WO2014156428A1 - Electrolyte solution for nonaqueous secondary batteries, and nonaqueous secondary battery - Google Patents

Electrolyte solution for nonaqueous secondary batteries, and nonaqueous secondary battery Download PDF

Info

Publication number
WO2014156428A1
WO2014156428A1 PCT/JP2014/054475 JP2014054475W WO2014156428A1 WO 2014156428 A1 WO2014156428 A1 WO 2014156428A1 JP 2014054475 W JP2014054475 W JP 2014054475W WO 2014156428 A1 WO2014156428 A1 WO 2014156428A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
atom
secondary battery
carbon atoms
electrolyte solution
Prior art date
Application number
PCT/JP2014/054475
Other languages
French (fr)
Japanese (ja)
Inventor
智則 石野
児玉 邦彦
郁雄 木下
洋平 石地
稔彦 八幡
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2014156428A1 publication Critical patent/WO2014156428A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/578Devices or arrangements for the interruption of current in response to pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolyte for a non-aqueous secondary battery and a non-aqueous secondary battery.
  • lithium ion secondary batteries and lithium metal secondary batteries have had a problem of overcharging as an inherent solution. This leads to a situation such as overheating or short-circuiting of the electrode when the secondary battery is fully charged even if the secondary battery is fully charged. In particular, it is a problem peculiar to a lithium secondary battery using an organic electrolyte, and a sufficient response has been desired from the viewpoint of ensuring reliability in use.
  • an electrolyte containing an alkylbenzene derivative such as cyclohexylbenzene disclosed in Patent Documents 1 and 2 below is used in combination with a device that cuts off charging when the gas pressure inside the battery exceeds a predetermined pressure. Attempts have been made to improve safety during overcharge.
  • a conventional gas generation type overcharge inhibitor such as cyclohexylbenzene, reacts not only at the time of overcharge but also at the time of normal charge, and when charging and discharging are repeated, resistance increases and capacity deterioration is observed.
  • an object of the present invention is to provide an electrolyte for a non-aqueous secondary battery and a non-aqueous secondary battery that can achieve both high overcharge prevention properties and suppression of deterioration.
  • An electrolytic solution containing an electrolyte, an organic solvent, and a specific additive having a structure represented by the following functional group (A), 20 to 95% by volume of the organic solvent is composed of a primary chain carbonate compound,
  • An electrolyte for non-aqueous secondary batteries containing 0.5 to 10% by mass of a specific additive in the total electrolyte.
  • R 1 to R 3 each independently represents a hydrogen atom, a halogen atom, or a hydrocarbon group. At least two of R 1 to R 3 are hydrocarbon groups.
  • the hydrocarbon group is an oxygen atom or a nitrogen atom.
  • R 1 to R 3 are an alkyl group represented by the formula (Rb), and at least one of them is at least one of R b1 , R b2 and R b3 is a hydrogen atom, a hydrocarbon group, or (This is a group containing at least one atom selected from an oxygen atom, a nitrogen atom, and a sulfur atom. * Is a bond.)
  • Rb alkyl group represented by the formula (Rb)
  • R b1 , R b2 and R b3 is a hydrogen atom, a hydrocarbon group, or (This is a group containing at least one atom selected from an oxygen atom, a nitrogen atom, and a sulfur atom. * Is a bond.)
  • [3] The electrolyte solution for a non-aqueous secondary battery according to [1] or [2], wherein the number of functional groups (A) of the compound constituting the specific additive is two or more.
  • [X 1 is a linking group containing at least one atom selected from an oxygen atom, a nitrogen atom, and a sulfur atom.
  • R 1 ⁇ R 3 have the same meanings as R 1 ⁇ R 3 in formula (A).
  • [7] The electrolyte for a non-aqueous secondary battery according to any one of [1] to [6], wherein the specific additive is represented by the following formula (A1).
  • [N a is an integer of 1-6.
  • R a represents an organic group when na is 1, and represents a linking group when na is 2 or more.
  • R 1 ⁇ R 3 have the same meanings as R 1 ⁇ R 3 in formula (A).
  • the primary linear carbonate compound is diethyl carbonate (DEC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), or methyl n-propyl carbonate.
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • methyl n-propyl carbonate methyl n-propyl carbonate.
  • the electrolyte solution for non-aqueous secondary batteries as described.
  • a nonaqueous electrolyte secondary battery comprising the positive electrode, the negative electrode, and the electrolytic solution according to any one of [1] to [10].
  • the specific additive is a compound that generates gas when overcharged, and has an overcharge prevention device that cuts off the current when the internal pressure of the battery exceeds a predetermined pressure [11] to [13] The nonaqueous secondary battery according to any one of the above.
  • the electrolyte solution for a non-aqueous secondary battery of the present invention contains a specific additive, an electrolyte, and a specific organic solvent in specific amounts.
  • the specific additive of the present invention is decomposed by the oxidizing action in the electrolytic solution to generate gas.
  • the detailed reaction mechanism in this electrolyte solution includes an unclear point, it is estimated as follows.
  • the organic solvent component or the specific additive in the electrolytic solution may be decomposed to generate an acid (proton) in the system.
  • the proton can act on the carbonyl group in the functional group of formula (A).
  • electron transfer occurs in the functional group (A), and the component consisting of R 1 to R 3 at the end is dissociated.
  • the boiling point of the component is low, it is considered that it is released as a gas.
  • the specific additive of the present invention has one or more of the following functional groups (A) in the molecule.
  • R 1 to R 3 are each independently a hydrogen atom, a halogen atom or a hydrocarbon group (preferably having a carbon number of 1 to 22), and at least two of them are the above hydrocarbon groups (the carbon atom at the ⁇ -position carbon).
  • the hydrocarbon group may have a substituent Z containing at least one atom selected from an oxygen atom, a nitrogen atom, a sulfur atom, and a halogen atom.
  • hydrocarbon group examples include alkyl groups (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 4 carbon atoms), and alkenyl groups (preferably having 2 to 12 carbon atoms, more preferably Is an alkynyl group (preferably 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms, particularly preferably 2 to 4 carbon atoms), a cycloalkyl group (Preferably 3 to 12 carbon atoms, more preferably 3 to 6 carbon atoms) and aryl groups (preferably 6 to 22 carbon atoms, more preferably 6 to 10 carbon atoms). Of these, an alkyl group is preferable.
  • R 1 to R 3 may combine with each other to form a ring. Examples of the ring formed at this time include a cycloalkyl group (preferably having 3 to 12 carbon atoms, more preferably 3 to 6 carbon atoms), and among them, a cyclohexyl group is preferable.
  • an alkoxy group preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms
  • an aryloxy group preferably having 6 to 12 carbon atoms, more preferably Has 6 to 10 carbon atoms
  • an alkoxycarbonyl group preferably 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms, particularly preferably 2 to 4 carbon atoms
  • an amino group preferably 0 to 12 carbon atoms, More preferably 0 to 6 carbon atoms, particularly preferably 0 to 3 carbon atoms
  • an acyl group preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms
  • acyloxy A group preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms
  • a carbamoyl group preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon
  • arylsulfonyl groups preferably 6 to 12 carbon atoms, more preferably 6 to 10 carbon atoms
  • silyl groups preferably 1 carbon atoms.
  • halogen atoms eg, fluorine, chlorine, bromine
  • halogenated alkyl groups preferably 1 to 12 carbon atoms.
  • R 1 to R 3 at least two of them are preferably the alkyl group defined above or the aryl group defined above.
  • the alkyl group is an aralkyl group, it preferably has 7 to 12 carbon atoms as defined above.
  • a linking group (L) may be present in the substituent (for example, alkyl chain), and examples of the linking group (L) include O, S, NR (R is an alkyl group having 1 to 12 carbon atoms or an aryl group having 6 to 22 carbon atoms), CO, COO, SO 2 , and combinations thereof.
  • R 1 to R 3 are hydrocarbon groups
  • the hydrocarbon group is preferably an aromatic group or an alkyl group represented by the following formula Rb. * -CR b1 R b2 R b3 (Rb)
  • R b1 , R b2 , and R b3 are each independently a hydrogen atom, a hydrocarbon group, or a group containing at least one atom selected from an oxygen atom, a nitrogen atom, a sulfur atom, and a halogen atom.
  • R 1 to R 3 are alkyl groups represented by the formula (Rb)
  • at least one of R b1 , R b2 and R b3 is a hydrogen atom, a hydrocarbon group, or , A group containing at least one atom selected from an oxygen atom, a nitrogen atom, and a sulfur atom.
  • At least one of the hydrocarbon groups represented by the formula (Rb) has a group other than at least one halogen atom-containing group at the ⁇ position (C in the formula (Rb)), and the ⁇ position It is preferable that a hydrogen atom is present in the group. Even when R 1 to R 3 are aromatic groups, at least one of the aromatic groups preferably has a hydrogen atom.
  • R b1 , R b2 and R b3 are hydrocarbon groups, preferred examples thereof include those exemplified as the preferred hydrocarbons of R 1 to R 3 .
  • the substituent Z is preferred.
  • the number of the functional group (A) of the compound is not particularly limited, but is preferably 2 or more. There is no particular upper limit, but it is practical that it is 6 or less.
  • numerator of the functional group (A) of the said specific additive satisfy
  • the number of functional groups is 1.
  • This parameter indicates the ratio of the functional group capable of generating gas to the added amount (mass) of the additive, and serves as an index indicating the amount of gas generated per unit mass. That is, it is suggested that the larger this parameter, the higher the gas generation capacity per unit mass.
  • the right side of the formula (a) is 5, but is more preferably 6.5. Number of functional groups (A) in the molecule / molecular weight of the compound ⁇ 1000 ⁇ 5 (A)
  • X 1 is a linking group containing at least one atom selected from an oxygen atom, a nitrogen atom, and a sulfur atom.
  • the linking group include the examples of the linking group (L).
  • O, S, and NR R is an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 10 carbon atoms
  • R 1 to R 3 are groups having the same definitions as in the formula (A).
  • the specific additive is preferably represented by the following formula (A1).
  • n a is an integer of 1 to 6.
  • the groups defined in plural by na may be the same or different.
  • R a represents an organic group when na is 1, and represents a linking group when na is 2 or more.
  • the organic group include an alkoxy group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms), and an aryloxy group (preferably having 6 to 12 carbon atoms, more preferably 6 to 10 carbon atoms), an amino group (preferably 0 to 12 carbon atoms, more preferably 0 to 6 carbon atoms, particularly preferably 0 to 3 carbon atoms), an acyloxy group (preferably 1 to 12 carbon atoms, more preferably Has 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms, an alkyl group (preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 4 carbon atoms), an alkenyl group ( Preferably it has 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms, particularly preferably 2 to 4 carbon
  • linking group examples include an alkane linking group having 1 to 12 carbon atoms, a cycloalkane linking group having 3 to 12 carbon atoms, an aryl linking group having 6 to 24 carbon atoms, a heteroaryl linking group having 3 to 12 carbon atoms, and an oxy linking group.
  • the linking group means a divalent or higher valent group of the above group
  • the alkane linking group refers to an alkylene group (divalent), alkanetriyl group (trivalent), alkanetetrayl group (tetravalent). Including meaning.
  • These linking groups may further have the above-described substituent Z, or may be through the linking group (L).
  • R a is preferably R a '-X 1- *.
  • R a ′ is a divalent to tetravalent alkane linking group (preferably having 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms), a divalent to tetravalent aryl linking group (preferably having 6 to 14 carbon atoms, and more). Preferably, it has 6 to 10 carbon atoms, and a divalent to tetravalent alkane linking group (preferably having 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms) having 1 to 8 linking groups (L) interposed therebetween is preferable.
  • X 1 has the same meaning as the above formula (B). * Represents a bond.
  • R a ′ may constitute a linking group in the form of # —R a ′ —X 1 —R a ′ — #.
  • # Represents the bonding site to the R a '-X 1, # - total number is equal to n a of.
  • R 1 to R 3 are groups having the same definitions as in the formula (A).
  • the above formula (A1) is preferably represented by the following formula (B1).
  • n b is an integer of 2 to 6.
  • R b represents a divalent to hexavalent linking group.
  • the linking group include the linking groups exemplified for Ra .
  • R a '-* or # -R a ' -X 1 -R a '-# is preferable.
  • * Represents the bonding position to X 21, the number of coupling positions is equal to nb.
  • # Denotes the bonding position to X 21, a total number of the binding position is equal to nb.
  • X 21 is a linking group containing at least one atom selected from an oxygen atom, a nitrogen atom, and a sulfur atom. Its Preferred are the same as X 1.
  • R 1 to R 3 are groups having the same definitions as in the formula (A). Furthermore, the specific additive is preferably any one of the following formulas (c-1) to (c-4).
  • R AB is a substituent of the formula (A) or (B).
  • T 1 is a hydrogen atom, a substituent of the formula (A) or (B), or an alkyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms, particularly preferably 1 to 3 carbon atoms).
  • L A is an alkylene group (preferably having 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms) or an arylene group (preferably having 6 to 14 carbon atoms, more preferably 6 to 10 carbon atoms) is.
  • X 3 is a single bond or an alkylene group (preferably having 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms, particularly preferably 1 to 3 carbon atoms).
  • the concentration of the specific additive in the electrolyte solution is not particularly limited, but from the viewpoint of promoting sufficient gas generation during overcharge without impeding charge / discharge during normal charging of the battery, 0.5 mass% or more, preferably 1 mass% or more, particularly preferably 2 mass% or more.
  • the upper limit is 10% by mass or less, more preferably 8% by mass or less, further preferably less than 5% by mass, and particularly preferably 4.5% by mass or less.
  • good overcharge prevention properties gas generation properties
  • this lower limit is important, and unlike a normal functional additive, it is required to apply a sufficient amount in order to secure the amount of gas generated.
  • the electrolytic solution according to the present invention preferably contains an acid generator having a functional group that generates an acid upon oxidation.
  • the functional group that generates an acid upon oxidation is preferably a functional group that generates a cation radical by oxidation and releases H + by a subsequent reaction.
  • the said additive decomposes
  • the functional group that generates an acid is not particularly limited, and examples thereof include an aryl group (preferably having 6 to 22 carbon atoms, more preferably 6 to 10 carbon atoms), a heterocyclic group, and the like.
  • the acid generator include heterocyclic compounds, biphenyl compounds, and alkyl-substituted benzene compounds.
  • the heterocyclic compound may have a substituent on the heterocyclic ring, and a preferable substituent is an alkoxy group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms).
  • An acyloxy group preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms
  • an alkyl group preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms).
  • a cycloalkyl group preferably 3 to 12 carbon atoms, more preferably 3 to 6 carbon atoms
  • an aryl group preferably 6 to 22 carbon atoms, more preferably 6 carbon atoms.
  • the heterocyclic compound include 3- to 7-membered S-containing, N-containing, and O-containing heterocyclic compounds (the number of carbon atoms constituting the ring is preferably 3 to 6, and more preferably 4 to 6).
  • pyrazole, triazole, furan, pyrrole, thiophene, indole, triazine, imidazole and the like are preferable, and these compounds may have a substituent T described later.
  • the biphenyl compound has a partial structure in which two benzene rings are bonded by a single bond, and the benzene ring may have a substituent, and preferred substituents are alkyl groups having 1 to 4 carbon atoms (for example, Methyl, ethyl, propyl, t-butyl, etc.) and aryl groups having 6 to 10 carbon atoms (eg, phenyl, naphthyl, etc.).
  • biphenyl compound examples include biphenyl, o-terphenyl, m-terphenyl, p-terphenyl, 4-methylbiphenyl, 4-ethylbiphenyl, and 4-tert-butylbiphenyl.
  • the alkyl-substituted benzene compound is preferably a benzene compound substituted with an alkyl group having 1 to 10 carbon atoms, and specific examples include cyclohexylbenzene, t-amylbenzene, and t-butylbenzene.
  • the acid generator may not be added, and the decomposition of the specific additive may proceed in the electrolyte during overcharge.
  • the reaction may proceed through the above-described reaction mechanism or another reaction mechanism.
  • the acid generator may be added in a very small amount, and the addition amount thereof is preferably 10% by mass or less, more preferably 5% by mass or less, in the total amount of the electrolyte solution (including the electrolyte), It is more preferably 3% by mass or less, and particularly preferably 1% by mass or less.
  • the lower limit is not particularly limited, but when added, for the purpose of obtaining the effect, it is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and 0.3% by mass. The above is particularly preferable.
  • the ratio of the additive to the acid generator, and the ratio of additive / acid generator (by mass) is preferably 0.01 to 1000, more preferably 1 to 100, and more preferably 5 to 10. More preferably.
  • organic solvent As the organic solvent used in the present invention, an organic solvent in which 20 to 95% by volume is composed of a primary chain carbonate compound is used. The reason for this is to contain the primary chain carbonate to lower the viscosity and improve the battery performance.
  • the primary chain carbonate compound include organic solvents such as dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), methyl propyl carbonate (methyl n-propyl carbonate), ethylene glycol dimethyl carbonate, Examples thereof include ethylene glycol diethyl carbonate and propylene glycol dimethyl carbonate. These may be used alone or in combination of two or more.
  • the amount of the primary linear carbonate compound is further preferably 25% by volume or more, and more preferably 30% by volume or more.
  • the upper limit is preferably 90% by volume or less, more preferably 80% by volume or less, and particularly preferably 70% by volume or less.
  • the organic solvent that can be used in combination is not particularly limited, but is preferably an aprotic organic solvent, and more preferably an aprotic organic solvent having 2 to 10 carbon atoms.
  • the organic solvent is preferably a compound having an ether group, a carbonyl group, an ester group, or a carbonate group.
  • the said compound may have a substituent and the postscript substituent T is mentioned as the example.
  • organic solvents examples include ethylene carbonate, propylene carbonate, butylene carbonate, ⁇ -butyrolactone, ⁇ -valerolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran, 1,3- Dioxolane, 4-methyl-1,3-dioxolane, 1,3-dioxane, 1,4-dioxane, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, methyl butyrate, methyl isobutyrate, methyl trimethylacetate, trimethyl Ethyl acetate, acetonitrile, glutaronitrile, adiponitrile, methoxyacetonitrile, 3-methoxypropionitrile, N, N-dimethylformamide, N-methylpyrrolidinone, N-methyloxazolidinone, N,
  • the electrolytic solution of the present invention preferably contains various functional additives.
  • Examples of the function manifested by this additive include improved flame retardancy, improved cycle characteristics, and improved capacity characteristics.
  • Examples of functional additives that are preferably applied to the electrolyte of the present invention are shown below.
  • ⁇ Imide compound (A)> As the imide compound, a sulfonimide compound having a perfluoro group is preferable from the viewpoint of oxidation resistance, and specifically, a perfluorosulfoimide lithium compound may be mentioned. Specific examples of the imide compound include the following structures, and Cex1 and Cex2 are more preferable.
  • the halogen atom contained in the halogen-containing compound is preferably a fluorine atom, a chlorine atom, or a bromine atom, and more preferably a fluorine atom.
  • the number of halogen atoms is preferably 1 to 6, more preferably 1 to 3.
  • the halogen-containing compound is preferably a carbonate compound substituted with a fluorine atom, a polyether compound having a fluorine atom, or a fluorine-substituted aromatic compound.
  • the halogen-substituted carbonate compound may be either linear or cyclic.
  • a cyclic carbonate compound having a high coordination property of an electrolyte salt for example, lithium ion
  • a 5-membered cyclic carbonate compound is particularly preferable.
  • Preferred specific examples of the halogen-substituted carbonate compound are shown below. Among these, compounds of Bex1 to Bex4 are particularly preferable, and Bex1 is particularly preferable.
  • the polymerizable compound is preferably a compound having a carbon-carbon double bond, and is selected from carbonate compounds having a double bond such as vinylene carbonate and vinyl ethylene carbonate, acrylate groups, methacrylate groups, cyanoacrylate groups, and ⁇ CF 3 acrylate groups.
  • a compound having a group and a compound having a styryl group are preferable, and a carbonate compound having a double bond or a compound having two or more polymerizable groups in the molecule is more preferable.
  • a phosphorus containing compound As a phosphorus containing compound, a phosphate ester compound and a phosphazene compound are preferable.
  • the phosphate ester compound include trimethyl phosphate, triethyl phosphate, triphenyl phosphate, and tribenzyl phosphate.
  • a compound represented by the following formula (D2) or (D3) is also preferable.
  • R D4 to R D11 each represent a monovalent substituent.
  • the monovalent substituents an alkyl group, an aryl group, an alkoxy group, an aryloxy group, an amino group, a halogen atom such as fluorine, chlorine or bromine is preferable.
  • At least one of the substituents of R D4 to R D11 is preferably a fluorine atom, more preferably a substituent composed of an alkoxy group, an amino group, or a fluorine atom.
  • a compound having —SO 2 —, —SO 3 —, —OS ( ⁇ O) O— bond is preferable, and cyclic sulfur-containing compounds such as propane sultone, propene sultone, ethylene sulfite, and sulfonic acid Esters are preferred.
  • sulfur-containing cyclic compound compounds represented by the following formulas (E1) and (E2) are preferable.
  • X E1 and X E2 each independently represent —O— or —C (Ra) (Rb) —.
  • Ra and Rb each independently represent a hydrogen atom or a substituent.
  • the substituent an alkyl group having 1 to 8 carbon atoms, a fluorine atom, and an aryl group having 6 to 12 carbon atoms are preferable.
  • represents an atomic group necessary for forming a 5- to 6-membered ring.
  • the skeleton of ⁇ may contain a sulfur atom, an oxygen atom, etc. in addition to a carbon atom.
  • may be substituted, and examples of the substituent include a substituent T, preferably an alkyl group, a fluorine atom, and an aryl group.
  • ⁇ Silicon-containing compound (F)> As the silicon-containing compound, a compound represented by the following formula (F1) or (F2) is preferable.
  • R F1 represents an alkyl group, an alkenyl group, an acyl group, an acyloxy group, or an alkoxycarbonyl group.
  • R F2 represents an alkyl group, an alkenyl group, an alkynyl group, or an alkoxy group.
  • a plurality of R F1 and R F2 in one formula may be different or the same.
  • nitrile compound (G) As the nitrile compound, a compound represented by the following formula (G) is preferable.
  • R G1 to R G3 each independently represent a hydrogen atom, an alkyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, a cyano group, a carbamoyl group, a sulfonyl group, or a phosphonyl group.
  • examples of the substituent T can be referred to, and among them, a compound in which any one of R G1 to R G3 has a plurality of cyano groups is preferable.
  • -Ng represents an integer of 1-8.
  • Specific examples of the compound represented by the formula (G) include acetonitrile, propionitrile, isobutyronitrile, succinonitrile, malononitrile, glutaronitrile, adiponitrile, 2-methylglutanonitrile, hexanetricarbonitrile, propane. Tetracarbonitrile and the like are preferable. Particularly preferred are succinonitrile, malononitrile, glutaronitrile, adiponitrile, 2-methylglutanonitrile, hexanetricarbonitrile, and propanetetracarbonitrile.
  • Metal complex compound (H) As the metal complex compound, a transition metal complex or a rare earth complex is preferable. Of these, complexes represented by any of the following formulas (H-1) to (H-3) are preferred.
  • X H and Y H are a methyl group, an n-butyl group, a bis (trimethylsilyl) amino group, and a thioisocyanate group, respectively, and X H and Y H are condensed to form a cyclic alkenyl group (butadiene group).
  • MH represents a transition element or a rare earth element. Specifically, MH is preferably Fe, Ru, Cr, V, Ta, Mo, Ti, Zr, Hf, Y, La, Ce, Sw, Nd, Lu, Er, Yb, and Gd.
  • n H and n H are integers satisfying 0 ⁇ m H + n H ⁇ 3.
  • n H + m H is preferably 1 or more.
  • the 2 or more groups defined therein may be different from each other.
  • the metal complex compound is also preferably a compound having a partial structure represented by the following formula (H-4).
  • H-4 M H — (NR 1H R 2H ) q H Formula (H-4)
  • MH represents a transition element or a rare earth element and is synonymous with formulas (H-1) to (H-3).
  • R 1H and R 2H are hydrogen, an alkyl group (preferably having a carbon number of 1 to 6), an alkenyl group (preferably having a carbon number of 2 to 6), an alkynyl group (preferably having a carbon number of 2 to 6), and an aryl group (preferably having a carbon number). Represents a heteroaryl group (preferably having a carbon number of 3 to 6), an alkylsilyl group (preferably having a carbon number of 1 to 6), or a halogen.
  • R 1H and R 2H may be linked to each other.
  • R 1H and R 2H may each be connected to form a ring.
  • Preferable examples of R 1H and R 2H include examples of the substituent T described later.
  • a methyl group, an ethyl group, and a trimethylsilyl group are preferable.
  • q H represents an integer of 1 to 4, preferably an integer of 2 to 4. More preferably, it is 2 or 4. When q H is 2 or more, where a plurality of groups as defined may be the same or different from each other.
  • the metal complex compound is also preferably a compound represented by any of the following formulas.
  • the central metal M h is, Ti, Zr, ZrO, Hf , V, Cr, Fe, Ce is particularly preferred, Ti, Zr, Hf, V , Cr is the most preferred.
  • R 3h , R 5h , R 7h to R 10h represent substituents.
  • an alkyl group, an alkoxy group, an aryl group, an alkenyl group, and a halogen atom are preferable.
  • R 33h , R 55h R 33h and R 55h represent a hydrogen atom or a substituent of R 3h .
  • Y h is preferably an alkyl group having 1 to 6 carbon atoms or a bis (trialkylsilyl) amino group, and more preferably a methyl group or a bis (trimethylsilyl) amino group.
  • ⁇ L h, m h, o h l h , m h , and o h represent an integer of 0 to 3, and an integer of 0 to 2 is preferable.
  • the plurality of structural portions defined therein may be the same as or different from each other.
  • L h is preferably an alkylene group or an arylene group, more preferably a cycloalkylene group having 3 to 6 carbon atoms or an arylene group having 6 to 14 carbon atoms, and further preferably cyclohexylene or phenylene.
  • the electrolytic solution of the present invention may contain at least one selected from the above, a negative electrode film forming agent, a flame retardant, an overcharge preventing agent and the like.
  • the content ratio of these functional additives in the nonaqueous electrolytic solution is not particularly limited, but is preferably 0.001% by mass to 10% by mass with respect to the entire nonaqueous electrolytic solution (including the electrolyte).
  • the above exemplary compounds may have an arbitrary substituent T.
  • substituent T include the following.
  • An alkyl group preferably an alkyl group having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.
  • alkenyl group Preferably an alkenyl group having 2 to 20 carbon atoms, such as vinyl, allyl, oleyl, etc.
  • alkynyl group preferably an alkynyl group having 2 to 20 carbon atoms, such as ethynyl, butadiynyl, phenylethynyl, etc.
  • cycloalkyl group Preferably a cycloalkyl group having 3 to 20 carbon atoms such as cyclopropyl, cyclopentyl
  • a heterocyclic group preferably a heterocyclic group having 2 to 20 carbon atoms, preferably a 5- or 6-membered heterocyclic group having at least one oxygen atom, sulfur atom, nitrogen atom
  • 2-pyridyl, 4-pyridyl, 2-imidazolyl, 2-benzimidazolyl, 2-thiazolyl, 2-oxazolyl and the like an alkoxy group (preferably an alkoxy group having 1 to 20 carbon atoms, such as methoxy, ethoxy, isopropyloxy , Benzyloxy, etc.), aryloxy groups (preferably aryloxy groups having 6 to 26 carbon atoms, such as phenoxy, 1-naphthyloxy, 3-methylphenoxy, 4-methoxyphenoxy, etc.), alkoxycarbonyl groups (preferably carbon A number 2 to 20 alkoxycarbonyl group such as
  • a compound or a substituent / linking group when a compound or a substituent / linking group includes an alkyl group / alkylene group, an alkenyl group / alkenylene group, etc., these may be cyclic or chain-like, and may be linear or branched, It may be substituted as described above or may be unsubstituted. Moreover, when an aryl group, a heterocyclic group, etc. are included, they may be monocyclic or condensed and may be similarly substituted or unsubstituted.
  • the electrolyte used in the electrolytic solution of the present invention is preferably a salt of a metal ion belonging to Group 1 or Group 2 of the Periodic Table.
  • the material is appropriately selected depending on the intended use of the electrolytic solution.
  • lithium salt, potassium salt, sodium salt, calcium salt, magnesium salt and the like can be mentioned.
  • lithium salt is preferable from the viewpoint of output.
  • a lithium salt may be selected as a metal ion salt.
  • the lithium salt is not particularly limited as long as it is a lithium salt usually used for an electrolyte of a non-aqueous electrolyte solution for a lithium secondary battery. For example, those described below are preferable.
  • Inorganic lithium salts inorganic fluoride salts such as LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 ; perhalogenates such as LiClO 4 , LiBrO 4 , LiIO 4 ; inorganic chloride salts such as LiAlCl 4 etc.
  • (L-3) Oxalatoborate salt lithium bis (oxalato) borate, lithium difluorooxalatoborate and the like.
  • imide salts More preferred are imide salts.
  • Rf 1 and Rf 2 each represent a perfluoroalkyl group.
  • the electrolyte used for electrolyte solution may be used individually by 1 type, or may combine 2 or more types arbitrarily.
  • the content of the electrolyte (metal ions belonging to Group 1 or Group 2 of the periodic table or a metal salt thereof) in the electrolytic solution is added in an amount that provides a preferable salt concentration described below in the method for preparing the electrolytic solution.
  • the salt concentration is appropriately selected depending on the intended use of the electrolytic solution, but is generally 10% to 50% by mass, more preferably 15% to 30% by mass, based on the total mass of the electrolytic solution.
  • concentration when evaluating as an ion density
  • the electrolyte solution for a non-aqueous secondary battery of the present invention is prepared by a conventional method by dissolving the above components in the non-aqueous electrolyte solvent, including an example in which a lithium salt is used as a metal ion salt.
  • non-water means that water is not substantially contained, and a trace amount of water may be contained as long as the effects of the invention are not hindered.
  • the water content is preferably 200 ppm (mass basis) or less, more preferably 100 ppm or less, and even more preferably 20 ppm or less. Although there is no lower limit in particular, it is practical that it is 1 ppm or more considering inevitable mixing.
  • the viscosity of the electrolytic solution of the present invention is not particularly limited, but it is preferably 10 to 0.1 mPa ⁇ s, more preferably 5 to 0.5 mPa ⁇ s at 25 ° C. In the present invention, the viscosity of the electrolytic solution is based on the value measured by the following measuring method unless otherwise specified.
  • the viscosity is a value measured by the following method. 1 mL of a sample is put into a rheometer (CLS 500) and measured using a Steel Cone (both manufactured by TA Instruments) having a diameter of 4 cm / 2 °. The sample is kept warm in advance until the temperature becomes constant at the measurement start temperature, and the measurement starts thereafter. The measurement temperature is 25 ° C.
  • the lithium ion secondary battery 10 of this embodiment includes the electrolyte solution 5 for a non-aqueous secondary battery of the present invention and a positive electrode C capable of inserting and releasing lithium ions (a positive electrode current collector 1 and a positive electrode active material layer 2). And a negative electrode A (negative electrode current collector 3, negative electrode active material layer 4) capable of inserting and releasing lithium ions or dissolving and depositing lithium ions.
  • a separator 9 disposed between the positive electrode and the negative electrode, a current collecting terminal (not shown), an outer case, etc. (Not shown).
  • a protective element may be attached to at least one of the inside of the battery and the outside of the battery.
  • the battery shape to which the lithium secondary battery of the present embodiment is applied is not particularly limited, and examples thereof include a bottomed cylindrical shape, a bottomed square shape, a thin shape, a sheet shape, and a paper shape. Any of these may be used. Further, it may be of a different shape such as a horseshoe shape or a comb shape considering the shape of the system or device to be incorporated. Among them, from the viewpoint of efficiently releasing the heat inside the battery to the outside, a square shape such as a bottomed square shape or a thin shape having at least one surface that is relatively flat and has a large area is preferable.
  • FIG. 2 is an example of a bottomed cylindrical lithium secondary battery 100.
  • This battery is a bottomed cylindrical lithium secondary battery 100 in which a positive electrode sheet 14 and a negative electrode sheet 16 overlapped with a separator 12 are wound and accommodated in an outer can 18.
  • the 2S / T value is preferably 100 or more, and more preferably 200 or more.
  • the lithium secondary battery according to the present embodiment is configured to include the electrolytic solution 5, the positive electrode and negative electrode electrode mixtures C and A, and the separator basic member 9, based on FIG. 1. Hereinafter, each of these members will be described.
  • Electrode mixture The electrode mixture is obtained by applying a dispersion of an active material and a conductive agent, a binder, a filler, etc. on a current collector (electrode substrate).
  • the active material is a positive electrode active material. It is preferable to use a negative electrode mixture in which the positive electrode mixture and the active material are a negative electrode active material.
  • each component in the dispersion (electrode composition) constituting the electrode mixture will be described.
  • a transition metal oxide for the positive electrode active material, and in particular, it has a transition element M a (one or more elements selected from Co, Ni, Fe, Mn, Cu, V). Is preferred. Further, mixed element M b (elements of the first (Ia) group of the metal periodic table other than lithium, elements of the second (IIa) group, Al, Ga, In, Ge, Sn, Pb, Sb, Bi, Si , P, B, etc.) may be mixed. Examples of the transition metal oxide include specific transition metal oxides including those represented by any of the following formulas (MA) to (MC), or other transition metal oxides such as V 2 O 5 and MnO 2. Is mentioned. As the positive electrode active material, a particulate positive electrode active material may be used. Specifically, a transition metal oxide capable of reversibly inserting and releasing lithium ions can be used, but the specific transition metal oxide is preferably used.
  • the transition metal oxides, oxides containing the above transition element M a is preferably exemplified.
  • a mixed element M b (preferably Al) or the like may be mixed.
  • the mixing amount is preferably 0 to 30 mol% with respect to the amount of the transition metal. That the molar ratio of li / M a was synthesized were mixed so that 0.3 to 2.2, more preferably.
  • M 1 is as defined above Ma.
  • a represents 0 to 1.2 (preferably 0.2 to 1.2), and preferably 0.6 to 1.1.
  • b represents 1 to 3 and is preferably 2.
  • a part of M 1 may be substituted with the mixed element M b .
  • the transition metal oxide represented by the above formula (MA) typically has a layered rock salt structure.
  • the transition metal oxide is more preferably one represented by the following formulas.
  • g has the same meaning as a.
  • j represents 0.1 to 0.9.
  • i represents 0 to 1; However, 1-ji is 0 or more.
  • k has the same meaning as b above.
  • Specific examples of the transition metal compound include LiCoO 2 (lithium cobaltate [LCO]), LiNi 2 O 2 (lithium nickelate) LiNi 0.85 Co 0.01 Al 0.05 O 2 (nickel cobalt aluminum acid Lithium [NCA]), LiNi 0.33 Co 0.33 Mn 0.33 O 2 (lithium nickel manganese cobaltate [NMC]), LiNi 0.5 Mn 0.5 O 2 (lithium manganese nickelate).
  • the transition metal oxide represented by the formula (MA) partially overlaps, but when represented by changing the notation, those represented by the following are also preferable examples.
  • (I) Li g Ni x Mn y Co z O 2 (x> 0.2, y> 0.2, z ⁇ 0, x + y + z 1) Representative: Li g Ni 1/3 Mn 1/3 Co 1/3 O 2 Li g Ni 1/2 Mn 1/2 O 2
  • (Ii) Li g Ni x Co y Al z O 2 (x> 0.7, y>0.1,0.1>z> 0.05, x + y + z 1) Representative: Li g Ni 0.8 Co 0.15 Al 0.05 O 2
  • M 2 is as defined above Ma.
  • c represents 0 to 2 (preferably 0.2 to 2), and preferably 0.6 to 1.5.
  • d represents 3 to 5 and is preferably 4.
  • the transition metal oxide represented by the formula (MB) is more preferably one represented by the following formulas.
  • (MB-1) Li m Mn 2 O n
  • (MB-2) Li m Mn p Al 2-p O n
  • (MB-3) Li m Mn p Ni 2-p O n
  • m is synonymous with c.
  • n is synonymous with d.
  • p represents 0-2.
  • Specific examples of the transition metal compound are LiMn 2 O 4 and LiMn 1.5 Ni 0.5 O 4 .
  • Preferred examples of the transition metal oxide represented by the formula (MB) include those represented by the following.
  • an electrode containing Ni is more preferable from the viewpoint of high capacity and high output.
  • Transition metal oxide represented by formula (MC) As the lithium-containing transition metal oxide, it is also preferable to use a lithium-containing transition metal phosphor oxide, and among them, one represented by the following formula (MC) is also preferable. Li e M 3 (PO 4 ) f ... (MC)
  • e 0 to 2, preferably 0.1 to 1.15, and more preferably 0.5 to 1.5.
  • f represents 1 to 5, and preferably 0.5 to 2.
  • the M 3 represents one or more elements selected from V, Ti, Cr, Mn, Fe, Co, Ni, and Cu.
  • the M 3 are, in addition to the mixing element M b above, Ti, Cr, Zn, Zr, may be substituted by other metals such as Nb.
  • Specific examples include, for example, olivine-type iron phosphates such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , cobalt phosphates such as LiCoPO 4 , and Li 3.
  • Monoclinic Nasicon type vanadium phosphate salts such as V 2 (PO 4 ) 3 (lithium vanadium phosphate) can be mentioned.
  • the a, c, g, m, and e values representing the composition of Li are values that change due to charge and discharge, and are typically evaluated as values in a stable state when Li is contained.
  • the composition of Li is shown as a specific value, but this also varies depending on the operation of the battery.
  • the positive electrode active material is preferably a material that can maintain normal use at a positive electrode potential (Li / Li + standard) of 3.5 V or higher, more preferably 3.8 V or higher, and more preferably 4 V or higher. More preferably, it is 4.2 V or more. Although there is no upper limit in particular, it is practical that it is 5V or less. By setting it as the above range, cycle characteristics and high rate discharge characteristics can be improved.
  • being able to maintain normal use means that even when charging is performed at that voltage, the electrode material does not deteriorate and cannot be used, and this potential is also referred to as a normal usable potential.
  • positive electrode potential (negative electrode potential) + (battery voltage).
  • the negative electrode potential is 1.55V.
  • graphite is used as the negative electrode, the negative electrode potential is 0.1V. The battery voltage is observed during charging and the positive electrode potential is calculated.
  • the average particle size of the positive electrode active material used is not particularly limited, but is preferably 0.1 ⁇ m to 50 ⁇ m.
  • the specific surface area is not particularly limited, but is preferably 0.01 m 2 / g to 50 m 2 / g by the BET method.
  • the pH of the supernatant when 5 g of the positive electrode active material is dissolved in 100 ml of distilled water is preferably 7 or more and 12 or less.
  • a well-known pulverizer or classifier is used to make the positive electrode active substance have a predetermined particle size.
  • a mortar, a ball mill, a vibration ball mill, a vibration mill, a satellite ball mill, a planetary ball mill, a swirling air flow type jet mill, a sieve, or the like is used.
  • the positive electrode active material obtained by the above firing method may be used after washing with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent.
  • the blending amount of the positive electrode active material is not particularly limited, but is preferably 60 to 98% by mass, and 70 to 95% by mass in 100% by mass of the solid component in the dispersion (mixture) for constituting the active material layer. % Is more preferable.
  • Negative electrode active material The negative electrode active material is not particularly limited as long as it can reversibly insert and release lithium ions. Carbonaceous materials, metal oxides such as tin oxide and silicon oxide, metal composite oxides, Examples thereof include lithium alloys such as lithium alone and lithium aluminum alloys, and metals capable of forming an alloy with lithium such as Sn and Si. These may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and a ratio.
  • carbonaceous materials or lithium composite oxides are preferably used from the viewpoint of safety.
  • the metal composite oxide is not particularly limited as long as it can occlude and release lithium, but it preferably contains titanium and / or lithium as a constituent component from the viewpoint of high current density charge / discharge characteristics. .
  • the carbonaceous material used as the negative electrode active material is a material substantially made of carbon.
  • Examples thereof include carbonaceous materials obtained by baking various synthetic resins such as artificial pitches such as petroleum pitch, natural graphite, and vapor-grown graphite, and PAN-based resins and furfuryl alcohol resins.
  • various carbon fibers such as PAN-based carbon fiber, cellulose-based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, dehydrated PVA-based carbon fiber, lignin carbon fiber, glassy carbon fiber, activated carbon fiber, mesophase micro
  • Examples thereof include spheres, graphite whiskers, and flat graphite.
  • carbonaceous materials can be divided into non-graphitizable carbon materials and graphite-based carbon materials depending on the degree of graphitization.
  • the carbonaceous material preferably has a face spacing, density, and crystallite size described in JP-A-62-222066, JP-A-2-6856, and 3-45473.
  • the carbonaceous material does not have to be a single material, and a mixture of natural graphite and artificial graphite described in JP-A-5-90844, graphite having a coating layer described in JP-A-6-4516, or the like is used. You can also.
  • an amorphous oxide is particularly preferable, and chalcogenite, which is a reaction product of a metal element and an element of Group 16 of the periodic table, is also preferably used. It is done.
  • amorphous as used herein means an X-ray diffraction method using CuK ⁇ rays, which has a broad scattering band having a peak in the region of 20 ° to 40 ° in terms of 2 ⁇ , and is a crystalline diffraction line. You may have.
  • the strongest intensity of crystalline diffraction lines seen from 2 ° to 40 ° to 70 ° is 100 times the diffraction line intensity at the peak of the broad scattering band seen from 2 ° to 20 °. It is preferable that it is 5 times or less, and it is particularly preferable not to have a crystalline diffraction line.
  • amorphous metal oxides and chalcogenides are more preferable, and elements in groups 13 (IIIB) to 15 (VB) of the periodic table are preferable.
  • oxides and chalcogenides composed of one kind of Al, Ga, Si, Sn, Ge, Pb, Sb, Bi or a combination of two or more kinds thereof.
  • preferable amorphous oxides and chalcogenides include, for example, Ga 2 O 3 , SiO, GeO, SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , Bi 2 O 3 , Bi 2 O 4 , SnSiO 3 , GeS, SnS, SnS 2 , PbS, PbS 2 , Sb 2 S 3 , Sb 2 S 5 , such as SnSiS 3 may preferably be mentioned. Moreover, these may be a complex oxide with lithium oxide, for example, Li 2 SnO 2 .
  • the average particle size of the negative electrode active material is preferably 0.1 ⁇ m to 60 ⁇ m.
  • a well-known pulverizer or classifier is used.
  • a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling air flow type jet mill or a sieve is preferably used.
  • wet pulverization in the presence of water or an organic solvent such as methanol can be performed as necessary.
  • classification is preferably performed.
  • the classification method is not particularly limited, and a sieve, an air classifier, or the like can be used as necessary. Classification can be used both dry and wet.
  • the chemical formula of the compound obtained by the above firing method can be calculated from an inductively coupled plasma (ICP) emission spectroscopic analysis method as a measurement method, and from a mass difference between powders before and after firing as a simple method.
  • ICP inductively coupled plasma
  • Examples of the negative electrode active material that can be used in combination with the amorphous oxide negative electrode active material centering on Sn, Si, and Ge include carbon materials that can occlude and release lithium ions or lithium metal, lithium, lithium alloys, lithium A metal that can be alloyed with is preferable.
  • the electrolyte solution of the present invention is preferably a high potential negative electrode (electrode potential of 1.0 V or higher, more preferably 1.2 V or higher, particularly preferably 1.5 V or higher.
  • a high potential negative electrode electrode potential of 1.0 V or higher, more preferably 1.2 V or higher, particularly preferably 1.5 V or higher.
  • lithium-titanium oxide, potential 1 .55V vs. Li metal and in combination with a low potential negative electrode (preferably carbon material, silicon-containing material, potential about 0.1 V vs. Li metal).
  • metal or metal oxide negative electrodes preferably Si, Si oxide, Si / Si oxide, Sn, Sn oxide, SnB x P y O z , Cu, which can be alloyed with lithium, which are being developed for higher capacity
  • metal or metal oxide negative electrodes preferably Si, Si oxide, Si / Si oxide, Sn, Sn oxide, SnB x P y O z , Cu, which can be alloyed with lithium, which are being developed for higher capacity
  • the negative electrode active material used in the nonaqueous secondary battery of the present invention preferably contains a titanium atom. More specifically, since Li 4 Ti 5 O 12 has a small volume fluctuation at the time of occlusion and release of lithium ions, it has excellent rapid charge / discharge characteristics, suppresses electrode deterioration, and improves the life of lithium ion secondary batteries. This is preferable. By combining a specific negative electrode and a specific electrolyte, the stability of the secondary battery is improved even under various usage conditions.
  • any electronic conductive material that does not cause a chemical change in the configured secondary battery may be used, and any known conductive material may be used.
  • natural graphite scale-like graphite, scale-like graphite, earth-like graphite, etc.
  • artificial graphite carbon black, acetylene black, ketjen black, carbon fiber and metal powder (copper, nickel, aluminum, silver (Japanese Patent Laid-Open No. Sho 63-63)) 148, 554), etc.
  • conductive fibers such as metal fibers or polyphenylene derivatives (described in JP-A-59-20971) can be included as a single kind or a mixture thereof.
  • the addition amount of the conductive agent is preferably 1 to 50% by mass, and more preferably 2 to 30% by mass. In the case of carbon or graphite, 2 to 15% by mass is particularly preferable.
  • binders include polysaccharides, thermoplastic resins, and polymers having rubber elasticity. Among them, for example, starch, carboxymethyl cellulose, cellulose, diacetyl cellulose, methyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose.
  • Water-soluble such as sodium alginate, polyacrylic acid, sodium polyacrylate, polyvinylphenol, polyvinyl methyl ether, polyvinyl alcohol, polyvinylpyrrolidone, polyacrylonitrile, polyacrylamide, polyhydroxy (meth) acrylate, styrene-maleic acid copolymer Polymer, polyvinyl chloride, polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene copolymer, vinyl Redene fluoride-tetrafluoroethylene-hexafluoropropylene copolymer, polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, polyvinyl acetal resin, methyl methacrylate, 2-ethylhexyl acrylate, etc.
  • EPDM ethylene-propylene-diene terpolymer
  • Binders can be used alone or in combination of two or more.
  • the amount of the binder added is small, the holding power and cohesive force of the electrode mixture are weakened. If the amount is too large, the electrode volume increases and the capacity per electrode unit volume or unit mass decreases. For this reason, the addition amount of the binder is preferably 1 to 30% by mass, and more preferably 2 to 10% by mass.
  • the electrode compound material may contain the filler.
  • the material for forming the filler any fibrous material that does not cause a chemical change in the secondary battery of the present invention can be used.
  • fibrous fillers made of materials such as olefin polymers such as polypropylene and polyethylene, glass, and carbon are used.
  • the addition amount of the filler is not particularly limited, but is preferably 0 to 30% by mass in the dispersion.
  • the positive / negative electrode current collector an electron conductor that does not cause a chemical change in the nonaqueous electrolyte secondary battery of the present invention is used.
  • the current collector of the positive electrode in addition to aluminum, stainless steel, nickel, titanium, etc., the surface of aluminum or stainless steel is preferably treated with carbon, nickel, titanium, or silver. Among them, aluminum and aluminum alloys are preferable. More preferred.
  • the negative electrode current collector aluminum, copper, stainless steel, nickel and titanium are preferable, and aluminum, copper and copper alloy are more preferable.
  • a film sheet shape is usually used, but a net, a punched material, a lath body, a porous body, a foamed body, a molded body of a fiber group, and the like can also be used.
  • the thickness of the current collector is not particularly limited, but is preferably 1 ⁇ m to 500 ⁇ m.
  • the current collector surface is roughened by surface treatment.
  • An electrode mixture of the lithium secondary battery is formed by a member appropriately selected from these materials.
  • the separator used in the non-aqueous secondary battery of the present invention is particularly a material that has mechanical strength for electrically insulating the positive electrode and the negative electrode, ion permeability, and oxidation / reduction resistance at the contact surface between the positive electrode and the negative electrode.
  • a material a porous polymer material, an inorganic material, an organic-inorganic hybrid material, glass fiber, or the like is used.
  • These separators preferably have a shutdown function for ensuring safety, that is, a function of closing the gap at 80 ° C. or higher to increase resistance and blocking current, and the closing temperature is 90 ° C. or higher and 180 ° C. or lower. It is preferable.
  • the shape of the holes of the separator is usually circular or elliptical, and the size is 0.05 ⁇ m to 30 ⁇ m, preferably 0.1 ⁇ m to 20 ⁇ m. Furthermore, it may be a rod-like or irregular-shaped hole as in the case of making by a stretching method or a phase separation method.
  • the ratio of these gaps, that is, the porosity, is 20% to 90%, preferably 35% to 80%.
  • the polymer material may be a single material such as a cellulose nonwoven fabric, polyethylene, or polypropylene, or may be a material using two or more composite materials. What laminated
  • oxides such as alumina and silicon dioxide, nitrides such as aluminum nitride and silicon nitride, and sulfates such as barium sulfate and calcium sulfate are used, and those having a particle shape or fiber shape are used.
  • a thin film shape such as a non-woven fabric, a woven fabric, or a microporous film is used.
  • the thin film shape those having a pore diameter of 0.01 ⁇ m to 1 ⁇ m and a thickness of 5 ⁇ m to 50 ⁇ m are preferably used.
  • a separator formed by forming a composite porous layer containing the inorganic particles on the surface layer of the positive electrode and / or the negative electrode using a resin binder can be used.
  • alumina particles having a 90% particle diameter of less than 1 ⁇ m are formed on both surfaces of the positive electrode as a porous layer using a fluororesin binder.
  • the shape of the nonaqueous secondary battery of the present invention can be applied to any shape such as a sheet shape, a square shape, and a cylinder shape.
  • a positive electrode active material or a mixture of negative electrode active materials is mainly used after being applied (coated), dried and compressed on a current collector.
  • FIG. 2 shows an example of a bottomed cylindrical lithium secondary battery 100.
  • This battery is a bottomed cylindrical lithium secondary battery 100 in which a positive electrode sheet 14 and a negative electrode sheet 16 overlapped with a separator 12 are wound and accommodated in an outer can 18.
  • 20 is an insulating plate
  • 22 is a sealing plate
  • 24 is a positive electrode current collector
  • 26 is a gasket
  • 28 is a pressure sensitive valve body
  • 30 is a current interruption element.
  • each member corresponds to the whole drawing by reference numerals.
  • a negative electrode active material is mixed with a binder or filler used as desired in an organic solvent to prepare a slurry or paste negative electrode mixture.
  • the obtained negative electrode mixture is uniformly applied over the entire surface of both surfaces of the metal core as a current collector, and then the organic solvent is removed to form a negative electrode mixture layer.
  • the laminate of the current collector and the negative electrode composite material layer is rolled with a roll press or the like to prepare a predetermined thickness to obtain a negative electrode sheet (electrode sheet).
  • the application method of each agent, the drying of the applied product, and the method of forming the positive and negative electrodes may be in accordance with conventional methods.
  • a cylindrical battery is taken as an example, but the present invention is not limited to this, for example, after the positive and negative electrode sheets produced by the above method are overlapped via a separator, After processing into a sheet battery as it is, or inserting it into a rectangular can after being folded and electrically connecting the can and the sheet, injecting an electrolyte and sealing the opening using a sealing plate A square battery may be formed.
  • the safety valve can be used as a sealing plate for sealing the opening.
  • the sealing member may be provided with various conventionally known safety elements.
  • a fuse, bimetal, PTC element, or the like is preferably used as the overcurrent prevention element.
  • a method of cutting the battery can a method of cracking the gasket, a method of cracking the sealing plate, or a method of cutting the lead plate can be used.
  • the charger may be provided with a protection circuit incorporating measures against overcharge and overdischarge, or may be connected independently.
  • a metal or alloy having electrical conductivity can be used.
  • metals such as iron, nickel, titanium, chromium, molybdenum, copper, and aluminum, or alloys thereof are preferably used.
  • a known method eg, direct current or alternating current electric welding, laser welding, ultrasonic welding
  • a welding method for the cap, can, sheet, and lead plate can be used as a welding method for the cap, can, sheet, and lead plate.
  • the sealing agent for sealing a conventionally known compound or mixture such as asphalt can be used.
  • the non-aqueous secondary battery according to the present invention preferably has a pressure-sensitive mechanism (a mechanism that cuts off current when a predetermined pressure or higher is reached).
  • a pressure-sensitive mechanism a mechanism that cuts off current when a predetermined pressure or higher is reached.
  • the pressure-sensitive mechanism uses a pressure-sensitive valve as described above, various devices such as a device that detects a pressure change by a pressure-sensitive sensor and interrupts energization can be employed.
  • FIG. 3 is a partial cross-sectional side view showing another example of the pressure-sensitive valve.
  • the current interrupting sealing body 50 is composed of a stainless steel positive electrode cap 51 formed in an inverted dish shape (cap shape) and a stainless steel bottom plate 54 formed in a dish shape.
  • the positive electrode cap 51 includes a convex portion 52 that bulges toward the outside of the battery, and a flat flange portion 53 that forms the bottom side of the convex portion 52, and a plurality of gas vents are formed at the corners of the convex portion 52.
  • a hole 52a is provided.
  • the bottom plate 54 includes a concave portion 55 that bulges toward the inside of the battery, and a flat flange portion 56 that constitutes the bottom side portion of the concave portion 55.
  • a gas vent hole 55 a is provided at the corner of the recess 55.
  • Housed in the positive electrode cap 51 and the bottom plate 54 is a power lead-out plate 57 that deforms when the gas pressure inside the battery rises and exceeds a predetermined pressure.
  • the power lead-out plate 57 includes a concave portion 57a and a flange portion 57b, and is formed of, for example, an aluminum foil having a thickness of 0.2 mm and a surface unevenness of 0.005 mm.
  • the lowest portion of the recess 57 a is disposed in contact with the upper surface of the recess 55 of the bottom plate 54, and the flange portion 57 b is sandwiched between the flange portion 53 of the positive electrode cap 51 and the flange portion 56 of the bottom plate 54.
  • the positive electrode cap 51 and the bottom plate 54 are sealed in a liquid-tight manner by a sealing body insulating gasket 59 made of polypropylene (PP).
  • a PTC (Positive Temperature Coefficient) thermistor element 58 is disposed at a part of the upper portion of the flange portion 57b.
  • the resistance value of the PTC thermistor element 58 increases. Increase to reduce overcurrent.
  • the recess 57a of the power lead-out plate 57 is deformed, so that the contact between the power lead-out plate 57 and the concave portion 55 of the bottom plate 54 is cut off and an overcurrent or short circuit occurs.
  • the current is interrupted.
  • the specific aromatic compound of the present invention does not generate gas during normal charging but generates an effective amount of gas during overcharging.
  • “to generate an effective amount of gas at the time of overcharging” means that the results of the gas generation amount test and the charge life test at the time of overcharging in the examples described later are equivalent to the examples.
  • Normal charging means a state in which charging is performed within the design voltage of the battery.
  • a method is used in which a constant current charge is performed until a set voltage is reached, and then a full charge is performed while the set voltage is maintained.
  • the positive electrode potential during normal charging in the present application represents the positive electrode potential at the set voltage.
  • overcharge refers to a state in which the battery is charged at a voltage exceeding the design voltage of the battery due to some factor.
  • Secondary batteries called lithium batteries are secondary batteries that use the insertion and extraction of lithium for charge / discharge reactions (lithium ion secondary batteries), and secondary batteries that use precipitation and dissolution of lithium (lithium metal secondary batteries). ).
  • lithium ion secondary batteries secondary batteries that use the insertion and extraction of lithium for charge / discharge reactions
  • lithium metal secondary batteries secondary batteries that use precipitation and dissolution of lithium
  • application as a lithium ion secondary battery is preferable. Since the nonaqueous secondary battery of the present invention can produce a secondary battery with good cycle performance, it is applied to various applications.
  • a notebook computer when installed in an electronic device, a notebook computer, a pen input personal computer, a mobile personal computer, an electronic book player, a mobile phone, a cordless phone, a pager, a handy terminal, a mobile fax machine, a mobile phone Copy, portable printer, headphone stereo, video movie, LCD TV, handy cleaner, portable CD, minidisc, electric shaver, transceiver, electronic notebook, calculator, memory card, portable tape recorder, radio, backup power supply, memory card, etc. It is done.
  • Other consumer products include automobiles, electric vehicles, motors, lighting equipment, toys, game equipment, road conditioners, watches, strobes, cameras, medical equipment (such as pacemakers, hearing aids, and shoulder grinders). Furthermore, it can be used for various military use and space use. Moreover, it can also combine with a solar cell.
  • EMC ethyl methyl carbonate
  • PC propylene carbonate
  • the positive electrode is an active material: lithium nickel manganese cobaltate (LiNi 1/3 Mn 1/3 Co 1/3 O 2 ) 85% by mass, conductive auxiliary agent: carbon black 7% by mass, binder: produced by 8% by mass of PVDF, negative electrode is active material: 94% by mass of lithium titanate (Li 4 Ti 5 O 12 ), conductive auxiliary agent: 3% by mass of carbon black, binder: 3% by mass of PVDF It was made with.
  • the separator is made of cellulose and has a thickness of 50 ⁇ m.
  • 2032 type coin batteries (diameter: 20 mm, height: 3.2 mm, top cover, bottom cover: 250 ⁇ m made of SUS, FIG. 3) were prepared for each test electrolyte. Initialized with conditions.
  • the positive electrode is active material: lithium nickel manganese cobaltate (LiNi1 / 3Mn1 / 3Co1 / 3O2) 85 mass%, conductive auxiliary agent: carbon black 7 mass%, binder: PVDF 8 mass
  • the negative electrode was prepared with active material: 86% by mass of graphite, conductive auxiliary agent: 6% by mass of carbon black, and binder: 8% by mass of PVDF.
  • the separator was replaced with a polypropylene 25 ⁇ m thickness.
  • each test No. A 2032 type coin battery (diameter: 20 mm, height: 3.2 mm, top lid, bottom lid: 250 ⁇ m made of SUS, FIG. 3) was prepared and evaluated for the following items.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

An electrolyte solution for nonaqueous secondary batteries, which contains an electrolyte, an organic solvent and a specific additive that has a structure expressed as functional group (A), and wherein 20-95% by volume of the organic solvent is configured of a primary chain carbonate compound and the specific additive is contained in an amount of 0.5-10% by mass of the whole electrolyte solution. (In the formula, each of R1-R3 independently represents a hydrogen atom, a halogen atom or a hydrocarbon group; at least two moieties among the R1-R3 moieties are hydrocarbon groups; each hydrocarbon group may have a group containing at least one atom that is selected from among an oxygen atom, a nitrogen atom, a sulfur atom and a halogen atom; and * represents a bonding hand.)

Description

非水二次電池用電解液及び非水二次電池Non-aqueous secondary battery electrolyte and non-aqueous secondary battery
 本発明は、非水二次電池用電解液及び非水二次電池に関する。 The present invention relates to an electrolyte for a non-aqueous secondary battery and a non-aqueous secondary battery.
 リチウムイオン二次電池やリチウム金属二次電池には、従来、その固有の解決課題として過充電の問題があった。これは、二次電池が満充電の状態に達しているにもかかわらず、さらに充電を続けた場合、過加熱する、電極が短絡するなどの状況に至るものである。特に、有機系の電解液を用いるリチウム二次電池に特有の課題であり、使用上の信頼性確保の観点からも十分な対応が望まれてきた。 Conventionally, lithium ion secondary batteries and lithium metal secondary batteries have had a problem of overcharging as an inherent solution. This leads to a situation such as overheating or short-circuiting of the electrode when the secondary battery is fully charged even if the secondary battery is fully charged. In particular, it is a problem peculiar to a lithium secondary battery using an organic electrolyte, and a sufficient response has been desired from the viewpoint of ensuring reliability in use.
 これに対し、通常は電池が装着される電気機器側で対策がとられ、充電回路が組み込まれるなどして、満充電に達すると電気の供給が遮断されるようになっている。しかしながら、極めてまれではあっても、上記の回路に不具合等が生じ、過充電状態に至ることが想定される。このようなときにも、非水電解液に改良が加えられ、過充電を抑制することができれば、より一層の信頼性の向上につなげることができる。 In response to this, usually, measures are taken on the side of the electric equipment to which the battery is mounted, and a charging circuit is incorporated, so that the supply of electricity is cut off when full charge is reached. However, even though it is extremely rare, it is assumed that a malfunction or the like occurs in the above circuit, resulting in an overcharged state. Even in such a case, if the non-aqueous electrolyte is improved and overcharge can be suppressed, the reliability can be further improved.
 上記のような過充電を防止する目的で、非水電解液に添加する添加剤がいくつか提案されている。なかでも代表的なものとして、下記特許文献1、2に開示されたシクロヘキシルベンゼンなどのアルキルベンゼン誘導体を含有する電解液を用い、電池内部のガス圧力が所定圧力以上になると充電を遮断する装置と組み合せて過充電時の安全を向上させる試みがなされている。 Several additives to be added to the non-aqueous electrolyte have been proposed for the purpose of preventing overcharge as described above. As a typical example, an electrolyte containing an alkylbenzene derivative such as cyclohexylbenzene disclosed in Patent Documents 1 and 2 below is used in combination with a device that cuts off charging when the gas pressure inside the battery exceeds a predetermined pressure. Attempts have been made to improve safety during overcharge.
特許3113652号公報Japanese Patent No. 3113652 特開2009-231283号公報JP 2009-231283 A
 過充電防止剤に求められる性能としては、通常充電電位では動作を阻害せず、過充電時にのみ速やかに効果を発現することが望まれる。従来のガス発生型の過充電防止剤であるシクロヘキシルベンゼン等は、過充電時のみならず、通常充電時にも若干反応してしまい、充放電を繰り返すと抵抗が上昇し容量劣化が見られる。 As the performance required for the overcharge inhibitor, it is desired that the normal charging potential does not hinder the operation, and that the effect is quickly manifested only at the time of overcharging. A conventional gas generation type overcharge inhibitor, such as cyclohexylbenzene, reacts not only at the time of overcharge but also at the time of normal charge, and when charging and discharging are repeated, resistance increases and capacity deterioration is observed.
 そこで、本発明は、高い過充電防止性とその劣化抑制とを両立できる非水二次電池用電解液及び非水二次電池の提供を目的とする。 Therefore, an object of the present invention is to provide an electrolyte for a non-aqueous secondary battery and a non-aqueous secondary battery that can achieve both high overcharge prevention properties and suppression of deterioration.
 上記の課題は以下の手段によって解決された。
〔1〕電解質と有機溶媒と下記官能基(A)で表される構造を有する特定添加剤とを含有する電解液であって、
 有機溶媒の20~95体積%が一級鎖状カーボネート化合物で構成され、
 特定添加剤を全電解液中に0.5~10質量%含有している非水二次電池用電解液。
Figure JPOXMLDOC01-appb-C000005
(R~Rはそれぞれ独立に水素原子、ハロゲン原子、または炭化水素基である。R~Rの中で少なくとも2つは炭化水素基である。炭化水素基は酸素原子、窒素原子、硫黄原子、およびハロゲン原子から選ばれた少なくとも1種の原子を含む基を有することがある。*は結合手である。)
〔2〕R~Rが炭化水素基であるとき、炭化水素基が芳香族基または下記式Rbで表されるアルキル基である〔1〕に記載の非水二次電池用電解液。
 *-CRb1b2b3   ・・・(Rb)
(Rb1、Rb2、Rb3はそれぞれ独立に水素原子、炭化水素基、または、酸素原子、窒素原子、硫黄原子、およびハロゲン原子から選ばれた少なくとも1種の原子を含む基である。ただし、R~Rが式(Rb)で表されるアルキル基のとき、その少なくともその1つにおいて、Rb1、Rb2、Rb3のうち少なくとも1つは水素原子、炭化水素基、または、酸素原子、窒素原子、および硫黄原子から選ばれた少なくとも1種の原子を含む基である。*は結合手である。)
〔3〕特定添加剤をなす化合物の官能基(A)の数が2つ以上である〔1〕または〔2〕に記載の非水二次電池用電解液。
〔4〕酸化を受けて酸を発生する官能基を有する酸発生剤を電解液中に含有する〔1〕~〔3〕のいずれか1項に記載の非水二次電池用電解液。
〔5〕特定添加剤の官能基(A)の分子中の数と分子量とが下記式(a)の関係を満たす〔1〕~〔4〕のいずれか1項に記載の非水二次電池用電解液。
 分子中の官能群(A)の個数/化合物の分子量×1000≧5 ・・・ (a)
〔6〕官能基(A)が下記官能基(B)で表される〔1〕~〔5〕のいずれか1項に記載の二次電池用電解液。
Figure JPOXMLDOC01-appb-C000006
〔Xは酸素原子、窒素原子、および硫黄原子から選ばれた少なくとも1種の原子を含む連結基である。R~Rは式(A)におけるR~Rと同義である。〕
〔7〕特定添加剤が下記式(A1)で表される〔1〕~〔6〕のいずれか1項に記載の非水二次電池用電解液。
Figure JPOXMLDOC01-appb-C000007
〔nは1~6の整数である。Rはnが1のときは有機基、nが2以上のときは連結基を表す。R~Rは式(A)におけるR~Rと同義である。〕
〔8〕式(A1)が下記式(B1)で表される〔7〕に記載の非水二次電池用電解液。
Figure JPOXMLDOC01-appb-C000008
〔nは2~6の整数である。Rは2価~6価の連結基を表す。X21は酸素原子、窒素原子、および硫黄原子から選ばれた少なくとも1種の原子を含む連結基である。R~Rは式(A1)におけるR~Rと同義である。〕
〔9〕酸発生剤を全電解液中に0.1~5質量%含有する〔4〕~〔8〕のいずれか1項に記載の非水二次電池用電解液。
〔10〕一級直鎖カーボネート化合物が、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)、またはメチルn-プロピルカーボネートである〔1〕~〔9〕のいずれか1項に記載の非水二次電池用電解液。
〔11〕正極、負極、および〔1〕~〔10〕のいずれか1項に記載の電解液を具備する非水電解液二次電池。
〔12〕ニッケル、もしくはマンガンのうち少なくとも1種を有する化合物を正極の活物質として用いた〔11〕に記載の非水電解液二次電池。
〔13〕チタン酸リチウム(LTO)または炭素材料を負極の活物質として用いた〔11〕または〔12〕に記載の非水電解液二次電池。
〔14〕特定添加剤が過充電時にガスを発生する化合物であり、且つ、電池内部の圧力が所定圧力以上になると電流を遮断する過充電防止装置を有している〔11〕~〔13〕のいずれか1項に記載の非水二次電池。
〔15〕過充電時に連鎖的に分解されガスを発生する化合物と電解質と有機溶媒とを含有する非水二次電池用電解液。
The above problem has been solved by the following means.
[1] An electrolytic solution containing an electrolyte, an organic solvent, and a specific additive having a structure represented by the following functional group (A),
20 to 95% by volume of the organic solvent is composed of a primary chain carbonate compound,
An electrolyte for non-aqueous secondary batteries containing 0.5 to 10% by mass of a specific additive in the total electrolyte.
Figure JPOXMLDOC01-appb-C000005
(R 1 to R 3 each independently represents a hydrogen atom, a halogen atom, or a hydrocarbon group. At least two of R 1 to R 3 are hydrocarbon groups. The hydrocarbon group is an oxygen atom or a nitrogen atom. And a group containing at least one atom selected from a sulfur atom and a halogen atom, * is a bond.)
[2] The electrolyte solution for a non-aqueous secondary battery according to [1], wherein when R 1 to R 3 are hydrocarbon groups, the hydrocarbon group is an aromatic group or an alkyl group represented by the following formula Rb.
* -CR b1 R b2 R b3 (Rb)
(R b1 , R b2 , and R b3 are each independently a hydrogen atom, a hydrocarbon group, or a group containing at least one atom selected from an oxygen atom, a nitrogen atom, a sulfur atom, and a halogen atom. , R 1 to R 3 are an alkyl group represented by the formula (Rb), and at least one of them is at least one of R b1 , R b2 and R b3 is a hydrogen atom, a hydrocarbon group, or (This is a group containing at least one atom selected from an oxygen atom, a nitrogen atom, and a sulfur atom. * Is a bond.)
[3] The electrolyte solution for a non-aqueous secondary battery according to [1] or [2], wherein the number of functional groups (A) of the compound constituting the specific additive is two or more.
[4] The electrolyte solution for a non-aqueous secondary battery according to any one of [1] to [3], wherein the electrolyte solution contains an acid generator having a functional group that generates an acid upon oxidation.
[5] The nonaqueous secondary battery according to any one of [1] to [4], wherein the number and molecular weight of the functional group (A) of the specific additive satisfy the relationship of the following formula (a): Electrolyte.
Number of functional groups (A) in the molecule / molecular weight of the compound × 1000 ≧ 5 (a)
[6] The electrolyte solution for a secondary battery according to any one of [1] to [5], wherein the functional group (A) is represented by the following functional group (B).
Figure JPOXMLDOC01-appb-C000006
[X 1 is a linking group containing at least one atom selected from an oxygen atom, a nitrogen atom, and a sulfur atom. R 1 ~ R 3 have the same meanings as R 1 ~ R 3 in formula (A). ]
[7] The electrolyte for a non-aqueous secondary battery according to any one of [1] to [6], wherein the specific additive is represented by the following formula (A1).
Figure JPOXMLDOC01-appb-C000007
[N a is an integer of 1-6. R a represents an organic group when na is 1, and represents a linking group when na is 2 or more. R 1 ~ R 3 have the same meanings as R 1 ~ R 3 in formula (A). ]
[8] The electrolyte solution for a nonaqueous secondary battery according to [7], wherein the formula (A1) is represented by the following formula (B1).
Figure JPOXMLDOC01-appb-C000008
[ Nb is an integer of 2 to 6. R b represents a divalent to hexavalent linking group. X 21 is a linking group containing at least one atom selected from an oxygen atom, a nitrogen atom, and a sulfur atom. R 1 ~ R 3 have the same meanings as R 1 ~ R 3 in the formula (A1). ]
[9] The electrolyte solution for a non-aqueous secondary battery according to any one of [4] to [8], wherein the acid generator is contained in an amount of 0.1 to 5% by mass in the total electrolyte solution.
[10] In any one of [1] to [9], the primary linear carbonate compound is diethyl carbonate (DEC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), or methyl n-propyl carbonate. The electrolyte solution for non-aqueous secondary batteries as described.
[11] A nonaqueous electrolyte secondary battery comprising the positive electrode, the negative electrode, and the electrolytic solution according to any one of [1] to [10].
[12] The nonaqueous electrolyte secondary battery according to [11], wherein a compound having at least one of nickel and manganese is used as an active material for the positive electrode.
[13] The nonaqueous electrolyte secondary battery according to [11] or [12], wherein lithium titanate (LTO) or a carbon material is used as an active material for the negative electrode.
[14] The specific additive is a compound that generates gas when overcharged, and has an overcharge prevention device that cuts off the current when the internal pressure of the battery exceeds a predetermined pressure [11] to [13] The nonaqueous secondary battery according to any one of the above.
[15] An electrolyte solution for a non-aqueous secondary battery containing a compound that decomposes in a chain upon overcharge and generates a gas, an electrolyte, and an organic solvent.
 本発明の非水二次電池用電解液及び非水二次電池によれば、高い過充電防止性とその性能の劣化抑制とを両立することができる。
 本発明の上記及び他の特徴及び利点は、下記の記載および添付の図面からより明らかになるであろう。
According to the electrolyte solution for non-aqueous secondary battery and the non-aqueous secondary battery of the present invention, it is possible to achieve both high overcharge prevention and suppression of deterioration in performance.
The above and other features and advantages of the present invention will become more apparent from the following description and accompanying drawings.
本発明の好ましい実施形態に係るリチウム二次電池の機構を模式化して示す断面図である。It is sectional drawing which shows typically the mechanism of the lithium secondary battery which concerns on preferable embodiment of this invention. 本発明の好ましい実施形態に係るリチウム二次電池の具体的な構成を示す断面図である。It is sectional drawing which shows the specific structure of the lithium secondary battery which concerns on preferable embodiment of this invention. 本発明の好ましい実施形態に係る感圧機構付き電池蓋体を模式的に示す一部断面側面図である。It is a partial cross section side view which shows typically the battery lid body with a pressure-sensitive mechanism which concerns on preferable embodiment of this invention. CR2032形コイン電池の構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of CR2032-type coin battery.
 本発明の非水二次電池用電解液は特定添加剤と電解質と特定有機溶媒とを特定量で含有する。 The electrolyte solution for a non-aqueous secondary battery of the present invention contains a specific additive, an electrolyte, and a specific organic solvent in specific amounts.
[特定添加剤]
 本発明の特定添加剤は電解液中の酸化作用を受け分解しガスを発生する。この電解液中での詳細な反応機構は未解明の点を含むが以下のように推定される。過充電時の電極電位の上昇を受け、電解液中の有機溶媒成分または特定添加剤等が分解し、系内に酸(プロトン)を生成することがある。例えばそのプロトンが式(A)の官能基中のカルボニル基に作用しうる。これにより官能基(A)内で電子の移動が起こり、末端のR~Rからなる成分が解離し、その成分の沸点が低い場合はガスとなって放出されると考えられる。さらに、残されたCOO基の解離が生じ、これが二酸化炭素となって放出され、さらにガス発生量が増加する。このとき、上記R~Rからなる成分はアルケンとなると解され、アルケンが生じる際に発生するプロトンが系内に放出される。このプロトンがさらに特定添加剤中のカルボニル基に作用し、上述したガス放出反応を進行させる。つまり、特定添加剤の分解に係る連鎖反応が進行し、過充電時に迅速かつ多量のガス発生が促され、本発明の顕著な効果につながったものと考えられる。非水電解液のガス発生について、上記のような連鎖反応機構を利用したこと自体、これまでにない新規な着想である。
[Specific additives]
The specific additive of the present invention is decomposed by the oxidizing action in the electrolytic solution to generate gas. Although the detailed reaction mechanism in this electrolyte solution includes an unclear point, it is estimated as follows. In response to an increase in electrode potential during overcharge, the organic solvent component or the specific additive in the electrolytic solution may be decomposed to generate an acid (proton) in the system. For example, the proton can act on the carbonyl group in the functional group of formula (A). As a result, electron transfer occurs in the functional group (A), and the component consisting of R 1 to R 3 at the end is dissociated. When the boiling point of the component is low, it is considered that it is released as a gas. Furthermore, dissociation of the remaining COO groups occurs, and this is released as carbon dioxide, which further increases the amount of gas generated. At this time, it is understood that the component composed of R 1 to R 3 is an alkene, and protons generated when the alkene is generated are released into the system. This proton further acts on the carbonyl group in the specific additive to advance the gas release reaction described above. That is, it is considered that the chain reaction related to the decomposition of the specific additive proceeds, promptly generating a large amount of gas at the time of overcharge, and leading to the remarkable effect of the present invention. The use of the chain reaction mechanism as described above for the gas generation of the non-aqueous electrolyte is a novel idea that has never been seen before.
 本発明の特定添加剤はその分子内に下記官能基(A)を1つ以上有する。
Figure JPOXMLDOC01-appb-C000009
The specific additive of the present invention has one or more of the following functional groups (A) in the molecule.
Figure JPOXMLDOC01-appb-C000009
・R~R
 R~Rはそれぞれ独立に水素原子、ハロゲン原子または炭化水素基(好ましくは炭素数1~22)であり、その中で少なくとも2つは上記炭化水素基(α位の炭素に炭素原子で置換する炭化水素基)である。上記炭化水素基は、酸素原子、窒素原子、硫黄原子、およびハロゲン原子から選ばれた少なくとも1種の原子を含む置換基Zを有することがある。
・ R 1 to R 3
R 1 to R 3 are each independently a hydrogen atom, a halogen atom or a hydrocarbon group (preferably having a carbon number of 1 to 22), and at least two of them are the above hydrocarbon groups (the carbon atom at the α-position carbon). A hydrocarbon group to be substituted). The hydrocarbon group may have a substituent Z containing at least one atom selected from an oxygen atom, a nitrogen atom, a sulfur atom, and a halogen atom.
 上記炭化水素基としては、アルキル基(好ましくは炭素数1~12、より好ましくは炭素数1~6、特に好ましくは炭素数1~4)、アルケニル基(好ましくは炭素数2~12、より好ましくは炭素数2~6、特に好ましくは炭素数2~4)、アルキニル基(好ましくは炭素数2~12、より好ましくは炭素数2~6、特に好ましくは炭素数2~4)、シクロアルキル基(好ましくは炭素数3~12、より好ましくは炭素数3~6)、アリール基(好ましくは炭素数6~22、より好ましくは炭素数6~10)が挙げられる。なかでも、アルキル基であることが好ましい。
 R~Rは互いに結合して環を形成してもよい。このとき形成される環としては、シクロアルキル基(好ましくは炭素数3~12、より好ましくは炭素数3~6)が挙げられ、なかでも、シクロヘキシル基が好ましい。
Examples of the hydrocarbon group include alkyl groups (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 4 carbon atoms), and alkenyl groups (preferably having 2 to 12 carbon atoms, more preferably Is an alkynyl group (preferably 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms, particularly preferably 2 to 4 carbon atoms), a cycloalkyl group (Preferably 3 to 12 carbon atoms, more preferably 3 to 6 carbon atoms) and aryl groups (preferably 6 to 22 carbon atoms, more preferably 6 to 10 carbon atoms). Of these, an alkyl group is preferable.
R 1 to R 3 may combine with each other to form a ring. Examples of the ring formed at this time include a cycloalkyl group (preferably having 3 to 12 carbon atoms, more preferably 3 to 6 carbon atoms), and among them, a cyclohexyl group is preferable.
 置換基Zとしては、アルコキシ基(好ましくは炭素数1~12、より好ましくは炭素数1~6、特に好ましくは炭素数1~3)、アリールオキシ基(好ましくは炭素数6~12、より好ましくは炭素数6~10)、アルコキシカルボニル基(好ましくは炭素数2~12、より好ましくは炭素数2~6、特に好ましくは炭素数2~4)、アミノ基(好ましくは炭素数0~12、より好ましくは炭素数0~6、特に好ましくは炭素数0~3)、アシル基(好ましくは炭素数1~12、より好ましくは炭素数1~6、特に好ましくは炭素数1~3)、アシルオキシ基(好ましくは炭素数1~12、より好ましくは炭素数1~6、特に好ましくは炭素数1~3)、カルバモイル基(好ましくは炭素数1~12、より好ましくは炭素数1~6、特に好ましくは炭素数1~3)、アシルアミノ基(好ましくは炭素数1~12、より好ましくは炭素数1~6、特に好ましくは炭素数1~3)、アルキルチオ基(好ましくは炭素数1~12、より好ましくは炭素数1~6、特に好ましくは炭素数1~3)、アリールチオ基(好ましくは炭素数6~12、より好ましくは炭素数6~10、アルキルスルホニル基(好ましくは炭素数1~12、より好ましくは炭素数1~6、特に好ましくは炭素数1~3)、アリールスルホニル基(好ましくは炭素数6~12、より好ましくは炭素数6~10)、シリル基(好ましくは炭素数1~12、より好ましくは炭素数1~6、特に好ましくは炭素数1~3)、ハロゲン原子(例えば、フッ素、塩素、臭素)、ハロゲン化アルキル基(好ましくは炭素数1~12、より好ましくは炭素数1~6、特に好ましくは炭素数1~3)から選ばれる基である。 As the substituent Z, an alkoxy group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms), an aryloxy group (preferably having 6 to 12 carbon atoms, more preferably Has 6 to 10 carbon atoms), an alkoxycarbonyl group (preferably 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms, particularly preferably 2 to 4 carbon atoms), an amino group (preferably 0 to 12 carbon atoms, More preferably 0 to 6 carbon atoms, particularly preferably 0 to 3 carbon atoms), an acyl group (preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms), acyloxy A group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms), a carbamoyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly Good Preferably 1 to 3 carbon atoms), an acylamino group (preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms), an alkylthio group (preferably 1 to 12 carbon atoms, More preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms, an arylthio group (preferably 6 to 12 carbon atoms, more preferably 6 to 10 carbon atoms, an alkylsulfonyl group (preferably 1 to 12 carbon atoms). More preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms), arylsulfonyl groups (preferably 6 to 12 carbon atoms, more preferably 6 to 10 carbon atoms), silyl groups (preferably 1 carbon atoms). To 12, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms), halogen atoms (eg, fluorine, chlorine, bromine), halogenated alkyl groups (preferably 1 to 12 carbon atoms). More preferably 1 to 6 carbon atoms, particularly preferably a group selected from C 1-3) carbon atoms.
 *は結合手である。 * Is a bond.
 R~Rとしては、なかでもその2つ以上が、上記で規定のアルキル基または上記で規定のアリール基であることが好ましい。アルキル基がアラルキル基であるときは、上記規定の炭素数7~12であることが好ましい。 As R 1 to R 3 , at least two of them are preferably the alkyl group defined above or the aryl group defined above. When the alkyl group is an aralkyl group, it preferably has 7 to 12 carbon atoms as defined above.
 R~Rが炭化水素基であるとき、その置換基(例えばアルキル鎖)中に、連結基(L)が介在していてもよく、連結基(L)としては、O、S、NR(Rは炭素数1~12のアルキル基または炭素数6~22のアリール基)、CO、COO、SO、これらの組み合わせが挙げられる。 When R 1 to R 3 are hydrocarbon groups, a linking group (L) may be present in the substituent (for example, alkyl chain), and examples of the linking group (L) include O, S, NR (R is an alkyl group having 1 to 12 carbon atoms or an aryl group having 6 to 22 carbon atoms), CO, COO, SO 2 , and combinations thereof.
 上記R~Rが炭化水素基であるとき、上記炭化水素基が芳香族基または下記式Rbで表されるアルキル基であることが好ましい。
 
 *-CRb1b2b3   ・・・(Rb)
 
When R 1 to R 3 are hydrocarbon groups, the hydrocarbon group is preferably an aromatic group or an alkyl group represented by the following formula Rb.

* -CR b1 R b2 R b3 (Rb)
 上記Rb1、Rb2、Rb3はそれぞれ独立に水素原子、炭化水素基、または、酸素原子、窒素原子、硫黄原子、およびハロゲン原子から選ばれた少なくとも1種の原子を含む基である。ただし、R~Rが式(Rb)で表されるアルキル基のとき、その少なくともその1つにおいて、Rb1、Rb2、Rb3のうち少なくとも1つは水素原子、炭化水素基、または、酸素原子、窒素原子、および硫黄原子から選ばれた少なくとも1種の原子を含む基である。換言すると、式(Rb)で表される炭化水素基の少なくとも1つには、そのβ位(式(Rb)中のC)に少なくとも1つのハロゲン原子含有基以外の基があり、上記β位の基に水素原子が存在することが好ましい。
 R~Rが芳香族基であるときにも、その少なくとも1つにおいて、上記芳香族基が水素原子をもつことが好ましい。
R b1 , R b2 , and R b3 are each independently a hydrogen atom, a hydrocarbon group, or a group containing at least one atom selected from an oxygen atom, a nitrogen atom, a sulfur atom, and a halogen atom. Provided that when R 1 to R 3 are alkyl groups represented by the formula (Rb), at least one of R b1 , R b2 and R b3 is a hydrogen atom, a hydrocarbon group, or , A group containing at least one atom selected from an oxygen atom, a nitrogen atom, and a sulfur atom. In other words, at least one of the hydrocarbon groups represented by the formula (Rb) has a group other than at least one halogen atom-containing group at the β position (C in the formula (Rb)), and the β position It is preferable that a hydrogen atom is present in the group.
Even when R 1 to R 3 are aromatic groups, at least one of the aromatic groups preferably has a hydrogen atom.
 上記Rb1、Rb2、Rb3が炭化水素基であるとき、その好ましいものとして、上記R~Rの炭化水素の好ましいものとして例示したものが挙げられる。ハロゲン原子、あるいは酸素原子、窒素原子、硫黄原子、およびハロゲン原子から選ばれた少なくとも1種の原子を含む基としては、上記置換基Zが好ましい。 When R b1 , R b2 and R b3 are hydrocarbon groups, preferred examples thereof include those exemplified as the preferred hydrocarbons of R 1 to R 3 . As the group containing a halogen atom or at least one atom selected from an oxygen atom, a nitrogen atom, a sulfur atom, and a halogen atom, the substituent Z is preferred.
 *は結合手である。 * Is a bond.
 上記特定添加剤において、その化合物の上記官能群(A)の数は特に制限されないが、2つ以上であることが好ましい。上限は特にないが、6つ以下であることが実際的である。 In the specific additive, the number of the functional group (A) of the compound is not particularly limited, but is preferably 2 or more. There is no particular upper limit, but it is practical that it is 6 or less.
 本発明においては、上記特定添加剤の官能基(A)の分子中の数と分子量とが、下記式(a)の関係を満たすことが好ましい。ただし後述のA-1、A-3のような2つの官能基でC=O基を共有するような場合官能基数は1とする。このパラメータは添加剤の添加量(質量)に対するガス発生能のある官能基の比率を示すものであり、単位質量当たりのガス発生量を示す指標となるものである。すなわち、このパラメータが大きいほど単位質量あたりのガス発生能が高いことを示唆するものである。式(a)の右辺は5であるが、6.5であることがより好ましい。
 
 分子中の官能群(A)の個数/化合物の分子量×1000≧5
                       ・・・ (a)
 
In this invention, it is preferable that the number and molecular weight in the molecule | numerator of the functional group (A) of the said specific additive satisfy | fill the relationship of following formula (a). However, when the C═O group is shared by two functional groups such as A-1 and A-3 described later, the number of functional groups is 1. This parameter indicates the ratio of the functional group capable of generating gas to the added amount (mass) of the additive, and serves as an index indicating the amount of gas generated per unit mass. That is, it is suggested that the larger this parameter, the higher the gas generation capacity per unit mass. The right side of the formula (a) is 5, but is more preferably 6.5.

Number of functional groups (A) in the molecule / molecular weight of the compound × 1000 ≧ 5
(A)
 上記官能基(A)の中で、その好ましい一態様として、下記官能基(B)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000010
Among the functional groups (A), as a preferred embodiment thereof, groups represented by the following functional groups (B) can be mentioned.
Figure JPOXMLDOC01-appb-C000010
 Xは酸素原子、窒素原子、および硫黄原子から選ばれた少なくとも1種の原子を含む連結基である。上記連結基としては、上記連結基(L)の例が挙げられる。なかでも、O、S、NR(Rは炭素数1~6のアルキル基または炭素数6~10のアリール基)が好ましい。R~Rは式(A)での定義と同義の基である。 X 1 is a linking group containing at least one atom selected from an oxygen atom, a nitrogen atom, and a sulfur atom. Examples of the linking group include the examples of the linking group (L). Among these, O, S, and NR (R is an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 10 carbon atoms) are preferable. R 1 to R 3 are groups having the same definitions as in the formula (A).
 上記特定添加剤が下記式(A1)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000011
The specific additive is preferably represented by the following formula (A1).
Figure JPOXMLDOC01-appb-C000011
 nは1~6の整数である。naで複数規定される基は互いに同じであっても異なっていてもよい。 n a is an integer of 1 to 6. The groups defined in plural by na may be the same or different.
 Rはnが1のときは有機基、nが2以上のときは連結基を表す。
 有機基としては、アルコキシ基(好ましくは炭素数1~12、より好ましくは炭素数1~6、特に好ましくは炭素数1~3)、アリールオキシ基(好ましくは炭素数6~12、より好ましくは炭素数6~10)、アミノ基(好ましくは炭素数0~12、より好ましくは炭素数0~6、特に好ましくは炭素数0~3)、アシルオキシ基(好ましくは炭素数1~12、より好ましくは炭素数1~6、特に好ましくは炭素数1~3)、アルキル基(好ましくは炭素数1~12、より好ましくは炭素数1~6、特に好ましくは炭素数1~4)、アルケニル基(好ましくは炭素数2~12、より好ましくは炭素数2~6、特に好ましくは炭素数2~4)、アルキニル基(好ましくは炭素数2~12、より好ましくは炭素数2~6、特に好ましくは炭素数2~4)、シクロアルキル基(好ましくは炭素数3~12、より好ましくは炭素数3~6)、アリール基(好ましくは炭素数6~22、より好ましくは炭素数6~10)、ハロゲン化アルキル基(好ましくは炭素数1~12、より好ましくは炭素数1~6、特に好ましくは炭素数1~3)が挙げられる。なかでも、アルコキシ基、アリールオキシ基、アミノ基であることが好ましい。
R a represents an organic group when na is 1, and represents a linking group when na is 2 or more.
Examples of the organic group include an alkoxy group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms), and an aryloxy group (preferably having 6 to 12 carbon atoms, more preferably 6 to 10 carbon atoms), an amino group (preferably 0 to 12 carbon atoms, more preferably 0 to 6 carbon atoms, particularly preferably 0 to 3 carbon atoms), an acyloxy group (preferably 1 to 12 carbon atoms, more preferably Has 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms, an alkyl group (preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 4 carbon atoms), an alkenyl group ( Preferably it has 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms, particularly preferably 2 to 4 carbon atoms, and an alkynyl group (preferably 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms, particularly preferably Carbon number To 4), a cycloalkyl group (preferably having 3 to 12 carbon atoms, more preferably 3 to 6 carbon atoms), an aryl group (preferably having 6 to 22 carbon atoms, more preferably 6 to 10 carbon atoms), an alkyl halide And groups (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and particularly preferably 1 to 3 carbon atoms). Of these, an alkoxy group, an aryloxy group, and an amino group are preferable.
 連結基としては、炭素数1~12のアルカン連結基、炭素数3~12のシクロアルカン連結基、炭素数6~24のアリール連結基、炭素数3~12のヘテロアリール連結基、オキシ連結基(-O-)、チオ連結基(-S-)、ホスフィニデン連結基(-PR-:Rは上記有機基と同義)、シリル連結基(-SiRR’-:R、R’は上記有機基と同義)カルボニル連結基、イミノ連結基(-NR-:Rは上記有機基と同義、式(A)ないし(B)の部位でもよく、Rがイミノ基をさらに有し式(A)ないし(B)の部位を連結してもよい)、またはその組み合わせであることが好ましく、なかでも、炭素数1~7のアルカン連結基、炭素数6~24のアリール連結基、オキシ連結基、イミノ連結基、チオ連結基またはその組み合わせであることが好ましい。ここで、連結基とは上記基の2価以上の基を意味し、アルカン連結基というときには、アルキレン基(2価)、アルカントリイル基(3価)、アルカンテトライル基(4価)を含む意味である。これらの連結基は、さらに上記置換基Zを有していたり、上記連結基(L)を介していたりしてもよい。 Examples of the linking group include an alkane linking group having 1 to 12 carbon atoms, a cycloalkane linking group having 3 to 12 carbon atoms, an aryl linking group having 6 to 24 carbon atoms, a heteroaryl linking group having 3 to 12 carbon atoms, and an oxy linking group. (—O—), thio linking group (—S—), phosphinidene linking group (—PR—: R is as defined above), silyl linking group (—SiRR′—: R, R ′ are (Synonyms) carbonyl linking group, imino linking group (—NR—: R is synonymous with the above organic group and may be a moiety of formulas (A) to (B). ), Or a combination thereof, among which an alkane linking group having 1 to 7 carbon atoms, an aryl linking group having 6 to 24 carbon atoms, an oxy linking group, and an imino linking group. , A thio linking group or a combination thereof Door is preferable. Here, the linking group means a divalent or higher valent group of the above group, and the alkane linking group refers to an alkylene group (divalent), alkanetriyl group (trivalent), alkanetetrayl group (tetravalent). Including meaning. These linking groups may further have the above-described substituent Z, or may be through the linking group (L).
 なかでも、RはR’-X-*であることが好ましい。R’は、2~4価のアルカン連結基(好ましくは炭素数1~12、より好ましくは炭素数1~8)、2~4価のアリール連結基(好ましくは炭素数6~14、より好ましくは炭素数6~10)、上記連結基(L)を1~8個介在する2~4価のアルカン連結基(好ましくは炭素数1~12、より好ましくは炭素数1~8)が好ましい。Xは上記式(B)と同義である。*は結合手を表す。このとき、R’は#-R’-X-R’-#という形で連結基を構成していてもよい。#はR’-Xとの結合位置を表し、#-の数の合計がnと等しくなる。 Of these, R a is preferably R a '-X 1- *. R a ′ is a divalent to tetravalent alkane linking group (preferably having 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms), a divalent to tetravalent aryl linking group (preferably having 6 to 14 carbon atoms, and more). Preferably, it has 6 to 10 carbon atoms, and a divalent to tetravalent alkane linking group (preferably having 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms) having 1 to 8 linking groups (L) interposed therebetween is preferable. . X 1 has the same meaning as the above formula (B). * Represents a bond. At this time, R a ′ may constitute a linking group in the form of # —R a ′ —X 1 —R a ′ — #. # Represents the bonding site to the R a '-X 1, # - total number is equal to n a of.
 R~Rは式(A)での定義と同義の基である。 R 1 to R 3 are groups having the same definitions as in the formula (A).
 上記式(A1)は下記式(B1)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000012
The above formula (A1) is preferably represented by the following formula (B1).
Figure JPOXMLDOC01-appb-C000012
 nは2~6の整数である。 n b is an integer of 2 to 6.
 Rは2価~6価の連結基を表す。上記連結基の好ましい例としては、上記Rで例示した連結基が挙げられる。なかでも、R’-*または#-R’-X-R’-#であることが好ましい。*はX21との結合位置を表し、その結合位置の数はnbと等しい。#はX21との結合位置を表し、その結合位置の数の合計はnbと等しい。 R b represents a divalent to hexavalent linking group. Preferable examples of the linking group include the linking groups exemplified for Ra . Among these, R a '-* or # -R a ' -X 1 -R a '-# is preferable. * Represents the bonding position to X 21, the number of coupling positions is equal to nb. # Denotes the bonding position to X 21, a total number of the binding position is equal to nb.
 X21は酸素原子、窒素原子、および硫黄原子から選ばれた少なくとも1種の原子を含む連結基である。その好ましいものは、Xと同じである。 X 21 is a linking group containing at least one atom selected from an oxygen atom, a nitrogen atom, and a sulfur atom. Its Preferred are the same as X 1.
 R~Rは式(A)での定義と同義の基である。
 さらに、特定添加剤は下記式(c-1)~(c-4)のいずれかであることが好ましい。式中RABは式(A)または(B)の置換基である。Tは水素原子、式(A)または(B)の置換基、あるいはアルキル基(好ましくは炭素数1~12、より好ましくは炭素数1~8、特に好ましくは炭素数1~3)である。Lはアルキレン基(好ましくは炭素数1~12、より好ましくは炭素数1~8)またはアリーレン基(好ましくは炭素数6~14、より好ましくは炭素数6~10)である。Xは単結合またはアルキレン基(好ましくは炭素数1~12、より好ましくは炭素数1~8、特に好ましくは炭素数1~3)である。
Figure JPOXMLDOC01-appb-I000013
R 1 to R 3 are groups having the same definitions as in the formula (A).
Furthermore, the specific additive is preferably any one of the following formulas (c-1) to (c-4). In the formula, R AB is a substituent of the formula (A) or (B). T 1 is a hydrogen atom, a substituent of the formula (A) or (B), or an alkyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms, particularly preferably 1 to 3 carbon atoms). . L A is an alkylene group (preferably having 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms) or an arylene group (preferably having 6 to 14 carbon atoms, more preferably 6 to 10 carbon atoms) is. X 3 is a single bond or an alkylene group (preferably having 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms, particularly preferably 1 to 3 carbon atoms).
Figure JPOXMLDOC01-appb-I000013
 以下に、特定添加剤の具体例を示すが、本発明がこれにより限定して解釈されるものではない。 Specific examples of the specific additive are shown below, but the present invention is not construed as being limited thereto.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 特定添加剤の電解液中の濃度は特に限定されないが、電池の通常充電時の充放電を阻害せず、過充電時に十分なガス発生を促す観点から、電解液全量(電解質を含む)中、0.5質量%以上であり、1質量%以上であることが好ましく、2質量%以上であることが特に好ましい。上限は、10質量%以下であり、8質量%以下であることがより好ましく、5質量%未満であることがさらに好ましく、4.5質量%以下であることが特に好ましい。上記下限値以上とすることで良好な過充電防止性(ガス発生性)を得ることができる。上記上限値以下とすることで、電池の動作を阻害せず、良好な安定性および性能の維持性を得ることができる。とくに、この下限値が重要であり、通常の機能性添加剤とは異なり、十分量を適用することがガス発生量を確保する上で求められる。 The concentration of the specific additive in the electrolyte solution is not particularly limited, but from the viewpoint of promoting sufficient gas generation during overcharge without impeding charge / discharge during normal charging of the battery, 0.5 mass% or more, preferably 1 mass% or more, particularly preferably 2 mass% or more. The upper limit is 10% by mass or less, more preferably 8% by mass or less, further preferably less than 5% by mass, and particularly preferably 4.5% by mass or less. By setting it to the above lower limit or more, good overcharge prevention properties (gas generation properties) can be obtained. By setting it to the upper limit value or less, it is possible to obtain good stability and maintainability of performance without hindering the operation of the battery. In particular, this lower limit is important, and unlike a normal functional additive, it is required to apply a sufficient amount in order to secure the amount of gas generated.
[酸発生剤]
 本発明に係る電解液は、酸化を受けて酸を発生する官能基を有する酸発生剤を含有することが好ましい。具体的に、酸化を受けて酸を発生する官能基とは、酸化でカチオンラジカルが生成し、その後の反応によりHが放出する官能基であることが好ましい。これにより上記添加剤が連鎖的に分解し、速やかにガスを発生することができる。酸を発生する官能基としては特に限定されないが、アリール基(好ましくは炭素数6~22、より好ましくは炭素数6~10)、ヘテロ環基などが挙げられる。
[Acid generator]
The electrolytic solution according to the present invention preferably contains an acid generator having a functional group that generates an acid upon oxidation. Specifically, the functional group that generates an acid upon oxidation is preferably a functional group that generates a cation radical by oxidation and releases H + by a subsequent reaction. Thereby, the said additive decomposes | disassembles in a chain and can generate | occur | produce a gas rapidly. The functional group that generates an acid is not particularly limited, and examples thereof include an aryl group (preferably having 6 to 22 carbon atoms, more preferably 6 to 10 carbon atoms), a heterocyclic group, and the like.
 酸発生剤は具体的に、ヘテロ環化合物、ビフェニル化合物、アルキル置換ベンゼン化合物が挙げられる。ヘテロ環化合物はヘテロ環上に置換基を有してもよく、好ましい置換基はアルコキシ基(好ましくは炭素数1~12、より好ましくは炭素数1~6、特に好ましくは炭素数1~3)、アシルオキシ基(好ましくは炭素数1~12、より好ましくは炭素数1~6、特に好ましくは炭素数1~3)、アルキル基(好ましくは炭素数1~12、より好ましくは炭素数1~6、特に好ましくは炭素数1~4)、シクロアルキル基(好ましくは炭素数3~12、より好ましくは炭素数3~6)、アリール基(好ましくは炭素数6~22、より好ましくは炭素数6~10)である。
 ヘテロ環化合物としては、3~7員の含S、含N、含Oヘテロ環化合物(環を構成する炭素数として、3~6が好ましく、4~6がより好ましい)が挙げられる。なかでも、ピラゾール、トリアゾール、フラン、ピロール、チオフェン、インドール、トリアジン、イミダゾールなどが好ましくこれらの化合物は後述の置換基Tを有していてもよい。
 ビフェニル化合物は2つのベンゼン環が単結合で結合している部分構造を有しておりベンゼン環は置換基を有してもよく、好ましい置換基は、炭素数1~4のアルキル基(例えば、メチル、エチル、プロピル、t-ブチルなど)、炭素数6~10のアリール基(例えば、フェニル、ナフチルなど)である。
 ビフェニル化合物としては、具体的に、ビフェニル、o-テルフェニル、m-テルフェニル、p-テルフェニル、4-メチルビフェニル、4-エチルビフェニル、及び4-tert-ブチルビフェニルを挙げることができる。
 アルキル置換ベンゼン化合物は、炭素数1~10のアルキル基で置換されたベンゼン化合物が好ましく、具体的には、シクロヘキシルベンゼン、t-アミルベンゼン、t-ブチルベンゼンを挙げることができる。
Specific examples of the acid generator include heterocyclic compounds, biphenyl compounds, and alkyl-substituted benzene compounds. The heterocyclic compound may have a substituent on the heterocyclic ring, and a preferable substituent is an alkoxy group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms). An acyloxy group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms), an alkyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms). Particularly preferably 1 to 4 carbon atoms), a cycloalkyl group (preferably 3 to 12 carbon atoms, more preferably 3 to 6 carbon atoms), an aryl group (preferably 6 to 22 carbon atoms, more preferably 6 carbon atoms). To 10).
Examples of the heterocyclic compound include 3- to 7-membered S-containing, N-containing, and O-containing heterocyclic compounds (the number of carbon atoms constituting the ring is preferably 3 to 6, and more preferably 4 to 6). Of these, pyrazole, triazole, furan, pyrrole, thiophene, indole, triazine, imidazole and the like are preferable, and these compounds may have a substituent T described later.
The biphenyl compound has a partial structure in which two benzene rings are bonded by a single bond, and the benzene ring may have a substituent, and preferred substituents are alkyl groups having 1 to 4 carbon atoms (for example, Methyl, ethyl, propyl, t-butyl, etc.) and aryl groups having 6 to 10 carbon atoms (eg, phenyl, naphthyl, etc.).
Specific examples of the biphenyl compound include biphenyl, o-terphenyl, m-terphenyl, p-terphenyl, 4-methylbiphenyl, 4-ethylbiphenyl, and 4-tert-butylbiphenyl.
The alkyl-substituted benzene compound is preferably a benzene compound substituted with an alkyl group having 1 to 10 carbon atoms, and specific examples include cyclohexylbenzene, t-amylbenzene, and t-butylbenzene.
 本発明において酸発生剤は添加されていなくてもよく、過充電時に、電解液内で特定添加剤の分解が進行すればよい。この分解は、上述した反応機構あるいは別の反応機構を通じて反応を進行させてもよいが、上記連鎖反応によれば、酸発生剤を添加する場合でもその量を微量に抑えることができる。したがって、酸発生剤は添加するとしても微量でよく、その添加量は、電解液全量中(電解質を含む)、10質量%以下であることが好ましく、5質量%以下であることがより好ましく、3質量%以下であることがさらに好ましく、1質量%以下であることが特に好ましい。下限は特に限定されないが、添加する場合には、その効果を得る目的で、0.01質量%以上であることが好ましく、0.1質量%以上であることがより好ましく、0.3質量%以上であることが特に好ましい。 In the present invention, the acid generator may not be added, and the decomposition of the specific additive may proceed in the electrolyte during overcharge. In this decomposition, the reaction may proceed through the above-described reaction mechanism or another reaction mechanism. However, according to the chain reaction, even when an acid generator is added, the amount can be suppressed to a very small amount. Therefore, the acid generator may be added in a very small amount, and the addition amount thereof is preferably 10% by mass or less, more preferably 5% by mass or less, in the total amount of the electrolyte solution (including the electrolyte), It is more preferably 3% by mass or less, and particularly preferably 1% by mass or less. The lower limit is not particularly limited, but when added, for the purpose of obtaining the effect, it is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and 0.3% by mass. The above is particularly preferable.
 上記添加剤と上記酸発生剤の比率、添加剤/酸発生剤の比率(質量基準)が0.01~1000であることが好ましく、1~100であることがさらに好ましく、5~10であることがさらに好ましい。 The ratio of the additive to the acid generator, and the ratio of additive / acid generator (by mass) is preferably 0.01 to 1000, more preferably 1 to 100, and more preferably 5 to 10. More preferably.
(有機溶媒)
 本発明に用いられる有機溶媒としては、その20~95体積%が一級鎖状カーボネート化合物で構成されものを用いる。この理由は、一級鎖状カーボネートを含有させることで粘度を下げて電池性能を向上させるためである。一級鎖状カーボネート化合物としては、有機溶媒としては、例えば、炭酸ジメチル(DMC)、炭酸ジエチル(DEC)、炭酸エチルメチル(EMC)、炭酸メチルプロピル(メチルn-プロピルカーボネート)、エチレングリコールジメチルカーボネート、エチレングリコールジエチルカーボネート、プロピレングリコールジメチルカーボネート、などが挙げられる。これらは、一種単独で用いても2種以上を併用してもよい。一級直鎖カーボネート化合物の量は、さらに25体積%以上であることが好ましく、30体積%以上であることがより好ましい。上限は、さらに90体積%以下であることが好ましく、80体積%以下であることがより好ましく、70体積%以下であることが特に好ましい。
(Organic solvent)
As the organic solvent used in the present invention, an organic solvent in which 20 to 95% by volume is composed of a primary chain carbonate compound is used. The reason for this is to contain the primary chain carbonate to lower the viscosity and improve the battery performance. Examples of the primary chain carbonate compound include organic solvents such as dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), methyl propyl carbonate (methyl n-propyl carbonate), ethylene glycol dimethyl carbonate, Examples thereof include ethylene glycol diethyl carbonate and propylene glycol dimethyl carbonate. These may be used alone or in combination of two or more. The amount of the primary linear carbonate compound is further preferably 25% by volume or more, and more preferably 30% by volume or more. The upper limit is preferably 90% by volume or less, more preferably 80% by volume or less, and particularly preferably 70% by volume or less.
 組み合わせて用いることのできる有機溶媒に特に制限はないが、非プロトン性有機溶媒であることが好ましく、なかでも炭素数2~10の非プロトン性有機溶媒であることが好ましい。上記有機溶媒は、エーテル基、カルボニル基、エステル基、またはカーボネート基を有する化合物であることが好ましい。上記化合物は置換基を有していてもよく、その例として後記置換基Tが挙げられる。 The organic solvent that can be used in combination is not particularly limited, but is preferably an aprotic organic solvent, and more preferably an aprotic organic solvent having 2 to 10 carbon atoms. The organic solvent is preferably a compound having an ether group, a carbonyl group, an ester group, or a carbonate group. The said compound may have a substituent and the postscript substituent T is mentioned as the example.
 組み合わせることのできる有機溶媒としては、例えば、炭酸エチレン、炭酸プロピレン、炭酸ブチレン、γ-ブチロラクトン、γ-バレロラクトン、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、テトラヒドロピラン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、1,3-ジオキサン、1,4-ジオキサン、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、イソ酪酸メチル、トリメチル酢酸メチル、トリメチル酢酸エチル、アセトニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリル、3-メトキシプロピオニトリル、N,N-ジメチルホルムアミド、N-メチルピロリジノン、N-メチルオキサゾリジノン、N,N’-ジメチルイミダゾリジノン、ニトロメタン、ニトロエタン、スルホラン、燐酸トリメチル、ジメチルスルホキシドあるいはジメチルスルホキシド燐酸などが挙げられる。これらは、一種単独で用いても2種以上を併用してもよい。
 組み合わせて用いることのできる有機溶媒の量は、上記一級直鎖カーボネート化合物の量の残部を構成することが好ましい。
Examples of organic solvents that can be combined include ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, γ-valerolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran, 1,3- Dioxolane, 4-methyl-1,3-dioxolane, 1,3-dioxane, 1,4-dioxane, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, methyl butyrate, methyl isobutyrate, methyl trimethylacetate, trimethyl Ethyl acetate, acetonitrile, glutaronitrile, adiponitrile, methoxyacetonitrile, 3-methoxypropionitrile, N, N-dimethylformamide, N-methylpyrrolidinone, N-methyloxazolidinone, N, N'-dimethyli Dazorijinon, nitromethane, nitroethane, sulfolane, trimethyl phosphate, dimethyl sulfoxide, dimethyl sulfoxide phosphate and the like. These may be used alone or in combination of two or more.
The amount of organic solvent that can be used in combination preferably constitutes the remainder of the amount of the primary linear carbonate compound.
(機能性添加剤)
 本発明の電解液には、各種の機能性添加剤を含有させることが好ましい。この添加剤により発現させる機能としては、例えば、難燃性の向上、サイクル特性の良化、容量特性の改善が挙げられる。以下に、本発明の電解質に適用することが好ましい機能性添加剤の例を示す。
(Functional additives)
The electrolytic solution of the present invention preferably contains various functional additives. Examples of the function manifested by this additive include improved flame retardancy, improved cycle characteristics, and improved capacity characteristics. Examples of functional additives that are preferably applied to the electrolyte of the present invention are shown below.
<イミド化合物(A)>
 イミド化合物としては、耐酸化性の観点よりパーフルオロ基を有するスルホンイミド化合物が好ましく、具体的にはパーフルオロスルホイミドリチウム化合物が挙げられる。
イミド化合物として、具体的には下記の構造が挙げられ、より好ましくはCex1、Cex2である。
<Imide compound (A)>
As the imide compound, a sulfonimide compound having a perfluoro group is preferable from the viewpoint of oxidation resistance, and specifically, a perfluorosulfoimide lithium compound may be mentioned.
Specific examples of the imide compound include the following structures, and Cex1 and Cex2 are more preferable.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
<ハロゲン含有化合物(B)>
 ハロゲン含有化合物が有するハロゲン原子としてはフッ素原子、塩素原子、または、臭素原子が好ましく、フッ素原子がより好ましい。ハロゲン原子の数としては1~6個が好ましく、1~3個が更に好ましい。ハロゲン含有化合物としてはフッ素原子で置換されたカーボネート化合物、フッ素原子を有するポリエーテル化合物、フッ素置換芳香族化合物が好ましい。
 ハロゲン置換カーボネート化合物は鎖状、または、環状いずれでもよいが、イオン伝導性の観点から、電解質塩(例えばリチウムイオン)の配位性が高い環状カーボネート化合物が好ましく、5員環環状カーボネート化合物が特に好ましい。
 ハロゲン置換カーボネート化合物の好ましい具体例を以下に示す。この中でもBex1~Bex4の化合物が特に好ましく、Bex1が特に好ましい。
<Halogen-containing compound (B)>
The halogen atom contained in the halogen-containing compound is preferably a fluorine atom, a chlorine atom, or a bromine atom, and more preferably a fluorine atom. The number of halogen atoms is preferably 1 to 6, more preferably 1 to 3. The halogen-containing compound is preferably a carbonate compound substituted with a fluorine atom, a polyether compound having a fluorine atom, or a fluorine-substituted aromatic compound.
The halogen-substituted carbonate compound may be either linear or cyclic. From the viewpoint of ion conductivity, a cyclic carbonate compound having a high coordination property of an electrolyte salt (for example, lithium ion) is preferable, and a 5-membered cyclic carbonate compound is particularly preferable. preferable.
Preferred specific examples of the halogen-substituted carbonate compound are shown below. Among these, compounds of Bex1 to Bex4 are particularly preferable, and Bex1 is particularly preferable.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
<重合性化合物(C)>
 重合性化合物としては炭素-炭素二重結合を有する化合物が好ましく、ビニレンカーボネート、ビニルエチレンカーボネートなどの二重結合を有するカーボネート化合物、アクリレート基、メタクリレート基、シアノアクリレート基、αCFアクリレート基から選ばれる基を有する化合物、スチリル基を有する化合物が好ましく、二重結合を有するカーボネート化合物、あるいは重合性基を分子内に2つ以上有する化合物が更に好ましい。
<Polymerizable compound (C)>
The polymerizable compound is preferably a compound having a carbon-carbon double bond, and is selected from carbonate compounds having a double bond such as vinylene carbonate and vinyl ethylene carbonate, acrylate groups, methacrylate groups, cyanoacrylate groups, and αCF 3 acrylate groups. A compound having a group and a compound having a styryl group are preferable, and a carbonate compound having a double bond or a compound having two or more polymerizable groups in the molecule is more preferable.
<リン含有化合物(D)>
 リン含有化合物としては、リン酸エステル化合物、ホスファゼン化合物が好ましい。リン酸エステル化合物の好ましい例としては、リン酸トリメチル、リン酸トリエチル、リン酸トリフェニル、リン酸トリベンジルなどが挙げられる。リン含有化合物としては、下記式(D2)または(D3)で表される化合物も好ましい。
<Phosphorus-containing compound (D)>
As a phosphorus containing compound, a phosphate ester compound and a phosphazene compound are preferable. Preferable examples of the phosphate ester compound include trimethyl phosphate, triethyl phosphate, triphenyl phosphate, and tribenzyl phosphate. As the phosphorus-containing compound, a compound represented by the following formula (D2) or (D3) is also preferable.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 式中、RD4~RD11は1価の置換基を表す。1価の置換基の中で好ましくは、アルキル基、アリール基、アルコキシ基、アリールオキシ基、アミノ基、フッ素、塩素、臭素等のハロゲン原子である。RD4~RD11の置換基の少なくとも1つはフッ素原子であることが好ましく、アルコキシ基、アミノ基、フッ素原子からなる置換基がより好ましい。 In the formula, R D4 to R D11 each represent a monovalent substituent. Among the monovalent substituents, an alkyl group, an aryl group, an alkoxy group, an aryloxy group, an amino group, a halogen atom such as fluorine, chlorine or bromine is preferable. At least one of the substituents of R D4 to R D11 is preferably a fluorine atom, more preferably a substituent composed of an alkoxy group, an amino group, or a fluorine atom.
<硫黄含有化合物(E)>
 含硫黄化合物としては-SO-、-SO-、-OS(=O)O-結合を有する化合物が好ましく、プロパンサルトン、プロペンサルトン、エチレンサルファイトなどの環状含硫黄化合物、スルホン酸エステル類が好ましい。
<Sulfur-containing compound (E)>
As the sulfur-containing compound, a compound having —SO 2 —, —SO 3 —, —OS (═O) O— bond is preferable, and cyclic sulfur-containing compounds such as propane sultone, propene sultone, ethylene sulfite, and sulfonic acid Esters are preferred.
 含硫黄環状化合物としては、下記式(E1)、(E2)で表される化合物が好ましい。 As the sulfur-containing cyclic compound, compounds represented by the following formulas (E1) and (E2) are preferable.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 式中、XE1、XE2はそれぞれ独立に、-O-、-C(Ra)(Rb)-を表す。ここで、Ra、Rbは、それぞれ独立に、水素原子、または置換基を表す。置換基として、好ましくは炭素数1~8のアルキル基、フッ素原子、炭素数の6~12のアリール基である。αは5~6員環を形成するのに必要な原子群を表す。αの骨格は炭素原子のほか、硫黄原子、酸素原子などを含んでもよい。αは置換されていてもよく、置換基としては置換基Tがあげられ、好ましくはアルキル基、フッ素原子、アリール基である。 In the formula, X E1 and X E2 each independently represent —O— or —C (Ra) (Rb) —. Here, Ra and Rb each independently represent a hydrogen atom or a substituent. As the substituent, an alkyl group having 1 to 8 carbon atoms, a fluorine atom, and an aryl group having 6 to 12 carbon atoms are preferable. α represents an atomic group necessary for forming a 5- to 6-membered ring. The skeleton of α may contain a sulfur atom, an oxygen atom, etc. in addition to a carbon atom. α may be substituted, and examples of the substituent include a substituent T, preferably an alkyl group, a fluorine atom, and an aryl group.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
<ケイ素含有化合物(F)>
ケイ素含有化合物としては、下記式(F1)または(F2)で表される化合物が好ましい。
<Silicon-containing compound (F)>
As the silicon-containing compound, a compound represented by the following formula (F1) or (F2) is preferable.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 RF1はアルキル基、アルケニル基、アシル基、アシルオキシ基、または、アルコキシカルボニル基を表す。
 RF2はアルキル基、アルケニル基、アルキニル基、又はアルコキシ基を表す。
 なお、1つの式に複数あるRF1及びRF2はそれぞれ異なっていても同じであってもよい。
R F1 represents an alkyl group, an alkenyl group, an acyl group, an acyloxy group, or an alkoxycarbonyl group.
R F2 represents an alkyl group, an alkenyl group, an alkynyl group, or an alkoxy group.
A plurality of R F1 and R F2 in one formula may be different or the same.
<ニトリル化合物(G)>
 ニトリル化合物としては、下記式(G)で表される化合物が好ましい。
<Nitrile compound (G)>
As the nitrile compound, a compound represented by the following formula (G) is preferable.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 式中、RG1~RG3はそれぞれ独立に水素原子、アルキル基、アルコキシカルボニル基、アリールオキシカルボニル基、シアノ基、カルバモイル基、スルホニル基、またはホスホニル基を表す。各置換基の好ましいものは、置換基Tの例を参照することができるが、なかでも、RG1~RG3のいずれか一つ以上がシアノ基を複数有する化合物が好ましい。 In the formula, R G1 to R G3 each independently represent a hydrogen atom, an alkyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, a cyano group, a carbamoyl group, a sulfonyl group, or a phosphonyl group. As examples of the preferable substituents, examples of the substituent T can be referred to, and among them, a compound in which any one of R G1 to R G3 has a plurality of cyano groups is preferable.
・ngは1~8の整数を表す。 -Ng represents an integer of 1-8.
 式(G)で表される化合物の具体例としては、アセトニトリル、プロピオニトリル、イソブチロニトリル、スクシノニトリル、マロノニトリル、グルタロニトリル、アジポニトリル、2メチルグルタノニトリル、ヘキサントリカルボニトリル、プロパンテトラカルボニトリル等が好ましい。特に好ましくは、スクシノニトリル、マロノニトリル、グルタロニトリル、アジポニトリル、2メチルグルタノニトリル、ヘキサントリカルボニトリル、プロパンテトラカルボニトリルである。 Specific examples of the compound represented by the formula (G) include acetonitrile, propionitrile, isobutyronitrile, succinonitrile, malononitrile, glutaronitrile, adiponitrile, 2-methylglutanonitrile, hexanetricarbonitrile, propane. Tetracarbonitrile and the like are preferable. Particularly preferred are succinonitrile, malononitrile, glutaronitrile, adiponitrile, 2-methylglutanonitrile, hexanetricarbonitrile, and propanetetracarbonitrile.
<金属錯体化合物(H)>
 金属錯体化合物としては、遷移金属錯体もしくは希土類錯体が好ましい。なかでも、下記式(H-1)~(H-3)のいずれかで表される錯体が好ましい。
<Metal complex compound (H)>
As the metal complex compound, a transition metal complex or a rare earth complex is preferable. Of these, complexes represented by any of the following formulas (H-1) to (H-3) are preferred.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 式中、XおよびYは、それぞれ、メチル基、n-ブチル基、ビス(トリメチルシリル)アミノ基、チオイソシアン酸基であり、X,Yが縮環して環状アルケニル基(ブタジエン配位型メタラサイクル)を形成してもよい。式中、Mは遷移元素または希土類元素を表す。具体的にMは、Fe、Ru、Cr、V、Ta、Mo、Ti、Zr、Hf、Y、La、Ce、Sw、Nd、Lu、Er、Yb、Gdであることが好ましい。m,nは0≦m+n≦3を満たす整数である。n+mは1以上であることが好ましい。n、mが2以上であるとき、そこで規定される2以上の基はそれぞれ異なっていてもよい。 In the formula, X H and Y H are a methyl group, an n-butyl group, a bis (trimethylsilyl) amino group, and a thioisocyanate group, respectively, and X H and Y H are condensed to form a cyclic alkenyl group (butadiene group). (Positional metallacycle) may be formed. In the formula, MH represents a transition element or a rare earth element. Specifically, MH is preferably Fe, Ru, Cr, V, Ta, Mo, Ti, Zr, Hf, Y, La, Ce, Sw, Nd, Lu, Er, Yb, and Gd. m H and n H are integers satisfying 0 ≦ m H + n H ≦ 3. n H + m H is preferably 1 or more. When n H and m H are 2 or more, the 2 or more groups defined therein may be different from each other.
 上記金属錯体化合物は下記式(H-4)で表される部分構造を有する化合物も好ましい。
 
    M-(NR1H2H)q  ・・・ 式(H-4)
 
The metal complex compound is also preferably a compound having a partial structure represented by the following formula (H-4).

M H — (NR 1H R 2H ) q H Formula (H-4)
 式中、Mは遷移元素または希土類元素を表し、式(H-1)~(H-3)と同義である。 In the formula, MH represents a transition element or a rare earth element and is synonymous with formulas (H-1) to (H-3).
 R1H,R2Hは水素、アルキル基(好ましい炭素数は1~6)、アルケニル基(好ましい炭素数は2~6)、アルキニル基(好ましい炭素数は2~6)、アリール基(好ましい炭素数は6~14)、ヘテロアリール基(好ましい炭素数は3~6)、アルキルシリル基(好ましい炭素数は1~6)、またはハロゲンを表す。R1H,R2Hは互いに連結されていてもよい。R1H,R2Hはそれぞれあるいは連結して環を形成していてもよい。R1H,R2Hの好ましいものとしては、後記置換基Tの例が挙げられる。なかでも、メチル基、エチル基、トリメチルシリル基が好ましい。
 qは1~4の整数を表し、2~4の整数が好ましい。更に好ましくは2または4である。qが2以上のとき、そこで規定される複数の基は互いに同じでも異なっていてもよい。
R 1H and R 2H are hydrogen, an alkyl group (preferably having a carbon number of 1 to 6), an alkenyl group (preferably having a carbon number of 2 to 6), an alkynyl group (preferably having a carbon number of 2 to 6), and an aryl group (preferably having a carbon number). Represents a heteroaryl group (preferably having a carbon number of 3 to 6), an alkylsilyl group (preferably having a carbon number of 1 to 6), or a halogen. R 1H and R 2H may be linked to each other. R 1H and R 2H may each be connected to form a ring. Preferable examples of R 1H and R 2H include examples of the substituent T described later. Of these, a methyl group, an ethyl group, and a trimethylsilyl group are preferable.
q H represents an integer of 1 to 4, preferably an integer of 2 to 4. More preferably, it is 2 or 4. When q H is 2 or more, where a plurality of groups as defined may be the same or different from each other.
 金属錯体化合物は、下記式のいずれかで表される化合物も好ましい。
Figure JPOXMLDOC01-appb-C000024
The metal complex compound is also preferably a compound represented by any of the following formulas.
Figure JPOXMLDOC01-appb-C000024
・M
 中心金属Mは、Ti、Zr、ZrO、Hf、V、Cr、Fe、Ceが特に好ましく、Ti、Zr、Hf、V、Crが最も好ましい。
・ M h
The central metal M h is, Ti, Zr, ZrO, Hf , V, Cr, Fe, Ce is particularly preferred, Ti, Zr, Hf, V , Cr is the most preferred.
・R3h、R5h、R7h~R10h
 これらは置換基を表す。なかでも、アルキル基、アルコキシ基、アリール基、アルケニル基、ハロゲン原子が好ましく、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数6~12のアリール基、炭素数2~6のアルケニル基がより好ましく、メチル、エチル、プロピル、イソプロピル、イソブチル、t-ブチル、パーフルオロメチル、メトキシ、フェニル、エテニルであることが好ましい。
・ R 3h , R 5h , R 7h to R 10h
These represent substituents. Of these, an alkyl group, an alkoxy group, an aryl group, an alkenyl group, and a halogen atom are preferable. An alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, and 2 carbon atoms. More preferred are alkenyl groups of 6 to 6 and are preferably methyl, ethyl, propyl, isopropyl, isobutyl, t-butyl, perfluoromethyl, methoxy, phenyl, ethenyl.
・R33h、R55h
 R33h、R55hは水素原子またはR3hの置換基を表す。
・ R 33h , R 55h
R 33h and R 55h represent a hydrogen atom or a substituent of R 3h .
・Y
 Yは、炭素数1~6のアルキル基またはビス(トリアルキルシリル)アミノ基が好ましく、メチル基またはビス(トリメチルシリル)アミノ基がより好ましい。
・ Y h
Y h is preferably an alkyl group having 1 to 6 carbon atoms or a bis (trialkylsilyl) amino group, and more preferably a methyl group or a bis (trimethylsilyl) amino group.
・l、m、o
 l、m、oは0~3の整数を表し、0~2の整数が好ましい。l、m、oが2以上のとき、そこで規定される複数の構造部は互いに同じであっても、異なっていてもよい。
· L h, m h, o h
l h , m h , and o h represent an integer of 0 to 3, and an integer of 0 to 2 is preferable. When l h , m h , and o h are 2 or more, the plurality of structural portions defined therein may be the same as or different from each other.
・L
 Lはアルキレン基、アリーレン基が好ましく、炭素数3~6のシクロアルキレン基、炭素数6~14のアリーレン基がより好ましく、シクロヘキシレン、フェニレンがさらに好ましい。
・ L h
L h is preferably an alkylene group or an arylene group, more preferably a cycloalkylene group having 3 to 6 carbon atoms or an arylene group having 6 to 14 carbon atoms, and further preferably cyclohexylene or phenylene.
 本発明の電解液には、上記のものを始め、負極被膜形成剤、難燃剤、過充電防止剤等から選ばれる少なくとも1種を含有していてもよい。非水電解液中におけるこれら機能性添加剤の含有割合は特に限定はないが、非水電解液全体(電解質を含む)に対し、それぞれ、0.001質量%~10質量%が好ましい。これらの化合物を添加することにより、過充電による異常時に電池の破裂を抑制したり、高温保存後の容量維持特性やサイクル特性を向上させたりすることができる。 The electrolytic solution of the present invention may contain at least one selected from the above, a negative electrode film forming agent, a flame retardant, an overcharge preventing agent and the like. The content ratio of these functional additives in the nonaqueous electrolytic solution is not particularly limited, but is preferably 0.001% by mass to 10% by mass with respect to the entire nonaqueous electrolytic solution (including the electrolyte). By adding these compounds, it is possible to suppress the rupture of the battery at the time of abnormality due to overcharge, or to improve the capacity maintenance characteristic and cycle characteristic after high temperature storage.
 上記例示化合物は任意の置換基Tを有していてもよい。
 置換基Tとしては、下記のものが挙げられる。
 アルキル基(好ましくは炭素数1~20のアルキル基、例えばメチル、エチル、イソプロピル、t-ブチル、ペンチル、ヘプチル、1-エチルペンチル、ベンジル、2-エトキシエチル、1-カルボキシメチル等)、アルケニル基(好ましくは炭素数2~20のアルケニル基、例えば、ビニル、アリル、オレイル等)、アルキニル基(好ましくは炭素数2~20のアルキニル基、例えば、エチニル、ブタジイニル、フェニルエチニル等)、シクロアルキル基(好ましくは炭素数3~20のシクロアルキル基、例えば、シクロプロピル、シクロペンチル、シクロヘキシル、4-メチルシクロヘキシル等)、アリール基(好ましくは炭素数6~26のアリール基、例えば、フェニル、1-ナフチル、4-メトキシフェニル、2-クロロフェニル、3-メチルフェニル等)、ヘテロ環基(好ましくは炭素数2~20のヘテロ環基、好ましくは、少なくとも1つの酸素原子、硫黄原子、窒素原子を有する5または6員環のヘテロ環基が好ましく、例えば、2-ピリジル、4-ピリジル、2-イミダゾリル、2-ベンゾイミダゾリル、2-チアゾリル、2-オキサゾリル等)、アルコキシ基(好ましくは炭素数1~20のアルコキシ基、例えば、メトキシ、エトキシ、イソプロピルオキシ、ベンジルオキシ等)、アリールオキシ基(好ましくは炭素数6~26のアリールオキシ基、例えば、フェノキシ、1-ナフチルオキシ、3-メチルフェノキシ、4-メトキシフェノキシ等)、アルコキシカルボニル基(好ましくは炭素数2~20のアルコキシカルボニル基、例えば、エトキシカルボニル、2-エチルヘキシルオキシカルボニル等)、アミノ基(好ましくは炭素数0~20のアミノ基、アルキルアミノ基、アリールアミノ基を含み、例えば、アミノ、N,N-ジメチルアミノ、N,N-ジエチルアミノ、N-エチルアミノ、アニリノ等)、スルファモイル基(好ましくは炭素数0~20のスルホンアミド基、例えば、N,N-ジメチルスルファモイル、N-フェニルスルファモイル等)、アシル基(好ましくは炭素数1~20のアシル基、例えば、アセチル、プロピオニル、ブチリル、ベンゾイル等)、アシルオキシ基(好ましくは炭素数1~20のアシルオキシ基、例えば、アセチルオキシ、ベンゾイルオキシ等)、カルバモイル基(好ましくは炭素数1~20のカルバモイル基、例えば、N,N-ジメチルカルバモイル、N-フェニルカルバモイル等)、アシルアミノ基(好ましくは炭素数1~20のアシルアミノ基、例えば、アセチルアミノ、ベンゾイルアミノ等)、スルホンアミド基(好ましくは炭素数0~20のスルファモイル基、例えば、メタンスルホンアミド、ベンゼンスルホンアミド、N-メチルメタンスルホンアミド、N-エチルベンゼンスルホンアミド等)、アルキルチオ基(好ましくは炭素数1~20のアルキルチオ基、例えば、メチルチオ、エチルチオ、イソプロピルチオ、ベンジルチオ等)、アリールチオ基(好ましくは炭素数6~26のアリールチオ基、例えば、フェニルチオ、1-ナフチルチオ、3-メチルフェニルチオ、4-メトキシフェニルチオ等)、アルキルもしくはアリールスルホニル基(好ましくは炭素数1~20のアルキルもしくはアリールスルホニル基、例えば、メチルスルホニル、エチルスルホニル、ベンゼンスルホニル等)、ヒドロキシル基、シアノ基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等)であり、より好ましくはアルキル基、アルケニル基、アリール基、ヘテロ環基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アミノ基、アシルアミノ基、ヒドロキシル基またはハロゲン原子であり、特に好ましくはアルキル基、アルケニル基、ヘテロ環基、アルコキシ基、アルコキシカルボニル基、アミノ基、アシルアミノ基またはヒドロキシル基である。
 また、これらの置換基Tで挙げた各基は、上記の置換基Tがさらに置換していてもよい。
The above exemplary compounds may have an arbitrary substituent T.
Examples of the substituent T include the following.
An alkyl group (preferably an alkyl group having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.), alkenyl group (Preferably an alkenyl group having 2 to 20 carbon atoms, such as vinyl, allyl, oleyl, etc.), alkynyl group (preferably an alkynyl group having 2 to 20 carbon atoms, such as ethynyl, butadiynyl, phenylethynyl, etc.), cycloalkyl group (Preferably a cycloalkyl group having 3 to 20 carbon atoms such as cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl, etc.), an aryl group (preferably an aryl group having 6 to 26 carbon atoms such as phenyl, 1-naphthyl, etc. 4-methoxyphenyl, 2-chlorophenyl, -Methylphenyl, etc.), a heterocyclic group (preferably a heterocyclic group having 2 to 20 carbon atoms, preferably a 5- or 6-membered heterocyclic group having at least one oxygen atom, sulfur atom, nitrogen atom, For example, 2-pyridyl, 4-pyridyl, 2-imidazolyl, 2-benzimidazolyl, 2-thiazolyl, 2-oxazolyl and the like, an alkoxy group (preferably an alkoxy group having 1 to 20 carbon atoms, such as methoxy, ethoxy, isopropyloxy , Benzyloxy, etc.), aryloxy groups (preferably aryloxy groups having 6 to 26 carbon atoms, such as phenoxy, 1-naphthyloxy, 3-methylphenoxy, 4-methoxyphenoxy, etc.), alkoxycarbonyl groups (preferably carbon A number 2 to 20 alkoxycarbonyl group such as ethoxycarbonyl 2-ethylhexyloxycarbonyl, etc.), amino groups (preferably containing amino groups having 0 to 20 carbon atoms, alkylamino groups, arylamino groups, such as amino, N, N-dimethylamino, N, N-diethylamino, N -Ethylamino, anilino, etc.), sulfamoyl groups (preferably sulfonamido groups having 0 to 20 carbon atoms, such as N, N-dimethylsulfamoyl, N-phenylsulfamoyl etc.), acyl groups (preferably carbon atoms) 1 to 20 acyl groups such as acetyl, propionyl, butyryl and benzoyl), acyloxy groups (preferably 1 to 20 carbon atoms such as acetyloxy and benzoyloxy), carbamoyl groups (preferably carbon atoms) 1 to 20 carbamoyl groups such as N, N-dimethylcarbamoyl, N— Phenylcarbamoyl, etc.), acylamino groups (preferably acylamino groups having 1 to 20 carbon atoms, such as acetylamino, benzoylamino, etc.), sulfonamido groups (preferably sulfamoyl groups having 0 to 20 carbon atoms, such as methanesulfonamide, Benzenesulfonamide, N-methylmethanesulfonamide, N-ethylbenzenesulfonamide, etc.), alkylthio group (preferably an alkylthio group having 1 to 20 carbon atoms, such as methylthio, ethylthio, isopropylthio, benzylthio, etc.), arylthio group (preferably Is an arylthio group having 6 to 26 carbon atoms, such as phenylthio, 1-naphthylthio, 3-methylphenylthio, 4-methoxyphenylthio, etc., an alkyl or arylsulfonyl group (preferably an alkyl having 1 to 20 carbon atoms) Or an arylsulfonyl group such as methylsulfonyl, ethylsulfonyl, and benzenesulfonyl), a hydroxyl group, a cyano group, and a halogen atom (such as a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom), and more preferably an alkyl group. , Alkenyl group, aryl group, heterocyclic group, alkoxy group, aryloxy group, alkoxycarbonyl group, amino group, acylamino group, hydroxyl group or halogen atom, particularly preferably alkyl group, alkenyl group, heterocyclic group, alkoxy group Group, alkoxycarbonyl group, amino group, acylamino group or hydroxyl group.
In addition, each of the groups listed as the substituent T may be further substituted with the substituent T described above.
 本明細書において、化合物ないし置換基・連結基等がアルキル基・アルキレン基、アルケニル基・アルケニレン基等を含むとき、これらは環状でも鎖状でもよく、また直鎖でも分岐していてもよく、上記のように置換されていても無置換でもよい。またアリール基、ヘテロ環基等を含むとき、それらは単環でも縮環でもよく、同様に置換されていても無置換でもよい。 In the present specification, when a compound or a substituent / linking group includes an alkyl group / alkylene group, an alkenyl group / alkenylene group, etc., these may be cyclic or chain-like, and may be linear or branched, It may be substituted as described above or may be unsubstituted. Moreover, when an aryl group, a heterocyclic group, etc. are included, they may be monocyclic or condensed and may be similarly substituted or unsubstituted.
(電解質)
 本発明の電解液に用いる電解質は周期律表第一族又は第二族に属する金属イオンの塩であることが好ましい。その材料は電解液の使用目的により適宜選択される。例えば、リチウム塩、カリウム塩、ナトリウム塩、カルシウム塩、マグネシウム塩などが挙げられ、二次電池などに使用される場合には、出力の観点からリチウム塩が好ましい。本発明の電解液をリチウム二次電池用非水系電解液の電解質として用いる場合には、金属イオンの塩としてリチウム塩を選択すればよい。リチウム塩としては、リチウム二次電池用非水系電解液の電解質に通常用いられるリチウム塩であれば特に制限はないが、例えば、以下に述べるものが好ましい。
(Electrolytes)
The electrolyte used in the electrolytic solution of the present invention is preferably a salt of a metal ion belonging to Group 1 or Group 2 of the Periodic Table. The material is appropriately selected depending on the intended use of the electrolytic solution. For example, lithium salt, potassium salt, sodium salt, calcium salt, magnesium salt and the like can be mentioned. When used in a secondary battery or the like, lithium salt is preferable from the viewpoint of output. When the electrolytic solution of the present invention is used as an electrolyte of a non-aqueous electrolytic solution for a lithium secondary battery, a lithium salt may be selected as a metal ion salt. The lithium salt is not particularly limited as long as it is a lithium salt usually used for an electrolyte of a non-aqueous electrolyte solution for a lithium secondary battery. For example, those described below are preferable.
 (L-1)無機リチウム塩:LiPF、LiBF、LiAsF、LiSbF等の無機フッ化物塩;LiClO、LiBrO、LiIO等の過ハロゲン酸塩;LiAlCl等の無機塩化物塩等。 (L-1) Inorganic lithium salts: inorganic fluoride salts such as LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 ; perhalogenates such as LiClO 4 , LiBrO 4 , LiIO 4 ; inorganic chloride salts such as LiAlCl 4 etc.
 (L-2)含フッ素有機リチウム塩:LiCFSO等のパーフルオロアルカンスルホン酸塩;LiN(CFSO、LiN(CFCFSO、LiN(FSO、LiN(CFSO)(CSO)等のパーフルオロアルカンスルホニルイミド塩;LiC(CFSO等のパーフルオロアルカンスルホニルメチド塩;Li[PF(CFCFCF)]、Li[PF(CFCFCF]、Li[PF(CFCFCF]、Li[PF(CFCFCFCF)]、Li[PF(CFCFCFCF]、Li[PF(CFCFCFCF]等のフルオロアルキルフッ化リン酸塩等。 (L-2) Fluorine-containing organic lithium salt: perfluoroalkane sulfonate such as LiCF 3 SO 3 ; LiN (CF 3 SO 2 ) 2 , LiN (CF 3 CF 2 SO 2 ) 2 , LiN (FSO 2 ) 2 , Perfluoroalkanesulfonylimide salts such as LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ); perfluoroalkanesulfonylmethide salts such as LiC (CF 3 SO 2 ) 3 ; Li [PF 5 (CF 2 CF 2 CF 3 )], Li [PF 4 (CF 2 CF 2 CF 3 ) 2 ], Li [PF 3 (CF 2 CF 2 CF 3 ) 3 ], Li [PF 5 (CF 2 CF 2 CF 2 CF 3 )], Li [PF 4 ( CF 2 CF 2 CF 2 CF 3) 2], Li [PF 3 (CF 2 CF 2 CF 2 CF 3) 3] fluoroalkyl fluoride such as potash Acid salts, and the like.
 (L-3)オキサラトボレート塩:リチウムビス(オキサラト)ボレート、リチウムジフルオロオキサラトボレート等。
 これらのなかで、LiPF、LiBF、LiAsF、LiSbF、LiClO、Li(RfSO)、LiN(RfSO、LiN(FSO、及びLiN(RfSO)(RfSO)が好ましく、LiPF、LiBF、LiN(RfSO、LiN(FSO、及びLiN(RfSO)(RfSO)などのリチウムイミド塩がさらに好ましい。ここで、Rf、Rfはそれぞれパーフルオロアルキル基を示す。
 なお、電解液に用いる電解質は、1種を単独で使用しても、2種以上を任意に組み合わせてもよい。
 電解液における電解質(周期律表第一族又は第二族に属する金属のイオンもしくはその金属塩)の含有量は、以下に電解液の調製法で述べる好ましい塩濃度となる量で添加される。塩濃度は電解液の使用目的により適宜選択されるが、一般的には電解液全質量中10質量%~50質量%であり、さらに好ましくは15質量%~30質量%である。なお、イオンの濃度として評価するときには、その好適に適用される金属との塩換算で算定されればよい。
(L-3) Oxalatoborate salt: lithium bis (oxalato) borate, lithium difluorooxalatoborate and the like.
Among these, LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 , LiClO 4 , Li (Rf 1 SO 3 ), LiN (Rf 1 SO 2 ) 2 , LiN (FSO 2 ) 2 , and LiN (Rf 1 SO 2 ) (Rf 2 SO 2 ), preferably LiPF 6 , LiBF 4 , LiN (Rf 1 SO 2 ) 2 , LiN (FSO 2 ) 2 , and LiN (Rf 1 SO 2 ) (Rf 2 SO 2 ) More preferred are imide salts. Here, Rf 1 and Rf 2 each represent a perfluoroalkyl group.
In addition, the electrolyte used for electrolyte solution may be used individually by 1 type, or may combine 2 or more types arbitrarily.
The content of the electrolyte (metal ions belonging to Group 1 or Group 2 of the periodic table or a metal salt thereof) in the electrolytic solution is added in an amount that provides a preferable salt concentration described below in the method for preparing the electrolytic solution. The salt concentration is appropriately selected depending on the intended use of the electrolytic solution, but is generally 10% to 50% by mass, more preferably 15% to 30% by mass, based on the total mass of the electrolytic solution. In addition, when evaluating as an ion density | concentration, what is necessary is just to calculate by salt conversion with the metal applied suitably.
[電解液の調製方法等]
 本発明の非水二次電池用電解液は、金属イオンの塩としてリチウム塩を用いた例を含め、上記各成分を上記非水電解液溶媒に溶解して、常法により調製される。
[Method for preparing electrolytic solution]
The electrolyte solution for a non-aqueous secondary battery of the present invention is prepared by a conventional method by dissolving the above components in the non-aqueous electrolyte solvent, including an example in which a lithium salt is used as a metal ion salt.
 本発明において、「非水」とは水を実質的に含まないことをいい、発明の効果を妨げない範囲で微量の水を含んでいてもよい。良好な特性を得ることを考慮して言うと、水の含有量が200ppm(質量基準)以下であることが好ましく、100ppm以下であることがより好ましく20ppm以下であることが更に好ましい。下限値は特にないが、不可避的な混入を考慮すると、1ppm以上であることが実際的である。本発明の電解液の粘度は特に限定されないが、25℃において、10~0.1mPa・sであることが好ましく、5~0.5mPa・sであることがより好ましい。
 本発明において電解液の粘度は特に断らない限り、以下の測定方法で測定した値によるものとする。
In the present invention, “non-water” means that water is not substantially contained, and a trace amount of water may be contained as long as the effects of the invention are not hindered. In view of obtaining good characteristics, the water content is preferably 200 ppm (mass basis) or less, more preferably 100 ppm or less, and even more preferably 20 ppm or less. Although there is no lower limit in particular, it is practical that it is 1 ppm or more considering inevitable mixing. The viscosity of the electrolytic solution of the present invention is not particularly limited, but it is preferably 10 to 0.1 mPa · s, more preferably 5 to 0.5 mPa · s at 25 ° C.
In the present invention, the viscosity of the electrolytic solution is based on the value measured by the following measuring method unless otherwise specified.
<粘度の測定方法>
 粘度は以下の方法で測定した値を言うこととする。サンプル1mLをレオメーター(CLS 500)に入れ、直径4cm/2°のSteel Cone(共に、TA Instrumennts社製)を用いて測定する。サンプルは予め測定開始温度にて温度が一定となるまで保温しておき、測定はその後に開始する。測定温度は25℃とする。
<Measurement method of viscosity>
The viscosity is a value measured by the following method. 1 mL of a sample is put into a rheometer (CLS 500) and measured using a Steel Cone (both manufactured by TA Instruments) having a diameter of 4 cm / 2 °. The sample is kept warm in advance until the temperature becomes constant at the measurement start temperature, and the measurement starts thereafter. The measurement temperature is 25 ° C.
[二次電池]
 本発明においては上記非水電解液を含有する非水二次電池とすることが好ましい。好ましい実施形態として、リチウムイオン二次電池についてその機構を模式化して示した図1を参照して説明する。本実施形態のリチウムイオン二次電池10は、上記本発明の非水二次電池用電解液5と、リチウムイオンの挿入放出が可能な正極C(正極集電体1,正極活物質層2)と、リチウムイオンの挿入放出又は溶解析出が可能な負極A(負極集電体3,負極活物質層4)とを備える。これら必須の部材に加え、電池が使用される目的、電位の形状などを考慮し、正極と負極の間に配設されるセパレータ9、集電端子(図示せず)、及び外装ケース等(図示せず)を含んで構成されてもよい。必要に応じて、電池の内部及び電池の外部の少なくともいずれかに保護素子を装着してもよい。このような構造とすることにより、電解液5内でリチウムイオンの授受a,bが生じ、充電α、放電βを行うことができ、回路配線7を介して動作機構6を介して運転あるいは蓄電を行うことができる。以下、本発明の好ましい実施形態であるリチウム二次電池の構成について、さらに詳細に説明する。
[Secondary battery]
In this invention, it is preferable to set it as the non-aqueous secondary battery containing the said non-aqueous electrolyte. As a preferred embodiment, a lithium ion secondary battery will be described with reference to FIG. 1 schematically showing the mechanism. The lithium ion secondary battery 10 of this embodiment includes the electrolyte solution 5 for a non-aqueous secondary battery of the present invention and a positive electrode C capable of inserting and releasing lithium ions (a positive electrode current collector 1 and a positive electrode active material layer 2). And a negative electrode A (negative electrode current collector 3, negative electrode active material layer 4) capable of inserting and releasing lithium ions or dissolving and depositing lithium ions. In addition to these essential members, considering the purpose of use of the battery, the shape of the potential, etc., a separator 9 disposed between the positive electrode and the negative electrode, a current collecting terminal (not shown), an outer case, etc. (Not shown). If necessary, a protective element may be attached to at least one of the inside of the battery and the outside of the battery. By adopting such a structure, lithium ion transfer a and b occurs in the electrolytic solution 5, charging α and discharging β can be performed, and operation or power storage is performed via the operation mechanism 6 via the circuit wiring 7. It can be performed. Hereinafter, the configuration of the lithium secondary battery which is a preferred embodiment of the present invention will be described in more detail.
(電池形状)
 本実施形態のリチウム二次電池が適用される電池形状には、特に制限はなく、例えば、有底筒型形状、有底角型形状、薄型形状、シート形状、及び、ペーパー形状などが挙げられ、これらのいずれであってもよい。また、組み込まれるシステムや機器の形を考慮した馬蹄形や櫛型形状等の異型のものであってもよい。なかもで、電池内部の熱を効率よく外部に放出する観点から、比較的平らで大面積の面を少なくとも一つを有する有底角型形状や薄型形状などの角型形状が好ましい。
(Battery shape)
The battery shape to which the lithium secondary battery of the present embodiment is applied is not particularly limited, and examples thereof include a bottomed cylindrical shape, a bottomed square shape, a thin shape, a sheet shape, and a paper shape. Any of these may be used. Further, it may be of a different shape such as a horseshoe shape or a comb shape considering the shape of the system or device to be incorporated. Among them, from the viewpoint of efficiently releasing the heat inside the battery to the outside, a square shape such as a bottomed square shape or a thin shape having at least one surface that is relatively flat and has a large area is preferable.
 有底筒型形状の電池では、充填される発電素子に対する外表面積が小さくなるので、充電や放電時に内部抵抗による発生するジュール発熱を効率よく外部に逃げる設計にすることが好ましい。また、熱伝導性の高い物質の充填比率を高め、内部での温度分布が小さくなるように設計することが好ましい。図2は、有底筒型形状リチウム二次電池100の例である。この電池は、セパレータ12を介して重ね合わせた正極シート14、負極シート16を巻回して外装缶18内に収納した有底筒型リチウム二次電池100となっている。 In the case of a battery having a bottomed cylindrical shape, since the outer surface area with respect to the power generating element to be filled becomes small, it is preferable to design so that Joule heat generated by the internal resistance at the time of charging or discharging efficiently escapes to the outside. Moreover, it is preferable to design so that the filling ratio of the substance having high thermal conductivity is increased and the temperature distribution inside is reduced. FIG. 2 is an example of a bottomed cylindrical lithium secondary battery 100. This battery is a bottomed cylindrical lithium secondary battery 100 in which a positive electrode sheet 14 and a negative electrode sheet 16 overlapped with a separator 12 are wound and accommodated in an outer can 18.
 有底角型形状では、一番大きい面の面積S(端子部を除く外形寸法の幅と高さとの積、単位cm)の2倍と電池外形の厚さT(単位cm)との比率2S/Tの値が100以上であることが好ましく、200以上であることが更に好適である。最大面を大きくすることにより高出力かつ大容量の電池であってもサイクル性や高温保存等の特性を向上させるとともに、異常発熱時の放熱効率を上げることができ、後述する「弁作動」や「破裂」という状態になることを抑制することができる。 In the bottomed square shape, the ratio of the area S of the largest surface (the product of the width and height of the outer dimensions excluding the terminal portion, unit cm 2 ) to the thickness T (unit cm) of the battery outer shape The 2S / T value is preferably 100 or more, and more preferably 200 or more. By increasing the maximum surface, it is possible to improve characteristics such as cycle performance and high-temperature storage even for high-power and large-capacity batteries, and increase the heat dissipation efficiency during abnormal heat generation. It is possible to suppress the state of “rupture”.
(電池を構成する部材)
 本実施形態のリチウム二次電池は、図1に基づいて言うと、電解液5、正極及び負極の電極合剤C,A、セパレータの基本部材9を具備して構成される。以下、これらの各部材について述べる。
(Members constituting the battery)
The lithium secondary battery according to the present embodiment is configured to include the electrolytic solution 5, the positive electrode and negative electrode electrode mixtures C and A, and the separator basic member 9, based on FIG. 1. Hereinafter, each of these members will be described.
(電極合材)
 電極合材は、集電体(電極基材)上に活物質と導電剤、結着剤、フィラーなどの分散物を塗布したものであり、リチウム電池においては、活物質が正極活物質である正極合材と活物質が負極活物質である負極合材が使用されることが好ましい。次に、電極合材を構成する分散物(電極用組成物)中の各成分等について説明する。
(Electrode mixture)
The electrode mixture is obtained by applying a dispersion of an active material and a conductive agent, a binder, a filler, etc. on a current collector (electrode substrate). In a lithium battery, the active material is a positive electrode active material. It is preferable to use a negative electrode mixture in which the positive electrode mixture and the active material are a negative electrode active material. Next, each component in the dispersion (electrode composition) constituting the electrode mixture will be described.
・正極活物質
 正極活物質には遷移金属酸化物を用いることが好ましく、中でも、遷移元素M(Co、Ni、Fe、Mn、Cu、Vから選択される1種以上の元素)を有することが好ましい。また、混合元素M(リチウム以外の金属周期律表の第1(Ia)族の元素、第2(IIa)族の元素、Al、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P、Bなど)を混合してもよい。この、遷移金属酸化物として例えば、下記式(MA)~(MC)のいずれかで表されるものを含む特定遷移金属酸化物、あるいはその他の遷移金属酸化物としてV、MnO等が挙げられる。正極活物質には、粒子状の正極活性物質を用いてもよい。具体的に、可逆的にリチウムイオンを挿入・放出できる遷移金属酸化物を用いることができるが、上記特定遷移金属酸化物を用いるのが好ましい。
-Positive electrode active material It is preferable to use a transition metal oxide for the positive electrode active material, and in particular, it has a transition element M a (one or more elements selected from Co, Ni, Fe, Mn, Cu, V). Is preferred. Further, mixed element M b (elements of the first (Ia) group of the metal periodic table other than lithium, elements of the second (IIa) group, Al, Ga, In, Ge, Sn, Pb, Sb, Bi, Si , P, B, etc.) may be mixed. Examples of the transition metal oxide include specific transition metal oxides including those represented by any of the following formulas (MA) to (MC), or other transition metal oxides such as V 2 O 5 and MnO 2. Is mentioned. As the positive electrode active material, a particulate positive electrode active material may be used. Specifically, a transition metal oxide capable of reversibly inserting and releasing lithium ions can be used, but the specific transition metal oxide is preferably used.
 遷移金属酸化物としては、上記遷移元素Mを含む酸化物等が好適に挙げられる。このとき混合元素M(好ましくはAl)などを混合してもよい。混合量としては、遷移金属の量に対して0~30mol%が好ましい。Li/Mのモル比が0.3~2.2になるように混合して合成されたものが、より好ましい。 The transition metal oxides, oxides containing the above transition element M a is preferably exemplified. At this time, a mixed element M b (preferably Al) or the like may be mixed. The mixing amount is preferably 0 to 30 mol% with respect to the amount of the transition metal. That the molar ratio of li / M a was synthesized were mixed so that 0.3 to 2.2, more preferably.
〔式(MA)で表される遷移金属酸化物(層状岩塩型構造)〕
 リチウム含有遷移金属酸化物としては中でも下式で表されるものが好ましい。
  Li     ・・・ (MA)
[Transition metal oxide represented by formula (MA) (layered rock salt structure)]
As the lithium-containing transition metal oxide, those represented by the following formula are preferable.
Li a M 1 O b (MA)
 式中、Mは上記Maと同義である。aは0~1.2(0.2~1.2が好ましい)を表し、0.6~1.1であることが好ましい。bは1~3を表し、2であることが好ましい。Mの一部は上記混合元素Mで置換されていてもよい。上記式(MA)で表される遷移金属酸化物は典型的には層状岩塩型構造を有する。 Wherein, M 1 is as defined above Ma. a represents 0 to 1.2 (preferably 0.2 to 1.2), and preferably 0.6 to 1.1. b represents 1 to 3 and is preferably 2. A part of M 1 may be substituted with the mixed element M b . The transition metal oxide represented by the above formula (MA) typically has a layered rock salt structure.
 本遷移金属酸化物は下記の各式で表されるものであることがより好ましい。
 (MA-1)  LiCoO
 (MA-2)  LiNiO
 (MA-3)  LiMnO
 (MA-4)  LiCoNi1-j
 (MA-5)  LiNiMn1-j
 (MA-6)  LiCoNiAl1-j-i
 (MA-7)  LiCoNiMn1-j-i
The transition metal oxide is more preferably one represented by the following formulas.
(MA-1) Li g CoO k
(MA-2) Li g NiO k
(MA-3) Li g MnO k
(MA-4) Li g Co j Ni 1-j O k
(MA-5) Li g Ni j Mn 1-j O k
(MA-6) Li g Co j Ni i Al 1-j-i O k
(MA-7) Li g Co j Ni i Mn 1-j-i O k
 ここでgは上記aと同義である。jは0.1~0.9を表す。iは0~1を表す。ただし、1-j-iは0以上になる。kは上記bと同義である。上記遷移金属化合物の具体例を示すと、LiCoO(コバルト酸リチウム[LCO])、LiNi(ニッケル酸リチウム)LiNi0.85Co0.01Al0.05(ニッケルコバルトアルミニウム酸リチウム[NCA])、LiNi0.33Co0.33Mn0.33(ニッケルマンガンコバルト酸リチウム[NMC])、LiNi0.5Mn0.5(マンガンニッケル酸リチウム)である。 Here, g has the same meaning as a. j represents 0.1 to 0.9. i represents 0 to 1; However, 1-ji is 0 or more. k has the same meaning as b above. Specific examples of the transition metal compound include LiCoO 2 (lithium cobaltate [LCO]), LiNi 2 O 2 (lithium nickelate) LiNi 0.85 Co 0.01 Al 0.05 O 2 (nickel cobalt aluminum acid Lithium [NCA]), LiNi 0.33 Co 0.33 Mn 0.33 O 2 (lithium nickel manganese cobaltate [NMC]), LiNi 0.5 Mn 0.5 O 2 (lithium manganese nickelate).
 式(MA)で表される遷移金属酸化物は、一部重複するが、表記を変えて示すと、下記で表されるものも好ましい例として挙げられる。
(i)LiNiMnCo(x>0.2,y>0.2,z≧0,x+y+z=1)
 代表的なもの:
   LiNi1/3Mn1/3Co1/3
   LiNi1/2Mn1/2
(ii)LiNiCoAl(x>0.7,y>0.1,0.1>z>0.05,x+y+z=1)
 代表的なもの:
   LiNi0.8Co0.15Al0.05
The transition metal oxide represented by the formula (MA) partially overlaps, but when represented by changing the notation, those represented by the following are also preferable examples.
(I) Li g Ni x Mn y Co z O 2 (x> 0.2, y> 0.2, z ≧ 0, x + y + z = 1)
Representative:
Li g Ni 1/3 Mn 1/3 Co 1/3 O 2
Li g Ni 1/2 Mn 1/2 O 2
(Ii) Li g Ni x Co y Al z O 2 (x> 0.7, y>0.1,0.1>z> 0.05, x + y + z = 1)
Representative:
Li g Ni 0.8 Co 0.15 Al 0.05 O 2
〔式(MB)で表される遷移金属酸化物(スピネル型構造)〕
 リチウム含有遷移金属酸化物としては中でも下記式(MB)で表されるものも好ましい。
  Li     ・・・ (MB)
[Transition metal oxide represented by formula (MB) (spinel structure)]
Among the lithium-containing transition metal oxides, those represented by the following formula (MB) are also preferable.
Li c M 2 2 O d (MB)
 式中、Mは上記Maと同義である。cは0~2(0.2~2が好ましい)を表し、0.6~1.5であることが好ましい。dは3~5を表し、4であることが好ましい。 Wherein, M 2 is as defined above Ma. c represents 0 to 2 (preferably 0.2 to 2), and preferably 0.6 to 1.5. d represents 3 to 5 and is preferably 4.
 式(MB)で表される遷移金属酸化物は下記の各式で表されるものであることがより好ましい。
 (MB-1)  LiMn
 (MB-2)  LiMnAl2-p
 (MB-3)  LiMnNi2-p
The transition metal oxide represented by the formula (MB) is more preferably one represented by the following formulas.
(MB-1) Li m Mn 2 O n
(MB-2) Li m Mn p Al 2-p O n
(MB-3) Li m Mn p Ni 2-p O n
 mはcと同義である。nはdと同義である。pは0~2を表す。上記遷移金属化合物の具体例を示すと、LiMn、LiMn1.5Ni0.5である。 m is synonymous with c. n is synonymous with d. p represents 0-2. Specific examples of the transition metal compound are LiMn 2 O 4 and LiMn 1.5 Ni 0.5 O 4 .
 式(MB)で表される遷移金属酸化物はさらに下記で表されるものも好ましい例として挙げられる。
 (a) LiCoMnO
 (b) LiFeMn
 (c) LiCuMn
 (d) LiCrMn
 (e) LiNiMn
 高容量、高出力の観点で上記のうちNiを含む電極が更に好ましい。
Preferred examples of the transition metal oxide represented by the formula (MB) include those represented by the following.
(A) LiCoMnO 4
(B) Li 2 FeMn 3 O 8
(C) Li 2 CuMn 3 O 8
(D) Li 2 CrMn 3 O 8
(E) Li 2 NiMn 3 O 8
Of these, an electrode containing Ni is more preferable from the viewpoint of high capacity and high output.
〔式(MC)で表される遷移金属酸化物〕
 リチウム含有遷移金属酸化物としてはリチウム含有遷移金属リン酸化物を用いることも好ましく、中でも下記式(MC)で表されるものも好ましい。
  Li(PO ・・・ (MC)
[Transition metal oxide represented by formula (MC)]
As the lithium-containing transition metal oxide, it is also preferable to use a lithium-containing transition metal phosphor oxide, and among them, one represented by the following formula (MC) is also preferable.
Li e M 3 (PO 4 ) f ... (MC)
 式中、eは0~2を表し、0.1~1.15であることが好ましく、さらに0.5~1.5であることが好ましい。fは1~5を表し、0.5~2であることが好ましい。 In the formula, e represents 0 to 2, preferably 0.1 to 1.15, and more preferably 0.5 to 1.5. f represents 1 to 5, and preferably 0.5 to 2.
 上記MはV、Ti、Cr、Mn、Fe、Co、Ni、Cuから選択される一種以上の元素を表す。上記Mは、上記の混合元素Mのほか、Ti、Cr、Zn、Zr、Nb等の他の金属で置換していてもよい。具体例としては、例えば、LiFePO、LiFe(PO等のオリビン型リン酸鉄塩、LiFeP等のピロリン酸鉄類、LiCoPO等のリン酸コバルト類、Li(PO(リン酸バナジウムリチウム)等の単斜晶ナシコン型リン酸バナジウム塩が挙げられる。
 なお、Liの組成を表す上記a,c,g,m,e値は、充放電により変化する値であり、典型的には、Liを含有したときの安定な状態の値で評価される。上記式(a)~(e)では特定値としてLiの組成を示しているが、これも同様に電池の動作により変化するものである。
The M 3 represents one or more elements selected from V, Ti, Cr, Mn, Fe, Co, Ni, and Cu. The M 3 are, in addition to the mixing element M b above, Ti, Cr, Zn, Zr, may be substituted by other metals such as Nb. Specific examples include, for example, olivine-type iron phosphates such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , cobalt phosphates such as LiCoPO 4 , and Li 3. Monoclinic Nasicon type vanadium phosphate salts such as V 2 (PO 4 ) 3 (lithium vanadium phosphate) can be mentioned.
The a, c, g, m, and e values representing the composition of Li are values that change due to charge and discharge, and are typically evaluated as values in a stable state when Li is contained. In the above formulas (a) to (e), the composition of Li is shown as a specific value, but this also varies depending on the operation of the battery.
 本発明において、正極活物質には3.5V以上の正極電位(Li/Li基準)で通常使用を維持できる材料を用いることが好ましく、3.8V以上であることがより好ましく、4V以上であることがさらに好ましく、4.2V以上であることがさらに好ましい。上限は特にないが、5V以下であることが実際的である。上記範囲とすることで、サイクル特性および高レート放電特性を向上することができる。
 ここで通常使用を維持できるとは、その電圧で充電を行ったときでも電極材料が劣化して使用不能になることがないことを意味し、この電位を通常使用可能電位ともいう。
充放電時の正極電位(Li/Li基準)は
 (正極電位)=(負極電位)+(電池電圧)である。負極としてチタン酸リチウムを用いた場合、負極電位は1.55Vとする。負極として黒鉛を用いた場合、負極電位は0.1Vとする。充電時に電池電圧を観測し、正極電位を算出する。
In the present invention, the positive electrode active material is preferably a material that can maintain normal use at a positive electrode potential (Li / Li + standard) of 3.5 V or higher, more preferably 3.8 V or higher, and more preferably 4 V or higher. More preferably, it is 4.2 V or more. Although there is no upper limit in particular, it is practical that it is 5V or less. By setting it as the above range, cycle characteristics and high rate discharge characteristics can be improved.
Here, being able to maintain normal use means that even when charging is performed at that voltage, the electrode material does not deteriorate and cannot be used, and this potential is also referred to as a normal usable potential.
The positive electrode potential during charging / discharging (Li / Li + reference) is (positive electrode potential) = (negative electrode potential) + (battery voltage). When lithium titanate is used as the negative electrode, the negative electrode potential is 1.55V. When graphite is used as the negative electrode, the negative electrode potential is 0.1V. The battery voltage is observed during charging and the positive electrode potential is calculated.
 本発明の非水二次電池において、用いられる正極活物質の平均粒子サイズは特に限定されないが、0.1μm~50μmが好ましい。比表面積としては特に限定されないが、BET法で0.01m/g~50m/gであるのが好ましい。また、正極活物質5gを蒸留水100mlに溶かした時の上澄み液のpHとしては、7以上12以下が好ましい。 In the nonaqueous secondary battery of the present invention, the average particle size of the positive electrode active material used is not particularly limited, but is preferably 0.1 μm to 50 μm. The specific surface area is not particularly limited, but is preferably 0.01 m 2 / g to 50 m 2 / g by the BET method. Further, the pH of the supernatant when 5 g of the positive electrode active material is dissolved in 100 ml of distilled water is preferably 7 or more and 12 or less.
 正極活性物質を所定の粒子サイズにするには、良く知られた粉砕機や分級機が用いられる。例えば、乳鉢、ボールミル、振動ボールミル、振動ミル、衛星ボールミル、遊星ボールミル、旋回気流型ジェットミルや篩などが用いられる。上記焼成法によって得られた正極活物質は、水、酸性水溶液、アルカリ性水溶液、有機溶剤にて洗浄した後使用してもよい。 A well-known pulverizer or classifier is used to make the positive electrode active substance have a predetermined particle size. For example, a mortar, a ball mill, a vibration ball mill, a vibration mill, a satellite ball mill, a planetary ball mill, a swirling air flow type jet mill, a sieve, or the like is used. The positive electrode active material obtained by the above firing method may be used after washing with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent.
 正極活物質の配合量は特に限定されないが、活物質層を構成するための分散物(合剤)中、固形成分100質量%において、60~98質量%であることが好ましく、70~95質量%であることがより好ましい。
・負極活物質
 負極活物質としては、可逆的にリチウムイオンを挿入・放出できるものであれば、特に制限はなく、炭素質材料、酸化錫や酸化ケイ素等の金属酸化物、金属複合酸化物、リチウム単体やリチウムアルミニウム合金等のリチウム合金、及び、SnやSi等のリチウムと合金形成可能な金属等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用しても良い。なかでも炭素質材料又はリチウム複合酸化物が安全性の点から好ましく用いられる。また、金属複合酸化物としては、リチウムを吸蔵、放出可能であれば特には制限されないが、構成成分としてチタン及び/又はリチウムを含有していることが、高電流密度充放電特性の観点で好ましい。
The blending amount of the positive electrode active material is not particularly limited, but is preferably 60 to 98% by mass, and 70 to 95% by mass in 100% by mass of the solid component in the dispersion (mixture) for constituting the active material layer. % Is more preferable.
・ Negative electrode active material The negative electrode active material is not particularly limited as long as it can reversibly insert and release lithium ions. Carbonaceous materials, metal oxides such as tin oxide and silicon oxide, metal composite oxides, Examples thereof include lithium alloys such as lithium alone and lithium aluminum alloys, and metals capable of forming an alloy with lithium such as Sn and Si. These may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and a ratio. Of these, carbonaceous materials or lithium composite oxides are preferably used from the viewpoint of safety. Further, the metal composite oxide is not particularly limited as long as it can occlude and release lithium, but it preferably contains titanium and / or lithium as a constituent component from the viewpoint of high current density charge / discharge characteristics. .
 負極活物質として用いられる炭素質材料とは、実質的に炭素からなる材料である。例えば、石油ピッチ、天然黒鉛、気相成長黒鉛等の人造黒鉛、及びPAN系の樹脂やフルフリルアルコール樹脂等の各種の合成樹脂を焼成した炭素質材料を挙げることができる。さらに、PAN系炭素繊維、セルロース系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、脱水PVA系炭素繊維、リグニン炭素繊維、ガラス状炭素繊維、活性炭素繊維等の各種炭素繊維類、メソフェーズ微小球体、グラファイトウィスカー、平板状の黒鉛等を挙げることもできる。 The carbonaceous material used as the negative electrode active material is a material substantially made of carbon. Examples thereof include carbonaceous materials obtained by baking various synthetic resins such as artificial pitches such as petroleum pitch, natural graphite, and vapor-grown graphite, and PAN-based resins and furfuryl alcohol resins. Furthermore, various carbon fibers such as PAN-based carbon fiber, cellulose-based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, dehydrated PVA-based carbon fiber, lignin carbon fiber, glassy carbon fiber, activated carbon fiber, mesophase micro Examples thereof include spheres, graphite whiskers, and flat graphite.
 これらの炭素質材料は、黒鉛化の程度により難黒鉛化炭素材料と黒鉛系炭素材料に分けることもできる。また炭素質材料は、特開昭62-22066号公報、特開平2-6856号公報、同3-45473号公報に記載される面間隔や密度、結晶子の大きさを有することが好ましい。炭素質材料は、単一の材料である必要はなく、特開平5-90844号公報記載の天然黒鉛と人造黒鉛の混合物、特開平6-4516号公報記載の被覆層を有する黒鉛等を用いることもできる。 These carbonaceous materials can be divided into non-graphitizable carbon materials and graphite-based carbon materials depending on the degree of graphitization. Further, the carbonaceous material preferably has a face spacing, density, and crystallite size described in JP-A-62-222066, JP-A-2-6856, and 3-45473. The carbonaceous material does not have to be a single material, and a mixture of natural graphite and artificial graphite described in JP-A-5-90844, graphite having a coating layer described in JP-A-6-4516, or the like is used. You can also.
 負極活物質として適用される金属酸化物及び金属複合酸化物としては、特に非晶質酸化物が好ましく、さらに金属元素と周期律表第16族の元素との反応生成物であるカルコゲナイトも好ましく用いられる。ここでいう非晶質とは、CuKα線を用いたX線回折法で、2θ値で20°~40°の領域に頂点を有するブロードな散乱帯を有するものを意味し、結晶性の回折線を有してもよい。2θ値で40°以上70°以下に見られる結晶性の回折線の内最も強い強度が、2θ値で20°以上40°以下に見られるブロードな散乱帯の頂点の回折線強度の100倍以下であるのが好ましく、5倍以下であるのがより好ましく、結晶性の回折線を有さないことが特に好ましい。 As the metal oxide and metal composite oxide applied as the negative electrode active material, an amorphous oxide is particularly preferable, and chalcogenite, which is a reaction product of a metal element and an element of Group 16 of the periodic table, is also preferably used. It is done. The term “amorphous” as used herein means an X-ray diffraction method using CuKα rays, which has a broad scattering band having a peak in the region of 20 ° to 40 ° in terms of 2θ, and is a crystalline diffraction line. You may have. The strongest intensity of crystalline diffraction lines seen from 2 ° to 40 ° to 70 ° is 100 times the diffraction line intensity at the peak of the broad scattering band seen from 2 ° to 20 °. It is preferable that it is 5 times or less, and it is particularly preferable not to have a crystalline diffraction line.
 上記非晶質酸化物及びカルコゲナイドからなる化合物群のなかでも、半金属元素の非晶質酸化物、及びカルコゲナイドがより好ましく、周期律表第13(IIIB)族~15(VB)族の元素、Al、Ga、Si、Sn、Ge、Pb、Sb、Biの一種単独あるいはそれらの2種以上の組み合わせからなる酸化物、及びカルコゲナイドが特に好ましい。好ましい非晶質酸化物及びカルコゲナイドの具体例としては、例えば、Ga、SiO、GeO、SnO、SnO、PbO、PbO、Pb、Pb、Pb、Sb、Sb、Sb、Bi、Bi、SnSiO、GeS、SnS、SnS、PbS、PbS、Sb、Sb、SnSiSなどが好ましく挙げられる。また、これらは、酸化リチウムとの複合酸化物、例えば、LiSnOであってもよい。 Among the group of compounds consisting of the above amorphous oxide and chalcogenide, amorphous metal oxides and chalcogenides are more preferable, and elements in groups 13 (IIIB) to 15 (VB) of the periodic table are preferable. Particularly preferred are oxides and chalcogenides composed of one kind of Al, Ga, Si, Sn, Ge, Pb, Sb, Bi or a combination of two or more kinds thereof. Specific examples of preferable amorphous oxides and chalcogenides include, for example, Ga 2 O 3 , SiO, GeO, SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , Bi 2 O 3 , Bi 2 O 4 , SnSiO 3 , GeS, SnS, SnS 2 , PbS, PbS 2 , Sb 2 S 3 , Sb 2 S 5 , such as SnSiS 3 may preferably be mentioned. Moreover, these may be a complex oxide with lithium oxide, for example, Li 2 SnO 2 .
 負極活物質の平均粒子サイズは、0.1μm~60μmが好ましい。所定の粒子サイズにするには、よく知られた粉砕機や分級機が用いられる。例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、衛星ボールミル、遊星ボールミル、旋回気流型ジェットミルや篩などが好適に用いられる。粉砕時には水、あるいはメタノール等の有機溶媒を共存させた湿式粉砕も必要に応じて行うことができる。所望の粒径とするためには分級を行うことが好ましい。分級方法としては特に限定はなく、篩、風力分級機などを必要に応じて用いることができる。分級は乾式、湿式ともに用いることができる。 The average particle size of the negative electrode active material is preferably 0.1 μm to 60 μm. To obtain a predetermined particle size, a well-known pulverizer or classifier is used. For example, a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling air flow type jet mill or a sieve is preferably used. When pulverizing, wet pulverization in the presence of water or an organic solvent such as methanol can be performed as necessary. In order to obtain a desired particle size, classification is preferably performed. The classification method is not particularly limited, and a sieve, an air classifier, or the like can be used as necessary. Classification can be used both dry and wet.
 上記焼成法により得られた化合物の化学式は、測定方法として誘導結合プラズマ(ICP)発光分光分析法、簡便法として、焼成前後の粉体の質量差から算出できる。 The chemical formula of the compound obtained by the above firing method can be calculated from an inductively coupled plasma (ICP) emission spectroscopic analysis method as a measurement method, and from a mass difference between powders before and after firing as a simple method.
 Sn、Si、Geを中心とする非晶質酸化物負極活物質に併せて用いることができる負極活物質としては、リチウムイオン又はリチウム金属を吸蔵・放出できる炭素材料や、リチウム、リチウム合金、リチウムと合金可能な金属が好適に挙げられる。 Examples of the negative electrode active material that can be used in combination with the amorphous oxide negative electrode active material centering on Sn, Si, and Ge include carbon materials that can occlude and release lithium ions or lithium metal, lithium, lithium alloys, lithium A metal that can be alloyed with is preferable.
 本発明の電解液は好ましい様態として高電位負極(電極電位1.0V以上が好ましく、1.2V以上がより好ましく、1.5V以上が特に好ましい。具体的にはリチウム・チタン酸化物、電位1.55V対Li金属が挙げられる。)との組合せ、及び低電位負極(好ましくは炭素材料、シリコン含有材料、電位約0.1V対Li金属)との組合せのいずれにおいても優れた特性を発現する。更に高容量化に向けて開発が進んでいるリチウムと合金形成可能な金属または金属酸化物負極(好ましくはSi、酸化Si、Si/酸化Si、Sn、酸化Sn、SnB、Cu/Snおよびこれらのうち複数の複合体)、及びこれらの金属または金属酸化物と炭素材料の複合体を負極とする電池においても好ましく用いることができる。 The electrolyte solution of the present invention is preferably a high potential negative electrode (electrode potential of 1.0 V or higher, more preferably 1.2 V or higher, particularly preferably 1.5 V or higher. Specifically, lithium-titanium oxide, potential 1 .55V vs. Li metal) and in combination with a low potential negative electrode (preferably carbon material, silicon-containing material, potential about 0.1 V vs. Li metal). . Further, metal or metal oxide negative electrodes (preferably Si, Si oxide, Si / Si oxide, Sn, Sn oxide, SnB x P y O z , Cu, which can be alloyed with lithium, which are being developed for higher capacity) / Sn and a plurality of these composites), and a battery using a composite of these metals or metal oxides and a carbon material as a negative electrode.
 本発明の非水二次電池で用いられる負極活物質はチタン原子を含有することが好ましい。より具体的にはLiTi12がリチウムイオンの吸蔵放出時の体積変動が小さいことから急速充放電特性に優れ、電極の劣化が抑制されリチウムイオン二次電池の寿命向上が可能となる点で好ましい。特定の負極と更に特定の電解液を組合せることにより、様々な使用条件においても二次電池の安定性が向上する。 The negative electrode active material used in the nonaqueous secondary battery of the present invention preferably contains a titanium atom. More specifically, since Li 4 Ti 5 O 12 has a small volume fluctuation at the time of occlusion and release of lithium ions, it has excellent rapid charge / discharge characteristics, suppresses electrode deterioration, and improves the life of lithium ion secondary batteries. This is preferable. By combining a specific negative electrode and a specific electrolyte, the stability of the secondary battery is improved even under various usage conditions.
・導電材
 導電材は、構成された二次電池において、化学変化を起こさない電子伝導性材料であれば何を用いてもよく、公知の導電材を任意に用いることができる。通常、天然黒鉛(鱗状黒鉛、鱗片状黒鉛、土状黒鉛など)、人工黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維や金属粉(銅、ニッケル、アルミニウム、銀(特開昭63-148,554号に記載)等)、金属繊維あるいはポリフェニレン誘導体(特開昭59-20,971号に記載)などの導電性材料を1種又はこれらの混合物として含ませることができる。その中でも、黒鉛とアセチレンブラックの併用がとくに好ましい。上記導電剤の添加量としては、1~50質量%が好ましく、2~30質量%がより好ましい。カーボンや黒鉛の場合は、2~15質量%が特に好ましい。
-Conductive material As the conductive material, any electronic conductive material that does not cause a chemical change in the configured secondary battery may be used, and any known conductive material may be used. Usually, natural graphite (scale-like graphite, scale-like graphite, earth-like graphite, etc.), artificial graphite, carbon black, acetylene black, ketjen black, carbon fiber and metal powder (copper, nickel, aluminum, silver (Japanese Patent Laid-Open No. Sho 63-63)) 148, 554), etc.), conductive fibers such as metal fibers or polyphenylene derivatives (described in JP-A-59-20971) can be included as a single kind or a mixture thereof. Among these, the combined use of graphite and acetylene black is particularly preferable. The addition amount of the conductive agent is preferably 1 to 50% by mass, and more preferably 2 to 30% by mass. In the case of carbon or graphite, 2 to 15% by mass is particularly preferable.
・結着剤
 結着剤としては、多糖類、熱可塑性樹脂及びゴム弾性を有するポリマーなどが挙げられ、その中でも、例えば、でんぷん、カルボキシメチルセルロース、セルロース、ジアセチルセルロース、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、アルギン酸ナトリウム、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリビニルフェノール、ポリビニルメチルエーテル、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリロニトリル、ポリアクリルアミド、ポリヒドロキシ(メタ)アクリレート、スチレン-マレイン酸共重合体等の水溶性ポリマー、ポリビニルクロリド、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、テトラフロロエチレン-ヘキサフロロプロピレン共重合体、ビニリデンフロライド-テトラフロロエチレン-ヘキサフロロプロピレン共重合体、ポリエチレン、ポリプロピレン、エチレン-プロピレン-ジエンターポリマー(EPDM)、スルホン化EPDM、ポリビニルアセタール樹脂、メチルメタアクリレート、2-エチルヘキシルアクリレート等の(メタ)アクリル酸エステルを含有する(メタ)アクリル酸エステル共重合体、(メタ)アクリル酸エステル-アクリロニトリル共重合体、ビニルアセテート等のビニルエステルを含有するポリビニルエステル共重合体、スチレン-ブタジエン共重合体、アクリロニトリル-ブタジエン共重合体、ポリブタジエン、ネオプレンゴム、フッ素ゴム、ポリエチレンオキシド、ポリエステルポリウレタン樹脂、ポリエーテルポリウレタン樹脂、ポリカーボネートポリウレタン樹脂、ポリエステル樹脂、フェノール樹脂、エポキシ樹脂等のエマルジョン(ラテックス)あるいはサスペンジョンが好ましく、ポリアクリル酸エステル系のラテックス、カルボキシメチルセルロース、ポリテトラフロロエチレン、ポリフッ化ビニリデンが、より好ましい。
-Binders Examples of binders include polysaccharides, thermoplastic resins, and polymers having rubber elasticity. Among them, for example, starch, carboxymethyl cellulose, cellulose, diacetyl cellulose, methyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose. Water-soluble, such as sodium alginate, polyacrylic acid, sodium polyacrylate, polyvinylphenol, polyvinyl methyl ether, polyvinyl alcohol, polyvinylpyrrolidone, polyacrylonitrile, polyacrylamide, polyhydroxy (meth) acrylate, styrene-maleic acid copolymer Polymer, polyvinyl chloride, polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene copolymer, vinyl Redene fluoride-tetrafluoroethylene-hexafluoropropylene copolymer, polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, polyvinyl acetal resin, methyl methacrylate, 2-ethylhexyl acrylate, etc. ) (Meth) acrylic ester copolymer containing acrylic ester, (meth) acrylic ester-acrylonitrile copolymer, polyvinyl ester copolymer containing vinyl ester such as vinyl acetate, styrene-butadiene copolymer , Acrylonitrile-butadiene copolymer, polybutadiene, neoprene rubber, fluoro rubber, polyethylene oxide, polyester polyurethane resin, polyether polyurethane resin, polycarbonate Polyurethane resins, polyester resins, phenolic resins, emulsion (latex) or a suspension such as an epoxy resin is preferable, a latex of polyacrylate, carboxymethyl cellulose, polytetrafluoroethylene, polyvinylidene fluoride is more preferable.
 結着剤は、一種単独又は二種以上を混合して用いることができる。結着剤の添加量が少ないと、電極合剤の保持力・凝集力が弱くなる。多すぎると電極体積が増加し電極単位体積あるいは単位質量あたりの容量が減少する。このような理由で結着剤の添加量は1~30質量%が好ましく、2~10質量%がより好ましい。 Binders can be used alone or in combination of two or more. When the amount of the binder added is small, the holding power and cohesive force of the electrode mixture are weakened. If the amount is too large, the electrode volume increases and the capacity per electrode unit volume or unit mass decreases. For this reason, the addition amount of the binder is preferably 1 to 30% by mass, and more preferably 2 to 10% by mass.
・フィラー
 電極合材は、フィラーを含んでいてもよい。フィラーを形成する材料は、本発明の二次電池において、化学変化を起こさない繊維状材料であれば何でも用いることができる。通常、ポリプロピレン、ポリエチレンなどのオレフィン系ポリマー、ガラス、炭素などの材料からなる繊維状のフィラーが用いられる。フィラーの添加量は特に限定されないが、分散物中、0~30質量%が好ましい。
-Filler The electrode compound material may contain the filler. As the material for forming the filler, any fibrous material that does not cause a chemical change in the secondary battery of the present invention can be used. Usually, fibrous fillers made of materials such as olefin polymers such as polypropylene and polyethylene, glass, and carbon are used. The addition amount of the filler is not particularly limited, but is preferably 0 to 30% by mass in the dispersion.
・集電体
 正・負極の集電体としては、本発明の非水電解質二次電池において化学変化を起こさない電子伝導体が用いられる。正極の集電体としては、アルミニウム、ステンレス鋼、ニッケル、チタンなどの他にアルミニウムやステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたものが好ましく、その中でも、アルミニウム、アルミニウム合金がより好ましい。
-Current collector As the positive / negative electrode current collector, an electron conductor that does not cause a chemical change in the nonaqueous electrolyte secondary battery of the present invention is used. As the current collector of the positive electrode, in addition to aluminum, stainless steel, nickel, titanium, etc., the surface of aluminum or stainless steel is preferably treated with carbon, nickel, titanium, or silver. Among them, aluminum and aluminum alloys are preferable. More preferred.
 負極の集電体としては、アルミニウム、銅、ステンレス鋼、ニッケル、チタンが好ましく、アルミニウム、銅、銅合金がより好ましい。 As the negative electrode current collector, aluminum, copper, stainless steel, nickel and titanium are preferable, and aluminum, copper and copper alloy are more preferable.
 上記集電体の形状としては、通常フィルムシート状のものが使用されるが、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群の成形体なども用いることができる。上記集電体の厚みとしては、特に限定されないが、1μm~500μmが好ましい。また、集電体表面は、表面処理により凹凸を付けることも好ましい。
 これらの材料から適宜選択した部材によりリチウム二次電池の電極合材が形成される。
As the shape of the current collector, a film sheet shape is usually used, but a net, a punched material, a lath body, a porous body, a foamed body, a molded body of a fiber group, and the like can also be used. The thickness of the current collector is not particularly limited, but is preferably 1 μm to 500 μm. Moreover, it is also preferable that the current collector surface is roughened by surface treatment.
An electrode mixture of the lithium secondary battery is formed by a member appropriately selected from these materials.
(セパレータ)
 本発明の非水二次電池に用いられるセパレータは、正極と負極を電子的に絶縁する機械的強度、イオン透過性、及び正極と負極の接触面で酸化・還元耐性のある材料であれば特に限定されることはない。このような材料として多孔質のポリマー材料や無機材料、有機無機ハイブリッド材料、あるいはガラス繊維などが用いられる。これらセパレータは安全性確保のためのシャットダウン機能、すなわち、80℃以上で隙間を閉塞して抵抗を上げ、電流を遮断する機能を持つことが好ましく、閉塞温度は90℃以上、180℃以下であることが好ましい。
(Separator)
The separator used in the non-aqueous secondary battery of the present invention is particularly a material that has mechanical strength for electrically insulating the positive electrode and the negative electrode, ion permeability, and oxidation / reduction resistance at the contact surface between the positive electrode and the negative electrode. There is no limit. As such a material, a porous polymer material, an inorganic material, an organic-inorganic hybrid material, glass fiber, or the like is used. These separators preferably have a shutdown function for ensuring safety, that is, a function of closing the gap at 80 ° C. or higher to increase resistance and blocking current, and the closing temperature is 90 ° C. or higher and 180 ° C. or lower. It is preferable.
 上記セパレータの孔の形状は、通常は円形や楕円形で、大きさは0.05μm~30μmであり、0.1μm~20μmが好ましい。さらに延伸法、相分離法で作った場合のように、棒状や不定形の孔であってもよい。これらの隙間の占める比率すなわち気孔率は、20%~90%であり、35%~80%が好ましい。 The shape of the holes of the separator is usually circular or elliptical, and the size is 0.05 μm to 30 μm, preferably 0.1 μm to 20 μm. Furthermore, it may be a rod-like or irregular-shaped hole as in the case of making by a stretching method or a phase separation method. The ratio of these gaps, that is, the porosity, is 20% to 90%, preferably 35% to 80%.
 上記ポリマー材料としては、セルロース不織布、ポリエチレン、ポリプロピレンなどの単一の材料を用いたものでも、2種以上の複合化材料を用いたものであってもよい。孔径、気孔率や孔の閉塞温度などを変えた2種以上の微多孔フィルムを積層したものが、好ましい。 The polymer material may be a single material such as a cellulose nonwoven fabric, polyethylene, or polypropylene, or may be a material using two or more composite materials. What laminated | stacked the 2 or more types of microporous film which changed the hole diameter, the porosity, the obstruction | occlusion temperature of a hole, etc. is preferable.
 上記無機物としては、アルミナや二酸化珪素等の酸化物類、窒化アルミや窒化珪素等の窒化物類、硫酸バリウムや硫酸カルシウム等の硫酸塩類が用いられ、粒子形状もしくは繊維形状のものが用いられる。形態としては、不織布、織布、微多孔性フィルム等の薄膜形状のものが用いられる。薄膜形状では、孔径が0.01μm~1μm、厚さが5μm~50μmのものが好適に用いられる。上記の独立した薄膜形状以外に、上記無機物の粒子を含有する複合多孔層を樹脂製の結着剤を用いて正極及び/又は負極の表層に形成させてなるセパレータを用いることができる。例えば、正極の両面に90%粒径が1μm未満のアルミナ粒子をフッ素樹脂の結着剤を用いて多孔層として形成させることが挙げられる。 As the inorganic substance, oxides such as alumina and silicon dioxide, nitrides such as aluminum nitride and silicon nitride, and sulfates such as barium sulfate and calcium sulfate are used, and those having a particle shape or fiber shape are used. As the form, a thin film shape such as a non-woven fabric, a woven fabric, or a microporous film is used. As the thin film shape, those having a pore diameter of 0.01 μm to 1 μm and a thickness of 5 μm to 50 μm are preferably used. In addition to the above-described independent thin film shape, a separator formed by forming a composite porous layer containing the inorganic particles on the surface layer of the positive electrode and / or the negative electrode using a resin binder can be used. For example, alumina particles having a 90% particle diameter of less than 1 μm are formed on both surfaces of the positive electrode as a porous layer using a fluororesin binder.
(非水二次電池の作製)
 本発明の非水二次電池の形状としては、既述のように、シート状、角型、シリンダー状などいずれの形にも適用できる。正極活物質や負極活物質の合剤は、集電体の上に、塗布(コート)、乾燥、圧縮されて、主に用いられる。
(Production of non-aqueous secondary battery)
As described above, the shape of the nonaqueous secondary battery of the present invention can be applied to any shape such as a sheet shape, a square shape, and a cylinder shape. A positive electrode active material or a mixture of negative electrode active materials is mainly used after being applied (coated), dried and compressed on a current collector.
 以下、図2により、有底筒型形状リチウム二次電池100を例に挙げて、その構成及び作製方法について説明する。有底筒型形状の電池では、充填される発電素子に対する外表面積が小さくなるので、充電や放電時に内部抵抗による発生するジュール発熱を効率よく外部に逃げる設計にすることが好ましい。また、熱伝導性の高い物質の充填比率を高め、内部での温度分布が小さくなるように設計することが好ましい。図2は、有底筒型形状リチウム二次電池100を例である。この電池は、セパレータ12を介して重ね合わせた正極シート14、負極シート16を巻回して外装缶18内に収納した有底筒型リチウム二次電池100となっている。その他、図中の20が絶縁板、22が封口板、24が正極集電体、26がガスケット、28が圧力感応弁体、30が電流遮断素子である。なお、拡大した円内の図示は視認性を考慮しハッチングを変えているが、各部材は符号により全体図と対応している。 Hereinafter, with reference to FIG. 2, a configuration and a manufacturing method thereof will be described using the bottomed cylindrical lithium secondary battery 100 as an example. In a battery having a bottomed cylindrical shape, since the outer surface area with respect to the power generating element to be filled becomes small, it is preferable to design so that Joule heat generated by the internal resistance at the time of charging and discharging efficiently escapes to the outside. Moreover, it is preferable to design so that the filling ratio of the substance having high thermal conductivity is increased and the temperature distribution inside is reduced. FIG. 2 shows an example of a bottomed cylindrical lithium secondary battery 100. This battery is a bottomed cylindrical lithium secondary battery 100 in which a positive electrode sheet 14 and a negative electrode sheet 16 overlapped with a separator 12 are wound and accommodated in an outer can 18. In addition, in the figure, 20 is an insulating plate, 22 is a sealing plate, 24 is a positive electrode current collector, 26 is a gasket, 28 is a pressure sensitive valve body, and 30 is a current interruption element. In addition, although the illustration in the enlarged circle has changed hatching in consideration of visibility, each member corresponds to the whole drawing by reference numerals.
 まず、負極活物質と、所望により用いられる結着剤やフィラーなどを有機溶剤に溶解したものを混合して、スラリー状あるいはペースト状の負極合剤を調製する。得られた負極合剤を集電体としての金属芯体の両面の全面にわたって均一に塗布し、その後、有機溶剤を除去して負極合材層を形成する。さらに、集電体と負極合材層との積層体をロールプレス機等により圧延して、所定の厚みに調製して負極シート(電極シート)を得る。このとき、各剤の塗布方法や塗布物の乾燥、正・負極の電極の形成方法は常法によればよい。 First, a negative electrode active material is mixed with a binder or filler used as desired in an organic solvent to prepare a slurry or paste negative electrode mixture. The obtained negative electrode mixture is uniformly applied over the entire surface of both surfaces of the metal core as a current collector, and then the organic solvent is removed to form a negative electrode mixture layer. Further, the laminate of the current collector and the negative electrode composite material layer is rolled with a roll press or the like to prepare a predetermined thickness to obtain a negative electrode sheet (electrode sheet). At this time, the application method of each agent, the drying of the applied product, and the method of forming the positive and negative electrodes may be in accordance with conventional methods.
 本実施形態では、円筒形の電池を例に挙げたが、本発明はこれに制限されず、例えば、上記方法で作製された正・負の電極シートを、セパレータを介して重ね合わせた後、そのままシート状電池に加工するか、或いは、折りまげた後角形缶に挿入して、缶とシートを電気的に接続した後、電解質を注入し、封口板を用いて開口部を封止して角形電池を形成してもよい。 In the present embodiment, a cylindrical battery is taken as an example, but the present invention is not limited to this, for example, after the positive and negative electrode sheets produced by the above method are overlapped via a separator, After processing into a sheet battery as it is, or inserting it into a rectangular can after being folded and electrically connecting the can and the sheet, injecting an electrolyte and sealing the opening using a sealing plate A square battery may be formed.
 いずれの実施形態においても、安全弁を開口部を封止するための封口板として用いることができる。また、封口部材には、安全弁の他、従来知られている種々の安全素子を備えつけてもよい。例えば、過電流防止素子として、ヒューズ、バイメタル、PTC素子などが好適に用いられる。 In any of the embodiments, the safety valve can be used as a sealing plate for sealing the opening. In addition to the safety valve, the sealing member may be provided with various conventionally known safety elements. For example, a fuse, bimetal, PTC element, or the like is preferably used as the overcurrent prevention element.
 また、上記安全弁のほかに電池缶の内圧上昇の対策として、電池缶に切込を入れる方法、ガスケット亀裂方法あるいは封口板亀裂方法あるいはリード板との切断方法を利用することができる。また、充電器に過充電や過放電対策を組み込んだ保護回路を具備させるか、あるいは独立に接続させてもよい。 In addition to the above safety valve, as a countermeasure against the increase in the internal pressure of the battery can, a method of cutting the battery can, a method of cracking the gasket, a method of cracking the sealing plate, or a method of cutting the lead plate can be used. Further, the charger may be provided with a protection circuit incorporating measures against overcharge and overdischarge, or may be connected independently.
 缶やリード板は、電気伝導性をもつ金属や合金を用いることができる。例えば、鉄、ニッケル、チタン、クロム、モリブデン、銅、アルミニウムなどの金属あるいはそれらの合金が好適に用いられる。 For the can and lead plate, a metal or alloy having electrical conductivity can be used. For example, metals such as iron, nickel, titanium, chromium, molybdenum, copper, and aluminum, or alloys thereof are preferably used.
 キャップ、缶、シート、リード板の溶接法は、公知の方法(例、直流又は交流の電気溶接、レーザー溶接、超音波溶接)を用いることができる。封口用シール剤は、アスファルトなどの従来知られている化合物や混合物を用いることができる。 A known method (eg, direct current or alternating current electric welding, laser welding, ultrasonic welding) can be used as a welding method for the cap, can, sheet, and lead plate. As the sealing agent for sealing, a conventionally known compound or mixture such as asphalt can be used.
(感圧機構)
 本発明に係る非水二次電池は感圧機構(所定圧力以上になると電流を遮断する機構)を有することが好ましい。感圧機構は前述のような感圧弁を利用するも、感圧センサにより圧力変化を検知して通電を遮断するものなど、様々なものを採用することができる。図3は、感圧弁の別の例を示した一部断面側面図である。
 なお、電流遮断封口体50は、図3に示すように、逆皿状(キャップ状)に形成されたステンレス製の正極キャップ51と、皿状に形成されたステンレス製の底板54とから構成される。正極キャップ51は、電池外部に向けて膨出する凸部52と、この凸部52の底辺部を構成する平板状のフランジ部53とからなり、凸部52の角部には複数のガス抜き孔52aを設けている。一方、底板54は、電池内部に向けて膨出する凹部55と、この凹部55の底辺部を構成する平板状のフランジ部56とからなる。凹部55の角部にはガス抜き孔55aが設けられている。
 これらの正極キャップ51と底板54との内部には、電池内部のガス圧が上昇して所定の圧力以上になると変形する電力導出板57が収容されている。この電力導出板57は凹部57aとフランジ部57bとからなり、例えば、厚みが0.2mmで表面の凹凸が0.005mmのアルミニウム箔から構成される。凹部57aの最低部は底板54の凹部55の上表面に接触して配設されており、フランジ部57bは正極キャップ51のフランジ部53と底板54のフランジ部56との間に狭持される。なお、正極キャップ51と底板54とはポリプロピレン(PP)製の封口体用絶縁ガスケット59により液密に封口されている。
 フランジ部57bの上部の一部には、PTC(Positive Temperature Coefficient)サーミスタ素子58が配設され、電池内に過電流が流れて異常な発熱現象を生じると、このPTCサーミスタ素子58の抵抗値が増大して過電流を減少させる。そして、電池内部のガス圧が上昇して所定の圧力以上になると電力導出板57の凹部57aは変形するため、電力導出板57と底板54の凹部55との接触が遮断されて過電流あるいは短絡電流が遮断されるようになる。
 本発明に係る非水二次電池用電解液を用いることにより、上記感圧機構を有する二次電池において、その過充電時に瞬時により多くのガスを発生し、的確かつ迅速な電流の遮断が可能とする。
(Pressure sensitive mechanism)
The non-aqueous secondary battery according to the present invention preferably has a pressure-sensitive mechanism (a mechanism that cuts off current when a predetermined pressure or higher is reached). Although the pressure-sensitive mechanism uses a pressure-sensitive valve as described above, various devices such as a device that detects a pressure change by a pressure-sensitive sensor and interrupts energization can be employed. FIG. 3 is a partial cross-sectional side view showing another example of the pressure-sensitive valve.
As shown in FIG. 3, the current interrupting sealing body 50 is composed of a stainless steel positive electrode cap 51 formed in an inverted dish shape (cap shape) and a stainless steel bottom plate 54 formed in a dish shape. The The positive electrode cap 51 includes a convex portion 52 that bulges toward the outside of the battery, and a flat flange portion 53 that forms the bottom side of the convex portion 52, and a plurality of gas vents are formed at the corners of the convex portion 52. A hole 52a is provided. On the other hand, the bottom plate 54 includes a concave portion 55 that bulges toward the inside of the battery, and a flat flange portion 56 that constitutes the bottom side portion of the concave portion 55. A gas vent hole 55 a is provided at the corner of the recess 55.
Housed in the positive electrode cap 51 and the bottom plate 54 is a power lead-out plate 57 that deforms when the gas pressure inside the battery rises and exceeds a predetermined pressure. The power lead-out plate 57 includes a concave portion 57a and a flange portion 57b, and is formed of, for example, an aluminum foil having a thickness of 0.2 mm and a surface unevenness of 0.005 mm. The lowest portion of the recess 57 a is disposed in contact with the upper surface of the recess 55 of the bottom plate 54, and the flange portion 57 b is sandwiched between the flange portion 53 of the positive electrode cap 51 and the flange portion 56 of the bottom plate 54. . The positive electrode cap 51 and the bottom plate 54 are sealed in a liquid-tight manner by a sealing body insulating gasket 59 made of polypropylene (PP).
A PTC (Positive Temperature Coefficient) thermistor element 58 is disposed at a part of the upper portion of the flange portion 57b. When an overcurrent flows in the battery and an abnormal heat generation phenomenon occurs, the resistance value of the PTC thermistor element 58 increases. Increase to reduce overcurrent. Then, when the gas pressure inside the battery rises and exceeds a predetermined pressure, the recess 57a of the power lead-out plate 57 is deformed, so that the contact between the power lead-out plate 57 and the concave portion 55 of the bottom plate 54 is cut off and an overcurrent or short circuit occurs. The current is interrupted.
By using the electrolyte for a non-aqueous secondary battery according to the present invention, in the secondary battery having the pressure-sensitive mechanism, more gas is instantly generated at the time of overcharging, and accurate and quick interruption of current is possible. And
 本発明の上記特定芳香族化合物は、通常充電時にガスを発生せず、過充電時に有効量のガスを発生することが好ましい。ここで、「過充電時に有効量のガスを発生する」とは後記実施例の過充電時ガス発生量試験及び充電寿命試験で実施例相当の結果になることを意味する。 It is preferable that the specific aromatic compound of the present invention does not generate gas during normal charging but generates an effective amount of gas during overcharging. Here, “to generate an effective amount of gas at the time of overcharging” means that the results of the gas generation amount test and the charge life test at the time of overcharging in the examples described later are equivalent to the examples.
 ここで用語の意味について確認しておくと、通常充電時とは、電池の設計電圧内で充電が行われている状態をいう。例えば一般的に用いられる定電流-定電圧充電法では、設定電圧になるまで定電流充電した後、設定電圧を維持した状態で満充電まで充電する方法が用いられている。本願でいう通常充電時の正極電位とは上記設定電圧における正極電位を表す。一方、過充電時とは、何らかの要因により電池の設計電圧を超えた電圧で充電されている状態をいう。 <Confirming the meaning of the terms here> Normal charging means a state in which charging is performed within the design voltage of the battery. For example, in a generally used constant current-constant voltage charging method, a method is used in which a constant current charge is performed until a set voltage is reached, and then a full charge is performed while the set voltage is maintained. The positive electrode potential during normal charging in the present application represents the positive electrode potential at the set voltage. On the other hand, overcharge refers to a state in which the battery is charged at a voltage exceeding the design voltage of the battery due to some factor.
[非水二次電池の用途] [Applications of non-aqueous secondary batteries]
 リチウム電池と呼ばれる二次電池は、充放電反応にリチウムの吸蔵および放出を利用する二次電池(リチウムイオン二次電池)と、リチウムの析出および溶解を利用する二次電池(リチウム金属二次電池)とに大別される。本発明においてはリチウムイオン二次電池としての適用が好ましい。
 本発明の非水二次電池はサイクル性良好な二次電池を作製することができるため、種々の用途に適用される。適用態様には特に限定はないが、例えば、電子機器に搭載する場合、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャー、ハンディーターミナル、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、電気シェーバー、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源、メモリーカードなどが挙げられる。その他民生用として、自動車、電動車両、モーター、照明器具、玩具、ゲーム機器、ロードコンディショナー、時計、ストロボ、カメラ、医療機器(ペースメーカー、補聴器、肩もみ機など)などが挙げられる。更に、各種軍需用、宇宙用として用いることができる。また、太陽電池と組み合わせることもできる。
Secondary batteries called lithium batteries are secondary batteries that use the insertion and extraction of lithium for charge / discharge reactions (lithium ion secondary batteries), and secondary batteries that use precipitation and dissolution of lithium (lithium metal secondary batteries). ). In the present invention, application as a lithium ion secondary battery is preferable.
Since the nonaqueous secondary battery of the present invention can produce a secondary battery with good cycle performance, it is applied to various applications. Although there is no particular limitation on the application mode, for example, when installed in an electronic device, a notebook computer, a pen input personal computer, a mobile personal computer, an electronic book player, a mobile phone, a cordless phone, a pager, a handy terminal, a mobile fax machine, a mobile phone Copy, portable printer, headphone stereo, video movie, LCD TV, handy cleaner, portable CD, minidisc, electric shaver, transceiver, electronic notebook, calculator, memory card, portable tape recorder, radio, backup power supply, memory card, etc. It is done. Other consumer products include automobiles, electric vehicles, motors, lighting equipment, toys, game equipment, road conditioners, watches, strobes, cameras, medical equipment (such as pacemakers, hearing aids, and shoulder grinders). Furthermore, it can be used for various military use and space use. Moreover, it can also combine with a solar cell.
 なかでも、特にその過充電時の安全性と高レート放電特性の利点を発揮する観点から、高容量且つ高レート放電特性が要求されるアプリケーションに適用されることが好ましい。例えば、今後大容量化が予想される蓄電設備等においては高い安全性が必須となりさらに電池性能の両立が要求される。また、電気自動車などは高容量の二次電池を搭載し、家庭で日々充電が行われる用途が想定され、過充電時に対して一層の安全性が求められる(NEDO技術開発機構,燃料電池・水素技術開発部,蓄電技術開発室「NEDO次世代自動車用蓄電池技術開発 ロードマップ2008」(平成21年6月))。また、発進、加速時には高レートでの放電が必要であり、繰返し充放電しても高レート放電容量が劣化しないことが重要になる。本発明によれば、このような使用形態に好適に対応してその優れた効果を発揮することができる。 In particular, it is preferable to be applied to applications that require high capacity and high rate discharge characteristics, particularly from the viewpoint of exhibiting the advantages of overcharge safety and high rate discharge characteristics. For example, in power storage facilities and the like that are expected to increase in capacity in the future, high safety is essential, and further compatibility of battery performance is required. In addition, electric vehicles are equipped with high-capacity secondary batteries and are expected to be charged every day at home, and even greater safety is required against overcharging (NEDO Technology Development Organization, Fuel Cell / Hydrogen Technology Development Department, Energy Storage Technology Development Office “NEDO Next-Generation Automotive Storage Battery Technology Development Roadmap 2008” (June 2009)). In addition, when starting and accelerating, it is necessary to discharge at a high rate, and it is important that the high-rate discharge capacity does not deteriorate even after repeated charging and discharging. According to the present invention, it is possible to exhibit the excellent effect correspondingly to such a usage pattern.
 以下に、実施例に基づき本発明についてさらに詳細に説明するが、本発明がこれにより限定して解釈されるものではない。
(電解液の調製)
 表Aに示した電解液に特定添加剤及び必要に応じて他の添加剤を表中に示した量で添加し、各試験用の電解液を調製した。カールフィッシャー法(JISK0113)により測定した水分量は20ppm以下であった。
Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not construed as being limited thereto.
(Preparation of electrolyte)
Specific additives and other additives as required were added to the electrolytic solutions shown in Table A in the amounts shown in the table to prepare electrolytic solutions for each test. The water content measured by the Karl Fischer method (JISK0113) was 20 ppm or less.
Figure JPOXMLDOC01-appb-T000025
EC:エチレンカーボネート
EMC:エチルメチルカーボネート
PC:プロピレンカーボネート
Figure JPOXMLDOC01-appb-T000025
EC: ethylene carbonate EMC: ethyl methyl carbonate PC: propylene carbonate
評価方法
<電池(1)の作製> 負極LTOの場合
 正極は活物質:ニッケルマンガンコバルト酸リチウム(LiNi1/3Mn1/3Co1/3) 85質量%、導電助剤:カーボンブラック 7質量%、バインダー:PVDF 8質量%で作製し、負極は活物質:チタン酸リチウム(LiTi12) 94質量%、導電助剤:カーボンブラック 3質量%、バインダー:PVDF 3質量%で作製した。セパレータはセルロース製50μm厚である。上記の正負極、セパレータを使用し、各試験用電解液について、2032形コイン電池(直径:20mm、高さ:3.2mm上蓋、底蓋:SUS製250μm、図3)を作製し、以下の条件で初期化した。
Evaluation Method <Production of Battery (1)> In the Case of Negative Electrode LTO The positive electrode is an active material: lithium nickel manganese cobaltate (LiNi 1/3 Mn 1/3 Co 1/3 O 2 ) 85% by mass, conductive auxiliary agent: carbon black 7% by mass, binder: produced by 8% by mass of PVDF, negative electrode is active material: 94% by mass of lithium titanate (Li 4 Ti 5 O 12 ), conductive auxiliary agent: 3% by mass of carbon black, binder: 3% by mass of PVDF It was made with. The separator is made of cellulose and has a thickness of 50 μm. Using the positive and negative electrodes and separators described above, 2032 type coin batteries (diameter: 20 mm, height: 3.2 mm, top cover, bottom cover: 250 μm made of SUS, FIG. 3) were prepared for each test electrolyte. Initialized with conditions.
<電池(1)の初期化>
 30℃の恒温槽中電池電圧2.55V(正極電位4.1V)になるまで0.2C定電流充電した後、定電圧において電流値が0.12mAになる、または2時間充電を行った。次に30℃の恒温槽中、電池電圧1.2V(正極電位2.75V)になるまで0.2C定電流放電を行った。この操作を2回繰り返した。上記の方法で作製した2032形電池を用いて下記項目の評価を行った。
<Initialization of battery (1)>
The battery was charged at a constant current of 0.2 C until the battery voltage became 2.55 V (positive electrode potential 4.1 V) in a thermostat at 30 ° C., and then charged at a constant voltage of 0.12 mA or charged for 2 hours. Next, 0.2 C constant current discharge was performed in a thermostat at 30 ° C. until the battery voltage reached 1.2 V (positive electrode potential 2.75 V). This operation was repeated twice. The following items were evaluated using the 2032 type battery produced by the above method.
(過充電時のコイン電池の膨張率評価[膨張率1])
 上記で得られたコイン電池を用いて0.2Cで定電流充電を行い、電池電圧2.65V(正極電位4.2V)の充電容量の120%の電池容量に達するまで充電を行い、コイン電池の膨張率を以下の式を用いて算出した。コイン電池の膨張率が大きいものほど過充電時のガス発生量が多いことを表し、良好である。
[(試験後の電池の厚み(mm)―試験前の電池の厚み(mm))
         /試験前の電池の厚み(mm)]×100 (%)
                        ・・・式(A)
 5:10%以上
 4:8%以上10%未満
 3:5%以上8%未満
 2:2%以上5%未満
 1:2%未満
(Evaluation of expansion rate of coin cell during overcharge [Expansion rate 1])
Using the coin battery obtained above, constant current charging is performed at 0.2 C, charging is performed until the battery capacity reaches 120% of the charging capacity of the battery voltage of 2.65 V (positive electrode potential 4.2 V). The expansion coefficient was calculated using the following formula. The larger the expansion rate of the coin battery, the better the amount of gas generated during overcharge.
[(Battery thickness after test (mm) −Battery thickness before test (mm))
/ Battery thickness before test (mm)] × 100 (%)
... Formula (A)
5: 10% or more 4: 8% or more and less than 10% 3: 5% or more and less than 8% 2: 2% or more and less than 5% 1: less than 2%
(コイン電池の保存安定性の評価[膨張率2])
 上記で得られたコイン電池を80℃の恒温槽中48時間静置したときのコイン電池の膨張率を式(1)で算出することで評価した。
 5:1%未満
 4:1%以上3%未満
 3:3%以上5%未満
 2:5%以上10%未満
 1:10%以上
 コイン電池の膨張率が小さいものほど電解液に対して安定であることを表し、良好である。
(Evaluation of storage stability of coin battery [Expansion rate 2])
Evaluation was performed by calculating the expansion rate of the coin battery when the coin battery obtained above was left in a constant temperature bath at 80 ° C. for 48 hours by the equation (1).
Less than 5: 1% 4: 1% or more but less than 3% 3: 3% or more but less than 5% 2: 5% or more but less than 10% 1: 10% or more The smaller the expansion rate of the coin battery, the more stable it is for the electrolyte. It represents that it is good.
(サイクル試験後のコイン電池の膨張率評価[膨張率3])
 上記で得られたコイン電池を用いて、40℃の恒温槽中、0.2Cで電池電圧2.65V(正極電位4.2V)になるまで定電流充電した後、0.2Cで電池電圧1.2V(正極電位2.75V)になるまで定電流放電をおこなう操作を300回繰り返し行ったときのコイン電池の膨張率を式(a)で算出することで評価した。コイン電池の膨張率が小さいものほど通常作動範囲内での充放電に対して安定であることを表し、良好である。
 5:1%未満
 4:1%以上3%未満
 3:3%以上5%未満
 2:5%以上10%未満
 1:10%以上
(Expansion rate evaluation of coin cell after cycle test [Expansion rate 3])
Using the coin battery obtained above, in a constant temperature bath at 40 ° C., constant current charging was performed until the battery voltage reached 2.65 V (positive electrode potential 4.2 V) at 0.2 C, and then the battery voltage 1 at 0.2 C. Evaluation was performed by calculating the expansion rate of the coin battery by the equation (a) when the operation of performing constant current discharge until .2 V (positive electrode potential 2.75 V) was repeated 300 times. The smaller the expansion rate of the coin battery, the more stable it is with respect to charging / discharging within the normal operating range, which is better.
5: Less than 1% 4: 1% or more and less than 3% 3: 3% or more and less than 5% 2: 5% or more and less than 10% 1: 10% or more
Figure JPOXMLDOC01-appb-T000026
Cで始まる試験が比較例
※式(a)=官能基(A)の個数/化合物の分子量×1000
膨張率1:過充電時のコイン電池の膨張率評価
膨張率2:高温(80℃)保存時の膨張率評価
膨張率2:サイクル試験後のコイン電池の膨張率評価
添加剤・酸発生剤:( )は添加量(電解液全量に対する質量%)
Figure JPOXMLDOC01-appb-T000026
Tests starting with C are comparative examples * Formula (a) = number of functional groups (A) / molecular weight of compound × 1000
Expansion coefficient 1: Expansion coefficient evaluation of coin battery during overcharge 2: Expansion coefficient evaluation expansion coefficient during storage at high temperature (80 ° C.) 2: Expansion coefficient evaluation additive / acid generator for coin battery after cycle test: () Is the amount added (% by mass relative to the total amount of the electrolyte)
<電池(2)の作製> 負極カーボンの場合
 正極は活物質:ニッケルマンガンコバルト酸リチウム(LiNi1/3Mn1/3Co1/3O2) 85質量%、導電助剤:カーボンブラック 7質量%、バインダー:PVDF 8質量%で作製し負極については、活物質:黒鉛 86質量%、導電助剤:カーボンブラック 6質量%、バインダー:PVDF 8質量%で作製した。セパレータはポリプロピレン製25μm厚に代えた。上記の正負極、セパレータを使用し、各試験No.の電解液について、2032形コイン電池(直径:20mm、高さ:3.2mm、上蓋、底蓋:SUS製250μm、図3)を作製し、下記項目の評価を行った。
<Production of Battery (2)> In the case of negative electrode carbon The positive electrode is active material: lithium nickel manganese cobaltate (LiNi1 / 3Mn1 / 3Co1 / 3O2) 85 mass%, conductive auxiliary agent: carbon black 7 mass%, binder: PVDF 8 mass The negative electrode was prepared with active material: 86% by mass of graphite, conductive auxiliary agent: 6% by mass of carbon black, and binder: 8% by mass of PVDF. The separator was replaced with a polypropylene 25 μm thickness. Using the above positive and negative electrodes and separator, each test No. A 2032 type coin battery (diameter: 20 mm, height: 3.2 mm, top lid, bottom lid: 250 μm made of SUS, FIG. 3) was prepared and evaluated for the following items.
<電池(1)の初期化>
 30℃の恒温槽中電池電圧4.0V(正極電位4.1V)になるまで0.2C定電流充電した後、定電圧において電流値が0.12mAになる、または2時間充電を行った。次に30℃の恒温槽中、電池電圧2.65V(正極電位2.75V)になるまで0.2C定電流放電を行った。この操作を2回繰り返した。上記の方法で作製した2032形電池を用いて下記項目の評価を行った。
<Initialization of battery (1)>
The battery was charged at a constant current of 0.2 C until the battery voltage reached 4.0 V (positive electrode potential 4.1 V) in a thermostat at 30 ° C., and then charged at a constant voltage of 0.12 mA or charged for 2 hours. Next, 0.2 C constant current discharge was performed in a thermostat at 30 ° C. until the battery voltage reached 2.65 V (positive electrode potential 2.75 V). This operation was repeated twice. The following items were evaluated using the 2032 type battery produced by the above method.
(過充電時のコイン電池の膨張率評価[膨張率1])
 上記で得られたコイン電池を用いて0.2Cで定電流充電を行い、電池電圧4.1V(正極電位4.2V)の充電容量の120%の電池容量に達するまで充電を行い、コイン電池の膨張率を以下の式を用いて算出した。コイン電池の膨張率が大きいものほど過充電時のガス発生量が多いことを表し、良好である。
[(試験後の電池の厚み(mm)―試験前の電池の厚み(mm))
         /試験前の電池の厚み(mm)]×100 (%)・・・式(A)
 5:10%以上
 4:8%以上10%未満
 3:5%以上8%未満
 2:2%以上5%未満
 1:2%未満
(Evaluation of expansion rate of coin cell during overcharge [Expansion rate 1])
Using the coin battery obtained above, constant current charging is performed at 0.2 C, charging is performed until the battery capacity reaches 120% of the charging capacity of the battery voltage 4.1 V (positive electrode potential 4.2 V), and the coin battery The expansion coefficient was calculated using the following formula. The larger the expansion rate of the coin battery, the better the amount of gas generated during overcharge.
[(Battery thickness after test (mm) −Battery thickness before test (mm))
/ Battery thickness before test (mm)] × 100 (%) Formula (A)
5: 10% or more 4: 8% or more and less than 10% 3: 5% or more and less than 8% 2: 2% or more and less than 5% 1: less than 2%
(コイン電池の保存安定性の評価[膨張率2])
 上記で得られたコイン電池を80℃の恒温槽中48時間静置したときのコイン電池の膨張率を式(1)で算出することで評価した。
 5:1%未満
 4:1%以上3%未満
 3:3%以上5%未満
 2:5%以上10%未満
 1:10%以上
 コイン電池の膨張率が小さいものほど電解液に対して安定であることを表し、良好である。
(Evaluation of storage stability of coin battery [Expansion rate 2])
Evaluation was performed by calculating the expansion rate of the coin battery when the coin battery obtained above was left in a constant temperature bath at 80 ° C. for 48 hours by the equation (1).
Less than 5: 1% 4: 1% or more but less than 3% 3: 3% or more but less than 5% 2: 5% or more but less than 10% 1: 10% or more The smaller the expansion rate of the coin battery, the more stable it is for the electrolyte. It represents that it is good.
(サイクル試験後のコイン電池の膨張率評価[膨張率3])
 上記で得られたコイン電池を用いて、40℃の恒温槽中、0.2Cで電池電圧4.1V(正極電位4.2V)になるまで定電流充電した後、0.2Cで電池電圧2.65V(正極電位2.75V)になるまで定電流放電をおこなう操作を300回繰り返し行ったときのコイン電池の膨張率を式(a)で算出することで評価した。コイン電池の膨張率が小さいものほど通常作動範囲内での充放電に対して安定であることを表し、良好である。
 5:1%未満
 4:1%以上3%未満
 3:3%以上5%未満
 2:5%以上10%未満
 1:10%以上
(Expansion rate evaluation of coin cell after cycle test [Expansion rate 3])
Using the coin battery obtained above, in a constant temperature bath at 40 ° C., after constant current charging at 0.2 C until the battery voltage was 4.1 V (positive electrode potential 4.2 V), the battery voltage was 2 at 0.2 C. Evaluation was performed by calculating the expansion rate of the coin battery by the equation (a) when the operation of performing constant current discharge until .65 V (positive electrode potential 2.75 V) was repeated 300 times. The smaller the expansion rate of the coin battery, the more stable it is with respect to charging / discharging within the normal operating range, which is better.
5: Less than 1% 4: 1% or more and less than 3% 3: 3% or more and less than 5% 2: 5% or more and less than 10% 1: 10% or more
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 上記の結果より、本発明に係る非水二次電池用電解液によれば、相反する特性である高い過充電防止性(過充電時のガス発生性)とその性能の劣化抑制(通常充電時のガス発生抑制性)とを両立し、しかも高い電池の保存安定性を実現することができることが分かる。 From the above results, according to the electrolyte for a non-aqueous secondary battery according to the present invention, high overcharge prevention (gas generation during overcharge), which is a contradictory characteristic, and suppression of deterioration in performance (during normal charge) It can be seen that a high storage stability of the battery can be realized.
 電解液の溶媒組成を、下記のとおりに変えて(S1’,S1”)、試験101(添加剤 A-1(3質量部))と同じ実験を行った。その結果、膨張率1~3について、いずれも3~4の成績であった。
Figure JPOXMLDOC01-appb-T000029
 DMC:ジメチルカーボネート
 DEC:ジエチルカーボネート
The same experiment as in Test 101 (Additive A-1 (3 parts by mass)) was performed by changing the solvent composition of the electrolytic solution as follows (S1 ′, S1 ″). All were grades of 3-4.
Figure JPOXMLDOC01-appb-T000029
DMC: Dimethyl carbonate DEC: Diethyl carbonate
 上記の結果から、各種の一級鎖状カーボネートを電解液の溶媒に配合することで、所望の効果が得られることが分かる。 From the above results, it can be seen that a desired effect can be obtained by blending various primary chain carbonates with the solvent of the electrolytic solution.
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2013年3月25日に日本国で特許出願された特願2013-062958に基づく優先権を主張するものであり、これらはここに参照してその内容を本明細書の記載の一部として取り込む。
While this invention has been described in conjunction with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified and are contrary to the spirit and scope of the invention as set forth in the appended claims. I think it should be interpreted widely.
This application claims priority based on Japanese Patent Application No. 2013-062958 filed in Japan on March 25, 2013, which is hereby incorporated herein by reference. Capture as part.
C 正極(正極合材)
 1 正極導電材(集電体)
 2 正極活物質層
A 正極(正極合材)
 3 負極導電材(集電体)
 4 負極活物質層
5 非水電解液
6 動作手段
7 配線
9  セパレータ
10 リチウムイオン二次電池
12 セパレータ
14 正極シート
16 負極シート
18 負極を兼ねる外装缶
20 絶縁板
22 封口板
24 正極集電
26 ガスケット
28 圧力感応弁体
30 電流遮断素子
100 有底筒型形状リチウム二次電池
50 電流遮断封口体
51 正極キャップ
52 凸部
 52a ガス抜き孔
53 フランジ部
54 底板
55 凹部
56 フランジ部
57 電力導出板
 57a 凹部57
 57b フランジ部
58 PTCサーミスタ素子
59 封口体用絶縁ガスケット
61 負極端子(上蓋)
62 負極
63 セパレータ(電解液を含む)
64 ガスケット(シール材)
65 正極
66 正極管(底蓋)
C positive electrode (positive electrode composite)
1 Positive electrode conductive material (current collector)
2 Positive electrode active material layer A Positive electrode (positive electrode mixture)
3 Negative electrode conductive material (current collector)
4 Negative electrode active material layer 5 Nonaqueous electrolyte 6 Operating means 7 Wiring 9 Separator 10 Lithium ion secondary battery 12 Separator 14 Positive electrode sheet 16 Negative electrode sheet 18 Exterior can 20 also serving as negative electrode Insulating plate 22 Sealing plate 24 Positive electrode current collector 26 Gasket 28 Pressure-sensitive valve body 30 Current interrupting element 100 Bottomed cylindrical lithium secondary battery 50 Current interrupting sealing body 51 Positive electrode cap 52 Convex part 52a Gas vent hole 53 Flange part 54 Bottom plate 55 Concave part 56 Flange part 57 Power outlet plate 57a Concave part 57
57b Flange part 58 PTC thermistor element 59 Insulating gasket 61 for sealing body Negative electrode terminal (upper cover)
62 Negative electrode 63 Separator (including electrolyte)
64 Gasket (sealing material)
65 Positive electrode 66 Positive electrode tube (bottom cover)

Claims (15)

  1.  電解質と有機溶媒と下記官能基Aで表される構造を有する特定添加剤とを含有する電解液であって、
     上記有機溶媒の20~95体積%が一級鎖状カーボネート化合物で構成され、
     上記特定添加剤を全電解液中に0.5~10質量%含有している非水二次電池用電解液。
    Figure JPOXMLDOC01-appb-C000001
     R~Rはそれぞれ独立に水素原子、ハロゲン原子、または炭化水素基である。R~Rの中で少なくとも2つは上記炭化水素基である。上記炭化水素基は酸素原子、窒素原子、硫黄原子、およびハロゲン原子から選ばれた少なくとも1種の原子を含む基を有することがある。*は結合手である。
    An electrolyte solution containing an electrolyte, an organic solvent, and a specific additive having a structure represented by the following functional group A,
    20 to 95% by volume of the organic solvent is composed of a primary chain carbonate compound,
    An electrolyte solution for a non-aqueous secondary battery containing the specific additive in an amount of 0.5 to 10% by mass in the total electrolyte solution.
    Figure JPOXMLDOC01-appb-C000001
    R 1 to R 3 each independently represents a hydrogen atom, a halogen atom, or a hydrocarbon group. At least two of R 1 to R 3 are the hydrocarbon groups. The hydrocarbon group may have a group containing at least one atom selected from an oxygen atom, a nitrogen atom, a sulfur atom, and a halogen atom. * Is a bond.
  2.  上記R~Rが炭化水素基であるとき、上記炭化水素基が芳香族基または下記式Rbで表されるアルキル基である請求項1に記載の非水二次電池用電解液。
     *-CRb1b2b3   ・・・Rb
     上記Rb1、Rb2、Rb3はそれぞれ独立に水素原子、炭化水素基、または、酸素原子、窒素原子、硫黄原子、およびハロゲン原子から選ばれた少なくとも1種の原子を含む基である。ただし、R~Rが式Rbで表されるアルキル基のとき、その少なくともその1つにおいて、Rb1、Rb2、Rb3のうち少なくとも1つは水素原子、炭化水素基、または、酸素原子、窒素原子、および硫黄原子から選ばれた少なくとも1種の原子を含む基である。*は結合手である。
    The electrolyte solution for a non-aqueous secondary battery according to claim 1, wherein when R 1 to R 3 are hydrocarbon groups, the hydrocarbon group is an aromatic group or an alkyl group represented by the following formula Rb.
    * -CR b1 R b2 R b3 ... Rb
    R b1 , R b2 , and R b3 are each independently a hydrogen atom, a hydrocarbon group, or a group containing at least one atom selected from an oxygen atom, a nitrogen atom, a sulfur atom, and a halogen atom. Provided that when at least one of R 1 to R 3 is an alkyl group represented by the formula Rb, at least one of R b1 , R b2 , and R b3 is a hydrogen atom, a hydrocarbon group, or oxygen A group containing at least one atom selected from an atom, a nitrogen atom, and a sulfur atom. * Is a bond.
  3.  上記特定添加剤をなす化合物の上記官能基Aの数が2つ以上である請求項1または2に記載の非水二次電池用電解液。 The electrolyte solution for a non-aqueous secondary battery according to claim 1 or 2, wherein the number of the functional groups A of the compound constituting the specific additive is two or more.
  4.  酸化を受けて酸を発生する官能基を有する酸発生剤を電解液中に含有する請求項1~3のいずれか1項に記載の非水二次電池用電解液。 The electrolyte solution for a non-aqueous secondary battery according to any one of claims 1 to 3, wherein the electrolyte solution contains an acid generator having a functional group that generates an acid upon oxidation.
  5.  特定添加剤の官能基Aの分子中の数と分子量とが下記式aの関係を満たす請求項1~4のいずれか1項に記載の非水二次電池用電解液。
     分子中の官能群Aの個数/化合物の分子量×1000≧5
                       ・・・ a
    The electrolyte solution for a non-aqueous secondary battery according to any one of claims 1 to 4, wherein the number and molecular weight of the functional group A of the specific additive satisfy the relationship of the following formula a.
    Number of functional groups A in the molecule / molecular weight of the compound × 1000 ≧ 5
    ... a
  6.  上記官能基Aが下記官能基Bで表される請求項1~5のいずれか1項に記載の二次電池用電解液。
    Figure JPOXMLDOC01-appb-C000002
    〔Xは酸素原子、窒素原子、および硫黄原子から選ばれた少なくとも1種の原子を含む連結基である。R~Rは式AにおけるR~Rと同義である。〕
    The electrolyte solution for a secondary battery according to any one of claims 1 to 5, wherein the functional group A is represented by the following functional group B.
    Figure JPOXMLDOC01-appb-C000002
    [X 1 is a linking group containing at least one atom selected from an oxygen atom, a nitrogen atom, and a sulfur atom. R 1 ~ R 3 have the same meanings as R 1 ~ R 3 in Formula A. ]
  7.  上記特定添加剤が下記式A1で表される請求項1~6のいずれか1項に記載の非水二次電池用電解液。
    Figure JPOXMLDOC01-appb-C000003
    〔nは1~6の整数である。Rはnが1のときは有機基、nが2以上のときは連結基を表す。R~Rは式AにおけるR~Rと同義である。〕
    The electrolyte solution for a non-aqueous secondary battery according to any one of claims 1 to 6, wherein the specific additive is represented by the following formula A1.
    Figure JPOXMLDOC01-appb-C000003
    [N a is an integer of 1-6. R a represents an organic group when na is 1, and represents a linking group when na is 2 or more. R 1 ~ R 3 have the same meanings as R 1 ~ R 3 in Formula A. ]
  8.  上記式A1が下記式B1で表される請求項7に記載の非水二次電池用電解液。
    Figure JPOXMLDOC01-appb-C000004
    〔nは2~6の整数である。Rは2価~6価の連結基を表す。X21は酸素原子、窒素原子、および硫黄原子から選ばれた少なくとも1種の原子を含む連結基である。R~Rは式A1におけるR~Rと同義である。〕
    The electrolyte for a non-aqueous secondary battery according to claim 7, wherein the formula A1 is represented by the following formula B1.
    Figure JPOXMLDOC01-appb-C000004
    [ Nb is an integer of 2 to 6. R b represents a divalent to hexavalent linking group. X 21 is a linking group containing at least one atom selected from an oxygen atom, a nitrogen atom, and a sulfur atom. R 1 ~ R 3 have the same meanings as R 1 ~ R 3 in Formula A1. ]
  9.  上記酸発生剤を全電解液中に0.1~5質量%含有する請求項4~8のいずれか1項に記載の非水二次電池用電解液。 The electrolyte solution for a non-aqueous secondary battery according to any one of claims 4 to 8, wherein the acid generator is contained in an amount of 0.1 to 5% by mass in the total electrolyte solution.
  10.  上記一級直鎖カーボネート化合物が、ジエチルカーボネート、エチルメチルカーボネート、ジメチルカーボネート、またはメチルn-プロピルカーボネートである請求項1~9のいずれか1項に記載の非水二次電池用電解液。 10. The electrolyte solution for a non-aqueous secondary battery according to claim 1, wherein the primary linear carbonate compound is diethyl carbonate, ethyl methyl carbonate, dimethyl carbonate, or methyl n-propyl carbonate.
  11.  正極、負極、および請求項1~10のいずれか1項に記載の電解液を具備する非水電解液二次電池。 A non-aqueous electrolyte secondary battery comprising the positive electrode, the negative electrode, and the electrolytic solution according to any one of claims 1 to 10.
  12.  ニッケル、もしくはマンガンのうち少なくとも1種を有する化合物を上記正極の活物質として用いた請求項11に記載の非水電解液二次電池。 The nonaqueous electrolyte secondary battery according to claim 11, wherein a compound having at least one of nickel and manganese is used as an active material of the positive electrode.
  13.  チタン酸リチウムまたは炭素材料を上記負極の活物質として用いた請求項11または12に記載の非水電解液二次電池。 The nonaqueous electrolyte secondary battery according to claim 11 or 12, wherein lithium titanate or a carbon material is used as an active material of the negative electrode.
  14.  上記特定添加剤が過充電時にガスを発生する化合物であり、且つ、電池内部の圧力が所定圧力以上になると電流を遮断する過充電防止装置を有している請求項11~13のいずれか1項に記載の非水二次電池。 The overcharge prevention device according to any one of claims 11 to 13, wherein the specific additive is a compound that generates a gas during overcharge, and has an overcharge prevention device that cuts off current when a pressure inside the battery exceeds a predetermined pressure. A non-aqueous secondary battery according to item.
  15.  過充電時に連鎖的に分解されガスを発生する化合物と電解質と有機溶媒とを含有する非水二次電池用電解液。
     
    An electrolyte solution for a non-aqueous secondary battery, comprising a compound that decomposes in a chain during overcharge and generates a gas, an electrolyte, and an organic solvent.
PCT/JP2014/054475 2013-03-25 2014-02-25 Electrolyte solution for nonaqueous secondary batteries, and nonaqueous secondary battery WO2014156428A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013062958A JP2014186979A (en) 2013-03-25 2013-03-25 Electrolytic solution for nonaqueous secondary batteries, and nonaqueous secondary battery
JP2013-062958 2013-03-25

Publications (1)

Publication Number Publication Date
WO2014156428A1 true WO2014156428A1 (en) 2014-10-02

Family

ID=51623425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054475 WO2014156428A1 (en) 2013-03-25 2014-02-25 Electrolyte solution for nonaqueous secondary batteries, and nonaqueous secondary battery

Country Status (2)

Country Link
JP (1) JP2014186979A (en)
WO (1) WO2014156428A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0896847A (en) * 1994-09-22 1996-04-12 Matsushita Electric Ind Co Ltd Nonaqueous electrolytic secondary battery
JPH11185805A (en) * 1997-12-17 1999-07-09 Fuji Photo Film Co Ltd Nonaqueous electrolyte secondary battery
JPH11195430A (en) * 1998-01-06 1999-07-21 Fuji Photo Film Co Ltd Nonaqueous electrolyte secondary battery
JPH11329498A (en) * 1998-04-16 1999-11-30 Wilson Greatbatch Ltd Dicarbonate additive for nonaqueous electrolyte in alkaline metal electrochemical battery
JP2001023689A (en) * 1999-07-13 2001-01-26 Ube Ind Ltd Nonaqueous electrolyte and lithium secondary battery using the same
JP2001516492A (en) * 1996-05-24 2001-09-25 エス・アール・アイ・インターナシヨナル Non-combustible / self-extinguishing electrolyte for batteries
JP2004047131A (en) * 2002-07-08 2004-02-12 Sony Corp Nonaqueous electrolyte battery
JP2008288144A (en) * 2007-05-21 2008-11-27 Sony Corp Electrolytic solution, and battery
JP2009231283A (en) * 2008-02-29 2009-10-08 Mitsubishi Chemicals Corp Nonaqueous electrolyte solution, and the nonaqueous electrolyte battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0896847A (en) * 1994-09-22 1996-04-12 Matsushita Electric Ind Co Ltd Nonaqueous electrolytic secondary battery
JP2001516492A (en) * 1996-05-24 2001-09-25 エス・アール・アイ・インターナシヨナル Non-combustible / self-extinguishing electrolyte for batteries
JPH11185805A (en) * 1997-12-17 1999-07-09 Fuji Photo Film Co Ltd Nonaqueous electrolyte secondary battery
JPH11195430A (en) * 1998-01-06 1999-07-21 Fuji Photo Film Co Ltd Nonaqueous electrolyte secondary battery
JPH11329498A (en) * 1998-04-16 1999-11-30 Wilson Greatbatch Ltd Dicarbonate additive for nonaqueous electrolyte in alkaline metal electrochemical battery
JP2001023689A (en) * 1999-07-13 2001-01-26 Ube Ind Ltd Nonaqueous electrolyte and lithium secondary battery using the same
JP2004047131A (en) * 2002-07-08 2004-02-12 Sony Corp Nonaqueous electrolyte battery
JP2008288144A (en) * 2007-05-21 2008-11-27 Sony Corp Electrolytic solution, and battery
JP2009231283A (en) * 2008-02-29 2009-10-08 Mitsubishi Chemicals Corp Nonaqueous electrolyte solution, and the nonaqueous electrolyte battery

Also Published As

Publication number Publication date
JP2014186979A (en) 2014-10-02

Similar Documents

Publication Publication Date Title
JP2014127354A (en) Electrolyte for nonaqueous secondary battery, nonaqueous secondary battery, and additive for electrolyte
WO2013172383A1 (en) Nonaqueous secondary battery and nonaqueous-secondary-battery electrolytic solution
JP6071600B2 (en) Nonaqueous secondary battery electrolyte, nonaqueous secondary battery, electrolyte additive
JP5902034B2 (en) Non-aqueous secondary battery electrolyte and non-aqueous secondary battery
JP6154145B2 (en) Non-aqueous secondary battery electrolyte and non-aqueous secondary battery
JP6130637B2 (en) Non-aqueous secondary battery electrolyte and secondary battery
JP6047458B2 (en) Non-aqueous secondary battery
WO2015016187A1 (en) Nonaqueous-secondary-battery electrolyte solution and nonaqueous secondary battery
JP2015018667A (en) Electrolyte for nonaqueous secondary battery, nonaqueous secondary battery and additive for nonaqueous electrolyte
JP2014235986A (en) Electrolytic solution for nonaqueous secondary batteries, and nonaqueous secondary battery
JP2015026589A (en) Electrolytic solution for nonaqueous secondary batteries, and nonaqueous secondary battery
WO2015016188A1 (en) Nonaqueous electrolyte solution and nonaqueous secondary battery
JP2013191486A (en) Electrolytic solution for nonaqueous secondary battery and secondary battery
WO2016143428A1 (en) Electrolytic solution and nonaqueous secondary battery
JP2014192145A (en) Nonaqueous secondary battery, and electrolytic solution for secondary battery use
WO2014157533A1 (en) Nonaqueous secondary battery and electrolyte solution for nonaqueous secondary batteries
CN110036524B (en) Electrolyte for nonaqueous secondary battery, and metal complex
JP2014013719A (en) Electrolytic solution for nonaqueous secondary battery, and secondary battery
WO2018016519A1 (en) Electrolyte solution for non-aqueous secondary battery, and non-aqueous secondary battery
JP2014063668A (en) Electrolyte for nonaqueous secondary battery and secondary battery
JP6150987B2 (en) Non-aqueous secondary battery electrolyte and secondary battery
JP6391028B2 (en) Electrolyte, lithium ion battery and lithium ion capacitor
WO2018016444A1 (en) Electrolyte solution for non-aqueous secondary battery, and non-aqueous secondary battery
WO2014157534A1 (en) Electrolytic solution for non-aqueous secondary batteries, non-aqueous secondary battery, and non-aqueous electrolytic solution additive
JP2014220053A (en) Nonaqueous secondary battery and electrolyte for nonaqueous secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14775312

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14775312

Country of ref document: EP

Kind code of ref document: A1