WO2016026539A1 - Système pour la production d'un mélange gazeux d'hydrogène et d'oxygène ainsi que procédé de fonctionnement du système - Google Patents

Système pour la production d'un mélange gazeux d'hydrogène et d'oxygène ainsi que procédé de fonctionnement du système Download PDF

Info

Publication number
WO2016026539A1
WO2016026539A1 PCT/EP2014/067937 EP2014067937W WO2016026539A1 WO 2016026539 A1 WO2016026539 A1 WO 2016026539A1 EP 2014067937 W EP2014067937 W EP 2014067937W WO 2016026539 A1 WO2016026539 A1 WO 2016026539A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
electrodes
electrolyte
pressure
control unit
Prior art date
Application number
PCT/EP2014/067937
Other languages
German (de)
English (en)
Inventor
Rocchi LOREDANO
Ranko RADETA
Original Assignee
Ralo Blue Systems Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ralo Blue Systems Gmbh filed Critical Ralo Blue Systems Gmbh
Priority to PCT/EP2014/067937 priority Critical patent/WO2016026539A1/fr
Publication of WO2016026539A1 publication Critical patent/WO2016026539A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a system for obtaining a gas mixture of hydrogen and oxygen as well as a method for operating this system.
  • a hydrogen-oxygen mixture e.g. the so-called "Ossidrogeno”.
  • These contain an electrolysis cell in which the electrolysis of the water takes place.
  • Intake line enters the combustion chamber of the engine.
  • Intake line enters the combustion chamber of the vehicle, allows more efficient combustion and also reduces the amount of unburned components. It also improves the thermodynamic efficiency of the engine and reduces fuel consumption.
  • the known devices have some disadvantages in terms of the efficiency of the electrolytic cell, in particular by a high heat development. Another problem is the escape of the hydrogen-oxygen mixture from the cell itself. In the previously known systems, the defined volume within the electrolysis cell of
  • the water electrolyte mixture accumulates in the lower region of the electrolysis cell and the gas mixture of hydrogen and oxygen in the upper region of the electrolytic cell.
  • the distribution of the available volume within the electrolytic cell is dynamic on the two mixtures
  • Electrolysis cell is, the higher the volume occupied by the gas mixture compared to the volume of
  • Metal plates is increased pressure of the hydrogen-oxygen mixture in conventional electrolysis cells to a reduced efficiency.
  • the invention is therefore based on the object, a system for obtaining a gas mixture of hydrogen and
  • the object is achieved by a system for obtaining a gas mixture comprising hydrogen and oxygen
  • an electrolytic cell having at least two electrodes A and B, at least one gas outlet and at least one
  • Electrolyte inlet and an electrolyte are Electrolyte inlet and an electrolyte
  • Electrolyte cell connects
  • a gas purifier which is connected via a line at the gas outlet of the refill and a further line, the purified gas mixture a
  • a pressure sensor for determining the pressure of the
  • control unit with the pressure sensor and the
  • Electrodes A and B is connected and is adapted, depending on the measured pressure, the voltage at the electrodes A and B to control so that the desired gas production is achieved.
  • Operating point can be operated, whereby a high efficiency of the cell is achieved.
  • the pressure sensor is arranged in the line between the refill container and the gas cleaner (bubbler).
  • the gas purifier is preferably designed so that a minimum pressure difference, for example 0.1 bar, for
  • the electrolysis cell has a fill level sensor and a
  • Circulation pump in the return on the control unit with the level sensor and the circulation pump so
  • the object is also achieved by a method for operating the system described above, wherein the control unit controls the voltage across the electrodes A and B depending on the pressure measured by the pressure sensor.
  • the control unit controls the voltage across the electrodes A and B depending on the pressure measured by the pressure sensor.
  • Control unit then changed so that the pressure is reduced. This is also safety-relevant, since too high a pressure means too much gas production, which could eventually lead to unnecessary gas mixture.
  • Electrodes A and B are controlled by the control unit in pulse technology with variable duty cycle and positive and negative pulses per pulse sequence. In particular, by this control was achieved that the electrolysis cell was not heated and a high level of hydrogen-oxygen gas produced could be achieved.
  • the positive impulses serve mainly the separation of the atoms, that is the splitting of the H20-molecule into
  • the negative pulses cause an abrupt reversal, whereby the electrolyte, which acts like a capacitor, experiences a so-called shock.
  • Electrolysis cell can be increased enormously.
  • the negative impulses also stop the flow of electrons, which would unnecessarily absorb energy and result in heat.
  • the pulse sequence has four positive pulses, subsequently two negative pulses and subsequently a positive pulse again.
  • the control unit permanently changes the polarity of the electrodes A and B in addition to the positive and negative pulses. This prevents further heat generation in the cell. After a certain number of
  • Pulse sequences are changed by the control unit, the polarity and it follows a certain number of pulse sequences with reverse polarity. That is, positive pulses become negative pulses and the negative pulses become positive pulses.
  • a further advantageous embodiment provides that the voltage is controlled frequency-modulated by the control unit, wherein the frequency is high when the measured pressure is near the maximum value and is lower when the pressure is below the maximum value. The maximum value is
  • the gas purifier preferably at 0.5 bar above the ambient pressure and the minimum value at approximately 0.1 bar above the ambient pressure, which is predetermined by the gas purifier. If the measured pressure reaches almost the maximum value,
  • the control unit generates up to 20 pulse sequences per second, which virtually stops the electrolysis.
  • the system operates with approximately 2.4 pulse sequences per second and an overpressure of 0.2 bar.
  • the system and the method are particularly suitable for motor vehicles and other applications, which a
  • each chamber is operated at approximately 2V, with two 6-cell electrolysis cells connected in series at a 27.6V power supply.
  • FIG. 1 shows a schematic structure of the system according to the invention
  • FIG. 2 shows the housing pan of the electrolytic cell in FIG.
  • Figure 4 shows two parts of the electrodes in an oblique view
  • Figure 5 shows a part of the electrode in another
  • Figure 6 shows a metal plate of the electrode in side view
  • Figure 8 is an oblique view of the electrolyte cell without
  • FIG. 9 shows an electrolyte inlet on the housing trough of FIG
  • FIG. 10 shows the electrolyte cell in an oblique view
  • FIG. 11 the cover of the electrolyte cell without cover in FIG.
  • FIG. 12 shows the cover of the electrolyte cell with cover in FIG.
  • FIG. 13 shows the circuit arrangement for controlling the
  • Figure 14 is a so-called H-bridge for switching the
  • FIG. 15 shows a pulse sequence
  • FIG. 15A shows schematically the sequence of pulse sequences
  • FIG. 15B schematically shows the sequence of the pulse sequences
  • Figure 16 is a schematic flow chart for controlling the
  • FIG 1 shows schematically the system according to the invention for obtaining a gas mixture of hydrogen and oxygen.
  • the system comprises an electrolytic cell 1, which is composed of six chambers 1a to lf.
  • the electrolytic cell 1 has two electrodes A and B and is filled with an electrolyte E (not shown in Figure 1).
  • the electrolysis cell 1 has on the upper side above each chamber la to lf a gas outlet 2a to f, to each of which a supply line 3 is connected, which generates the generated in the electrolytic cell Gas mixture to a refill 4 passes.
  • the refill 4 has a gas inlet 5 and a
  • the refill 4 is disposed above the electrolytic cell 1 and has on its underside a
  • the gas inlet 5 is in
  • Refill 4 is connected at its electrolyte outlet 7 with a return 8, which leads the electrolyte E back to the electrolytic cell 1.
  • a return 8 which leads the electrolyte E back to the electrolytic cell 1.
  • an electrolyte inlet 9a to 9f is provided for each chamber la to lf.
  • the return 8 is further a
  • Circulation pump 10 integrated.
  • the electrolytic cell 1 is connected to a level sensor 11, which causes that at low level of the electrolyte E in the
  • Electrolytic cell 1 pumping the circulation pump 10 via the return 8 electrolyte E from the refill 4 into the electrolytic cell 1.
  • a power supply 12 such as a
  • Alternator in a motor vehicle supplies the voltage for the electrolytic cell 1.
  • the voltage is controlled by a control unit 13.
  • the control unit 13 is for this purpose connected to a pressure sensor 14, which measures the pressure in the system, preferably as shown here in the embodiment, after the gas outlet 6 of the refill 4.
  • the gas outlet 6 is connected via a line 15 with a gas cleaner 16 (also bubbler called), wherein the gas purifier 16 is filled with distilled water DW and the generated gas mixture must flow through the gas purifier 16 before it can be passed to a consumer 17.
  • the gas purifier 16 is over a
  • the control unit 13 is connected to the pressure sensor 14 in the
  • the control unit 13 is further connected to the circulation pump 10 and the
  • Level sensor 11 connected and also causes the
  • FIG. 2 shows an oblique view of a housing pan 20, which forms the lower part of the electrolysis cell 1, in which the electrolyte E is accommodated.
  • the housing pan 20 is separated by partitions into six separate chambers la to lf
  • FIG. 3 also shows the housing pan 20 and two parts of the electrodes A and B, which are each used per chamber.
  • Figure 4 also shows in an oblique view two parts of
  • Electrodes A and B as used per chamber.
  • the electrodes A, B are of substantially rectangular
  • FIG. 5 shows a part of the electrode in another
  • FIG. 6 An oblique view, Figure 6 shows a metal plate 21 of the electrode in side view and Figure 7a to 7b, the connecting elements 22 for the metal plates 21.
  • the metal plates 21 are made of the so-called Rolex steel 904L.
  • Metal plates 21 are interconnected by insulating elements 23 made of polypropylene so that the plates do not touch each other directly.
  • insulating elements 23 made of polypropylene so that the plates do not touch each other directly.
  • holes 24 are provided in the metal plates 21, as shown in Figure 6, in which the insulating elements 23 are received.
  • Connecting elements 22 serve.
  • Metal plates can be well flowed around by the electrolyte E.
  • the connecting elements 22 are designed as metal strips with recesses 26, wherein the recesses 26 are plugged onto the projections 25 and welded thereto.
  • the connecting elements 22 are bent in the middle region in such a way that a downwardly opened U 27 results, which can be inserted over the partitions between the chambers 1a to f (see FIG. 7a).
  • FIG. 8 shows an oblique view of the housing trough 20 with the inserted metal plates 21, through the
  • Connecting elements 22 are already connected. On the bolt 28 bolt extension 29 are respectively screwed, which later serve for contacting the electrolysis cell 1 from the outside.
  • FIG. 9 shows an oblique view of the housing trough 20 with an electrolyte inlet 9 per chamber.
  • the electrolyte inlet 9 is T-shaped, which makes it possible that a common return 8 for all chambers la to lf can be used.
  • Figure 10 shows an oblique view of the finished assembled
  • Electrolysis cell 1 On the housing pan 20, a cover 30 is placed, in which per chamber la to lf a lid 31a to 31f is provided, each in the lid
  • Gas outlet 2a to 2f is integrated.
  • terminals 32A and 32B are provided, via which the voltage to the electrodes A and B can be applied.
  • FIG. 11 shows the cover 30 of the electrolysis cell without covers 31a to 31f in an oblique view
  • FIG. 12 shows the view from FIG. 11 with inserted covers 31a to 31f.
  • the projections 25 are each on opposite sides and only every second plate is electrically connected via a connecting element 22.
  • the size of the chambers la to lf is matched exactly to the dimensions of the metal plates 21, so that a special volume for the electrolyte E, which is optimal for the production of the hydrogen-oxygen gas mixture is available.
  • the gas outlets 6a to 6f are centered in the
  • Lids 31a to f integrated so that an ideal discharge of the gas mixture is ensured.
  • FIG. 13 shows the circuit arrangement for the system according to FIG. 1.
  • the core of the circuit arrangement is the microcontroller MC, which represents a part of the control unit 13 described in FIG.
  • Figure 14 shows a so-called H-bridge 40, with four MOSFET transistors 41 to 44, via which a voltage at the electrodes A and B of the electrolytic cell 1 can be applied and switched.
  • the H-bridge is used to measure the between the negative and positive pulses in the
  • the H-bridge 40 also constitutes part of the control unit 13.
  • the microcontroller MC permanently monitors the required pressure of the hydrogen-oxygen gas produced in the system and controls it by means of three selectable methods (for example PI controller or PD controller or PID controller)
  • the controlled variable is the pulse width and frequency modulated signal, ie the pulse sequences, with which the electrodes A and B are acted upon.
  • Figure 15 shows one pulse sequence per cycle at 60% duty cycle. The sequence shows four positive pulses with a pulse width of 1/2, 1, 1/2 and 1/4, followed by two negative pulses with a pulse width of 1/8 and then again a positive pulse with a pulse width of 1/4.
  • the control loop works in a closed-loop system.
  • FIG. 15A shows a high frequency of the sequence, wherein in the illustrated example the switching (see arrow) of the polarization takes place after the fourth sequence.
  • the time axis has the same unit or dimension, but the pulse sequences are transmitted at a lower frequency, and in the illustrated example, the switching occurs (see arrow) after two
  • the control unit can therefore be used as a rotating frequency modulation with a variable duty cycle, that is, the duty cycle,
  • the pulse diagram shown in FIG shows one of many sequences whose number per second continuously adapts depending on the pressure in the electrolytic cell. As a rule, that is at
  • the system works with about 2.4 such pulse sequences per second. If the cell pressure reaches almost the maximum value of approximately 0.5 bar overpressure, the MikroController MC generates up to 20 such pulse sequences per second at a correspondingly high frequency, which the
  • This pulse signal is called rotating because the polarity of the electrodes A, B, as shown in FIGS. 15A and 15B, changes continuously, that is to say in the rotational principle.
  • a signal (sequence) with positive and negative pulses is used, whereby the sequence as a whole also permanently changes the polarity.
  • the positive impulses mainly serve to separate the atoms (electrolysis).
  • the negative pulses (in the polarization representation according to FIG. 15) are (always) two pieces and change only in frequency since they are integrated in the sequence.
  • the purpose of the negative impulses is twofold: a) The abrupt reversal causes the electrolyte, which acts like a capacitor, to be shocked. This shock allows the subsequent positive pulses to work much more efficiently in electrolysis. b) The negative pulses clean the electrodes of
  • FIG. 16 shows the control of the flowchart
  • the voltage from the power supply 12 is the
  • Control unit 13 (dashed box) supplied. There will stabilized in the first step, the voltage for the microcontroller MC and the control electronics 50.
  • control electronics 50 general control electronics 50, with a voltage electronics 45 comprising the Ii-bridge 40 and a monitoring unit 60 for the
  • Level sensor 11 and the pressure sensor 14 is connected.
  • the monitoring unit 60 returns the measured values from the level sensor 11 and the pressure sensor 14 back to the microcontroller MC, which controls the voltage electronics 45 via the control electronics 50.
  • Voltage electronics 45 in turn controls by means of the Ii bridge as explained above, the electrolysis cell 1, whose
  • Level sensor 11 is monitored.
  • the manipulated variable for regulating the gas production is the voltage across the Ii bridge, which is controlled by the voltage electronics 45
  • the measured variable is the controlled variable
  • Embodiment limited, but includes all

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

L'invention concerne un système pour la production d'un mélange gazeux d'hydrogène et d'oxygène comprenant - une cellule d'électrolyse (1) présentant au moins deux électrodes (A et B) et un électrolyte (E), au moins une sortie pour les gaz (2a à 2f) et au moins une entrée pour l'électrolyte (9a à 9f), - un récipient de postremplissage (4) pour l'électrolyte (E) présentant une entrée pour les gaz (5), une sortie pour les gaz (6) et une sortie pour l'électrolyte (7), - un retour (8), qui relie la sortie pour l'électrolyte au niveau du récipient de postremplissage (4) à l'entrée pour l'électrolyte (9a à 9f) au niveau de la cellule d'électrolyse (1), - un départ (3), qui relie ladite au moins une sortie pour les gaz (2a à 2f) au niveau de la cellule d'électrolyse (1) à l'entrée pour les gaz (5) au niveau du récipient de postremplissage (4), - un dispositif de purification des gaz (16), qui est relié via une conduite (15) à la sortie pour les gaz (6) du récipient de postremplissage (4) et qui peut introduire le mélange gazeux purifié via une autre conduite (15) dans un consommateur (17), - un capteur de pression (14) pour la détermination de la pression du mélange gazeux produit, - un dispositif d'alimentation en tension (12), - une unité de régulation (13) reliée au dispositif d'alimentation en tension (12), - l'unité de régulation (13) étant reliée au capteur de pression (14) et aux électrodes (A, B) et conçue pour réguler, en fonction de la pression mesurée, la tension au niveau des électrodes (A et B) de manière telle qu'on obtient la production gazeuse souhaitée. L'invention concerne en outre un procédé pour le fonctionnement d'un tel système, l'unité de régulation (13) régulant la tension au niveau des électrodes (A et B) en fonction de la pression mesurée par le capteur de pression (14).
PCT/EP2014/067937 2014-08-22 2014-08-22 Système pour la production d'un mélange gazeux d'hydrogène et d'oxygène ainsi que procédé de fonctionnement du système WO2016026539A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/EP2014/067937 WO2016026539A1 (fr) 2014-08-22 2014-08-22 Système pour la production d'un mélange gazeux d'hydrogène et d'oxygène ainsi que procédé de fonctionnement du système

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2014/067937 WO2016026539A1 (fr) 2014-08-22 2014-08-22 Système pour la production d'un mélange gazeux d'hydrogène et d'oxygène ainsi que procédé de fonctionnement du système

Publications (1)

Publication Number Publication Date
WO2016026539A1 true WO2016026539A1 (fr) 2016-02-25

Family

ID=51542326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/067937 WO2016026539A1 (fr) 2014-08-22 2014-08-22 Système pour la production d'un mélange gazeux d'hydrogène et d'oxygène ainsi que procédé de fonctionnement du système

Country Status (1)

Country Link
WO (1) WO2016026539A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10494992B2 (en) 2018-01-29 2019-12-03 Hytech Power, Llc Temperature control for HHO injection gas
US10605162B2 (en) 2016-03-07 2020-03-31 HyTech Power, Inc. Method of generating and distributing a second fuel for an internal combustion engine
DE102021005168A1 (de) 2021-10-15 2023-04-20 Energy Cube GbR (vertretungsberechtigte Gesellschafter: Petra Rahlfs, 83022 Rosenheim, Roland Rieger, 75446 Wiernsheim) Vorrichtung und Verfahren zur Stromerzeugung
US11879402B2 (en) 2012-02-27 2024-01-23 Hytech Power, Llc Methods to reduce combustion time and temperature in an engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5690797A (en) * 1995-01-18 1997-11-25 Mitsubishi Corporation Hydrogen and oxygen gas generating system
WO2007022637A1 (fr) * 2005-08-25 2007-03-01 Canadian Hydrogen Energy Company Limited Regulation du debit et systeme d'alimentation en gaz ameliorant la combustion
US20110057455A1 (en) * 2009-09-04 2011-03-10 Innovative Energy Systems And Design, Llc Method and apparatus for hydrogen generation
US20120298521A1 (en) * 2011-05-26 2012-11-29 David Thomas Richardson Electrolyte supply tanks and bubbler tanks having improved gas diffusion properties for use in electrolyzer units
EP2762613A1 (fr) * 2013-02-01 2014-08-06 Hydrotekniks Group Holding Limited Système de carburant

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5690797A (en) * 1995-01-18 1997-11-25 Mitsubishi Corporation Hydrogen and oxygen gas generating system
WO2007022637A1 (fr) * 2005-08-25 2007-03-01 Canadian Hydrogen Energy Company Limited Regulation du debit et systeme d'alimentation en gaz ameliorant la combustion
US20110057455A1 (en) * 2009-09-04 2011-03-10 Innovative Energy Systems And Design, Llc Method and apparatus for hydrogen generation
US20120298521A1 (en) * 2011-05-26 2012-11-29 David Thomas Richardson Electrolyte supply tanks and bubbler tanks having improved gas diffusion properties for use in electrolyzer units
EP2762613A1 (fr) * 2013-02-01 2014-08-06 Hydrotekniks Group Holding Limited Système de carburant

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11879402B2 (en) 2012-02-27 2024-01-23 Hytech Power, Llc Methods to reduce combustion time and temperature in an engine
US10605162B2 (en) 2016-03-07 2020-03-31 HyTech Power, Inc. Method of generating and distributing a second fuel for an internal combustion engine
US11280261B2 (en) 2016-03-07 2022-03-22 HyTech Power, Inc. Systems for HHO gas second fuel distribution and control
US11815011B2 (en) 2016-03-07 2023-11-14 Hytech Power, Llc Generation and regulation of HHO gas
US10494992B2 (en) 2018-01-29 2019-12-03 Hytech Power, Llc Temperature control for HHO injection gas
US10619562B2 (en) 2018-01-29 2020-04-14 Hytech Power, Llc Explosion safe electrolysis unit
US11828219B2 (en) 2018-01-29 2023-11-28 Hytech Power, Llc Rollover safe electrolysis unit for vehicles
DE102021005168A1 (de) 2021-10-15 2023-04-20 Energy Cube GbR (vertretungsberechtigte Gesellschafter: Petra Rahlfs, 83022 Rosenheim, Roland Rieger, 75446 Wiernsheim) Vorrichtung und Verfahren zur Stromerzeugung

Similar Documents

Publication Publication Date Title
DE102012104789B4 (de) Skalierbares Verfahren eines proportionalen aktiven Ladezustandsausgleichs zum Managen von Variationen in dem Alterszustand von Batterien
DE102009042977B4 (de) Elektrisches System von Kraftfahrzeugen zum Koppeln von Leistungswandlern mit einem Transformator
DE2452121A1 (de) Strombegrenzungssystem fuer gleichstrommotorsteuerungen
DE102017213451A1 (de) Energiespeichervorrichtung, Verfahren zur Steuerung einer Energiespeichervorrichtung und Fahrzeug
DE102010045168B4 (de) Zündanlage und Verfahren zum Zünden von Brennstoff in einem Fahrzeugmotor durch eine Koronaentladung
DE112010001775T5 (de) Steuervorrichtung eines Boosters vom Transformator-Kopplungstyp
DE102009004901A1 (de) Bestimmung einer Maschinendrehzahl auf der Grundlage der Veränderung im dem dem Maschinenanlasser zugeführten Strom
EP0834977A2 (fr) Dispositif de charge pour au moins une batterie, en particulier une batterie pour un véhicule électrique, et méthode de fonctionnement de ce dispositif
WO2016026539A1 (fr) Système pour la production d'un mélange gazeux d'hydrogène et d'oxygène ainsi que procédé de fonctionnement du système
DE112014005128B4 (de) Lastantriebsbrennstoffzellensystem mit zwei Leistungsversorgungen
DE102010034441A1 (de) Energieversorgungssystem für ein Motorfahrzeug
DE102013008829B4 (de) Kraftfahrzeug
WO2017016738A1 (fr) Procédé et dispositif pour faire fonctionner un système électrique, système électrique correspondant
DE1961522A1 (de) Energieregenerierungssystem fuer Zerhackerschaltkreise
DE2831997A1 (de) Steuereinrichtung fuer einen naehmaschinen-impulsmotor
DE2702276C3 (de) Wahlweise aus einer äußeren Energiequelle oder aus einer aufladbaren bordeigenen Energiequelle gespeiste Schaltungsanordnung für einen Fahrzeugantrieb
EP3371847A1 (fr) Procédé pour faire fonctionner une batterie et batterie
EP0664602A1 (fr) Convertisseur à récupération avec tension de sortie régulée
EP2502329B1 (fr) Dispositif pour réduire au minimum la consommation du courant prélevé dans une batterie par une génératrice de véhicule à moteur pendant la phase de démarrage d'un véhicule à moteur
DE102004060159A1 (de) System zum Starten eines Motors einer elektrischen Antriebsmaschine
DE102017214972A1 (de) Antriebseinrichtung für ein Kraftfahrzeug sowie Verfahren zum Betreiben einer Antriebseinrichtung für ein Kraftfahrzeug
DE1538321B2 (de) Einrichtung zum regeln der ausgangsspannung eines mit stark wechselnden drehzahlen antreibbaren mehrphasengenerators
DE2347413C3 (de) Verfahren zur Steuerung des Überganges von Reihen- auf Parallelschaltung von Elementengruppen eines elektrochemischen Generators zur Speisung eines Motors
WO2005081384A2 (fr) Dispositif et procede servant a regler la frequence des cycles d'un convertisseur
DE102013204912A1 (de) Ladegerät, Kraftfahrzeug und Verfahren

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14766404

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14766404

Country of ref document: EP

Kind code of ref document: A1