WO2016026419A1 - 一种单芯片偏轴磁电阻z-x角度传感器和测量仪 - Google Patents

一种单芯片偏轴磁电阻z-x角度传感器和测量仪 Download PDF

Info

Publication number
WO2016026419A1
WO2016026419A1 PCT/CN2015/087320 CN2015087320W WO2016026419A1 WO 2016026419 A1 WO2016026419 A1 WO 2016026419A1 CN 2015087320 W CN2015087320 W CN 2015087320W WO 2016026419 A1 WO2016026419 A1 WO 2016026419A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
sensor
magnetoresistive
magnetoresistive sensor
axis magnetoresistive
Prior art date
Application number
PCT/CN2015/087320
Other languages
English (en)
French (fr)
Inventor
迪克⋅詹姆斯⋅G
周志敏
Original Assignee
江苏多维科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏多维科技有限公司 filed Critical 江苏多维科技有限公司
Priority to US15/505,236 priority Critical patent/US10473449B2/en
Priority to JP2017509770A priority patent/JP6663420B2/ja
Priority to EP15833549.7A priority patent/EP3184955B1/en
Publication of WO2016026419A1 publication Critical patent/WO2016026419A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0011Arrangements or instruments for measuring magnetic variables comprising means, e.g. flux concentrators, flux guides, for guiding or concentrating the magnetic flux, e.g. to the magnetic sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/098Magnetoresistive devices comprising tunnel junctions, e.g. tunnel magnetoresistance sensors

Definitions

  • the invention relates to the field of magnetic sensors, in particular to a single-chip off-axis magnetoresistance Z-X angle sensor and a off-axis magnetoresistance Z-X angle measuring instrument based on the sensor.
  • the magnetoresistance angle measuring instrument composed of the magnetoresistive angle sensor and the permanent magnet code disc can be applied to fields such as a magnetic encoder and a rotary position sensor.
  • a magnetoresistive sensor such as TMR, GMR, etc.
  • the TMR magnetoresistive sensing unit has a unidirectional plane magnetic field sensitive direction. Therefore, the sensor slice of the X sensitive direction is rotated by 90 degrees to obtain a sensor slice in the Y sensitive direction, and the two slices are connected by binding. And packaged in the same chip, the XY magnetoresistive angle sensor chip affects the measurement accuracy of the sensor due to the installation position between the slices and the operation of the slice during packaging, and there is also a problem of wire connection between the slices, the process More complicated;
  • the bridge structure of the linear X, Y magnetoresistive sensor composed of the TMR magnetoresistive sensor unit when using the push-pull structure, usually one of the slices formed by the two bridge arms is deflected 180 with respect to the other.
  • the connection between the slices is realized by binding, which also affects the measurement precision of the sensor and increases the complexity of the process.
  • this paper proposes a single-chip ZX magnetoresistive angle sensor to replace the XY magnetoresistive angle sensor, and simultaneously manufacture the Z-axis magnetoresistive sensor and the X-axis magnetoresistive sensor on the same slice, for the X-axis magnetoresistance
  • the sensor uses a flux concentrator to enhance the magnetic field concentration of the magnetoresistive element column when placed near the magnetoresistive element column, and shields the magnetic field of the magnetoresistive element column when the flux concentrator is placed over the magnetoresistive element column
  • the attenuation effect enables the design and manufacture of the reference bridge to achieve a highly sensitive X-axis magnetoresistive sensor while avoiding the double-slice push-pull structure; for the Z-axis magnetoresistive sensor, a flux concentrator is used to cover Deviating from the magnetoresistive element column at the center of the flux concentrator, the Z magnetic field component is twisted into an X-direction magnetic field, and the Z magnetic field component is converted into
  • the single-chip ZX magnetoresistive angle sensor is placed on the side of a circular permanent magnet code wheel
  • the measurement of the magnetic field rotation angle of the circular permanent magnet code disk in the ZX plane by measuring the X and Z magnetic field components is relatively larger than placing the XY angle sensor above the XZ plane of the circular permanent magnet code disk. Space flexibility, these have successfully solved the shortcomings of the above XY angle sensor.
  • the invention discloses a single-chip off-axis magnetoresistive Z-X angle sensor for detecting a magnetic field rotation angle on a plane perpendicular to a surface of a substrate, comprising:
  • At least one X-axis magnetoresistive sensor on the substrate for detecting an X-axis magnetic field component parallel to the surface of the substrate;
  • At least one Z-axis magnetoresistive sensor on the substrate for detecting a Z-axis magnetic field component perpendicular to the surface of the substrate;
  • the X-axis magnetoresistive sensor and the Z-axis magnetoresistive sensor each include a magnetoresistive sensing unit and a flux concentrator, the flux concentrator being elongated, the long axis of which is parallel to the Y-axis direction, and the short axis Parallel to the X-axis direction, the sensitive direction of the magnetoresistive sensing unit is parallel to the X-axis direction;
  • the magnetoresistive sensing unit of the Z-axis magnetoresistive sensor and the magnetoresistive sensing unit of the X-axis magnetoresistive sensor are electrically connected to a magnetoresistive bridge including at least two bridge arms, wherein each bridge arm is one or a plurality of the magnetoresistive sensing units are electrically connected to form a two-port structure, and the magnetoresistive sensing units in the bridge arms are arranged in a plurality of magnetoresistive unit rows along a direction parallel to the Y-axis;
  • the magnetoresistive bridge of the Z-axis magnetoresistive sensor is a push-pull bridge, wherein the push arm and the arm are respectively located at a center line of the Y-axis above or below the flux concentrator in the Z-axis magnetoresistive sensor Sides, and the distances to the respective Y-axis centerlines are equal;
  • the magnetoresistive bridge of the X-axis magnetoresistive sensor is a reference bridge, wherein the reference arm is located at a position of a Y-axis center line above or below the flux concentrator of the X-axis magnetoresistive sensor, and the sensitive arm is located In the X-axis magnetoresistive sensor, the center line of the Y-axis above or below the flux concentrator is at a distance greater than half the width of the flux concentrator.
  • the flux concentrator is a soft magnetic alloy material containing one or more elements of Ni, Fe, Co.
  • the magnetoresistive sensing unit is a GMR or TMR magnetoresistive sensing unit.
  • the Z-axis magnetoresistive sensor comprises two Z-axis magnetoresistive sensor sub-units, and is respectively located on both sides of the X-axis magnetoresistive sensor along the X-axis direction, the Z-axis magnetoresistive sensor and the The X-axis magnetoresistive sensors respectively correspond to different flux concentrators.
  • the X-axis magnetoresistive sensor comprises two X-axis magnetoresistive sensor sub-units, and is respectively located on both sides of the Z-axis magnetoresistive sensor along the X-axis direction, the Z-axis magnetoresistive sensor and the The X-axis magnetoresistive sensors respectively correspond to different flux concentrators.
  • the X-axis and Z-axis magnetoresistive sensors respectively comprise a plurality of X-axis magnetoresistive sensor sub-units and Z-axis magnetoresistive sensor sub-units, and are arranged alternately along the X-axis direction, the Z-axis magnetoresistance
  • the sensor and the X-axis magnetoresistive sensor respectively correspond to different flux concentrators.
  • the Z-axis magnetoresistive sensor and the X-axis magnetoresistive sensor are arranged along the Y-axis direction, and the Z-axis magnetoresistive sensor and the X-axis magnetoresistive sensor respectively correspond to different flux concentrations Device.
  • the magnetoresistive sensing unit of the Z-axis magnetoresistive sensor and the magnetoresistive sensing unit of the X-axis magnetoresistive sensor are mixedly arranged along the X-axis direction, the Z-axis magnetoresistive sensor and the X-axis magnetic field
  • the resistive sensors have a common flux concentrator.
  • the Z-axis magnetoresistive sensor or the Z-axis magnetoresistive sensor subunit includes one of the flux concentrators, and the magnetoresistive sensing unit corresponds to the one of the flux concentrators.
  • the Z-axis magnetoresistive sensor or the Z-axis magnetoresistive sensor subunit comprises two of the flux concentrators, and the push arm and the arm are respectively located at a Y-axis center line of the two flux concentrators The location on the different sides.
  • the Z-axis magnetoresistive sensor or the Z-axis magnetoresistive sensor subunit comprises N+2 of the flux concentrators, and the magnetoresistive sensing unit corresponds to the middle N of the flux concentrators,
  • the N is a positive integer.
  • the X-axis magnetoresistive sensor or the X-axis magnetoresistive sensor subunit comprises 2N magnetoresistive element columns, and the spacing between two adjacent flux concentrators in the X-axis magnetoresistive sensor is L
  • the spacing is 2L
  • the number of flux concentrators of the X-axis magnetoresistive sensor is 2N-2
  • two of the magnetoresistive element columns in the middle of the X-axis magnetoresistive sensor are adjacent to each other and correspond to a reference arm
  • the spacing is 2L
  • the number of flux concentrators of the X-axis magnetoresistive sensor is 2N-1
  • two of the magnetoresistive element rows in the middle of the X-axis magnetoresistive sensor correspond to the sensitive arm
  • the spacing is 2L
  • L is a natural number and the N is an integer greater than one.
  • the X-axis magnetoresistive sensor or the X-axis magnetoresistive sensor subunit comprises 2N magnetoresistive unit columns and 2N-1 of the flux concentrators, and the X-axis magnetoresistive sensor has a magnetoresistance unit column Alternatingly distributed above or below the flux concentrator of the X-axis magnetoresistive sensor and at a position from the Y-axis centerline that is greater than half the width of the flux concentrator of the X-axis magnetoresistive sensor, the N is a positive integer.
  • the Z-axis magnetoresistive sensor comprises 4N magnetoresistive element columns, and corresponds to 2N of the flux concentrators in the middle, the X-axis magnetoresistance The sensor comprises 2N+2 magnetoresistive element columns, and the distance between two magnetoresistive element columns in the middle of the X-axis magnetoresistive sensor is 4L, and the distance between two adjacent flux concentrators is L Where L is a natural number and the N is an integer greater than one.
  • the number of flux concentrators is 2N+2
  • the Z-axis magnetoresistive sensor comprises 4N magnetoresistive element columns corresponding to 2N of the flux concentrators in the middle
  • the X-axis magnetoresistive sensor The number of magnetoresistive unit columns included is 4N, and the distance between two magnetoresistive element columns in the middle of the X-axis magnetoresistive sensor is 2L, and the distance between two adjacent flux concentrators is L, Where L is a natural number and the N is an integer greater than one.
  • the number of flux concentrators is N
  • the number of magnetoresistive unit columns included in the Z-axis magnetoresistive sensor is 2 (N-2), corresponding to the middle N-2 flux concentrators
  • the X-axis magnetoresistive sensor includes a number of magnetoresistance unit columns of 2 (N-1), and one of the flux concentrators on one side is distributed with a column of magnetoresistive elements on the Y-axis center line, and the N is an integer greater than 3.
  • the number of the magnetoresistive element columns corresponding to the reference arm and the sensitive arm in the X-axis magnetoresistive sensor is the same, and the magneto-resistance unit column corresponding to the push arm and the arm in the Z-axis magnetoresistive sensor The same amount.
  • the flux concentrator corresponding to the Z-axis magnetoresistive sensor and the X-axis magnetoresistive sensor has the same width and the same thickness.
  • the magnetic field gain coefficient at the position of the magnetoresistive element column at the gap between the flux concentrators of the X-axis magnetoresistive sensor is 1 ⁇ Asns ⁇ 100, and the flux concentration of the X-axis magnetoresistive sensor is concentrated.
  • the magnetic field attenuation coefficient of the position of the magnetoresistive element column at the center line of the Y-axis above or below the device is 0 ⁇ Aref ⁇ 1.
  • the spacing L between two adjacent flux concentrators in the Z-axis magnetoresistive sensor is not less than the width Lx of the flux concentrator of the Z-axis magnetoresistive sensor.
  • a distance L between two adjacent flux concentrators in the Z-axis magnetoresistive sensor is >2Lx, and the Lx is a width of the flux concentrator in the Z-axis magnetoresistive sensor.
  • the smaller the distance between the magnetoresistive element row and the upper or lower edge of the magnetic flux concentrator, or the thickness Lz of the magnetic flux concentrator thereon the smaller the width Lx of the magnetic flux concentrator or the magnetic flux concentrator thereon, the higher the sensitivity of the Z-axis magnetoresistive sensor.
  • the reference bridge of the X-axis magnetoresistive sensor and/or the push-pull bridge of the Z-axis magnetoresistive sensor is one of a half bridge, a full bridge or a quasi-bridge structure.
  • the X-axis magnetoresistive sensor and the magnetoresistive sensing unit of the Z-axis magnetoresistive sensor all have the same magnetic field sensitivity.
  • Another aspect of the present invention also provides a off-axis magnetoresistive ZX angle measuring instrument, comprising the above-mentioned single-chip off-axis magnetoresistive ZX angle sensor, the off-axis magnetoresistance ZX angle measuring instrument further comprising a circular permanent magnet code disc
  • the magnetization direction of the circular permanent magnet code disk is parallel to a line located in a plane of rotation of the circular permanent magnet code disk and passing through a center of the circular permanent magnet code disk, the circular permanent magnet code disk
  • Both the width direction and the rotation axis direction are along the Y-axis direction
  • the rotation plane is the XZ plane
  • the XY plane where the substrate is located is at a distance from the edge of the circular permanent magnet code disc
  • the Z-axis passes through the single chip.
  • the Z-axis magnetoresistive sensor includes two Z-axis magnetoresistive sensor sub-units, and is respectively located on both sides of the X-axis magnetoresistive sensor along the X-axis direction, and the Z-axis magnetoresistive sensor and the X-axis magnetoresistive sensor respectively correspond to different
  • the flux concentrator, the Det is 0.2-0.3 r
  • the space between the X-axis magnetoresistive sensor and the Z-axis magnetoresistive sensor subunit is 0-0.3 r
  • r is the radius of the circular permanent magnet code disk.
  • the X-axis magnetoresistive sensor comprises two X-axis magnetoresistive sensor sub-units, and is respectively located on both sides of the Z-axis magnetoresistive sensor along the X-axis direction, the Z-axis magnetoresistive sensor and the X-axis magnetoresistive sensor Corresponding to different flux concentrators respectively, the Det is 0.6-0.8 r, and a space between the X-axis magnetoresistive sensor sub-unit and the Z-axis magnetoresistive sensor is 0.5-0.7 r, where r is the radius of the circular permanent magnet code disk.
  • the X-axis magnetoresistive sensor and the Z-axis magnetoresistive sensor respectively include a plurality of X-axis magnetoresistive sensor subunits and Z-axis magnetoresistive sensor subunits, and are alternately arranged along the X-axis direction, the Z-axis magnetoresistive sensor and The X-axis magnetoresistive sensors respectively correspond to different flux concentrators, and the Det is 0.5-0.7 r, and a space between adjacent Z-axis magnetoresistive sensor sub-units and X-axis magnetoresistive sensor sub-units is 0.6 r, where r is the radius of the circular permanent magnet code disk.
  • a Z-axis magnetoresistive sensor and an X-axis magnetoresistive sensor are arranged along the Y-axis direction, and the Z-axis magnetoresistive sensor and the X-axis magnetoresistive sensor respectively correspond to different flux concentrators, and the Det is 0.5-0.7 r, r is the radius of the circular permanent magnet code disk.
  • the magnetoresistive sensing unit of the Z-axis magnetoresistive sensor and the magnetoresistive sensing unit of the X-axis magnetoresistive sensor are mixedly arranged in the X-axis direction, and the Z-axis magnetoresistive sensor and the X-axis magnetoresistive sensor have the same Flux concentrator, the Det is 0.5-0.7 r, r is the radius of the circular permanent magnet code disk.
  • the Z-axis magnetoresistive sensor and the X-axis magnetoresistive sensor are arranged along the Y-axis direction, and the Z-axis magnetoresistive sensor and the X-axis magnetoresistive sensor have no common flux concentrator, and the single chip bias
  • the shaft magnetoresistance ZX angle sensor is located in the X-axis and Z-axis magnetic field uniform regions of the circular permanent magnet code disk along the width direction of the circular permanent magnet code disk.
  • Figure 9 Z-axis magnetoresistive sensor structure 1.
  • Figure 11 Z-axis magnetoresistive sensor structure III.
  • Figure 12 X-axis-Z-axis magnetoresistive sensor hybrid structure 1.
  • Figure 14 X-axis-Z-axis magnetoresistive sensor hybrid structure III.
  • Figure 15 Schematic diagram of the X-axis direction magnetic field measurement of the X-axis magnetoresistive sensor.
  • Fig. 16 is a magnetic field distribution diagram of the position of the magnetoresistive sensor of the X-axis magnetoresistive sensor in the X-axis direction in the X-axis direction.
  • Figure 17 Schematic diagram of the Z-axis direction magnetic field measurement of the Z-axis magnetoresistive sensor.
  • Fig. 18 is a magnetic field distribution diagram of the position of the magnetoresistive sensor of the Z-axis magnetoresistive sensor in the X-axis direction in the external magnetic field in the Z-axis direction.
  • Figure 19 shows a typical topological structure of a single-chip Z-X magnetoresistive angle sensor structure.
  • Figure 20 shows a typical topological structure of a single-chip Z-X magnetoresistive angle sensor structure.
  • Figure 21 shows a typical topological structure of a single-chip Z-X magnetoresistive angle sensor structure.
  • Figure 22 is an electrical connection diagram of a Z-axis magnetoresistive sensor with a full bridge structure.
  • Figure 23 is a simplified diagram of a Z-axis magnetoresistive sensor with a full bridge structure.
  • Figure 24 is an electrical connection diagram of the X-axis magnetoresistive sensor of the full bridge structure.
  • Figure 25 is a simplified diagram of an X-axis magnetoresistive sensor in full-bridge configuration.
  • Figure 26 shows the electrical connection of the X-axis-Z-axis hybrid structure sensor of the full-bridge structure.
  • Figure 27 shows the electrical connection of the X-axis-Z-axis hybrid structure sensor of the full-bridge structure.
  • Figure 28 shows the electrical connection of the X-axis-Z-axis hybrid structure sensor of the full-bridge structure.
  • Figure 29 Schematic diagram of the angle measurement of a single-chip X-Z magnetoresistive angle sensor + circular permanent magnet code disk.
  • Fig. 30 is a typical relationship between the average magnetic field measurement angle and the rotation angle of the permanent magnet code wheel in the structure of a single-chip Z-X magnetoresistive sensor.
  • Fig. 31 is a typical relationship between the average magnetic field measurement angle and the rotation angle of the permanent magnet code wheel in the structure 2 of the single-chip Z-X magnetoresistive sensor.
  • Fig. 32 is a typical relationship between the average magnetic field measurement angle and the rotation angle of the permanent magnet code disk in the structure three of the single-chip Z-X magnetoresistive sensor.
  • Figure 33 shows the magnetic field measurement signal of the Z-axis and X-axis magnetoresistive sensor in the single-chip Z-X magnetoresistive sensor structure.
  • Figure 34 shows the magnetic field measurement signal of the Z-axis and X-axis magnetoresistive sensors in the structure 2 of the single-chip Z-X magnetoresistive sensor.
  • Figure 35 shows the magnetic field measurement signal of the Z-axis and X-axis magnetoresistive sensors in the three-chip Z-X magnetoresistive sensor structure.
  • Figure 36 The relationship between the average magnetic field measurement angle of the single-chip Z-X magnetoresistive sensor structure and the linear fitting curve R2 of the permanent magnet code disk rotation angle and the edge distance of the chip off-chip.
  • Figure 37 The relationship between the average magnetic field measurement angle of the single-chip Z-X magnetoresistive sensor structure and the linear fitting curve R2 of the permanent magnet code disk rotation angle and the edge distance of the chip off-chip.
  • the single-chip Z-X magnetoresistive sensor structure has a three-to-five average magnetic field measurement angle and a permanent magnet code disk rotation angle linear fitting curve R2 and a chip off-chip edge distance relationship diagram.
  • Fig. 39 is a diagram showing the relationship between the average magnetic field measurement angle of the single-chip Z-X magnetoresistive sensor structure and the linear fitting curve R2 of the permanent magnet code disk rotation angle and the chip and the X-axis and Z-axis magnetoresistive sensor spans.
  • Fig. 40 is a diagram showing the relationship between the average magnetic field measurement angle of the single-chip Z-X magnetoresistive sensor and the linear fitting curve R2 of the permanent magnet code disk rotation angle and the span of the chip and the X-axis and Z-axis magnetoresistive sensors.
  • Figure 41 Single-chip Z-X magnetoresistive sensor structure Three-to-five average magnetic field measurement angle and permanent magnet code wheel rotation angle linear fitting curve R2 and chip and X and Z-axis magnetoresistive sensor span relationship diagram.
  • FIG. 1 is a view showing a structure of a single-chip magnetoresistive ZX angle sensor, including a Si substrate 1, an X-axis magnetoresistive sensor 3 located above the Si substrate 1, and a Z-axis magnetoresistive sensor 2, wherein the X-axis magnetoresistance
  • the sensor 3 includes two X-axis magnetoresistive sensor sub-units 31 and 32, and is arranged on both sides of the Z-axis magnetoresistive sensor 2 in the X-axis direction.
  • the Z-axis magnetoresistive sensor 2 (1) includes two Z-axis magnetoresistive sensor sub-units 21 and 22, and is arranged on both sides of the X-axis magnetoresistive sensor 3 (1) in the X-axis direction.
  • FIG. 3 is a three-layer structure diagram of a single-chip magnetoresistive ZX angle sensor, including a Si substrate 1, and an X-axis magnetoresistive sensor 3 (2) located above the Si substrate 1, and a Z-axis magnetoresistive sensor 2 (2)
  • the Z-axis magnetoresistive sensor 2 (2) includes a plurality of Z-axis magnetoresistive sensor sub-units 23, 24 and 25,
  • the X-axis magnetoresistive sensor 3 (2) includes a plurality of X-axis magnetoresistive sensor sub-units 33, 34 and 35, and the X-axis magnetoresistive sensor subunit and the Z-axis magnetoresistive sensor subunit are alternately arranged along the X-axis direction.
  • FIG. 4 is a four-layer structure diagram of a single-chip magnetoresistive ZX angle sensor, including a Si substrate 1, and an X-axis magnetoresistive sensor 3 (A) located above the Si substrate 1, and a Z-axis magnetoresistive sensor 2 (A)
  • the Z-axis magnetoresistive sensor 2 (A) and the X-axis magnetoresistive sensor 3 (A) are arranged in the Y-axis direction.
  • FIG. 5 is a fifth diagram of a structure of a single-chip magnetoresistive ZX angle sensor, including a Si substrate 1, and an X-axis magnetoresistive sensor 3 (B) and a Z-axis magnetoresistive sensor 2 (B) located above the Si substrate 1.
  • the X-axis magnetoresistive sensor and the Z-axis magnetoresistive sensor have a hybrid structure and are arranged in the same space.
  • the magnetoresistive element row 5 includes a reference magnetoresistive element column 52 located at a Y center line position above or below the flux concentrator 41 and a sensitive magnetoresistive resistor located at a distance from the flux concentrator 41 that is greater than a half width of the flux concentrator
  • the cell column 51 in the structure 1 of the X-axis magnetoresistive sensor shown in FIG.
  • the spacing between adjacent two flux concentrators is L
  • the X-axis magnetoresistive sensor or the X-axis magnetoresistive sensor subunit includes 2N (N>1 integer) magnetoresistive unit columns, and the number of flux concentrators is even 2N-2.
  • the two magnetoresistive element columns in the middle of the X-axis magnetoresistive sensor are adjacent to each other, corresponding to the reference magnetoresistive element column, and have a pitch of 2L.
  • FIG. 7 is a structure of an X-axis magnetoresistive sensor corresponding to a single-chip magnetoresistive ZX angle sensor, and a structure of a sub-unit thereof, and FIG. 2(4), including a flux concentrator 4(1) and a magnetoresistive unit column. 5(1), wherein the magnetoresistive element row 5(1) includes a reference magnetoresistive element column 54 located at a Y centerline position above or below the flux concentrator 44 and at a distance from the flux concentrator 44 that is greater than a flux concentration In the structure 2 of the X-axis magnetoresistive sensor shown in FIG.
  • the X-axis magnetoresistive sensor or the X-axis magnetoresistive sensor subunit includes 2N (N>1 integer) magnetoresistive unit columns, the number of flux concentrators is odd 2N-1, and the two magnets in the middle of the X-axis magnetoresistive sensor
  • the resistor unit column corresponds to the column of sensitive magnetoresistive elements and has a pitch of 2L, where L is a natural number.
  • FIG. 8 is a structure of an X-axis magnetoresistive sensor corresponding to a single-chip magnetoresistive ZX angle sensor to a structure 4 and a sub-unit thereof.
  • FIG. 2(5) includes a flux concentrator 4 (5) and a magnetoresistive unit column. 5(5), wherein the magnetoresistive element row 5 (5) comprises a reference magnetoresistive element column 58 located at a Y center line position on the upper or lower surface of the flux concentrator 4 (5) and a distance flux concentrator The Y-center line of 4(5) is located at a distance 57 that is greater than the half-width position of the flux concentrator.
  • the X-axis magnetoresistive sensor or the X-axis magnetoresistive sensor subunit includes 2N (N>0 integer) magnetoresistive unit columns and 2N-1 flux concentrators, and the magnetoresistive element columns are alternately distributed above the flux concentrator Or the lower Y-axis center line and the center line from the Y-axis are larger than half the width of the flux concentrator. Therefore, the X-axis magnetoresistive sensor or the X-axis magnetoresistive sensor sub-unit of the structure is concentrated near one of the two sides. There is no reference magnetoresistive unit column.
  • FIG. 9 is a structure of a Z-axis magnetoresistive sensor corresponding to a single-chip magnetoresistive ZX angle sensor and a structure of a Z-axis magnetoresistive sensor sub-unit and a Z-axis magnetoresistive sensor sub-unit thereof, FIG.
  • the magnetoresistive cell row 7 includes a push arm magnetoresistive element column 71 located at two positions equidistant from the Y center line on both sides of the Y center line on the upper surface or the lower surface of the flux concentrator 6 and Pull arm magnetoresistive unit column and 72,
  • the Z-axis magnetoresistive sensor or the Z-axis magnetoresistive sensor subunit includes N+2 (an integer of N>0) flux concentrators, and the magnetoresistive cell columns correspond to the middle N flux concentrators.
  • FIG. 10 is a structure of a single-chip magnetoresistive ZX angle sensor, a structure of a Z-axis magnetoresistive sensor of structure four and a structure of a Z-axis magnetoresistive sensor sub-unit, FIG. 3 (4), comprising a flux concentrator 719,
  • the magnetoresistive element columns 619 and 620 correspond to the flux concentrator 719.
  • FIG. 11 is a structure of a single-chip magnetoresistive ZX angle sensor, a structure of a Z-axis magnetoresistive sensor of structure four and a structure of a Z-axis magnetoresistive sensor sub-unit, FIG. 3 (5), comprising two flux concentrators 720,
  • the two magnetoresistive element columns 621 correspond to different lateral positions of the two flux concentrators 720 located equidistant from the center line of the Y-axis, for example, respectively located on the left and right sides of the Y-axis center line of the two flux concentrators. It can also be located on the right and left sides of the Y-axis centerline of the two flux concentrators.
  • FIG. 12 is a hybrid structure of a Z-axis magnetoresistive sensor and an X-axis magnetoresistive sensor corresponding to the structure of a single-chip magnetoresistive ZX angle sensor.
  • FIG. 2-3(1) wherein the X-axis magnetoresistive sensor and the Z-axis magnetoresistive sensor are shown in FIG.
  • Magnetoresistance sensing units 5-7(3) and 5 having common flux concentrators 4-6(3), 4-6(1), and 4-6(2) corresponding to X-axis magnetoresistive sensors -7(4) and the magnetoresistive sensing units 5-7(1) and 5-7(2) corresponding to the Z-axis magnetoresistive sensor are arranged in a mixed arrangement, and the corresponding number of the flux concentrators is 2*N+2 (N is an integer greater than 1), the Z-axis magnetoresistive sensor comprises 4*N magnetoresistive element columns, and corresponds to the middle 2N flux concentrators,
  • the X-axis magnetoresistive sensor comprises 2*N+2 magnetoresistive element columns, and the distance between the two magneto resistance cell columns in the middle is 4*L, and the distance between two adjacent flux concentrators is L.
  • FIG. 13 is a hybrid structure of a Z-axis magnetoresistive sensor and an X-axis magnetoresistive sensor corresponding to the structure of a single-chip magnetoresistive ZX angle sensor.
  • FIG. 2-3(2) wherein the X-axis magnetoresistive sensor and the Z-axis magnetoresistive sensor Magnetic resistance sensing units 5-7(13) and 5 having common flux concentrators 4-6(11), 4-6(12), and 4-6(13) corresponding to X-axis magnetoresistive sensors -7 (14) and the magnetoresistive sensing units 5-7 (11) and 5-7 (12) corresponding to the Z-axis magnetoresistive sensor are mixed and arranged, and the number of flux concentrators is 2*N+2 (N is greater than The integer of 1), the Z-axis magnetoresistive sensor comprises 4*N magnetoresistive element columns, respectively corresponding to the middle 2N flux concentrators, and the X-axis magnetoresistive sensor comprises the magnetoresistance unit column number 4*N, and
  • FIG. 14 is a hybrid structure of a Z-axis magnetoresistive sensor and an X-axis magnetoresistive sensor corresponding to the structure of a single-chip magnetoresistive ZX angle sensor.
  • FIG. 2-3(3) wherein the X-axis magnetoresistive sensor and the Z-axis magnetoresistive sensor Magnetic resistance sensing units 5-7 (23) and 5 having common flux concentrators 4-6 (21), 4-6 (22), and 4-6 (23), corresponding to X-axis magnetoresistive sensors -7 (24) and the magnetoresistive sensing units 5-7 (21) and 5-7 (22) corresponding to the Z-axis magnetoresistive sensor are mixed and arranged, and the number of flux concentrators is N (N is an integer greater than 3)
  • the Z-axis magnetoresistive sensor comprises a magnetoresistive unit column number of 2*(N-2), corresponding to the middle N-2 flux concentrator,
  • the X-axis magnetoresistive sensor includes a magnetoresistive unit column number of 2*
  • Figure 15 is a schematic diagram of the measurement of the X-axis magnetoresistive sensor in the X-axis magnetic field. It can be seen that the magnetic field distribution changes after the X-axis magnetic field passes through the flux concentrator 4 (2), which is located above or below 45. The magnetic flux density at the center corresponding to the magnetoresistance reference cell column 56 is sparse, indicating that the intensity is reduced, and the magnetic flux density at the magnetoresistive sensitive cell row 55 between the adjacent two flux concentrators is increased, and the display magnetic field strength is increased. .
  • FIG. 16 is a distribution diagram of the magnetic field strength in the X-axis direction along the X-axis direction of the X-axis magnetoresistive sensor corresponding to FIG. 15, and it can be seen that the seven flux concentrators m1-m7 in FIG. 15 are located.
  • the position of the upper surface or the lower surface of the flux concentrator has a very small magnetic field strength, while the position between the adjacent two X-flux concentrators has a maximum magnetic field strength, and 7 X flux concentrators
  • the minimum value of the magnetic field at the center of the upper or lower surface has the same amplitude, so this means that the column of magnetoresistance reference cells can correspond to two flux concentrators on both sides, corresponding to seven X flux concentrator phases
  • the magnetic field of the magnetoresistive sensing unit at the adjacent gap is very close.
  • the magnetoresistive unit column can be placed at these positions, but it is obvious that the intensity of the X magnetic field at the position of the two sides is significantly smaller than the magnetic field strength at the intermediate position, so both sides
  • the reference cell column cannot be placed outside the m1 and m7 X flux concentrators.
  • Figure 17 is a schematic diagram of the measurement of the Z-axis magnetoresistive sensor in the Z-axis magnetic field. It can be seen that the magnetic field in the Z-axis direction changes after the flux concentrator 6(1) passes. On the lower surface of the concentrator, the magneto-resistance unit row 7(1) on both sides of the center line corresponds to the push arm 73 magnetoresistive sensing unit row and the arm arm 74 magnetoresistive sensing unit row, and the magnetic field direction is distorted. The magnetic field component in the X-axis direction.
  • Figure 18 is a magnetic field distribution diagram along the X-axis direction of the Z-magnetoresistive sensing unit row position at the upper surface or the lower surface position of the Z-axis flux concentrator 6(1) corresponding to Figure 17. It can be seen that the center line positions of the n1-n7 Z flux concentrators have opposite X-axis direction magnetic field components on both sides, and the X-axis direction magnetic field on both sides of the center line position corresponding to the intermediate Z flux concentrator 63. The components have the same size, and the two Z flux concentrators 64 on both sides have opposite magnetic field components in the X-axis direction on both sides of the center line, but the magnitudes are not equal. It is obvious that the magnetic field strength near the outer position is greater than the inner magnetic field strength. Therefore, the two Z flux concentrators located on both sides cannot place the Z magnetoresistive sensing unit row.
  • FIG. 19-21 are typical topological structures of three structures of a single-chip off-axis magnetoresistive ZX angle sensor, wherein FIG. 19 is a top view of a single-chip ZX magnetoresistive angle sensor, and the Z-axis magnetoresistive sensor 2 (7) is
  • the structure corresponding to FIG. 9 may also be the structure shown in FIG. 10 or FIG. 11 , and the two X-axis magnetoresistive sensor sub-units 3 ( 7 ) located on both sides are the structures corresponding to FIG. 6 , and may also correspond to the figure. 7 or the structure shown in Figure 8.
  • Figure 20 corresponds to the structure of the two types of single-chip off-axis magnetoresistive ZX angle sensor, comprising two Z-axis magnetoresistive sensor sub-unit 2 (8) of the structure shown in Figure 9 or Figure 10 or Figure 11, and the middle figure 6 or the structure of the X-axis magnetoresistive sensor 3 (8) shown in Fig. 7 or Fig. 8.
  • 21 is a single-chip off-axis magnetoresistive ZX angle sensor corresponding to the structure three types, including an alternate combination of a Z-axis magnetoresistive sensor and an X-axis magnetoresistive sensor, wherein the Z-axis magnetoresistive sensor sub-unit 2 (9) is FIG.
  • the X-axis magnetoresistive sensor subunit 3 (9) may be any of the structures shown in Figs. 6-8.
  • FIG. 22 is a structural diagram of a Z-axis magnetoresistive sensor corresponding to a single-chip off-axis magnetoresistive ZX angle sensor
  • FIG. 23 is an electrical connection structure diagram corresponding to a Z-axis magnetoresistive sensor, the magnetoresistive sensing unit being electrically connected to include a push-pull bridge structure of at least two arms, each bridge arm comprising a two-port structure in which one or more magnetoresistive sensing units are connected, and the magnetoresistive sensing unit is arranged in a plurality of magnetoresistive unit columns, this figure
  • the utility model relates to a full-bridge push-pull structure, which comprises a power input terminal 82, a ground input terminal 83, and two signal output terminals 84 and 85, a flux concentrator 717 on both sides and a flux concentration in the middle.
  • the 718, the push arm and the arm magnet resistor unit columns 617 and 618 are respectively located on the two sides of the intermediate flux concentrator 718 off the center line, and are connected by the electrical connection line 81, and the corresponding full bridge structure is as shown in FIG. Shown.
  • Figure 24 is a diagram showing an electrical connection structure corresponding to an X-axis magnetoresistive sensor electrically connected as a reference bridge including at least two arms, each bridge arm including one or more magnetoresistance
  • the sensing unit is connected in a two-port structure, and the magnetoresistive sensing unit is arranged in a plurality of magnetoresistive unit columns.
  • the figure is a reference full-bridge structure, including a power input terminal 92 and a ground 94, and signal output terminals 93 and 95.
  • the X-axis magnetoresistive sensor and the Z-axis magnetoresistive sensor do not have multiple subunits.
  • the structure 1, the structure 2, and the structure 3 it is necessary to use the conductive unit in different sub-units.
  • the units are connected to each other to form an X-axis or Z-axis magnetoresistive sensor structure.
  • the above is a full bridge structure.
  • the X-axis magnetoresistive sensor or the Z-axis magnetoresistive sensor it may be electrically connected to include a magnetoresistive reference cell column and a magnetoresistive sensing cell column, and Half-bridge or quasi-bridge structure of the push arm and the arm.
  • 26-28 are electrical connection diagrams of the magnetoresistive sensing unit corresponding to the hybrid structure of the X-axis magnetoresistive sensor and the Z-axis magnetoresistive sensor, respectively.
  • Fig. 26, 92B and 94B correspond to the power source and the ground end of the X-axis magnetoresistive sensor and the Z-axis magnetoresistive sensor, respectively, since the X-axis magnetoresistive sensor and the Z-axis magnetoresistive sensor in this structure are both full-bridge structures
  • 84B And 85B respectively correspond to two signal output ends of the Z-axis magnetoresistive sensor
  • 93B and 95B respectively correspond to two signal output ends of the X-axis magnetoresistive sensor
  • 81B is a connecting wire
  • 718B is a flux concentrator at the edge
  • 718B is a flux concentrator at the intermediate position.
  • 517B and 518B correspond to the reference magnetoresistive element column and the sensitive magnetoresistive element column of the X-axis magnetoresistive sensor, respectively
  • 617B And 618B correspond to the columns of magnetoresistance units of their two push-pull arms, respectively.
  • 92A and 94A correspond to the power source and the ground input terminal of the X-axis magnetoresistive sensor and the Z-axis magnetoresistive sensor, respectively.
  • 84A and 85A correspond to the two signal outputs of the Z-axis magnetoresistive sensor, respectively
  • 93A and 95A correspond to the two signal outputs of the X-axis magnetoresistive sensor, respectively
  • 717A is the flux concentrator at the edge
  • 718A is the middle.
  • 518A is a column of sensitive magnetoresistance units
  • 517A is a column of reference magnetoresistance units
  • 617A and 618A are columns of magneto-resistance units corresponding to two push-pull arms.
  • Fig. 28, 92C and 94C are the power supply and ground input terminals of the X-axis magnetoresistive sensor and the Z-axis magnetoresistive sensor, respectively.
  • the Z-axis magnetoresistive sensor is a half bridge, so there is only one output signal terminal 84C, X-axis magnetic
  • the resistance sensor is full bridge, 93C and 95C are two signal output terminals, 81C is the corresponding intermediate connection wire, 717C is the flux concentrator at the edge, 718C is the middle flux concentrator, and 518C and 517C respectively correspond to
  • the column of sensitive magnetoresistive elements and the column of reference magnetoresistance units, 617C and 618C correspond to columns of magnetoresistance units of the push arm and the arm, respectively.
  • the single-chip off-axis magnetoresistive ZX sensor 101 is applied to an angle measurement, and includes a circular permanent magnet code disk 100 which is rotatable along a central axis, and the axial direction and the width direction are the Y-axis direction, and the magnetization direction thereof.
  • M is a unidirectional over-diameter direction
  • the single-chip off-axis magnetoresistive ZX sensor 101 is located on the measuring plane 1002 of the edge of the permanent magnet code disc 100 parallel to the permanent magnet code disc face 1001, and the substrate is also located on the XY plane, and the chip thereof
  • the center is connected to the center of the code wheel perpendicular to the chip, and passes through the Z-axis direction.
  • the distance from the center of the chip 101 to the edge of the permanent magnet code disk 100 is Det, and the X-axis direction is parallel to the rotational speed direction of the permanent magnet code disk on the tangent plane.
  • the Z axis is the normal direction of the chip, wherein the angle between the magnetization direction of the permanent magnet code disk 100 and the Z axis is defined as the rotation angle ⁇ , and the Z axis of the permanent magnet code wheel 100 at the single chip off-axis magnetoresistive ZX sensor 101,
  • the magnetic field component along the Z-axis and the magnetic field component in the X-axis direction generated by the X-axis magnetoresistive sensor and its subunits are shown in Figures 1, 2 and 3.
  • the magnetic field at each position i is (Hxi, Hzi), for the chip 101, it constitutes an average sensor magnetic field angle ⁇ , and the ⁇ of the three-chip single-chip off-axis magnetoresistance Z-X angle sensor is calculated as follows:
  • the magnetic fields of the X-axis and Z-axis magnetoresistive sensors and their subunits are 1: H1 (Hx1, Hz1), 2: H2 (Hx). , Hz), 3: (Hx2, Hz2), then:
  • the Z-axis and X-axis magnetoresistive sensor output signals are only proportional to the magnetic field signal.
  • the magnetic field signals of the Z-axis and X-axis magnetoresistive sensors are:
  • the magnetic field signals of the Z-axis and X-axis magnetoresistive sensors are:
  • the magnetic field signals of the Z and X-axis magnetoresistive sensors are:
  • the relationship between ⁇ and ⁇ varies with the single-chip off-axis magnetoresistance ZX angle sensor 101 and the permanent magnet code wheel 100 Det and the adjacent Z-axis magnetoresistive sensor and its subunits, the X-axis magnetoresistive sensor and its subunits
  • the space is related. Only when the relationship between ⁇ and ⁇ is linear, the ZX magnetoresistive sensor chip 101 can measure the rotation angle of the permanent magnet code wheel 100. Therefore, it is necessary to determine the single chip off-axis magnetoresistance ZX angle.
  • the sensor 101 changes with (Space) and Det, the range of values of (Space) and Det is such that the chip has the best angle measurement performance.
  • 33-35 are typical graphs of the measured magnetic field of the Z and X magnetoresistive sensors corresponding to the three types of single-chip off-axis magnetoresistance ZX sensor chip 101 with the rotation angle of the circular permanent magnet code disc. It can be seen that three types In the structure, the Z-axis and X-axis magnetoresistive sensors measure the magnetic field-rotation angle curves 105, 107, 109 and 106, 108, 110 are all sine and cosine curves, and the phase difference between the two is 90 degrees.
  • Figure 39-41 shows the relationship between the linear fitting parameter R2 and the space/r ratio of the angle curve of the single-chip off-axis magnetoresistive ZX angle sensor.
  • Figure 39 shows the corresponding R2 curve 117 with the interval of the structure. /r ratio diagram, as the interval increases, its R2 gradually decreases, which can be seen in 0 ⁇ 0.3 The r-span has the best linear characteristics.
  • Figure 40 shows the relationship between the R2 curve 118 and the space/r ratio corresponding to the structure 2. As the space increases, R2 increases gradually. It can be seen that 0.5 ⁇ 0.7 r has the best linear characteristics.
  • the corresponding R2 curve 119 of Figure 41 corresponding to structure 3 has the best linear characteristics around 0.6 r.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Measuring Magnetic Variables (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

一种单芯片偏轴磁电阻Z-X角度传感器和测量仪,该单芯片偏轴磁电阻Z-X角度传感器包括位于X-Y面上的衬底(1),位于衬底(1)上的至少一个X轴磁电阻传感器(3)和Z轴磁电阻传感器(2),X轴磁电阻传感器(3)和Z轴磁电阻传感器(2)包括磁电阻传感单元(5)和通量集中器(4),磁电阻传感单元(5)电连接成包括至少两个桥臂的磁电阻桥;所述Z轴磁电阻传感器(2)为推挽桥式结构,其推臂和挽臂分别位于与通量集中器(4)Y轴中心线等距的位置上;所述X轴磁电阻传感器(3)为参考桥式结构,其参考臂和敏感臂分别位于通量集中器(4)Y轴中心线以及距离Y轴中心线大于一半通量集中器(4)宽度的位置上;该单芯片偏轴磁电阻Z-X角度传感器放置于圆形永磁码盘边缘并构成角度测量仪,通过测量X轴和Z轴磁场分量实现角度测量,具有结构紧凑,高灵敏度特点。

Description

一种单芯片偏轴磁电阻Z-X角度传感器和测量仪 技术领域
本发明涉及磁性传感器领域,特别涉及一种单芯片偏轴磁电阻Z-X角度传感器和基于此传感器的偏轴磁电阻Z-X角度测量仪。
背景技术
磁电阻角度传感器和永磁码盘构成的磁电阻角度测量仪可以应用于磁编码器以及旋转位置传感器等领域,通常情况下,对于磁电阻传感器如TMR, GMR等,采用的是平面X-Y类型的磁电阻传感器芯片,通过对X、Y轴方向磁场分量的测量并对磁场夹角进行计算,实现对永磁码盘旋转角度的测量,但其主要存在如下问题:
1)由于GMR,TMR磁电阻传感单元具有单向平面磁场敏感方向,所以通常采用将X敏感方向的传感器切片旋转90度得到Y敏感方向的传感器切片,两个切片之间通过绑定进行连接,并封装在同一个芯片内,这种X-Y磁电阻角度传感器芯片由于切片之间安装位置与封装时对于切片的操作相关,影响了传感器的测量精度,而且还存在切片间丝线连接的问题,工艺较为复杂;
2)对于GMR,TMR磁电阻传感器单元构成的线性X,Y磁电阻传感器的桥式结构,在采用推挽式结构时,通常将两个桥臂构成的切片中的一个相对于另一个偏转180度来实现推臂切片和挽臂切片的相反磁场敏感方向,并且需要安装于芯片上不同位置,通过绑定来实现切片之间的连接,同样会影响传感器的测量精度,增加了工艺的复杂性;
3)对于X-Y角度传感器芯片,其工作位置位于平行于永磁码盘的旋转面区域位置上方,因此永磁码盘安装空间小于码盘尺寸,需要增加码盘尺寸才能保证芯片具有大的安装空间和磁场均匀区。
发明内容
针对以上问题,本文提出了一种单芯片Z-X磁电阻角度传感器,来取代X-Y磁电阻角度传感器,在同一切片上实现Z轴磁电阻传感器和X轴磁电阻传感器的同时制造,对于X轴磁电阻传感器,采用通量集中器放置于磁电阻单元列附近位置时对磁电阻单元列的磁场集中的增强作用,以及采用通量集中器覆盖于磁电阻单元列上时对于磁电阻单元列的磁场屏蔽的衰减作用,实现参考电桥的设计和制造,从而实现高灵敏度的X轴磁电阻传感器,而同时避免了双切片的推挽式结构;对于Z轴磁电阻传感器,采用通量集中器覆盖于偏离通量集中器中心位置的磁电阻单元列时将Z磁场分量扭曲成具有X向磁场的作用,将Z磁场分量转变成沿X和-X两个方向的磁场分量,并被磁电阻传感器测量,构成了推挽桥式传感器,此外,该单芯片Z-X磁电阻角度传感器放置于圆形永磁体码盘的边缘,通过对X和Z磁场分量的测量实现圆形永磁码盘在Z-X平面内的磁场旋转角度的测量,相对于将X-Y角度传感器放置于在圆形永磁码盘X-Z平面上方具有更大的空间灵活性,这些都成功解决了以上X-Y角度传感器的不足。
本发明所提出的一种单芯片偏轴磁电阻Z-X角度传感器,用于探测与衬底表面垂直的平面上的磁场旋转角,包括:
位于X-Y平面上的衬底;
位于所述衬底上的至少一个X轴磁电阻传感器,用于探测平行于所述衬底表面的X轴磁场分量;
位于所述衬底上的至少一个Z轴磁电阻传感器,用于探测垂直于所述衬底表面的Z轴磁场分量;
所述X轴磁电阻传感器和所述Z轴磁电阻传感器均包括磁电阻传感单元和通量集中器,所述通量集中器为长条形,其长轴平行于Y轴方向,短轴平行于X轴方向,所述磁电阻传感单元的敏感方向平行于X轴方向;
所述Z轴磁电阻传感器的磁电阻传感单元和X轴磁电阻传感器的磁电阻传感单元都分别电连接成包括至少两个桥臂的磁电阻桥,其中,每个桥臂为一个或多个所述磁电阻传感单元电连接而成的两端口结构,且所述桥臂中的磁电阻传感单元沿着平行于Y轴方向排列成多个磁电阻单元列;
所述Z轴磁电阻传感器的磁电阻桥为推挽式电桥,其中,推臂和挽臂分别位于所述Z轴磁电阻传感器中的通量集中器上方或下方的Y轴中心线的不同侧,且到各自对应的所述Y轴中心线的距离相等;
所述X轴磁电阻传感器的磁电阻桥为参考式电桥,其中,参考臂位于所述X轴磁电阻传感器中通量集中器的上方或下方的Y轴中心线位置上,敏感臂位于与所述X轴磁电阻传感器中通量集中器上方或下方Y轴中心线距离大于通量集中器的一半宽度的位置上。
优选的,所述通量集中器为包含Ni、Fe、Co中的一种元素或多种元素的软磁合金材料。
优选的,所述磁电阻传感单元为GMR或TMR磁电阻传感单元。
优选的,所述Z轴磁电阻传感器包括两个Z轴磁电阻传感器子单元,且分别沿所述X轴方向位于所述X轴磁电阻传感器的两侧,所述Z轴磁电阻传感器和所述X轴磁电阻传感器分别对应不同的所述通量集中器。
优选的,所述X轴磁电阻传感器包括两个X轴磁电阻传感器子单元,且分别沿所述X轴方向位于所述Z轴磁电阻传感器的两侧,所述Z轴磁电阻传感器和所述X轴磁电阻传感器分别对应不同的所述通量集中器。
优选的,所述X轴、Z轴磁电阻传感器分别包括多个X轴磁电阻传感器子单元、Z轴磁电阻传感器子单元,且沿所述X轴方向交替排布,所述Z轴磁电阻传感器和所述X轴磁电阻传感器分别对应不同的所述通量集中器。
优选的,所述Z轴磁电阻传感器和所述X轴磁电阻传感器沿所述Y轴方向排列,所述Z轴磁电阻传感器和所述X轴磁电阻传感器分别对应不同的所述通量集中器。
优选的,所述Z轴磁电阻传感器的磁电阻传感单元和X轴磁电阻传感器的磁电阻传感单元沿所述X轴方向混合排列,所述Z轴磁电阻传感器和所述X轴磁电阻传感器具有共同的所述通量集中器。
优选的,所述Z轴磁电阻传感器或Z轴磁电阻传感器子单元包含1个所述通量集中器,所述磁电阻传感单元对应于所述1个所述通量集中器。
优选的,所述Z轴磁电阻传感器或Z轴磁电阻传感器子单元包含2个所述通量集中器,所述推臂和挽臂分别位于所述2个通量集中器的Y轴中心线不同侧的位置。
优选的,所述Z轴磁电阻传感器或Z轴磁电阻传感器子单元包含N+2个所述通量集中器,且所述磁电阻传感单元对应于中间N个所述通量集中器,所述N为正整数。
优选的,所述X轴磁电阻传感器或X轴磁电阻传感器子单元包括2N个磁电阻单元列,所述X轴磁电阻传感器中相邻两个所述通量集中器之间的间距为L;当所述X轴磁电阻传感器的通量集中器数量为2N-2个时,所述X轴磁电阻传感器中间的两个所述磁电阻单元列相邻并对应于参考臂,且间距为2L;当所述X轴磁电阻传感器的通量集中器数量为2N-1个时,所述X轴磁电阻传感器正中间的两个所述磁电阻单元列对应于敏感臂,且间距为2L,其中L为自然数,所述N为大于1的整数。
优选的,所述X轴磁电阻传感器或X轴磁电阻传感器子单元包括2N个磁电阻单元列以及2N-1个所述通量集中器,且所述X轴磁电阻传感器的磁电阻单元列交替分布于所述X轴磁电阻传感器的通量集中器的上方或下方以及距离Y轴中心线大于所述X轴磁电阻传感器的通量集中器一半宽度的位置,所述N为正整数。
优选的,所述通量集中器数量为2N+2时,所述Z轴磁电阻传感器包含4N个磁电阻单元列,且对应于中间2N个所述通量集中器,所述X轴磁电阻传感器包含2N+2个磁电阻单元列,且所述X轴磁电阻传感器中间的两个磁电阻单元列之间的距离为4L,相邻两个所述通量集中器之间的距离为L,其中L为自然数,所述N为大于1的整数。
优选的,所述通量集中器数量为2N+2,所述Z轴磁电阻传感器包含4N个磁电阻单元列,分别对应于中间2N个所述通量集中器,所述X轴磁电阻传感器包含的磁电阻单元列数量为4N,且所述X轴磁电阻传感器中间的两个磁电阻单元列之间的距离为2L,相邻两个所述通量集中器之间的距离为L,其中L为自然数,所述N为大于1的整数。
优选的,所述通量集中器数量为N,所述Z轴磁电阻传感器包含的磁电阻单元列数量为2 (N-2),对应中间N-2个所述通量集中器,所述X轴磁电阻传感器包含的磁电阻单元列数量为2 (N-1),且其中一侧的一个所述通量集中器的Y轴中心线上分布有一个磁电阻单元列,所述N为大于3的整数。
优选的,所述X轴磁电阻传感器中的参考臂和敏感臂所对应的磁电阻单元列的数量相同,所述Z轴磁电阻传感器中的推臂和挽臂所对应的磁电阻单元列的数量相同。
优选的,所述Z轴磁电阻传感器和X轴磁电阻传感器所对应的所述通量集中器宽度相同,厚度也相同。
优选的,所述X轴磁电阻传感器的通量集中器之间的间隙处的磁电阻单元列所在位置处的磁场增益系数为1<Asns<100,所述X轴磁电阻传感器的通量集中器上方或下方Y轴中心线处的磁电阻单元列所在位置的磁场衰减系数为0<Aref<1。
优选的,所述Z轴磁电阻传感器中相邻两个所述通量集中器之间的间距L不小于所述Z轴磁电阻传感器的通量集中器的宽度Lx。
优选的,所述Z轴磁电阻传感器中相邻两个所述通量集中器之间的间距L>2Lx,所述Lx为所述Z轴磁电阻传感器中所述通量集中器的宽度。
优选的,对于所述Z轴磁电阻传感器,其上的所述磁电阻单元列与所述磁通量集中器的上方或下方边缘的间距越小,或者其上的所述磁通量集中器的厚度Lz越大,或者其上的所述磁通量集中器的宽度Lx越小,所述Z轴磁电阻传感器的灵敏度越高。
优选的,所述X轴磁电阻传感器的参考式电桥和/或所述Z轴磁电阻传感器的推挽式电桥为半桥、全桥或者准桥结构中的一种。
优选的,所述X轴磁电阻传感器以及Z轴磁电阻传感器的磁电阻传感单元均具有相同的磁场灵敏度。
本发明另一方面还提供了一种偏轴磁电阻Z-X角度测量仪,包括上述的单芯片偏轴磁电阻Z-X角度传感器,所述偏轴磁电阻Z-X角度测量仪还包括圆形永磁码盘,所述圆形永磁码盘的磁化方向平行于位于所述圆形永磁码盘的旋转平面内且过所述圆形永磁码盘的圆心的直线,所述圆形永磁码盘的宽度方向和旋转轴方向均沿Y轴方向,旋转平面为X-Z平面,所述衬底所在的X-Y平面距离所述圆形永磁码盘边缘的距离为Det,且Z轴过所述单芯片偏轴Z-X磁电阻角度传感器的中心和所述圆形永磁码盘的轴心,所述Det>0。
优选的, Z轴磁电阻传感器包括两个Z轴磁电阻传感器子单元,且分别沿X轴方向位于所述X轴磁电阻传感器的两侧,所述Z轴磁电阻传感器和X轴磁电阻传感器分别对应不同的所述通量集中器,所述Det为0.2-0.3 r,且X轴磁电阻传感器和Z轴磁电阻传感器子单元之间的间隔(Space)为0-0.3 r,r为所述圆形永磁码盘的半径。
优选的,X轴磁电阻传感器包括两个X轴磁电阻传感器子单元,且分别沿X轴方向位于所述Z轴磁电阻传感器的两侧,所述Z轴磁电阻传感器和X轴磁电阻传感器分别对应不同的所述通量集中器,所述Det为0.6-0.8 r,且所述X轴磁电阻传感器子单元和Z轴磁电阻传感器之间的间隔(Space)为0.5-0.7 r, r为所述圆形永磁码盘的半径。
优选的, X轴磁电阻传感器、Z轴磁电阻传感器分别包括多个X轴磁电阻传感器子单元、Z轴磁电阻传感器子单元,且沿所述X轴方向交替排布,所述Z轴磁电阻传感器和X轴磁电阻传感器分别对应不同的所述通量集中器,所述Det为0.5-0.7 r,且相邻Z轴磁电阻传感器子单元和X轴磁电阻传感器子单元之间的间隔(Space)为0.6 r, r为所述圆形永磁码盘半径。
优选的, Z轴磁电阻传感器和X轴磁电阻传感器沿所述Y轴方向排列,所述Z轴磁电阻传感器和X轴磁电阻传感器分别对应不同的所述通量集中器,所述Det为0.5-0.7 r, r为所述圆形永磁码盘的半径。
优选的, Z轴磁电阻传感器的磁电阻传感单元和X轴磁电阻传感器的磁电阻传感单元沿X轴方向混合排列,所述Z轴磁电阻传感器和所述X轴磁电阻传感器具有共同的所述通量集中器,所述Det为0.5-0.7 r, r为所述圆形永磁码盘的半径。
优选的,Z轴磁电阻传感器和X轴磁电阻传感器沿所述Y轴方向排列,所述Z轴磁电阻传感器和X轴磁电阻传感器没有共同的所述通量集中器,所述单芯片偏轴磁电阻Z-X角度传感器沿所述圆形永磁码盘的宽度方向位于所述圆形永磁码盘的X轴和Z轴磁场均匀区。
附图说明
图1单芯片Z-X磁电阻角度传感器结构一。
图2单芯片Z-X磁电阻角度传感器结构二。
图3单芯片Z-X磁电阻角度传感器结构三。
图4单芯片Z-X磁电阻角度传感器结构四。
图5单芯片Z-X磁电阻角度传感器结构五。
图6 X轴磁电阻传感器结构一。
图7 X轴磁电阻传感器结构二。
图8 X轴磁电阻传感器结构三。
图9 Z轴磁电阻传感器结构一。
图10 Z轴磁电阻传感器结构二。
图11 Z轴磁电阻传感器结构三。
图12 X轴-Z轴磁电阻传感器混合结构一。
图13 X轴-Z轴磁电阻传感器混合结构二。
图14 X轴-Z轴磁电阻传感器混合结构三。
图15 X轴磁电阻传感器的X轴方向磁场测量原理图。
图16 在X轴方向的外磁场中X轴磁电阻传感器的磁电阻传感器位置沿X轴方向的磁场分布图。
图17 Z轴磁电阻传感器的Z轴方向磁场测量原理图。
图18 在Z轴方向的外磁场中Z轴磁电阻传感器的磁电阻传感器位置沿X轴方向的磁场分布图。
图19 单芯片Z-X磁电阻角度传感器结构一典型拓扑结构图。
图20 单芯片Z-X磁电阻角度传感器结构二典型拓扑结构图。
图21 单芯片Z-X磁电阻角度传感器结构三典型拓扑结构图。
图22 全桥结构的Z轴磁电阻传感器的电连接图。
图23 全桥结构的Z轴磁电阻传感器的简图。
图24 全桥结构的X轴磁电阻传感器的电连接图。
图25 全桥结构的X轴磁电阻传感器的简图。
图26 全桥结构的X轴-Z轴混合结构传感器电连接图一。
图27 全桥结构的X轴-Z轴混合结构传感器电连接图二。
图28 全桥结构的X轴-Z轴混合结构传感器电连接图三。
图29 单芯片X-Z磁电阻角度传感器+圆形永磁码盘的角度测量示意图。
图30 单芯片Z-X磁电阻传感器结构一中平均磁场测量角与永磁码盘旋转角典型关系图。
图31 单芯片Z-X磁电阻传感器结构二中平均磁场测量角与永磁码盘旋转角的典型关系图。
图32 单芯片Z-X磁电阻传感器结构三中平均磁场测量角与永磁码盘旋转角的典型关系图。
图33 单芯片Z-X磁电阻传感器结构一中Z轴与X轴磁电阻传感器的磁场测量信号图。
图34 单芯片Z-X磁电阻传感器结构二中Z轴与X轴磁电阻传感器的磁场测量信号图。
图35 单芯片Z-X磁电阻传感器结构三中Z轴与X轴磁电阻传感器的磁场测量信号图。
图36 单芯片Z-X磁电阻传感器结构一中平均磁场测量角与永磁码盘旋转角线性拟合曲线R2与芯片离码盘边缘距离关系图。
图37 单芯片Z-X磁电阻传感器结构二中平均磁场测量角与永磁码盘旋转角线性拟合曲线R2与芯片离码盘边缘距离关系图。
图38 单芯片Z-X磁电阻传感器结构三-五中平均磁场测量角与永磁码盘旋转角线性拟合曲线R2与芯片离码盘边缘距离关系图。
图39单芯片Z-X磁电阻传感器结构一中平均磁场测量角与永磁码盘旋转角线性拟合曲线R2与芯片与X轴和Z轴磁电阻传感器跨距关系图。
图40单芯片Z-X磁电阻传感器结构二平均磁场测量角与永磁码盘旋转角线性拟合曲线R2与芯片与X轴和Z轴磁电阻传感器跨距关系图。
图41单芯片Z-X磁电阻传感器结构三-五平均磁场测量角与永磁码盘旋转角线性拟合曲线R2与芯片与X和Z轴磁电阻传感器跨距关系图。
具体实施方式
下面将参考附图并结合实施例,来详细说明本发明。
实施例一
图1为单芯片磁电阻Z-X角度传感器的结构一图,包括Si衬底1,以及位于Si衬底1之上的X轴磁电阻传感器3、以及Z轴磁电阻传感器2,其中X轴磁电阻传感器3包括两个X轴磁电阻传感器子单元31和32,并且沿X轴方向排列于Z轴磁电阻传感器2的两侧。
图2为单芯片磁电阻Z-X角度传感器的结构二图,包括Si衬底1,以及位于Si衬底1之上的X轴磁电阻传感器3(1)、以及Z轴磁电阻传感器2(1),其中Z轴磁电阻传感器2(1)包括两个Z轴磁电阻传感器子单元21和22,并且沿X轴方向排列于X轴磁电阻传感器3(1)的两侧。
图3为单芯片磁电阻Z-X角度传感器的结构三图,包括Si衬底1,以及位于Si衬底1之上的X轴磁电阻传感器3(2)、以及Z轴磁电阻传感器2(2),其中Z轴磁电阻传感器2(2)包括多个Z轴磁电阻传感器子单元23、24和25,X轴磁电阻传感器3(2)包括多个X轴磁电阻传感器子单元33、34和35,并且X轴磁电阻传感器子单元和Z轴磁电阻传感器子单元沿X轴方向交替排列。
图4为单芯片磁电阻Z-X角度传感器的结构四图,包括Si衬底1,以及位于Si衬底1之上的X轴磁电阻传感器3(A)、以及Z轴磁电阻传感器2(A),其中Z轴磁电阻传感器2(A)和X轴磁电阻传感器3(A)沿Y轴方向进行排布。
图5为单芯片磁电阻Z-X角度传感器的结构五图,包括Si衬底1,以及位于Si衬底1之上的X轴磁电阻传感器3(B)和Z轴磁电阻传感器2(B),和图1-4的排布不同,X轴磁电阻传感器和Z轴磁电阻传感器具有混合结构,排布于同一空间范围内。
实施例二
图6为对应单芯片磁电阻Z-X角度传感器的结构一到结构四的X轴磁电阻传感器及其子单元的结构一图2(3),包括通量集中器4和磁电阻单元列5,其中磁电阻单元列5包括位于通量集中器41上方或下方的Y中心线位置上的参考磁电阻单元列52以及位于距离通量集中器41距离大于通量集中器的一半宽度位置的敏感磁电阻单元列51,在图6所示的X轴磁电阻传感器结构一中,相邻两个通量集中器之间的间距为L, X轴磁电阻传感器或X轴磁电阻传感器子单元包括2N(N>1的整数)个磁电阻单元列,通量集中器数量为偶数2N-2, X轴磁电阻传感器中间的两个磁电阻单元列相邻,对应于参考磁电阻单元列,且间距为2L。
图7为对应单芯片磁电阻Z-X角度传感器的结构一到结构四的X轴磁电阻传感器及其子单元的结构二图2(4),包括通量集中器4(1)和磁电阻单元列5(1),其中磁电阻单元列5(1)包括位于通量集中器44上方或下方的Y中心线位置上的参考磁电阻单元列54以及位于距离通量集中器44距离大于通量集中器一半宽度位置的敏感磁电阻单元列53,在图7所示的X轴磁电阻传感器结构二中,相邻两个通量集中器间距为L, X轴磁电阻传感器或X轴磁电阻传感器子单元包括2N(N>1的整数)个磁电阻单元列,通量集中器数量为奇数2N-1,X轴磁电阻传感器正中间的两个磁电阻单元列对应于敏感磁电阻单元列,且间距为2L,其中L为自然数。
图8为对应单芯片磁电阻Z-X角度传感器的结构一到结构四的X轴磁电阻传感器及其子单元的结构三图2(5),包括通量集中器4(5)和磁电阻单元列5(5),其中磁电阻单元列5(5)包括位于通量集中器4(5)上表面或者下表面上的Y中心线位置上的参考磁电阻单元列58以及位于距离通量集中器4(5)的Y中心线位置距离大于通量集中器一半宽度位置的敏感磁电阻单元列57, X轴磁电阻传感器或X轴磁电阻传感器子单元包括2N(N>0的整数)个磁电阻单元列以及2N-1个通量集中器,且磁电阻单元列交替分布于通量集中器上方或下方的Y轴中心线以及距离Y轴中心线大于通量集中器一半宽度的位置,因此,该结构X轴磁电阻传感器或X轴磁电阻传感器子单元靠近两侧位置中的一个通量集中器没有参考磁电阻单元列。
实施例三
图9为对应单芯片磁电阻Z-X角度传感器的结构一到结构四的Z轴磁电阻传感器及其Z轴磁电阻传感器子单元的结构一图3(3),包括通量集中器6以及磁电阻单元列7,其中磁电阻单元列7包括位于通量集中器6上表面或下表面上的位于Y中心线两侧与Y中心线等距离的两个位置上的推臂磁电阻单元列71和挽臂磁电阻单元列和72, Z轴磁电阻传感器或Z轴磁电阻传感器子单元包含N+2(N>0的整数)个通量集中器,且磁电阻单元列对应于中间N个通量集中器。
图10为对应单芯片磁电阻Z-X角度传感器的结构一到结构四的Z轴磁电阻传感器及其Z轴磁电阻传感器子单元的结构二图3(4),包含1个通量集中器719,磁电阻单元列619和620对应于通量集中器719。
图11为对应单芯片磁电阻Z-X角度传感器的结构一到结构四的Z轴磁电阻传感器及其Z轴磁电阻传感器子单元的结构三图3(5),包含2个通量集中器720,两个磁电阻单元列621对应于2个通量集中器720位于Y轴中心线等距离的不同侧位置,例如既可以分别位于2个通量集中器的Y轴中心线的左侧和右侧,也可以分别位于2个通量集中器的Y轴中心线的右侧和左侧。
实施例四
图12为对应单芯片磁电阻Z-X角度传感器的结构五的Z轴磁电阻传感器和X轴磁电阻传感器混合结构一图2-3(1),其中,X轴磁电阻传感器和Z轴磁电阻传感器具有共同的通量集中器4-6(3)、4-6(1)和4-6(2),且对应于X轴磁电阻传感器的磁电阻传感单元5-7(3)和5-7(4)和对应于Z轴磁电阻传感器的磁电阻传感单元5-7(1)和5-7(2)混合排列,对应的所述通量集中器数量为2*N+2 (N为大于1的整数),Z轴磁电阻传感器包含4*N个磁电阻单元列,且对应于中间2N个通量集中器, X轴磁电阻传感器包含2*N+2个磁电阻单元列,且中间的两个磁电阻单元列之间的距离为4*L,相邻两个通量集中器之间的距离为L。
图13为对应单芯片磁电阻Z-X角度传感器的结构五的Z轴磁电阻传感器和X轴磁电阻传感器混合结构二图2-3(2),其中,X轴磁电阻传感器和Z轴磁电阻传感器具有共同的通量集中器4-6(11)、4-6(12)和4-6(13),且对应于X轴磁电阻传感器的磁电阻传感单元5-7(13)和5-7(14)和对应于Z轴磁电阻传感器的磁电阻传感单元5-7(11)和5-7(12)混合排列,通量集中器数量为2*N+2(N为大于1的整数),Z轴磁电阻传感器包含4*N个磁电阻单元列,分别对应于中间2N个通量集中器,X轴磁电阻传感器包含磁电阻单元列数量为4*N,且中间的两个磁电阻单元列之间距离为2*L,相邻两个通量集中器之间的距离为L。
图14为对应单芯片磁电阻Z-X角度传感器的结构五的Z轴磁电阻传感器和X轴磁电阻传感器混合结构三图2-3(3),其中,X轴磁电阻传感器和Z轴磁电阻传感器具有共同的通量集中器4-6(21)、4-6(22)和4-6(23),且对应于X轴磁电阻传感器的磁电阻传感单元5-7(23)和5-7(24)和对应于Z轴磁电阻传感器的磁电阻传感单元5-7(21)和5-7(22)混合排列,通量集中器数量为N(N为大于3的整数),Z轴磁电阻传感器包含磁电阻单元列数量为2*(N-2),对应中间N-2个通量集中器, X轴磁电阻传感器包含磁电阻单元列数量为2*(N-1),且两侧的两个通量集中器其中的一通量集中器的Y轴中心线对应一个磁电阻单元列。
实施例五
图15为X轴磁电阻传感器在X轴方向磁场中的测量原理图,可以看出,X轴方向磁场在经过通量集中器4(2)之后,磁场分布发生变化,其中位于45上方或下方处中心对应磁电阻参考单元列56处的磁力线密度稀疏,表明其强度减小,而位于相邻两个通量集中器之间的磁电阻敏感单元列55处的磁力线密度增强,显示器磁场强度增加。
图16为图15所对应的X轴磁电阻传感器位置沿X轴方向直线上的X轴方向磁场强度的分布图,可以看出,对应图15中的7个通量集中器m1-m7,位于通量集中器上表面或下表面中心处位置具有极小的磁场强度,而位于相邻两个X-通量集中器之间位置处则具有极大磁场强度,且7个X通量集中器上表面或下表面中心处的极小值磁场具有相同幅度,因此,这意味着,磁电阻参考单元列可以对应于两侧的两个通量集中器,对应于7个X通量集中器相邻间隙处的磁电阻敏感单元的磁场幅度非常接近,因此,这些位置都可以放置磁电阻敏感单元列,但显然两个侧边的位置处的X磁场强度明显小于中间位置的磁场强度,因此两边第m1和m7个X通量集中器外侧不能放置参考单元列。
图17为Z轴磁电阻传感器在Z轴方向磁场中的测量原理图,可以看出,Z轴方向磁场在经过通量集中器6(1)之后,在其附近的磁场方向发生变化,在通量集中器下表面上位于中心线两侧的磁电阻单元列7(1)所对应的推臂73磁电阻传感单元行与挽臂74磁电阻传感单元行处,磁场方向发生扭曲,出现了X轴方向的磁场分量。
图18为图17所对应的Z轴通量集中器6(1)的上表面或下表面位置处Z磁电阻传感单元行位置处沿X轴方向的磁场分布图。可以看出,n1-n7个Z通量集中器的中心线位置两侧具有相反的X轴方向磁场分量,且中间的Z通量集中器63所对应的中心线位置两侧的X轴方向磁场分量大小相同,而位于两侧的两个Z通量集中器64,其中心线两侧的X轴方向磁场分量方向相反,但大小不等,显然靠近外侧位置的磁场强度要大于内侧的磁场强度,因此,位于两侧的两个Z通量集中器不能放置Z磁电阻传感单元行。
以上对于X轴磁电阻传感器和Z轴磁电阻传感器的磁场分布的分析与传感器的设计一致。
实施例六
图19-21为单芯片偏轴磁电阻Z-X角度传感器的三种结构的典型拓扑结构图,其中图19为结构一单芯片Z-X磁电阻角度传感器拓扑图,Z轴磁电阻传感器2(7)为图9所对应的结构,也可以为图10或图11所示结构,而位于两侧的两个X轴磁电阻传感器子单元3(7)为图6所对应的结构,也可以对应于图7或者图8所示结构。图20所对应的结构二类型的单芯片偏轴磁电阻Z-X角度传感器,包含两个图9或图10或图11所示结构的Z轴磁电阻传感器子单元2(8),以及中间的图6或图7或图8所示的X轴磁电阻传感器3(8)结构。图21中对应于结构三类型的单芯片偏轴磁电阻Z-X角度传感器,包括Z轴磁电阻传感器和X轴磁电阻传感器的交替组合,其中Z轴磁电阻传感器子单元2(9)为图9-11之一所示的结构,X轴磁电阻传感器子单元3(9)可以为图6-8所示结构中的任一种。
实施例七
图22为单芯片偏轴磁电阻Z-X角度传感器所对应的Z轴磁电阻传感器结构图,图23为对应于Z轴磁电阻传感器的电连接结构图,所述磁电阻传感单元电连接成包括至少两个臂的推挽桥式结构,每个桥臂包括1个或多个磁电阻传感单元连接成的两端口结构,并且磁电阻传感单元排列成多个磁电阻单元列,本图中为一种全桥推挽式结构,其中,包括电源输入端82,地输入端83,以及两个信号输出端84和85,位于两侧的通量集中器717以及位于中间的通量集中器718,推臂和挽臂磁电阻单元列617和618分别位于中间通量集中器718的下方偏离中心线的两侧,并通过电连接线81进行连接,其对应的全桥结构如图18所示。
图24为对应于X轴磁电阻传感器的一种电连接结构图,所述磁电阻传感单元电连接成包括至少两个臂的参考电桥,每个桥臂包括1个或多个磁电阻传感单元连接成的两端口结构,并且磁电阻传感单元排列成多个磁电阻单元列,本图为参考全桥结构,包括电源输入端92和地94,信号输出端93和95,位于通量集中器中心位置的参考磁电阻单元列517以及位于相邻两个通量集中器中间的X磁电阻敏感单元列518,以及电连接导体91,其对应的参考全桥结构如图25所示。
需要指出的是,以上为X轴磁电阻传感器和Z轴磁电阻传感器没有多个子单元的情况,对于结构一、结构二以及结构三中存在多个子单元的情况,需要采用导电单元在不同的子单元之间连接,从而最终形成一个X轴或Z轴磁电阻传感器结构。
需要指出的是,以上给出的是全桥结构,实际上,无论X轴磁电阻传感器或者是Z轴磁电阻传感器,还可以电连接成包含磁电阻参考单元列和磁电阻敏感单元列,以及推臂和挽臂的半桥或者准桥结构。
图26-28分别为对应X轴磁电阻传感器和Z轴磁电阻传感器混合结构的磁电阻传感单元电连接图。图26中,92B和94B分别对应于X轴磁电阻传感器和Z轴磁电阻传感器的电源和地端,由于本结构中的X轴磁电阻传感器和Z轴磁电阻传感器都为全桥结构,84B和85B分别对应Z轴磁电阻传感器的两个信号输出端,且93B和95B分别对应于X轴磁电阻传感器的两个信号输出端,81B为连接导线,718B为边缘处的通量集中器,718B为中间位置的通量集中器,对于X轴磁电阻传感器,517B和518B分别对应于X轴磁电阻传感器的参考磁电阻单元列和敏感磁电阻单元列,而对于Z轴磁电阻传感器,617B和618B分别对应于其两个推挽臂的磁电阻单元列。
图27中,92A和94A分别对应于X轴磁电阻传感器和Z轴磁电阻传感器的电源和地输入端,同样,由于本结构中X轴磁电阻传感器和Z轴磁电阻传感器都为全桥,84A和85A分别对应于Z轴磁电阻传感器的两个信号输出端,且93A和95A分别对应于X轴磁电阻传感器的两个信号输出端,717A为边缘处的通量集中器,718A为中间位置的通量集中器,对于X轴磁电阻传感器,518A为敏感磁电阻单元列,517A为参考磁电阻单元列,617A和618A为两个推挽臂所对应的磁电阻单元列。
图28中,92C和94C分别为X轴磁电阻传感器和Z轴磁电阻传感器的电源和地输入端,本结构中Z轴磁电阻传感器为半桥,因此只有一个输出信号端84C,X轴磁电阻传感器为全桥,93C和95C为其两个信号输出端,81C为对应的中间连接导线,717C为边缘处的通量集中器,718C为中间的通量集中器,518C和517C分别对应于敏感磁电阻单元列和参考磁电阻单元列,617C和618C分别对应于推臂和挽臂的磁电阻单元列。
图26-28中,可以看出,为了能够在X和Z轴磁电阻传感器的磁电阻单元列中间进行有效的连接,并且避免出现交叉的情况,导线和输出端,输入端之间进行了排布,导线绕过输出端和输入端。
实施例八
图29为单芯片偏轴磁电阻Z-X传感器101应用于角度测量的情况,包括一个圆形永磁码盘100,可以沿着中心轴旋转,且轴方向和宽度方向为Y轴方向,其磁化方向M为单向过直径方向,单芯片偏轴磁电阻Z-X传感器101位于永磁码盘100边缘平行于永磁码盘切面1001的测量平面1002上,同时其衬底也位于XY平面上,其芯片中心与码盘中心连线垂直于芯片,且过Z轴方向,芯片101中心距离永磁码盘100边缘的距离为Det,X轴方向平行于永磁码盘在切平面上的旋转速度方向,Z轴为芯片法向方向,其中,永磁码盘100磁化方向和Z轴的夹角定义为旋转角度θ,而永磁码盘100在单芯片偏轴磁电阻Z-X传感器101处的Z轴、X轴磁电阻传感器及其子单元处所产生沿Z轴方向磁场分量和X轴方向磁场分量如图1、2和3所示,假设各位置i处磁场为(Hxi, Hzi),对于芯片101而言,则构成一个平均传感器磁场夹角φ,三种结构的单芯片偏轴磁电阻Z-X角度传感器的φ计算如下:
对于结构一,如图1所示,其从左到右,其各X轴、Z轴磁电阻传感器及其子单元所在位置的磁场分别为1:H1(Hx1,Hz1),2:H2(Hx,Hz),3:(Hx2,Hz2),则:
φ=atan((Hx1+Hx2)/Hz), HZ>0
φ=atan((Hx1+Hx2)/Hz)-Pi,HZ<0; Hx1+Hx2<0
φ=atan((Hx1+Hx2)/Hz)+Pi,Hz<0; Hx1+Hx2>0
在灵敏度确定的情况下,Z轴、X轴磁电阻传感器输出信号仅仅与磁场信号成正比,此时Z轴、X轴磁电阻传感器的磁场信号分别为:
Z:Hz
X:Hx1+Hx2
对于结构二,如图2所示,则:
φ=atan(Hx/(Hz1+Hz2)), Hz1+Hz2>0
φ=atan(Hx/(Hz1+Hz2)-Pi, Hz1+Hz2<0, Hx<0
φ=atan(Hx/(Hz1+Hz2)+Pi, Hz1+Hz2<0, Hx>0
此时,Z轴、 X轴磁电阻传感器的磁场信号分别为:
Z: Hz1+Hz2
X: Hx
对于结构三~结构五,如图3-5所示,则:
φ=atan(∑Hxi/∑Hzi); ∑Hzi>0
φ=atan(∑Hxi/∑Hzi)-Pi; ∑Hzi<0, ∑Hxi<0
φ=atan(∑Hxi/∑Hzi)+Pi; ∑Hzi>0, ∑Hxi>0
此时,Z,X轴磁电阻传感器的磁场信号为:
Z: ∑Hzi
X: ∑Hxi
φ随θ的变化关系随单芯片偏轴磁电阻Z-X角度传感器101与永磁码盘100之间距离Det以及相邻Z轴磁电阻传感器及其子单元、X轴磁电阻传感器及其子单元的间距(Space)相关,只有当φ随θ的变化关系为线性关系时,Z-X磁电阻传感器芯片101才能对于永磁码盘100的旋转角度进行测量,因此,需要确定单芯片偏轴磁电阻Z-X角度传感器101随(Space)以及Det变化时,(Space)和Det的取值区间范围,以使得芯片具有最好的角度测量性能。
图30-32为单芯片偏轴磁电阻Z-X传感器101所对应的磁场平均夹角φ与永磁码盘100旋转角度θ之间的关系图,其中圆形永磁码盘100半径为r=8 mm,当Det=1 mm时,可以看出,图30所对应的结构一类型的单芯片偏轴磁电阻Z-X角度传感器的关系曲线102具有典型线性特征,而图31所对应的结构二类型的单芯片偏轴磁电阻Z-X角度传感器的关系曲线103则具有非线性特征,其波动幅度明显大于图32所对应的结构三类型的Z-X磁电阻角度传感器104角度关系曲线。
图33-35为三种类型单芯片偏轴磁电阻Z-X传感器芯片101所对应的Z、X磁电阻传感器的测量磁场随圆形永磁码盘旋转角度典型关系曲线图,可以看出,三种结构中,Z轴、X轴磁电阻传感器测量磁场-旋转角度曲线105、107、109以及106、108、110都为正余弦曲线,两者之间相位差为90度。
图36-38分别为三种结构单芯片偏轴磁电阻Z-X角度传感器的磁场角度关系的线性拟合特征参数R2与Det/r比率的关系图。可以看出,图36所对应的结构一的R2曲线111随Det/r比率增加而逐渐衰减,在Det=0~0.3 r距离时,具有最佳线性度;图37所对应的结构二的R2曲线112随Det/r增加而逐渐增加,并在0.6~0.8 r时达到最大,而后开始降低;图38所对应的结构三R2曲线113随Det增加在0.6 r附近达到最大值。
图39-41为单芯片偏轴磁电阻Z-X角度传感器的角度关系曲线的线性拟合参数R2与间隔(Space)/r比率关系图,图39为结构一所对应R2曲线117随间隔(Space)/r比率关系图,随着间隔(Space)的增加,其R2逐渐减小,可以看出在0~0.3 r跨距时具有最好的线性特征,图40为结构二所对应的R2曲线118随间隔(Space)/r比率关系图,随间隔(Space)增加,R2逐渐增加,可以看出,其在0.5~0.7 r时具有最好的线性特征。图41对应结构三所对应的R2曲线119在0.6 r附近具有最好的线性特征。
此外,纵向比较三种类型的磁电阻Z-X角度传感器芯片,可以看出,第一种类型的单芯片偏轴磁电阻Z-X角度传感器具有最好的性能特征。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内。

Claims (31)

  1. 一种单芯片偏轴磁电阻Z-X角度传感器,用于探测与衬底表面垂直的平面上的磁场旋转角,其特征在于,所述Z-X角度传感器包括:
    位于X-Y平面上的衬底;
    位于所述衬底上的至少一个X轴磁电阻传感器,用于探测平行于所述衬底表面的X轴磁场分量;
    位于所述衬底上的至少一个Z轴磁电阻传感器,用于探测垂直于所述衬底表面的Z轴磁场分量;
    所述X轴磁电阻传感器和所述Z轴磁电阻传感器均包括磁电阻传感单元和通量集中器,所述通量集中器为长条形,其长轴平行于Y轴方向,短轴平行于X轴方向,所述磁电阻传感单元的敏感方向平行于X轴方向;
    所述Z轴磁电阻传感器的磁电阻传感单元和所述X轴磁电阻传感器的磁电阻传感单元都分别电连接成包括至少两个桥臂的磁电阻桥,其中,每个所述桥臂为一个或多个所述磁电阻传感单元电连接而成的两端口结构,且所述桥臂中的磁电阻传感单元沿着平行于Y轴方向排列成多个磁电阻单元列;
    所述Z轴磁电阻传感器的磁电阻桥为推挽式电桥,其中,推臂和挽臂分别位于所述Z轴磁电阻传感器中的通量集中器上方或下方的Y轴中心线的不同侧,且到各自对应的所述Y轴中心线的距离相等;
    所述X轴磁电阻传感器的磁电阻桥为参考式电桥,其中,参考臂位于所述X轴磁电阻传感器中通量集中器的上方或下方的Y轴中心线位置上,敏感臂位于与所述X轴磁电阻传感器中通量集中器上方或下方Y轴中心线距离大于通量集中器的一半宽度的位置上。
  2. 根据权利要求1所述的一种单芯片偏轴磁电阻Z-X角度传感器,其特征在于,所述通量集中器为包含Ni、Fe、Co中的一种元素或多种元素的软磁合金材料。
  3. 根据权利要求1所述的一种单芯片偏轴磁电阻Z-X角度传感器,其特征在于,所述磁电阻传感单元为GMR或TMR磁电阻传感单元。
  4. 根据权利要求1所述的一种单芯片偏轴磁电阻Z-X角度传感器,其特征在于,所述Z轴磁电阻传感器包括两个Z轴磁电阻传感器子单元,且分别沿所述X轴方向位于所述X轴磁电阻传感器的两侧,所述Z轴磁电阻传感器和所述X轴磁电阻传感器分别对应不同的所述通量集中器。
  5. 根据权利要求1所述的一种单芯片偏轴磁电阻Z-X角度传感器,其特征在于,所述X轴磁电阻传感器包括两个X轴磁电阻传感器子单元,且分别沿所述X轴方向位于所述Z轴磁电阻传感器的两侧,所述Z轴磁电阻传感器和所述X轴磁电阻传感器分别对应不同的所述通量集中器。
  6. 根据权利要求1所述的一种单芯片偏轴磁电阻Z-X角度传感器,其特征在于,所述X轴、Z轴磁电阻传感器分别包括多个X轴磁电阻传感器子单元、Z轴磁电阻传感器子单元,且沿所述X轴方向交替排布,所述Z轴磁电阻传感器和所述X轴磁电阻传感器分别对应不同的所述通量集中器。
  7. 根据权利要求1所述的一种单芯片偏轴磁电阻Z-X角度传感器,其特征在于,所述Z轴磁电阻传感器和所述X轴磁电阻传感器沿所述Y轴方向排列,所述Z轴磁电阻传感器和所述X轴磁电阻传感器分别对应不同的所述通量集中器。
  8. 根据权利要求1所述的一种单芯片偏轴磁电阻Z-X角度传感器,其特征在于,所述Z轴磁电阻传感器的磁电阻传感单元和所述X轴磁电阻传感器的磁电阻传感单元沿所述X轴方向混合排列,所述Z轴磁电阻传感器和所述X轴磁电阻传感器具有共同的所述通量集中器。
  9. 根据权利要求4-7任一项所述的一种单芯片偏轴磁电阻Z-X角度传感器,其特征在于,所述Z轴磁电阻传感器或Z轴磁电阻传感器子单元包含1个所述通量集中器,所述磁电阻传感单元对应于所述1个通量集中器。
  10. 根据权利要求4-7任一项所述的一种单芯片偏轴磁电阻Z-X角度传感器,其特征在于,所述Z轴磁电阻传感器或Z轴磁电阻传感器子单元包含2个所述通量集中器,所述推臂和挽臂分别位于所述2个通量集中器的Y轴中心线不同侧的位置。
  11. 根据权利要求4-7任一项所述的一种单芯片偏轴磁电阻Z-X角度传感器,其特征在于,所述Z轴磁电阻传感器或Z轴磁电阻传感器子单元包含N+2个所述通量集中器,且所述磁电阻传感单元对应于中间N个所述通量集中器,所述N为正整数。
  12. 根据权利要求4-7任一项所述的一种单芯片偏轴磁电阻Z-X角度传感器,其特征在于,所述X轴磁电阻传感器或X轴磁电阻传感器子单元包括2N个磁电阻单元列,所述X轴磁电阻传感器中相邻两个所述通量集中器之间的间距为L;当所述X轴磁电阻传感器的通量集中器数量为2N-2个时,所述X轴磁电阻传感器中间的两个所述磁电阻单元列相邻并对应于参考臂,且间距为2L;当所述X轴磁电阻传感器的通量集中器数量为2N-1个时,所述X轴磁电阻传感器正中间的两个所述磁电阻单元列对应于敏感臂,且间距为2L,其中L为自然数,所述N为大于1的整数。
  13. 根据权利要求4-7任一项所述的一种单芯片偏轴磁电阻Z-X角度传感器,其特征在于,所述X轴磁电阻传感器或X轴磁电阻传感器子单元包括2N个磁电阻单元列以及2N-1个所述通量集中器,且所述X轴磁电阻传感器的磁电阻单元列交替分布于所述X轴磁电阻传感器的通量集中器的上方或下方以及距离Y轴中心线大于所述X轴磁电阻传感器的通量集中器一半宽度的位置,所述N为正整数。
  14. 根据权利要求8所述的一种单芯片偏轴磁电阻Z-X角度传感器,其特征在于,所述通量集中器数量为2N+2时,所述Z轴磁电阻传感器包含4N个磁电阻单元列,且对应于中间2N个所述通量集中器,所述X轴磁电阻传感器包含2N+2个磁电阻单元列,且所述X轴磁电阻传感器中间的两个磁电阻单元列之间的距离为4L,相邻两个所述通量集中器之间的距离为L,其中L为自然数,所述N为大于1的整数。
  15. 根据权利要求8所述的一种单芯片偏轴磁电阻Z-X角度传感器,其特征在于,所述通量集中器数量为2N+2,所述Z轴磁电阻传感器包含4N个磁电阻单元列,分别对应于中间2N个所述通量集中器,所述X轴磁电阻传感器包含的磁电阻单元列数量为4N,且所述X轴磁电阻传感器中间的两个磁电阻单元列之间的距离为2L,相邻两个所述通量集中器之间的距离为L,其中L为自然数,所述N为大于1的整数。
  16. 根据权利要求8所述的一种单芯片偏轴磁电阻Z-X角度传感器,其特征在于,所述通量集中器数量为N,所述Z轴磁电阻传感器包含的磁电阻单元列数量为2 (N-2),对应中间N-2个所述通量集中器,所述X轴磁电阻传感器包含的磁电阻单元列数量为2 (N-1),且其中一侧的一个所述通量集中器的Y轴中心线上分布有一个磁电阻单元列,所述N为大于3的整数。
  17. 根据权利要求1所述的一种单芯片偏轴磁电阻Z-X角度传感器,其特征在于,所述X轴磁电阻传感器中的参考臂和敏感臂所对应的磁电阻单元列的数量相同,所述Z轴磁电阻传感器中的推臂和挽臂所对应的磁电阻单元列的数量相同。
  18. 根据权利要求8所述的一种单芯片偏轴磁电阻Z-X角度传感器,其特征在于,所述Z轴磁电阻传感器和X轴磁电阻传感器所对应的所述通量集中器宽度相同,厚度也相同。
  19. 根据权利要求1所述的一种单芯片偏轴磁电阻Z-X角度传感器,其特征在于,所述X轴磁电阻传感器的通量集中器之间的间隙处的磁电阻单元列所在位置处的磁场增益系数为1<Asns<100,所述X轴磁电阻传感器的通量集中器上方或下方Y轴中心线处的磁电阻单元列所在位置的磁场衰减系数为0<Aref<1。
  20. 根据权利要求1所述的一种单芯片偏轴磁电阻Z-X角度传感器,其特征在于,所述Z轴磁电阻传感器中相邻两个所述通量集中器之间的间距L不小于所述Z轴磁电阻传感器的通量集中器的宽度Lx。
  21. 根据权利要求1所述的一种单芯片偏轴磁电阻Z-X角度传感器,其特征在于,所述Z轴磁电阻传感器中相邻两个所述通量集中器之间的间距L>2Lx,所述Lx为所述Z轴磁电阻传感器中所述通量集中器的宽度。
  22. 根据权利要求1所述的一种单芯片偏轴磁电阻Z-X角度传感器,其特征在于,对于所述Z轴磁电阻传感器,其上的所述磁电阻单元列与所述磁通量集中器的上方或下方边缘的间距越小,或者其上的所述磁通量集中器的厚度Lz越大,或者其上的所述磁通量集中器的宽度Lx越小,所述Z轴磁电阻传感器的灵敏度越高。
  23. 根据权利要求1所述的一种单芯片偏轴磁电阻Z-X角度传感器,其特征在于,所述X轴磁电阻传感器的参考式电桥和/或所述Z轴磁电阻传感器的推挽式电桥为半桥、全桥或者准桥结构中的一种。
  24. 根据权利要求1所述的一种单芯片偏轴磁电阻Z-X角度传感器,其特征在于,所述X轴磁电阻传感器以及Z轴磁电阻传感器的磁电阻传感单元均具有相同的磁场灵敏度。
  25. 一种偏轴磁电阻Z-X角度测量仪,包括权利要求1所述的单芯片偏轴磁电阻Z-X角度传感器,其特征在于,所述偏轴磁电阻Z-X角度测量仪还包括圆形永磁码盘,所述圆形永磁码盘的磁化方向平行于位于所述圆形永磁码盘的旋转平面内且过所述圆形永磁码盘的圆心的直线,所述圆形永磁码盘的宽度方向和旋转轴方向均沿所述Y轴方向,旋转平面为X-Z平面,所述衬底所在的X-Y平面距离所述圆形永磁码盘边缘的距离为Det,且Z轴过所述单芯片偏轴Z-X磁电阻角度传感器的中心和所述圆形永磁码盘的轴心,所述Det>0。
  26. 根据权利要求25所述的偏轴磁电阻Z-X角度测量仪,其特征在于, 所述Z轴磁电阻传感器包括两个Z轴磁电阻传感器子单元,且分别沿所述X轴方向位于所述X轴磁电阻传感器的两侧,所述Z轴磁电阻传感器和所述X轴磁电阻传感器分别对应不同的所述通量集中器,所述Det为0.2-0.3 r,且所述X轴磁电阻传感器和所述Z轴磁电阻传感器子单元之间的间隔为0-0.3 r,r为所述圆形永磁码盘的半径。
  27. 根据权利要求25所述的偏轴磁电阻Z-X角度测量仪,其特征在于, X轴磁电阻传感器包括两个X轴磁电阻传感器子单元,且分别沿X轴方向位于所述Z轴磁电阻传感器的两侧,所述Z轴磁电阻传感器和X轴磁电阻传感器分别对应不同的所述通量集中器,所述Det为0.6-0.8 r,且所述X轴磁电阻传感器子单元和Z轴磁电阻传感器之间的间隔为0.5-0.7 r, r为所述圆形永磁码盘的半径。
  28. 根据权利要求25所述的偏轴磁电阻Z-X角度测量仪,其特征在于, 所述X轴磁电阻传感器、所述Z轴磁电阻传感器分别包括多个X轴磁电阻传感器子单元、Z轴磁电阻传感器子单元,且沿所述X轴方向交替排布,所述Z轴磁电阻传感器和所述X轴磁电阻传感器分别对应不同的所述通量集中器,所述Det为0.5-0.7 r,且相邻所述Z轴磁电阻传感器子单元和所述X轴磁电阻传感器子单元之间的间隔为0.6 r, r为所述圆形永磁码盘半径。
  29. 根据权利要求25所述的偏轴磁电阻Z-X角度测量仪,其特征在于,所述Z轴磁电阻传感器和所述X轴磁电阻传感器沿所述Y轴方向排列,所述Z轴磁电阻传感器和所述X轴磁电阻传感器分别对应不同的所述通量集中器,所述Det为0.5-0.7 r, r为所述圆形永磁码盘的半径。
  30. 根据权利要求25所述的偏轴磁电阻Z-X角度测量仪,其特征在于,所述Z轴磁电阻传感器的磁电阻传感单元和所述X轴磁电阻传感器的磁电阻传感单元沿所述X轴方向混合排列,所述Z轴磁电阻传感器和所述X轴磁电阻传感器具有共同的所述通量集中器,所述Det为0.5-0.7 r, r为所述圆形永磁码盘的半径。
  31. 根据权利要求25所述的偏轴磁电阻Z-X角度测量仪,其特征在于,所述Z轴磁电阻传感器和所述X轴磁电阻传感器沿所述Y轴方向排列,所述Z轴磁电阻传感器和所述X轴磁电阻传感器没有共同的所述通量集中器,所述单芯片偏轴磁电阻Z-X角度传感器沿所述圆形永磁码盘的宽度方向位于所述圆形永磁码盘的X轴和Z轴磁场均匀区。
PCT/CN2015/087320 2014-08-20 2015-08-18 一种单芯片偏轴磁电阻z-x角度传感器和测量仪 WO2016026419A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/505,236 US10473449B2 (en) 2014-08-20 2015-08-18 Single-chip off-axis magnetoresistive Z-X angle sensor and measuring instrument
JP2017509770A JP6663420B2 (ja) 2014-08-20 2015-08-18 シングルチップオフアクシス磁気抵抗z−x角度センサおよび計測器
EP15833549.7A EP3184955B1 (en) 2014-08-20 2015-08-18 Single-chip off-axis magnetoresistive z-x angle sensor and measuring instrument

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410411628.0A CN104197828B (zh) 2014-08-20 2014-08-20 一种单芯片偏轴磁电阻z‑x角度传感器和测量仪
CN201410411628.0 2014-08-20

Publications (1)

Publication Number Publication Date
WO2016026419A1 true WO2016026419A1 (zh) 2016-02-25

Family

ID=52083156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/087320 WO2016026419A1 (zh) 2014-08-20 2015-08-18 一种单芯片偏轴磁电阻z-x角度传感器和测量仪

Country Status (5)

Country Link
US (1) US10473449B2 (zh)
EP (1) EP3184955B1 (zh)
JP (1) JP6663420B2 (zh)
CN (1) CN104197828B (zh)
WO (1) WO2016026419A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10473449B2 (en) 2014-08-20 2019-11-12 MultiDimension Technology Co., Ltd. Single-chip off-axis magnetoresistive Z-X angle sensor and measuring instrument
US11636889B2 (en) 2015-02-04 2023-04-25 MultiDimension Technology Co., Ltd. Automatic magnetic flow recording device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105259518A (zh) * 2015-11-03 2016-01-20 江苏多维科技有限公司 一种高灵敏度单芯片推挽式tmr磁场传感器
CN105911490B (zh) * 2016-05-12 2018-06-15 美新半导体(无锡)有限公司 具有自检重置导线的磁场传感器
CN106052725B (zh) * 2016-06-08 2018-07-03 江苏多维科技有限公司 一种z-x轴磁电阻传感器
CN107064829B (zh) * 2017-05-04 2023-02-21 江苏多维科技有限公司 一种单芯片高灵敏度磁电阻线性传感器
CN109283228A (zh) * 2018-11-19 2019-01-29 江苏多维科技有限公司 一种基于磁阻元件的氢气传感器及其检测氢气的方法
DE102020133041A1 (de) 2020-12-10 2022-06-15 Infineon Technologies Ag Ein magnetoresistives Winkelsensorsystem und ein Fahrzeug umfassend ein magnetoresistives Winkelsensorsystem
US11719527B2 (en) * 2021-11-04 2023-08-08 Allegro Microsystems, Llc Angle sensor with a single die using a single target
JP2023119633A (ja) * 2022-02-17 2023-08-29 Tdk株式会社 磁気センサ

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000321014A (ja) * 1999-03-11 2000-11-24 Tokai Rika Co Ltd 回転検出センサ
US20110068780A1 (en) * 2009-09-24 2011-03-24 Jtekt Corporation Rotational angle sensor, motor, rotational angle detector, and electric power steering system
CN102298124A (zh) * 2011-03-03 2011-12-28 江苏多维科技有限公司 一种独立封装的桥式磁场角度传感器
CN102297652A (zh) * 2011-03-03 2011-12-28 江苏多维科技有限公司 一种独立封装的磁电阻角度传感器
CN102419425A (zh) * 2011-09-09 2012-04-18 兰州大学 一种磁电阻自动测量装置及其测量方法
CN104197828A (zh) * 2014-08-20 2014-12-10 江苏多维科技有限公司 一种单芯片偏轴磁电阻z-x角度传感器和测量仪
CN204043604U (zh) * 2014-08-20 2014-12-24 江苏多维科技有限公司 一种单芯片偏轴磁电阻z-x角度传感器和测量仪

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI307977B (en) * 2005-03-17 2009-03-21 Yamaha Corp Three-axis magnetic sensor and manufacturing method therefor
JP4807535B2 (ja) * 2009-07-31 2011-11-02 Tdk株式会社 磁気センサ
US8947082B2 (en) * 2011-10-21 2015-02-03 University College Cork, National University Of Ireland Dual-axis anisotropic magnetoresistive sensors
US8922205B2 (en) * 2011-10-31 2014-12-30 Everspin Technologies, Inc. Apparatus and method for reset and stabilization control of a magnetic sensor
JP2014033065A (ja) * 2012-08-03 2014-02-20 Azbil Corp 磁気センサ
CN103968860B (zh) * 2013-02-01 2017-07-04 江苏多维科技有限公司 绝对式磁旋转编码器
CN103913709B (zh) * 2014-03-28 2017-05-17 江苏多维科技有限公司 一种单芯片三轴磁场传感器及其制备方法
CN103954920B (zh) * 2014-04-17 2016-09-14 江苏多维科技有限公司 一种单芯片三轴线性磁传感器及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000321014A (ja) * 1999-03-11 2000-11-24 Tokai Rika Co Ltd 回転検出センサ
US20110068780A1 (en) * 2009-09-24 2011-03-24 Jtekt Corporation Rotational angle sensor, motor, rotational angle detector, and electric power steering system
CN102298124A (zh) * 2011-03-03 2011-12-28 江苏多维科技有限公司 一种独立封装的桥式磁场角度传感器
CN102297652A (zh) * 2011-03-03 2011-12-28 江苏多维科技有限公司 一种独立封装的磁电阻角度传感器
CN102419425A (zh) * 2011-09-09 2012-04-18 兰州大学 一种磁电阻自动测量装置及其测量方法
CN104197828A (zh) * 2014-08-20 2014-12-10 江苏多维科技有限公司 一种单芯片偏轴磁电阻z-x角度传感器和测量仪
CN204043604U (zh) * 2014-08-20 2014-12-24 江苏多维科技有限公司 一种单芯片偏轴磁电阻z-x角度传感器和测量仪

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10473449B2 (en) 2014-08-20 2019-11-12 MultiDimension Technology Co., Ltd. Single-chip off-axis magnetoresistive Z-X angle sensor and measuring instrument
US11636889B2 (en) 2015-02-04 2023-04-25 MultiDimension Technology Co., Ltd. Automatic magnetic flow recording device

Also Published As

Publication number Publication date
CN104197828B (zh) 2017-07-07
US10473449B2 (en) 2019-11-12
EP3184955A1 (en) 2017-06-28
JP6663420B2 (ja) 2020-03-11
JP2017524141A (ja) 2017-08-24
EP3184955A4 (en) 2018-04-11
US20170268864A1 (en) 2017-09-21
CN104197828A (zh) 2014-12-10
EP3184955B1 (en) 2019-07-31

Similar Documents

Publication Publication Date Title
WO2016026419A1 (zh) 一种单芯片偏轴磁电阻z-x角度传感器和测量仪
WO2016045614A1 (zh) 一种单芯片差分自由层推挽式磁场传感器电桥及制备方法
WO2016197841A1 (zh) 一种交叉指状y轴磁电阻传感器
WO2014108096A1 (zh) 一种多圈绝对磁编码器
WO2013123873A1 (zh) 用于测量磁场的磁电阻传感器
WO2013182036A1 (zh) 一种磁电阻齿轮传感器
WO2014108075A1 (zh) 一种角度磁编码器和电子水表
US7355382B2 (en) Current sensor and mounting method thereof
US7902811B2 (en) Current sensor
US4823075A (en) Current sensor using hall-effect device with feedback
US8791694B2 (en) Current sensor arrangement
WO2021201472A1 (en) Multi-phase differential synthesis resolver apparatus
WO2015139643A1 (zh) 一种磁电阻音频采集器
JP7140149B2 (ja) 電流センサ、磁気センサ及び回路
WO2018153335A1 (zh) 一种单芯片双轴磁电阻角度传感器
JPH04285814A (ja) 磁気センサ
EP3775940A1 (en) Calibration of hall device sensitivity using auxiliary hall device
JP2020034433A (ja) Sawセンサ
JP4999498B2 (ja) 磁気式エンコーダ装置
CN114460510A (zh) 霍尔传感器模拟前端
EP0217478B1 (en) Contactless angle transducer
US5923162A (en) Non-inductive lead path hall effect electrical current sensor
WO2015056346A1 (ja) 磁気検出装置
US9816843B2 (en) Magnetorestrictive position sensor according to the propagation time principle having a magnetorestrictive detector unit for mechanical-elastic density waves
CN116034648A (zh) 磁阻抗传感器元件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15833549

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017509770

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15505236

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015833549

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015833549

Country of ref document: EP