WO2014157533A1 - Nonaqueous secondary battery and electrolyte solution for nonaqueous secondary batteries - Google Patents

Nonaqueous secondary battery and electrolyte solution for nonaqueous secondary batteries Download PDF

Info

Publication number
WO2014157533A1
WO2014157533A1 PCT/JP2014/058895 JP2014058895W WO2014157533A1 WO 2014157533 A1 WO2014157533 A1 WO 2014157533A1 JP 2014058895 W JP2014058895 W JP 2014058895W WO 2014157533 A1 WO2014157533 A1 WO 2014157533A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
secondary battery
lithium
integer
ring
Prior art date
Application number
PCT/JP2014/058895
Other languages
French (fr)
Japanese (ja)
Inventor
洋平 石地
郁雄 木下
児玉 邦彦
稔彦 八幡
智則 石野
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2014157533A1 publication Critical patent/WO2014157533A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous secondary battery and an electrolyte for a non-aqueous secondary battery.
  • Lithium secondary batteries are widely used as power sources for portable electronic devices such as mobile phones and notebook computers. Along with the expansion of applications centering on such portable use, lighter and smaller products with higher energy density and higher capacity have been developed. On the other hand, in terms of reliability, there was an overcharge phenomenon as a problem inherent to lithium secondary batteries. In this case, even if the secondary battery has reached a fully charged state, if the charging is further continued, the electrodes are short-circuited to cause a problem. In particular, a lithium secondary battery using an organic electrolyte solution has been desired to be sufficiently handled from the viewpoint of ensuring safety in use.
  • Measures are usually taken on the electrical equipment side where the battery is installed. Specifically, a charge control circuit is incorporated, and the supply of electricity is cut off when full charge is reached. However, even though it is extremely rare, the above circuit cannot cope with it, and it is assumed that an overcharged state is reached. Even in such a case, if the non-aqueous electrolyte is improved and overcharge can be suppressed, the reliability can be further improved.
  • the present inventor considers that in the non-aqueous secondary battery having a pressure-sensitive mechanism, in order to prevent the overcharge more effectively, it is considered that the addition of the cyclohexylbenzene is not sufficient, and a more effective additive. Explored. At this time, it is also developed that it is suitable for negative electrodes that operate at a high potential using lithium titanate (LTO), etc., which have recently been widely used, or a high potential positive electrode if necessary, and exhibits high performance. was the goal.
  • LTO lithium titanate
  • the present invention provides a non-aqueous secondary battery that can simultaneously satisfy high overcharge prevention properties based on gas generation from a non-aqueous electrolyte, battery performance deterioration suppression properties, and low-temperature characteristics, and a method for using the same. It aims at providing the electrolyte solution for non-aqueous secondary batteries.
  • a non-aqueous secondary battery having a positive electrode, a negative electrode, and a non-aqueous electrolyte The negative electrode has a normal operating potential of 1.2 V or more for lithium metal
  • the nonaqueous electrolytic solution is a nonaqueous secondary battery including an electrolyte, an organic solvent, and an onium salt having a compound represented by the following formula (I), an aryl group, or a heterocyclic group in a partial structure.
  • (X 1, X 2 represents a substituent, at least one of with aryl-containing group or L 1 is a group which forms a heterocyclic group. Both may be the same or different from each other.
  • the X 1, X 2 is may form a ring structure bonded to fused with each other. Alternatively, X 1 is omitted, X 2 and L 1 and there is a good .X 1 also form a ring with L 1 combined with optionally form a ring .L 1 is -O -, - S -, - NR a -, - CO -, - CR b R c -, or a combination thereof .R a ⁇ R c each independently represents a hydrogen atom or a substituent, and R a to R c may combine with X 1 to form a ring.) [2] The nonaqueous secondary battery according to [1], wherein the compound represented by the formula (I) has an aryl group or heterocyclic group having at least one alkyl group in a partial structure.
  • M3 is an integer of 1 to 6. * is a bond on the CO side, and ** is a bond on the X 1 side.)
  • [5] The nonaqueous two-component solvent according to any one of [1] to [4], wherein X 1 and X 2 are an alkyl group and a substituent having a partial structure selected from the following formulas (X1) to (X12): Next battery.
  • R X1 represents a substituent.
  • N11 represents an integer of 0 to 4.
  • n12 represents an integer of 0 to 5.
  • n13 represents an integer of 0 to 11.
  • n14 represents an integer of 0 to 8.
  • n15 Represents an integer of 0 to 4.
  • n16 represents an integer of 0 to 10.
  • L 2 represents an alkylene group that may contain an aryl group, * represents a bond, Formulas (X1), (X5), (X11) for shows, including NR a is a site contained in L 1 of formula (I).)
  • R C1 represents a substituent.
  • M1 represents an integer of 0 to 4.
  • m2 represents an integer of 0 to 2.
  • the onium salt is a compound represented by any one of the following formulas (II) to (VII).
  • R 1 to R 27 are a hydrogen atom, an alkyl group, an alkoxy group, an alkoxycarbonyl group, an aryl group, or a heterocyclic group. R 1 to R 27 are bonded to each other or bonded to each other to form a ring structure. Z ⁇ represents an anion.
  • R 1 to R 27 are selected from an alkyl group or the following (R1) to (R10).
  • R 31 represents a substituent.
  • L 3 and L 4 each independently represent an alkylene group that may contain an aryl group.
  • N3 represents an integer of 0 to 10.
  • n4 represents an integer of 0 to 11.
  • n5 represents an integer of 0 to 9.
  • n6 represents an integer of 0 to 5.
  • n7 represents an integer of 0 to 4. * represents a bond.
  • , Cr, Mn, Fe, Co, Ni, and Cu represent one or more elements selected from the group consisting of M 1 to M 3 , a part of which is the first (Ia) of the periodic table other than lithium.
  • Group element, Group 2 (IIa) element, Al, Ga, In, Ge, Sn, Pb, Sb, Bi, Si, P, and B may be substituted.
  • a represents 0 to 1.2
  • b represents 1 to 3
  • d represents 3 to 5
  • e represents 0 to 2
  • f represents 1 to 5.
  • the active material of the positive electrode is lithium cobaltate, lithium manganate, lithium nickelate, lithium nickel manganese cobaltate, lithium manganese nickelate, lithium nickel cobaltaluminate, or lithium iron phosphate [1] to [1] [12]
  • An electrolyte solution for a non-aqueous secondary battery comprising an electrolyte, an organic solvent, and an onium salt having a compound represented by the following formula (I) or an aryl group or heterocyclic group in a partial structure.
  • (X 1 and X 2 each represents a substituent, and at least one of them is an aryl group-containing group or a group that forms a heterocyclic group with L 1. Both may be the same or different.
  • X 1 and X 2 may form a ring structure bonded to fused with each other.
  • X 1 is omitted, X 2 and L 1 and there is a good .
  • X 1 also form a ring with L 1 combined with optionally form a ring .
  • L 1 is -O -, - S -, - NR a -, - CO -, - CR b R c -, or a combination thereof .
  • R a ⁇ R c each independently represents a hydrogen atom or a substituent, and R a to R c may combine with X 1 to form a ring.
  • R 1 to R 27 are a hydrogen atom, an alkyl group, an alkoxy group, an alkoxycarbonyl group, an aryl group, or a heterocyclic group. R 1 to R 27 are bonded to each other or bonded to each other to form a ring structure.
  • Z ⁇ represents an anion.
  • the non-aqueous secondary battery electrolyte and non-aqueous secondary battery of the present invention the high overcharge prevention property based on the gas generation from the non-aqueous electrolyte solution, the battery performance deterioration suppression property, and the low-temperature characteristics. You can be satisfied at the same time. Moreover, even if it is the conditions using a negative electrode of a high potential if necessary, it can be suitably adapted to this and exhibit its high performance.
  • the electrolyte solution for a non-aqueous secondary battery of the present invention contains an electrolyte and the following specific organic compound in an organic solvent.
  • the specific organic compound preferably has a reduction initiation potential of less than 1.2 V, and more preferably generates an effective amount of gas during overcharge.
  • the reason why the above-mentioned excellent effect is obtained by using this specific organic compound is understood as follows including estimation.
  • the potential of the positive electrode suddenly rises during overcharge and the potential of the negative electrode also changes. In particular, when a high potential negative electrode is used, the potential drops sharply. Such changes may be more pronounced on the negative electrode than on the positive electrode.
  • the specific organic compound responds sensitively to such a change in potential of the negative electrode and generates gas while decomposing part of the molecular structure.
  • the compound of formula (I) is taken as an example, the carbonyl group undergoes reduction, and the decarboxylation reaction proceeds using the generated anion radical as a reaction starting point to generate anion species and radical species.
  • the anions and radicals are further oxidized and released as gases. That is, it is expected that the reaction proceeds in a chain manner from one molecule and gas is effectively generated.
  • Carbon dioxide is a stable and non-flammable gas and has high reliability.
  • this mechanism of action includes estimation, and the present invention is not construed as being limited thereto.
  • the present invention will be described in detail.
  • X 1 and X 2 are substituents, and at least one of them is an aryl group-containing group or a group that forms a heterocyclic group with L 1 . Both may be the same or different.
  • X 1 and X 2 may be bonded to each other or condensed to form a ring structure. Alternatively, X 1 may be omitted, and X 2 and L 1 may be bonded to form a ring. X 1 and L 1 may combine to form a ring.
  • the aryl group preferably has 6 to 22 carbon atoms, more preferably 6 to 14 carbon atoms, and particularly preferably 6 to 10 carbon atoms.
  • a phenyl group preferably has 1 to 12 carbon atoms, more preferably 2 to 8 carbon atoms, and particularly preferably 2 to 5 carbon atoms.
  • the number of atoms constituting the ring is preferably a 3-membered to 6-membered ring.
  • the heterocyclic group may further have the following substituent R X1 as an optional substituent.
  • X 1 and X 2 are substituents other than the aryl group-containing group and the group that forms a heterocyclic group, examples thereof include examples of the substituent R X1 described later (excluding the group corresponding to the above).
  • an alkyl group preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms
  • an alkoxy group preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms
  • an acyl group preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms
  • an acyloxy group preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms.
  • a sulfonyl group-containing group preferably having 1 to 12 carbon atoms, more preferably 1 to 6 and particularly preferably 1 to 3
  • a carbonyl group-containing group preferably having 2 to 12 carbon atoms 2-6
  • alkenyl groups preferably having 2-8 carbon atoms, more preferred 2-4
  • amino groups preferably having 0-6 carbon atoms, more preferably 0-3).
  • Phosphino Preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms
  • phosphinyl group preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms
  • a halogen atom is mentioned.
  • the ring ⁇ containing L 1 is a heterocyclic ring, and examples of the heterocyclic group listed above can be given.
  • X 1 is shown in an abbreviated form. It means that X 2 and L 1 of ring ⁇ are connected by a single bond.
  • X 1 and X 2 are preferably structures selected from the following formulas (X1) to (X12). However, the formula (X1), is shown including NR a is a site contained in L 1 of (X5), for (X11), the formula (I).
  • R X1 represents a substituent.
  • substituents include the examples of the optional substituent T described later.
  • an alkyl group preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms
  • an alkoxy group preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and 1 to 3 carbon atoms.
  • an acyl group preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms
  • an acyloxy group preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, 1 to 6 carbon atoms.
  • a sulfonyl group-containing group preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms
  • a carbonyl group-containing group preferably 2 to 12 carbon atoms, preferably 2 to 6 carbon atoms.
  • an alkenyl group preferably having 2 to 8 carbon atoms, more preferably 2 to 4
  • an amino group preferably having 0 to 6 carbon atoms, and more preferably 0 to 3
  • Phosphino group A prime number of 1 to 12, preferably 1 to 6, more preferably 1 to 3, and a phosphinyl group (preferably 1 to 12, preferably 1 to 6, more preferably 1 to 3)
  • a halogen atom Is preferred.
  • N11 represents an integer of 0-4.
  • n12 represents an integer of 0 to 5.
  • n13 represents an integer of 0 to 11.
  • n14 represents an integer of 0 to 8.
  • n15 represents an integer of 0 to 4.
  • n16 represents an integer of 0 to 10.
  • ⁇ L 2 L 2 represents an alkylene group that may contain an aryl group.
  • — (R e R f C) n — is preferable, and n is preferably 1 to 6.
  • R e and R f are each independently a hydrogen atom, an alkyl group (preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms), an aryl group (preferably 6 to 22 carbon atoms, 6 to 14, more preferably phenyl or naphthyl), or an aralkyl group (preferably having a carbon number of 7 to 23, more preferably 7 to 15, particularly preferably a benzyl group).
  • R e and R f may be bonded to each other or condensed to form a ring structure.
  • R e and R f may further have a group represented by R X1 .
  • ⁇ L 1 L 1 is —O—, —S—, —NR a —, —CO—, —CR b R c —, or a combination thereof.
  • R a to R c each independently represents a hydrogen atom or a substituent. When R a to R c are substituents, examples of the substituent T described later are given.
  • R a to R c are, among others, a hydrogen atom, an alkyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms), an aryl group (preferably having 6 to 10 carbon atoms), aralkyl A group (preferably having 7 to 11 carbon atoms) or —CO—O—R d is preferred.
  • an alkyl group preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms
  • an aryl group preferably having 6 to 10 carbon atoms
  • aralkyl A group preferably having 7 to 11 carbon atoms
  • R d is a substituent, and specific examples thereof include the substituent T described later.
  • R a to R c may further have a group represented by R X1 .
  • L 1 is preferably —O—, — (CO) O—, —NR a —, or a combination thereof. That is, the compound represented by the formula (I) is preferably a carbonate compound, an oxalate compound, or an amide compound.
  • L 1 represents * -O-**, *-(CR b R c ) m3 -**, *-(CO) O-**, * -O (CO) O-**, * -NR. It is preferably a -**, * -NR a (CO) O-**, or * -NR a -NR a (CO) O-**.
  • R a to R c are as defined above.
  • m3 is an integer of 1-6. When m3 is 2 or more, the plurality of substituents defined therein may be the same as or different from each other.
  • R a to R c may combine with X 1 to form a ring.
  • Preferable ring formed includes a saturated heterocyclic group having 3 to 12 carbon atoms or a cycloalkylene group having 3 to 12 carbon atoms. These rings may further have a substituent T.
  • the compound represented by the formula (I) is preferably a compound having an aryl group having at least one alkyl group (preferable range is as defined above) or a heterocyclic group in a partial structure.
  • L 1 has the same meaning as in formula (I).
  • X 3 represents an alkylene group (preferably having 1 to 6 carbon atoms, more preferably 2 to 4 carbon atoms), an alkenylene group (preferably having 2 to 6 carbon atoms, more preferably 2 to 4 carbon atoms), an alkynylene group (having 2 to 6 carbon atoms). Preferably 2 to 4), an arylene group (preferably having 6 to 14 carbon atoms, more preferably 6 to 10), and an aralkylene group (preferably having 7 to 15 carbon atoms, more preferably 7 to 11).
  • X 3 may further have a substituent (for example, R X1 ).
  • X 3 may further have a substituent R X1 as an optional substituent.
  • R C1 represents a substituent.
  • the preferred range is the same as R X1 .
  • R C1 it is preferable that at least one of R C1 is an aryl group or a heterocyclic group.
  • the preferred aryl group and heterocyclic group are the same as X 1 and X 2 .
  • M1 represents an integer from 0 to 4.
  • m2 represents an integer of 0-2.
  • a plurality of substituents defined therein may be the same as or different from each other.
  • the second embodiment relating to the specific organic compound used in the present invention is an onium salt having an aryl group or a cyclic group in a partial structure.
  • the onium salt is preferably a sulfur-containing onium salt, a sulfur-containing nitrogen onium salt, or a phosphorus-containing onium salt.
  • the nitrogen-containing onium salt is more preferably a nitrogen-containing heteroaromatic onium salt.
  • the aryl group and heterocyclic group have the same meanings as defined in formula (I).
  • the onium salt is preferably a compound represented by any of the following formulas (II) to (VII).
  • R 1 to R 27 are each a hydrogen atom, an alkyl group (preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms), an alkoxy group (preferably 1 to 12 carbon atoms, preferably 1 to 6 carbon atoms). More preferably, 1 to 3 is particularly preferable), an alkoxycarbonyl group (having 2 to 12 carbon atoms, more preferably 2 to 6), an aryl group, and a heterocyclic group.
  • the aryl group and heterocyclic group herein are preferably the same as those described for X 1 and X 2 .
  • R 1 to R 27 may be bonded to each other or condensed to form a ring structure.
  • R 1 to R 27 are alkyl groups, they are linear or branched alkyl groups (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and particularly preferably 1 to 3 carbon atoms), cycloalkyl groups (carbon number carbon atoms). 3 to 14 are preferable, 3 to 8 are more preferable, and 3 to 6 are particularly preferable.)
  • An aralkyl group (preferably having 7 to 23 carbon atoms and more preferably 7 to 15 carbon atoms) is preferable.
  • the cycloalkyl group may be condensed with an aromatic ring (benzene ring, naphthalene ring, phenanthrene ring, anthracene ring, etc.).
  • the alkylene group of the aralkyl group preferably has 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and particularly preferably 1 to 3 carbon atoms.
  • R 1 to R 27 are also preferably represented by any of the following formulas (R1) to (R10).
  • R 31 represents a substituent.
  • R 31 has the same preferred range as R X1 .
  • R X1 When there are a plurality of R 31 s , they may be different from each other, and they may be bonded or condensed to form a ring.
  • L 3 and L 4 each independently represent a linking group having the same meaning as L 2 .
  • L 4 and the benzene ring or its substituent R 31 may be bonded or condensed to form a ring structure.
  • L 3 and L 4 may be linked to a benzene ring or a cyclohexane ring to form a ring. At this time, the substituent R 31 may be interposed.
  • N3 represents an integer from 0 to 10.
  • n4 represents an integer of 0 to 11.
  • n5 represents an integer of 0 to 9.
  • n6 represents an integer of 0 to 5.
  • n7 represents an integer of 0 to 4.
  • ⁇ Z - Z ⁇ represents an anion.
  • the anion may be either an inorganic anion or an organic anion.
  • Preferred examples include hexafluorophosphate anion, tetrafluoroboron anion, hexafluoroantimony anion and the like.
  • the compound of the formula (III) is preferably a compound of the following formula (III-1) when two of R 4 to R 7 are bonded to form a ring structure.
  • R 41 and R 42 are each independently the same group as R 1 to R 27 (excluding a hydrogen atom), and the preferred range is also the same.
  • n7 is an integer of 0 to 8.
  • the compound represented by the above formula (I) can be synthesized by a conventional method.
  • the carbonate compound can be synthesized by a known method using triphosgene as a raw material
  • the oxalate compound can be synthesized by using oxalyl chloride as a raw material.
  • Hydrazide compounds can be synthesized by known methods of hydrazine and corresponding acid chloride compounds, and amides by corresponding carbamate compounds and acid chlorides. References for the synthesis of the amide and hydrazine are shown below.
  • the specific organic compound is preferably contained in an amount of 0.1% by mass or more with respect to the entire nonaqueous electrolytic solution (including the electrolyte), preferably 0.5% by mass or more. It is more preferable to make it contain, it is more preferable to make it contain at 1 mass% or more, and it is preferable that it is more than 2 mass%. As an upper limit, 20 mass% or less is preferable, 10 mass% or less is more preferable, and 5 mass% or less is especially preferable. By containing the specific organic compound at the lower limit value or more, a sufficient amount of gas generation at the time of overcharge can be obtained. By setting it to the upper limit value or less, it is preferable without excessively impairing battery performance.
  • the specific organic compound preferably has a reduction initiation potential of less than 1.2 V, more preferably 1.0 V or less, and particularly preferably 0.8 V or less.
  • the lower limit is preferably 0.1 V or more, more preferably 0.2 V or more, and particularly preferably 0.3 V or more. It is preferable that the specific organic compound has a reduction initiation potential in this range, so that when it is used in combination with a negative electrode having a high potential, the life characteristics are not deteriorated and the gas generation force can be maintained for a long period.
  • the exemplified compound may have an arbitrary substituent T.
  • substituent T include the following.
  • An alkyl group preferably an alkyl group having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.
  • alkenyl A group preferably an alkenyl group having 2 to 20 carbon atoms such as vinyl, allyl, oleyl and the like
  • an alkynyl group preferably an alkynyl group having 2 to 20 carbon atoms such as ethynyl, butadiynyl, phenylethynyl and the like
  • a cycloalkyl group preferably a cycloalkyl group having 3 to 20 carbon atoms, such as cyclopropyl, cyclopent
  • the compound or substituent / linking group contains an alkyl group / alkylene group, alkenyl group / alkenylene group, etc.
  • these may be cyclic or chain-like, and may be linear or branched, and substituted as described above. It may be substituted or unsubstituted.
  • an aryl group, a heterocyclic group, etc. may be monocyclic or condensed and may be similarly substituted or unsubstituted.
  • the organic solvent used in the present invention is preferably an aprotic organic solvent, and more preferably an aprotic organic solvent having 2 to 10 carbon atoms.
  • the organic solvent is preferably a compound having an ether group, a carbonyl group, an ester group, or a carbonate group.
  • the said compound may have a substituent and the said substituent T is mentioned as the example.
  • an organic solvent containing a linear carbonate group having 2 to 16 carbon atoms is preferable.
  • organic solvent examples include ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, ⁇ -butyrolactone, ⁇ -valerolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2- Methyltetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, 1,3-dioxane, 1,4-dioxane, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, methyl butyrate , Methyl isobutyrate, methyl trimethylacetate, ethyl trimethylacetate, acetonitrile, glutaronitrile, adiponitrile, methoxyacetonitrile, 3-methoxypropionit
  • ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate is preferable.
  • a high viscosity (high dielectric constant) solvent such as ethylene carbonate or propylene carbonate (for example, ratio A combination of a dielectric constant ⁇ ⁇ 30) and a low viscosity solvent such as dimethyl carbonate, ethyl methyl carbonate, or diethyl carbonate (for example, viscosity ⁇ 1 mPa ⁇ s) is more preferable.
  • a preferred embodiment includes a solvent containing propylene carbonate in an amount of 5% by volume or more, more preferably 10% by volume or more, and still more preferably 15% by volume or more based on the total solvent.
  • the cyclic carbonate is contained in an amount of 20 to 80% by volume based on the total solvent, and 25 to 100% by volume of the cyclic carbonate is propylene carbonate.
  • a chain carbonate selected from dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate is contained in an amount of 20 to 80% by volume based on the total solvent, and a cyclic carbonate selected from ethylene carbonate or propylene carbonate is added in an amount of 20 to The content is 80% by volume, and 25 to 100% by volume (more preferably 40 to 100% by volume) of the cyclic carbonate is propylene carbonate.
  • the organic solvent used in the present invention is not limited to the above examples.
  • the electrolytic solution of the present invention preferably contains various functional additives.
  • Examples of the function manifested by this additive include improved flame retardancy, improved cycle characteristics, and improved capacity characteristics.
  • Examples of functional additives that are preferably applied to the electrolyte of the present invention are shown below.
  • aromatic compounds include biphenyl compounds and alkyl-substituted benzene compounds.
  • the biphenyl compound has a partial structure in which two benzene rings are bonded by a single bond, and the benzene ring may have a substituent, and preferred substituents are alkyl groups having 1 to 4 carbon atoms (for example, Methyl, ethyl, propyl, t-butyl, etc.) and aryl groups having 6 to 10 carbon atoms (eg, phenyl, naphthyl, etc.).
  • biphenyl compound examples include biphenyl, o-terphenyl, m-terphenyl, p-terphenyl, 4-methylbiphenyl, 4-ethylbiphenyl, and 4-tert-butylbiphenyl.
  • the alkyl-substituted benzene compound is preferably a benzene compound substituted with an alkyl group having 1 to 10 carbon atoms, and specific examples include cyclohexylbenzene, t-amylbenzene, and t-butylbenzene.
  • the halogen atom contained in the halogen-containing compound is preferably a fluorine atom, a chlorine atom, or a bromine atom, and more preferably a fluorine atom.
  • the number of halogen atoms is preferably 1 to 6, more preferably 1 to 3.
  • the halogen-containing compound is preferably a carbonate compound substituted with a fluorine atom, a polyether compound having a fluorine atom, or a fluorine-substituted aromatic compound.
  • the halogen-substituted carbonate compound may be either linear or cyclic.
  • a cyclic carbonate compound having a high coordination property of an electrolyte salt for example, lithium ion
  • a 5-membered cyclic carbonate compound is particularly preferable.
  • Preferred specific examples of the halogen-substituted carbonate compound are shown below. Among these, compounds of Bex1 to Bex4 are particularly preferable, and Bex1 is particularly preferable.
  • the polymerizable compound is preferably a compound having a carbon-carbon double bond, and is selected from carbonate compounds having a double bond such as vinylene carbonate and vinyl ethylene carbonate, acrylate groups, methacrylate groups, cyanoacrylate groups, and ⁇ CF 3 acrylate groups.
  • a compound having a group and a compound having a styryl group are preferable, and a carbonate compound having a double bond or a compound having two or more polymerizable groups in the molecule is more preferable.
  • a phosphorus containing compound As a phosphorus containing compound, a phosphate ester compound and a phosphazene compound are preferable.
  • the phosphate ester compound include trimethyl phosphate, triethyl phosphate, triphenyl phosphate, and tribenzyl phosphate.
  • a compound represented by the following formula (D2) or (D3) is also preferable.
  • R D4 to R D11 each represent a monovalent substituent.
  • the monovalent substituents an alkyl group, an aryl group, an alkoxy group, an aryloxy group, an amino group, a halogen atom such as fluorine, chlorine or bromine is preferable.
  • At least one of the substituents of R D4 to R D11 is preferably a fluorine atom, more preferably a substituent composed of an alkoxy group, an amino group, or a fluorine atom.
  • a compound having —SO 2 —, —SO 3 —, —OS ( ⁇ O) O— bond is preferable, and cyclic sulfur-containing compounds such as propane sultone, propene sultone, ethylene sulfite, and sulfonic acid Esters are preferred.
  • sulfur-containing cyclic compound compounds represented by the following formulas (E1) and (E2) are preferable.
  • X 1 and X 2 each independently represent —O— or —C (Ra) (Rb) —.
  • Ra and Rb each independently represent a hydrogen atom or a substituent.
  • the substituent is preferably an alkyl group having 1 to 8 carbon atoms, a fluorine atom, or an aryl group having 6 to 12 carbon atoms.
  • represents an atomic group necessary for forming a 5- to 6-membered ring.
  • the skeleton of ⁇ may contain a sulfur atom, an oxygen atom, etc. in addition to a carbon atom.
  • may be substituted, and examples of the substituent include a substituent T, preferably an alkyl group, a fluorine atom, and an aryl group.
  • ⁇ Silicon-containing compound (F)> As the silicon-containing compound, a compound represented by the following formula (F1) or (F2) is preferable.
  • R F1 represents an alkyl group, an alkenyl group, an acyl group, an acyloxy group, or an alkoxycarbonyl group.
  • R F2 represents an alkyl group, an alkenyl group, an alkynyl group, or an alkoxy group.
  • a plurality of R F1 and R F2 in one formula may be different or the same.
  • nitrile compound (G) As the nitrile compound, a compound represented by the following formula (G) is preferable.
  • R G1 to R G3 each independently represent a hydrogen atom, an alkyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, a cyano group, a carbamoyl group, a sulfonyl group, or a phosphonyl group.
  • examples of the substituent T can be referred to, and among them, a compound in which any one of R G1 to R G3 has a plurality of nitrile groups containing a cyano group is preferable.
  • -Ng represents an integer of 1-8.
  • Specific examples of the compound represented by the formula (G) include acetonitrile, propionitrile, isobutyronitrile, succinonitrile, malononitrile, glutaronitrile, adiponitrile, 2-methylglutanonitrile, hexanetricarbonitrile, propane. Tetracarbonitrile and the like are preferable. Particularly preferred are succinonitrile, malononitrile, glutaronitrile, adiponitrile, 2-methylglutanonitrile, hexanetricarbonitrile, and propanetetracarbonitrile.
  • Metal complex compound (H) As the metal complex compound, a transition metal complex or a rare earth complex is preferable. Of these, complexes represented by any of the following formulas (H-1) to (H-3) are preferred.
  • X H and Y H are a methyl group, an n-butyl group, a bis (trimethylsilyl) amino group, and a thioisocyanate group, respectively, and X H and Y H are condensed to form a cyclic alkenyl group (butadiene group).
  • MH represents a transition element or a rare earth element. Specifically, MH is preferably Fe, Ru, Cr, V, Ta, Mo, Ti, Zr, Hf, Y, La, Ce, Sw, Nd, Lu, Er, Yb, and Gd.
  • n H and n H are integers satisfying 0 ⁇ m H + n H ⁇ 3.
  • n H + m H is preferably 1 or more.
  • the 2 or more groups defined therein may be different from each other.
  • the metal complex compound is also preferably a compound having a partial structure represented by the following formula (H-4).
  • H-4 M H — (NR 1H R 2H ) q H Formula (H-4)
  • MH represents a transition element or a rare earth element and is synonymous with formulas (H-1) to (H-3).
  • R 1H and R 2H are hydrogen, an alkyl group (preferably having a carbon number of 1 to 6), an alkenyl group (preferably having a carbon number of 2 to 6), an alkynyl group (preferably having a carbon number of 2 to 6), and an aryl group (preferably having a carbon number). Represents a heteroaryl group (preferably having a carbon number of 3 to 6), an alkylsilyl group (preferably having a carbon number of 1 to 6), or a halogen.
  • R 1H and R 2H may be linked to each other.
  • R 1H and R 2H may each be connected to form a ring.
  • Preferable examples of R 1H and R 2H include examples of the substituent T described later.
  • a methyl group, an ethyl group, and a trimethylsilyl group are preferable.
  • q H represents an integer of 1 to 4, preferably an integer of 2 to 4. More preferably, it is 2 or 4. When q H is 2 or more, where a plurality of groups as defined may be the same or different from each other.
  • the metal complex compound is also preferably a compound represented by any of the following formulas.
  • the central metal M h is, Ti, Zr, ZrO, Hf , V, Cr, Fe, Ce is particularly preferred, Ti, Zr, Hf, V , Cr is the most preferred.
  • R 3h , R 5h , R 7h to R 10h represent substituents.
  • an alkyl group, an alkoxy group, an aryl group, an alkenyl group, and a halogen atom are preferable.
  • R 33h , R 55h R 33h and R 55h represent a hydrogen atom or a substituent of R 3h .
  • Y h is preferably an alkyl group having 1 to 6 carbon atoms or a bis (trialkylsilyl) amino group, and more preferably a methyl group or a bis (trimethylsilyl) amino group.
  • ⁇ L h, m h, o h l h , m h , and o h represent an integer of 0 to 3, and an integer of 0 to 2 is preferable.
  • the plurality of structural portions defined therein may be the same as or different from each other.
  • L h is preferably an alkylene group or an arylene group, more preferably a cycloalkylene group having 3 to 6 carbon atoms or an arylene group having 6 to 14 carbon atoms, and further preferably cyclohexylene or phenylene.
  • ⁇ Imide compound (I)> As the imide compound, a sulfonimide compound having a perfluoro group is preferable from the viewpoint of oxidation resistance, and specifically, a perfluorosulfoimide lithium compound may be mentioned. Specific examples of the imide compound include the following structures, and Cex1 and Cex2 are more preferable.
  • the electrolytic solution of the present invention may contain at least one selected from the above, a negative electrode film forming agent, a flame retardant, an overcharge preventing agent and the like.
  • the content ratio of these functional additives in the nonaqueous electrolytic solution is not particularly limited, but is preferably 0.001% by mass to 10% by mass with respect to the entire nonaqueous electrolytic solution (including the electrolyte).
  • the electrolyte used in the electrolytic solution of the present invention is a salt of a metal ion belonging to Group 1 or Group 2 of the periodic table.
  • the material is appropriately selected depending on the intended use of the electrolytic solution.
  • lithium salt, potassium salt, sodium salt, calcium salt, magnesium salt and the like can be mentioned.
  • lithium salt is preferable from the viewpoint of output.
  • a lithium salt may be selected as a metal ion salt.
  • the lithium salt is not particularly limited as long as it is a lithium salt usually used for an electrolyte of a non-aqueous electrolyte solution for a lithium secondary battery. For example, those described below are preferable.
  • Inorganic lithium salts inorganic fluoride salts such as LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 ; perhalogenates such as LiClO 4 , LiBrO 4 , LiIO 4 ; inorganic chloride salts such as LiAlCl 4 etc.
  • (L-3) Oxalatoborate salt lithium bis (oxalato) borate, lithium difluorooxalatoborate and the like.
  • imide salts More preferred are imide salts.
  • Rf 1 and Rf 2 each represent a perfluoroalkyl group.
  • the electrolyte used for electrolyte solution may be used individually by 1 type, or may combine 2 or more types arbitrarily.
  • the content of the electrolyte (metal ions belonging to Group 1 or Group 2 of the periodic table or a metal salt thereof) in the electrolytic solution is added in an amount that provides a preferable salt concentration described below in the method for preparing the electrolytic solution.
  • the salt concentration is appropriately selected depending on the intended use of the electrolytic solution, but is generally 10% to 50% by mass, more preferably 15% to 30% by mass, based on the total mass of the electrolytic solution.
  • concentration when evaluating as an ion density
  • the electrolyte solution for a non-aqueous secondary battery of the present invention is prepared by a conventional method by dissolving each of the above components in the non-aqueous electrolyte solvent, including an example in which a lithium salt is used as a metal ion salt.
  • non-water means that water is not substantially contained, and a trace amount of water may be contained as long as the effects of the invention are not hindered.
  • the water content is preferably 200 ppm (mass basis) or less, more preferably 100 ppm or less, and even more preferably 20 ppm or less. Although there is no lower limit in particular, it is practical that it is 1 ppm or more considering inevitable mixing.
  • the viscosity of the electrolytic solution of the present invention is not particularly limited, but it is preferably 10 to 0.1 mPa ⁇ s, more preferably 5 to 0.5 mPa ⁇ s at 25 ° C. In the present invention, the viscosity of the electrolytic solution is based on the value measured by the following measuring method unless otherwise specified.
  • the viscosity is a value measured by the following method. 1 mL of a sample is put into a rheometer (CLS 500) and measured using a Steel Cone (both manufactured by TA Instruments) having a diameter of 4 cm / 2 °. The sample is kept warm in advance until the temperature becomes constant at the measurement start temperature, and the measurement starts thereafter. The measurement temperature is 25 ° C.
  • the lithium ion secondary battery 10 of this embodiment includes the electrolyte solution 5 for a non-aqueous secondary battery of the present invention and a positive electrode C capable of inserting and releasing lithium ions (a positive electrode current collector 1 and a positive electrode active material layer 2). And a negative electrode A (negative electrode current collector 3, negative electrode active material layer 4) capable of inserting and releasing lithium ions or dissolving and depositing lithium ions.
  • a separator 9 disposed between the positive electrode and the negative electrode, a current collecting terminal (not shown), an outer case, etc. (Not shown).
  • a protective element may be attached to at least one of the inside of the battery and the outside of the battery.
  • the battery shape to which the lithium secondary battery of the present embodiment is applied is not particularly limited, and examples thereof include a bottomed cylindrical shape, a bottomed square shape, a thin shape, a sheet shape, and a paper shape. Any of these may be used. Further, it may be of a different shape such as a horseshoe shape or a comb shape considering the shape of the system or device to be incorporated. Among them, from the viewpoint of efficiently releasing the heat inside the battery to the outside, a square shape such as a bottomed square shape or a thin shape having at least one surface that is relatively flat and has a large area is preferable.
  • FIG. 2 is an example of a bottomed cylindrical lithium secondary battery 100.
  • This battery is a bottomed cylindrical lithium secondary battery 100 in which a positive electrode sheet 14 and a negative electrode sheet 16 overlapped with a separator 12 are wound and accommodated in an outer can 18.
  • the 2S / T value is preferably 100 or more, and more preferably 200 or more.
  • the lithium secondary battery according to the present embodiment is configured to include the electrolytic solution 5, the positive electrode and negative electrode electrode mixtures C and A, and the separator basic member 9, based on FIG. 1. Hereinafter, each of these members will be described.
  • Electrode mixture The electrode mixture is obtained by applying a dispersion of an active material and a conductive agent, a binder, a filler, etc. on a current collector (electrode substrate).
  • the active material is a positive electrode active material. It is preferable to use a negative electrode mixture in which the positive electrode mixture and the active material are a negative electrode active material.
  • each component in the dispersion (electrode composition) constituting the electrode mixture will be described.
  • a transition metal oxide for the positive electrode active material, and in particular, it has a transition element M a (one or more elements selected from Co, Ni, Fe, Mn, Cu, V). Is preferred. Further, mixed element M b (elements of the first (Ia) group of the metal periodic table other than lithium, elements of the second (IIa) group, Al, Ga, In, Ge, Sn, Pb, Sb, Bi, Si , P, B, etc.) may be mixed. Examples of the transition metal oxide include specific transition metal oxides including those represented by any of the following formulas (MA) to (MC), or other transition metal oxides such as V 2 O 5 and MnO 2. Is mentioned. As the positive electrode active material, a particulate positive electrode active material may be used. Specifically, a transition metal oxide capable of reversibly inserting and releasing lithium ions can be used, but the specific transition metal oxide is preferably used.
  • the transition metal oxides, oxides containing the transition element M a is preferably exemplified.
  • a mixed element M b (preferably Al) or the like may be mixed.
  • the mixing amount is preferably 0 to 30 mol% with respect to the amount of the transition metal. That the molar ratio of li / M a was synthesized were mixed so that 0.3 to 2.2, more preferably.
  • M 1 is the same meaning as defined above Ma.
  • a represents 0 to 1.2, preferably 0.1 to 1.15, and more preferably 0.6 to 1.1.
  • b represents 1 to 3 and is preferably 2.
  • a part of M 1 may be substituted with the mixed element M b .
  • the transition metal oxide represented by the formula (MA) typically has a layered rock salt structure.
  • the transition metal oxide is more preferably one represented by the following formulas.
  • g has the same meaning as a.
  • j represents 0.1 to 0.9.
  • i represents 0 to 1; However, 1-ji is 0 or more.
  • k has the same meaning as b.
  • Specific examples of the transition metal compound include LiCoO 2 (lithium cobaltate [LCO]), LiNi 2 O 2 (lithium nickelate) LiNi 0.85 Co 0.01 Al 0.05 O 2 (nickel cobalt aluminum acid Lithium [NCA]), LiNi 0.33 Co 0.33 Mn 0.33 O 2 (lithium nickel manganese cobaltate [NMC]), LiNi 0.5 Mn 0.5 O 2 (lithium manganese nickelate).
  • the transition metal oxide represented by the formula (MA) partially overlaps, but when represented by changing the notation, those represented by the following are also preferable examples.
  • (I) Li g Ni x Mn y Co z O 2 (x> 0.2, y> 0.2, z ⁇ 0, x + y + z 1) Representative: Li g Ni 1/3 Mn 1/3 Co 1/3 O 2 Li g Ni 1/2 Mn 1/2 O 2
  • (Ii) Li g Ni x Co y Al z O 2 (x> 0.7, y>0.1,0.1>z> 0.05, x + y + z 1) Representative: Li g Ni 0.8 Co 0.15 Al 0.05 O 2
  • M 2 are as defined above Ma.
  • c represents 0 to 2, preferably 0.1 to 1.15, and more preferably 0.6 to 1.5.
  • d represents 3 to 5 and is preferably 4.
  • the transition metal oxide represented by the formula (MB) is more preferably one represented by the following formulas.
  • (MB-1) Li m Mn 2 O n
  • (MB-2) Li m Mn p Al 2-p O n
  • (MB-3) Li m Mn p Ni 2-p O n
  • m is synonymous with c.
  • n is synonymous with d.
  • p represents 0-2.
  • Specific examples of the transition metal compound are LiMn 2 O 4 and LiMn 1.5 Ni 0.5 O 4 .
  • Preferred examples of the transition metal oxide represented by the formula (MB) include those represented by the following.
  • an electrode containing Ni is more preferable from the viewpoint of high capacity and high output.
  • Transition metal oxide represented by formula (MC) As the lithium-containing transition metal oxide, it is also preferable to use a lithium-containing transition metal phosphor oxide, and among them, one represented by the following formula (MC) is also preferable. Li e M 3 (PO 4 ) f ... (MC)
  • e 0 to 2, preferably 0.1 to 1.15, and more preferably 0.5 to 1.5.
  • f represents 1 to 5, and preferably 0.5 to 2.
  • the M 3 represents one or more elements selected from V, Ti, Cr, Mn, Fe, Co, Ni, and Cu.
  • M 3 represents, in addition to the mixing element M b above, Ti, Cr, Zn, Zr, may be substituted by other metals such as Nb.
  • Specific examples include, for example, olivine-type iron phosphates such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , cobalt phosphates such as LiCoPO 4 , and Li 3.
  • Monoclinic Nasicon type vanadium phosphate salts such as V 2 (PO 4 ) 3 (lithium vanadium phosphate) can be mentioned.
  • the a, c, g, m, and e values representing the composition of Li are values that change due to charge and discharge, and are typically evaluated as values in a stable state when Li is contained.
  • the composition of Li is shown as a specific value, but this also varies depending on the operation of the battery.
  • the positive electrode active material is preferably a material that can maintain normal use at a positive electrode potential (Li / Li + standard) of 3.5 V or higher, more preferably 3.8 V or higher, and more preferably 4 V or higher. More preferably, it is more preferably 4.25V or more, and further preferably 4.3V or more. Although there is no upper limit in particular, it is practical that it is 5V or less. By setting it as the above range, cycle characteristics and high rate discharge characteristics can be improved.
  • being able to maintain normal use means that even when charging is performed at that voltage, the electrode material does not deteriorate and cannot be used, and this potential is also referred to as a normal usable potential.
  • the electrode active material charge / discharge potential may be specified from the peak.
  • the peak of the potential can be specified by preparing a tripolar cell composed of a working electrode, a reference electrode, and a counter electrode, and performing electrochemical measurement (cyclic voltammetry).
  • the configuration of the tripolar cell and the measurement conditions for electrochemical measurement are as follows.
  • ⁇ Configuration of tripolar cell> -Working electrode: Active material electrode prepared on platinum electrode by sol-gel method or sputtering method-Reference electrode: Lithium-Counter electrode: Lithium-Dilution media: EC / EMC 1/2 LiPF 6 1M, manufactured by Kishida Chemical Co., Ltd. ⁇ Measurement Conditions> ⁇ Scanning speed: 1mV / s ⁇ Measurement temperature: 25 °C
  • positive electrode potential (negative electrode potential) + (battery voltage).
  • the negative electrode potential is 1.55V.
  • graphite is used as the negative electrode, the negative electrode potential is 0. 1V. The battery voltage is observed during charging and the positive electrode potential is calculated.
  • the average particle size of the positive electrode active material used is not particularly limited, but is preferably 0.1 ⁇ m to 50 ⁇ m.
  • the specific surface area is not particularly limited, but is preferably 0.01 m 2 / g to 50 m 2 / g by the BET method.
  • the pH of the supernatant when 5 g of the positive electrode active material is dissolved in 100 ml of distilled water is preferably 7 or more and 12 or less.
  • a well-known pulverizer or classifier is used to make the positive electrode active substance have a predetermined particle size.
  • a mortar, a ball mill, a vibration ball mill, a vibration mill, a satellite ball mill, a planetary ball mill, a swirling air flow type jet mill, a sieve, or the like is used.
  • the positive electrode active material obtained by the firing method may be used after being washed with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent.
  • the blending amount of the positive electrode active material is not particularly limited, but is preferably 60 to 98% by mass, and 70 to 95% by mass in 100% by mass of the solid component in the dispersion (mixture) for constituting the active material layer. % Is more preferable.
  • Negative electrode active material As the negative electrode active material, a material having a normal operating potential of 1.2 V (preferably 1.4 to 2 V) or more with respect to lithium metal is used.
  • the operating potential is a value measured by the measurement method described for the positive electrode active material, that is, electrochemical measurement (cyclic voltammetry) using the triode cell.
  • a material containing a carbon atom (C), a silicon atom (Si), or a titanium atom (Ti) that can insert and release ions of metals belonging to the first group or the second group. .
  • Examples include carbonaceous materials, metal oxides such as silicon oxide, metal composite oxides, lithium alloys such as lithium alone and lithium aluminum alloys, and metals such as Si that can form alloys with lithium. These may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and ratios. Of these, carbonaceous materials or lithium composite oxides are preferably used from the viewpoint of reliability. Further, the metal composite oxide is not particularly limited as long as it can occlude and release lithium, but it preferably contains titanium and / or lithium as a constituent component from the viewpoint of high current density charge / discharge characteristics. .
  • the carbonaceous material used as the negative electrode active material is a material substantially made of carbon.
  • Examples thereof include carbonaceous materials obtained by baking various synthetic resins such as artificial pitches such as petroleum pitch, natural graphite, and vapor-grown graphite, and PAN-based resins and furfuryl alcohol resins.
  • various carbon fibers such as PAN-based carbon fiber, cellulose-based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, dehydrated PVA-based carbon fiber, lignin carbon fiber, glassy carbon fiber, activated carbon fiber, mesophase micro
  • Examples thereof include spheres, graphite whiskers, and flat graphite.
  • carbonaceous materials can be divided into non-graphitizable carbon materials and graphite-based carbon materials depending on the degree of graphitization.
  • the carbonaceous material preferably has a face spacing, density, and crystallite size described in JP-A-62-222066, JP-A-2-6856, and 3-45473.
  • the carbonaceous material does not have to be a single material, and a mixture of natural graphite and artificial graphite described in JP-A-5-90844, graphite having a coating layer described in JP-A-6-4516, or the like is used. You can also.
  • the average particle size of the negative electrode active material used is preferably 0.1 ⁇ m to 60 ⁇ m.
  • a well-known pulverizer or classifier is used.
  • a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling air flow type jet mill or a sieve is preferably used.
  • wet pulverization in the presence of water or an organic solvent such as methanol can be performed as necessary.
  • classification is preferably performed.
  • the classification method is not particularly limited, and a sieve, an air classifier, or the like can be used as necessary. Classification can be used both dry and wet.
  • the chemical formula of the compound obtained by the firing method can be calculated from an inductively coupled plasma (ICP) emission spectroscopic analysis method as a measurement method and a mass difference between powders before and after firing as a simple method.
  • ICP inductively coupled plasma
  • the effect of using a specific negative electrode active material such as LTO for the negative electrode of the battery is estimated as follows. That is, in the conventional battery using a specific electrode (tin), the charge / discharge efficiency deteriorates due to Li generated by the reduction reaction or metal interaction, but this point is considered to be improved.
  • a hydrogen elimination reaction by an intramolecular cyclization reaction can be considered. It is understood that the compound of the present invention has an unsaturated bond via a linking group in the molecule and promotes this intramolecular cyclization.
  • the negative electrode using tin is considered to have reduced its effect because the additive having an active unsaturated site reacts and disappears due to generation of lithium dendrite.
  • the electrolyte solution of the present invention is preferably combined with a high potential negative electrode (preferably lithium-titanium oxide, a potential of 1.55 V vs. Li metal) and a low potential negative electrode (preferably a carbon material, potential of about 0.1 V vs. Li). Excellent properties are exhibited in any combination with (metal).
  • a high potential negative electrode preferably lithium-titanium oxide, a potential of 1.55 V vs. Li metal
  • a low potential negative electrode preferably a carbon material, potential of about 0.1 V vs. Li
  • the negative electrode active material used in the non-aqueous secondary battery of the present invention preferably contains lithium titanate. More specifically, Li 4 Ti 5 O 12 is preferable in that the volume fluctuation at the time of occlusion and release of lithium ions is small, so that deterioration of the electrode is suppressed and the life of the lithium ion secondary battery can be improved.
  • Li 4 Ti 5 O 12 is preferable in that the volume fluctuation at the time of occlusion and release of lithium ions is small, so that deterioration of the electrode is suppressed and the life of the lithium ion secondary battery can be improved.
  • any electronic conductive material that does not cause a chemical change in the configured secondary battery may be used, and any known conductive material may be used.
  • natural graphite scale-like graphite, scale-like graphite, earth-like graphite, etc.
  • artificial graphite carbon black, acetylene black, ketjen black, carbon fiber and metal powder (copper, nickel, aluminum, silver (Japanese Patent Laid-Open No. Sho 63-63)) 10148,554), etc.
  • metal fibers or polyphenylene derivatives described in JP-A-59-20971 can be contained as one kind or a mixture thereof.
  • the addition amount of the conductive agent is preferably 1 to 50% by mass, and more preferably 2 to 30% by mass. In the case of carbon or graphite, 2 to 15% by mass is particularly preferable.
  • binders include polysaccharides, thermoplastic resins, and polymers having rubber elasticity. Among them, for example, starch, carboxymethyl cellulose, cellulose, diacetyl cellulose, methyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose.
  • Water-soluble such as sodium alginate, polyacrylic acid, sodium polyacrylate, polyvinylphenol, polyvinyl methyl ether, polyvinyl alcohol, polyvinylpyrrolidone, polyacrylonitrile, polyacrylamide, polyhydroxy (meth) acrylate, styrene-maleic acid copolymer Polymer, polyvinyl chloride, polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene copolymer, vinyl Redene fluoride-tetrafluoroethylene-hexafluoropropylene copolymer, polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, polyvinyl acetal resin, methyl methacrylate, 2-ethylhexyl acrylate, etc.
  • EPDM ethylene-propylene-diene terpolymer
  • Binders can be used alone or in combination of two or more.
  • the amount of the binder added is small, the holding power and cohesive force of the electrode mixture are weakened. If the amount is too large, the electrode volume increases and the capacity per electrode unit volume or unit mass decreases. For this reason, the addition amount of the binder is preferably 1 to 30% by mass, and more preferably 2 to 10% by mass.
  • the electrode compound material may contain the filler.
  • the material for forming the filler any fibrous material that does not cause a chemical change in the secondary battery of the present invention can be used.
  • fibrous fillers made of materials such as olefin polymers such as polypropylene and polyethylene, glass, and carbon are used.
  • the addition amount of the filler is not particularly limited, but is preferably 0 to 30% by mass in the dispersion.
  • the positive / negative electrode current collector an electron conductor that does not cause a chemical change in the nonaqueous electrolyte secondary battery of the present invention is used.
  • the current collector of the positive electrode in addition to aluminum, stainless steel, nickel, titanium, etc., the surface of aluminum or stainless steel is preferably treated with carbon, nickel, titanium, or silver. Among them, aluminum and aluminum alloys are preferable. More preferred.
  • the negative electrode current collector aluminum, copper, stainless steel, nickel and titanium are preferable, and aluminum, copper and copper alloy are more preferable.
  • a film sheet shape is usually used, but a net, a punched material, a lath body, a porous body, a foamed body, a molded body of a fiber group, and the like can also be used.
  • the thickness of the current collector is not particularly limited, but is preferably 1 ⁇ m to 500 ⁇ m.
  • the current collector surface is roughened by surface treatment.
  • An electrode mixture of the lithium secondary battery is formed by a member appropriately selected from these materials.
  • the separator used in the non-aqueous secondary battery of the present invention is particularly a material that has mechanical strength for electrically insulating the positive electrode and the negative electrode, ion permeability, and oxidation / reduction resistance at the contact surface between the positive electrode and the negative electrode.
  • a material a porous polymer material, an inorganic material, an organic-inorganic hybrid material, glass fiber, or the like is used.
  • These separators preferably have a shutdown function for ensuring reliability, that is, a function of closing a gap at 80 ° C. or higher to increase resistance and interrupting current, and a closing temperature is 90 ° C. or higher and 180 ° C. or lower. It is preferable.
  • the shape of the holes of the separator is usually circular or elliptical, and the size is 0.05 ⁇ m to 30 ⁇ m, preferably 0.1 ⁇ m to 20 ⁇ m. Furthermore, it may be a rod-like or irregular-shaped hole as in the case of making by a stretching method or a phase separation method.
  • the ratio of these gaps, that is, the porosity, is 20% to 90%, preferably 35% to 80%.
  • the polymer material may be a single material such as a cellulose nonwoven fabric, polyethylene, or polypropylene, or may be a material using two or more composite materials. What laminated
  • oxides such as alumina and silicon dioxide, nitrides such as aluminum nitride and silicon nitride, and sulfates such as barium sulfate and calcium sulfate are used, and those having a particle shape or fiber shape are used.
  • a thin film shape such as a non-woven fabric, a woven fabric, or a microporous film is used.
  • the thin film shape those having a pore diameter of 0.01 ⁇ m to 1 ⁇ m and a thickness of 5 ⁇ m to 50 ⁇ m are preferably used.
  • a separator formed by forming a composite porous layer containing the inorganic particles on the surface layer of the positive electrode and / or the negative electrode using a resin binder can be used.
  • alumina particles having a 90% particle diameter of less than 1 ⁇ m are formed on both surfaces of the positive electrode as a porous layer using a fluororesin binder.
  • the shape of the nonaqueous secondary battery of the present invention can be applied to any shape such as a sheet shape, a square shape, and a cylinder shape.
  • a positive electrode active material or a mixture of negative electrode active materials is mainly used after being applied (coated), dried and compressed on a current collector.
  • FIG. 2 shows an example of a bottomed cylindrical lithium secondary battery 100.
  • This battery is a bottomed cylindrical lithium secondary battery 100 in which a positive electrode sheet 14 and a negative electrode sheet 16 overlapped with a separator 12 are wound and accommodated in an outer can 18.
  • 20 is an insulating plate
  • 22 is a sealing plate
  • 24 is a positive electrode current collector
  • 26 is a gasket
  • 28 is a pressure sensitive valve body
  • 30 is a current interruption element.
  • each member corresponds to the whole drawing by reference numerals.
  • a negative electrode active material is mixed with a binder or filler used as desired in an organic solvent to prepare a slurry or paste negative electrode mixture.
  • the obtained negative electrode mixture is uniformly applied over the entire surface of both surfaces of the metal core as a current collector, and then the organic solvent is removed to form a negative electrode mixture layer.
  • the laminate of the current collector and the negative electrode composite material layer is rolled with a roll press or the like to prepare a predetermined thickness to obtain a negative electrode sheet (electrode sheet).
  • the coating method of each agent, the drying of the coated material, and the method of forming the positive and negative electrodes may be in accordance with conventional methods.
  • a cylindrical battery is taken as an example, but the present invention is not limited to this, for example, after the positive and negative electrode sheets produced by the above method are overlapped via a separator, After processing into a sheet battery as it is, or inserting it into a rectangular can after being folded and electrically connecting the can and the sheet, injecting an electrolyte and sealing the opening using a sealing plate A square battery may be formed.
  • the safety valve can be used as a sealing plate for sealing the opening.
  • the sealing member may be provided with various conventionally known safety elements.
  • a fuse, bimetal, PTC element, or the like is preferably used as the overcurrent prevention element.
  • a method of cutting the battery can a method of cracking the gasket, a method of cracking the sealing plate, or a method of cutting the lead plate can be used.
  • the charger may be provided with a protection circuit incorporating measures against overcharge and overdischarge, or may be connected independently.
  • a metal or alloy having electrical conductivity can be used.
  • metals such as iron, nickel, titanium, chromium, molybdenum, copper, and aluminum, or alloys thereof are preferably used.
  • a known method eg, direct current or alternating current electric welding, laser welding, ultrasonic welding
  • a welding method for the cap, can, sheet, and lead plate can be used as a welding method for the cap, can, sheet, and lead plate.
  • the sealing agent for sealing a conventionally known compound or mixture such as asphalt can be used.
  • the non-aqueous secondary battery according to the present invention preferably has a pressure-sensitive mechanism (a mechanism that cuts off current when a predetermined pressure or higher is reached).
  • a pressure-sensitive mechanism a mechanism that cuts off current when a predetermined pressure or higher is reached.
  • the pressure-sensitive mechanism uses a pressure-sensitive valve as described above, various devices such as a device that detects a pressure change by a pressure-sensitive sensor and interrupts energization can be employed.
  • FIG. 3 is a partial cross-sectional side view showing another example of the pressure-sensitive valve.
  • the current interrupting sealing body 50 is composed of a stainless steel positive electrode cap 51 formed in an inverted dish shape (cap shape) and a stainless steel bottom plate 54 formed in a dish shape.
  • the positive electrode cap 51 includes a convex portion 52 that bulges toward the outside of the battery, and a flat flange portion 53 that forms the bottom side of the convex portion 52, and a plurality of gas vents are formed at the corners of the convex portion 52.
  • a hole 52a is provided.
  • the bottom plate 54 includes a concave portion 55 that bulges toward the inside of the battery, and a flat flange portion 56 that constitutes the bottom side portion of the concave portion 55.
  • a gas vent hole 55 a is provided at the corner of the recess 55.
  • Housed in the positive electrode cap 51 and the bottom plate 54 is a power lead-out plate 57 that deforms when the gas pressure inside the battery rises and exceeds a predetermined pressure.
  • the power lead-out plate 57 includes a concave portion 57a and a flange portion 57b, and is formed of, for example, an aluminum foil having a thickness of 0.2 mm and a surface unevenness of 0.005 mm.
  • the lowest portion of the recess 57 a is disposed in contact with the upper surface of the recess 55 of the bottom plate 54, and the flange portion 57 b is sandwiched between the flange portion 53 of the positive electrode cap 51 and the flange portion 56 of the bottom plate 54.
  • the positive electrode cap 51 and the bottom plate 54 are sealed in a liquid-tight manner by a sealing body insulating gasket 59 made of polypropylene (PP).
  • a PTC (Positive Temperature Coefficient) thermistor element 58 is disposed at a part of the upper portion of the flange portion 57b.
  • the resistance value of the PTC thermistor element 58 increases. Increase to reduce overcurrent.
  • the recess 57a of the power lead-out plate 57 is deformed, so that the contact between the power lead-out plate 57 and the concave portion 55 of the bottom plate 54 is cut off and an overcurrent or short circuit occurs.
  • the current is interrupted.
  • the specific organic compound of the present invention does not generate gas during normal charging but generates an effective amount of gas during overcharging.
  • “to generate an effective amount of gas at the time of overcharging” means that the results of the gas generation amount test and the charge life test at the time of overcharging in the examples described later are equivalent to the examples.
  • Secondary batteries called lithium batteries are secondary batteries that use the insertion and extraction of lithium for charge / discharge reactions (lithium ion secondary batteries), and secondary batteries that use precipitation and dissolution of lithium (lithium metal secondary batteries). ).
  • lithium ion secondary batteries secondary batteries that use the insertion and extraction of lithium for charge / discharge reactions
  • lithium metal secondary batteries secondary batteries that use precipitation and dissolution of lithium
  • application as a lithium ion secondary battery is preferable. Since the nonaqueous secondary battery of the present invention can produce a secondary battery with good cycle performance, it is applied to various applications.
  • a notebook computer when installed in an electronic device, a notebook computer, a pen input personal computer, a mobile personal computer, an electronic book player, a mobile phone, a cordless phone, a pager, a handy terminal, a mobile fax machine, a mobile phone Copy, portable printer, headphone stereo, video movie, LCD TV, handy cleaner, portable CD, minidisc, electric shaver, transceiver, electronic notebook, calculator, memory card, portable tape recorder, radio, backup power supply, memory card, etc. It is done.
  • Other consumer products include automobiles, electric vehicles, motors, lighting equipment, toys, game equipment, road conditioners, watches, strobes, cameras, medical equipment (such as pacemakers, hearing aids, and shoulder grinders). Furthermore, it can be used for various military use and space use. Moreover, it can also combine with a solar cell.
  • Example 1 (Preparation of electrolyte) LiPF 6 was added so that it might become 1 mol / L (12.7 mass%) with respect to the solution which mixed ethylene carbonate (EC) and ethyl methyl carbonate (EMC) by the volume ratio 1: 2, and becomes electrolyte solution used as a reference
  • standard was made.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • standard was made.
  • it mixed with the additive and addition amount of the following table 1, and prepared the non-aqueous electrolyte.
  • the positive electrode is made of NMC: LiNi 0.33 Co 0.33 Mn 0.33 O 2 85% by mass, conductive auxiliary agent: carbon black 7.5% by mass, binder: PVDF 7.5% by mass, and the negative electrode is LTO: 94% by mass of lithium titanate, conductive assistant: 3% by mass of carbon black, binder: 3% by mass of PVDF
  • the separator is glass filter paper (manufactured by ADVANTEC: GA-55, thickness: 0.21 mm).
  • Gas generation during overcharge (battery volume after overcharge test-battery volume during creation) / battery volume during creation x 100
  • This gas generation amount is less than 1 C 1 to less than 2 B 2 or more and less than 3 A 3 or more AA As evaluated.
  • Discharge capacity maintenance rate (%) (Discharge capacity after 300 cycles / discharge capacity after 1 cycle) ⁇ 100
  • Test No. Comparative examples starting with C * 1 Compound addition amount: Content (% by mass) with respect to the total amount of electrolyte (including electrolyte) * 2 Solvent addition amount: Content (% by volume) with respect to the total amount of solvent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

A nonaqueous secondary battery which comprises a positive electrode, a negative electrode and a nonaqueous electrolyte solution, and wherein: the negative electrode has a normal operating potential of 1.2 V or more with respect to lithium metal; and the nonaqueous electrolyte solution contains an electrolyte, an organic solvent and a compound represented by formula (I) or an onium salt that has an aryl group or a heterocyclic group in a partial structure. (In the formula, each of X1 and X2 represents a specific substituent; L1 represents -O-, -S-, -NRa-, -CO-, -CRbRc- or a combination thereof; each of Ra-Rc independently represents a hydrogen atom or a substituent; and Ra-Rc and X1 may combine together to form a ring.)

Description

非水二次電池および非水二次電池用電解液Non-aqueous secondary battery and electrolyte for non-aqueous secondary battery
 本発明は、非水二次電池および非水二次電池用電解液に関する。 The present invention relates to a non-aqueous secondary battery and an electrolyte for a non-aqueous secondary battery.
 リチウム二次電池は、携帯電話やノート型パソコンなどのポータブル電子機器の電源として広く普及している。こうした携帯用途を中心とするアプリケーションの拡充に伴い、軽量・小型でより高エネルギー密度、高容量の製品が開発されてきた。他方、信頼性の面では、リチウム二次電池に固有の課題として過充電の現象があった。これは、二次電池が満充電の状態に達しているにもかかわらず、さらに充電を続けた場合、電極が短絡し不具合を生じさせるものである。特に、有機系の電解液を用いるリチウム二次電池では、使用上の安全確保の観点からも十分な対応が望まれてきた。 Lithium secondary batteries are widely used as power sources for portable electronic devices such as mobile phones and notebook computers. Along with the expansion of applications centering on such portable use, lighter and smaller products with higher energy density and higher capacity have been developed. On the other hand, in terms of reliability, there was an overcharge phenomenon as a problem inherent to lithium secondary batteries. In this case, even if the secondary battery has reached a fully charged state, if the charging is further continued, the electrodes are short-circuited to cause a problem. In particular, a lithium secondary battery using an organic electrolyte solution has been desired to be sufficiently handled from the viewpoint of ensuring safety in use.
 これに対し、通常は電池が装着される電気機器側で対策がとられている。具体的には、充電制御回路が組み込まれるなどして、満充電に達すると電気の供給が遮断されるようになっている。しかしながら、極めてまれではあっても、上記の回路では対応できず、過充電状態に至ることが想定される。このようなときにも、非水電解液に改良が加えられ、過充電を抑制することができれば、より一層の信頼性の向上につなげることができる。 Measures are usually taken on the electrical equipment side where the battery is installed. Specifically, a charge control circuit is incorporated, and the supply of electricity is cut off when full charge is reached. However, even though it is extremely rare, the above circuit cannot cope with it, and it is assumed that an overcharged state is reached. Even in such a case, if the non-aqueous electrolyte is improved and overcharge can be suppressed, the reliability can be further improved.
 このような過充電を抑制ないし防止する目的で、非水電解液に添加する添加剤がいくつか提案されている。なかでも代表的なものとして、特許文献1に開示されたビフェニルを挙げることができる。これにより、過充電時に電極に作用して、系内の電気抵抗を上昇させ不具合の進行を抑えるものである。これとは別に、過充電時に発生するガスを感圧弁で検知し、内部のガスを放出することで不具合の過度の進行を止めるものがある。この感圧機構を有する電池の電解液に適用されるガス放出剤として、シクロヘキシルベンゼンが提案されている(特許文献2参照)。 For the purpose of suppressing or preventing such overcharge, several additives to be added to the non-aqueous electrolyte have been proposed. Among them, a representative example is biphenyl disclosed in Patent Document 1. As a result, it acts on the electrode during overcharging to increase the electrical resistance in the system and suppress the progress of the malfunction. Apart from this, there is one that stops excessive progress of defects by detecting gas generated during overcharge with a pressure-sensitive valve and releasing internal gas. Cyclohexylbenzene has been proposed as a gas releasing agent applied to the electrolyte of a battery having this pressure-sensitive mechanism (see Patent Document 2).
特開平07-302614号公報Japanese Patent Laid-Open No. 07-302614 特許第3113652号明細書Japanese Patent No. 3113652
 本発明者は、感圧機構を有する非水二次電池において、その過充電をより効果的に防止するためには、上記シクロヘキルベンゼンの添加だけでは不十分と考え、より効果の高い添加剤を探索した。このとき、特に近時利用が広がっているチタン酸リチウム(LTO)等を用いた高電位で作動する負極、ないしは必要により高電位の正極に対しても適合し、高い性能を発揮することも開発の目標とした。 The present inventor considers that in the non-aqueous secondary battery having a pressure-sensitive mechanism, in order to prevent the overcharge more effectively, it is considered that the addition of the cyclohexylbenzene is not sufficient, and a more effective additive. Explored. At this time, it is also developed that it is suitable for negative electrodes that operate at a high potential using lithium titanate (LTO), etc., which have recently been widely used, or a high potential positive electrode if necessary, and exhibits high performance. Was the goal.
 そこで、本発明は、非水電解液からのガス発生に基づく高い過充電防止性と、電池性能の劣化抑制性と、低温特性とを同時に満足することができる非水二次電池およびこれに用いられる非水二次電池用電解液の提供を目的とする。 Accordingly, the present invention provides a non-aqueous secondary battery that can simultaneously satisfy high overcharge prevention properties based on gas generation from a non-aqueous electrolyte, battery performance deterioration suppression properties, and low-temperature characteristics, and a method for using the same. It aims at providing the electrolyte solution for non-aqueous secondary batteries.
 上記の課題は以下の手段によって解決された。
〔1〕正極と負極と非水電解液とを有する非水二次電池であって、
 負極はその通常作動電位が対金属リチウムで1.2V以上であり、
 非水電解液は、電解質と、有機溶媒と、下記式(I)で示される化合物またはアリール基またはヘテロ環基を部分構造に有するオニウム塩とを含む非水二次電池。
Figure JPOXMLDOC01-appb-C000008
(X、Xは置換基を表し、少なくとも一つがアリール基含有基またはLとともにヘテロ環基をなす基である。両者は互いに同一でも異なっていてもよい。またX、Xは互いに結合ないし縮合して環構造を形成してもよい。あるいは、Xが省略されて、XとLとが結合して環を形成していてもよい。XとLとが結合して環を形成していてもよい。Lは-O-、-S-、-NR-、-CO-、-CR-、またはそれらの組合せである。R~Rはそれぞれ独立に水素原子または置換基を表す。R~RはXと結合して環を形成していてもよい。)
〔2〕式(I)で示される化合物が、少なくとも一つのアルキル基を持つアリール基またはヘテロ環基を部分構造に有する〔1〕に記載の非水二次電池。
〔3〕Lが-O-、-(CO)O-、-NR-、またはそれらの組合せである〔1〕または〔2〕に記載の非水二次電池。
〔4〕Lが*-O-**、*-(CRm3-**、*-(CO)O-**、*-O(CO)O-**、*-NR-**、*-NR(CO)O-**、または*-NR-NR(CO)O-**である〔1〕~〔3〕のいずれか1項に記載の非水二次電池。
(R~Rは式(I)と同義である。m3は1~6の整数である。*はCO側の結合手である。**はX側の結合手である。)
〔5〕XおよびXがアルキル基および下記式(X1)~(X12)から選ばれる部分構造を持つ置換基である〔1〕~〔4〕のいずれか1項に記載の非水二次電池。
Figure JPOXMLDOC01-appb-C000009
(RX1は置換基を表す。n11は0~4の整数を表す。n12は0~5の整数を表す。n13は0~11の整数を表す。n14は0~8の整数を表す。n15は0~4の整数を表す。n16は0~10の整数を表す。Lはアリール基を含むことがあるアルキレン基を表す。*は結合手を表す。式(X1)、(X5)、(X11)については、式(I)のLに含まれる部位であるNRを含めて示している。)
〔6〕式(I)で表される化合物において、XおよびXが環を形成するとき、またはXとLとが結合して環を形成するとき、式(I)で表される化合物において、XおよびXが環を形成するとき、化合物が下記式(C1)~(C6)のいずれかで表される化合物である〔1〕~〔5〕のいずれか1項に記載の非水二次電池。
Figure JPOXMLDOC01-appb-C000010
(RC1は置換基を表す。m1は0~4の整数を表す。m2は0~2の整数を表す。)
〔7〕オニウム塩が、下記式(II)~(VII)のいずれかで表される化合物である〔1〕に記載の非水二次電池。
Figure JPOXMLDOC01-appb-C000011
(R~R27は水素原子、アルキル基、アルコキシ基、アルコキシカルボニル基、アリール基、ヘテロ環基である。R~R27は、隣接するもの同士が互いに結合もしくは縮合して環構造を形成してもよい。Zはアニオンを表す。)
〔8〕R~R27がアルキル基または下記(R1)~(R10)から選ばれる〔7〕に記載の非水二次電池。
Figure JPOXMLDOC01-appb-C000012
(R31は置換基を表す。LおよびLはそれぞれ独立にアリール基を含むことがあるアルキレン基を表す。n3は0~10の整数を表す。n4は0~11の整数を表す。n5は0~9の整数を表す。n6は0~5の整数を表す。n7は0~4の整数を表す。*は結合手を表す。)
〔9〕負極の作動電位が、対金属リチウムで1.4V~2Vである〔1〕~〔8〕のいずれか1項に記載の非水二次電池。
〔10〕負極が、チタン酸リチウム(LTO)である〔1〕~〔9〕のいずれか1項に記載の非水二次電池。
〔11〕正極の活物質が、アルカリ金属イオンを挿入放出可能な遷移金属酸化物である〔1〕~〔10〕のいずれか1項に記載の非水二次電池。
〔12〕正極に含まれる活物質が下記式(MA)~(MC)のいずれかで表される遷移金属酸化物を含む〔1〕~〔11〕のいずれか1項に記載の非水二次電池。
  Li     ・・・ (MA)
  Li     ・・・ (MB)
  Li(PO ・・・ (MC)
(式中、MおよびMは、それぞれ独立に、Co、Ni、Fe、Mn、Cu、およびVから選択される1種以上の元素を表す。Mは、それぞれ独立に、V、Ti、Cr、Mn、Fe、Co、Ni、およびCuから選択される1種以上の元素を表す。ただし、M~Mは、その一部が、リチウム以外の周期律表の第1(Ia)族の元素、第2(IIa)族の元素、Al、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P、およびBから選ばれる少なくとも1つにより置換されていてもよい。aは0~1.2を表す。bは1~3を表す。cは0~2を表す。dは3~5を表す。eは0~2を表し、fは1~5を表す。)
〔13〕正極の活物質が、コバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウム、ニッケルマンガンコバルト酸リチウム、マンガンニッケル酸リチウム、ニッケルコバルトアルミニウム酸リチウム、またはリン酸鉄リチウムである〔1〕~〔12〕のいずれか1項に記載の非水二次電池。
〔14〕電池の通常充電正極電位が4.25V(Li/Li基準)以上である〔1〕~〔13〕のいずれか1項に記載の非水二次電池。
〔15〕電解質と、有機溶媒と、下記式(I)で示される化合物またはアリール基またはヘテロ環基を部分構造に有するオニウム塩とを含む非水二次電池用電解液。
Figure JPOXMLDOC01-appb-C000013
(X、Xは置換基を表し、少なくとも一つがアリール基含有基またはLとともにヘテロ環基をなす基である。両者は互いに同一でも異なっていてもよい。またX、Xは互いに結合ないし縮合して環構造を形成してもよい。あるいは、Xが省略されて、XとLとが結合して環を形成していてもよい。XとLとが結合して環を形成していてもよい。Lは-O-、-S-、-NR-、-CO-、-CR-、またはそれらの組合せである。R~Rはそれぞれ独立に水素原子または置換基を表す。R~RはXと結合して環を形成していてもよい。)
〔16〕オニウム塩が、下記式(II)~(VII)のいずれかで表される化合物である〔15〕に記載の非水二次電池用電解液。
Figure JPOXMLDOC01-appb-C000014
(R~R27は水素原子、アルキル基、アルコキシ基、アルコキシカルボニル基、アリール基、ヘテロ環基である。R~R27は、隣接するもの同士が互いに結合もしくは縮合して環構造を形成してもよい。Zはアニオンを表す。)
〔17〕正極と負極と非水電解液とを有する非水二次電池であって、
 負極は、通常作動電位が対金属リチウムで1.2V以上であり
 非水電解液は、電解質と、還元開始電位が1.2V未満の特定有機化合物を含む非水二次電池。
〔18〕特定有機化合物が過充電時に有効量のガスを発生する〔17〕に記載の非水二次電池。
The above problem has been solved by the following means.
[1] A non-aqueous secondary battery having a positive electrode, a negative electrode, and a non-aqueous electrolyte,
The negative electrode has a normal operating potential of 1.2 V or more for lithium metal,
The nonaqueous electrolytic solution is a nonaqueous secondary battery including an electrolyte, an organic solvent, and an onium salt having a compound represented by the following formula (I), an aryl group, or a heterocyclic group in a partial structure.
Figure JPOXMLDOC01-appb-C000008
(X 1, X 2 represents a substituent, at least one of with aryl-containing group or L 1 is a group which forms a heterocyclic group. Both may be the same or different from each other. The X 1, X 2 is may form a ring structure bonded to fused with each other. Alternatively, X 1 is omitted, X 2 and L 1 and there is a good .X 1 also form a ring with L 1 combined with optionally form a ring .L 1 is -O -, - S -, - NR a -, - CO -, - CR b R c -, or a combination thereof .R a ~ R c each independently represents a hydrogen atom or a substituent, and R a to R c may combine with X 1 to form a ring.)
[2] The nonaqueous secondary battery according to [1], wherein the compound represented by the formula (I) has an aryl group or heterocyclic group having at least one alkyl group in a partial structure.
[3] The nonaqueous secondary battery according to [1] or [2], wherein L 1 is —O—, — (CO) O—, —NR a —, or a combination thereof.
[4] L 1 is * -O-**, *-(CR b R c ) m3 -**, *-(CO) O-**, * -O (CO) O-**, * -NR The non-removal according to any one of [1] to [3], which is a -**, * -NR a (CO) O-**, or * -NR a -NR a (CO) O-**. Water secondary battery.
(R a to R c are as defined in formula (I). M3 is an integer of 1 to 6. * is a bond on the CO side, and ** is a bond on the X 1 side.)
[5] The nonaqueous two-component solvent according to any one of [1] to [4], wherein X 1 and X 2 are an alkyl group and a substituent having a partial structure selected from the following formulas (X1) to (X12): Next battery.
Figure JPOXMLDOC01-appb-C000009
(R X1 represents a substituent. N11 represents an integer of 0 to 4. n12 represents an integer of 0 to 5. n13 represents an integer of 0 to 11. n14 represents an integer of 0 to 8. n15 Represents an integer of 0 to 4. n16 represents an integer of 0 to 10. L 2 represents an alkylene group that may contain an aryl group, * represents a bond, Formulas (X1), (X5), (X11) for shows, including NR a is a site contained in L 1 of formula (I).)
[6] In the compound represented by the formula (I), when X 1 and X 2 form a ring, or when X 2 and L 1 combine to form a ring, the compound represented by the formula (I) In the compound [1] to [5], when X 1 and X 2 form a ring, the compound is a compound represented by any one of the following formulas (C1) to (C6): The non-aqueous secondary battery as described.
Figure JPOXMLDOC01-appb-C000010
(R C1 represents a substituent. M1 represents an integer of 0 to 4. m2 represents an integer of 0 to 2.)
[7] The nonaqueous secondary battery according to [1], wherein the onium salt is a compound represented by any one of the following formulas (II) to (VII).
Figure JPOXMLDOC01-appb-C000011
(R 1 to R 27 are a hydrogen atom, an alkyl group, an alkoxy group, an alkoxycarbonyl group, an aryl group, or a heterocyclic group. R 1 to R 27 are bonded to each other or bonded to each other to form a ring structure. Z represents an anion.
[8] The nonaqueous secondary battery according to [7], wherein R 1 to R 27 are selected from an alkyl group or the following (R1) to (R10).
Figure JPOXMLDOC01-appb-C000012
(R 31 represents a substituent. L 3 and L 4 each independently represent an alkylene group that may contain an aryl group. N3 represents an integer of 0 to 10. n4 represents an integer of 0 to 11. n5 represents an integer of 0 to 9. n6 represents an integer of 0 to 5. n7 represents an integer of 0 to 4. * represents a bond.)
[9] The nonaqueous secondary battery according to any one of [1] to [8], wherein the working potential of the negative electrode is 1.4 V to 2 V with respect to lithium metal.
[10] The nonaqueous secondary battery according to any one of [1] to [9], wherein the negative electrode is lithium titanate (LTO).
[11] The nonaqueous secondary battery according to any one of [1] to [10], wherein the positive electrode active material is a transition metal oxide capable of inserting and releasing alkali metal ions.
[12] The nonaqueous solution according to any one of [1] to [11], wherein the active material contained in the positive electrode contains a transition metal oxide represented by any of the following formulas (MA) to (MC): Next battery.
Li a M 1 O b (MA)
Li c M 2 2 O d (MB)
Li e M 3 (PO 4 ) f ... (MC)
(In the formula, M 1 and M 2 each independently represent one or more elements selected from Co, Ni, Fe, Mn, Cu, and V. M 3 independently represents V, Ti. , Cr, Mn, Fe, Co, Ni, and Cu represent one or more elements selected from the group consisting of M 1 to M 3 , a part of which is the first (Ia) of the periodic table other than lithium. ) Group element, Group 2 (IIa) element, Al, Ga, In, Ge, Sn, Pb, Sb, Bi, Si, P, and B may be substituted. a represents 0 to 1.2, b represents 1 to 3, c represents 0 to 2, d represents 3 to 5, e represents 0 to 2, and f represents 1 to 5. )
[13] The active material of the positive electrode is lithium cobaltate, lithium manganate, lithium nickelate, lithium nickel manganese cobaltate, lithium manganese nickelate, lithium nickel cobaltaluminate, or lithium iron phosphate [1] to [1] [12] The nonaqueous secondary battery according to any one of [12].
[14] The nonaqueous secondary battery according to any one of [1] to [13], wherein the normal charge positive electrode potential of the battery is 4.25 V (Li / Li + reference) or more.
[15] An electrolyte solution for a non-aqueous secondary battery comprising an electrolyte, an organic solvent, and an onium salt having a compound represented by the following formula (I) or an aryl group or heterocyclic group in a partial structure.
Figure JPOXMLDOC01-appb-C000013
(X 1 and X 2 each represents a substituent, and at least one of them is an aryl group-containing group or a group that forms a heterocyclic group with L 1. Both may be the same or different. X 1 and X 2 may form a ring structure bonded to fused with each other. Alternatively, X 1 is omitted, X 2 and L 1 and there is a good .X 1 also form a ring with L 1 combined with optionally form a ring .L 1 is -O -, - S -, - NR a -, - CO -, - CR b R c -, or a combination thereof .R a ~ R c each independently represents a hydrogen atom or a substituent, and R a to R c may combine with X 1 to form a ring.)
[16] The electrolyte solution for a non-aqueous secondary battery according to [15], wherein the onium salt is a compound represented by any of the following formulas (II) to (VII).
Figure JPOXMLDOC01-appb-C000014
(R 1 to R 27 are a hydrogen atom, an alkyl group, an alkoxy group, an alkoxycarbonyl group, an aryl group, or a heterocyclic group. R 1 to R 27 are bonded to each other or bonded to each other to form a ring structure. Z represents an anion.
[17] A non-aqueous secondary battery having a positive electrode, a negative electrode, and a non-aqueous electrolyte,
The negative electrode normally has a working potential of 1.2 V or more for lithium metal, and the non-aqueous electrolyte is a non-aqueous secondary battery containing an electrolyte and a specific organic compound having a reduction initiation potential of less than 1.2 V.
[18] The nonaqueous secondary battery according to [17], wherein the specific organic compound generates an effective amount of gas when overcharged.
 本発明の非水二次電池用電解液および非水二次電池によれば、非水電解液からのガス発生に基づく高い過充電防止性と、電池性能の劣化抑制性と、低温特性とを同時に満足することができる。また、必要により高電位の負極を用いる条件であっても、これに好適に適合し、その高い性能を発揮することができる。
 本発明の上記及び他の特徴及び利点は、下記の記載および添付の図面からより明らかになるであろう。
According to the non-aqueous secondary battery electrolyte and non-aqueous secondary battery of the present invention, the high overcharge prevention property based on the gas generation from the non-aqueous electrolyte solution, the battery performance deterioration suppression property, and the low-temperature characteristics. You can be satisfied at the same time. Moreover, even if it is the conditions using a negative electrode of a high potential if necessary, it can be suitably adapted to this and exhibit its high performance.
The above and other features and advantages of the present invention will become more apparent from the following description and accompanying drawings.
本発明の好ましい実施形態に係るリチウム二次電池の機構を模式化して示す断面図である。It is sectional drawing which shows typically the mechanism of the lithium secondary battery which concerns on preferable embodiment of this invention. 本発明の好ましい実施形態に係るリチウム二次電池の具体的な構成を示す断面図である。It is sectional drawing which shows the specific structure of the lithium secondary battery which concerns on preferable embodiment of this invention. 本発明の好ましい実施形態に係る感圧機構付き電池蓋体を示す部分断面側面図である。It is a fragmentary sectional side view which shows the battery cover body with a pressure-sensitive mechanism which concerns on preferable embodiment of this invention. CR2032形コイン電池の構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of CR2032-type coin battery.
 本発明の非水二次電池用電解液は、有機溶媒中に、電解質と、下記特定有機化合物とを含有する。当該特定有機化合物は還元開始電位が1.2V未満であることが好ましく、過充電時に有効量のガスを発生することがより好ましい。この特定有機化合物を用いることにより上記の優れた効果を奏する理由は推定を含めて以下のように解される。
 リチウム二次電池は、過充電時に正極の電位が急激に上昇するとともに、負極の電位も変化し、特に高電位の負極を用いた場合には、その電位が急峻に降下する。このような変化は、正極よりもむしろ負極の方が顕著になることもある。前記特定有機化合物は、このような負極の電位の変化に対して敏感に応答し、分子構造の一部を分解させながらガスを発生するものと解される。このとき、式(I)の化合物を例にとれば、そのカルボニル基が還元を受け、生成したアニオンラジカルを反応起点として脱炭酸反応が進行し、アニオン種とラジカル種が生成する。一方、上記のアニオンやラジカルはさらに酸化を受けガスとなって放出されることが考えられる。すなわち、1つの分子から連鎖的に反応が進行し、効果的にガスを発生させることが期待される。また、二酸化炭素は安定かつ不燃性の気体であり信頼性にも富む。ただし、この作用機構は推定を含むものであり、これにより本発明が何ら限定して解釈されるものではない。以下、本発明について詳細に説明する。
The electrolyte solution for a non-aqueous secondary battery of the present invention contains an electrolyte and the following specific organic compound in an organic solvent. The specific organic compound preferably has a reduction initiation potential of less than 1.2 V, and more preferably generates an effective amount of gas during overcharge. The reason why the above-mentioned excellent effect is obtained by using this specific organic compound is understood as follows including estimation.
In a lithium secondary battery, the potential of the positive electrode suddenly rises during overcharge and the potential of the negative electrode also changes. In particular, when a high potential negative electrode is used, the potential drops sharply. Such changes may be more pronounced on the negative electrode than on the positive electrode. It is understood that the specific organic compound responds sensitively to such a change in potential of the negative electrode and generates gas while decomposing part of the molecular structure. At this time, if the compound of formula (I) is taken as an example, the carbonyl group undergoes reduction, and the decarboxylation reaction proceeds using the generated anion radical as a reaction starting point to generate anion species and radical species. On the other hand, it is considered that the anions and radicals are further oxidized and released as gases. That is, it is expected that the reaction proceeds in a chain manner from one molecule and gas is effectively generated. Carbon dioxide is a stable and non-flammable gas and has high reliability. However, this mechanism of action includes estimation, and the present invention is not construed as being limited thereto. Hereinafter, the present invention will be described in detail.
<特定有機化合物>
 本発明に用いられる特定有機化合物に係る第1の実施形態は、下記式(I)で示される化合物である。
Figure JPOXMLDOC01-appb-C000015
<Specific organic compounds>
1st Embodiment which concerns on the specific organic compound used for this invention is a compound shown by following formula (I).
Figure JPOXMLDOC01-appb-C000015
・X、X
 X、Xは置換基であり、少なくとも一つがアリール基含有基またはLとともにヘテロ環基をなす基である。両者は互いに同一でも異なっていてもよい。またX、Xは互いに結合ないし縮合して環構造を形成してもよい。あるいは、Xが省略されて、XとLとが結合して環を形成していてもよい。XとLとが結合して環を形成していてもよい。
 アリール基としては、炭素数6~22が好ましく、6~14がより好ましく、6~10が特に好ましい。具体的には、フェニル基、ナフチル基、アントラセニル基、フェナントリル基などが挙げられ、なかでもフェニル基が好ましい。アリール基は任意の置換基としてさらに下記置換基RX1を有していてもよい。
 XとLとがなすヘテロ環基としては、炭素数1~12が好ましく、炭素数2~8がより好ましく、2~5が特に好ましい。環の構成原子数としては、3員環~6員環が好ましい。具体的には、N-ピロリジル基、N-オキソピロリジル基、N-イミダゾリジル基、N-オキソイミダゾリジル基、N-ピラゾリジル基、N-オキソピラゾリジル基、N-ピペリジル基、N-オキソピペリジル基、N-モルホリル基、N-フェノキサジニル基、N-フェノチアジニル基、N-イミダゾリジル基、N-ピラゾリル基、N-ピペリジノン基、N-ピロリル基(N-は、N位でLまたはOに結合していることを意味する。)が挙げられる。ヘテロ環基は任意の置換基としてさらに下記置換基RX1を有していてもよい。
· X 1, X 2
X 1 and X 2 are substituents, and at least one of them is an aryl group-containing group or a group that forms a heterocyclic group with L 1 . Both may be the same or different. X 1 and X 2 may be bonded to each other or condensed to form a ring structure. Alternatively, X 1 may be omitted, and X 2 and L 1 may be bonded to form a ring. X 1 and L 1 may combine to form a ring.
The aryl group preferably has 6 to 22 carbon atoms, more preferably 6 to 14 carbon atoms, and particularly preferably 6 to 10 carbon atoms. Specific examples include a phenyl group, a naphthyl group, an anthracenyl group, a phenanthryl group, and the like, and among them, a phenyl group is preferable. The aryl group may further have the following substituent R X1 as an optional substituent.
The heterocyclic group formed by X 1 and L 1 preferably has 1 to 12 carbon atoms, more preferably 2 to 8 carbon atoms, and particularly preferably 2 to 5 carbon atoms. The number of atoms constituting the ring is preferably a 3-membered to 6-membered ring. Specifically, N-pyrrolidyl group, N-oxopyrrolidyl group, N-imidazolidyl group, N-oxoimidazolidyl group, N-pyrazolidyl group, N-oxopyrazolidyl group, N-piperidyl group, N-oxo Piperidyl group, N-morpholyl group, N-phenoxazinyl group, N-phenothiazinyl group, N-imidazolidyl group, N-pyrazolyl group, N-piperidinone group, N-pyrrolyl group (N- is L 1 or O at the N position) It means that it is couple | bonded with.). The heterocyclic group may further have the following substituent R X1 as an optional substituent.
 X、Xが上記アリール基含有基、ヘテロ環基をなす基以外の置換基であるとき、その例としては、後記置換基RX1の例(前記に該当する基を除く)が挙げられる。
 具体的には、アルキル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)、アルコキシ基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)、アシル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)、アシルオキシ基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)、スルホニル基含有基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)、カルボニル基含有基(炭素数2~12が好ましく、2~6がより好ましく、2~4が特に好ましい)、アルケニル基(炭素数2~8が好ましく、2~4がより好ましい)、アミノ基(炭素数0~6が好ましく、0~3がより好ましい)、ホスフィノ基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)、ホスフィニル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)、ハロゲン原子が挙げられる。
 以下に、XとLとがヘテロ環を形成した例(I-1)と、Xが省略されてXとLとが結合して環を形成した例(I-2)を示しておく。Lを含む環αはヘテロ環であり、前記で列記したヘテロ環基の例が挙げられる。式I-1中、Xは省略された形で示している。環βのXとLとの間は単結合で連結されている意味である。
Figure JPOXMLDOC01-appb-C000016
When X 1 and X 2 are substituents other than the aryl group-containing group and the group that forms a heterocyclic group, examples thereof include examples of the substituent R X1 described later (excluding the group corresponding to the above). .
Specifically, an alkyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms) or an alkoxy group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms) To 3 are particularly preferred), an acyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms), an acyloxy group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms). 1 to 3 are particularly preferred), a sulfonyl group-containing group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 and particularly preferably 1 to 3), and a carbonyl group-containing group (preferably having 2 to 12 carbon atoms) 2-6 are more preferred, 2-4 are particularly preferred), alkenyl groups (preferably having 2-8 carbon atoms, more preferred 2-4), amino groups (preferably having 0-6 carbon atoms, more preferably 0-3). Preferred), Phosphino (Preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms), phosphinyl group (preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms), A halogen atom is mentioned.
Hereinafter, the example in which the X 1 and L 1 is to form a hetero ring (I-1), examples which X 1 is omitted and X 2 and L 1 to form a ring with (I-2) I will show you. The ring α containing L 1 is a heterocyclic ring, and examples of the heterocyclic group listed above can be given. In formula I-1, X 1 is shown in an abbreviated form. It means that X 2 and L 1 of ring β are connected by a single bond.
Figure JPOXMLDOC01-appb-C000016
 X、Xは、下記式(X1)~(X12)から選ばれる構造であることが好ましい。ただし、式(X1)、(X5)、(X11)については、式(I)のLに含まれる部位であるNRを含めて示している。
Figure JPOXMLDOC01-appb-C000017
X 1 and X 2 are preferably structures selected from the following formulas (X1) to (X12). However, the formula (X1), is shown including NR a is a site contained in L 1 of (X5), for (X11), the formula (I).
Figure JPOXMLDOC01-appb-C000017
・RX1
 式中、RX1は置換基を表す。置換基としては、後記任意の置換基Tの例が挙げられる。中でも、アルキル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)、アルコキシ基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)、アシル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)、アシルオキシ基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)、スルホニル基含有基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)、カルボニル基含有基(炭素数2~12が好ましく、2~6がより好ましく、2~4が特に好ましい)、アルケニル基(炭素数2~8が好ましく、2~4がより好ましい)、アミノ基(炭素数0~6が好ましく、0~3がより好ましい)、ホスフィノ基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)、ホスフィニル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)、ハロゲン原子が好ましい。
 RX1が複数あるとき、それぞれ異なっていてもよく、それらが結合または縮合して環を形成していてもよい。
・ R X1
In the formula, R X1 represents a substituent. Examples of the substituent include the examples of the optional substituent T described later. Among them, an alkyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms), an alkoxy group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and 1 to 3 carbon atoms). Particularly preferred), an acyl group (preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms), an acyloxy group (preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, 1 to 6 carbon atoms). 3 is particularly preferred), a sulfonyl group-containing group (preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms), a carbonyl group-containing group (preferably 2 to 12 carbon atoms, preferably 2 to 6 carbon atoms). Is more preferable, 2 to 4 are particularly preferable), an alkenyl group (preferably having 2 to 8 carbon atoms, more preferably 2 to 4), an amino group (preferably having 0 to 6 carbon atoms, and more preferably 0 to 3), Phosphino group ( A prime number of 1 to 12, preferably 1 to 6, more preferably 1 to 3, and a phosphinyl group (preferably 1 to 12, preferably 1 to 6, more preferably 1 to 3), a halogen atom Is preferred.
When there are a plurality of R X1 s , they may be different from each other, and they may be bonded or condensed to form a ring.
 n11は0~4の整数を表す。n12は0~5の整数を表す。n13は0~11の整数を表す。n14は0~8の整数を表す。n15は0~4の整数を表す。n16は0~10の整数を表す。 N11 represents an integer of 0-4. n12 represents an integer of 0 to 5. n13 represents an integer of 0 to 11. n14 represents an integer of 0 to 8. n15 represents an integer of 0 to 4. n16 represents an integer of 0 to 10.
・L
 Lはアリール基を含むことがあるアルキレン基を表す。具体的には、-(RC)-であることが好ましく、nは1~6であることが好ましい。RおよびRはそれぞれ独立に、水素原子、アルキル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)、アリール基(炭素数6~22が好ましく、6~14がより好ましい。なかでも、フェニルまたはナフチルが好ましい)、またはアラルキル基(炭素数7~23が好ましく、7~15がより好ましい。なかでもべンジル基が好ましい)である。RおよびRは互いに結合ないし縮合して環構造を形成していてもよい。
 RおよびRがアルキル基、アリール基、アラルキル基であるとき、さらにRX1で表される基を有していてもよい。
・ L 2
L 2 represents an alkylene group that may contain an aryl group. Specifically, — (R e R f C) n — is preferable, and n is preferably 1 to 6. R e and R f are each independently a hydrogen atom, an alkyl group (preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms), an aryl group (preferably 6 to 22 carbon atoms, 6 to 14, more preferably phenyl or naphthyl), or an aralkyl group (preferably having a carbon number of 7 to 23, more preferably 7 to 15, particularly preferably a benzyl group). R e and R f may be bonded to each other or condensed to form a ring structure.
When R e and R f are an alkyl group, an aryl group, or an aralkyl group, they may further have a group represented by R X1 .
 *は結合手を表し、式(I)のLまたはOと結合する。 * Represents a bond, and is bonded to L 1 or O in the formula (I).
・L
 Lは-O-、-S-、-NR-、-CO-、-CR-、またはそれらの組合せである。R~Rはそれぞれ独立に水素原子または置換基を表す。R~Rが置換基のとき、後記置換基Tの例が挙げられる。R~Rは中でも、水素原子、アルキル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)、アリール基(炭素数6~10が好ましい)、アラルキル基(炭素数7~11が好ましい)、または-CO-O-Rが好ましい。アルキル基のなかでは、メチル基、エチル基、プロピル基であることが好ましい。Rは置換基であり、具体的に後記置換基Tの例が挙げられ、なかでもアルキル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)、アリール基(炭素数6~22が好ましく、6~14がより好ましい。なかでも、フェニルまたはナフチルが好ましい)が好ましい。R~RはさらにRX1で表される基を有していてもよい。
 Lはなかでも、-O-、-(CO)O-、-NR-、またはそれらの組合せが好ましい。すなわち、式(I)で表される化合物が、カーボネート化合物、オキサレート化合物、アミド化合物であることが好ましい。さらに、Lは、*-O-**、*-(CRm3-**、*-(CO)O-**、*-O(CO)O-**、*-NR-**、*-NR(CO)O-**、または*-NR-NR(CO)O-**であることが好ましい。*はCO側の結合手である。**はX側の結合手である。R~Rは前記と同義である。m3は1~6の整数である。m3が2以上のとき、そこで規定される複数の置換基は互いに同じであっても異なっていてもよい。
・ L 1
L 1 is —O—, —S—, —NR a —, —CO—, —CR b R c —, or a combination thereof. R a to R c each independently represents a hydrogen atom or a substituent. When R a to R c are substituents, examples of the substituent T described later are given. R a to R c are, among others, a hydrogen atom, an alkyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms), an aryl group (preferably having 6 to 10 carbon atoms), aralkyl A group (preferably having 7 to 11 carbon atoms) or —CO—O—R d is preferred. Among the alkyl groups, a methyl group, an ethyl group, and a propyl group are preferable. R d is a substituent, and specific examples thereof include the substituent T described later. Among them, an alkyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and particularly preferably 1 to 3 carbon atoms), aryl A group (preferably having 6 to 22 carbon atoms, more preferably 6 to 14 carbon atoms, and particularly preferably phenyl or naphthyl) is preferred. R a to R c may further have a group represented by R X1 .
Among these, L 1 is preferably —O—, — (CO) O—, —NR a —, or a combination thereof. That is, the compound represented by the formula (I) is preferably a carbonate compound, an oxalate compound, or an amide compound. Further, L 1 represents * -O-**, *-(CR b R c ) m3 -**, *-(CO) O-**, * -O (CO) O-**, * -NR. It is preferably a -**, * -NR a (CO) O-**, or * -NR a -NR a (CO) O-**. * Is a bond on the CO side. ** represents a bond X 1 side. R a to R c are as defined above. m3 is an integer of 1-6. When m3 is 2 or more, the plurality of substituents defined therein may be the same as or different from each other.
 R~RはXと結合して環を形成していてもよい。形成される環の好ましいものとしては、炭素数3~12の飽和ヘテロ環基または炭素数3~12のシクロアルキレン基が挙げられる。これらの環はさらに置換基Tを有していてもよい。 R a to R c may combine with X 1 to form a ring. Preferable ring formed includes a saturated heterocyclic group having 3 to 12 carbon atoms or a cycloalkylene group having 3 to 12 carbon atoms. These rings may further have a substituent T.
 前記式(I)で示される化合物は、少なくとも一つのアルキル基を持つアリール基(好ましい範囲は前記と同義)またはヘテロ環基を部分構造に有する化合物であることが好ましい。 The compound represented by the formula (I) is preferably a compound having an aryl group having at least one alkyl group (preferable range is as defined above) or a heterocyclic group in a partial structure.
 前記式(I)において、XおよびXが環を形成するとき、またはXとLとが結合して環を形成するとき、下記式(Ia)で表されることが好ましい。 In the formula (I), when X 1 and X 2 form a ring, or when X 2 and L 1 combine to form a ring, it is preferably represented by the following formula (Ia).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 Lは式(I)と同義である。
 Xは、アルキレン基(炭素数1~6が好ましく、2~4がより好ましい)、アルケニレン基(炭素数2~6が好ましく、2~4がより好ましい)、アルキニレン基(炭素数2~6が好ましく、2~4がより好ましい)、アリーレン基(炭素数6~14が好ましく、6~10がより好ましい)、アラルキレン基(炭素数7~15が好ましく、7~11がより好ましい)である。Xは、さらに置換基(例えばRX1)を有していてもよい。Xは任意の置換基としてさらに置換基RX1を有していてもよい。
L 1 has the same meaning as in formula (I).
X 3 represents an alkylene group (preferably having 1 to 6 carbon atoms, more preferably 2 to 4 carbon atoms), an alkenylene group (preferably having 2 to 6 carbon atoms, more preferably 2 to 4 carbon atoms), an alkynylene group (having 2 to 6 carbon atoms). Preferably 2 to 4), an arylene group (preferably having 6 to 14 carbon atoms, more preferably 6 to 10), and an aralkylene group (preferably having 7 to 15 carbon atoms, more preferably 7 to 11). . X 3 may further have a substituent (for example, R X1 ). X 3 may further have a substituent R X1 as an optional substituent.
 さらに、前記式(I)において、XおよびXが環を形成するとき、またはXとLとが結合して環を形成するとき、下記式(C1)~(C6)のいずれかで表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000019
Further, in the formula (I), when X 1 and X 2 form a ring, or when X 2 and L 1 combine to form a ring, any one of the following formulas (C1) to (C6): It is preferable that it is a compound represented by these.
Figure JPOXMLDOC01-appb-C000019
 式中、RC1は置換基を表す。その好ましい範囲は、前記RX1と同じである。式(C1)、(C2)、(C4)、(C5)においては、RC1の少なくとも1つがアリール基またはヘテロ環基であることが好ましい。当該アリール基およびヘテロ環基の好ましいものは、X、Xと同じである。RC1が複数あるとき、それぞれ異なっていてもよく、それらが結合または縮合して環を形成していてもよい。 In the formula, R C1 represents a substituent. The preferred range is the same as R X1 . In the formulas (C1), (C2), (C4), and (C5), it is preferable that at least one of R C1 is an aryl group or a heterocyclic group. The preferred aryl group and heterocyclic group are the same as X 1 and X 2 . When there are a plurality of R C1 s , they may be different from each other, and they may be bonded or condensed to form a ring.
 m1は0~4の整数を表す。m2は0~2の整数を表す。m1、m2が2以上のとき、そこで規定される複数の置換基は互いに同じであっても異なっていてもよい。 M1 represents an integer from 0 to 4. m2 represents an integer of 0-2. When m1 and m2 are 2 or more, a plurality of substituents defined therein may be the same as or different from each other.
 式(1)で表される化合物の具体例を下記に示すが、本発明がこれにより限定して解釈されるものではない。 Specific examples of the compound represented by the formula (1) are shown below, but the present invention is not construed as being limited thereto.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 本発明に用いられる特定有機化合物に係る第2の実施形態は、アリール基または環基を部分構造に有するオニウム塩である。オニウム塩は、含硫黄オニウム塩、含硫窒素オニウム塩、含リンオニウム塩であることが好ましい。含窒素オニウム塩は、なかでも、含窒素複素芳香環オニウム塩であることがより好ましい。前記アリール基およびヘテロ環基は前記式(I)で定義したものと同義である。 The second embodiment relating to the specific organic compound used in the present invention is an onium salt having an aryl group or a cyclic group in a partial structure. The onium salt is preferably a sulfur-containing onium salt, a sulfur-containing nitrogen onium salt, or a phosphorus-containing onium salt. In particular, the nitrogen-containing onium salt is more preferably a nitrogen-containing heteroaromatic onium salt. The aryl group and heterocyclic group have the same meanings as defined in formula (I).
 前記オニウム塩は、下記式(II)~(VII)のいずれかで表される化合物であることが好ましい。 The onium salt is preferably a compound represented by any of the following formulas (II) to (VII).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
・R~R27
 R~R27は水素原子、アルキル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)、アルコキシ基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)、アルコキシカルボニル基(炭素数2~12が好ましく、2~6がより好ましい)、アリール基、ヘテロ環基である。ここでのアリール基およびヘテロ環基は、X,Xで挙げたものが同様に好ましい。
 R~R27は、隣接するもの同士が互いに結合もしくは縮合して環構造を形成してもよい。前記R~R27がアルキル基であるとき、直鎖もしくは分岐のアルキル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)、シクロアルキル基(炭素数3~14が好ましく、3~8がより好ましく、3~6が特に好ましい)、アラルキル基(炭素数7~23が好ましく、7~15がより好ましい)が好ましい。シクロアルキル基は芳香族環(ベンゼン環、ナフタレン環、フェナントレン環、アントラセン環など)が縮環していてもよい。前記アラルキル基のアルキレン基は炭素数1~12であることが好ましく、炭素数1~6であることがより好ましく、炭素数1~3であることが特に好ましい。
・ R 1 to R 27
R 1 to R 27 are each a hydrogen atom, an alkyl group (preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms), an alkoxy group (preferably 1 to 12 carbon atoms, preferably 1 to 6 carbon atoms). More preferably, 1 to 3 is particularly preferable), an alkoxycarbonyl group (having 2 to 12 carbon atoms, more preferably 2 to 6), an aryl group, and a heterocyclic group. The aryl group and heterocyclic group herein are preferably the same as those described for X 1 and X 2 .
R 1 to R 27 may be bonded to each other or condensed to form a ring structure. When R 1 to R 27 are alkyl groups, they are linear or branched alkyl groups (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and particularly preferably 1 to 3 carbon atoms), cycloalkyl groups (carbon number carbon atoms). 3 to 14 are preferable, 3 to 8 are more preferable, and 3 to 6 are particularly preferable.) An aralkyl group (preferably having 7 to 23 carbon atoms and more preferably 7 to 15 carbon atoms) is preferable. The cycloalkyl group may be condensed with an aromatic ring (benzene ring, naphthalene ring, phenanthrene ring, anthracene ring, etc.). The alkylene group of the aralkyl group preferably has 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and particularly preferably 1 to 3 carbon atoms.
 R~R27は、下記式(R1)~(R10)のいずれかで表されることも好ましい。
Figure JPOXMLDOC01-appb-C000023
R 1 to R 27 are also preferably represented by any of the following formulas (R1) to (R10).
Figure JPOXMLDOC01-appb-C000023
 R31は置換基を表す。R31はRX1と好ましい範囲が同じである。R31が複数あるとき、それぞれ異なっていてもよく、それらが結合または縮合して環を形成していてもよい。 R 31 represents a substituent. R 31 has the same preferred range as R X1 . When there are a plurality of R 31 s , they may be different from each other, and they may be bonded or condensed to form a ring.
 LおよびLはそれぞれ独立にLと同義の連結基を表す。Lとベンゼン環ないしその置換基R31が結合ないし縮合して環構造を形成していてもよい。LおよびLはベンゼン環ないしシクロヘキサン環と連結して環を形成していてもよい。このとき、置換基R31を介していてもよい。 L 3 and L 4 each independently represent a linking group having the same meaning as L 2 . L 4 and the benzene ring or its substituent R 31 may be bonded or condensed to form a ring structure. L 3 and L 4 may be linked to a benzene ring or a cyclohexane ring to form a ring. At this time, the substituent R 31 may be interposed.
 n3は0~10の整数を表す。n4は0~11の整数を表す。n5は0~9の整数を表す。n6は0~5の整数を表す。n7は0~4の整数を表す。 N3 represents an integer from 0 to 10. n4 represents an integer of 0 to 11. n5 represents an integer of 0 to 9. n6 represents an integer of 0 to 5. n7 represents an integer of 0 to 4.
 *は結合手を表す。 * Represents a bond.
・Z
 Zはアニオンを表す。アニオンとしては無機アニオンおよび有機アニオンのいずれでもよい。好ましい例としては、ヘキサフルオロリン酸アニオン、テトラフルオロホウ素アニオン、ヘキサフルオロアンチモンアニオンなどが挙げられる。
· Z -
Z represents an anion. The anion may be either an inorganic anion or an organic anion. Preferred examples include hexafluorophosphate anion, tetrafluoroboron anion, hexafluoroantimony anion and the like.
 式(III)の化合物は、R~Rのうち2つが結合して環構造を形成するとき、下記式(III-1)の化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000024
The compound of the formula (III) is preferably a compound of the following formula (III-1) when two of R 4 to R 7 are bonded to form a ring structure.
Figure JPOXMLDOC01-appb-C000024
 前記R41、R42は、それぞれ独立に前記R~R27と同義の基(水素原子を除く)であり、好ましい範囲も同じである。n7は0~8の整数である。 R 41 and R 42 are each independently the same group as R 1 to R 27 (excluding a hydrogen atom), and the preferred range is also the same. n7 is an integer of 0 to 8.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 上記式(I)で表される化合物は、定法により合成することができる。具体的に、カーボネート化合物は、原料にトリホスゲンを用いる公知方法により合成でき、オキサレート化合物は、原料に塩化オキサリルを用いることで合成可能である。ヒドラジド化合物は、ヒドラジンと対応する酸クロライド化合物、アミドは対応するカーバメート化合物と酸クロライドの公知手法により合成することができる。上記アミド、ヒドラジンの合成について、参考文献を以下に示す。
・米国特許出願US2006/277693 23-24カラム
・Suzuki,Ichiro;Iwata,Yukari;Takeda,Kei「Tetrahedron Letters」2008,vol.49,#20,p.3238-3241
The compound represented by the above formula (I) can be synthesized by a conventional method. Specifically, the carbonate compound can be synthesized by a known method using triphosgene as a raw material, and the oxalate compound can be synthesized by using oxalyl chloride as a raw material. Hydrazide compounds can be synthesized by known methods of hydrazine and corresponding acid chloride compounds, and amides by corresponding carbamate compounds and acid chlorides. References for the synthesis of the amide and hydrazine are shown below.
US Patent Application US2006 / 277693 23-24 Column Suzuki, Ichiro; Iwata, Yukari; Takeda, Kei "Tetrahedron Letters" 2008, vol. 49, # 20, p. 3238-3241
 本発明に係る電解液には、前記特定有機化合物を、非水電解液全体(電解質を含む)に対し、それぞれ、0.1質量%以上で含有させることが好ましく、0.5質量%以上で含有させることがより好ましく、1質量%以上で含有させることがさらに好ましく、2質量%超であることが好ましい。上限としては、20質量%以下が好ましく、10質量%以下がより好ましく、5質量%以下が特に好ましい。特定有機化合物を前記下限値以上で含有させることで、過充電時の十分な量のガス発生を得ることができる。前記上限値以下とすることで、電池性能を過度に阻害せず好ましい。 In the electrolytic solution according to the present invention, the specific organic compound is preferably contained in an amount of 0.1% by mass or more with respect to the entire nonaqueous electrolytic solution (including the electrolyte), preferably 0.5% by mass or more. It is more preferable to make it contain, it is more preferable to make it contain at 1 mass% or more, and it is preferable that it is more than 2 mass%. As an upper limit, 20 mass% or less is preferable, 10 mass% or less is more preferable, and 5 mass% or less is especially preferable. By containing the specific organic compound at the lower limit value or more, a sufficient amount of gas generation at the time of overcharge can be obtained. By setting it to the upper limit value or less, it is preferable without excessively impairing battery performance.
 前記特定有機化合物はその還元開始電位が1.2V未満であることが好ましく、1.0V以下であることがより好ましく、0.8V以下であることが特に好ましい。下限は、0.1V以上であることが好ましく、0.2V以上であることがより好ましく、0.3V以上であることが特に好ましい。特定有機化合物がこの範囲に還元開始電位を有することで、高電位の負極と組み合わせて用いたとき寿命特性が低下せず、かつガス発生力を長期間保持することができ好ましい。 The specific organic compound preferably has a reduction initiation potential of less than 1.2 V, more preferably 1.0 V or less, and particularly preferably 0.8 V or less. The lower limit is preferably 0.1 V or more, more preferably 0.2 V or more, and particularly preferably 0.3 V or more. It is preferable that the specific organic compound has a reduction initiation potential in this range, so that when it is used in combination with a negative electrode having a high potential, the life characteristics are not deteriorated and the gas generation force can be maintained for a long period.
 前記例示化合物は任意の置換基Tを有していてもよい。
 置換基Tとしては、下記のものが挙げられる。
 アルキル基(好ましくは炭素原子数1~20のアルキル基、例えばメチル、エチル、イソプロピル、t-ブチル、ペンチル、ヘプチル、1-エチルペンチル、ベンジル、2-エトキシエチル、1-カルボキシメチル等)、アルケニル基(好ましくは炭素原子数2~20のアルケニル基、例えば、ビニル、アリル、オレイル等)、アルキニル基(好ましくは炭素原子数2~20のアルキニル基、例えば、エチニル、ブタジイニル、フェニルエチニル等)、シクロアルキル基(好ましくは炭素原子数3~20のシクロアルキル基、例えば、シクロプロピル、シクロペンチル、シクロヘキシル、4-メチルシクロヘキシル等)、アリール基(好ましくは炭素原子数6~26のアリール基、例えば、フェニル、1-ナフチル、4-メトキシフェニル、2-クロロフェニル、3-メチルフェニル等)、ヘテロ環基(好ましくは炭素原子数2~20のヘテロ環基、好ましくは、少なくとも1つの酸素原子、硫黄原子、窒素原子を有する5または6員環のヘテロ環基が好ましく、例えば、2-ピリジル、4-ピリジル、2-イミダゾリル、2-ベンゾイミダゾリル、2-チアゾリル、2-オキサゾリル等)、アルコキシ基(好ましくは炭素原子数1~20のアルコキシ基、例えば、メトキシ、エトキシ、イソプロピルオキシ、ベンジルオキシ等)、アリールオキシ基(好ましくは炭素原子数6~26のアリールオキシ基、例えば、フェノキシ、1-ナフチルオキシ、3-メチルフェノキシ、4-メトキシフェノキシ等)、アルコキシカルボニル基(好ましくは炭素原子数2~20のアルコキシカルボニル基、例えば、エトキシカルボニル、2-エチルヘキシルオキシカルボニル等)、アミノ基(好ましくは炭素原子数0~20のアミノ基、アルキルアミノ基、アリールアミノ基を含み、例えば、アミノ、N,N-ジメチルアミノ、N,N-ジエチルアミノ、N-エチルアミノ、アニリノ等)、スルファモイル基(好ましくは炭素原子数0~20のスルファモイル基、例えば、N,N-ジメチルスルファモイル、N-フェニルスルファモイル等)、アシル基(好ましくは炭素原子数1~20のアシル基、例えば、アセチル、プロピオニル、ブチリル、ベンゾイル等)、アシルオキシ基(好ましくは炭素原子数1~20のアシルオキシ基、例えば、アセチルオキシ、ベンゾイルオキシ等)、カルバモイル基(好ましくは炭素原子数1~20のカルバモイル基、例えば、N,N-ジメチルカルバモイル、N-フェニルカルバモイル等)、アシルアミノ基(好ましくは炭素原子数1~20のアシルアミノ基、例えば、アセチルアミノ、ベンゾイルアミノ等)、スルホンアミド基((好ましくは炭素原子数0~20のスルファモイル基、例えば、メタンスルホンアミド、ベンゼンスルホンアミド、N-メチルメタンスルホンアミド、N-エチルベンゼンスルホンアミド等)、アルキルチオ基(好ましくは炭素原子数1~20のアルキルチオ基、例えば、メチルチオ、エチルチオ、イソプロピルチオ、ベンジルチオ等)、アリールチオ基(好ましくは炭素原子数6~26のアリールチオ基、例えば、フェニルチオ、1-ナフチルチオ、3-メチルフェニルチオ、4-メトキシフェニルチオ等)、アルキルもしくはアリールスルホニル基(好ましくは炭素原子数1~20のアルキルもしくはアリールスルホニル基、例えば、メチルスルホニル、エチルスルホニル、ベンゼンスルホニル等)、ヒドロキシル基、シアノ基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等)であり、より好ましくはアルキル基、アルケニル基、アリール基、ヘテロ環基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アミノ基、アシルアミノ基、ヒドロキシル基またはハロゲン原子であり、特に好ましくはアルキル基、アルケニル基、ヘテロ環基、アルコキシ基、アルコキシカルボニル基、アミノ基、アシルアミノ基またはヒドロキシル基である。
 また、これらの置換基Tで挙げた各基は、上記の置換基Tがさらに置換していてもよい。
The exemplified compound may have an arbitrary substituent T.
Examples of the substituent T include the following.
An alkyl group (preferably an alkyl group having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.), alkenyl A group (preferably an alkenyl group having 2 to 20 carbon atoms such as vinyl, allyl, oleyl and the like), an alkynyl group (preferably an alkynyl group having 2 to 20 carbon atoms such as ethynyl, butadiynyl, phenylethynyl and the like), A cycloalkyl group (preferably a cycloalkyl group having 3 to 20 carbon atoms, such as cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl, etc.), an aryl group (preferably an aryl group having 6 to 26 carbon atoms, for example, Phenyl, 1-naphthyl, 4-methoxyphenyl, -Chlorophenyl, 3-methylphenyl, etc.), heterocyclic groups (preferably heterocyclic groups of 2 to 20 carbon atoms, preferably 5- or 6-membered heterocycles having at least one oxygen atom, sulfur atom, nitrogen atom) A cyclic group is preferred, for example, 2-pyridyl, 4-pyridyl, 2-imidazolyl, 2-benzimidazolyl, 2-thiazolyl, 2-oxazolyl, etc.), an alkoxy group (preferably an alkoxy group having 1 to 20 carbon atoms, for example, Methoxy, ethoxy, isopropyloxy, benzyloxy, etc.), aryloxy groups (preferably aryloxy groups having 6 to 26 carbon atoms, such as phenoxy, 1-naphthyloxy, 3-methylphenoxy, 4-methoxyphenoxy, etc.), An alkoxycarbonyl group (preferably an alkoxycarbonyl group having 2 to 20 carbon atoms) Nyl groups such as ethoxycarbonyl, 2-ethylhexyloxycarbonyl and the like, amino groups (preferably containing an amino group having 0 to 20 carbon atoms, alkylamino group, arylamino group, such as amino, N, N-dimethyl) Amino, N, N-diethylamino, N-ethylamino, anilino, etc.), sulfamoyl groups (preferably sulfamoyl groups having 0 to 20 carbon atoms, such as N, N-dimethylsulfamoyl, N-phenylsulfamoyl, etc.) ), An acyl group (preferably an acyl group having 1 to 20 carbon atoms, such as acetyl, propionyl, butyryl, benzoyl, etc.), an acyloxy group (preferably an acyloxy group having 1 to 20 carbon atoms, such as acetyloxy, benzoyl) Oxy, etc.), a carbamoyl group (preferably a C 1-20 carbon Rubamoyl groups such as N, N-dimethylcarbamoyl and N-phenylcarbamoyl), acylamino groups (preferably acylamino groups having 1 to 20 carbon atoms such as acetylamino and benzoylamino), sulfonamide groups (preferably Is a sulfamoyl group having 0 to 20 carbon atoms, such as methanesulfonamide, benzenesulfonamide, N-methylmethanesulfonamide, N-ethylbenzenesulfonamide, etc., an alkylthio group (preferably an alkylthio group having 1 to 20 carbon atoms) For example, methylthio, ethylthio, isopropylthio, benzylthio, etc.), arylthio groups (preferably arylthio groups having 6 to 26 carbon atoms, such as phenylthio, 1-naphthylthio, 3-methylphenylthio, 4-methoxyphenylthio, etc.) An alkyl or arylsulfonyl group (preferably an alkyl or arylsulfonyl group having 1 to 20 carbon atoms, such as methylsulfonyl, ethylsulfonyl, benzenesulfonyl, etc.), hydroxyl group, cyano group, halogen atom (for example, fluorine atom, chlorine atom, Bromine atom, iodine atom, etc.), more preferably alkyl group, alkenyl group, aryl group, heterocyclic group, alkoxy group, aryloxy group, alkoxycarbonyl group, amino group, acylamino group, hydroxyl group or halogen atom Particularly preferred are an alkyl group, an alkenyl group, a heterocyclic group, an alkoxy group, an alkoxycarbonyl group, an amino group, an acylamino group or a hydroxyl group.
In addition, each of the groups listed as the substituent T may be further substituted with the substituent T described above.
 化合物ないし置換基・連結基等がアルキル基・アルキレン基、アルケニル基・アルケニレン基等を含むとき、これらは環状でも鎖状でもよく、また直鎖でも分岐していてもよく、上記のように置換されていても無置換でもよい。またアリール基、ヘテロ環基等を含むとき、それらは単環でも縮環でもよく、同様に置換されていても無置換でもよい。 When the compound or substituent / linking group contains an alkyl group / alkylene group, alkenyl group / alkenylene group, etc., these may be cyclic or chain-like, and may be linear or branched, and substituted as described above. It may be substituted or unsubstituted. Moreover, when an aryl group, a heterocyclic group, etc. are included, they may be monocyclic or condensed and may be similarly substituted or unsubstituted.
(有機溶媒)
 本発明に用いられる有機溶媒としては、非プロトン性有機溶媒であることが好ましく、なかでも炭素数2~10の非プロトン性有機溶媒であることが好ましい。当該有機溶媒は、エーテル基、カルボニル基、エステル基、またはカーボネート基を有する化合物であることが好ましい。当該化合物は置換基を有していてもよく、その例として前記置換基Tが挙げられる。特に炭素数2~16の直鎖のカーボネート基を含有する有機溶媒であることが好ましい。
(Organic solvent)
The organic solvent used in the present invention is preferably an aprotic organic solvent, and more preferably an aprotic organic solvent having 2 to 10 carbon atoms. The organic solvent is preferably a compound having an ether group, a carbonyl group, an ester group, or a carbonate group. The said compound may have a substituent and the said substituent T is mentioned as the example. In particular, an organic solvent containing a linear carbonate group having 2 to 16 carbon atoms is preferable.
 有機溶媒としては、例えば、炭酸エチレン、炭酸プロピレン、炭酸ブチレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル、炭酸メチルプロピル、γ-ブチロラクトン、γ-バレロラクトン、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、テトラヒドロピラン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、1,3-ジオキサン、1,4-ジオキサン、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、イソ酪酸メチル、トリメチル酢酸メチル、トリメチル酢酸エチル、アセトニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリル、3-メトキシプロピオニトリル、N,N-ジメチルホルムアミド、N-メチルピロリジノン、N-メチルオキサゾリジノン、N,N’-ジメチルイミダゾリジノン、ニトロメタン、ニトロエタン、スルホラン、燐酸トリメチル、ジメチルスルホキシドあるいはジメチルスルホキシド燐酸などが挙げられる。これらは、一種単独で用いても2種以上を併用してもよい。中でも、炭酸エチレン、炭酸プロピレン、炭酸ジメチル、炭酸ジエチルおよび炭酸エチルメチルからなる群のうちの少なくとも1種が好ましく、特に、炭酸エチレンあるいは炭酸プロピレンなどの高粘度(高誘電率)溶媒(例えば、比誘電率ε≧30)と炭酸ジメチル、炭酸エチルメチルあるいは炭酸ジエチルなどの低粘度溶媒(例えば、粘度≦1mPa・s)との組み合わせがより好ましい。電解質塩の解離性およびイオンの移動度が向上するからである。
 好ましい様態としては炭酸プロピレンを全溶剤に対し5体積%以上、より好ましくは10体積%以上、更に好ましくは15体積%以上含有している溶媒が挙げられる。より好ましい様態としては、環状カーボネートを全溶剤に対し20~80体積%含有し、環状カーボネートのうち25~100体積%がプロピレンカーボネートである。更に好ましい様態としては炭酸ジメチル、炭酸ジエチルおよび炭酸エチルメチルから選ばれる鎖状カーボネートを全溶剤に対し20~80体積%含有し、炭酸エチレンあるいは炭酸プロピレンから選ばれる環状カーボネートを全溶剤に対し20~80体積%含有し、その環状カーボネートのうち25~100体積%(より好ましくは40~100体積%)がプロピレンカーボネートである。炭酸プロピレンを所定量以上含有することで低温における大電流放電においても容量劣化を小さくすることができる。
 しかしながら、本発明に用いられる有機溶媒は、上記例示によって限定されるものではない。
Examples of the organic solvent include ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, γ-butyrolactone, γ-valerolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2- Methyltetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, 1,3-dioxane, 1,4-dioxane, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, methyl butyrate , Methyl isobutyrate, methyl trimethylacetate, ethyl trimethylacetate, acetonitrile, glutaronitrile, adiponitrile, methoxyacetonitrile, 3-methoxypropionitrile, N, N-dimethylformamide, N-methylpyrrolidinone, N-methyl Examples thereof include tiloxazolidinone, N, N′-dimethylimidazolidinone, nitromethane, nitroethane, sulfolane, trimethyl phosphate, dimethyl sulfoxide, and dimethyl sulfoxide phosphoric acid. These may be used alone or in combination of two or more. Among them, at least one member selected from the group consisting of ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate is preferable. Particularly, a high viscosity (high dielectric constant) solvent such as ethylene carbonate or propylene carbonate (for example, ratio A combination of a dielectric constant ε ≧ 30) and a low viscosity solvent such as dimethyl carbonate, ethyl methyl carbonate, or diethyl carbonate (for example, viscosity ≦ 1 mPa · s) is more preferable. This is because the dissociation property of the electrolyte salt and the ion mobility are improved.
A preferred embodiment includes a solvent containing propylene carbonate in an amount of 5% by volume or more, more preferably 10% by volume or more, and still more preferably 15% by volume or more based on the total solvent. In a more preferred embodiment, the cyclic carbonate is contained in an amount of 20 to 80% by volume based on the total solvent, and 25 to 100% by volume of the cyclic carbonate is propylene carbonate. As a more preferred embodiment, a chain carbonate selected from dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate is contained in an amount of 20 to 80% by volume based on the total solvent, and a cyclic carbonate selected from ethylene carbonate or propylene carbonate is added in an amount of 20 to The content is 80% by volume, and 25 to 100% by volume (more preferably 40 to 100% by volume) of the cyclic carbonate is propylene carbonate. By containing a predetermined amount or more of propylene carbonate, capacity deterioration can be reduced even in a large current discharge at a low temperature.
However, the organic solvent used in the present invention is not limited to the above examples.
(機能性添加剤)
 本発明の電解液には、各種の機能性添加剤を含有させることが好ましい。この添加剤により発現させる機能としては、例えば、難燃性の向上、サイクル特性の良化、容量特性の改善が挙げられる。以下に、本発明の電解質に適用することが好ましい機能性添加剤の例を示す。
(Functional additives)
The electrolytic solution of the present invention preferably contains various functional additives. Examples of the function manifested by this additive include improved flame retardancy, improved cycle characteristics, and improved capacity characteristics. Examples of functional additives that are preferably applied to the electrolyte of the present invention are shown below.
<芳香族性化合物(A)>
 芳香族性化合物としては、ビフェニル化合物、アルキル置換ベンゼン化合物が挙げられる。ビフェニル化合物は2つのベンゼン環が単結合で結合している部分構造を有しており
ベンゼン環は置換基を有してもよく、好ましい置換基は、炭素原子数1~4のアルキル基(例えば、メチル、エチル、プロピル、t-ブチルなど)、炭素原子数6~10のアリール基(例えば、フェニル、ナフチルなど)である。
 ビフェニル化合物としては、具体的に、ビフェニル、o-テルフェニル、m-テルフェニル、p-テルフェニル、4-メチルビフェニル、4-エチルビフェニル、及び4-tert-ブチルビフェニルを挙げることができる。
 アルキル置換ベンゼン化合物は、炭素数1~10のアルキル基で置換されたベンゼン化合物が好ましく、具体的には、シクロヘキシルベンゼン、t-アミルベンゼン、t-ブチルベンゼンを挙げることができる。
<Aromatic compound (A)>
Examples of aromatic compounds include biphenyl compounds and alkyl-substituted benzene compounds. The biphenyl compound has a partial structure in which two benzene rings are bonded by a single bond, and the benzene ring may have a substituent, and preferred substituents are alkyl groups having 1 to 4 carbon atoms (for example, Methyl, ethyl, propyl, t-butyl, etc.) and aryl groups having 6 to 10 carbon atoms (eg, phenyl, naphthyl, etc.).
Specific examples of the biphenyl compound include biphenyl, o-terphenyl, m-terphenyl, p-terphenyl, 4-methylbiphenyl, 4-ethylbiphenyl, and 4-tert-butylbiphenyl.
The alkyl-substituted benzene compound is preferably a benzene compound substituted with an alkyl group having 1 to 10 carbon atoms, and specific examples include cyclohexylbenzene, t-amylbenzene, and t-butylbenzene.
<ハロゲン含有化合物(B)>
 ハロゲン含有化合物が有するハロゲン原子としてはフッ素原子、塩素原子、または、臭素原子が好ましく、フッ素原子がより好ましい。ハロゲン原子の数としては1~6個が好ましく、1~3個が更に好ましい。ハロゲン含有化合物としてはフッ素原子で置換されたカーボネート化合物、フッ素原子を有するポリエーテル化合物、フッ素置換芳香族化合物が好ましい。
 ハロゲン置換カーボネート化合物は鎖状、または、環状いずれでもよいが、イオン伝導性の観点から、電解質塩(例えばリチウムイオン)の配位性が高い環状カーボネート化合物が好ましく、5員環環状カーボネート化合物が特に好ましい。
 ハロゲン置換カーボネート化合物の好ましい具体例を以下に示す。この中でもBex1~Bex4の化合物が特に好ましく、Bex1が特に好ましい。
<Halogen-containing compound (B)>
The halogen atom contained in the halogen-containing compound is preferably a fluorine atom, a chlorine atom, or a bromine atom, and more preferably a fluorine atom. The number of halogen atoms is preferably 1 to 6, more preferably 1 to 3. The halogen-containing compound is preferably a carbonate compound substituted with a fluorine atom, a polyether compound having a fluorine atom, or a fluorine-substituted aromatic compound.
The halogen-substituted carbonate compound may be either linear or cyclic. From the viewpoint of ion conductivity, a cyclic carbonate compound having a high coordination property of an electrolyte salt (for example, lithium ion) is preferable, and a 5-membered cyclic carbonate compound is particularly preferable. preferable.
Preferred specific examples of the halogen-substituted carbonate compound are shown below. Among these, compounds of Bex1 to Bex4 are particularly preferable, and Bex1 is particularly preferable.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
<重合性化合物(C)>
 重合性化合物としては炭素-炭素二重結合を有する化合物が好ましく、ビニレンカーボネート、ビニルエチレンカーボネートなどの二重結合を有するカーボネート化合物、アクリレート基、メタクリレート基、シアノアクリレート基、αCFアクリレート基から選ばれる基を有する化合物、スチリル基を有する化合物が好ましく、二重結合を有するカーボネート化合物、あるいは重合性基を分子内に2つ以上有する化合物が更に好ましい。
<Polymerizable compound (C)>
The polymerizable compound is preferably a compound having a carbon-carbon double bond, and is selected from carbonate compounds having a double bond such as vinylene carbonate and vinyl ethylene carbonate, acrylate groups, methacrylate groups, cyanoacrylate groups, and αCF 3 acrylate groups. A compound having a group and a compound having a styryl group are preferable, and a carbonate compound having a double bond or a compound having two or more polymerizable groups in the molecule is more preferable.
<リン含有化合物(D)>
 リン含有化合物としては、リン酸エステル化合物、ホスファゼン化合物が好ましい。リン酸エステル化合物の好ましい例としては、リン酸トリメチル、リン酸トリエチル、リン酸トリフェニル、リン酸トリベンジルなどが挙げられる。リン含有化合物としては、下記式(D2)または(D3)で表される化合物も好ましい。
<Phosphorus-containing compound (D)>
As a phosphorus containing compound, a phosphate ester compound and a phosphazene compound are preferable. Preferable examples of the phosphate ester compound include trimethyl phosphate, triethyl phosphate, triphenyl phosphate, and tribenzyl phosphate. As the phosphorus-containing compound, a compound represented by the following formula (D2) or (D3) is also preferable.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 式中、RD4~RD11は1価の置換基を表す。1価の置換基の中で好ましくは、アルキル基、アリール基、アルコキシ基、アリールオキシ基、アミノ基、フッ素、塩素、臭素等のハロゲン原子である。RD4~RD11の置換基の少なくとも1つはフッ素原子であることが好ましく、アルコキシ基、アミノ基、フッ素原子からなる置換基がより好ましい。 In the formula, R D4 to R D11 each represent a monovalent substituent. Among the monovalent substituents, an alkyl group, an aryl group, an alkoxy group, an aryloxy group, an amino group, a halogen atom such as fluorine, chlorine or bromine is preferable. At least one of the substituents of R D4 to R D11 is preferably a fluorine atom, more preferably a substituent composed of an alkoxy group, an amino group, or a fluorine atom.
<硫黄含有化合物(E)>
 含硫黄化合物としては-SO-、-SO-、-OS(=O)O-結合を有する化合物が好ましく、プロパンサルトン、プロペンサルトン、エチレンサルファイトなどの環状含硫黄化合物、スルホン酸エステル類が好ましい。
<Sulfur-containing compound (E)>
As the sulfur-containing compound, a compound having —SO 2 —, —SO 3 —, —OS (═O) O— bond is preferable, and cyclic sulfur-containing compounds such as propane sultone, propene sultone, ethylene sulfite, and sulfonic acid Esters are preferred.
 含硫黄環状化合物としては、下記式(E1)、(E2)で表される化合物が好ましい。 As the sulfur-containing cyclic compound, compounds represented by the following formulas (E1) and (E2) are preferable.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 式中、X、Xはそれぞれ独立に、-O-、-C(Ra)(Rb)-を表す。ここで、Ra、Rbは、それぞれ独立に、水素原子、または置換基を表す。置換基として、好ましくは炭素原子数1~8のアルキル基、フッ素原子、炭素原子数の6~12のアリール基である。αは5~6員環を形成するのに必要な原子群を表す。αの骨格は炭素原子のほか、硫黄原子、酸素原子などを含んでもよい。αは置換されていてもよく、置換基としては置換基Tがあげられ、好ましくはアルキル基、フッ素原子、アリール基である。 In the formula, X 1 and X 2 each independently represent —O— or —C (Ra) (Rb) —. Here, Ra and Rb each independently represent a hydrogen atom or a substituent. The substituent is preferably an alkyl group having 1 to 8 carbon atoms, a fluorine atom, or an aryl group having 6 to 12 carbon atoms. α represents an atomic group necessary for forming a 5- to 6-membered ring. The skeleton of α may contain a sulfur atom, an oxygen atom, etc. in addition to a carbon atom. α may be substituted, and examples of the substituent include a substituent T, preferably an alkyl group, a fluorine atom, and an aryl group.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
<ケイ素含有化合物(F)>
ケイ素含有化合物としては、下記式(F1)または(F2)で表される化合物が好ましい。
<Silicon-containing compound (F)>
As the silicon-containing compound, a compound represented by the following formula (F1) or (F2) is preferable.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 RF1はアルキル基、アルケニル基、アシル基、アシルオキシ基、または、アルコキシカルボニル基を表す。
 RF2はアルキル基、アルケニル基、アルキニル基、又はアルコキシ基を表す。
 なお、1つの式に複数あるRF1及びRF2はそれぞれ異なっていても同じであってもよい。
R F1 represents an alkyl group, an alkenyl group, an acyl group, an acyloxy group, or an alkoxycarbonyl group.
R F2 represents an alkyl group, an alkenyl group, an alkynyl group, or an alkoxy group.
A plurality of R F1 and R F2 in one formula may be different or the same.
<ニトリル化合物(G)>
 ニトリル化合物としては、下記式(G)で表される化合物が好ましい。
<Nitrile compound (G)>
As the nitrile compound, a compound represented by the following formula (G) is preferable.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 式中、RG1~RG3はそれぞれ独立に水素原子、アルキル基、アルコキシカルボニル基、アリールオキシカルボニル基、シアノ基、カルバモイル基、スルホニル基、またはホスホニル基を表す。各置換基の好ましいものは、置換基Tの例を参照することができるが、なかでも、RG1~RG3のいずれか一つ以上がシアノ基を含むニトリル基を複数有する化合物が好ましい。 In the formula, R G1 to R G3 each independently represent a hydrogen atom, an alkyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, a cyano group, a carbamoyl group, a sulfonyl group, or a phosphonyl group. As examples of the preferable substituents, examples of the substituent T can be referred to, and among them, a compound in which any one of R G1 to R G3 has a plurality of nitrile groups containing a cyano group is preferable.
・ngは1~8の整数を表す。 -Ng represents an integer of 1-8.
 式(G)で表される化合物の具体例としては、アセトニトリル、プロピオニトリル、イソブチロニトリル、スクシノニトリル、マロノニトリル、グルタロニトリル、アジポニトリル、2メチルグルタノニトリル、ヘキサントリカルボニトリル、プロパンテトラカルボニトリル等が好ましい。特に好ましくは、スクシノニトリル、マロノニトリル、グルタロニトリル、アジポニトリル、2メチルグルタノニトリル、ヘキサントリカルボニトリル、プロパンテトラカルボニトリルである。 Specific examples of the compound represented by the formula (G) include acetonitrile, propionitrile, isobutyronitrile, succinonitrile, malononitrile, glutaronitrile, adiponitrile, 2-methylglutanonitrile, hexanetricarbonitrile, propane. Tetracarbonitrile and the like are preferable. Particularly preferred are succinonitrile, malononitrile, glutaronitrile, adiponitrile, 2-methylglutanonitrile, hexanetricarbonitrile, and propanetetracarbonitrile.
<金属錯体化合物(H)>
 金属錯体化合物としては、遷移金属錯体もしくは希土類錯体が好ましい。なかでも、下記式(H-1)~(H-3)のいずれかで表される錯体が好ましい。
<Metal complex compound (H)>
As the metal complex compound, a transition metal complex or a rare earth complex is preferable. Of these, complexes represented by any of the following formulas (H-1) to (H-3) are preferred.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 式中、XおよびYは、それぞれ、メチル基、n-ブチル基、ビス(トリメチルシリル)アミノ基、チオイソシアン酸基であり、X,Yが縮環して環状アルケニル基(ブタジエン配位型メタラサイクル)を形成してもよい。式中、Mは遷移元素または希土類元素を表す。具体的にMは、Fe、Ru、Cr、V、Ta、Mo、Ti、Zr、Hf、Y、La、Ce、Sw、Nd、Lu、Er、Yb、Gdであることが好ましい。m,nは0≦m+n≦3を満たす整数である。n+mは1以上であることが好ましい。n、mが2以上であるとき、そこで規定される2以上の基はそれぞれ異なっていてもよい。 In the formula, X H and Y H are a methyl group, an n-butyl group, a bis (trimethylsilyl) amino group, and a thioisocyanate group, respectively, and X H and Y H are condensed to form a cyclic alkenyl group (butadiene group). (Positional metallacycle) may be formed. In the formula, MH represents a transition element or a rare earth element. Specifically, MH is preferably Fe, Ru, Cr, V, Ta, Mo, Ti, Zr, Hf, Y, La, Ce, Sw, Nd, Lu, Er, Yb, and Gd. m H and n H are integers satisfying 0 ≦ m H + n H ≦ 3. n H + m H is preferably 1 or more. When n H and m H are 2 or more, the 2 or more groups defined therein may be different from each other.
 前記金属錯体化合物は下記式(H-4)で表される部分構造を有する化合物も好ましい。
 
    M-(NR1H2H)q  ・・・ 式(H-4)
 
The metal complex compound is also preferably a compound having a partial structure represented by the following formula (H-4).

M H — (NR 1H R 2H ) q H Formula (H-4)
 式中、Mは遷移元素または希土類元素を表し、式(H-1)~(H-3)と同義である。 In the formula, MH represents a transition element or a rare earth element and is synonymous with formulas (H-1) to (H-3).
 R1H,R2Hは水素、アルキル基(好ましい炭素数は1~6)、アルケニル基(好ましい炭素数は2~6)、アルキニル基(好ましい炭素数は2~6)、アリール基(好ましい炭素数は6~14)、ヘテロアリール基(好ましい炭素数は3~6)、アルキルシリル基(好ましい炭素数は1~6)、またはハロゲンを表す。R1H,R2Hは互いに連結されていてもよい。R1H,R2Hはそれぞれあるいは連結して環を形成していてもよい。R1H,R2Hの好ましいものとしては、後記置換基Tの例が挙げられる。なかでも、メチル基、エチル基、トリメチルシリル基が好ましい。
 qは1~4の整数を表し、2~4の整数が好ましい。更に好ましくは2または4である。qが2以上のとき、そこで規定される複数の基は互いに同じでも異なっていてもよい。
R 1H and R 2H are hydrogen, an alkyl group (preferably having a carbon number of 1 to 6), an alkenyl group (preferably having a carbon number of 2 to 6), an alkynyl group (preferably having a carbon number of 2 to 6), and an aryl group (preferably having a carbon number). Represents a heteroaryl group (preferably having a carbon number of 3 to 6), an alkylsilyl group (preferably having a carbon number of 1 to 6), or a halogen. R 1H and R 2H may be linked to each other. R 1H and R 2H may each be connected to form a ring. Preferable examples of R 1H and R 2H include examples of the substituent T described later. Of these, a methyl group, an ethyl group, and a trimethylsilyl group are preferable.
q H represents an integer of 1 to 4, preferably an integer of 2 to 4. More preferably, it is 2 or 4. When q H is 2 or more, where a plurality of groups as defined may be the same or different from each other.
 金属錯体化合物は、下記式のいずれかで表される化合物も好ましい。
Figure JPOXMLDOC01-appb-C000033
The metal complex compound is also preferably a compound represented by any of the following formulas.
Figure JPOXMLDOC01-appb-C000033
・M
 中心金属Mは、Ti、Zr、ZrO、Hf、V、Cr、Fe、Ceが特に好ましく、Ti、Zr、Hf、V、Crが最も好ましい。
・ M h
The central metal M h is, Ti, Zr, ZrO, Hf , V, Cr, Fe, Ce is particularly preferred, Ti, Zr, Hf, V , Cr is the most preferred.
・R3h、R5h、R7h~R10h
 これらは置換基を表す。なかでも、アルキル基、アルコキシ基、アリール基、アルケニル基、ハロゲン原子が好ましく、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数6~12のアリール基、炭素数2~6のアルケニル基がより好ましく、メチル、エチル、プロピル、イソプロピル、イソブチル、t-ブチル、パーフルオロメチル、メトキシ、フェニル、エテニルであることが好ましい。
・ R 3h , R 5h , R 7h to R 10h
These represent substituents. Of these, an alkyl group, an alkoxy group, an aryl group, an alkenyl group, and a halogen atom are preferable. An alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, and 2 carbon atoms. More preferred are alkenyl groups of 6 to 6 and are preferably methyl, ethyl, propyl, isopropyl, isobutyl, t-butyl, perfluoromethyl, methoxy, phenyl, ethenyl.
・R33h、R55h
 R33h、R55hは水素原子またはR3hの置換基を表す。
・ R 33h , R 55h
R 33h and R 55h represent a hydrogen atom or a substituent of R 3h .
・Y
 Yは、炭素数1~6のアルキル基またはビス(トリアルキルシリル)アミノ基が好ましく、メチル基またはビス(トリメチルシリル)アミノ基がより好ましい。
・ Y h
Y h is preferably an alkyl group having 1 to 6 carbon atoms or a bis (trialkylsilyl) amino group, and more preferably a methyl group or a bis (trimethylsilyl) amino group.
・l、m、o
 l、m、oは0~3の整数を表し、0~2の整数が好ましい。l、m、oが2以上のとき、そこで規定される複数の構造部は互いに同じであっても、異なっていてもよい。
· L h, m h, o h
l h , m h , and o h represent an integer of 0 to 3, and an integer of 0 to 2 is preferable. When l h , m h , and o h are 2 or more, the plurality of structural portions defined therein may be the same as or different from each other.
・L
 Lはアルキレン基、アリーレン基が好ましく、炭素数3~6のシクロアルキレン基、炭素数6~14のアリーレン基がより好ましく、シクロヘキシレン、フェニレンがさらに好ましい。
・ L h
L h is preferably an alkylene group or an arylene group, more preferably a cycloalkylene group having 3 to 6 carbon atoms or an arylene group having 6 to 14 carbon atoms, and further preferably cyclohexylene or phenylene.
<イミド化合物(I)>
 イミド化合物としては、耐酸化性の観点よりパーフルオロ基を有するスルホンイミド化合物が好ましく、具体的にはパーフルオロスルホイミドリチウム化合物が挙げられる。
イミド化合物として、具体的には下記の構造が挙げられ、より好ましくはCex1、Cex2である。
<Imide compound (I)>
As the imide compound, a sulfonimide compound having a perfluoro group is preferable from the viewpoint of oxidation resistance, and specifically, a perfluorosulfoimide lithium compound may be mentioned.
Specific examples of the imide compound include the following structures, and Cex1 and Cex2 are more preferable.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 本発明の電解液には、上記のものを始め、負極被膜形成剤、難燃剤、過充電防止剤等から選ばれる少なくとも1種を含有していてもよい。非水電解液中におけるこれら機能性添加剤の含有割合は特に限定はないが、非水電解液全体(電解質を含む)に対し、それぞれ、0.001質量%~10質量%が好ましい。これらの化合物を添加することにより、過充電による異常時に電池の破裂・発火を抑制したり、高温保存後の容量維持特性やサイクル特性を向上させたりすることができる。 The electrolytic solution of the present invention may contain at least one selected from the above, a negative electrode film forming agent, a flame retardant, an overcharge preventing agent and the like. The content ratio of these functional additives in the nonaqueous electrolytic solution is not particularly limited, but is preferably 0.001% by mass to 10% by mass with respect to the entire nonaqueous electrolytic solution (including the electrolyte). By adding these compounds, it is possible to suppress rupture / ignition of the battery at the time of abnormality due to overcharge, and to improve the capacity maintenance characteristic and cycle characteristic after high-temperature storage.
(電解質)
 本発明の電解液に用いる電解質は周期律表第一族又は第二族に属する金属イオンの塩である。その材料は電解液の使用目的により適宜選択される。例えば、リチウム塩、カリウム塩、ナトリウム塩、カルシウム塩、マグネシウム塩などが挙げられ、二次電池などに使用される場合には、出力の観点からリチウム塩が好ましい。本発明の電解液をリチウム二次電池用非水系電解液の電解質として用いる場合には、金属イオンの塩としてリチウム塩を選択すればよい。リチウム塩としては、リチウム二次電池用非水系電解液の電解質に通常用いられるリチウム塩であれば特に制限はないが、例えば、以下に述べるものが好ましい。
(Electrolytes)
The electrolyte used in the electrolytic solution of the present invention is a salt of a metal ion belonging to Group 1 or Group 2 of the periodic table. The material is appropriately selected depending on the intended use of the electrolytic solution. For example, lithium salt, potassium salt, sodium salt, calcium salt, magnesium salt and the like can be mentioned. When used in a secondary battery or the like, lithium salt is preferable from the viewpoint of output. When the electrolytic solution of the present invention is used as an electrolyte of a non-aqueous electrolytic solution for a lithium secondary battery, a lithium salt may be selected as a metal ion salt. The lithium salt is not particularly limited as long as it is a lithium salt usually used for an electrolyte of a non-aqueous electrolyte solution for a lithium secondary battery. For example, those described below are preferable.
 (L-1)無機リチウム塩:LiPF、LiBF、LiAsF、LiSbF等の無機フッ化物塩;LiClO、LiBrO、LiIO等の過ハロゲン酸塩;LiAlCl等の無機塩化物塩等。 (L-1) Inorganic lithium salts: inorganic fluoride salts such as LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 ; perhalogenates such as LiClO 4 , LiBrO 4 , LiIO 4 ; inorganic chloride salts such as LiAlCl 4 etc.
 (L-2)含フッ素有機リチウム塩:LiCFSO等のパーフルオロアルカンスルホン酸塩;LiN(CFSO、LiN(CFCFSO、LiN(FSO、LiN(CFSO)(CSO)等のパーフルオロアルカンスルホニルイミド塩;LiC(CFSO等のパーフルオロアルカンスルホニルメチド塩;Li[PF(CFCFCF)]、Li[PF(CFCFCF]、Li[PF(CFCFCF]、Li[PF(CFCFCFCF)]、Li[PF(CFCFCFCF]、Li[PF(CFCFCFCF]等のフルオロアルキルフッ化リン酸塩等。 (L-2) Fluorine-containing organic lithium salt: perfluoroalkane sulfonate such as LiCF 3 SO 3 ; LiN (CF 3 SO 2 ) 2 , LiN (CF 3 CF 2 SO 2 ) 2 , LiN (FSO 2 ) 2 , Perfluoroalkanesulfonylimide salts such as LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ); perfluoroalkanesulfonylmethide salts such as LiC (CF 3 SO 2 ) 3 ; Li [PF 5 (CF 2 CF 2 CF 3 )], Li [PF 4 (CF 2 CF 2 CF 3 ) 2 ], Li [PF 3 (CF 2 CF 2 CF 3 ) 3 ], Li [PF 5 (CF 2 CF 2 CF 2 CF 3 )], Li [PF 4 ( CF 2 CF 2 CF 2 CF 3) 2], Li [PF 3 (CF 2 CF 2 CF 2 CF 3) 3] fluoroalkyl fluoride such as potash Acid salts, and the like.
 (L-3)オキサラトボレート塩:リチウムビス(オキサラト)ボレート、リチウムジフルオロオキサラトボレート等。
 これらのなかで、LiPF、LiBF、LiAsF、LiSbF、LiClO、Li(RfSO)、LiN(RfSO、LiN(FSO、及びLiN(RfSO)(RfSO)が好ましく、LiPF、LiBF、LiN(RfSO、LiN(FSO、及びLiN(RfSO)(RfSO)などのリチウムイミド塩がさらに好ましい。ここで、Rf、Rfはそれぞれパーフルオロアルキル基を示す。
 なお、電解液に用いる電解質は、1種を単独で使用しても、2種以上を任意に組み合わせてもよい。
 電解液における電解質(周期律表第一族又は第二族に属する金属のイオンもしくはその金属塩)の含有量は、以下に電解液の調製法で述べる好ましい塩濃度となる量で添加される。塩濃度は電解液の使用目的により適宜選択されるが、一般的には電解液全質量中10質量%~50質量%であり、さらに好ましくは15質量%~30質量%である。なお、イオンの濃度として評価するときには、その好適に適用される金属との塩換算で算定されればよい。
(L-3) Oxalatoborate salt: lithium bis (oxalato) borate, lithium difluorooxalatoborate and the like.
Among these, LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 , LiClO 4 , Li (Rf 1 SO 3 ), LiN (Rf 1 SO 2 ) 2 , LiN (FSO 2 ) 2 , and LiN (Rf 1 SO 2 ) (Rf 2 SO 2 ), preferably LiPF 6 , LiBF 4 , LiN (Rf 1 SO 2 ) 2 , LiN (FSO 2 ) 2 , and LiN (Rf 1 SO 2 ) (Rf 2 SO 2 ) More preferred are imide salts. Here, Rf 1 and Rf 2 each represent a perfluoroalkyl group.
In addition, the electrolyte used for electrolyte solution may be used individually by 1 type, or may combine 2 or more types arbitrarily.
The content of the electrolyte (metal ions belonging to Group 1 or Group 2 of the periodic table or a metal salt thereof) in the electrolytic solution is added in an amount that provides a preferable salt concentration described below in the method for preparing the electrolytic solution. The salt concentration is appropriately selected depending on the intended use of the electrolytic solution, but is generally 10% to 50% by mass, more preferably 15% to 30% by mass, based on the total mass of the electrolytic solution. In addition, when evaluating as an ion density | concentration, what is necessary is just to calculate by salt conversion with the metal applied suitably.
[電解液の調製方法等]
 本発明の非水二次電池用電解液は、金属イオンの塩としてリチウム塩を用いた例を含め、前記各成分を前記非水電解液溶媒に溶解して、常法により調製される。
[Method for preparing electrolytic solution]
The electrolyte solution for a non-aqueous secondary battery of the present invention is prepared by a conventional method by dissolving each of the above components in the non-aqueous electrolyte solvent, including an example in which a lithium salt is used as a metal ion salt.
 本発明において、「非水」とは水を実質的に含まないことをいい、発明の効果を妨げない範囲で微量の水を含んでいてもよい。良好な特性を得ることを考慮して言うと、水の含有量が200ppm(質量基準)以下であることが好ましく、100ppm以下であることがより好ましく20ppm以下であることが更に好ましい。下限値は特にないが、不可避的な混入を考慮すると、1ppm以上であることが実際的である。本発明の電解液の粘度は特に限定されないが、25℃において、10~0.1mPa・sであることが好ましく、5~0.5mPa・sであることがより好ましい。
 本発明において電解液の粘度は特に断らない限り、以下の測定方法で測定した値によるものとする。
In the present invention, “non-water” means that water is not substantially contained, and a trace amount of water may be contained as long as the effects of the invention are not hindered. In view of obtaining good characteristics, the water content is preferably 200 ppm (mass basis) or less, more preferably 100 ppm or less, and even more preferably 20 ppm or less. Although there is no lower limit in particular, it is practical that it is 1 ppm or more considering inevitable mixing. The viscosity of the electrolytic solution of the present invention is not particularly limited, but it is preferably 10 to 0.1 mPa · s, more preferably 5 to 0.5 mPa · s at 25 ° C.
In the present invention, the viscosity of the electrolytic solution is based on the value measured by the following measuring method unless otherwise specified.
<粘度の測定方法>
 粘度は以下の方法で測定した値を言うこととする。サンプル1mLをレオメーター(CLS 500)に入れ、直径4cm/2°のSteel Cone(共に、TA Instrumennts社製)を用いて測定する。サンプルは予め測定開始温度にて温度が一定となるまで保温しておき、測定はその後に開始する。測定温度は25℃とする。
<Measurement method of viscosity>
The viscosity is a value measured by the following method. 1 mL of a sample is put into a rheometer (CLS 500) and measured using a Steel Cone (both manufactured by TA Instruments) having a diameter of 4 cm / 2 °. The sample is kept warm in advance until the temperature becomes constant at the measurement start temperature, and the measurement starts thereafter. The measurement temperature is 25 ° C.
[二次電池]
 本発明においては前記非水電解液を含有する非水二次電池とすることが好ましい。好ましい実施形態として、リチウムイオン二次電池についてその機構を模式化して示した図1を参照して説明する。本実施形態のリチウムイオン二次電池10は、上記本発明の非水二次電池用電解液5と、リチウムイオンの挿入放出が可能な正極C(正極集電体1,正極活物質層2)と、リチウムイオンの挿入放出又は溶解析出が可能な負極A(負極集電体3,負極活物質層4)とを備える。これら必須の部材に加え、電池が使用される目的、電位の形状などを考慮し、正極と負極の間に配設されるセパレータ9、集電端子(図示せず)、及び外装ケース等(図示せず)を含んで構成されてもよい。必要に応じて、電池の内部及び電池の外部の少なくともいずれかに保護素子を装着してもよい。このような構造とすることにより、電解液5内でリチウムイオンの授受a,bが生じ、充電α、放電βを行うことができ、回路配線7を介して動作機構6を介して運転あるいは蓄電を行うことができる。以下、本発明の好ましい実施形態であるリチウム二次電池の構成について、さらに詳細に説明する。
[Secondary battery]
In this invention, it is preferable to set it as the non-aqueous secondary battery containing the said non-aqueous electrolyte. As a preferred embodiment, a lithium ion secondary battery will be described with reference to FIG. 1 schematically showing the mechanism. The lithium ion secondary battery 10 of this embodiment includes the electrolyte solution 5 for a non-aqueous secondary battery of the present invention and a positive electrode C capable of inserting and releasing lithium ions (a positive electrode current collector 1 and a positive electrode active material layer 2). And a negative electrode A (negative electrode current collector 3, negative electrode active material layer 4) capable of inserting and releasing lithium ions or dissolving and depositing lithium ions. In addition to these essential members, considering the purpose of use of the battery, the shape of the potential, etc., a separator 9 disposed between the positive electrode and the negative electrode, a current collecting terminal (not shown), an outer case, etc. (Not shown). If necessary, a protective element may be attached to at least one of the inside of the battery and the outside of the battery. By adopting such a structure, lithium ion transfer a and b occurs in the electrolytic solution 5, charging α and discharging β can be performed, and operation or power storage is performed via the operation mechanism 6 via the circuit wiring 7. It can be performed. Hereinafter, the configuration of the lithium secondary battery which is a preferred embodiment of the present invention will be described in more detail.
(電池形状)
 本実施形態のリチウム二次電池が適用される電池形状には、特に制限はなく、例えば、有底筒型形状、有底角型形状、薄型形状、シート形状、及び、ペーパー形状などが挙げられ、これらのいずれであってもよい。また、組み込まれるシステムや機器の形を考慮した馬蹄形や櫛型形状等の異型のものであってもよい。なかもで、電池内部の熱を効率よく外部に放出する観点から、比較的平らで大面積の面を少なくとも一つを有する有底角型形状や薄型形状などの角型形状が好ましい。
(Battery shape)
The battery shape to which the lithium secondary battery of the present embodiment is applied is not particularly limited, and examples thereof include a bottomed cylindrical shape, a bottomed square shape, a thin shape, a sheet shape, and a paper shape. Any of these may be used. Further, it may be of a different shape such as a horseshoe shape or a comb shape considering the shape of the system or device to be incorporated. Among them, from the viewpoint of efficiently releasing the heat inside the battery to the outside, a square shape such as a bottomed square shape or a thin shape having at least one surface that is relatively flat and has a large area is preferable.
 有底筒型形状の電池では、充填される発電素子に対する外表面積が小さくなるので、充電や放電時に内部抵抗による発生するジュール発熱を効率よく外部に逃げる設計にすることが好ましい。また、熱伝導性の高い物質の充填比率を高め、内部での温度分布が小さくなるように設計することが好ましい。図2は、有底筒型形状リチウム二次電池100の例である。この電池は、セパレータ12を介して重ね合わせた正極シート14、負極シート16を巻回して外装缶18内に収納した有底筒型リチウム二次電池100となっている。 In the case of a battery having a bottomed cylindrical shape, since the outer surface area with respect to the power generating element to be filled becomes small, it is preferable to design so that Joule heat generated by the internal resistance at the time of charging or discharging efficiently escapes to the outside. Moreover, it is preferable to design so that the filling ratio of the substance having high thermal conductivity is increased and the temperature distribution inside is reduced. FIG. 2 is an example of a bottomed cylindrical lithium secondary battery 100. This battery is a bottomed cylindrical lithium secondary battery 100 in which a positive electrode sheet 14 and a negative electrode sheet 16 overlapped with a separator 12 are wound and accommodated in an outer can 18.
 有底角型形状では、一番大きい面の面積S(端子部を除く外形寸法の幅と高さとの積、単位cm)の2倍と電池外形の厚さT(単位cm)との比率2S/Tの値が100以上であることが好ましく、200以上であることが更に好適である。最大面を大きくすることにより高出力かつ大容量の電池であってもサイクル性や高温保存等の特性を向上させるとともに、異常発熱時の放熱効率を上げることができ、後述する「弁作動」や「破裂」という状態になることを抑制することができる。 In the bottomed square shape, the ratio of the area S of the largest surface (the product of the width and height of the outer dimensions excluding the terminal portion, unit cm 2 ) to the thickness T (unit cm) of the battery outer shape The 2S / T value is preferably 100 or more, and more preferably 200 or more. By increasing the maximum surface, it is possible to improve characteristics such as cycle performance and high-temperature storage even for high-power and large-capacity batteries, and increase the heat dissipation efficiency during abnormal heat generation. It is possible to suppress the state of “rupture”.
(電池を構成する部材)
 本実施形態のリチウム二次電池は、図1に基づいて言うと、電解液5、正極及び負極の電極合剤C,A、セパレータの基本部材9を具備して構成される。以下、これらの各部材について述べる。
(Members constituting the battery)
The lithium secondary battery according to the present embodiment is configured to include the electrolytic solution 5, the positive electrode and negative electrode electrode mixtures C and A, and the separator basic member 9, based on FIG. 1. Hereinafter, each of these members will be described.
(電極合材)
 電極合材は、集電体(電極基材)上に活物質と導電剤、結着剤、フィラーなどの分散物を塗布したものであり、リチウム電池においては、活物質が正極活物質である正極合材と活物質が負極活物質である負極合材が使用されることが好ましい。次に、電極合材を構成する分散物(電極用組成物)中の各成分等について説明する。
(Electrode mixture)
The electrode mixture is obtained by applying a dispersion of an active material and a conductive agent, a binder, a filler, etc. on a current collector (electrode substrate). In a lithium battery, the active material is a positive electrode active material. It is preferable to use a negative electrode mixture in which the positive electrode mixture and the active material are a negative electrode active material. Next, each component in the dispersion (electrode composition) constituting the electrode mixture will be described.
・正極活物質
 正極活物質には遷移金属酸化物を用いることが好ましく、中でも、遷移元素M(Co、Ni、Fe、Mn、Cu、Vから選択される1種以上の元素)を有することが好ましい。また、混合元素M(リチウム以外の金属周期律表の第1(Ia)族の元素、第2(IIa)族の元素、Al、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P、Bなど)を混合してもよい。この、遷移金属酸化物として例えば、下記式(MA)~(MC)のいずれかで表されるものを含む特定遷移金属酸化物、あるいはその他の遷移金属酸化物としてV、MnO等が挙げられる。正極活物質には、粒子状の正極活性物質を用いてもよい。具体的に、可逆的にリチウムイオンを挿入・放出できる遷移金属酸化物を用いることができるが、前記特定遷移金属酸化物を用いるのが好ましい。
-Positive electrode active material It is preferable to use a transition metal oxide for the positive electrode active material, and in particular, it has a transition element M a (one or more elements selected from Co, Ni, Fe, Mn, Cu, V). Is preferred. Further, mixed element M b (elements of the first (Ia) group of the metal periodic table other than lithium, elements of the second (IIa) group, Al, Ga, In, Ge, Sn, Pb, Sb, Bi, Si , P, B, etc.) may be mixed. Examples of the transition metal oxide include specific transition metal oxides including those represented by any of the following formulas (MA) to (MC), or other transition metal oxides such as V 2 O 5 and MnO 2. Is mentioned. As the positive electrode active material, a particulate positive electrode active material may be used. Specifically, a transition metal oxide capable of reversibly inserting and releasing lithium ions can be used, but the specific transition metal oxide is preferably used.
 遷移金属酸化物としては、前記遷移元素Mを含む酸化物等が好適に挙げられる。このとき混合元素M(好ましくはAl)などを混合してもよい。混合量としては、遷移金属の量に対して0~30mol%が好ましい。Li/Mのモル比が0.3~2.2になるように混合して合成されたものが、より好ましい。 The transition metal oxides, oxides containing the transition element M a is preferably exemplified. At this time, a mixed element M b (preferably Al) or the like may be mixed. The mixing amount is preferably 0 to 30 mol% with respect to the amount of the transition metal. That the molar ratio of li / M a was synthesized were mixed so that 0.3 to 2.2, more preferably.
〔式(MA)で表される遷移金属酸化物(層状岩塩型構造)〕
 リチウム含有遷移金属酸化物としては中でも下式で表されるものが好ましい。
  Li     ・・・ (MA)
[Transition metal oxide represented by formula (MA) (layered rock salt structure)]
As the lithium-containing transition metal oxide, those represented by the following formula are preferable.
Li a M 1 O b (MA)
 式中、Mは前記Maと同義である。aは0~1.2を表し、0.1~1.15であることが好ましく、さらに0.6~1.1であることが好ましい。bは1~3を表し、2であることが好ましい。Mの一部は前記混合元素Mで置換されていてもよい。当該式(MA)で表される遷移金属酸化物は典型的には層状岩塩型構造を有する。 Wherein, M 1 is the same meaning as defined above Ma. a represents 0 to 1.2, preferably 0.1 to 1.15, and more preferably 0.6 to 1.1. b represents 1 to 3 and is preferably 2. A part of M 1 may be substituted with the mixed element M b . The transition metal oxide represented by the formula (MA) typically has a layered rock salt structure.
 本遷移金属酸化物は下記の各式で表されるものであることがより好ましい。
 (MA-1)  LiCoO
 (MA-2)  LiNiO
 (MA-3)  LiMnO
 (MA-4)  LiCoNi1-j
 (MA-5)  LiNiMn1-j
 (MA-6)  LiCoNiAl1-j-i
 (MA-7)  LiCoNiMn1-j-i
The transition metal oxide is more preferably one represented by the following formulas.
(MA-1) Li g CoO k
(MA-2) Li g NiO k
(MA-3) Li g MnO k
(MA-4) Li g Co j Ni 1-j O k
(MA-5) Li g Ni j Mn 1-j O k
(MA-6) Li g Co j Ni i Al 1-j-i O k
(MA-7) Li g Co j Ni i Mn 1-j-i O k
 ここでgは前記aと同義である。jは0.1~0.9を表す。iは0~1を表す。ただし、1-j-iは0以上になる。kは前記bと同義である。当該遷移金属化合物の具体例を示すと、LiCoO(コバルト酸リチウム[LCO])、LiNi(ニッケル酸リチウム)LiNi0.85Co0.01Al0.05(ニッケルコバルトアルミニウム酸リチウム[NCA])、LiNi0.33Co0.33Mn0.33(ニッケルマンガンコバルト酸リチウム[NMC])、LiNi0.5Mn0.5(マンガンニッケル酸リチウム)である。 Here, g has the same meaning as a. j represents 0.1 to 0.9. i represents 0 to 1; However, 1-ji is 0 or more. k has the same meaning as b. Specific examples of the transition metal compound include LiCoO 2 (lithium cobaltate [LCO]), LiNi 2 O 2 (lithium nickelate) LiNi 0.85 Co 0.01 Al 0.05 O 2 (nickel cobalt aluminum acid Lithium [NCA]), LiNi 0.33 Co 0.33 Mn 0.33 O 2 (lithium nickel manganese cobaltate [NMC]), LiNi 0.5 Mn 0.5 O 2 (lithium manganese nickelate).
 式(MA)で表される遷移金属酸化物は、一部重複するが、表記を変えて示すと、下記で表されるものも好ましい例として挙げられる。
(i)LiNiMnCo(x>0.2,y>0.2,z≧0,x+y+z=1)
 代表的なもの:
   LiNi1/3Mn1/3Co1/3
   LiNi1/2Mn1/2
(ii)LiNiCoAl(x>0.7,y>0.1,0.1>z>0.05,x+y+z=1)
 代表的なもの:
   LiNi0.8Co0.15Al0.05
The transition metal oxide represented by the formula (MA) partially overlaps, but when represented by changing the notation, those represented by the following are also preferable examples.
(I) Li g Ni x Mn y Co z O 2 (x> 0.2, y> 0.2, z ≧ 0, x + y + z = 1)
Representative:
Li g Ni 1/3 Mn 1/3 Co 1/3 O 2
Li g Ni 1/2 Mn 1/2 O 2
(Ii) Li g Ni x Co y Al z O 2 (x> 0.7, y>0.1,0.1>z> 0.05, x + y + z = 1)
Representative:
Li g Ni 0.8 Co 0.15 Al 0.05 O 2
〔式(MB)で表される遷移金属酸化物(スピネル型構造)〕
 リチウム含有遷移金属酸化物としては中でも下記式(MB)で表されるものも好ましい。
  Li     ・・・ (MB)
[Transition metal oxide represented by formula (MB) (spinel structure)]
Among the lithium-containing transition metal oxides, those represented by the following formula (MB) are also preferable.
Li c M 2 2 O d (MB)
 式中、Mは前記Maと同義である。cは0~2を表し、0.1~1.15であることが好ましく、さらに0.6~1.5であることが好ましい。dは3~5を表し、4であることが好ましい。 Wherein, M 2 are as defined above Ma. c represents 0 to 2, preferably 0.1 to 1.15, and more preferably 0.6 to 1.5. d represents 3 to 5 and is preferably 4.
 式(MB)で表される遷移金属酸化物は下記の各式で表されるものであることがより好ましい。
 (MB-1)  LiMn
 (MB-2)  LiMnAl2-p
 (MB-3)  LiMnNi2-p
The transition metal oxide represented by the formula (MB) is more preferably one represented by the following formulas.
(MB-1) Li m Mn 2 O n
(MB-2) Li m Mn p Al 2-p O n
(MB-3) Li m Mn p Ni 2-p O n
 mはcと同義である。nはdと同義である。pは0~2を表す。当該遷移金属化合物の具体例を示すと、LiMn、LiMn1.5Ni0.5である。 m is synonymous with c. n is synonymous with d. p represents 0-2. Specific examples of the transition metal compound are LiMn 2 O 4 and LiMn 1.5 Ni 0.5 O 4 .
 式(MB)で表される遷移金属酸化物はさらに下記で表されるものも好ましい例として挙げられる。
 (a) LiCoMnO
 (b) LiFeMn
 (c) LiCuMn
 (d) LiCrMn
 (e) LiNiMn
 高容量、高出力の観点で上記のうちNiを含む電極が更に好ましい。
Preferred examples of the transition metal oxide represented by the formula (MB) include those represented by the following.
(A) LiCoMnO 4
(B) Li 2 FeMn 3 O 8
(C) Li 2 CuMn 3 O 8
(D) Li 2 CrMn 3 O 8
(E) Li 2 NiMn 3 O 8
Of these, an electrode containing Ni is more preferable from the viewpoint of high capacity and high output.
〔式(MC)で表される遷移金属酸化物〕
 リチウム含有遷移金属酸化物としてはリチウム含有遷移金属リン酸化物を用いることも好ましく、中でも下記式(MC)で表されるものも好ましい。
  Li(PO ・・・ (MC)
[Transition metal oxide represented by formula (MC)]
As the lithium-containing transition metal oxide, it is also preferable to use a lithium-containing transition metal phosphor oxide, and among them, one represented by the following formula (MC) is also preferable.
Li e M 3 (PO 4 ) f ... (MC)
 式中、eは0~2を表し、0.1~1.15であることが好ましく、さらに0.5~1.5であることが好ましい。fは1~5を表し、0.5~2であることが好ましい。 In the formula, e represents 0 to 2, preferably 0.1 to 1.15, and more preferably 0.5 to 1.5. f represents 1 to 5, and preferably 0.5 to 2.
 前記MはV、Ti、Cr、Mn、Fe、Co、Ni、Cuから選択される一種以上の元素を表す。前記Mは、上記の混合元素Mのほか、Ti、Cr、Zn、Zr、Nb等の他の金属で置換していてもよい。具体例としては、例えば、LiFePO、LiFe(PO等のオリビン型リン酸鉄塩、LiFeP等のピロリン酸鉄類、LiCoPO等のリン酸コバルト類、Li(PO(リン酸バナジウムリチウム)等の単斜晶ナシコン型リン酸バナジウム塩が挙げられる。
 なお、Liの組成を表す前記a,c,g,m,e値は、充放電により変化する値であり、典型的には、Liを含有したときの安定な状態の値で評価される。前記式(a)~(e)では特定値としてLiの組成を示しているが、これも同様に電池の動作により変化するものである。
The M 3 represents one or more elements selected from V, Ti, Cr, Mn, Fe, Co, Ni, and Cu. Wherein M 3 represents, in addition to the mixing element M b above, Ti, Cr, Zn, Zr, may be substituted by other metals such as Nb. Specific examples include, for example, olivine-type iron phosphates such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , cobalt phosphates such as LiCoPO 4 , and Li 3. Monoclinic Nasicon type vanadium phosphate salts such as V 2 (PO 4 ) 3 (lithium vanadium phosphate) can be mentioned.
The a, c, g, m, and e values representing the composition of Li are values that change due to charge and discharge, and are typically evaluated as values in a stable state when Li is contained. In the above formulas (a) to (e), the composition of Li is shown as a specific value, but this also varies depending on the operation of the battery.
 本発明において、正極活物質には3.5V以上の正極電位(Li/Li基準)で通常使用を維持できる材料を用いることが好ましく、3.8V以上であることがより好ましく、4V以上であることがさらに好ましく、4.25V以上であることがさらに好ましく、4.3V以上であることがさらに好ましい。上限は特にないが、5V以下であることが実際的である。上記範囲とすることで、サイクル特性および高レート放電特性を向上することができる。
 ここで通常使用を維持できるとは、その電圧で充電を行ったときでも電極材料が劣化して使用不能になることがないことを意味し、この電位を通常使用可能電位ともいう。電極活物質充放電電位はそのピークから特定してもよい。電位のピークは、動作電極、参照電極、対電極からなる3極式セルを作成し、電気化学測定(サイクリックボルタンメトリー)を行うことにより特定することができる。3極式セルの構成および電気化学測定の測定条件は以下のとおりである。
In the present invention, the positive electrode active material is preferably a material that can maintain normal use at a positive electrode potential (Li / Li + standard) of 3.5 V or higher, more preferably 3.8 V or higher, and more preferably 4 V or higher. More preferably, it is more preferably 4.25V or more, and further preferably 4.3V or more. Although there is no upper limit in particular, it is practical that it is 5V or less. By setting it as the above range, cycle characteristics and high rate discharge characteristics can be improved.
Here, being able to maintain normal use means that even when charging is performed at that voltage, the electrode material does not deteriorate and cannot be used, and this potential is also referred to as a normal usable potential. The electrode active material charge / discharge potential may be specified from the peak. The peak of the potential can be specified by preparing a tripolar cell composed of a working electrode, a reference electrode, and a counter electrode, and performing electrochemical measurement (cyclic voltammetry). The configuration of the tripolar cell and the measurement conditions for electrochemical measurement are as follows.
 <3極式セルの構成>
・作動電極:ゾルゲル法またはスパッタリング法により白金電極上に作成した活物質電極
・参照電極:リチウム
・対電極 :リチウム
・希釈メディア:EC/EMC=1/2 LiPF 1M、キシダ化学社製
 <測定条件>
・走査速度:1mV/s
・測定温度:25℃
<Configuration of tripolar cell>
-Working electrode: Active material electrode prepared on platinum electrode by sol-gel method or sputtering method-Reference electrode: Lithium-Counter electrode: Lithium-Dilution media: EC / EMC = 1/2 LiPF 6 1M, manufactured by Kishida Chemical Co., Ltd. <Measurement Conditions>
・ Scanning speed: 1mV / s
・ Measurement temperature: 25 ℃
充放電時の正極電位(Li/Li基準)は
 (正極電位)=(負極電位)+(電池電圧)である。負極としてチタン酸リチウムを用いた場合、負極電位は1.55Vとする。負極として黒鉛を用いた場合は負極電位は0.
1Vとする。充電時に電池電圧を観測し、正極電位を算出する。
The positive electrode potential during charging / discharging (Li / Li + reference) is (positive electrode potential) = (negative electrode potential) + (battery voltage). When lithium titanate is used as the negative electrode, the negative electrode potential is 1.55V. When graphite is used as the negative electrode, the negative electrode potential is 0.
1V. The battery voltage is observed during charging and the positive electrode potential is calculated.
 本発明の非水二次電池において、用いられる正極活物質の平均粒子サイズは特に限定されないが、0.1μm~50μmが好ましい。比表面積としては特に限定されないが、BET法で0.01m/g~50m/gであるのが好ましい。また、正極活物質5gを蒸留水100mlに溶かした時の上澄み液のpHとしては、7以上12以下が好ましい。 In the nonaqueous secondary battery of the present invention, the average particle size of the positive electrode active material used is not particularly limited, but is preferably 0.1 μm to 50 μm. The specific surface area is not particularly limited, but is preferably 0.01 m 2 / g to 50 m 2 / g by the BET method. Further, the pH of the supernatant when 5 g of the positive electrode active material is dissolved in 100 ml of distilled water is preferably 7 or more and 12 or less.
 正極活性物質を所定の粒子サイズにするには、良く知られた粉砕機や分級機が用いられる。例えば、乳鉢、ボールミル、振動ボールミル、振動ミル、衛星ボールミル、遊星ボールミル、旋回気流型ジェットミルや篩などが用いられる。前記焼成法によって得られた正極活物質は、水、酸性水溶液、アルカリ性水溶液、有機溶剤にて洗浄した後使用してもよい。 A well-known pulverizer or classifier is used to make the positive electrode active substance have a predetermined particle size. For example, a mortar, a ball mill, a vibration ball mill, a vibration mill, a satellite ball mill, a planetary ball mill, a swirling air flow type jet mill, a sieve, or the like is used. The positive electrode active material obtained by the firing method may be used after being washed with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent.
 正極活物質の配合量は特に限定されないが、活物質層を構成するための分散物(合剤)中、固形成分100質量%において、60~98質量%であることが好ましく、70~95質量%であることがより好ましい。 The blending amount of the positive electrode active material is not particularly limited, but is preferably 60 to 98% by mass, and 70 to 95% by mass in 100% by mass of the solid component in the dispersion (mixture) for constituting the active material layer. % Is more preferable.
・負極活物質
 負極活物質としては、通常作動電位が対金属リチウムで1.2V(好ましくは1.4~2V)以上となるものを用いる。この動作電位は、前記正極活物質ついて説明した測定方法、つまり前記3極式セルを用いた電気化学測定(サイクリックボルタンメトリー)により測定した値とする。具体的には、第一族又は第二族に属する金属のイオンを挿入放出可能であり、炭素原子(C)、ケイ素原子(Si)、もしくはチタン原子(Ti)を含む材料を用いることが好ましい。例えば、炭素質材料、酸化ケイ素等の金属酸化物、金属複合酸化物、リチウム単体やリチウムアルミニウム合金等のリチウム合金、及び、Si等のリチウムと合金形成可能な金属等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。なかでも炭素質材料又はリチウム複合酸化物が信頼性の点から好ましく用いられる。また、金属複合酸化物としては、リチウムを吸蔵、放出可能であれば特には制限されないが、構成成分としてチタン及び/又はリチウムを含有していることが、高電流密度充放電特性の観点で好ましい。
Negative electrode active material As the negative electrode active material, a material having a normal operating potential of 1.2 V (preferably 1.4 to 2 V) or more with respect to lithium metal is used. The operating potential is a value measured by the measurement method described for the positive electrode active material, that is, electrochemical measurement (cyclic voltammetry) using the triode cell. Specifically, it is preferable to use a material containing a carbon atom (C), a silicon atom (Si), or a titanium atom (Ti) that can insert and release ions of metals belonging to the first group or the second group. . Examples include carbonaceous materials, metal oxides such as silicon oxide, metal composite oxides, lithium alloys such as lithium alone and lithium aluminum alloys, and metals such as Si that can form alloys with lithium. These may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and ratios. Of these, carbonaceous materials or lithium composite oxides are preferably used from the viewpoint of reliability. Further, the metal composite oxide is not particularly limited as long as it can occlude and release lithium, but it preferably contains titanium and / or lithium as a constituent component from the viewpoint of high current density charge / discharge characteristics. .
 負極活物質として用いられる炭素質材料とは、実質的に炭素からなる材料である。例えば、石油ピッチ、天然黒鉛、気相成長黒鉛等の人造黒鉛、及びPAN系の樹脂やフルフリルアルコール樹脂等の各種の合成樹脂を焼成した炭素質材料を挙げることができる。さらに、PAN系炭素繊維、セルロース系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、脱水PVA系炭素繊維、リグニン炭素繊維、ガラス状炭素繊維、活性炭素繊維等の各種炭素繊維類、メソフェーズ微小球体、グラファイトウィスカー、平板状の黒鉛等を挙げることもできる。 The carbonaceous material used as the negative electrode active material is a material substantially made of carbon. Examples thereof include carbonaceous materials obtained by baking various synthetic resins such as artificial pitches such as petroleum pitch, natural graphite, and vapor-grown graphite, and PAN-based resins and furfuryl alcohol resins. Furthermore, various carbon fibers such as PAN-based carbon fiber, cellulose-based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, dehydrated PVA-based carbon fiber, lignin carbon fiber, glassy carbon fiber, activated carbon fiber, mesophase micro Examples thereof include spheres, graphite whiskers, and flat graphite.
 これらの炭素質材料は、黒鉛化の程度により難黒鉛化炭素材料と黒鉛系炭素材料に分けることもできる。また炭素質材料は、特開昭62-22066号公報、特開平2-6856号公報、同3-45473号公報に記載される面間隔や密度、結晶子の大きさを有することが好ましい。炭素質材料は、単一の材料である必要はなく、特開平5-90844号公報記載の天然黒鉛と人造黒鉛の混合物、特開平6-4516号公報記載の被覆層を有する黒鉛等を用いることもできる。 These carbonaceous materials can be divided into non-graphitizable carbon materials and graphite-based carbon materials depending on the degree of graphitization. Further, the carbonaceous material preferably has a face spacing, density, and crystallite size described in JP-A-62-222066, JP-A-2-6856, and 3-45473. The carbonaceous material does not have to be a single material, and a mixture of natural graphite and artificial graphite described in JP-A-5-90844, graphite having a coating layer described in JP-A-6-4516, or the like is used. You can also.
 本発明の非水二次電池において、用いられる前記負極活物質の平均粒子サイズは、0.1μm~60μmが好ましい。所定の粒子サイズにするには、よく知られた粉砕機や分級機が用いられる。例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、衛星ボールミル、遊星ボールミル、旋回気流型ジェットミルや篩などが好適に用いられる。粉砕時には水、あるいはメタノール等の有機溶媒を共存させた湿式粉砕も必要に応じて行うことができる。所望の粒径とするためには分級を行うことが好ましい。分級方法としては特に限定はなく、篩、風力分級機などを必要に応じて用いることができる。分級は乾式、湿式ともに用いることができる。 In the nonaqueous secondary battery of the present invention, the average particle size of the negative electrode active material used is preferably 0.1 μm to 60 μm. To obtain a predetermined particle size, a well-known pulverizer or classifier is used. For example, a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling air flow type jet mill or a sieve is preferably used. When pulverizing, wet pulverization in the presence of water or an organic solvent such as methanol can be performed as necessary. In order to obtain a desired particle size, classification is preferably performed. The classification method is not particularly limited, and a sieve, an air classifier, or the like can be used as necessary. Classification can be used both dry and wet.
 前記焼成法により得られた化合物の化学式は、測定方法として誘導結合プラズマ(ICP)発光分光分析法、簡便法として、焼成前後の粉体の質量差から算出できる。 The chemical formula of the compound obtained by the firing method can be calculated from an inductively coupled plasma (ICP) emission spectroscopic analysis method as a measurement method and a mass difference between powders before and after firing as a simple method.
 本発明において電池の負極にLTO等の特定の負極活物質を用いることによる作用は以下のように推定される。すなわち、従来の特定の電極(スズ)を用いた電池では還元反応で生成するLiや金属相互作用のために充放電効率が悪化していたが、この点が改善されると考えられる。一方、特定有機化合物からのガス発生のメカニズムとして、分子内環化反応による水素脱離反応が考えられる。本発明の化合物は分子内に連結基を介して不飽和結合を有しておりこの分子内環化を促進していると解される。この点で、前記スズを用いた負極はリチウムデンドライトの発生により、活性な不飽和部位を有する添加剤が反応し、消失することからその効果が低減しているものと考えられる。 In the present invention, the effect of using a specific negative electrode active material such as LTO for the negative electrode of the battery is estimated as follows. That is, in the conventional battery using a specific electrode (tin), the charge / discharge efficiency deteriorates due to Li generated by the reduction reaction or metal interaction, but this point is considered to be improved. On the other hand, as a mechanism of gas generation from a specific organic compound, a hydrogen elimination reaction by an intramolecular cyclization reaction can be considered. It is understood that the compound of the present invention has an unsaturated bond via a linking group in the molecule and promotes this intramolecular cyclization. In this respect, the negative electrode using tin is considered to have reduced its effect because the additive having an active unsaturated site reacts and disappears due to generation of lithium dendrite.
 本発明の電解液は好ましい様態として高電位負極(好ましくはリチウム・チタン酸化物、電位1.55V対Li金属)との組合せ、及び低電位負極(好ましくは炭素材料、電位約0.1V対Li金属)との組合せのいずれにおいても優れた特性を発現する。 The electrolyte solution of the present invention is preferably combined with a high potential negative electrode (preferably lithium-titanium oxide, a potential of 1.55 V vs. Li metal) and a low potential negative electrode (preferably a carbon material, potential of about 0.1 V vs. Li). Excellent properties are exhibited in any combination with (metal).
 本発明の非水二次電池で用いられる負極活物質はチタン酸リチウムを含有することが好ましい。より具体的にはLiTi12がリチウムイオンの吸蔵放出時の体積変動が小さいことから電極の劣化が抑制されリチウムイオン二次電池の寿命向上が可能となる点で好ましい。特定の負極と更に特定の電解液を組合せることにより、様々な使用条件においても二次電池の安定性が向上する。 The negative electrode active material used in the non-aqueous secondary battery of the present invention preferably contains lithium titanate. More specifically, Li 4 Ti 5 O 12 is preferable in that the volume fluctuation at the time of occlusion and release of lithium ions is small, so that deterioration of the electrode is suppressed and the life of the lithium ion secondary battery can be improved. By combining a specific negative electrode and a specific electrolyte, the stability of the secondary battery is improved even under various usage conditions.
・導電材
 導電材は、構成された二次電池において、化学変化を起こさない電子伝導性材料であれば何を用いてもよく、公知の導電材を任意に用いることができる。通常、天然黒鉛(鱗状黒鉛、鱗片状黒鉛、土状黒鉛など)、人工黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維や金属粉(銅、ニッケル、アルミニウム、銀(特開昭63-10148,554号に記載)等)、金属繊維あるいはポリフェニレン誘導体(特開昭59-20,971号に記載)などの導電性材料を1種又はこれらの混合物として含ませることができる。その中でも、黒鉛とアセチレンブラックの併用がとくに好ましい。前記導電剤の添加量としては、1~50質量%が好ましく、2~30質量%がより好ましい。カーボンや黒鉛の場合は、2~15質量%が特に好ましい。
-Conductive material As the conductive material, any electronic conductive material that does not cause a chemical change in the configured secondary battery may be used, and any known conductive material may be used. Usually, natural graphite (scale-like graphite, scale-like graphite, earth-like graphite, etc.), artificial graphite, carbon black, acetylene black, ketjen black, carbon fiber and metal powder (copper, nickel, aluminum, silver (Japanese Patent Laid-Open No. Sho 63-63)) 10148,554), etc.), metal fibers or polyphenylene derivatives (described in JP-A-59-20971) can be contained as one kind or a mixture thereof. Among these, the combined use of graphite and acetylene black is particularly preferable. The addition amount of the conductive agent is preferably 1 to 50% by mass, and more preferably 2 to 30% by mass. In the case of carbon or graphite, 2 to 15% by mass is particularly preferable.
・結着剤
 結着剤としては、多糖類、熱可塑性樹脂及びゴム弾性を有するポリマーなどが挙げられ、その中でも、例えば、でんぷん、カルボキシメチルセルロース、セルロース、ジアセチルセルロース、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、アルギン酸ナトリウム、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリビニルフェノール、ポリビニルメチルエーテル、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリロニトリル、ポリアクリルアミド、ポリヒドロキシ(メタ)アクリレート、スチレン-マレイン酸共重合体等の水溶性ポリマー、ポリビニルクロリド、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、テトラフロロエチレン-ヘキサフロロプロピレン共重合体、ビニリデンフロライド-テトラフロロエチレン-ヘキサフロロプロピレン共重合体、ポリエチレン、ポリプロピレン、エチレン-プロピレン-ジエンターポリマー(EPDM)、スルホン化EPDM、ポリビニルアセタール樹脂、メチルメタアクリレート、2-エチルヘキシルアクリレート等の(メタ)アクリル酸エステルを含有する(メタ)アクリル酸エステル共重合体、(メタ)アクリル酸エステル-アクリロニトリル共重合体、ビニルアセテート等のビニルエステルを含有するポリビニルエステル共重合体、スチレン-ブタジエン共重合体、アクリロニトリル-ブタジエン共重合体、ポリブタジエン、ネオプレンゴム、フッ素ゴム、ポリエチレンオキシド、ポリエステルポリウレタン樹脂、ポリエーテルポリウレタン樹脂、ポリカーボネートポリウレタン樹脂、ポリエステル樹脂、フェノール樹脂、エポキシ樹脂等のエマルジョン(ラテックス)あるいはサスペンジョンが好ましく、ポリアクリル酸エステル系のラテックス、カルボキシメチルセルロース、ポリテトラフロロエチレン、ポリフッ化ビニリデンが、より好ましい。
-Binders Examples of binders include polysaccharides, thermoplastic resins, and polymers having rubber elasticity. Among them, for example, starch, carboxymethyl cellulose, cellulose, diacetyl cellulose, methyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose. Water-soluble, such as sodium alginate, polyacrylic acid, sodium polyacrylate, polyvinylphenol, polyvinyl methyl ether, polyvinyl alcohol, polyvinylpyrrolidone, polyacrylonitrile, polyacrylamide, polyhydroxy (meth) acrylate, styrene-maleic acid copolymer Polymer, polyvinyl chloride, polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene copolymer, vinyl Redene fluoride-tetrafluoroethylene-hexafluoropropylene copolymer, polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, polyvinyl acetal resin, methyl methacrylate, 2-ethylhexyl acrylate, etc. ) (Meth) acrylic ester copolymer containing acrylic ester, (meth) acrylic ester-acrylonitrile copolymer, polyvinyl ester copolymer containing vinyl ester such as vinyl acetate, styrene-butadiene copolymer , Acrylonitrile-butadiene copolymer, polybutadiene, neoprene rubber, fluoro rubber, polyethylene oxide, polyester polyurethane resin, polyether polyurethane resin, polycarbonate Polyurethane resins, polyester resins, phenolic resins, emulsion (latex) or a suspension such as an epoxy resin is preferable, a latex of polyacrylate, carboxymethyl cellulose, polytetrafluoroethylene, polyvinylidene fluoride is more preferable.
 結着剤は、一種単独又は二種以上を混合して用いることができる。結着剤の添加量が少ないと、電極合剤の保持力・凝集力が弱くなる。多すぎると電極体積が増加し電極単位体積あるいは単位質量あたりの容量が減少する。このような理由で結着剤の添加量は1~30質量%が好ましく、2~10質量%がより好ましい。 Binders can be used alone or in combination of two or more. When the amount of the binder added is small, the holding power and cohesive force of the electrode mixture are weakened. If the amount is too large, the electrode volume increases and the capacity per electrode unit volume or unit mass decreases. For this reason, the addition amount of the binder is preferably 1 to 30% by mass, and more preferably 2 to 10% by mass.
・フィラー
 電極合材は、フィラーを含んでいてもよい。フィラーを形成する材料は、本発明の二次電池において、化学変化を起こさない繊維状材料であれば何でも用いることができる。通常、ポリプロピレン、ポリエチレンなどのオレフィン系ポリマー、ガラス、炭素などの材料からなる繊維状のフィラーが用いられる。フィラーの添加量は特に限定されないが、分散物中、0~30質量%が好ましい。
-Filler The electrode compound material may contain the filler. As the material for forming the filler, any fibrous material that does not cause a chemical change in the secondary battery of the present invention can be used. Usually, fibrous fillers made of materials such as olefin polymers such as polypropylene and polyethylene, glass, and carbon are used. The addition amount of the filler is not particularly limited, but is preferably 0 to 30% by mass in the dispersion.
・集電体
 正・負極の集電体としては、本発明の非水電解質二次電池において化学変化を起こさない電子伝導体が用いられる。正極の集電体としては、アルミニウム、ステンレス鋼、ニッケル、チタンなどの他にアルミニウムやステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたものが好ましく、その中でも、アルミニウム、アルミニウム合金がより好ましい。
-Current collector As the positive / negative electrode current collector, an electron conductor that does not cause a chemical change in the nonaqueous electrolyte secondary battery of the present invention is used. As the current collector of the positive electrode, in addition to aluminum, stainless steel, nickel, titanium, etc., the surface of aluminum or stainless steel is preferably treated with carbon, nickel, titanium, or silver. Among them, aluminum and aluminum alloys are preferable. More preferred.
 負極の集電体としては、アルミニウム、銅、ステンレス鋼、ニッケル、チタンが好ましく、アルミニウム、銅、銅合金がより好ましい。 As the negative electrode current collector, aluminum, copper, stainless steel, nickel and titanium are preferable, and aluminum, copper and copper alloy are more preferable.
 前記集電体の形状としては、通常フィルムシート状のものが使用されるが、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群の成形体なども用いることができる。前記集電体の厚みとしては、特に限定されないが、1μm~500μmが好ましい。また、集電体表面は、表面処理により凹凸を付けることも好ましい。
 これらの材料から適宜選択した部材によりリチウム二次電池の電極合材が形成される。
As the shape of the current collector, a film sheet shape is usually used, but a net, a punched material, a lath body, a porous body, a foamed body, a molded body of a fiber group, and the like can also be used. The thickness of the current collector is not particularly limited, but is preferably 1 μm to 500 μm. Moreover, it is also preferable that the current collector surface is roughened by surface treatment.
An electrode mixture of the lithium secondary battery is formed by a member appropriately selected from these materials.
(セパレータ)
 本発明の非水二次電池に用いられるセパレータは、正極と負極を電子的に絶縁する機械的強度、イオン透過性、及び正極と負極の接触面で酸化・還元耐性のある材料であれば特に限定されることはない。このような材料として多孔質のポリマー材料や無機材料、有機無機ハイブリッド材料、あるいはガラス繊維などが用いられる。これらセパレータは信頼性確保のためのシャットダウン機能、すなわち、80℃以上で隙間を閉塞して抵抗を上げ、電流を遮断する機能を持つことが好ましく、閉塞温度は90℃以上、180℃以下であることが好ましい。
(Separator)
The separator used in the non-aqueous secondary battery of the present invention is particularly a material that has mechanical strength for electrically insulating the positive electrode and the negative electrode, ion permeability, and oxidation / reduction resistance at the contact surface between the positive electrode and the negative electrode. There is no limit. As such a material, a porous polymer material, an inorganic material, an organic-inorganic hybrid material, glass fiber, or the like is used. These separators preferably have a shutdown function for ensuring reliability, that is, a function of closing a gap at 80 ° C. or higher to increase resistance and interrupting current, and a closing temperature is 90 ° C. or higher and 180 ° C. or lower. It is preferable.
 前記セパレータの孔の形状は、通常は円形や楕円形で、大きさは0.05μm~30μmであり、0.1μm~20μmが好ましい。さらに延伸法、相分離法で作った場合のように、棒状や不定形の孔であってもよい。これらの隙間の占める比率すなわち気孔率は、20%~90%であり、35%~80%が好ましい。 The shape of the holes of the separator is usually circular or elliptical, and the size is 0.05 μm to 30 μm, preferably 0.1 μm to 20 μm. Furthermore, it may be a rod-like or irregular-shaped hole as in the case of making by a stretching method or a phase separation method. The ratio of these gaps, that is, the porosity, is 20% to 90%, preferably 35% to 80%.
 前記ポリマー材料としては、セルロース不織布、ポリエチレン、ポリプロピレンなどの単一の材料を用いたものでも、2種以上の複合化材料を用いたものであってもよい。孔径、気孔率や孔の閉塞温度などを変えた2種以上の微多孔フィルムを積層したものが、好ましい。 The polymer material may be a single material such as a cellulose nonwoven fabric, polyethylene, or polypropylene, or may be a material using two or more composite materials. What laminated | stacked the 2 or more types of microporous film which changed the hole diameter, the porosity, the obstruction | occlusion temperature of a hole, etc. is preferable.
 前記無機物としては、アルミナや二酸化珪素等の酸化物類、窒化アルミや窒化珪素等の窒化物類、硫酸バリウムや硫酸カルシウム等の硫酸塩類が用いられ、粒子形状もしくは繊維形状のものが用いられる。形態としては、不織布、織布、微多孔性フィルム等の薄膜形状のものが用いられる。薄膜形状では、孔径が0.01μm~1μm、厚さが5μm~50μmのものが好適に用いられる。前記の独立した薄膜形状以外に、前記無機物の粒子を含有する複合多孔層を樹脂製の結着剤を用いて正極及び/又は負極の表層に形成させてなるセパレータを用いることができる。例えば、正極の両面に90%粒径が1μm未満のアルミナ粒子をフッ素樹脂の結着剤を用いて多孔層として形成させることが挙げられる。 As the inorganic substance, oxides such as alumina and silicon dioxide, nitrides such as aluminum nitride and silicon nitride, and sulfates such as barium sulfate and calcium sulfate are used, and those having a particle shape or fiber shape are used. As the form, a thin film shape such as a non-woven fabric, a woven fabric, or a microporous film is used. As the thin film shape, those having a pore diameter of 0.01 μm to 1 μm and a thickness of 5 μm to 50 μm are preferably used. In addition to the independent thin film shape, a separator formed by forming a composite porous layer containing the inorganic particles on the surface layer of the positive electrode and / or the negative electrode using a resin binder can be used. For example, alumina particles having a 90% particle diameter of less than 1 μm are formed on both surfaces of the positive electrode as a porous layer using a fluororesin binder.
(非水二次電池の作製)
 本発明の非水二次電池の形状としては、既述のように、シート状、角型、シリンダー状などいずれの形にも適用できる。正極活物質や負極活物質の合剤は、集電体の上に、塗布(コート)、乾燥、圧縮されて、主に用いられる。
(Production of non-aqueous secondary battery)
As described above, the shape of the nonaqueous secondary battery of the present invention can be applied to any shape such as a sheet shape, a square shape, and a cylinder shape. A positive electrode active material or a mixture of negative electrode active materials is mainly used after being applied (coated), dried and compressed on a current collector.
 以下、図2により、有底筒型形状リチウム二次電池100を例に挙げて、その構成及び作製方法について説明する。有底筒型形状の電池では、充填される発電素子に対する外表面積が小さくなるので、充電や放電時に内部抵抗による発生するジュール発熱を効率よく外部に逃げる設計にすることが好ましい。また、熱伝導性の高い物質の充填比率を高め、内部での温度分布が小さくなるように設計することが好ましい。図2は、有底筒型形状リチウム二次電池100を例である。この電池は、セパレータ12を介して重ね合わせた正極シート14、負極シート16を巻回して外装缶18内に収納した有底筒型リチウム二次電池100となっている。その他、図中の20が絶縁板、22が封口板、24が正極集電体、26がガスケット、28が圧力感応弁体、30が電流遮断素子である。なお、拡大した円内の図示は視認性を考慮しハッチングを変えているが、各部材は符号により全体図と対応している。 Hereinafter, with reference to FIG. 2, a configuration and a manufacturing method thereof will be described using the bottomed cylindrical lithium secondary battery 100 as an example. In a battery having a bottomed cylindrical shape, since the outer surface area with respect to the power generating element to be filled becomes small, it is preferable to design so that Joule heat generated by the internal resistance at the time of charging and discharging efficiently escapes to the outside. Moreover, it is preferable to design so that the filling ratio of the substance having high thermal conductivity is increased and the temperature distribution inside is reduced. FIG. 2 shows an example of a bottomed cylindrical lithium secondary battery 100. This battery is a bottomed cylindrical lithium secondary battery 100 in which a positive electrode sheet 14 and a negative electrode sheet 16 overlapped with a separator 12 are wound and accommodated in an outer can 18. In addition, in the figure, 20 is an insulating plate, 22 is a sealing plate, 24 is a positive electrode current collector, 26 is a gasket, 28 is a pressure sensitive valve body, and 30 is a current interruption element. In addition, although the illustration in the enlarged circle has changed hatching in consideration of visibility, each member corresponds to the whole drawing by reference numerals.
 まず、負極活物質と、所望により用いられる結着剤やフィラーなどを有機溶剤に溶解したものを混合して、スラリー状あるいはペースト状の負極合剤を調製する。得られた負極合剤を集電体としての金属芯体の両面の全面にわたって均一に塗布し、その後、有機溶剤を除去して負極合材層を形成する。さらに、集電体と負極合材層との積層体をロールプレス機等により圧延して、所定の厚みに調製して負極シート(電極シート)を得る。このとき、各剤の塗布方法や塗布物の乾燥、正・負極の電極の形成方法は定法によればよい。 First, a negative electrode active material is mixed with a binder or filler used as desired in an organic solvent to prepare a slurry or paste negative electrode mixture. The obtained negative electrode mixture is uniformly applied over the entire surface of both surfaces of the metal core as a current collector, and then the organic solvent is removed to form a negative electrode mixture layer. Further, the laminate of the current collector and the negative electrode composite material layer is rolled with a roll press or the like to prepare a predetermined thickness to obtain a negative electrode sheet (electrode sheet). At this time, the coating method of each agent, the drying of the coated material, and the method of forming the positive and negative electrodes may be in accordance with conventional methods.
 本実施形態では、円筒形の電池を例に挙げたが、本発明はこれに制限されず、例えば、前記方法で作製された正・負の電極シートを、セパレータを介して重ね合わせた後、そのままシート状電池に加工するか、或いは、折りまげた後角形缶に挿入して、缶とシートを電気的に接続した後、電解質を注入し、封口板を用いて開口部を封止して角形電池を形成してもよい。 In the present embodiment, a cylindrical battery is taken as an example, but the present invention is not limited to this, for example, after the positive and negative electrode sheets produced by the above method are overlapped via a separator, After processing into a sheet battery as it is, or inserting it into a rectangular can after being folded and electrically connecting the can and the sheet, injecting an electrolyte and sealing the opening using a sealing plate A square battery may be formed.
 いずれの実施形態においても、安全弁を開口部を封止するための封口板として用いることができる。また、封口部材には、安全弁の他、従来知られている種々の安全素子を備えつけてもよい。例えば、過電流防止素子として、ヒューズ、バイメタル、PTC素子などが好適に用いられる。 In any of the embodiments, the safety valve can be used as a sealing plate for sealing the opening. In addition to the safety valve, the sealing member may be provided with various conventionally known safety elements. For example, a fuse, bimetal, PTC element, or the like is preferably used as the overcurrent prevention element.
 また、前記安全弁のほかに電池缶の内圧上昇の対策として、電池缶に切込を入れる方法、ガスケット亀裂方法あるいは封口板亀裂方法あるいはリード板との切断方法を利用することができる。また、充電器に過充電や過放電対策を組み込んだ保護回路を具備させるか、あるいは独立に接続させてもよい。 Further, in addition to the safety valve, as a countermeasure against an increase in the internal pressure of the battery can, a method of cutting the battery can, a method of cracking the gasket, a method of cracking the sealing plate, or a method of cutting the lead plate can be used. Further, the charger may be provided with a protection circuit incorporating measures against overcharge and overdischarge, or may be connected independently.
 缶やリード板は、電気伝導性をもつ金属や合金を用いることができる。例えば、鉄、ニッケル、チタン、クロム、モリブデン、銅、アルミニウムなどの金属あるいはそれらの合金が好適に用いられる。 For the can and lead plate, a metal or alloy having electrical conductivity can be used. For example, metals such as iron, nickel, titanium, chromium, molybdenum, copper, and aluminum, or alloys thereof are preferably used.
 キャップ、缶、シート、リード板の溶接法は、公知の方法(例、直流又は交流の電気溶接、レーザー溶接、超音波溶接)を用いることができる。封口用シール剤は、アスファルトなどの従来知られている化合物や混合物を用いることができる。 A known method (eg, direct current or alternating current electric welding, laser welding, ultrasonic welding) can be used as a welding method for the cap, can, sheet, and lead plate. As the sealing agent for sealing, a conventionally known compound or mixture such as asphalt can be used.
(感圧機構)
 本発明に係る非水二次電池は感圧機構(所定圧力以上になると電流を遮断する機構)を有することが好ましい。感圧機構は前述のような感圧弁を利用するも、感圧センサにより圧力変化を検知して通電を遮断するものなど、様々なものを採用することができる。図3は、感圧弁の別の例を示した一部断面側面図である。
 なお、電流遮断封口体50は、図3に示すように、逆皿状(キャップ状)に形成されたステンレス製の正極キャップ51と、皿状に形成されたステンレス製の底板54とから構成される。正極キャップ51は、電池外部に向けて膨出する凸部52と、この凸部52の底辺部を構成する平板状のフランジ部53とからなり、凸部52の角部には複数のガス抜き孔52aを設けている。一方、底板54は、電池内部に向けて膨出する凹部55と、この凹部55の底辺部を構成する平板状のフランジ部56とからなる。凹部55の角部にはガス抜き孔55aが設けられている。
 これらの正極キャップ51と底板54との内部には、電池内部のガス圧が上昇して所定の圧力以上になると変形する電力導出板57が収容されている。この電力導出板57は凹部57aとフランジ部57bとからなり、例えば、厚みが0.2mmで表面の凹凸が0.005mmのアルミニウム箔から構成される。凹部57aの最低部は底板54の凹部55の上表面に接触して配設されており、フランジ部57bは正極キャップ51のフランジ部53と底板54のフランジ部56との間に狭持される。なお、正極キャップ51と底板54とはポリプロピレン(PP)製の封口体用絶縁ガスケット59により液密に封口されている。
 フランジ部57bの上部の一部には、PTC(Positive Temperature Coefficient)サーミスタ素子58が配設され、電池内に過電流が流れて異常な発熱現象を生じると、このPTCサーミスタ素子58の抵抗値が増大して過電流を減少させる。そして、電池内部のガス圧が上昇して所定の圧力以上になると電力導出板57の凹部57aは変形するため、電力導出板57と底板54の凹部55との接触が遮断されて過電流あるいは短絡電流が遮断されるようになる。
 本発明に係る非水二次電池用電解液を用いることにより、上記感圧機構を有する二次電池において、その過充電時に瞬時により多くのガスを発生し、的確かつ迅速な電流の遮断が可能とする。
(Pressure sensitive mechanism)
The non-aqueous secondary battery according to the present invention preferably has a pressure-sensitive mechanism (a mechanism that cuts off current when a predetermined pressure or higher is reached). Although the pressure-sensitive mechanism uses a pressure-sensitive valve as described above, various devices such as a device that detects a pressure change by a pressure-sensitive sensor and interrupts energization can be employed. FIG. 3 is a partial cross-sectional side view showing another example of the pressure-sensitive valve.
As shown in FIG. 3, the current interrupting sealing body 50 is composed of a stainless steel positive electrode cap 51 formed in an inverted dish shape (cap shape) and a stainless steel bottom plate 54 formed in a dish shape. The The positive electrode cap 51 includes a convex portion 52 that bulges toward the outside of the battery, and a flat flange portion 53 that forms the bottom side of the convex portion 52, and a plurality of gas vents are formed at the corners of the convex portion 52. A hole 52a is provided. On the other hand, the bottom plate 54 includes a concave portion 55 that bulges toward the inside of the battery, and a flat flange portion 56 that constitutes the bottom side portion of the concave portion 55. A gas vent hole 55 a is provided at the corner of the recess 55.
Housed in the positive electrode cap 51 and the bottom plate 54 is a power lead-out plate 57 that deforms when the gas pressure inside the battery rises and exceeds a predetermined pressure. The power lead-out plate 57 includes a concave portion 57a and a flange portion 57b, and is formed of, for example, an aluminum foil having a thickness of 0.2 mm and a surface unevenness of 0.005 mm. The lowest portion of the recess 57 a is disposed in contact with the upper surface of the recess 55 of the bottom plate 54, and the flange portion 57 b is sandwiched between the flange portion 53 of the positive electrode cap 51 and the flange portion 56 of the bottom plate 54. . The positive electrode cap 51 and the bottom plate 54 are sealed in a liquid-tight manner by a sealing body insulating gasket 59 made of polypropylene (PP).
A PTC (Positive Temperature Coefficient) thermistor element 58 is disposed at a part of the upper portion of the flange portion 57b. When an overcurrent flows in the battery and an abnormal heat generation phenomenon occurs, the resistance value of the PTC thermistor element 58 increases. Increase to reduce overcurrent. Then, when the gas pressure inside the battery rises and exceeds a predetermined pressure, the recess 57a of the power lead-out plate 57 is deformed, so that the contact between the power lead-out plate 57 and the concave portion 55 of the bottom plate 54 is cut off and an overcurrent or short circuit occurs. The current is interrupted.
By using the electrolyte for a non-aqueous secondary battery according to the present invention, in the secondary battery having the pressure-sensitive mechanism, more gas is instantly generated at the time of overcharging, and accurate and quick interruption of current is possible. And
 本発明の前記特定有機化合物は、通常充電時にガスを発生せず、過充電時に有効量のガスを発生することが好ましい。ここで、「過充電時に有効量のガスを発生する」とは後記実施例の過充電時ガス発生量試験及び充電寿命試験で実施例相当の結果になることを意味する。 It is preferable that the specific organic compound of the present invention does not generate gas during normal charging but generates an effective amount of gas during overcharging. Here, “to generate an effective amount of gas at the time of overcharging” means that the results of the gas generation amount test and the charge life test at the time of overcharging in the examples described later are equivalent to the examples.
[非水二次電池の用途] [Applications of non-aqueous secondary batteries]
 リチウム電池と呼ばれる二次電池は、充放電反応にリチウムの吸蔵および放出を利用する二次電池(リチウムイオン二次電池)と、リチウムの析出および溶解を利用する二次電池(リチウム金属二次電池)とに大別される。本発明においてはリチウムイオン二次電池としての適用が好ましい。
 本発明の非水二次電池はサイクル性良好な二次電池を作製することができるため、種々の用途に適用される。適用態様には特に限定はないが、例えば、電子機器に搭載する場合、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャー、ハンディーターミナル、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、電気シェーバー、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源、メモリーカードなどが挙げられる。その他民生用として、自動車、電動車両、モーター、照明器具、玩具、ゲーム機器、ロードコンディショナー、時計、ストロボ、カメラ、医療機器(ペースメーカー、補聴器、肩もみ機など)などが挙げられる。更に、各種軍需用、宇宙用として用いることができる。また、太陽電池と組み合わせることもできる。
Secondary batteries called lithium batteries are secondary batteries that use the insertion and extraction of lithium for charge / discharge reactions (lithium ion secondary batteries), and secondary batteries that use precipitation and dissolution of lithium (lithium metal secondary batteries). ). In the present invention, application as a lithium ion secondary battery is preferable.
Since the nonaqueous secondary battery of the present invention can produce a secondary battery with good cycle performance, it is applied to various applications. Although there is no particular limitation on the application mode, for example, when installed in an electronic device, a notebook computer, a pen input personal computer, a mobile personal computer, an electronic book player, a mobile phone, a cordless phone, a pager, a handy terminal, a mobile fax machine, a mobile phone Copy, portable printer, headphone stereo, video movie, LCD TV, handy cleaner, portable CD, minidisc, electric shaver, transceiver, electronic notebook, calculator, memory card, portable tape recorder, radio, backup power supply, memory card, etc. It is done. Other consumer products include automobiles, electric vehicles, motors, lighting equipment, toys, game equipment, road conditioners, watches, strobes, cameras, medical equipment (such as pacemakers, hearing aids, and shoulder grinders). Furthermore, it can be used for various military use and space use. Moreover, it can also combine with a solar cell.
 なかでも、特にその過充電時の信頼性と高レート放電特性の利点を発揮する観点から、高容量且つ高レート放電特性が要求されるアプリケーションに適用されることが好ましい。例えば、今後大容量化が予想される蓄電設備等においては高い信頼性が必須となりさらに電池性能の両立が要求される。また、電気自動車などは高容量の二次電池を搭載し、家庭で日々充電が行われる用途が想定され、過充電時に対して一層の信頼性が求められる(NEDO技術開発機構,燃料電池・水素技術開発部,蓄電技術開発室「NEDO次世代自動車用蓄電池技術開発 ロードマップ2008」(平成21年6月))。また、発進、加速時には高レートでの放電が必要であり、繰返し充放電しても高レート放電容量が劣化しないことが重要になる。本発明によれば、このような使用形態に好適に対応してその優れた効果を発揮することができる。 In particular, it is preferable to be applied to applications requiring high capacity and high rate discharge characteristics from the viewpoint of exhibiting the advantages of reliability and high rate discharge characteristics during overcharge. For example, in power storage facilities and the like that are expected to increase in capacity in the future, high reliability is indispensable and further compatibility of battery performance is required. In addition, electric vehicles are equipped with high-capacity rechargeable batteries and are expected to be charged daily at home, and even higher reliability is required for overcharging (NEDO Technology Development Organization, Fuel Cell / Hydrogen Technology Development Department, Energy Storage Technology Development Office “NEDO Next-Generation Automotive Storage Battery Technology Development Roadmap 2008” (June 2009)). In addition, when starting and accelerating, it is necessary to discharge at a high rate, and it is important that the high-rate discharge capacity does not deteriorate even after repeated charging and discharging. According to the present invention, it is possible to exhibit the excellent effect correspondingly to such a usage pattern.
 以下に、本発明についてさらに詳細に説明するが、これにより本発明が限定して解釈されるものではない。 Hereinafter, the present invention will be described in more detail, but the present invention is not construed as being limited thereto.
(実施例1)
(電解液の調製)
 エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)を体積比1:2で混合した溶液に対し、1mol/L(12.7質量%)となるようにLiPFを添加し、基準となる電解液を作製した。これに対し、下表1に記載の添加剤及び添加量で混合し、非水電解液を調製した。
(Example 1)
(Preparation of electrolyte)
LiPF 6 was added so that it might become 1 mol / L (12.7 mass%) with respect to the solution which mixed ethylene carbonate (EC) and ethyl methyl carbonate (EMC) by the volume ratio 1: 2, and becomes electrolyte solution used as a reference | standard Was made. On the other hand, it mixed with the additive and addition amount of the following table 1, and prepared the non-aqueous electrolyte.
(2032形コイン電池の作製)
 正極は、NMC:LiNi0.33Co0.33Mn0.33 85質量%、導電助剤:カーボンブラック7.5質量%、バインダー:PVDF 7.5質量%で作製し、負極は、LTO:チタン酸リチウム 94質量%、導電助剤:カーボンブラック3質量%、バインダー:PVDF 3質量%で作製した。セパレータはガラスろ紙(ADVANTEC社製:GA-55、厚さ:0.21mm)である。上記の正負極、セパレータを使用し、各試験用電解液について、2032形コイン電池(直径:20mm、高さ:3.2mm、上蓋、底蓋:SUS製250μm、図4)を作製し、下記電池特性項目の評価を行った。
(Production of 2032 type coin battery)
The positive electrode is made of NMC: LiNi 0.33 Co 0.33 Mn 0.33 O 2 85% by mass, conductive auxiliary agent: carbon black 7.5% by mass, binder: PVDF 7.5% by mass, and the negative electrode is LTO: 94% by mass of lithium titanate, conductive assistant: 3% by mass of carbon black, binder: 3% by mass of PVDF The separator is glass filter paper (manufactured by ADVANTEC: GA-55, thickness: 0.21 mm). Using the positive and negative electrodes and separators described above, 2032 type coin batteries (diameter: 20 mm, height: 3.2 mm, top cover, bottom cover: SUS 250 μm, FIG. 4) were prepared for each test electrolyte. The battery characteristic items were evaluated.
<過充電時ガス発生量>
 上記の手順で作製した2032形電池を用いて45℃の恒温槽中、1.8mAで電池電圧が4.95Vになるまで1C定電流充電した後、0.4mAで電池電圧が1.2Vになるまで0.2C放電を行い、電池の体積を測定した。測定は島津(株)社製、精密比重計セット(精密天秤:AUW120D、比重測定キット:SMK-401)を用いて行った。この過充電試験後の電池体積増加分の電池作製時体積に対する比率を過充電時ガス発生量とした。
<Gas generation during overcharge>
Using a 2032 battery manufactured in the above procedure, in a 45 ° C constant temperature bath, after charging at 1 C constant current until the battery voltage reached 4.95 V at 1.8 mA, the battery voltage became 1.2 V at 0.4 mA. A 0.2C discharge was performed until the battery volume was measured. The measurement was performed using a precision hydrometer set (precision balance: AUW120D, specific gravity measurement kit: SMK-401) manufactured by Shimadzu Corporation. The ratio of the increase in battery volume after the overcharge test to the volume during battery production was defined as the amount of gas generated during overcharge.
 過充電時ガス発生量
     =(過充電試験後の電池体積―作成時電池体積)/作成時電池体積×100
Gas generation during overcharge = (battery volume after overcharge test-battery volume during creation) / battery volume during creation x 100
 このガス発生量を
  1未満      C
  1以上2未満   B
  2以上3未満   A
  3以上     AA
        として評価した。
This gas generation amount is less than 1 C
1 to less than 2 B
2 or more and less than 3 A
3 or more AA
As evaluated.
<4.3V容量維持率>
 上記の方法で作製した2032形電池を用いて、60℃の恒温槽中、4.0mAで電極電位が4.5V(電圧2.95V)になるまで1C定電流充電を行った。この定電圧の充電を電流値が0.12mAになるまで継続した(ただし、充電時間の上限を2時間とした)。次に4.0mAで電極電位が2.75V(電圧1.2V)になるまで1C定電流放電を行い、1サイクルとした。これを300サイクルに達するまで繰り返し、300サイクル後の放電容量(mAh)を測定した。この結果から、放電容量維持率を下記の式で算出した。
  放電容量維持率(%)=
   (300サイクル後の放電容量/1サイクル後の放電容量)×100
<4.3V capacity maintenance rate>
Using the 2032 battery produced by the above method, 1C constant current charging was performed in a constant temperature bath at 60 ° C. until the electrode potential reached 4.5 V (voltage 2.95 V) at 4.0 mA. This constant voltage charging was continued until the current value reached 0.12 mA (however, the upper limit of the charging time was 2 hours). Next, 1C constant current discharge was performed at 4.0 mA until the electrode potential reached 2.75 V (voltage 1.2 V), and one cycle was obtained. This was repeated until 300 cycles were reached, and the discharge capacity (mAh) after 300 cycles was measured. From this result, the discharge capacity retention rate was calculated by the following formula.
Discharge capacity maintenance rate (%) =
(Discharge capacity after 300 cycles / discharge capacity after 1 cycle) × 100
 70%以上       A
 60%以上70%未満  B
 50%以上60%未満  C
70% or more A
60% or more and less than 70% B
50% or more and less than 60% C
<4.3V低温特性>
 前記サイクル特性試験の温度を60℃から5℃に変更した。これ以外同様にして、1サイクル目どうしの放電容量を測定し、下記式で低温容量維持率を算出した。
  低温容量維持率(%)=
   (5℃の放電容量/60℃の放電容量)×100
<4.3V low temperature characteristics>
The temperature of the cycle characteristic test was changed from 60 ° C to 5 ° C. In the same manner as above, the discharge capacity between the first cycles was measured, and the low temperature capacity retention rate was calculated by the following formula.
Low temperature capacity retention rate (%) =
(5 ° C. discharge capacity / 60 ° C. discharge capacity) × 100
 70%以上       A
 60%以上70%未満  B
 50%以上60%未満  C
70% or more A
60% or more and less than 70% B
50% or more and less than 60% C
 結果を下表1に示す。
Figure JPOXMLDOC01-appb-T000035
The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
 試験No.:Cで始まるものは比較例
 *1 化合物添加量:電解液全量(電解質を含む)に対する含有率(質量%)
 *2 溶媒添加量:溶媒の全量に対する含有率(体積%)
Figure JPOXMLDOC01-appb-T000036
Test No. : Comparative examples starting with C * 1 Compound addition amount: Content (% by mass) with respect to the total amount of electrolyte (including electrolyte)
* 2 Solvent addition amount: Content (% by volume) with respect to the total amount of solvent
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 上記の結果より、本発明に係る特定有機化合物を用いることにより、非水電解液からのガス発生に基づく高い過充電防止性、電池性能の劣化抑制性(サイクル特性)、低温特性を同時に満足することができることが分かる。 From the above results, by using the specific organic compound according to the present invention, the high overcharge prevention property based on the generation of gas from the non-aqueous electrolyte, the battery performance deterioration suppression property (cycle property), and the low temperature property are satisfied at the same time. I can see that
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2013年3月28日に日本国で特許出願された特願2013-070495に基づく優先権を主張するものであり、これらはここに参照してその内容を本明細書の記載の一部として取り込む。
While this invention has been described in conjunction with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified and are contrary to the spirit and scope of the invention as set forth in the appended claims. I think it should be interpreted widely.
This application claims priority based on Japanese Patent Application No. 2013-070495, filed in Japan on March 28, 2013, which is hereby incorporated herein by reference. Capture as part.
C 正極(正極合材)
 1 正極導電材(集電体)
 2 正極活物質層
A 正極(正極合材)
 3 負極導電材(集電体)
 4 負極活物質層
5 非水電解液
6 動作手段
7 配線
9  セパレータ
10 リチウムイオン二次電池
12 セパレータ
14 正極シート
16 負極シート
18 負極を兼ねる外装缶
20 絶縁板
22 封口板
24 正極集電
26 ガスケット
28 圧力感応弁体
30 電流遮断素子
100 有底筒型形状リチウム二次電池
50 電流遮断封口体
51 正極キャップ
52 凸部
 52a ガス抜き孔
53 フランジ部
54 底板
55 凹部
56 フランジ部
57 電力導出板
 57a 凹部57
 57b フランジ部
58 PTCサーミスタ素子
59 封口体用絶縁ガスケット
61 負極端子(上蓋)
62 負極
63 セパレータ(電解液を含む)
64 ガスケット(シール材)
65 正極
66 正極管(底蓋)
 
C positive electrode (positive electrode composite)
1 Positive electrode conductive material (current collector)
2 Positive electrode active material layer A Positive electrode (positive electrode mixture)
3 Negative electrode conductive material (current collector)
4 Negative electrode active material layer 5 Nonaqueous electrolyte 6 Operating means 7 Wiring 9 Separator 10 Lithium ion secondary battery 12 Separator 14 Positive electrode sheet 16 Negative electrode sheet 18 Exterior can 20 also serving as negative electrode Insulating plate 22 Sealing plate 24 Positive electrode current collector 26 Gasket 28 Pressure-sensitive valve body 30 Current interrupting element 100 Bottomed cylindrical lithium secondary battery 50 Current interrupting sealing body 51 Positive electrode cap 52 Convex part 52a Gas vent hole 53 Flange part 54 Bottom plate 55 Concave part 56 Flange part 57 Power outlet plate 57a Concave part 57
57b Flange part 58 PTC thermistor element 59 Insulating gasket 61 for sealing body Negative electrode terminal (upper cover)
62 Negative electrode 63 Separator (including electrolyte)
64 Gasket (sealing material)
65 Positive electrode 66 Positive electrode tube (bottom cover)

Claims (18)

  1.  正極と負極と非水電解液とを有する非水二次電池であって、
     前記負極はその通常作動電位が対金属リチウムで1.2V以上であり、
     前記非水電解液は、電解質と、有機溶媒と、下記式(I)で示される化合物またはアリール基またはヘテロ環基を部分構造に有するオニウム塩とを含む非水二次電池。
    Figure JPOXMLDOC01-appb-C000001
    (X、Xは置換基を表し、少なくとも一つがアリール基含有基またはLとともにヘテロ環基をなす基である。両者は互いに同一でも異なっていてもよい。またX、Xは互いに結合ないし縮合して環構造を形成してもよい。あるいは、Xが省略されて、XとLとが結合して環を形成していてもよい。XとLとが結合して環を形成していてもよい。Lは-O-、-S-、-NR-、-CO-、-CR-、またはそれらの組合せである。R~Rはそれぞれ独立に水素原子または置換基を表す。R~RはXと結合して環を形成していてもよい。)
    A non-aqueous secondary battery having a positive electrode, a negative electrode, and a non-aqueous electrolyte,
    The negative electrode has a normal operating potential of 1.2 V or more for lithium metal,
    The nonaqueous electrolytic solution is a nonaqueous secondary battery including an electrolyte, an organic solvent, and an onium salt having a partial structure having a compound represented by the following formula (I), an aryl group, or a heterocyclic group.
    Figure JPOXMLDOC01-appb-C000001
    (X 1 and X 2 each represents a substituent, and at least one of them is an aryl group-containing group or a group that forms a heterocyclic group with L 1. Both may be the same or different. X 1 and X 2 may form a ring structure bonded to fused with each other. Alternatively, X 1 is omitted, X 2 and L 1 and there is a good .X 1 also form a ring with L 1 combined with optionally form a ring .L 1 is -O -, - S -, - NR a -, - CO -, - CR b R c -, or a combination thereof .R a ~ R c each independently represents a hydrogen atom or a substituent, and R a to R c may combine with X 1 to form a ring.)
  2.  前記式(I)で示される化合物が、少なくとも一つのアルキル基を持つアリール基またはヘテロ環基を部分構造に有する請求項1に記載の非水二次電池。 The non-aqueous secondary battery according to claim 1, wherein the compound represented by the formula (I) has an aryl group or heterocyclic group having at least one alkyl group in a partial structure.
  3.  前記Lが-O-、-(CO)O-、-NR-、またはそれらの組合せである請求項1または2に記載の非水二次電池。 The non-aqueous secondary battery according to claim 1 or 2, wherein L 1 is -O-,-(CO) O-, -NR a- , or a combination thereof.
  4.  前記Lが*-O-**、*-(CRm3-**、*-(CO)O-**、*-O(CO)O-**、*-NR-**、*-NR(CO)O-**、または*-NR-NR(CO)O-**である請求項1~3のいずれか1項に記載の非水二次電池。
    (R~Rは式(I)と同義である。m3は1~6の整数である。*はCO側の結合手である。**はX側の結合手である。)
    L 1 is * —O — **, * — (CR b R c ) m3 — **, * — (CO) O — **, * —O (CO) O — **, * —NR a —. The nonaqueous secondary battery according to any one of claims 1 to 3, which is **, * -NR a (CO) O-**, or * -NR a -NR a (CO) O-**. .
    (R a to R c are as defined in formula (I). M3 is an integer of 1 to 6. * is a bond on the CO side, and ** is a bond on the X 1 side.)
  5.  前記XおよびXがアルキル基および下記式(X1)~(X12)から選ばれる部分構造を持つ置換基である請求項1~4のいずれか1項に記載の非水二次電池。
    Figure JPOXMLDOC01-appb-C000002
    (RX1は置換基を表す。n11は0~4の整数を表す。n12は0~5の整数を表す。n13は0~11の整数を表す。n14は0~8の整数を表す。n15は0~4の整数を表す。n16は0~10の整数を表す。Lはアリール基を含むことがあるアルキレン基を表す。*は結合手を表す。式(X1)、(X5)、(X11)については、式(I)のLに含まれる部位であるNRを含めて示している。)
    The nonaqueous secondary battery according to any one of claims 1 to 4, wherein X 1 and X 2 are an alkyl group and a substituent having a partial structure selected from the following formulas (X1) to (X12).
    Figure JPOXMLDOC01-appb-C000002
    (R X1 represents a substituent. N11 represents an integer of 0 to 4. n12 represents an integer of 0 to 5. n13 represents an integer of 0 to 11. n14 represents an integer of 0 to 8. n15 Represents an integer of 0 to 4. n16 represents an integer of 0 to 10. L 2 represents an alkylene group that may contain an aryl group, * represents a bond, Formulas (X1), (X5), (X11) for shows, including NR a is a site contained in L 1 of formula (I).)
  6.  前記式(I)で表される化合物において、XおよびXが環を形成するとき、またはXとLとが結合して環を形成するとき、前記式(I)で表される化合物において、XおよびXが環を形成するとき、当該化合物が下記式(C1)~(C6)のいずれかで表される化合物である請求項1~5のいずれか1項に記載の非水二次電池。
    Figure JPOXMLDOC01-appb-C000003
    (RC1は置換基を表す。m1は0~4の整数を表す。m2は0~2の整数を表す。
    In the compound represented by the formula (I), when X 1 and X 2 form a ring, or when X 2 and L 1 combine to form a ring, the compound represented by the formula (I) The compound according to any one of claims 1 to 5, wherein in the compound, when X 1 and X 2 form a ring, the compound is a compound represented by any one of the following formulas (C1) to (C6): Non-aqueous secondary battery.
    Figure JPOXMLDOC01-appb-C000003
    (R C1 represents a substituent. M1 represents an integer of 0 to 4. m2 represents an integer of 0 to 2.
  7.  前記オニウム塩が、下記式(II)~(VII)のいずれかで表される化合物である請求項1に記載の非水二次電池。
    Figure JPOXMLDOC01-appb-C000004
    (R~R27は水素原子、アルキル基、アルコキシ基、アルコキシカルボニル基、アリール基、ヘテロ環基である。R~R27は、隣接するもの同士が互いに結合もしくは縮合して環構造を形成してもよい。Zはアニオンを表す。)
    The non-aqueous secondary battery according to claim 1, wherein the onium salt is a compound represented by any one of the following formulas (II) to (VII).
    Figure JPOXMLDOC01-appb-C000004
    (R 1 to R 27 are a hydrogen atom, an alkyl group, an alkoxy group, an alkoxycarbonyl group, an aryl group, or a heterocyclic group. R 1 to R 27 are bonded to each other or bonded to each other to form a ring structure. Z represents an anion.
  8.  前記R~R27がアルキル基または下記(R1)~(R10)から選ばれる請求項7に記載の非水二次電池。
    Figure JPOXMLDOC01-appb-C000005
    (R31は置換基を表す。LおよびLはそれぞれ独立にアリール基を含むことがあるアルキレン基を表す。n3は0~10の整数を表す。n4は0~11の整数を表す。n5は0~9の整数を表す。n6は0~5の整数を表す。n7は0~4の整数を表す。*は結合手を表す。)
    The nonaqueous secondary battery according to claim 7, wherein R 1 to R 27 are selected from an alkyl group or the following (R1) to (R10).
    Figure JPOXMLDOC01-appb-C000005
    (R 31 represents a substituent. L 3 and L 4 each independently represent an alkylene group that may contain an aryl group. N3 represents an integer of 0 to 10. n4 represents an integer of 0 to 11. n5 represents an integer of 0 to 9. n6 represents an integer of 0 to 5. n7 represents an integer of 0 to 4. * represents a bond.)
  9.  前記負極の作動電位が、対金属リチウムで1.4V~2Vである請求項1~8のいずれか1項に記載の非水二次電池。 The nonaqueous secondary battery according to any one of claims 1 to 8, wherein an operating potential of the negative electrode is 1.4 V to 2 V with respect to lithium as a metal.
  10.  前記負極が、チタン酸リチウム(LTO)である請求項1~9のいずれか1項に記載の非水二次電池。 The nonaqueous secondary battery according to any one of claims 1 to 9, wherein the negative electrode is lithium titanate (LTO).
  11.  前記正極の活物質が、アルカリ金属イオンを挿入放出可能な遷移金属酸化物である請求項1~10のいずれか1項に記載の非水二次電池。 The non-aqueous secondary battery according to any one of claims 1 to 10, wherein the positive electrode active material is a transition metal oxide capable of inserting and releasing alkali metal ions.
  12.  前記正極に含まれる活物質が下記式(MA)~(MC)のいずれかで表される遷移金属酸化物を含む請求項1~11のいずれか1項に記載の非水二次電池。
      Li     ・・・ (MA)
      Li     ・・・ (MB)
      Li(PO ・・・ (MC)
    (式中、MおよびMは、それぞれ独立に、Co、Ni、Fe、Mn、Cu、およびVから選択される1種以上の元素を表す。Mは、それぞれ独立に、V、Ti、Cr、Mn、Fe、Co、Ni、およびCuから選択される1種以上の元素を表す。ただし、M~Mは、その一部が、リチウム以外の周期律表の第1(Ia)族の元素、第2(IIa)族の元素、Al、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P、およびBから選ばれる少なくとも1つにより置換されていてもよい。aは0~1.2を表す。bは1~3を表す。cは0~2を表す。dは3~5を表す。eは0~2を表し、fは1~5を表す。)
    The nonaqueous secondary battery according to any one of claims 1 to 11, wherein the active material contained in the positive electrode includes a transition metal oxide represented by any of the following formulas (MA) to (MC).
    Li a M 1 O b (MA)
    Li c M 2 2 O d (MB)
    Li e M 3 (PO 4 ) f ... (MC)
    (In the formula, M 1 and M 2 each independently represent one or more elements selected from Co, Ni, Fe, Mn, Cu, and V. M 3 independently represents V, Ti. , Cr, Mn, Fe, Co, Ni, and Cu represent one or more elements selected from the group consisting of M 1 to M 3 , a part of which is the first (Ia) of the periodic table other than lithium. ) Group element, Group 2 (IIa) element, Al, Ga, In, Ge, Sn, Pb, Sb, Bi, Si, P, and B may be substituted. a represents 0 to 1.2, b represents 1 to 3, c represents 0 to 2, d represents 3 to 5, e represents 0 to 2, and f represents 1 to 5. )
  13.  前記正極の活物質が、コバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウム、ニッケルマンガンコバルト酸リチウム、マンガンニッケル酸リチウム、ニッケルコバルトアルミニウム酸リチウム、またはリン酸鉄リチウムである請求項1~12のいずれか1項に記載の非水二次電池。 The active material of the positive electrode is lithium cobalt oxide, lithium manganate, lithium nickelate, lithium nickel manganese cobaltate, lithium manganese nickelate, lithium nickel cobaltaluminate, or lithium iron phosphate. The non-aqueous secondary battery according to claim 1.
  14.  電池の通常充電正極電位が4.25V(Li/Li基準)以上である請求項1~13のいずれか1項に記載の非水二次電池。 The nonaqueous secondary battery according to any one of claims 1 to 13, wherein a normal charge positive electrode potential of the battery is 4.25 V (Li / Li + reference) or more.
  15.  電解質と、有機溶媒と、下記式(I)で示される化合物またはアリール基またはヘテロ環基を部分構造に有するオニウム塩とを含む非水二次電池用電解液。
    Figure JPOXMLDOC01-appb-C000006
    (X、Xは置換基を表し、少なくとも一つがアリール基含有基またはLとともにヘテロ環基をなす基である。両者は互いに同一でも異なっていてもよい。またX、Xは互いに結合ないし縮合して環構造を形成してもよい。あるいは、Xが省略されて、XとLとが結合して環を形成していてもよい。XとLとが結合して環を形成していてもよい。Lは-O-、-S-、-NR-、-CO-、-CR-、またはそれらの組合せである。R~Rはそれぞれ独立に水素原子または置換基を表す。R~RはXと結合して環を形成していてもよい。)
    An electrolyte for a non-aqueous secondary battery comprising an electrolyte, an organic solvent, and an onium salt having a compound represented by the following formula (I) or an aryl group or heterocyclic group in a partial structure.
    Figure JPOXMLDOC01-appb-C000006
    (X 1 and X 2 each represents a substituent, and at least one of them is an aryl group-containing group or a group that forms a heterocyclic group with L 1. Both may be the same or different. X 1 and X 2 may form a ring structure bonded to fused with each other. Alternatively, X 1 is omitted, X 2 and L 1 and there is a good .X 1 also form a ring with L 1 combined with optionally form a ring .L 1 is -O -, - S -, - NR a -, - CO -, - CR b R c -, or a combination thereof .R a ~ R c each independently represents a hydrogen atom or a substituent, and R a to R c may combine with X 1 to form a ring.)
  16.  前記オニウム塩が、下記式(II)~(VII)のいずれかで表される化合物である請求項15に記載の非水二次電池用電解液。
    Figure JPOXMLDOC01-appb-C000007
    (R~R27は水素原子、アルキル基、アルコキシ基、アルコキシカルボニル基、アリール基、ヘテロ環基である。R~R27は、隣接するもの同士が互いに結合もしくは縮合して環構造を形成してもよい。Zはアニオンを表す。)
    The electrolyte solution for a non-aqueous secondary battery according to claim 15, wherein the onium salt is a compound represented by any of the following formulas (II) to (VII).
    Figure JPOXMLDOC01-appb-C000007
    (R 1 to R 27 are a hydrogen atom, an alkyl group, an alkoxy group, an alkoxycarbonyl group, an aryl group, or a heterocyclic group. R 1 to R 27 are bonded to each other or bonded to each other to form a ring structure. Z represents an anion.
  17.  正極と負極と非水電解液とを有する非水二次電池であって、
     前記負極は、通常作動電位が対金属リチウムで1.2V以上であり
     前記非水電解液は、電解質と、還元開始電位が1.2V未満の特定有機化合物を含む非水二次電池。
    A non-aqueous secondary battery having a positive electrode, a negative electrode, and a non-aqueous electrolyte,
    The negative electrode normally has an operating potential of 1.2 V or more for lithium metal, and the non-aqueous electrolyte includes an electrolyte and a specific organic compound having a reduction initiation potential of less than 1.2 V.
  18.  前記特定有機化合物が過充電時に有効量のガスを発生する請求項17に記載の非水二次電池。 The non-aqueous secondary battery according to claim 17, wherein the specific organic compound generates an effective amount of gas when overcharged.
PCT/JP2014/058895 2013-03-28 2014-03-27 Nonaqueous secondary battery and electrolyte solution for nonaqueous secondary batteries WO2014157533A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-070495 2013-03-28
JP2013070495A JP2014194875A (en) 2013-03-28 2013-03-28 Nonaqueous secondary battery, and electrolytic solution for nonaqueous secondary battery use

Publications (1)

Publication Number Publication Date
WO2014157533A1 true WO2014157533A1 (en) 2014-10-02

Family

ID=51624494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058895 WO2014157533A1 (en) 2013-03-28 2014-03-27 Nonaqueous secondary battery and electrolyte solution for nonaqueous secondary batteries

Country Status (2)

Country Link
JP (1) JP2014194875A (en)
WO (1) WO2014157533A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015194559A1 (en) * 2014-06-16 2015-12-23 日本電気株式会社 Electrolyte and secondary cell
CN110036524A (en) * 2017-01-20 2019-07-19 富士胶片株式会社 Non-aqueous secondary batteries electrolyte, non-aqueous secondary batteries and metal complex

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016103412A1 (en) * 2014-12-25 2016-06-30 株式会社 東芝 Nonaqueous electrolyte battery and battery pack
KR102655815B1 (en) * 2023-11-02 2024-04-05 주식회사 덕산일렉테라 Electrolyte Additives for Secondary Batteries, Non-Aqueous Electrolytes for Lithium Secondary Batteries Containing the Same, and Lithium Secondary Batteries Including the Same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003132945A (en) * 2001-10-24 2003-05-09 Asahi Glass Co Ltd Secondary power supply
JP2004172117A (en) * 2002-11-15 2004-06-17 Samsung Sdi Co Ltd Organic electrolyte and lithium cell adopting it
WO2010013487A1 (en) * 2008-07-31 2010-02-04 昭和電工株式会社 Method for manufacturing negative electrode layer for electrochemical capacitor
JP2010165667A (en) * 2008-12-18 2010-07-29 Sanyo Chem Ind Ltd Additive for electrolyte
JP2010262800A (en) * 2009-05-01 2010-11-18 Sony Corp Secondary battery, electrolyte, and dicarbonyl compound
JP2011238373A (en) * 2010-05-06 2011-11-24 Sony Corp Secondary battery, electrolytic solution for secondary battery, electric tool, electric vehicle, and power storage system
WO2012057311A1 (en) * 2010-10-29 2012-05-03 旭化成イーマテリアルズ株式会社 Nonaqueous electrolyte and nonaqueous secondary battery
JP2012216419A (en) * 2011-03-31 2012-11-08 Nippon Shokubai Co Ltd Electricity storage device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003132945A (en) * 2001-10-24 2003-05-09 Asahi Glass Co Ltd Secondary power supply
JP2004172117A (en) * 2002-11-15 2004-06-17 Samsung Sdi Co Ltd Organic electrolyte and lithium cell adopting it
WO2010013487A1 (en) * 2008-07-31 2010-02-04 昭和電工株式会社 Method for manufacturing negative electrode layer for electrochemical capacitor
JP2010165667A (en) * 2008-12-18 2010-07-29 Sanyo Chem Ind Ltd Additive for electrolyte
JP2010262800A (en) * 2009-05-01 2010-11-18 Sony Corp Secondary battery, electrolyte, and dicarbonyl compound
JP2011238373A (en) * 2010-05-06 2011-11-24 Sony Corp Secondary battery, electrolytic solution for secondary battery, electric tool, electric vehicle, and power storage system
WO2012057311A1 (en) * 2010-10-29 2012-05-03 旭化成イーマテリアルズ株式会社 Nonaqueous electrolyte and nonaqueous secondary battery
JP2012216419A (en) * 2011-03-31 2012-11-08 Nippon Shokubai Co Ltd Electricity storage device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015194559A1 (en) * 2014-06-16 2015-12-23 日本電気株式会社 Electrolyte and secondary cell
US10566661B2 (en) 2014-06-16 2020-02-18 Nec Corporation Electrolytic solution and secondary battery
CN110036524A (en) * 2017-01-20 2019-07-19 富士胶片株式会社 Non-aqueous secondary batteries electrolyte, non-aqueous secondary batteries and metal complex
CN110036524B (en) * 2017-01-20 2022-03-11 富士胶片株式会社 Electrolyte for nonaqueous secondary battery, and metal complex

Also Published As

Publication number Publication date
JP2014194875A (en) 2014-10-09

Similar Documents

Publication Publication Date Title
JP5992345B2 (en) Non-aqueous secondary battery and electrolyte for non-aqueous secondary battery
JP2014127354A (en) Electrolyte for nonaqueous secondary battery, nonaqueous secondary battery, and additive for electrolyte
JP6130637B2 (en) Non-aqueous secondary battery electrolyte and secondary battery
JP5902034B2 (en) Non-aqueous secondary battery electrolyte and non-aqueous secondary battery
WO2015016187A1 (en) Nonaqueous-secondary-battery electrolyte solution and nonaqueous secondary battery
JP6071600B2 (en) Nonaqueous secondary battery electrolyte, nonaqueous secondary battery, electrolyte additive
JP6047458B2 (en) Non-aqueous secondary battery
JP6376709B2 (en) Non-aqueous secondary battery electrolyte and non-aqueous secondary battery, and additives used therefor
JP2015018667A (en) Electrolyte for nonaqueous secondary battery, nonaqueous secondary battery and additive for nonaqueous electrolyte
WO2015016189A1 (en) Nonaqueous-secondary-battery electrolyte solution and nonaqueous secondary battery
JP2014235986A (en) Electrolytic solution for nonaqueous secondary batteries, and nonaqueous secondary battery
JP2013191486A (en) Electrolytic solution for nonaqueous secondary battery and secondary battery
JP6485956B2 (en) Nonaqueous electrolyte and nonaqueous secondary battery
WO2014157533A1 (en) Nonaqueous secondary battery and electrolyte solution for nonaqueous secondary batteries
JP2014192145A (en) Nonaqueous secondary battery, and electrolytic solution for secondary battery use
JP2014013719A (en) Electrolytic solution for nonaqueous secondary battery, and secondary battery
WO2018135395A1 (en) Electrolytic solution for non-aqueous secondary batteries, non-aqueous secondary battery, and metal complex
WO2018016519A1 (en) Electrolyte solution for non-aqueous secondary battery, and non-aqueous secondary battery
JP2014063668A (en) Electrolyte for nonaqueous secondary battery and secondary battery
JP6150987B2 (en) Non-aqueous secondary battery electrolyte and secondary battery
JP6391028B2 (en) Electrolyte, lithium ion battery and lithium ion capacitor
WO2014157534A1 (en) Electrolytic solution for non-aqueous secondary batteries, non-aqueous secondary battery, and non-aqueous electrolytic solution additive
JP2014220053A (en) Nonaqueous secondary battery and electrolyte for nonaqueous secondary battery
JP2014192146A (en) Nonaqueous secondary battery, and electrolytic solution for nonaqueous secondary battery use
WO2014156428A1 (en) Electrolyte solution for nonaqueous secondary batteries, and nonaqueous secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14773986

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14773986

Country of ref document: EP

Kind code of ref document: A1