl group, a bis (trimethylsilyl) amino group or a thioisocyanate group. Here, X H and Y H are bonded to one another, with M H, it may form a cyclic alkenyl group (butadiene coordinated metallacycle).
MH represents a transition element or a rare earth element. Specifically, MH is preferably Fe, Ru, Cr, V, Ta, Mo, Ti, Zr, Hf, Y, La, Ce, Sw, Nd, Lu, Er, Yb, and Gd. m H and n H are integers satisfying 0 ≦ m H + n H ≦ 3. n H + m H is preferably 1 or more. When n H and m H are 2 or more, the 2 or more groups defined therein may be different from each other.
 金属錯体化合物は下記式(H-4)で表される部分構造を有する化合物も好ましい。 The metal complex compound is also preferably a compound having a partial structure represented by the following formula (H-4).
    M-(NR1H2H)q  ・・・ 式(H-4) M H — (NR 1H R 2H ) q H Formula (H-4)
 式(H-4)において、Mは遷移元素または希土類元素を表し、式(H-1)~(H-3)と同義であり、好ましい範囲も同じである。 In the formula (H-4), MH represents a transition element or a rare earth element, and is synonymous with the formulas (H-1) to (H-3), and the preferred range is also the same.
 R1H,R2Hは水素原子、アルキル基(好ましい炭素数は1~6)、アルケニル基(好ましい炭素数は2~6)、アルキニル基(好ましい炭素数は2~6)、アリール基(好ましい炭素数は6~14)、ヘテロアリール基(好ましい炭素数は3~6)、アルキルシリル基(好ましい炭素数は1~6)またはハロゲン原子を表す。R1HとR2Hは互いに結合して環を形成していてもよい。このような環としては、5~6員環が好ましく、例えば、ピロリジン環、ピペリジン環、ピペラジン環、モルホリン環、チオモルホリン環が挙げられる。R1HおよびR2Hの好ましいものは、後述の置換基Tの例が挙げられる。なかでも、メチル基、エチル基、トリメチルシリル基が好ましい。
 qは1~4の整数を表し、2~4の整数が好ましい。より好ましくは2または4である。qが2以上のとき、そこで規定される複数の基は互いに同じでも異なっていてもよい。
R 1H and R 2H are each a hydrogen atom, an alkyl group (preferably having 1 to 6 carbon atoms), an alkenyl group (preferably having 2 to 6 carbon atoms), an alkynyl group (preferably having 2 to 6 carbon atoms), an aryl group (preferably carbon atoms). The number represents 6 to 14), a heteroaryl group (preferably 3 to 6 carbon atoms), an alkylsilyl group (preferably 1 to 6 carbon atoms) or a halogen atom. R 1H and R 2H may be bonded to each other to form a ring. Such a ring is preferably a 5- to 6-membered ring, and examples thereof include a pyrrolidine ring, a piperidine ring, a piperazine ring, a morpholine ring, and a thiomorpholine ring. Preferable examples of R 1H and R 2H include examples of the substituent T described later. Of these, a methyl group, an ethyl group, and a trimethylsilyl group are preferable.
q H represents an integer of 1 to 4, preferably an integer of 2 to 4. More preferably, it is 2 or 4. When q H is 2 or more, where a plurality of groups as defined may be the same or different from each other.
 金属錯体化合物は、下記式のいずれかで表される化合物も好ましい。
Figure JPOXMLDOC01-appb-C000026
The metal complex compound is also preferably a compound represented by any of the following formulas.
Figure JPOXMLDOC01-appb-C000026
・M
 中心金属Mは、Ti、Zr、ZrO、Hf、V、Cr、Fe、Ceが特に好ましく、Ti、Zr、Hf、V、Crが最も好ましい。
・ M h
The central metal M h is, Ti, Zr, ZrO, Hf , V, Cr, Fe, Ce is particularly preferred, Ti, Zr, Hf, V , Cr is the most preferred.
・R3h、R5hおよびR7h~R10h
 R3h、R5hおよびR7h~R10hは置換基を表す。なかでも、アルキル基、アルコキシ基、アリール基、アルケニル基、ハロゲン原子が好ましく、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数6~12のアリール基、炭素数2~6のアルケニル基がより好ましく、メチル、エチル、プロピル、イソプロピル、イソブチル、t-ブチル、パーフルオロメチル、メトキシ、フェニル、エテニルがさらに好ましい。
・ R 3h , R 5h and R 7h to R 10h
R 3h , R 5h and R 7h to R 10h represent a substituent. Of these, an alkyl group, an alkoxy group, an aryl group, an alkenyl group, and a halogen atom are preferable. An alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, and 2 carbon atoms. More preferred are alkenyl groups of 6 to 6 and methyl, ethyl, propyl, isopropyl, isobutyl, t-butyl, perfluoromethyl, methoxy, phenyl and ethenyl are further preferred.
・R33hおよびR55h
 R33hおよびR55hは水素原子またはR3hの置換基を表す。R3hの置換基としては、後述の置換基Tが挙げられる。
・ R 33h and R 55h
R 33h and R 55h represent a hydrogen atom or a substituent of R 3h . Examples of the substituent for R 3h include the substituent T described later.
・Y
 Yは、炭素数1~6のアルキル基またはビス(トリアルキルシリル)アミノ基が好ましく、メチル基またはビス(トリメチルシリル)アミノ基がより好ましい。
・ Y h
Y h is preferably an alkyl group having 1 to 6 carbon atoms or a bis (trialkylsilyl) amino group, and more preferably a methyl group or a bis (trimethylsilyl) amino group.
・l、mおよびo
 l、mおよびoは0~3の整数を表し、0~2の整数が好ましい。l、mおよびoが2以上のとき、そこで規定される複数の構造部は互いに同じであっても、異なっていてもよい。
· L h, m h and o h
l h, m h and o h represents an integer of 0-3, an integer of 0 to 2 is preferred. When l h , m h and o h are 2 or more, the plurality of structural portions defined therein may be the same as or different from each other.
・L
 Lはアルキレン基、シクロアルキレン基、アリーレン基が好ましく、炭素数3~6のシクロアルキレン基、炭素数6~14のアリーレン基がより好ましく、シクロヘキシレン、フェニレンがさらに好ましい。
・ L h
L h is preferably an alkylene group, a cycloalkylene group or an arylene group, more preferably a cycloalkylene group having 3 to 6 carbon atoms or an arylene group having 6 to 14 carbon atoms, and further preferably cyclohexylene or phenylene.
<イミド化合物>
 イミド化合物としては、耐酸化性の観点より、炭素原子上に有する水素原子が全てフッ素化されたイミド化合物が好ましく、パーフルオロ化されたスルホンイミド化合物が好ましく、具体的にはパーフルオロ化されたスルホイミドリチウム化合物が挙げられる。
 イミド化合物として、具体的には下記の構造が挙げられ、より好ましくはCex1、Cex2である。
<Imide compound>
As the imide compound, from the viewpoint of oxidation resistance, an imide compound in which all of the hydrogen atoms on the carbon atom are fluorinated is preferable, and a perfluorinated sulfonimide compound is preferable, specifically, perfluorinated. A sulfoimide lithium compound is mentioned.
Specific examples of the imide compound include the following structures, and Cex1 and Cex2 are more preferable.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 本発明の電解液には、上記のものを始め、負極被膜形成剤、難燃剤、過充電防止剤等から選ばれる少なくとも1種を含有していてもよい。非水電解液中におけるこれら機能性添加剤の含有割合は特に限定はなく、非水電解液全体(電解質を含む)に対し、それぞれ、0.001質量%~10質量%が好ましい。これらの化合物を添加することにより、過充電による異常時に電池の破裂を抑制したり、高温保存後の容量維持特性やサイクル特性を向上させたりすることができる。 The electrolytic solution of the present invention may contain at least one selected from the above, a negative electrode film forming agent, a flame retardant, an overcharge preventing agent and the like. The content ratio of these functional additives in the nonaqueous electrolytic solution is not particularly limited, and is preferably 0.001% by mass to 10% by mass with respect to the entire nonaqueous electrolytic solution (including the electrolyte). By adding these compounds, it is possible to suppress the rupture of the battery at the time of abnormality due to overcharge, or to improve the capacity maintenance characteristic and cycle characteristic after high temperature storage.
 なお、本明細書において化合物の表示(例えば、化合物と末尾に付して呼ぶとき)については、化合物そのもののほか、化合物が解離性の基を有する場合、その塩、そのイオンを含む意味に用いる。
 本明細書において置換・無置換を明記していない置換基(連結基についても同様)については、その基に任意の置換基を有していてもよい意味である。これは置換・無置換を明記していない化合物についても同義である。好ましい置換基としては、下記置換基Tが挙げられる。
In addition, in the present specification, regarding the indication of a compound (for example, when referring to a compound with a suffix), in addition to the compound itself, when the compound has a dissociable group, it is used to mean its salt and its ion. .
In the present specification, a substituent that does not specify substitution / non-substitution (the same applies to a linking group) means that the group may have an arbitrary substituent. This is also synonymous for compounds that do not specify substitution / non-substitution. Preferred substituents include the following substituent T.
 置換基Tとしては、下記のものが挙げられる。
 アルキル基(好ましくは炭素原子数1~20のアルキル基、例えばメチル、エチル、イソプロピル、t-ブチル、ペンチル、ヘプチル、1-エチルペンチル、ベンジル、2-エトキシエチル、1-カルボキシメチル等)、アルケニル基(好ましくは炭素原子数2~20のアルケニル基、例えば、ビニル、アリル、オレイル等)、アルキニル基(好ましくは炭素原子数2~20のアルキニル基、例えば、エチニル、ブチンジイニル、フェニルエチニル等)、シクロアルキル基(好ましくは炭素原子数3~20のシクロアルキル基、例えば、シクロプロピル、シクロペンチル、シクロヘキシル、4-メチルシクロヘキシル等)、アリール基(好ましくは炭素原子数6~26のアリール基、例えば、フェニル、1-ナフチル、4-メトキシフェニル、2-クロロフェニル、3-メチルフェニル等)、ヘテロ環基(好ましくは炭素原子数2~20のヘテロ環基、好ましくは、少なくとも1つの酸素原子、硫黄原子、窒素原子を有する5または6員環のヘテロ環基が好ましく、例えば、2-ピリジル、4-ピリジル、2-イミダゾリル、2-ベンゾイミダゾリル、2-チアゾリル、2-オキサゾリル等)、アルコキシ基(好ましくは炭素原子数1~20のアルコキシ基、例えば、メトキシ、エトキシ、イソプロピルオキシ、ベンジルオキシ等)、アリールオキシ基(好ましくは炭素原子数6~26のアリールオキシ基、例えば、フェノキシ、1-ナフチルオキシ、3-メチルフェノキシ、4-メトキシフェノキシ等)、アルコキシカルボニル基(好ましくは炭素原子数2~20のアルコキシカルボニル基、例えば、エトキシカルボニル、2-エチルヘキシルオキシカルボニル等)、アミノ基(好ましくは炭素原子数0~20のアミノ基、アルキルアミノ基、アリールアミノ基を含み、例えば、アミノ、N,N-ジメチルアミノ、N,N-ジエチルアミノ、N-エチルアミノ、アニリノ等)、スルファモイル基(好ましくは炭素原子数0~20のスルファモイル基、例えば、N,N-ジメチルスルファモイル、N-フェニルスルファモイル等)、アシル基(好ましくは炭素原子数1~20のアシル基、例えば、アセチル、プロピオニル、ブチリル、ベンゾイル等)、アシルオキシ基(好ましくは炭素原子数1~20のアシルオキシ基、例えば、アセチルオキシ、ベンゾイルオキシ等)、カルバモイル基(好ましくは炭素原子数1~20のカルバモイル基、例えば、N,N-ジメチルカルバモイル、N-フェニルカルバモイル等)、アシルアミノ基(好ましくは炭素原子数1~20のアシルアミノ基、例えば、アセチルアミノ、ベンゾイルアミノ等)、アルキルチオ基(好ましくは炭素原子数1~20のアルキルチオ基、例えば、メチルチオ、エチルチオ、イソプロピルチオ、ベンジルチオ等)、アリールチオ基(好ましくは炭素原子数6~26のアリールチオ基、例えば、フェニルチオ、1-ナフチルチオ、3-メチルフェニルチオ、4-メトキシフェニルチオ等)、アルキルもしくはアリールスルホニル基(好ましくは炭素原子数1~20のアルキルもしくはアリールスルホニル基、例えば、メチルスルホニル、エチルスルホニル、ベンゼンスルホニル等)、ヒドロキシ基、シアノ基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等)が挙げられる。
 また、各基は、上記の置換基Tでさらに置換されていてもよい。例えば、アルキル基にアリール基が置換されたアラルキル基などである。
Examples of the substituent T include the following.
An alkyl group (preferably an alkyl group having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.), alkenyl A group (preferably an alkenyl group having 2 to 20 carbon atoms such as vinyl, allyl, oleyl and the like), an alkynyl group (preferably an alkynyl group having 2 to 20 carbon atoms such as ethynyl, butynediynyl, phenylethynyl and the like), A cycloalkyl group (preferably a cycloalkyl group having 3 to 20 carbon atoms, such as cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl, etc.), an aryl group (preferably an aryl group having 6 to 26 carbon atoms, for example, Phenyl, 1-naphthyl, 4-methoxyphenyl 2-chlorophenyl, 3-methylphenyl and the like), a heterocyclic group (preferably a heterocyclic group having 2 to 20 carbon atoms, preferably a 5- or 6-membered ring having at least one oxygen atom, sulfur atom or nitrogen atom) A heterocyclic group is preferable, for example, 2-pyridyl, 4-pyridyl, 2-imidazolyl, 2-benzimidazolyl, 2-thiazolyl, 2-oxazolyl, etc., an alkoxy group (preferably an alkoxy group having 1 to 20 carbon atoms, such as , Methoxy, ethoxy, isopropyloxy, benzyloxy, etc.), aryloxy groups (preferably aryloxy groups having 6 to 26 carbon atoms, such as phenoxy, 1-naphthyloxy, 3-methylphenoxy, 4-methoxyphenoxy, etc.) An alkoxycarbonyl group (preferably an alkoxy group having 2 to 20 carbon atoms) Bonyl groups such as ethoxycarbonyl, 2-ethylhexyloxycarbonyl and the like, amino groups (preferably including amino groups having 0 to 20 carbon atoms, alkylamino groups and arylamino groups such as amino, N, N-dimethyl) Amino, N, N-diethylamino, N-ethylamino, anilino, etc.), sulfamoyl groups (preferably sulfamoyl groups having 0 to 20 carbon atoms, such as N, N-dimethylsulfamoyl, N-phenylsulfamoyl, etc.) ), An acyl group (preferably an acyl group having 1 to 20 carbon atoms, such as acetyl, propionyl, butyryl, benzoyl, etc.), an acyloxy group (preferably an acyloxy group having 1 to 20 carbon atoms, such as acetyloxy, benzoyl) Oxy and the like), a carbamoyl group (preferably having 1 to 20 carbon atoms) A carbamoyl group such as N, N-dimethylcarbamoyl, N-phenylcarbamoyl, etc., an acylamino group (preferably an acylamino group having 1 to 20 carbon atoms such as acetylamino, benzoylamino, etc.), an alkylthio group (preferably carbon An alkylthio group having 1 to 20 atoms such as methylthio, ethylthio, isopropylthio, benzylthio, etc., an arylthio group (preferably an arylthio group having 6 to 26 carbon atoms such as phenylthio, 1-naphthylthio, 3-methylphenylthio) 4-methoxyphenylthio, etc.), an alkyl or arylsulfonyl group (preferably an alkyl or arylsulfonyl group having 1 to 20 carbon atoms, such as methylsulfonyl, ethylsulfonyl, benzenesulfonyl, etc.), a hydroxy group, Anomoto, halogen atom (e.g. fluorine atom, a chlorine atom, a bromine atom, an iodine atom) and the like.
Each group may be further substituted with the above-described substituent T. For example, an aralkyl group in which an aryl group is substituted for an alkyl group.
 化合物ないし置換基・連結基等がアルキル基・アルキレン基、アルケニル基・アルケニレン基、アルキニル基・アルキニレン基等を含むとき、これらは環状でも鎖状でもよく、また直鎖でも分岐していてもよく、上記のように置換されていても無置換でもよい。 When a compound or a substituent / linking group includes an alkyl group / alkylene group, an alkenyl group / alkenylene group, an alkynyl group / alkynylene group, etc., these may be cyclic or linear, and may be linear or branched These may be substituted as described above or may be unsubstituted.
[電解液の調製方法等]
 本発明の非水電解液は、金属イオンの塩としてリチウム塩を用いた例を含め、上記各成分を上記非水電解液溶媒に溶解して、常法により調製される。
[Method for preparing electrolytic solution]
The nonaqueous electrolytic solution of the present invention is prepared by a conventional method by dissolving each of the above components in the nonaqueous electrolytic solution solvent, including an example in which a lithium salt is used as a metal ion salt.
 本発明において、「非水」とは水を実質的に含まないことをいい、発明の効果を妨げない範囲であれば微量の水を含んでいてもよい。ここで、実質的に含まないとは、水の濃度が200ppm(質量基準)以下であり、100ppm以下が好ましく20ppm以下がより好ましい。
 なお、現実的には、完全に無水とすることは困難であり、1ppm以上は含まれる。
In the present invention, “non-water” means that water is not substantially contained, and a trace amount of water may be contained as long as the effect of the invention is not hindered. Here, substantially not containing means that the concentration of water is 200 ppm (mass basis) or less, preferably 100 ppm or less, more preferably 20 ppm or less.
Actually, it is difficult to make it completely anhydrous, and 1 ppm or more is included.
<電解液の粘度>
 本発明の電解液の粘度は特に限定されない。なお、25℃において、10~0.1mPa・sが好ましく、5~0.5mPa・sがより好ましい。
<Viscosity of electrolyte>
The viscosity of the electrolytic solution of the present invention is not particularly limited. At 25 ° C., 10 to 0.1 mPa · s is preferable, and 5 to 0.5 mPa · s is more preferable.
 電解液の粘度は、サンプル1mLをレオメーター(例えば、TA Instruments社製のCLS 500)に入れ、直径4cm/2°のSteel Cone(例えば、TA Instruments社製)を用いて測定する。サンプルは予め測定開始温度にて温度が一定となるまで保温しておき、測定はその後に開始する。なお、測定温度は25℃である。 The viscosity of the electrolytic solution is measured using 1 mL of a sample in a rheometer (for example, CLS 500 manufactured by TA Instruments) and using Steel Cone (for example, manufactured by TA Instruments) having a diameter of 4 cm / 2 °. The sample is kept warm in advance until the temperature becomes constant at the measurement start temperature, and the measurement starts thereafter. The measurement temperature is 25 ° C.
[非水二次電池]
 本発明の非水二次電池は、上記の本発明の非水電解質を使用する。
 非水二次電池の好ましい実施形態として、リチウムイオン二次電池についてその機構を模式化して示した図1を参照して説明する。
 本実施形態のリチウムイオン二次電池10は、上記本発明の非水二次電池用電解液5と、リチウムイオンの挿入放出が可能な正極C(正極集電体1、正極活物質層2)と、リチウムイオンの挿入放出又は溶解析出が可能な負極A(負極集電体3,負極活物質層4)とを備える。これら部材に加え、電池が使用される目的、電位の形状などを考慮し、正極と負極の間に配設されるセパレータ9、集電端子(図示せず)、及び外装ケース等(図示せず)を含んで構成されてもよい。必要に応じて、電池の内部及び電池の外部の少なくともいずれかに保護素子を装着してもよい。このような構造とすることにより、電解液5内でリチウムイオンの授受a、bが生じ、充電α、放電βを行うことができ、回路配線7を介して動作機構6を介して運転あるいは蓄電を行うことができる。以下、本発明の好ましい実施形態であるリチウム二次電池の構成について、さらに詳細に説明する。
[Non-aqueous secondary battery]
The nonaqueous secondary battery of the present invention uses the above-described nonaqueous electrolyte of the present invention.
As a preferred embodiment of a non-aqueous secondary battery, a lithium ion secondary battery will be described with reference to FIG.
The lithium ion secondary battery 10 of the present embodiment includes the electrolyte solution 5 for a non-aqueous secondary battery of the present invention and a positive electrode C capable of inserting and releasing lithium ions (a positive electrode current collector 1 and a positive electrode active material layer 2). And a negative electrode A (negative electrode current collector 3, negative electrode active material layer 4) capable of inserting and releasing lithium ions or dissolving and depositing lithium ions. In addition to these members, the separator 9 disposed between the positive electrode and the negative electrode, a current collecting terminal (not shown), an outer case, etc. ). If necessary, a protective element may be attached to at least one of the inside of the battery and the outside of the battery. By adopting such a structure, lithium ion exchanges a and b are generated in the electrolytic solution 5, charging α and discharging β can be performed, and operation or storage via the operation mechanism 6 via the circuit wiring 7. It can be performed. Hereinafter, the configuration of the lithium secondary battery which is a preferred embodiment of the present invention will be described in more detail.
(電池形状)
 本実施形態のリチウム二次電池が適用される電池形状には、特に制限はなく、例えば、有底筒型形状、有底角型形状、薄型形状、シート形状およびペーパー形状などが挙げられ、これらのいずれであってもよい。また、組み込まれるシステムや機器の形を考慮した馬蹄形や櫛型形状等の異型のものであってもよい。なかもで、電池内部の熱を効率よく外部に放出する観点から、比較的平らで大面積の面を少なくとも一つを有する有底角型形状や薄型形状などの角型形状が好ましい。
(Battery shape)
The battery shape to which the lithium secondary battery of the present embodiment is applied is not particularly limited, and examples thereof include a bottomed cylindrical shape, a bottomed square shape, a thin shape, a sheet shape, and a paper shape. Any of these may be used. Further, it may be of a different shape such as a horseshoe shape or a comb shape considering the shape of the system or device to be incorporated. Among them, from the viewpoint of efficiently releasing the heat inside the battery to the outside, a square shape such as a bottomed square shape or a thin shape having at least one surface that is relatively flat and has a large area is preferable.
 有底筒型形状の電池では、充填される発電素子に対する外表面積が小さくなるので、充電や放電時に内部抵抗による発生するジュール発熱を効率よく外部に逃げる設計にすることが好ましい。また、熱伝導性の高い物質の充填比率を高め、内部での温度分布が小さくなるように設計することが好ましい。図2は、有底筒型形状リチウム二次電池100の例である。この電池は、セパレータ12を介して重ね合わせた正極シート14、負極シート16を巻回して外装缶18内に収納した有底筒型リチウム二次電池100となっている。 In the case of a battery having a bottomed cylindrical shape, since the outer surface area with respect to the power generating element to be filled becomes small, it is preferable to design so that Joule heat generated by the internal resistance at the time of charging or discharging efficiently escapes to the outside. Moreover, it is preferable to design so that the filling ratio of the substance having high thermal conductivity is increased and the temperature distribution inside is reduced. FIG. 2 is an example of a bottomed cylindrical lithium secondary battery 100. This battery is a bottomed cylindrical lithium secondary battery 100 in which a positive electrode sheet 14 and a negative electrode sheet 16 overlapped with a separator 12 are wound and accommodated in an outer can 18.
 有底角型形状では、一番大きい面の面積S(端子部を除く外形寸法の幅と高さとの積、単位cm)の2倍と電池外形の厚さT(単位cm)との比率2S/Tの値が100以上であることが好ましく、200以上であることが更に好適である。最大面を大きくすることにより高出力かつ大容量の電池であってもサイクル性や高温保存等の特性を向上させるとともに、発熱時の放熱効率を上げることができ、後述する「弁作動」という状態になることを抑制することができる。 In the bottomed square shape, the ratio of the area S of the largest surface (the product of the width and height of the outer dimensions excluding the terminal portion, unit cm 2 ) to the thickness T (unit cm) of the battery outer shape The 2S / T value is preferably 100 or more, and more preferably 200 or more. By increasing the maximum surface, it is possible to improve characteristics such as cycleability and high-temperature storage even for high-power and large-capacity batteries, as well as increase the heat dissipation efficiency during heat generation. Can be suppressed.
(電池を構成する部材)
 本実施形態のリチウム二次電池は、図1に基づいて言うと、電解液5、正極及び負極の電極合剤C、A、セパレータの基本部材9を具備して構成される。以下、これらの各部材について述べる。
(Members constituting the battery)
The lithium secondary battery according to the present embodiment is configured to include the electrolytic solution 5, the positive electrode and negative electrode electrode mixture C and A, and the separator basic member 9, based on FIG. 1. Hereinafter, each of these members will be described.
(電極合材)
 電極合材は、集電体(電極基材)上に活物質と導電剤、結着剤、フィラーなどの分散物を塗布したものであり、リチウム電池においては、活物質が正極活物質である正極合材と活物質が負極活物質である負極合材を使用することが好ましい。
 次に、電極合材を構成する分散物(電極用組成物)中の各成分等について説明する。
(Electrode mixture)
The electrode mixture is obtained by applying a dispersion of an active material and a conductive agent, a binder, a filler, etc. on a current collector (electrode substrate). In a lithium battery, the active material is a positive electrode active material. It is preferable to use a negative electrode mixture in which the positive electrode mixture and the active material are negative electrode active materials.
Next, each component in the dispersion (electrode composition) constituting the electrode mixture will be described.
・正極活物質
 正極活物質には遷移金属酸化物を用いることが好ましく、中でも、遷移元素M(Co、Ni、Fe、Mn、Cu、Vから選択される1種以上の元素)を有することが好ましい。また、混合元素M(リチウム以外の金属周期律表の第1(Ia)族の元素、第2(IIa)族の元素、Al、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P、Bなど)を混合してもよい。このような遷移金属酸化物として例えば、下記式(MA)~(MC)のいずれかで表されるものを含む特定遷移金属酸化物、またはその他の遷移金属酸化物としてV、MnO等が挙げられる。正極活物質には、粒子状の正極活物質を用いてもよい。具体的に、可逆的にリチウムイオンを挿入・放出できる遷移金属酸化物を用いることができるが、上記の特定遷移金属酸化物を用いることが好ましい。
-Positive electrode active material It is preferable to use a transition metal oxide for the positive electrode active material, and in particular, it has a transition element M a (one or more elements selected from Co, Ni, Fe, Mn, Cu, V). Is preferred. Further, mixed element M b (elements of the first (Ia) group of the metal periodic table other than lithium, elements of the second (IIa) group, Al, Ga, In, Ge, Sn, Pb, Sb, Bi, Si , P, B, etc.) may be mixed. Examples of such transition metal oxides include specific transition metal oxides including those represented by any of the following formulas (MA) to (MC), or other transition metal oxides such as V 2 O 5 , MnO 2. Etc. As the positive electrode active material, a particulate positive electrode active material may be used. Specifically, a transition metal oxide capable of reversibly inserting and releasing lithium ions can be used, but the above-described specific transition metal oxide is preferably used.
 遷移金属酸化物としては、上記の遷移元素Mを含む酸化物等が好適に挙げられる。このとき混合元素M(好ましくはAl)などを混合してもよい。混合量としては、遷移金属の量に対して0~30mol%が好ましい。また、Li/Mのモル比が0.3~2.2になるように混合して合成されたものがより好ましい。 The transition metal oxides, oxides containing the above transition element M a is preferably exemplified. At this time, a mixed element M b (preferably Al) or the like may be mixed. The mixing amount is preferably 0 to 30 mol% with respect to the amount of the transition metal. Further, it is more preferable that the molar ratio of Li / M a was synthesized were mixed so that 0.3 to 2.2.
〔式(MA)で表される遷移金属酸化物(層状岩塩型構造)〕
 リチウム含有遷移金属酸化物としては中でも下式で表されるものが好ましい。
[Transition metal oxide represented by formula (MA) (layered rock salt structure)]
As the lithium-containing transition metal oxide, those represented by the following formula are preferable.
  Liaabb     ・・・ (MA) Li aa M 1 O bb ... (MA)
 式(MA)において、Mは上記Mと同義であり、好ましい範囲も同じである。aaは0~1.2を表し、0.1~1.15が好ましく、さらに0.6~1.1が好ましい。bbは1~3を表し、2が好ましい。Mの一部は上記混合元素Mで置換されていてもよい。なお、式(MA)で表される遷移金属酸化物は、典型的には層状岩塩型構造を有する。 In formula (MA), M 1 are as defined above M a, and the preferred range is also the same. aa represents 0 to 1.2, preferably 0.1 to 1.15, more preferably 0.6 to 1.1. bb represents 1 to 3 and is preferably 2. A part of M 1 may be substituted with the mixed element M b . The transition metal oxide represented by the formula (MA) typically has a layered rock salt structure.
 本遷移金属酸化物は下記の各式で表されるものがより好ましい。 The transition metal oxide is more preferably represented by the following formulas.
 (MA-1)  LiCoO
 (MA-2)  LiNiO
 (MA-3)  LiMnO
 (MA-4)  LiCoNi1-j
 (MA-5)  LiNiMn1-j
 (MA-6)  LiCoNiAl1-j-i
 (MA-7)  LiCoNiMn1-j-i
(MA-1) Li g CoO k
(MA-2) Li g NiO k
(MA-3) Li g MnO k
(MA-4) Li g Co j Ni 1-j O k
(MA-5) Li g Ni j Mn 1-j O k
(MA-6) Li g Co j Ni i Al 1-j-i O k
(MA-7) Li g Co j Ni i Mn 1-j-i O k
 式(MA-1)~(MA-7)において、gは上記aaと同義であり、好ましい範囲も同じである。jは0.1~0.9を表す。iは0~1を表す。ただし、1-j-iは0以上になる。kは上記bbと同義であり、好ましい範囲も同じである。
 式(MA-1)~(MA-7)で表される遷移金属化合物の具体例としては、LiCoO(コバルト酸リチウム[LCO])、LiNi(ニッケル酸リチウム)LiNi0.85Co0.1Al0.05(ニッケルコバルトアルミニウム酸リチウム[NCA])、LiNi0.33Co0.33Mn0.33(ニッケルマンガンコバルト酸リチウム[NMC])、LiNi0.5Mn0.5(マンガンニッケル酸リチウム)が挙げられる。
In the formulas (MA-1) to (MA-7), g has the same meaning as the above aa, and the preferred range is also the same. j represents 0.1 to 0.9. i represents 0 to 1; However, 1-ji is 0 or more. k has the same meaning as the above bb, and the preferred range is also the same.
Specific examples of the transition metal compounds represented by the formulas (MA-1) to (MA-7) include LiCoO 2 (lithium cobaltate [LCO]), LiNi 2 O 2 (lithium nickelate) LiNi 0.85 Co 0.1 Al 0.05 O 2 (nickel cobalt lithium aluminum oxide [NCA]), LiNi 0.33 Co 0.33 Mn 0.33 O 2 (nickel manganese lithium cobalt oxide [NMC]), LiNi 0.5 Mn 0.5 O 2 (lithium manganese nickelate).
 式(MA)で表される遷移金属酸化物は、一部重複するが、表記を変えて示すと、下記で表されるものも好ましい例として挙げられる。 The transition metal oxide represented by the formula (MA) partially overlaps, but when expressed in different notations, the following are also preferable examples.
(i)LiNiMnCo(x>0.2,y>0.2,z≧0,x+y+z=1) (I) Li g Ni x Mn y Co z O 2 (x> 0.2, y> 0.2, z ≧ 0, x + y + z = 1)
 代表的なもの:
   LiNi1/3Mn1/3Co1/3
   LiNi1/2Mn1/2
Representative:
Li g Ni 1/3 Mn 1/3 Co 1/3 O 2
Li g Ni 1/2 Mn 1/2 O 2
(ii)LiNiCoAl(x>0.7,y>0.1,0.1>z≧0.05,x+y+z=1) (Ii) Li g Ni x Co y Al z O 2 (x> 0.7, y>0.1,0.1> z ≧ 0.05, x + y + z = 1)
 代表的なもの:
   LiNi0.8Co0.15Al0.05
Representative:
Li g Ni 0.8 Co 0.15 Al 0.05 O 2
〔式(MB)で表される遷移金属酸化物(スピネル型構造)〕
 リチウム含有遷移金属酸化物としては、特に下記式(MB)で表されるものも好ましい。
[Transition metal oxide represented by formula (MB) (spinel structure)]
As the lithium-containing transition metal oxide, those represented by the following formula (MB) are particularly preferable.
  Li     ・・・ (MB) Li c M 2 2 O d (MB)
 式(MB)において、Mは上記Mと同義であり、好ましい範囲も同じである。cは0~2を表し、0.1~1.15が好ましく、0.6~1.5がより好ましい。dは3~5を表し、4が好ましい。 In the formula (MB), M 2 are as defined above M a, and their preferable ranges are also the same. c represents 0 to 2, preferably 0.1 to 1.15, and more preferably 0.6 to 1.5. d represents 3 to 5 and is preferably 4.
 式(MB)で表される遷移金属酸化物は下記の各式で表されるものがより好ましい。 The transition metal oxide represented by the formula (MB) is more preferably represented by the following formulas.
 (MB-1)  LimmMnnn
 (MB-2)  LimmMnAl2-pnn
 (MB-3)  LimmMnNi2-pnn
(MB-1) Li mm Mn 2 O nn
(MB-2) Li mm Mn p Al 2-p Onn
(MB-3) Li mm Mn p Ni 2-p Onn
 式(MB-1)~(MB-3)において、mmはcと同義であり、好ましい範囲も同じである。nnはdと同義であり、好ましい範囲も同じである。pは0~2を表す。上記遷移金属化合物の具体例としては、LiMn、LiMn1.5Ni0.5が挙げられる。 In the formulas (MB-1) to (MB-3), mm is synonymous with c, and the preferred range is also the same. nn has the same meaning as d, and the preferred range is also the same. p represents 0-2. Specific examples of the transition metal compound include LiMn 2 O 4 and LiMn 1.5 Ni 0.5 O 4 .
 式(MB)で表される遷移金属酸化物はさらに下記で表されるものも好ましい例として挙げられる。 As the transition metal oxide represented by the formula (MB), those represented by the following are also preferable examples.
 (a) LiCoMnO
 (b) LiFeMn
 (c) LiCuMn
 (d) LiCrMn
 (e) LiNiMn
(A) LiCoMnO 4
(B) Li 2 FeMn 3 O 8
(C) Li 2 CuMn 3 O 8
(D) Li 2 CrMn 3 O 8
(E) Li 2 NiMn 3 O 8
 高容量、高出力の観点で、上記のうちNiを含む電極がさらに好ましい。 Of the above, an electrode containing Ni is more preferable from the viewpoint of high capacity and high output.
〔式(MC)で表される遷移金属酸化物〕
 リチウム含有遷移金属酸化物としてはリチウム含有遷移金属リン酸化物を用いることも好ましく、中でも下記式(MC)で表されるものも好ましい。
[Transition metal oxide represented by formula (MC)]
As the lithium-containing transition metal oxide, it is also preferable to use a lithium-containing transition metal phosphor oxide, and among them, one represented by the following formula (MC) is also preferable.
  Li(PO ・・・ (MC) Li e M 3 (PO 4 ) f ... (MC)
 式(MC)において、eは0~2を表し、0.1~1.15が好ましく、0.5~1.5がより好ましい。fは1~5を表し、0.5~2が好ましい。 In the formula (MC), e represents 0 to 2, preferably 0.1 to 1.15, and more preferably 0.5 to 1.5. f represents 1 to 5, preferably 0.5 to 2.
 MはV、Ti、Cr、Mn、Fe、Co、Ni、Cuから選択される1種以上の元素を表す。Mは、上記の混合元素Mのほか、Ti、Cr、Zn、Zr、Nb等の他の金属で置換していてもよい。具体例としては、例えば、LiFePO、LiFe(PO等のオリビン型リン酸鉄塩、LiFeP等のピロリン酸鉄類、LiCoPO等のリン酸コバルト類、Li(PO(リン酸バナジウムリチウム)等の単斜晶ナシコン型リン酸バナジウム塩が挙げられる。
 なお、Liの組成を表す上記aa、c、g、mm、e値は、充放電により変化する値であり、典型的には、Liを含有したときの安定な状態の値で評価される。なお、式(a)~(e)では特定値としてLiの組成を示しているが、これも同様に電池の動作により変化するものである。
 なかでも本発明においては、Niおよび/またはMn原子を含有する正極活物質を用いることが好ましく、NiおよびMn原子両方を含有する正極活物質を用いることがより好ましい。
 特に好ましい正極活物質の具体例としては下記が挙げられる。
M 3 represents one or more elements selected from V, Ti, Cr, Mn, Fe, Co, Ni, and Cu. M 3 represents, in addition to the mixing element M b above, Ti, Cr, Zn, Zr, may be substituted by other metals such as Nb. Specific examples include, for example, olivine-type iron phosphates such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , cobalt phosphates such as LiCoPO 4 , and Li 3. Monoclinic Nasicon type vanadium phosphate salts such as V 2 (PO 4 ) 3 (lithium vanadium phosphate) can be mentioned.
In addition, said aa, c, g, mm, and e value showing the composition of Li are the values which change by charging / discharging, and are typically evaluated by the value of the stable state when Li is contained. In the formulas (a) to (e), the composition of Li is shown as a specific value, but this also varies depending on the operation of the battery.
In particular, in the present invention, a positive electrode active material containing Ni and / or Mn atoms is preferably used, and a positive electrode active material containing both Ni and Mn atoms is more preferably used.
Specific examples of particularly preferable positive electrode active materials include the following.
  LiNi0.33Co0.33Mn0.33
  LiNi0.6Co0.2Mn0.2
  LiNi0.5Co0.3Mn0.2
  LiNi0.5Mn0.5
  LiNi0.5Mn1.5
LiNi 0.33 Co 0.33 Mn 0.33 O 2
LiNi 0.6 Co 0.2 Mn 0.2 O 2
LiNi 0.5 Co 0.3 Mn 0.2 O 2
LiNi 0.5 Mn 0.5 O 2
LiNi 0.5 Mn 1.5 O 4
 これらは高電位で使用できるため電池容量を大きくすることができ、また高電位で使用しても容量維持率が高いため、特に好ましい。 Since these can be used at a high potential, the battery capacity can be increased, and even when used at a high potential, the capacity retention rate is high, which is particularly preferable.
 本発明において正極活物質には、本発明の式(I)で表される有機金属化合物を酸化可能な充電領域を有するものを用いることが好ましい。具体的には、3.5V以上の正極電位(Li/Li基準)で通常使用を維持できる材料を用いることが好ましい。この正電位は、3.8V以上がより好ましく、3.9V以上がさらに好ましく、4V以上が特に好ましい。この正電位は、なかでも4.1V以上が好ましく、4.2V以上が最も好ましい。上限は特に制限されるものではない。ただし、5V以下が実際的である。このような範囲とすることで、サイクル特性および高レート放電特性を向上することができる。
 ここで、通常使用を維持できるとは、その電圧で充電を行ったときでも電極材料が劣化して使用不能になることがないことを意味し、この電位を通常使用可能電位ともいう。
 充放電時の正極電位(Li/Li基準)は、下記式で表される。
In the present invention, it is preferable to use a positive electrode active material having a charging region capable of oxidizing the organometallic compound represented by the formula (I) of the present invention. Specifically, it is preferable to use a material that can maintain normal use at a positive electrode potential (Li / Li + reference) of 3.5 V or higher. The positive potential is more preferably 3.8 V or more, further preferably 3.9 V or more, and particularly preferably 4 V or more. In particular, the positive potential is preferably 4.1 V or higher, and most preferably 4.2 V or higher. The upper limit is not particularly limited. However, 5V or less is practical. By setting it as such a range, cycling characteristics and high-rate discharge characteristics can be improved.
Here, being able to maintain normal use means that the electrode material does not deteriorate and become unusable even when charged at that voltage, and this potential is also referred to as a normal usable potential.
The positive electrode potential (Li / Li + reference) at the time of charging / discharging is represented by the following formula.
  (正極電位)=(負極電位)+(電池電圧) (Positive electrode potential) = (Negative electrode potential) + (Battery voltage)
 負極としてチタン酸リチウムを用いた場合、負極電位は1.55Vとする。負極として黒鉛を用いた場合は負極電位は0.1Vとする。充電時に電池電圧を観測し、正極電位を算出する。 When lithium titanate is used as the negative electrode, the negative electrode potential is 1.55V. When graphite is used as the negative electrode, the negative electrode potential is 0.1V. The battery voltage is observed during charging and the positive electrode potential is calculated.
 本発明の非水電解液は、高電位の正極と組み合わせて用いることが特に好ましい。高電位の正極を用いると、通常、サイクル特性が大きく低下しがちであるが、本発明の好ましい実施形態によれば非水電解液は、この低下を抑えた良好な性能を維持することができる。 The non-aqueous electrolyte of the present invention is particularly preferably used in combination with a high potential positive electrode. When a positive electrode with a high potential is used, the cycle characteristics tend to be greatly reduced. However, according to a preferred embodiment of the present invention, the nonaqueous electrolyte can maintain good performance with this decrease suppressed. .
 本発明の非水二次電池において、用いられる正極活物質の平均粒子径は特に限定されないが、0.1μm~50μmが好ましい。比表面積としては特に限定されないが、BET法で0.01m/g~50m/gであるのが好ましい。また、正極活物質5gを蒸留水100mlに溶かした時の上澄み液のpHとしては、7以上12以下が好ましい。 In the nonaqueous secondary battery of the present invention, the average particle diameter of the positive electrode active material used is not particularly limited, but is preferably 0.1 μm to 50 μm. The specific surface area is not particularly limited, but is preferably 0.01 m 2 / g to 50 m 2 / g by the BET method. Further, the pH of the supernatant when 5 g of the positive electrode active material is dissolved in 100 ml of distilled water is preferably 7 or more and 12 or less.
 正極活物質を所定の粒子サイズにするには、良く知られた粉砕機や分級機が用いられる。例えば、乳鉢、ボールミル、振動ボールミル、振動ミル、衛星ボールミル、遊星ボールミル、旋回気流型ジェットミルや篩などが用いられる。焼成法によって得られた正極活物質は、水、酸性水溶液、アルカリ性水溶液、有機溶剤で洗浄した後に使用してもよい。 In order to make the positive electrode active material have a predetermined particle size, a well-known grinder or classifier is used. For example, a mortar, a ball mill, a vibration ball mill, a vibration mill, a satellite ball mill, a planetary ball mill, a swirling air flow type jet mill, a sieve, or the like is used. You may use the positive electrode active material obtained by the baking method, after wash | cleaning with water, acidic aqueous solution, alkaline aqueous solution, and an organic solvent.
 正極活物質の配合量は特に限定されないが、活物質層を構成するための分散物(合剤)中、固形成分100質量%において、60~98質量%が好ましく、70~95質量%がより好ましい。 The blending amount of the positive electrode active material is not particularly limited, but is preferably 60 to 98% by mass, more preferably 70 to 95% by mass in 100% by mass of the solid component in the dispersion (mixture) for constituting the active material layer. preferable.
・負極活物質
 負極活物質としては、可逆的にリチウムイオンを挿入・放出できるものが好ましい。このような条件を満たすものであれば、特に制限はない。例えば、炭素質材料、酸化錫や酸化ケイ素等の金属酸化物、金属複合酸化物、リチウム単体やリチウムアルミニウム合金等のリチウム合金およびSnもしくはSi等のリチウムと合金形成可能な金属等が挙げられる。
-Negative electrode active material As a negative electrode active material, what can insert and discharge | release lithium ion reversibly is preferable. There is no particular limitation as long as these conditions are satisfied. Examples thereof include carbonaceous materials, metal oxides such as tin oxide and silicon oxide, metal composite oxides, lithium alloys such as lithium alone and lithium aluminum alloys, and metals capable of forming an alloy with lithium such as Sn or Si.
 これらは、1種を単独で用いても、2種以上を任意の組み合わせて用いてもよく、この場合の比率はどのような比率でも構わない。なかでも炭素質材料またはリチウム複合酸化物は、信頼性の点から好ましい。
 また、金属複合酸化物としては、リチウムの吸蔵、放出が可能であるものが好ましく、構成成分としてチタンおよび/またはリチウムを含有していることが、高電流密度充放電特性の観点で好ましい。
These may be used alone or in any combination of two or more, and the ratio in this case may be any ratio. Among these, a carbonaceous material or a lithium composite oxide is preferable from the viewpoint of reliability.
The metal composite oxide is preferably one that can occlude and release lithium, and preferably contains titanium and / or lithium as a constituent component from the viewpoint of high current density charge / discharge characteristics.
 負極活物質として用いられる炭素質材料とは、実質的に炭素からなる材料である。例えば、石油ピッチ、天然黒鉛、気相成長黒鉛等の人造黒鉛およびPAN系の樹脂やフルフリルアルコール樹脂等の各種の合成樹脂を焼成した炭素質材料を挙げることができる。さらに、PAN系炭素繊維、セルロース系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、脱水PVA系炭素繊維、リグニン炭素繊維、ガラス状炭素繊維、活性炭素繊維等の各種炭素繊維類、メソフェーズ微小球体、グラファイトウィスカー、平板状の黒鉛等を挙げることもできる。 The carbonaceous material used as the negative electrode active material is a material substantially made of carbon. Examples thereof include carbonaceous materials obtained by firing artificial graphite such as petroleum pitch, natural graphite, and vapor-grown graphite, and various synthetic resins such as PAN-based resins and furfuryl alcohol resins. Furthermore, various carbon fibers such as PAN-based carbon fiber, cellulose-based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, dehydrated PVA-based carbon fiber, lignin carbon fiber, glassy carbon fiber, activated carbon fiber, mesophase micro Examples thereof include spheres, graphite whiskers, and flat graphite.
 これらの炭素質材料は、黒鉛化の程度により難黒鉛化炭素材料と黒鉛系炭素材料に分けることもできる。また炭素質材料は、特開昭62-22066号公報、特開平2-6856号公報、同3-45473号公報に記載されているような面間隔や密度、結晶子の大きさを有することが好ましい。炭素質材料は、単一の材料である必要はなく、特開平5-90844号公報に記載の天然黒鉛と人造黒鉛の混合物、特開平6-4516号公報に記載の被覆層を有する黒鉛等を用いることもできる。 These carbonaceous materials can be divided into non-graphitizable carbon materials and graphite-based carbon materials depending on the degree of graphitization. Further, the carbonaceous material may have an interplanar spacing, density, and crystallite size as described in JP-A-62-222066, JP-A-2-6856, and 3-45473. preferable. The carbonaceous material does not need to be a single material, and a mixture of natural graphite and artificial graphite described in JP-A-5-90844, graphite having a coating layer described in JP-A-6-4516, and the like. It can also be used.
 本発明の非水二次電池において用いられる負極活物質である金属酸化物および金属複合酸化物は、これらの少なくとも1種を含んでいることが好ましい。金属酸化物および金属複合酸化物は、なかでも非晶質酸化物が好ましく、さらに金属元素と周期律表第16族の元素との反応生成物であるカルコゲナイトも好ましく用いられる。ここでいう非晶質とは、CuKα線を用いたX線回折法で、2θ値で20°~40°の領域に頂点を有するブロードな散乱帯を有するものを意味し、結晶性の回折線を有してもよい。2θ値で40°以上70°以下に見られる結晶性の回折線のうち最も強い強度は、2θ値で20°以上40°以下に見られるブロードな散乱帯の頂点の回折線強度の100倍以下が好ましく、5倍以下がより好ましく、結晶性の回折線を有さないことが特に好ましい。 The metal oxide and metal composite oxide, which are negative electrode active materials used in the nonaqueous secondary battery of the present invention, preferably contain at least one of these. Among these metal oxides and metal composite oxides, amorphous oxides are preferable, and chalcogenite, which is a reaction product of a metal element and an element of Group 16 of the periodic table, is also preferably used. The term “amorphous” as used herein means an X-ray diffraction method using CuKα rays, which has a broad scattering band having a peak in the region of 20 ° to 40 ° in terms of 2θ, and is a crystalline diffraction line. You may have. The strongest intensity of the crystalline diffraction lines seen from 2 ° to 40 ° to 70 ° is 100 times the diffraction line intensity at the peak of the broad scattering band seen from 2 ° to 20 °. Is preferably 5 times or less, and particularly preferably has no crystalline diffraction line.
 上記非晶質酸化物およびカルコゲナイドからなる化合物群のなかでも、半金属元素の非晶質酸化物およびカルコゲナイドがより好ましく、周期律表第13(IIIB)族~15(VB)族の元素、Al、Ga、Si、Sn、Ge、Pb、Sb、Biの1種単独あるいはそれらの2種以上の組み合わせからなる酸化物、およびカルコゲナイドが特に好ましい。好ましい非晶質酸化物およびカルコゲナイドの具体例としては、例えば、Ga、SiO、GeO、SnO、SnO、PbO、PbO、Pb、Pb、Pb、Sb、Sb、Sb、Bi、Bi、SnSiO、GeS、SnS、SnS、PbS、PbS、Sb、Sb、SnSiSなどが好ましく挙げられる。また、これらは、酸化リチウムとの複合酸化物、例えば、LiSnOであってもよい。 Among the group of compounds consisting of the above amorphous oxide and chalcogenide, the amorphous oxide and chalcogenide of the semimetal element are more preferable, and the elements of Groups 13 (IIIB) to 15 (VB) of the periodic table, Al , Ga, Si, Sn, Ge, Pb, Sb, Bi alone or in combination of two or more thereof, and chalcogenide are particularly preferable. Specific examples of preferable amorphous oxides and chalcogenides include, for example, Ga 2 O 3 , SiO, GeO, SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , Bi 2 O 3 , Bi 2 O 4 , SnSiO 3 , GeS, SnS, SnS 2 , PbS, PbS 2 , Sb 2 S 3 , Sb 2 S 5 , such as SnSiS 3 may preferably be mentioned. Moreover, these may be a complex oxide with lithium oxide, for example, Li 2 SnO 2 .
 上記負極活物質の平均粒子径は、0.1μm~60μmが好ましい。所定の粒子サイズにするには、よく知られた粉砕機や分級機が用いられる。例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、衛星ボールミル、遊星ボールミル、旋回気流型ジェットミルや篩などが好適に用いられる。粉砕時には水、あるいはメタノール等の有機溶媒を共存させた湿式粉砕も必要に応じて行うことができる。所望の粒径とするためには分級を行うことが好ましい。分級方法としては特に限定はなく、篩、風力分級機などを必要に応じて用いることができる。分級は乾式、湿式ともに用いることができる。 The average particle diameter of the negative electrode active material is preferably 0.1 μm to 60 μm. To obtain a predetermined particle size, a well-known pulverizer or classifier is used. For example, a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling air flow type jet mill or a sieve is preferably used. When pulverizing, wet pulverization in the presence of water or an organic solvent such as methanol can be performed as necessary. In order to obtain a desired particle size, classification is preferably performed. The classification method is not particularly limited, and a sieve, an air classifier, or the like can be used as necessary. Classification can be used both dry and wet.
 上記焼成法により得られた化合物の化学式は、測定方法として誘導結合プラズマ(ICP)発光分光分析法、簡便法として、焼成前後の粉体の質量差から算出できる。 The chemical formula of the compound obtained by the above firing method can be calculated from an inductively coupled plasma (ICP) emission spectroscopic analysis method as a measurement method, and from a mass difference between powders before and after firing as a simple method.
 Sn、Si、Geを中心とする非晶質酸化物負極活物質に併せて用いることができる負極活物質は、リチウムイオンまたはリチウム金属を吸蔵・放出できる炭素材料や、リチウム、リチウム合金、リチウムと合金可能な金属が好適に挙げられる。 The negative electrode active material that can be used in combination with the amorphous oxide negative electrode active material centering on Sn, Si, and Ge includes carbon materials that can occlude and release lithium ions or lithium metal, lithium, lithium alloy, lithium, and the like. An alloyable metal is preferable.
 本発明の電解液は、その好ましい様態として、高電位負極(好ましくはリチウム・チタン酸化物、電位1.55V対Li金属)との組合せ、および低電位負極(好ましくは炭素材料、シリコン含有材料、電位約0.1V対Li金属)との組合せのいずれにおいても優れた特性を発現する。さらに高容量化に向けて開発が進んでいるリチウムと合金形成可能な金属もしくは金属酸化物負極(好ましくはSi、酸化Si、Si/酸化Si、Sn、酸化Sn、SnB、Cu/Snおよびこれらのうち複数の複合体)、およびこれらの金属もしくは金属酸化物と炭素材料の複合体を負極とする電池においても好ましく用いることができる。
 本発明においては、なかでも、炭素、ケイ素(Si)、チタン、およびスズから選ばれる少なくとも1種を含有する負極活物質を用いることが好ましい。
The electrolytic solution of the present invention is preferably combined with a high potential negative electrode (preferably lithium / titanium oxide, a potential of 1.55 V vs. Li metal) and a low potential negative electrode (preferably a carbon material, a silicon-containing material, Excellent characteristics are exhibited in any combination with a potential of about 0.1 V vs. Li metal. Further, metal or metal oxide negative electrodes (preferably Si, Si oxide, Si / Si oxide, Sn, Sn oxide, SnB x P y O z , Cu, which can be alloyed with lithium, which are being developed for higher capacity) / Sn and a plurality of these composites), and a battery using a composite of these metals or metal oxides and a carbon material as a negative electrode.
In the present invention, it is particularly preferable to use a negative electrode active material containing at least one selected from carbon, silicon (Si), titanium, and tin.
 本発明の非水電解液は、高電位の負極と組み合わせて用いることが特に好ましい。高電位の負極は上記の高電位の正極と組み合わせて用いられることが多く、大容量の充放電にも好適に対応することができる。 The non-aqueous electrolyte of the present invention is particularly preferably used in combination with a high potential negative electrode. The high potential negative electrode is often used in combination with the above high potential positive electrode, and can suitably cope with large capacity charge / discharge.
・導電材
 導電材は、構成された二次電池において、化学変化を起こさない電子伝導性材料が好ましく、公知の導電材を任意に用いることができる。通常、天然黒鉛(鱗状黒鉛、鱗片状黒鉛、土状黒鉛など)、人工黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維や金属粉(銅、ニッケル、アルミニウム、銀(特開昭63-10148,554号公報に記載)等)、金属繊維あるいはポリフェニレン誘導体(特開昭59-20,971号公報に記載)などの導電性材料を1種またはこれらの混合物として含ませることができる。その中でも、黒鉛とアセチレンブラックの併用が特に好ましい。上記導電剤の添加量は、11~50質量%が好ましく、2~30質量%がより好ましい。カーボンブラックや黒鉛の場合は、2~15質量%が特に好ましい。
-Conductive material The conductive material is preferably an electron conductive material that does not cause a chemical change in the configured secondary battery, and a known conductive material can be arbitrarily used. Usually, natural graphite (scale-like graphite, scale-like graphite, earth-like graphite, etc.), artificial graphite, carbon black, acetylene black, ketjen black, carbon fiber and metal powder (copper, nickel, aluminum, silver (Japanese Patent Laid-Open No. Sho 63-63)) , Etc.), etc.), metal fibers or polyphenylene derivatives (described in JP-A-59-20971) can be contained as one kind or a mixture thereof. Among these, the combined use of graphite and acetylene black is particularly preferable. The addition amount of the conductive agent is preferably 11 to 50% by mass, and more preferably 2 to 30% by mass. In the case of carbon black or graphite, 2 to 15% by mass is particularly preferable.
・結着剤
 結着剤(以下、バインダーとも称す。)としては、多糖類、熱可塑性樹脂及びゴム弾性を有するポリマーなどが挙げられ、その中でも、例えば、デンプン、カルボキシメチルセルロース、セルロース、ジアセチルセルロース、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、アルギン酸ナトリウム、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリビニルフェノール、ポリビニルメチルエーテル、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリロニトリル、ポリアクリルアミド、ポリヒドロキシ(メタ)アクリレート、スチレン-マレイン酸共重合体等の水溶性ポリマー、ポリビニルクロリド、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、ビニリデンフロライド-テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、ポリエチレン、ポリプロピレン、エチレン-プロピレン-ジエンポリマー(EPDM)、スルホン化EPDM、ポリビニルアセタール樹脂、メチル(メタ)アクリレート、2-エチルヘキシルアクリレート等の(メタ)アクリル酸エステルを含有する(メタ)アクリル酸エステル共重合体、(メタ)アクリル酸エステル-アクリロニトリル共重合体、ビニルアセテート等のビニルエステルを含有するポリビニルエステル共重合体、スチレン-ブタジエン共重合体、アクリロニトリル-ブタジエン共重合体、ポリブタジエン、ネオプレンゴム、フッ素ゴム、ポリエチレンオキシド、ポリエステルポリウレタン樹脂、ポリエーテルポリウレタン樹脂、ポリカーボネートポリウレタン樹脂、ポリエステル樹脂、フェノール樹脂、エポキシ樹脂等のエマルジョン(ラテックス)あるいはサスペンジョンが好ましく、ポリアクリル酸エステル系のラテックス、カルボキシメチルセルロース、ポリテトラフルオロエチレン、ポリフッ化ビニリデンがより好ましい。また、結着剤としてスチレン-ブタジエン共重合体を使用し、増粘剤としてカルボキシメチルセルロースナトリウムを併用することも好ましい。
-Binder The binder (hereinafter also referred to as a binder) includes polysaccharides, thermoplastic resins, and polymers having rubber elasticity. Among them, for example, starch, carboxymethylcellulose, cellulose, diacetylcellulose, Methylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, sodium alginate, polyacrylic acid, sodium polyacrylate, polyvinylphenol, polyvinylmethylether, polyvinyl alcohol, polyvinylpyrrolidone, polyacrylonitrile, polyacrylamide, polyhydroxy (meth) acrylate, styrene-maleine Water-soluble polymers such as acid copolymers, polyvinyl chloride, polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene-hex Safluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene-hexafluoropropylene copolymer, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated EPDM, polyvinyl acetal resin, methyl (meth) acrylate, (Meth) acrylic acid ester copolymer containing (meth) acrylic acid ester such as 2-ethylhexyl acrylate, (meth) acrylic acid ester-acrylonitrile copolymer, polyvinyl ester copolymer containing vinyl ester such as vinyl acetate Polymer, Styrene-butadiene copolymer, Acrylonitrile-butadiene copolymer, Polybutadiene, Neoprene rubber, Fluoro rubber, Polyethylene oxide, Polyester polyurethane resin, Polyethylene Ether polyurethane resins, polycarbonate polyurethane resins, polyester resins, phenolic resins, emulsion (latex) or a suspension such as an epoxy resin is preferable, a latex of polyacrylate, carboxymethyl cellulose, polytetrafluoroethylene, polyvinylidene fluoride is more preferable. It is also preferable to use a styrene-butadiene copolymer as a binder and to use sodium carboxymethyl cellulose as a thickener.
 結着剤は、1種単独または2種以上を混合して用いることができる。結着剤の添加量が少ないと、電極合剤の保持力・凝集力が弱くなる。多すぎると電極体積が増加し電極単位体積あるいは単位質量当たりの容量が減少する。このような理由で結着剤の添加量は1~30質量%が好ましく、2~10質量%がより好ましい。 Binders can be used alone or in combination of two or more. When the amount of the binder added is small, the holding power and cohesive force of the electrode mixture are weakened. If the amount is too large, the electrode volume increases and the capacity per electrode unit volume or unit mass decreases. For this reason, the addition amount of the binder is preferably 1 to 30% by mass, and more preferably 2 to 10% by mass.
・フィラー
 電極合材は、フィラーを含んでいてもよい。フィラーを形成する材料は、本発明の非水二次電池において、化学変化を起こさない繊維状材料が好ましい。通常、ポリプロピレン、ポリエチレンなどのオレフィン系ポリマー、ガラス、炭素などの材料からなる繊維状のフィラーが用いられる。フィラーの添加量は特に限定されないが、分散物中、0~30質量%が好ましい。
-Filler The electrode compound material may contain the filler. The material forming the filler is preferably a fibrous material that does not cause a chemical change in the non-aqueous secondary battery of the present invention. Usually, fibrous fillers made of materials such as olefin polymers such as polypropylene and polyethylene, glass, and carbon are used. The addition amount of the filler is not particularly limited, but is preferably 0 to 30% by mass in the dispersion.
・集電体
 正・負極の集電体としては、化学変化を起こさない電子伝導体が用いられることが好ましい。正極の集電体としては、アルミニウム、ステンレス鋼、ニッケル、チタンなどの他にアルミニウムやステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたものが好ましく、その中でも、アルミニウム、アルミニウム合金がより好ましい。
-Current collector As the positive / negative current collector, an electron conductor that does not cause a chemical change is preferably used. As the current collector of the positive electrode, in addition to aluminum, stainless steel, nickel, titanium, etc., the surface of aluminum or stainless steel is preferably treated with carbon, nickel, titanium, or silver. Among them, aluminum and aluminum alloys are preferable. More preferred.
 負極の集電体としては、アルミニウム、銅、ステンレス鋼、ニッケル、チタンが好ましく、アルミニウム、銅、銅合金がより好ましい。 As the negative electrode current collector, aluminum, copper, stainless steel, nickel and titanium are preferable, and aluminum, copper and copper alloy are more preferable.
 集電体の形状としては、通常フィルムシート状のものが使用されるが、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群の成形体なども用いることができる。集電体の厚みは、特に限定されない。なお、1μm~500μmが好ましい。また、集電体表面は、表面処理により凹凸を付けることも好ましい。
 これらの材料から適宜選択した部材によりリチウム二次電池の電極合材が形成される。
As the shape of the current collector, a film sheet is usually used, but a net, a punched one, a lath body, a porous body, a foamed body, a molded body of a fiber group, and the like can also be used. The thickness of the current collector is not particularly limited. 1 μm to 500 μm is preferable. Moreover, it is also preferable that the current collector surface is roughened by surface treatment.
An electrode mixture of the lithium secondary battery is formed by a member appropriately selected from these materials.
(セパレータ)
 本発明の非水二次電池に用いられるセパレータは、正極と負極を電子的に絶縁する機械的強度、イオン透過性、および正極と負極の接触面で酸化・還元耐性のある材料で構成されていることが好ましい。このような材料として、多孔質のポリマー材料や無機材料、有機無機ハイブリッド材料またはガラス繊維などが用いられる。これらセパレータは信頼性確保のためのシャットダウン機能、すなわち、80℃以上で隙間を閉塞して抵抗を上げ、電流を遮断する機能を持つことが好ましく、閉塞温度は90℃以上、180℃以下が好ましい。
(Separator)
The separator used in the non-aqueous secondary battery of the present invention is made of a material that mechanically insulates the positive electrode and the negative electrode, has ion permeability, and has oxidation / reduction resistance at the contact surface between the positive electrode and the negative electrode. Preferably it is. As such a material, a porous polymer material, an inorganic material, an organic-inorganic hybrid material, glass fiber, or the like is used. These separators preferably have a shut-down function for ensuring reliability, that is, a function of closing a gap at 80 ° C. or higher to increase resistance and interrupting current, and the plugging temperature is preferably 90 ° C. or higher and 180 ° C. or lower. .
 セパレータの孔の形状は、通常は円形や楕円形で、大きさは0.05μm~30μmが好ましく、0.1μm~20μmがより好ましい。さらに延伸法、相分離法で作った場合のように、棒状や不定形の孔であってもよい。これらの隙間の占める比率すなわち気孔率は、20%~90%が好ましく、35%~80%がより好ましい。 The shape of the separator holes is usually circular or elliptical, and the size is preferably 0.05 μm to 30 μm, more preferably 0.1 μm to 20 μm. Furthermore, it may be a rod-like or irregular-shaped hole as in the case of making by a stretching method or a phase separation method. The ratio of these gaps, that is, the porosity, is preferably 20% to 90%, and more preferably 35% to 80%.
 上記ポリマー材料としては、セルロース不織布、ポリエチレン、ポリプロピレンなどの単一の材料を用いたものでも、2種以上の複合化材料を用いたものであってもよい。孔径、気孔率や孔の閉塞温度などを変えた2種以上の微多孔フィルムを積層したものが、好ましい。 The polymer material may be a single material such as a cellulose nonwoven fabric, polyethylene, or polypropylene, or may be a material using two or more composite materials. What laminated | stacked the 2 or more types of microporous film which changed the hole diameter, the porosity, the obstruction | occlusion temperature of a hole, etc. is preferable.
 上記無機物としては、アルミナや二酸化珪素等の酸化物類、窒化アルミや窒化珪素等の窒化物類、硫酸バリウムや硫酸カルシウム等の硫酸塩類が用いられ、粒子形状もしくは繊維形状のものが用いられる。形態としては、不織布、織布、微多孔性フィルム等の薄膜形状のものが用いられる。薄膜形状では、孔径が0.01μm~1μm、厚さが5μm~50μmのものが好適に用いられる。このような独立した薄膜形状以外に、上記無機物の粒子を含有する複合多孔層を樹脂製の結着剤を用いて、正極および/または負極の表層に形成させてなるセパレータを用いることができる。例えば、正極の両面に90%粒径が1μm未満のアルミナ粒子をフッ素樹脂の結着剤を用いて多孔層として形成させることが挙げられる。 As the inorganic substance, oxides such as alumina and silicon dioxide, nitrides such as aluminum nitride and silicon nitride, and sulfates such as barium sulfate and calcium sulfate are used, and those having a particle shape or fiber shape are used. As the form, a thin film shape such as a non-woven fabric, a woven fabric, or a microporous film is used. As the thin film shape, those having a pore diameter of 0.01 μm to 1 μm and a thickness of 5 μm to 50 μm are preferably used. In addition to such an independent thin film shape, a separator formed by forming a composite porous layer containing inorganic particles on the surface layer of the positive electrode and / or the negative electrode using a resin binder can be used. For example, alumina particles having a 90% particle diameter of less than 1 μm are formed on both surfaces of the positive electrode as a porous layer using a fluororesin binder.
(非水二次電池の作製)
 本発明の非水二次電池の形状としては、既述のように、シート状、角型、シリンダー状などいずれの形にも適用できる。正極活物質や負極活物質の合剤は、集電体の上に、塗布(コート)、乾燥、圧縮されて、主に用いられる。
(Production of non-aqueous secondary battery)
As described above, the shape of the nonaqueous secondary battery of the present invention can be applied to any shape such as a sheet shape, a square shape, and a cylinder shape. A positive electrode active material or a mixture of negative electrode active materials is mainly used after being applied (coated), dried and compressed on a current collector.
 以下、図2により、有底筒型形状リチウム二次電池100を例に挙げて、その構成及び作製方法について説明する。
 有底筒型形状の電池では、充填される発電素子に対する外表面積が小さくなるので、充電や放電時に内部抵抗による発生するジュール発熱を効率よく外部に逃げる設計にすることが好ましい。また、熱伝導性の高い物質の充填比率を高め、内部での温度分布が小さくなるように設計することが好ましい。図2は、有底筒型形状リチウム二次電池100を例である。この電池は、セパレータ12を介して重ね合わせた正極シート14、負極シート16を巻回して外装缶18内に収納した有底筒型リチウム二次電池100となっている。その他、図中の20が絶縁板、22が封口板、24が正極集電体、26がガスケット、28が圧力感応弁体、30が電流遮断素子である。なお、拡大した円内の図示は視認性を考慮しハッチングを変えているが、各部材は符号により全体図と対応している。
Hereinafter, with reference to FIG. 2, a configuration and a manufacturing method thereof will be described using the bottomed cylindrical lithium secondary battery 100 as an example.
In a battery having a bottomed cylindrical shape, since the outer surface area with respect to the power generating element to be filled becomes small, it is preferable to design so that Joule heat generated by the internal resistance at the time of charging and discharging efficiently escapes to the outside. Moreover, it is preferable to design so that the filling ratio of the substance having high thermal conductivity is increased and the temperature distribution inside is reduced. FIG. 2 shows an example of a bottomed cylindrical lithium secondary battery 100. This battery is a bottomed cylindrical lithium secondary battery 100 in which a positive electrode sheet 14 and a negative electrode sheet 16 overlapped with a separator 12 are wound and accommodated in an outer can 18. In addition, in the figure, 20 is an insulating plate, 22 is a sealing plate, 24 is a positive electrode current collector, 26 is a gasket, 28 is a pressure sensitive valve body, and 30 is a current interruption element. In addition, although the illustration in the enlarged circle has changed hatching in consideration of visibility, each member corresponds to the whole drawing by reference numerals.
 まず、負極活物質と、所望により用いられる結着剤やフィラーなどを有機溶剤に溶解したものを混合して、スラリー状あるいはペースト状の負極合剤を調製する。得られた負極合剤を集電体としての金属芯体の両面の全面にわたって均一に塗布し、その後、有機溶剤を除去して負極合材層を形成する。さらに、集電体と負極合材層との積層体をロールプレス機等により圧延して、所定の厚みに調製して負極シート(電極シート)を得る。このとき、各剤の塗布方法や塗布物の乾燥、正・負極の電極の形成方法は定法によればよい。 First, a negative electrode active material is mixed with a binder or filler used as desired in an organic solvent to prepare a slurry or paste negative electrode mixture. The obtained negative electrode mixture is uniformly applied over the entire surface of both surfaces of the metal core as a current collector, and then the organic solvent is removed to form a negative electrode mixture layer. Further, the laminate of the current collector and the negative electrode composite material layer is rolled with a roll press or the like to prepare a predetermined thickness to obtain a negative electrode sheet (electrode sheet). At this time, the coating method of each agent, the drying of the coated material, and the method of forming the positive and negative electrodes may be in accordance with conventional methods.
 本実施形態では、円筒形の電池を例に挙げたが、本発明はこれに制限されない。例えば、上記方法で作製された正・負の電極シートを、セパレータを介して重ね合わせた後、そのままシート状電池に加工するか、あるいは、折り曲げた後、角形缶に挿入して、缶とシートを電気的に接続した後、電解質を注入し、封口板を用いて開口部を封止して角形電池を作製してもよい。 In this embodiment, a cylindrical battery is taken as an example, but the present invention is not limited to this. For example, the positive and negative electrode sheets produced by the above method are overlapped with a separator and then processed into a sheet battery as it is, or after being folded and inserted into a rectangular can, the can and the sheet After the electrical connection, the electrolyte may be injected, and the opening may be sealed using a sealing plate to produce a square battery.
 いずれの実施形態においても、安全弁を開口部を封止するための封口板として用いることができる。また、封口部材には、安全弁の他、従来知られている種々の安全素子を備えつけてもよい。例えば、過電流防止素子として、ヒューズ、バイメタル、PTC素子などが好適に用いられる。 In any of the embodiments, the safety valve can be used as a sealing plate for sealing the opening. In addition to the safety valve, the sealing member may be provided with various conventionally known safety elements. For example, a fuse, bimetal, PTC element, or the like is preferably used as the overcurrent prevention element.
 また、上記安全弁のほかに電池缶の内圧上昇の対策として、電池缶に切込を入れる方法、ガスケット亀裂方法あるいは封口板亀裂方法あるいはリード板との切断方法を利用することができる。また、充電器に過充電や過放電対策を組み込んだ保護回路を具備させるか、あるいは独立に接続させてもよい。 In addition to the above safety valve, as a countermeasure against the increase in internal pressure of the battery can, a method of cutting the battery can, a method of cracking the gasket, a method of cracking the sealing plate, or a method of cutting the lead plate can be used. Further, the charger may be provided with a protection circuit incorporating measures against overcharge and overdischarge, or may be connected independently.
 缶やリード板は、電気伝導性をもつ金属や合金を用いることができる。例えば、鉄、ニッケル、チタン、クロム、モリブデン、銅、アルミニウムなどの金属あるいはそれらの合金が好適に用いられる。 For the can and lead plate, a metal or alloy having electrical conductivity can be used. For example, metals such as iron, nickel, titanium, chromium, molybdenum, copper, and aluminum, or alloys thereof are preferably used.
 キャップ、缶、シート、リード板の溶接法は、公知の方法(例えば、直流または交流の電気溶接、レーザー溶接、超音波溶接)を用いることができる。封口用シール剤は、アスファルトなどの従来知られている化合物や混合物を用いることができる。 A known method (for example, direct current or alternating current electric welding, laser welding, or ultrasonic welding) can be used for welding the cap, can, sheet, and lead plate. As the sealing agent for sealing, a conventionally known compound or mixture such as asphalt can be used.
[非水二次電池の用途] [Applications of non-aqueous secondary batteries]
 リチウム電池と呼ばれる二次電池は、充放電反応にリチウムの吸蔵および放出を利用する二次電池(リチウムイオン二次電池)と、リチウムの析出および溶解を利用する二次電池(リチウム金属二次電池)とに大別される。本発明においてはリチウムイオン二次電池としての適用が好ましい。 Secondary batteries called lithium batteries are secondary batteries that use the insertion and extraction of lithium for charge / discharge reactions (lithium ion secondary batteries), and secondary batteries that use precipitation and dissolution of lithium (lithium metal secondary batteries). ). In the present invention, application as a lithium ion secondary battery is preferable.
 本発明の非水二次電池は種々の用途に適用することができる。適用態様には特に限定はないが、例えば、電子機器に搭載する場合、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャー、ハンディーターミナル、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、電気シェーバー、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源、メモリーカードなどが挙げられる。その他民生用として、自動車、電動車両、モーター、照明器具、玩具、ゲーム機器、ロードコンディショナー、時計、ストロボ、カメラ、医療機器(ペースメーカー、補聴器、肩もみ機など)などが挙げられる。さらに、各種軍需用、宇宙用として用いることができる。また、太陽電池と組み合わせることもできる。 The non-aqueous secondary battery of the present invention can be applied to various uses. Although there is no particular limitation on the application mode, for example, when installed in an electronic device, a notebook computer, a pen input personal computer, a mobile personal computer, an electronic book player, a mobile phone, a cordless phone, a pager, a handy terminal, a mobile fax machine, a mobile phone Copy, portable printer, headphone stereo, video movie, LCD TV, handy cleaner, portable CD, minidisc, electric shaver, transceiver, electronic notebook, calculator, memory card, portable tape recorder, radio, backup power supply, memory card, etc. It is done. Other consumer products include automobiles, electric vehicles, motors, lighting equipment, toys, game equipment, road conditioners, watches, strobes, cameras, medical equipment (such as pacemakers, hearing aids, and shoulder grinders). Furthermore, it can be used for various military purposes and space. Moreover, it can also combine with a solar cell.
 以下に、実施例に基づき本発明についてさらに詳細に説明するが、本発明がこれにより限定して解釈されるものではない。なお、特に断らない限り、部および%は質量基準である。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not construed as being limited thereto. Unless otherwise specified, parts and% are based on mass.
<本発明の有機金属化合物I(2)の合成>
 以下の合成スキームで、有機金属化合物I(2)を合成した。
<Synthesis of Organometallic Compound I (2) of the Present Invention>
Organometallic compound I (2) was synthesized by the following synthesis scheme.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 500mlの3つ口フラスコに、シクロペンタジエニルリチウム:36g(アルドリッチ社製)、ヘキサン:300mlを添加した。次に氷浴で0℃まで冷却後、ジメチルヂジクロロシラン:32.5g(東京化成工業社製)を加え、室温で1時間攪拌した。4N塩酸水溶液で処理後、蒸留精製してジシクロペンタジエニルジメチルシラン:28.7gを得た。 To a 500 ml three-necked flask, 36 g of cyclopentadienyl lithium (manufactured by Aldrich) and 300 ml of hexane were added. Next, after cooling to 0 ° C. with an ice bath, 32.5 g of dimethyldichlorosilane (manufactured by Tokyo Chemical Industry Co., Ltd.) was added and stirred at room temperature for 1 hour. After treatment with 4N aqueous hydrochloric acid, the residue was purified by distillation to obtain 28.7 g of dicyclopentadienyldimethylsilane.
 500mlの3つ口フラスコに、上記で合成したジシクロペンタジエニルジメチルシラン:18.8g、THF(テトラヒドロフラン):120mlを添加した。次に氷浴で0℃まで冷却後、n-ブチルリチウム:125ml(1.6M:関東化学社製)を滴下し、室温で反応液を2時間攪拌した。その後、THF/トルエンの1/1溶液60mlにテトラクロロジルコニウム:18.6gを加えた懸濁液を、反応液に0℃にて滴下した。室温で2時間反応した後、濃縮し、クロロホルム:500mlで抽出した。メタノール-氷バスで-20℃まで冷却し、析出した再結晶生成物をろ別し、化合物X(1):12.55gを得た。 To the 500 ml three-necked flask, 18.8 g of dicyclopentadienyldimethylsilane synthesized above and 120 ml of THF (tetrahydrofuran) were added. Next, after cooling to 0 ° C. in an ice bath, 125 ml of n-butyllithium (1.6 M: manufactured by Kanto Chemical Co., Inc.) was added dropwise, and the reaction solution was stirred at room temperature for 2 hours. Thereafter, a suspension obtained by adding 18.6 g of tetrachlorozirconium to 60 ml of a THF / toluene 1/1 solution was added dropwise to the reaction solution at 0 ° C. After reacting at room temperature for 2 hours, the mixture was concentrated and extracted with chloroform: 500 ml. The mixture was cooled to −20 ° C. with a methanol-ice bath, and the precipitated recrystallized product was separated by filtration to obtain 12.55 g of Compound X (1).
 200mlの3つ口フラスコに、4,4-ジメチル-2-ペンチン:5.77g(Alfa Aesar社製)をTHF:40mlに混合させた。次にドライアイス-メタノールバスにて-70℃以下まで冷却後、X(1):10.45gを添加した。-70℃以下の冷却を確認後、n-ブチルリチウム:37.5ml(1.6M:関東化学社製)を滴下し、滴下終了後に反応液を1時間攪拌した。次いで反応液を室温まで昇温し、さらに2時間反応させた。反応液を濃縮し、トルエン40mlを添加し5分間攪拌した。得られた懸濁液をセライト濾過した後、再びエバポレータでトルエンを留去した。得られた粗生成物を200mlのヘキサンに溶解させ、ドライアイス-メタノールバスで-70℃以下まで冷却し、析出した再結晶生成物をろ別し、本発明の有機金属化合物I(2):9.1gを得た。 In a 200 ml three-necked flask, 5.77 g of 4,4-dimethyl-2-pentyne (Alfa Aesar) was mixed with 40 ml of THF. Next, after cooling to −70 ° C. or lower with a dry ice-methanol bath, 10.45 g of X (1) was added. After confirming cooling at −70 ° C. or lower, 37.5 ml of n-butyllithium (1.6M, manufactured by Kanto Chemical Co., Inc.) was added dropwise, and the reaction solution was stirred for 1 hour after the completion of the dropwise addition. Next, the reaction solution was warmed to room temperature and further reacted for 2 hours. The reaction solution was concentrated, 40 ml of toluene was added, and the mixture was stirred for 5 minutes. The obtained suspension was filtered through Celite, and then toluene was distilled off again with an evaporator. The obtained crude product is dissolved in 200 ml of hexane, cooled to −70 ° C. or lower with a dry ice-methanol bath, the precipitated recrystallized product is filtered off, and the organometallic compound I (2) of the present invention: 9.1 g was obtained.
<本発明の有機金属化合物I(4)の合成>
 以下の合成スキームで、有機金属化合物I(4)を合成した。
<Synthesis of Organometallic Compound I (4) of the Present Invention>
Organometallic compound I (4) was synthesized by the following synthesis scheme.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 200mlの3つ口フラスコに、化合物X(1):10.45g、脱水トルエン:100mlを添加した。次にドライアイスーメタノールバスにて-70℃以下まで冷却後、n-ブチルリチウム:37.5ml(1.6M:関東化学社製)を30分かけて滴下し、滴下終了後に反応液を1時間攪拌した。2,2,7,7-テトラメチルオクタ-3,5-ジイン:4.87g(ALDRICH社製)を加え、反応液を室温まで昇温し、さらに3時間反応させた。反応終了後、水:200mlを加え、混合液をジエチルエーテルで抽出した。抽出液を水、食塩水で洗浄し、無水硫酸ナトリウムで乾燥させた。溶媒を減圧留去し、得られた粗生成物を200mlのヘキサンに溶解させ、ドライアイス-メタノールバスで-70℃以下まで冷却し、析出した再結晶生成物をろ別し、本発明の有機金属化合物I(4):8.2gを得た。 Compound X (1): 10.45 g and dehydrated toluene: 100 ml were added to a 200 ml three-necked flask. Next, after cooling to −70 ° C. or less with a dry ice-methanol bath, 37.5 ml of n-butyllithium (1.6M: manufactured by Kanto Chemical Co., Inc.) was added dropwise over 30 minutes. Stir. 2,2,7,7-Tetramethylocta-3,5-diyne: 4.87 g (manufactured by ALDRICH) was added, and the reaction solution was warmed to room temperature and further reacted for 3 hours. After completion of the reaction, 200 ml of water was added, and the mixture was extracted with diethyl ether. The extract was washed with water and brine and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure, and the resulting crude product was dissolved in 200 ml of hexane, cooled to −70 ° C. or lower with a dry ice-methanol bath, and the precipitated recrystallized product was filtered off to obtain the organic of the present invention. Metal compound I (4): 8.2g was obtained.
<本発明の有機金属化合物I(7)の合成>
 以下の合成スキームで、有機金属化合物I(7)を合成した。
<Synthesis of Organometallic Compound I (7) of the Present Invention>
Organometallic compound I (7) was synthesized according to the following synthesis scheme.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 500mlの3つ口フラスコに、フェロセン:30g(東京化成工業社製)、ヘキサン:200mlを添加した。氷浴で0℃まで冷却後、n-ブチルリチウム:160ml(2.3M:関東化学社製)を滴下し、次いでテトラメチルエチレンジアミン:30ml(アルドリッチ社製)を滴下し、反応液を室温まで昇温し、さらに5時間反応させた。沈殿物を濾過し、ヘキサンで洗浄後、乾燥して、化合物X(2):44.9gを得た。 To a 500 ml three-necked flask, ferrocene: 30 g (manufactured by Tokyo Chemical Industry Co., Ltd.) and hexane: 200 ml were added. After cooling to 0 ° C. in an ice bath, 160 ml of n-butyllithium (2.3 M: manufactured by Kanto Chemical Co.) was added dropwise, and then 30 ml of tetramethylethylenediamine (manufactured by Aldrich) was added dropwise, and the reaction solution was allowed to rise to room temperature. Warmed and allowed to react for another 5 hours. The precipitate was filtered, washed with hexane, and dried to obtain 44.9 g of Compound X (2).
 200mlの3つ口フラスコに、化合物X(2):5.03g、脱水ジエチルエーテル:100ml(和光純薬工業社製)を添加した。次にドライアイス-メタノールバスにて-70℃以下まで冷却後、ジメチルジクロロシラン:2.4ml(東京化成工業社製)を10分間かけて滴下し、反応液を室温まで昇温し、10時間反応させた。反応液を濃縮後、ヘキサン100mlを加え、懸濁液を濾過した後、再び濃縮した。得られた粗結晶を昇華精製して、本発明の有機金属化合物I(7):2.2gを得た。 Compound X (2): 5.03 g and dehydrated diethyl ether: 100 ml (manufactured by Wako Pure Chemical Industries, Ltd.) were added to a 200 ml three-necked flask. Next, after cooling to −70 ° C. or lower with a dry ice-methanol bath, 2.4 ml of dimethyldichlorosilane (manufactured by Tokyo Chemical Industry Co., Ltd.) is added dropwise over 10 minutes, and the reaction solution is warmed to room temperature and heated for 10 hours. Reacted. The reaction solution was concentrated, 100 ml of hexane was added, the suspension was filtered, and then concentrated again. The obtained crude crystals were purified by sublimation to obtain 2.2 g of the organometallic compound I (7) of the present invention.
<本発明の有機金属化合物I(8)の合成>
 以下の合成スキームで、有機金属化合物I(8)を合成した。
<Synthesis of Organometallic Compound I (8) of the Present Invention>
Organometallic compound I (8) was synthesized by the following synthesis scheme.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 500mlの3つ口フラスコに、化合物X(2):6.0g、脱水ヘキサン:200ml(和光純薬工業社製)を添加した。次にドライアイス-メタノールバスで-70℃以下まで冷却後、ジクロロフェニルホスフィン:2.58ml(和光純薬社製)のヘキサン:25ml溶液を20分間かけて滴下した。滴下後、反応液を室温まで昇温し、10時間反応させた。
 反応液に飽和塩化アンモニウム水溶液:5mlを加えクエンチ後、水層を除去し、濃縮した。次いで残渣をヘキサン50mlで4回抽出し、このヘキサン抽出溶液を180ml程度、ヘキサンを濃縮除去し、-30℃で再結晶し、本発明の有機金属化合物I(8):1.9gを得た。
Compound X (2): 6.0 g and dehydrated hexane: 200 ml (manufactured by Wako Pure Chemical Industries, Ltd.) were added to a 500 ml three-necked flask. Next, after cooling to −70 ° C. or less with a dry ice-methanol bath, a solution of dichlorophenylphosphine: 2.58 ml of hexane: 25 ml was added dropwise over 20 minutes. After dropping, the reaction solution was warmed to room temperature and reacted for 10 hours.
After quenching by adding 5 ml of saturated aqueous ammonium chloride solution to the reaction solution, the aqueous layer was removed and concentrated. Next, the residue was extracted four times with 50 ml of hexane, about 180 ml of this hexane extract solution was concentrated and removed, and recrystallized at −30 ° C. to obtain 1.9 g of the organometallic compound I (8) of the present invention. .
<その他の有機金属化合物の合成>
 上記で合成した本発明の有機金属化合物と同様の合成法により、有機金属化合物I(1)、(9)~(12)および(14)を合成した。
<Synthesis of other organometallic compounds>
Organometallic compounds I (1), (9) to (12) and (14) were synthesized by the same synthesis method as the organometallic compound of the present invention synthesized above.
<実施例1・比較例1>
・電解液の調製
 1M LiPFのエチレンカーボネート/エチルメチルカーボネート(体積比1対2)電解液に、下記表1に示す有機金属化合物を、表1中に記載の量加え、試験用電解液を調製した。
<Example 1 and Comparative Example 1>
-Preparation of electrolyte solution To 1M LiPF 6 ethylene carbonate / ethyl methyl carbonate (volume ratio 1 to 2) electrolyte solution, an organometallic compound shown in Table 1 below was added in the amount shown in Table 1, and a test electrolyte solution was added. Prepared.
・2032型コイン電池の作製
 正極を、活物質:マンガン酸リチウム(LiMn) 85質量%、導電助剤:カーボンブラック 7質量%、バインダー:PVDF(ポリフッ化ビニリデン) 8質量%の組成物で作製した。
 負極を、活物質:Gr(天然黒鉛) 92質量%、バインダー:PVDF 8質量%の組成物で作製した。
 セパレータは、厚みが25μmのポリプロピレン製のセパレータを用意した。
 上記の正負極、セパレータを使用し、調製した各試験用電解液を用いて、2032型コイン電池を作製した。
-Preparation of 2032 type coin battery The positive electrode is composed of 85% by mass of active material: lithium manganate (LiMn 2 O 4 ), conductive auxiliary agent: 7% by mass of carbon black, binder: 8% by mass of PVDF (polyvinylidene fluoride). It was made with.
A negative electrode was produced with a composition of 92% by mass of active material: Gr (natural graphite) and 8% by mass of binder: PVDF.
As the separator, a polypropylene separator having a thickness of 25 μm was prepared.
Using the positive and negative electrodes and separators described above, each test electrolyte solution prepared was used to produce a 2032 type coin battery.
 作製した各電池について、300サイクル後の容量維持率を下記のようにして評価した。 About each produced battery, the capacity maintenance rate after 300 cycles was evaluated as follows.
<容量維持率-300サイクル>
 作製した各2032型コイン電池を用いて、60℃の恒温槽中、4.0mAで電池電圧が4.15Vになるまで1Cの定電流充電を行った後、4.15Vの定電圧において電流値が0.02mAになるまで継続した。ただし、充電時間の上限を2時間とした。次に4.0mAで電池電圧が2.75Vになるまで1Cの定電流放電を行った。これを1サイクルとした。これを300サイクルに達するまで繰り返し、300サイクル目の放電容量(mAh)を測定した。
 ここで1Cとは電池の容量を1時間で放電または充電する電流値を表す。
 得られた値をもとに、下記式に基づいて、放電容量維持率(%)を算出した。
 なお、表1において、放電容量維持率を容量維持率と省略して記載した。
<Capacity maintenance rate-300 cycles>
Each of the produced 2032 type coin batteries was charged in a constant current of 1 C in a constant temperature bath at 60 ° C. until the battery voltage reached 4.05 V at 4.0 mA, and then the current value at a constant voltage of 4.15 V. Until 0.02 mA. However, the upper limit of the charging time was 2 hours. Next, constant current discharge at 1 C was performed until the battery voltage became 2.75 V at 4.0 mA. This was one cycle. This was repeated until 300 cycles were reached, and the discharge capacity (mAh) at the 300th cycle was measured.
Here, 1C represents a current value for discharging or charging the battery capacity in one hour.
Based on the obtained value, the discharge capacity retention rate (%) was calculated based on the following formula.
In Table 1, the discharge capacity maintenance rate is abbreviated as the capacity maintenance rate.
  放電容量維持率(%)=
     (300サイクル目の放電容量/1サイクル目の放電容量)×100
Discharge capacity maintenance rate (%) =
(Discharge capacity at the 300th cycle / discharge capacity at the first cycle) × 100
 得られた結果を、下記表1に示す。
 なお、下記表1における有機金属化合物は、明細書中に記載した式(I)で表される有機金属化合物の具体例を示す。
The obtained results are shown in Table 1 below.
In addition, the organometallic compound in following Table 1 shows the specific example of the organometallic compound represented by Formula (I) described in the specification.
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
 上記表1から、本発明の2032型コイン電池(101~114)は、放電容量維持率が76~95%であり、本発明の有機金属化合物を使用することで、有機金属化合物を使用しない比較例の2032型コイン電池(c01)よりも放電容量維持率が11%以上も向上している。
 一方、比較例のフェロセンを使用する2032型コイン電池(c02)では、レドックスシャトルにより自己放電が進行し、容量維持率が低下していると推定する。フェロセンは駆動電圧の低い電池では正極上で皮膜形成できず、容量維持率が低下したものと思われる。
 この結果、本発明により、リチウムイオン二次電池において、高いサイクル特性を達成できることがわかる。
From Table 1 above, the 2032 type coin battery (101 to 114) of the present invention has a discharge capacity maintenance rate of 76 to 95%. By using the organometallic compound of the present invention, the comparison without using the organometallic compound is performed. Compared to the 2032 type coin battery (c01) of the example, the discharge capacity retention rate is improved by 11% or more.
On the other hand, in the 2032 type coin battery (c02) using the ferrocene of the comparative example, it is presumed that the self-discharge progresses due to the redox shuttle and the capacity maintenance rate is lowered. It seems that ferrocene cannot form a film on the positive electrode in a battery having a low driving voltage, and the capacity retention rate is lowered.
As a result, it can be seen that the present invention can achieve high cycle characteristics in the lithium ion secondary battery.
<実施例2・比較例2>
 電解液の調製
 1.1M LiPFのエチレンカーボネート/エチルメチルカーボネート(体積比1対2)電解液に、有機金属化合物、ホスファゼン化合物を表2中に示した量となるように添加し、更にビニレンカーボネートを全電解液に対し1質量%、リチウムビスオキサレートボラートを全電解液に対し1質量%となるように添加して各試験用の電解液を調製した。調製した電解液の25℃における粘度は全て5mPa・s以下、カールフィッシャー法(JISK0113)により測定した水分量は20ppm以下であった。
<Example 2 and Comparative Example 2>
Preparation of electrolyte solution 1.1M LiPF 6 ethylene carbonate / ethyl methyl carbonate (volume ratio 1 to 2) To the electrolyte solution, an organometallic compound and a phosphazene compound were added in amounts shown in Table 2, and further vinylene was added. An electrolytic solution for each test was prepared by adding 1% by mass of carbonate to the total electrolytic solution and 1% by mass of lithium bisoxalate borate with respect to the total electrolytic solution. All the prepared electrolyte solutions had a viscosity at 25 ° C. of 5 mPa · s or less, and the water content measured by the Karl Fischer method (JIS K0113) was 20 ppm or less.
<難燃性>
 調製した電解液の難燃性を大気下25℃において以下のように評価した。
 UL-94HB水平燃焼試験を参考に、以下の試験条件にて評価を実施した。幅13mm、長さ110mmのガラス濾紙(ADVANTEC GA-100)を切り出し、調製した電解液1.5mlをガラス濾紙上に満遍なく滴下した。十分にガラス濾紙内に電解液が染み込んだ後、余剰の電解液を拭い、短軸が垂直になるように吊るした。全炎長2cmに調整したブタンガスバーナーの内炎がガラス濾紙の先端に触れる位置で3秒着火し、炎を離した後の挙動(着火の有無、着火後の消炎、着火点から他方の端まで炎が到達する時間)から、以下のように評価した。添加剤を添加していない、試験No.C201の電解液を用いたガラス濾紙は、着火点から他方の端まで炎が到達する時間が5秒未満であった。
<Flame retardance>
The flame retardancy of the prepared electrolyte was evaluated as follows at 25 ° C. in the atmosphere.
The evaluation was carried out under the following test conditions with reference to the UL-94HB horizontal combustion test. A glass filter paper (ADVANTEC GA-100) having a width of 13 mm and a length of 110 mm was cut out, and 1.5 ml of the prepared electrolyte was evenly dropped onto the glass filter paper. After the electrolyte solution was sufficiently infiltrated into the glass filter paper, the excess electrolyte solution was wiped off and suspended so that the minor axis was vertical. The butane gas burner adjusted to 2 cm in total flame length ignites for 3 seconds at the position where it touches the tip of the glass filter paper, and the behavior after releasing the flame (ignition / non-ignition, extinguishing after ignition, flame from ignition point to the other end) Was evaluated as follows. Test No. with no additive added. In the glass filter paper using the electrolytic solution of C201, the time for the flame to reach from the ignition point to the other end was less than 5 seconds.
[評価基準]
 A:着火が見られず、不燃であった。
 B:着火したがすぐに消炎した。
 C:着火したが、着火点から他方の端まで炎が到達する前に消炎した。
 D:着火点から他方の端まで炎が到達する時間が10秒以上で、燃焼抑制効果が見られるが、不燃、消炎には至らないレベル。
 E:着火点から他方の端まで炎が到達する時間が10秒未満で、燃焼抑制効果なし。
[Evaluation criteria]
A: Ignition was not seen and it was nonflammable.
B: Fire was ignited but extinguished immediately.
C: Fired, but extinguished before the flame reached from the ignition point to the other end.
D: The time for the flame to reach from the ignition point to the other end is 10 seconds or more, and the combustion suppressing effect is seen, but the level does not lead to non-flammability and extinction.
E: The time for the flame to reach from the ignition point to the other end is less than 10 seconds, and there is no combustion suppression effect.
・2032型コイン電池の作製
 正極を、活物質:ニッケルマンガンコバルト酸リチウム(LiNi1/3Mn1/3Co1/3) 95質量%、導電助剤:カーボンブラック 2質量%、バインダー:PVDF(ポリフッ化ビニリデン) 3質量%の組成物で作製した。
 負極を、活物質:黒鉛 97質量%、バインダー:スチレンブタジエンゴム(SBR) 2質量%、増粘剤:カルボキシメチルセルロースナトリウム(CMC) 1質量%の組成物で作製した。
 セパレータは、厚みが25μmのポリプロピレン製のセパレータを用意した。
 上記の正負極、セパレータを使用し、調製した各試験用電解液を用いて、2032型コイン電池を作製した。
-Production of 2032 type coin battery The positive electrode is made of active material: lithium nickel manganese cobaltate (LiNi 1/3 Mn 1/3 Co 1/3 O 2 ) 95% by mass, conductive auxiliary agent: carbon black 2% by mass, binder: PVDF (polyvinylidene fluoride) was prepared with a composition of 3% by mass.
A negative electrode was prepared with a composition of 97% by mass of active material: graphite, 2% by mass of binder: styrene butadiene rubber (SBR), and 1% by mass of thickener: sodium carboxymethylcellulose (CMC).
As the separator, a polypropylene separator having a thickness of 25 μm was prepared.
Using the positive and negative electrodes and separators described above, each test electrolyte solution prepared was used to produce a 2032 type coin battery.
<電池の初期化>
 上記で作製した2032型コイン電池を、30℃の恒温槽中、電池電圧が4.3Vになるまで0.2C定電流充電した後、電池電圧が4.3V定電圧において電流値が0.12mAになるまで充電を行った。ただし、その時間の上限を2時間とした。次に30℃の恒温槽中、電池電圧が2.75Vになるまで0.2C定電流放電を行った。この操作を2回繰り返した。上記の方法で初期化した2032型電池を用いて下記項目の評価を行った。結果を表2に示す。
 ここで、1Cとは電池の容量を1時間で放電または充電する電流値を表し、0.2Cはその0.2倍、0.5Cはその0.5倍、2Cはその2倍の電流値を表す。
<Battery initialization>
The 2032 type coin battery produced above was charged at a constant current of 0.2 C in a thermostat bath at 30 ° C. until the battery voltage reached 4.3 V, and then the current value was 0.12 mA at a constant voltage of 4.3 V. The battery was charged until However, the upper limit of the time was 2 hours. Next, 0.2 C constant current discharge was performed until the battery voltage became 2.75 V in a 30 ° C. constant temperature bath. This operation was repeated twice. The following items were evaluated using the 2032 type battery initialized by the above method. The results are shown in Table 2.
Here, 1C represents a current value for discharging or charging the battery capacity in one hour, 0.2C is 0.2 times, 0.5C is 0.5 times, and 2C is twice the current value. Represents.
(初回放電容量)
 上記の方法で初期化した電池を、30℃の恒温槽中、電池電圧が4.35Vになるまで0.7C定電流充電した後、電池電圧4.35Vの定電圧において電流値が0.03Cになるまで充電を行った。ただし、その時間の上限を2時間とした。この電池を30℃の恒温槽中、電池電圧が2.75Vになるまで0.5C定電流放電を行い、30℃、0.5Cでの初回放電容量(W)を測定した。
(First discharge capacity)
The battery initialized by the above method was charged at a constant current of 0.7 C in a thermostatic chamber at 30 ° C. until the battery voltage reached 4.35 V, and then the current value at a constant voltage of 4.35 V was 0.03 C. The battery was charged until However, the upper limit of the time was 2 hours. This battery was subjected to 0.5C constant current discharge in a constant temperature bath at 30 ° C. until the battery voltage reached 2.75V, and the initial discharge capacity (W 1 ) at 30 ° C. and 0.5C was measured.
(サイクル試験)
 放電容量(W)を測定した電池を、45℃の恒温槽中、電池電圧が4.35Vになるまで0.7C定電流充電した後、電池電圧4.35Vの定電圧において電流値が0.03Cになるまで充電を行った。ただし、その時間の上限を2時間とした。この電池を45℃の恒温槽中、電池電圧が2.75Vになるまで0.5C定電流放電を行うサイクルを300回繰り返した。
(Cycle test)
The battery whose discharge capacity (W 1 ) was measured was charged at a constant current of 0.7 C in a constant temperature bath at 45 ° C. until the battery voltage reached 4.35 V, and then the current value was 0 at a constant voltage of 4.35 V. The battery was charged until it reached 0.03C. However, the upper limit of the time was 2 hours. A cycle of performing 0.5C constant current discharge in a 45 ° C. thermostat until the battery voltage reached 2.75 V was repeated 300 times.
(サイクル試験後の放電容量)
 サイクル試験後の電池を、初回の放電容量(W)の計測と同じ条件で充放電を行い、サイクル試験後の放電容量(W300)を測定した。
(Discharge capacity after cycle test)
The battery after the cycle test was charged and discharged under the same conditions as those for the initial discharge capacity (W 1 ), and the discharge capacity after the cycle test (W 300 ) was measured.
<サイクル試験後の放電容量維持率>
 得られた結果から、下記式により、サイクル試験後の放電容量維持率を算出した。
<Discharge capacity maintenance rate after cycle test>
From the obtained results, the discharge capacity retention rate after the cycle test was calculated by the following formula.
 サイクル試験後の放電容量維持率=
        サイクル試験後の放電容量(W300)/初回放電容量(W
Discharge capacity maintenance rate after cycle test =
Discharge capacity after cycle test (W 300 ) / initial discharge capacity (W 1 )
 得られた放電容量維持率を以下のように評価した。値が大きいほど厳しい試験条件においても容量が維持されており、良好な結果である。 The obtained discharge capacity maintenance rate was evaluated as follows. The larger the value, the higher the capacity is maintained even under severe test conditions.
[評価基準]
 A:0.8以上
 B:0.7以上0.8未満
 C:0.6以上0.7未満
 D:0.5以上0.6未満
 E:0.3以上0.5未満
 F:0.3未満
[Evaluation criteria]
A: 0.8 or more B: 0.7 or more and less than 0.8 C: 0.6 or more and less than 0.7 D: 0.5 or more and less than 0.6 E: 0.3 or more and less than 0.5 F: 0. Less than 3
 得られた結果を、下記表2に示す。
 なお、以降の表2~5において、有機金属化合物およびホスファゼン化合物は、明細書中に記載した式(I)で表される有機金属化合物、およびホスファゼン化合物の具体例を示す。また、サイクル試験後の放電容量維持率は、放電容量維持率と省略して記載した。
The obtained results are shown in Table 2 below.
In Tables 2 to 5 below, the organometallic compound and the phosphazene compound are specific examples of the organometallic compound represented by the formula (I) and the phosphazene compound described in the specification. Further, the discharge capacity maintenance rate after the cycle test is abbreviated as “discharge capacity maintenance rate”.
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
<実施例3・比較例3>
 電解液を1M LiPFのエチレンカーボネート/エチルメチルカーボネート/ジメチルカーボネート(体積比1対1対1)、正極活物質をコバルト酸リチウム(LiCoO)、リチウムビスオキサレートボラートをスクシノニトリルに変更し、下記表3に示す有機金属化合物およびホスファゼン化合物を、表3中に記載の量を加えた以外は、実施例2・比較例2と同じ操作を実施した。その結果を表3に示す。
<Example 3 and Comparative Example 3>
The electrolyte was changed to 1M LiPF 6 ethylene carbonate / ethyl methyl carbonate / dimethyl carbonate (volume ratio 1: 1 to 1: 1), the positive electrode active material was changed to lithium cobaltate (LiCoO 2 ), and the lithium bisoxalate borate was changed to succinonitrile. Then, the same operations as in Example 2 and Comparative Example 2 were carried out except that the organometallic compounds and phosphazene compounds shown in Table 3 below were added in the amounts shown in Table 3. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
<実施例4・比較例4>
 電解液を1.1M LiPFのエチレンカーボネート/ジメチルカーボネート(体積比1対2)に変更し、下記表4に示す有機金属化合物およびホスファゼン化合物を、表4中に記載の量を加えた以外は、実施例2・比較例2と同じ操作を実施した。その結果を表4に示す。
<Example 4 and Comparative Example 4>
The electrolyte solution was changed to 1.1M LiPF 6 ethylene carbonate / dimethyl carbonate (volume ratio 1 to 2), and the organometallic compounds and phosphazene compounds shown in Table 4 below were added in the amounts shown in Table 4. The same operations as in Example 2 and Comparative Example 2 were performed. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
<実施例5・比較例5>
 電解液を0.9M LiBFのエチレンカーボネート/ジエチルカーボネート(体積比1対1)、正極活物質をニッケルコバルトアルミニウム酸リチウム(LiNi0.8Co0.15Al0.05)、ビニレンカーボネートをフルオロエチレンカーボネートに変更し、下記表5に示す有機金属化合物およびホスファゼン化合物を、表5中に記載の量を加えた以外は、実施例2・比較例2と同じ操作を実施した。その結果を表5に示す。
<Example 5 and Comparative Example 5>
The electrolyte is 0.9M LiBF 4 ethylene carbonate / diethyl carbonate (volume ratio 1: 1), the positive electrode active material is nickel cobalt lithium aluminumate (LiNi 0.8 Co 0.15 Al 0.05 O 2 ), vinylene carbonate Was changed to fluoroethylene carbonate, and the same operations as in Example 2 and Comparative Example 2 were carried out except that the organometallic compounds and phosphazene compounds shown in Table 5 below were added in the amounts shown in Table 5. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
 上記表2~5の結果から、本発明の有機金属化合物を使用したリチウムイオン二次電池は、良好な放電容量維持率を示す。また、式(A1)または(A2)で表されるホスファゼン化合物を併用することで、高い難燃性を実現しながら、厳しい使用条件においても高い放電容量維持率を達成できることが分かる。 From the results shown in Tables 2 to 5, the lithium ion secondary battery using the organometallic compound of the present invention shows a good discharge capacity retention rate. It can also be seen that by using the phosphazene compound represented by the formula (A1) or (A2) in combination, a high discharge capacity retention rate can be achieved even under severe use conditions while realizing high flame retardancy.
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。 While this invention has been described in conjunction with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified and are contrary to the spirit and scope of the invention as set forth in the appended claims. I think it should be interpreted widely.
 本願は、2014年8月22日に日本国で特許出願された特願2014-169910並びに2015年2月25日に日本国で特許出願された特願2015-034908に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。 This application claims priority based on Japanese Patent Application No. 2014-169910 filed in Japan on August 22, 2014 and Japanese Patent Application No. 2015-034908 filed on February 25, 2015 in Japan. Which is hereby incorporated by reference herein as part of its description.
C 正極(正極合材)
1 正極導電材(集電体)
2 正極活物質層
A 負極(負極合材)
3 負極導電材(集電体)
4 負極活物質層
5 非水電解液
6 動作手段
7 配線
9  セパレータ
10 リチウムイオン二次電池
12 セパレータ
14 正極シート
16 負極シート
18 負極を兼ねる外装缶
20 絶縁板
22 封口板
24 正極集電
26 ガスケット
28 圧力感応弁体
30 電流遮断素子
100 有底筒型形状リチウム二次電池
C positive electrode (positive electrode composite)
1 Positive electrode conductive material (current collector)
2 Positive electrode active material layer A Negative electrode (negative electrode composite)
3 Negative electrode conductive material (current collector)
4 Negative electrode active material layer 5 Nonaqueous electrolyte 6 Operating means 7 Wiring 9 Separator 10 Lithium ion secondary battery 12 Separator 14 Positive electrode sheet 16 Negative electrode sheet 18 Exterior can 20 also serving as negative electrode Insulating plate 22 Sealing plate 24 Positive electrode current collector 26 Gasket 28 Pressure sensitive valve body 30 Current interrupting element 100 Bottomed cylindrical shape lithium secondary battery

Claims (12)

  1.  下記式(I)で表される有機金属化合物を含有し、該有機金属化合物の含有量が0質量%を超え1質量%以下である非水二次電池用電解液。
    Figure JPOXMLDOC01-appb-C000001
     式(I)において、Mは金属元素を表す。
     RおよびRは各々独立に置換基を表す。RおよびRは、各々において、複数存在する場合、複数のR同士もしくは複数のR同士が互いに結合して脂肪族性または芳香族性の環を形成してもよい。XおよびYは各々独立に水素原子または置換基を表す。XとY、複数存在する場合のX同士もしくはY同士が互いに結合して環を形成してもよい。Lは連結基を表す。
     aおよびbは各々独立に0~4の整数を表す。
     mおよびnは、0≦m+n≦3を満たす整数を表す。
    The electrolyte solution for non-aqueous secondary batteries containing the organometallic compound represented by following formula (I), and content of this organometallic compound is more than 0 mass% and 1 mass% or less.
    Figure JPOXMLDOC01-appb-C000001
    In the formula (I), M represents a metal element.
    R 1 and R 2 each independently represents a substituent. When there are a plurality of R 1 and R 2 , a plurality of R 1 or a plurality of R 2 may be bonded to each other to form an aliphatic or aromatic ring. X and Y each independently represent a hydrogen atom or a substituent. X and Y, or a plurality of Xs or Ys in the case where a plurality exist, may be bonded to each other to form a ring. L represents a linking group.
    a and b each independently represents an integer of 0 to 4.
    m and n represent integers satisfying 0 ≦ m + n ≦ 3.
  2.  前記Lが、炭素数1~20の炭化水素基、ハロゲン原子を含む基、ケイ素原子を含む基、窒素原子を含む基、リン原子を含む基、チタン原子を含む基またはジルコニウム原子を含む基である請求項1に記載の非水二次電池用電解液。 L is a hydrocarbon group having 1 to 20 carbon atoms, a group containing a halogen atom, a group containing a silicon atom, a group containing a nitrogen atom, a group containing a phosphorus atom, a group containing a titanium atom, or a group containing a zirconium atom The electrolyte solution for non-aqueous secondary batteries according to claim 1.
  3.  前記RおよびRが、各々独立に、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールオキシ基、アミノ基、アミド結合を含む基、エステル結合を含む基、シアノ基、カルボキシ基、カルボニル結合を含む基、スルホニル結合を含む基、ホスフィノ基またはハロゲン原子である請求項1または2に記載の非水二次電池用電解液。 R 1 and R 2 are each independently an alkyl group, alkenyl group, alkynyl group, alkoxy group, alkylthio group, aryloxy group, amino group, group containing an amide bond, group containing an ester bond, cyano group, carboxy group The electrolyte solution for a non-aqueous secondary battery according to claim 1 or 2, which is a group, a group containing a carbonyl bond, a group containing a sulfonyl bond, a phosphino group or a halogen atom.
  4.  前記XおよびYが、各々独立に水素原子、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アリールオキシ基、アルキルアミノ基、シリルアミノ基、スルホ基、イソシアネート基、イソチオシアネート基、スルファニル基、ホスフィニル基、カルボニル結合を含む基、ハロゲン原子、アリール基またはヘテロアリール基である請求項1~3のいずれか1項に記載の非水二次電池用電解液。 X and Y are each independently a hydrogen atom, alkyl group, alkenyl group, alkynyl group, alkoxy group, aryloxy group, alkylamino group, silylamino group, sulfo group, isocyanate group, isothiocyanate group, sulfanyl group, phosphinyl group. The electrolyte solution for a nonaqueous secondary battery according to any one of claims 1 to 3, which is a group containing a carbonyl bond, a halogen atom, an aryl group, or a heteroaryl group.
  5.  前記Mが、第4族~第8族の遷移元素である請求項1~4のいずれか1項に記載の非水二次電池用電解液。 The electrolyte for a non-aqueous secondary battery according to any one of claims 1 to 4, wherein the M is a transition element of Group 4 to Group 8.
  6.  前記Lが、下記式(i)~(viii)で表される基のいずれか1つである請求項1~5のいずれか1項に記載の非水二次電池用電解液。
    Figure JPOXMLDOC01-appb-C000002
     式(i)~(viii)において、Rは、水素原子、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アリールオキシ基、アルキルアミノ基、シリルアミノ基、スルホ基、イソシアネート基、イソチオシアネート基、スルファニル基、ホスフィニル基、カルボニル結合を含む基、ハロゲン原子、アリール基またはヘテロアリール基を表す。連結基中にRが複数存在するとき、複数のRは各々異なっていても同じであってもよい。また、複数のRが互いに結合して環を形成してもよい。
    The electrolyte for a non-aqueous secondary battery according to any one of claims 1 to 5, wherein L is any one of groups represented by the following formulas (i) to (viii).
    Figure JPOXMLDOC01-appb-C000002
    In the formulas (i) to (viii), R 3 represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, an aryloxy group, an alkylamino group, a silylamino group, a sulfo group, an isocyanate group, an isothiocyanate group, It represents a sulfanyl group, a phosphinyl group, a group containing a carbonyl bond, a halogen atom, an aryl group or a heteroaryl group. When R 3 is more present in the linking group, the plurality of R 3 may be the same even if different from each other. A plurality of R 3 may be bonded to each other to form a ring.
  7.  さらに、ホスファゼン化合物を少なくとも1種含有する請求項1~6のいずれか1項に記載の非水二次電池用電解液。 The electrolyte solution for a non-aqueous secondary battery according to any one of claims 1 to 6, further comprising at least one phosphazene compound.
  8.  前記ホスファゼン化合物が、下記式(A1)または(A2)で表される請求項7に記載の非水二次電池用電解液。
    Figure JPOXMLDOC01-appb-C000003
     式(A1)および(A2)において、Ra11~Ra16およびRa21~Ra28はそれぞれ独立に1価の置換基を表す。近接のRa11~Ra16およびRa21~Ra28は置換基同士が結合して環を形成していてもよい。
    The electrolyte solution for a non-aqueous secondary battery according to claim 7, wherein the phosphazene compound is represented by the following formula (A1) or (A2).
    Figure JPOXMLDOC01-appb-C000003
    In the formulas (A1) and (A2), Ra 11 to Ra 16 and Ra 21 to Ra 28 each independently represent a monovalent substituent. The adjacent Ra 11 to Ra 16 and Ra 21 to Ra 28 may be bonded to each other to form a ring.
  9.  前記式(A1)で表される化合物が、下記式(A1-1)で表されるフッ素化ホスファゼン化合物である請求項8に記載の非水二次電池用電解液。
    Figure JPOXMLDOC01-appb-C000004
     式(A1-1)において、Ra41はアルコキシ基またはジアルキルアミノ基を表す。
    The electrolyte solution for a non-aqueous secondary battery according to claim 8, wherein the compound represented by the formula (A1) is a fluorinated phosphazene compound represented by the following formula (A1-1).
    Figure JPOXMLDOC01-appb-C000004
    In the formula (A1-1), Ra 41 represents an alkoxy group or a dialkylamino group.
  10.  前記Ra41がジアルキルアミノ基である請求項9に記載の非水二次電池用電解液。 The electrolyte for a non-aqueous secondary battery according to claim 9, wherein the Ra 41 is a dialkylamino group.
  11.  正極、負極および請求項1~10のいずれか1項に記載の非水二次電池用電解液を具備する非水二次電池。 A nonaqueous secondary battery comprising the positive electrode, the negative electrode, and the electrolyte for a nonaqueous secondary battery according to any one of claims 1 to 10.
  12.  下記式(I)で表される、非水二次電池用の電解液に用いられる添加剤。
    Figure JPOXMLDOC01-appb-C000005
     式(I)において、Mは金属元素を表す。
     RおよびRは各々独立に置換基を表す。RおよびRは、各々において、複数存在する場合、複数のR同士もしくは複数のR同士が互いに結合して脂肪族性または芳香族性の環を形成してもよい。XおよびYは各々独立に水素原子または置換基を表す。XとY、複数存在する場合のX同士もしくはY同士が互いに結合して環を形成してもよい。Lは連結基を表す。
     aおよびbは各々独立に0~4の整数を表す。
     mおよびnは、0≦m+n≦3を満たす整数を表す。
    The additive used for the electrolyte solution for non-aqueous secondary batteries represented by following formula (I).
    Figure JPOXMLDOC01-appb-C000005
    In the formula (I), M represents a metal element.
    R 1 and R 2 each independently represents a substituent. When there are a plurality of R 1 and R 2 , a plurality of R 1 or a plurality of R 2 may be bonded to each other to form an aliphatic or aromatic ring. X and Y each independently represent a hydrogen atom or a substituent. X and Y, or a plurality of Xs or Ys in the case where a plurality exist, may be bonded to each other to form a ring. L represents a linking group.
    a and b each independently represents an integer of 0 to 4.
    m and n represent integers satisfying 0 ≦ m + n ≦ 3.
PCT/JP2015/069655 2014-08-22 2015-07-08 Electrolyte solution for nonaqueous secondary batteries, nonaqueous secondary battery, and additive used for electrolyte solution for nonaqueous secondary batteries WO2016027583A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016543861A JP6376709B2 (en) 2014-08-22 2015-07-08 Non-aqueous secondary battery electrolyte and non-aqueous secondary battery, and additives used therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-169910 2014-08-22
JP2014169910 2014-08-22
JP2015-034908 2015-02-25
JP2015034908 2015-02-25

Publications (1)

Publication Number Publication Date
WO2016027583A1 true WO2016027583A1 (en) 2016-02-25

Family

ID=55350533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069655 WO2016027583A1 (en) 2014-08-22 2015-07-08 Electrolyte solution for nonaqueous secondary batteries, nonaqueous secondary battery, and additive used for electrolyte solution for nonaqueous secondary batteries

Country Status (2)

Country Link
JP (1) JP6376709B2 (en)
WO (1) WO2016027583A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180005105A (en) * 2016-07-05 2018-01-15 광동 광산 뉴 머터리얼즈 씨오., 엘티디. Fire retardant engineering plastics and the manufacturing method thereof
WO2018016519A1 (en) * 2016-07-20 2018-01-25 富士フイルム株式会社 Electrolyte solution for non-aqueous secondary battery, and non-aqueous secondary battery
US11367895B1 (en) 2021-07-23 2022-06-21 Lyten, Inc. Solid-state electrolyte for lithium-sulfur batteries
US11404692B1 (en) 2021-07-23 2022-08-02 Lyten, Inc. Lithium-sulfur battery cathode formed from multiple carbonaceous regions
US11600876B2 (en) 2021-07-23 2023-03-07 Lyten, Inc. Wound cylindrical lithium-sulfur battery including electrically-conductive carbonaceous materials
US11670826B2 (en) 2021-07-23 2023-06-06 Lyten, Inc. Length-wise welded electrodes incorporated in cylindrical cell format lithium-sulfur batteries

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013142994A1 (en) * 2012-03-30 2013-10-03 Valorisation-Recherche, Limited Partnership Redox-active ionic liquids
WO2013172383A1 (en) * 2012-05-16 2013-11-21 富士フイルム株式会社 Nonaqueous secondary battery and nonaqueous-secondary-battery electrolytic solution

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009238945A (en) * 2008-03-26 2009-10-15 Kaneka Corp Energy storage device
CN101546652B (en) * 2009-05-06 2011-11-30 北京科技大学 Method for improving electric capacity of anode of electrochemical capacitor of organic system
WO2013040100A1 (en) * 2011-09-13 2013-03-21 Wildcat Discovery Technologies, Inc. Electrolyte materials for batteries and methods for use

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013142994A1 (en) * 2012-03-30 2013-10-03 Valorisation-Recherche, Limited Partnership Redox-active ionic liquids
WO2013172383A1 (en) * 2012-05-16 2013-11-21 富士フイルム株式会社 Nonaqueous secondary battery and nonaqueous-secondary-battery electrolytic solution

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180005105A (en) * 2016-07-05 2018-01-15 광동 광산 뉴 머터리얼즈 씨오., 엘티디. Fire retardant engineering plastics and the manufacturing method thereof
KR101976927B1 (en) 2016-07-05 2019-05-09 광동 광산 뉴 머터리얼즈 씨오., 엘티디. Fire retardant engineering plastics and the manufacturing method thereof
WO2018016519A1 (en) * 2016-07-20 2018-01-25 富士フイルム株式会社 Electrolyte solution for non-aqueous secondary battery, and non-aqueous secondary battery
JPWO2018016519A1 (en) * 2016-07-20 2019-04-04 富士フイルム株式会社 Non-aqueous secondary battery electrolyte and non-aqueous secondary battery
US10923769B2 (en) 2016-07-20 2021-02-16 Fujifilm Corporation Electrolytic solution for non-aqueous secondary battery and non-aqueous secondary battery
US11367895B1 (en) 2021-07-23 2022-06-21 Lyten, Inc. Solid-state electrolyte for lithium-sulfur batteries
US11404692B1 (en) 2021-07-23 2022-08-02 Lyten, Inc. Lithium-sulfur battery cathode formed from multiple carbonaceous regions
US11600876B2 (en) 2021-07-23 2023-03-07 Lyten, Inc. Wound cylindrical lithium-sulfur battery including electrically-conductive carbonaceous materials
US11670826B2 (en) 2021-07-23 2023-06-06 Lyten, Inc. Length-wise welded electrodes incorporated in cylindrical cell format lithium-sulfur batteries

Also Published As

Publication number Publication date
JP6376709B2 (en) 2018-08-22
JPWO2016027583A1 (en) 2017-06-01

Similar Documents

Publication Publication Date Title
JP5992345B2 (en) Non-aqueous secondary battery and electrolyte for non-aqueous secondary battery
JP2014127354A (en) Electrolyte for nonaqueous secondary battery, nonaqueous secondary battery, and additive for electrolyte
JP6376709B2 (en) Non-aqueous secondary battery electrolyte and non-aqueous secondary battery, and additives used therefor
JP6071600B2 (en) Nonaqueous secondary battery electrolyte, nonaqueous secondary battery, electrolyte additive
JP6154145B2 (en) Non-aqueous secondary battery electrolyte and non-aqueous secondary battery
JP6047458B2 (en) Non-aqueous secondary battery
JP6238411B2 (en) Non-aqueous secondary battery electrolyte and non-aqueous secondary battery
WO2015016187A1 (en) Nonaqueous-secondary-battery electrolyte solution and nonaqueous secondary battery
WO2014046283A1 (en) Electrolytic solution for non-aqueous secondary battery, and non-aqueous secondary battery
WO2015016188A1 (en) Nonaqueous electrolyte solution and nonaqueous secondary battery
WO2015016189A1 (en) Nonaqueous-secondary-battery electrolyte solution and nonaqueous secondary battery
JP2015018667A (en) Electrolyte for nonaqueous secondary battery, nonaqueous secondary battery and additive for nonaqueous electrolyte
JP2014235986A (en) Electrolytic solution for nonaqueous secondary batteries, and nonaqueous secondary battery
JP6588965B2 (en) Electrolyte and non-aqueous secondary battery
JP5886160B2 (en) Non-aqueous secondary battery electrolyte, non-aqueous secondary battery electrolyte kit, and non-aqueous secondary battery
JP2016162523A (en) Electrolytic solution for nonaqueous secondary battery and nonaqueous secondary battery
WO2014157533A1 (en) Nonaqueous secondary battery and electrolyte solution for nonaqueous secondary batteries
WO2018135395A1 (en) Electrolytic solution for non-aqueous secondary batteries, non-aqueous secondary battery, and metal complex
JP2014063668A (en) Electrolyte for nonaqueous secondary battery and secondary battery
JP6391028B2 (en) Electrolyte, lithium ion battery and lithium ion capacitor
JPWO2018016444A1 (en) Non-aqueous secondary battery electrolyte and non-aqueous secondary battery
WO2014157534A1 (en) Electrolytic solution for non-aqueous secondary batteries, non-aqueous secondary battery, and non-aqueous electrolytic solution additive
WO2016006404A1 (en) Electrolyte solution for non-aqueous secondary battery and non-aqueous secondary battery, and additive for use in same
JP2014220053A (en) Nonaqueous secondary battery and electrolyte for nonaqueous secondary battery
WO2014156428A1 (en) Electrolyte solution for nonaqueous secondary batteries, and nonaqueous secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15832998

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016543861

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15832998

Country of ref document: EP

Kind code of ref document: A1