WO2016026114A1 - 电机驱动方法和装置、电器 - Google Patents

电机驱动方法和装置、电器 Download PDF

Info

Publication number
WO2016026114A1
WO2016026114A1 PCT/CN2014/084895 CN2014084895W WO2016026114A1 WO 2016026114 A1 WO2016026114 A1 WO 2016026114A1 CN 2014084895 W CN2014084895 W CN 2014084895W WO 2016026114 A1 WO2016026114 A1 WO 2016026114A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
torque coefficient
current
compensation
motor
Prior art date
Application number
PCT/CN2014/084895
Other languages
English (en)
French (fr)
Inventor
付彦超
戈志强
揭杰
赵小安
龚黎明
Original Assignee
广东威灵电机制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东威灵电机制造有限公司 filed Critical 广东威灵电机制造有限公司
Priority to JP2017510549A priority Critical patent/JP6437633B2/ja
Priority to KR1020177006240A priority patent/KR101897934B1/ko
Priority to US15/505,283 priority patent/US9887651B2/en
Priority to PCT/CN2014/084895 priority patent/WO2016026114A1/zh
Publication of WO2016026114A1 publication Critical patent/WO2016026114A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/06Arrangements for speed regulation of a single motor wherein the motor speed is measured and compared with a given physical value so as to adjust the motor speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/20Estimation of torque
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/15Controlling commutation time
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/182Circuit arrangements for detecting position without separate position detecting elements using back-emf in windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Definitions

  • the invention belongs to the field of electric machines, and in particular relates to a motor driving method and device, and an electric appliance.
  • Permanent magnet synchronous motor has the advantages of high power density and good speed regulation performance, and has been widely used in various electrical equipment.
  • electrical equipment has become a necessity in daily life, and the power consumption of a large number of electrical equipment is increasing day by day; among them, the electrical energy consumed by electrical equipment is the largest part of the motor; to save the power consumption of the motor, currently FOC (Field Oriented)
  • Control - Field Oriented Control technology to control the power to the motor.
  • the rotor position needs to be known in real time.
  • the position sensor is often used to detect the rotor position.
  • Hall sensors are widely used due to their high reliability, low cost, and easy installation.
  • Hall sensors are inevitably subject to installation errors during installation, resulting in a certain error between the rotor position detected by the Hall sensor and the actual rotor position. This error will affect the control of the motor by the F0C technology. Accuracy, resulting in motor efficiency reduction, start failure or even reverse start and other abnormal phenomena.
  • the main compensation means is: According to the phase relationship between the Hall sensor output signal and the opposite electromotive force of the permanent magnet synchronous motor, the detection error is manually detected and determined, and the error is compensated.
  • the compensation means is low in efficiency and high in labor costs. technical problem
  • An object of the present invention is to provide a motor driving method and apparatus, and an electric appliance, which solve the problem of manually detecting a mounting error of a Hall sensor and performing error compensation, which is inefficient and labor intensive.
  • the present invention provides a motor driving method, and the motor driving method includes:
  • the compensation angle is determined according to the rotor angle compensation model
  • the power supply to the motor is adjusted by the magnetic field orientation technique.
  • the present invention provides a motor driving device, wherein the motor driving device includes an angle detecting module, a counter electromotive force detecting module, a phase current detecting module, and an adjusting module;
  • the angle detecting module is configured to: when the rotor of the motor rotates, detect a current angle of the rotor through the Hall sensor at the current moment;
  • the opposite electromotive force detecting module is configured to: when the rotor of the motor rotates, detect an opposite electromotive force of the motor at the current moment;
  • the phase current detecting module is configured to: detect a phase current of the motor at the current time when the rotor of the motor rotates; the adjusting module includes a target torque coefficient determining unit, a current torque coefficient determining unit, a compensation angle determining unit, Adjust the angle to get the unit and the power adjustment unit:
  • the target torque coefficient determining unit is configured to: determine a target torque coefficient according to the opposite electromotive force-torque coefficient relationship model according to the opposite electromotive force detected by the opposite electromotive force detecting module;
  • the current torque coefficient determining unit is configured to: determine a current torque coefficient according to a phase current-torque coefficient relationship model according to the phase current detected by the phase current detecting module;
  • the compensation angle determining unit is configured to: if the difference between the current torque coefficient and the target torque coefficient does not belong to the first error interval, determine the compensation angle according to the rotor angle compensation model;
  • the adjusting angle obtaining unit is configured to: compensate the current angle detected by the angle detecting module by the compensation angle, and obtain an adjustment angle;
  • the power supply adjusting unit is configured to: adjust power supply to the motor by a magnetic field orientation technology according to the adjustment angle.
  • the present invention provides an electric appliance using a motor including the above-described motor driving device and motor. Beneficial effect
  • the invention has the beneficial effects that: when the motor is powered on, when the rotor of the motor rotates, the current angle of the rotor is detected at the current moment, the opposite electromotive force of the motor is detected, and the phase current of the motor is detected; and the opposite electromotive force is used as a parameter, according to the opposite
  • the electromotive force-torque coefficient relationship model determines the target torque coefficient; the detected phase current is used as a parameter, according to the phase current -
  • the torque coefficient relationship model determines the current torque coefficient; if the difference between the current torque coefficient and the target torque coefficient does not belong to the first error interval, represents the current angle and the target angle (in the case where there is no error in the installation of the Hall sensor) If there is an error in the angle of the rotor detected by the Hall sensor, the compensation angle needs to be determined according to the rotor angle compensation model, and the current angle is compensated with the compensation angle to obtain an adjustment angle; the adjustment angle is more relative to the current angle.
  • FIG. 1 is a flowchart of an implementation of a motor driving method according to an embodiment of the present invention
  • FIG. 2 is a flowchart of an implementation of step A14 in FIG. 1;
  • FIG. 3 is still another implementation flowchart of step A14 in FIG. 1;
  • FIG. 4 is a structural diagram of a motor driving device according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a motor driving device according to an embodiment of the present invention.
  • FIG. 6 is another structural diagram of an optimized composition of a motor driving device according to an embodiment of the present invention.
  • FIG. 7 is still another structural diagram of an optimized composition of a motor driving device according to an embodiment of the present invention. detailed description
  • the position of the rotor in the motor is detected and determined using a Hall sensor. Further, during the process of continuously determining the rotor by the Hall sensor, the rotational speed of the rotor over a period of time can be determined.
  • the parameter of the rotor used in the power supply of the motor by the Field Oriented Control is detected and determined by the Hall sensor.
  • the FOC control strategy applicable to the FOC technology includes, but is not limited to, a control strategy in which the direct axis current is set to zero, a constant flux linkage control strategy, a field weakening control strategy, and the like.
  • the angle of the rotor detected by the Hall sensor is used when controlling the power supply to the motor by using the F0C technology. If there is an error in the installation of the Hall sensor (for example, it is required to be installed at intervals of 120 degrees). When the Hall sensor is not installed at an equal interval of 120 degrees, it affects the control accuracy of the F0C technology for the motor power supply.
  • the target angle is gradually approached by angle compensation of the angle of the rotor; the target angle is: installation of the Hall sensor In the absence of error, the angle of the rotor detected by the Hall sensor; using the F0C technology to control the power supply to the motor with the target angle as a parameter, the active power required by the motor is minimal.
  • the motor is implemented by using a permanent magnet synchronous motor.
  • FIG. 1 shows an implementation flow of the motor driving method provided by the embodiment of the present invention. Only parts related to the embodiment of the present invention are shown.
  • the motor driving method includes the steps of Al1, Step A12, Step A13, Step A14, Step A15, and Step A16.
  • Step Al l when the rotor of the motor rotates, the current angle of the rotor is detected by the Hall sensor at the current moment, the opposite electromotive force of the motor is detected at the current moment, and the phase current of the motor is detected at the current moment.
  • the power supply to the motor is controlled by the F0C technology, the motor is powered on, and the rotor of the motor rotates; the motor is provided with a Hall sensor, and the position of the rotor is detected by the Hall sensor.
  • the angle of the rotor at the moment can be determined according to the position of the rotor; for example: for the current moment, the position of the rotor at the current moment can be determined according to the position detected by the Hall sensor at the current time, The angle is taken as the current angle of the rotor.
  • the angle of the rotor at different time points in the period can be determined according to the Hall sensor, and the rotation speed of the rotor during the period is calculated according to the angle of the rotor at different time points.
  • the opposite electromotive force of the motor is detected when the rotor rotates, and the opposite electromotive force of the motor is detected in any manner, which is not limited herein.
  • the phase current of the motor is detected when the rotor rotates, and the phase current of the motor is detected in any manner, which is not limited herein.
  • the phase current of the motor is detected, and the detected current is used as the phase current of the motor according to the embodiment of the present invention.
  • step A1 is performed; specifically, for the requirement of performing step Al1, it is detected at the current time; SP, at the current moment, the rotor is detected by the Hall sensor.
  • the current angle at the same time, detects the opposite electromotive force of the motor, while detecting the phase current of the motor at the current time.
  • Step A12 is performed at the opposite electromotive force of the motor detected at the current time; the phase of the motor detected at the current time Current, go to step A13.
  • Step A12 determining a target torque coefficient according to the opposite electromotive force-torque coefficient relationship model according to the opposite electromotive force.
  • the inverse electromotive force-torque coefficient relationship model is: a mathematical model between the opposite electromotive force of the motor and the torque coefficient of the motor in the motor field. Therefore, the specific electromotive force-torque coefficient relationship model of the embodiment of the present invention is based on which specific mathematical model of the motor, which is not limited herein.
  • the inverse electromotive force-torque coefficient relationship model determines the mathematical relationship between the opposite electromotive force of the motor and the torque coefficient of the motor, if the opposite electromotive force of the motor is detected, the motor can be calculated according to the inverse electromotive force-torque coefficient relationship model. Torque factor.
  • the motor driving method further includes: detecting a rotation speed of the rotor by the Hall sensor at the current time when the rotor of the motor rotates.
  • the rotational speed of the rotor is also detected by the Hall sensor.
  • the angle of the rotor at different time points in the short period of time can be determined according to the Hall sensor, and then the rotor is calculated according to the angle of the rotor at different time points. For a shorter time, the calculated speed is taken as the speed of the rotor at the current moment.
  • step A12 the step of determining the target torque coefficient according to the inverse electromotive force and the inverse electromotive force-torque coefficient relationship model is specifically:
  • the said is the target torque coefficient
  • the E is the peak value of the opposite electromotive force
  • the ⁇ is the rotational speed of the rotor.
  • the opposite electromotive force of the motor is detected at the current time while the rotational speed of the rotor is detected at the current time.
  • the opposite electromotive force coefficient is determined by the inverse electromotive force coefficient model, and the inverse electromotive force coefficient model is:
  • the E is a peak of the opposite electromotive force
  • the M is a rotational speed of the rotor.
  • the torque coefficient is calculated according to the relationship between the opposite electromotive force coefficient and the torque coefficient of the motor, and the relationship model between the opposite electromotive force coefficient and the torque coefficient of the motor is:
  • the torque coefficient of the motor at the current time can be determined according to formula (3).
  • the first model shown in the formula (1) is obtained by combining the inverse electromotive force coefficient model shown in the formula (2) and the relationship model between the counter electromotive force coefficient and the torque coefficient of the motor shown in the formula (3).
  • the torque coefficient model after determining the peak value of the opposite electromotive force E and detecting the rotational speed M of the rotor at the current time, can calculate the target torque coefficient at the current time according to the first torque coefficient model (1).
  • Step ⁇ 13 based on the detected phase current, determine the current torque coefficient based on the phase current-torque coefficient relationship model.
  • the phase current-torque coefficient relationship model is: a mathematical model between the phase current of the motor and the torque coefficient of the motor in the motor field. Therefore, the phase current-torque coefficient relationship model of the embodiment of the present invention is based on which specific mathematical model of the motor, which is not limited herein.
  • step ⁇ 13 is performed, and the torque coefficient of the motor at the current time is calculated by using the phase current-torque coefficient relationship model, and the calculated torque coefficient is used as the current turn.
  • Moment coefficient is used as the current turn.
  • phase current-torque coefficient relationship model is
  • the load torque ⁇ for the current time is detectable, for example, by the load torque observer of the motor.
  • the peak value of the phase current is taken as the phase current-torque coefficient relationship shown by the formula (4).
  • the model calculates the current torque factor at the current time.
  • Step ⁇ 14 if the difference between the current torque coefficient and the target torque coefficient does not belong to the first error interval, the compensation angle is determined according to the rotor angle compensation model.
  • the first error interval is determined in advance, and the specific method for determining the first error interval is not limited herein, and may be manually set or determined according to experimental data. Since the current torque coefficient is hardly continuously equal to the target torque coefficient; the embodiment of the present invention defines as follows: if the difference between the current torque coefficient and the target torque coefficient belongs to the first error interval, the current torque is considered The coefficient is approximately equal to the target torque coefficient.
  • the current torque coefficient and the target torque coefficient cannot be determined to be approximately equal, and For the current torque factor There is an error with the target torque coefficient.
  • the target angle the angle of the rotor detected by the Hall sensor in the absence of an error in the installation of the Hall sensor
  • the current torque coefficient is equal to the target torque coefficient
  • the current angle of the rotor needs to be compensated, so that the adjustment angle obtained by the compensation gradually approaches.
  • the minimum required active power of the motor for the same load torque ie the phase current required by the motor, is also minimal.
  • the compensation angle is determined according to the rotor angle compensation model.
  • the rotor angle compensation model for determining the compensation angle is not limited in the embodiment of the present invention, as long as the following conditions are met, the condition is: the compensation angle determined according to the rotor angle compensation model, and the current angle is compensated by the compensation angle The resulting adjustment angle is gradually approached or approximated to the target angle with respect to the current angle.
  • Fig. 2 shows an implementation flow of the step A14, and for the convenience of description, only the parts related to the embodiment of the present invention are shown.
  • step A14 if the difference between the current torque coefficient and the target torque coefficient does not belong to the first error interval, the compensation angle is determined according to the rotor angle compensation model.
  • One step includes step A141, step A142, and step A143.
  • Step A141 Determine whether the current torque coefficient and the target torque coefficient satisfy a torque coefficient error model, and the torque coefficient error model is:
  • the s is determined by the first error interval; in the embodiment, in the case of determining the first error interval, the s determined according to the first error interval may include satisfying the current torque coefficient and The difference between the target torque coefficients belongs to all the values of the condition of the first error interval.
  • the value of s is 5%.
  • Step A142 if satisfied, the current angle is taken as the adjustment angle.
  • the installation error of the Hall sensor is small, the current angle has approached or approached the target angle, and it can be determined that the current torque coefficient is approximately equal to the target torque coefficient;
  • the previous adjustment angle is obtained in combination with the last compensation angle (the compensation angle determined according to the time before the current time), and the power supply to the motor is adjusted by the F0C technique according to the last adjustment angle, Place Describe the target torque coefficient and the current torque coefficient determined at the current time. If the current torque coefficient and the target torque coefficient satisfy the formula (5), the current angle is considered to be close to or close to the target angle. It is determined that the current torque coefficient is approximately equal to the target torque coefficient.
  • the compensation angle is determined according to the rotor angle compensation model, and the current angle is directly used as the adjustment angle at the current time.
  • Step A143 if not satisfied, determining the compensation angle according to the rotor angle compensation model.
  • the torque coefficient determined next time and the target torque coefficient satisfy the formula (5); or, the torque coefficient determined next time and the target torque coefficient still do not satisfy the formula (5)
  • the torque coefficient determined next time approaches or approaches the target torque coefficient (ie, the next detected angle approaches or approaches the target angle).
  • Fig. 3 shows still another implementation flow of step A14, and for the convenience of description, only the parts related to the embodiment of the present invention are shown.
  • step A14 the step of determining a compensation angle according to the rotor angle compensation model specifically includes step A144, step A145, and step A146.
  • Step A144 determining whether the difference between the current torque coefficient and the target torque coefficient belongs to the second error interval.
  • the second error interval includes the first error interval.
  • the compensation angle needs to be determined according to the rotor angle compensation model, and further the step A1431 is further performed in the embodiment to perform a larger error. Determining, determining whether a difference between the current torque coefficient and the target torque coefficient belongs to a second error interval;
  • step A145 is performed to determine the compensation angle, and the angle value of the compensation angle determined according to step A145 is larger, according to step A145.
  • the larger compensation angle is compensated for a larger angle, so that the adjustment angle obtained by combining the compensation angle determined by step A145 with the current angle is gradually approached or approached to the target angle.
  • step A146 is performed to determine the compensation angle, and the angle value of the compensation angle determined according to step A146 is small. According to The smaller compensation angle determined in step A146 is compensated for a smaller angle, so that the adjustment angle obtained by combining the compensation angle determined by step A146 with the current angle is gradually approached or approaches the target. angle.
  • Step A145 If the difference does not belong to the second error interval, determine the compensation angle ⁇ by the first rotor angle compensation model, where the first rotor angle compensation model is:
  • the first compensation angle is greater than 1, and the ⁇ is a unit angle.
  • the unit angle ⁇ is artificially set in advance, or the unit angle ⁇ is determined based on experimental data.
  • the current angle detected at the current time is angularly compensated, and the current time is detected. The angle of the current angle is compensated for the first compensation angle.
  • the angle of the rotor is greatly approached to or approaching the target angle.
  • the first compensation angle is the first-time compensation angle
  • the second is the second-second compensation angle
  • the angle is compensated for the current angle detected at the current time.
  • the angle compensation for the current angle detected at the current time is the first compensation angle.
  • the compensation angle is gradually decreased; , the current compensation angle determined, the compensation angle is: the first -1 compensation angle -! One-half the absolute value of the difference from the compensation angle of the second - second. In this way, the compensation angle is gradually reduced, so that the angle of the rotor gradually approaches the target angle; further, the active power required by the motor approaches the active power required by the F0C technology at the target angle, and the phase current of the motor will Approaching the phase current detected when using the FOC technology at the target angle.
  • step A141 is performed to determine whether the current torque coefficient and the target torque coefficient satisfy the torque coefficient error model. If yes, perform step A142. If not, go to step A144; Determining whether the difference between the current torque coefficient and the target torque coefficient belongs to the second error interval when performing step A144; if the difference does not belong to the second error interval, using the first rotor angle compensation model Determining the compensation angle, if the difference belongs to the second error interval but does not belong to the first error interval, determining the compensation angle with the second rotor angle compensation model.
  • step A145 is performed to determine a larger compensation angle. Compensating the rotor angle with a large compensation angle, so that the rotor angle quickly approaches or approaches the target angle, the active power required by the motor is greatly reduced, and the phase current of the motor is also greatly reduced; After the rotor angle is rapidly approached or approaches the target angle with a larger compensation angle one or more times, the difference between the current torque coefficient and the target torque coefficient belongs to the second error interval but does not belong to The first error interval, performing the smaller compensation angle determined in step A146, compensating the rotor angle with a smaller compensation angle, so that the small angle of the rotor angle approaches or approaches the target angle, and the active power required by the motor With a small decrease, the phase current of the motor will also decrease slightly; one or more times with a small compensation angle, the rotor angle is approached to a small angle. After approaching the target angle, the
  • Step A15 Compensating the current angle with the compensation angle and obtaining an adjustment angle.
  • the adjustment angle is determined when the following conditions are met, the condition is: adjusting the phase current detected when powering the motor by using the F0C technology at the current angle, less than or equal to the adjustment angle Use F0C technology to adjust the phase current detected when powering the motor.
  • the current angle plus the sum of the compensation angles is used as the adjustment angle
  • the current angle is added to the compensation angle.
  • the value is used as the adjustment angle; conversely, when the current angle is subtracted from the difference of the compensation angle as the adjustment angle, if the adjustment angle satisfies the condition, the current angle is subtracted from the compensation
  • the difference in angle is taken as the adjustment angle.
  • the current angle plus the sum of the compensation angles is used as the adjustment angle, if the current phase current (the phase current detected at the current time) is peaked If the peak value of the phase current (the phase current detected at a certain time after the current time) is less than or equal to the peak value of the current detected angle, the sum of the current angle plus the compensation angle is used as the adjustment angle; The peak value of the phase current detected is greater than the peak value of the phase current detected next time, and the current angle is subtracted from the difference of the compensation angle as the adjustment angle.
  • the difference between the current angle and the compensation angle when the difference between the current angle and the compensation angle is used as the adjustment angle, if the phase current detected at the current time (the phase current detected at the current time) is Peak is less than or equal to The peak value of the phase current detected at the next time (the phase current detected at a certain time after the current time) is subtracted from the current angle as the adjustment angle; otherwise, if it is detected at the time The peak value of the phase current is greater than the peak value of the phase current detected next time, and the current angle plus the sum of the compensation angles is used as the adjustment angle.
  • Step A16 adjust the power supply to the motor by the magnetic field orientation technology.
  • the supply current supplied to the motor is adjusted to a direct current and an off-axis current according to the adjustment angle, according to the direct current and the cross current
  • the field oriented technology adjusts the power supply to the motor.
  • the coordinate transformation model is used to adjust the supply current of the three-phase motor to a direct current and current; the coordinate transformation model is:
  • the /class, / v , / w are respectively the three-phase supply current to the three-phase motor, the ⁇ is the adjustment angle, the direct current of the motor, and the / is the intersection current of the motor;
  • the adjustment angle ⁇ is: an angle obtained by compensating the current angle with the compensation angle.
  • the direct-axis current I d of the motor and the cross-axis current I q of the motor are adjusted by the magnetic field orientation technique to supply power to the motor. It will also be understood by those skilled in the art that all or part of the steps of the foregoing embodiments may be implemented by a program to instruct related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium described includes a ROM/RAM, a magnetic disk, an optical disk, and the like.
  • Fig. 4 shows the composition of a motor driving device according to an embodiment of the present invention. For the convenience of description, only parts related to the embodiment of the present invention are shown.
  • the motor driving device includes an angle detecting module 61, an opposite electromotive force detecting module 62, a phase current detecting module 63, and an adjusting module 64.
  • the angle detecting module 61 is configured to: when the rotor of the motor rotates, detect the current angle of the rotor through the Hall sensor at the current time.
  • the angle detecting module 61 includes the Hall sensor for detecting the position of the rotor. Further, the angle detecting module 61 can determine the current state of the rotor according to the position of the rotor detected at the current time. Angle.
  • the opposite electromotive force detecting module 62 included in the motor driving device, the opposite electromotive force detecting module 62 is configured to: when the rotor of the motor rotates, detect the opposite electromotive force of the motor at the current time.
  • the opposite electromotive force of the motor when the rotor of the motor rotates, the opposite electromotive force of the motor is detected by the opposite electromotive force detecting module 62.
  • the embodiment of the present invention does not limit the counter electromotive force detecting module 62, and the internal circuit of the opposite electromotive force detecting module 62,
  • the included device and the internal structure are not limited as long as the opposite electromotive force of the motor can be detected, for example, by using a detector provided by the prior art.
  • the phase current detecting module 63 included in the motor driving device, the phase current detecting module 63 is configured to: when the rotor of the motor rotates, detect the phase current of the motor at the current time.
  • the phase current detecting module 63 is not limited in the embodiment of the present invention, and the internal circuit, the included device, and the internal structure of the phase current detecting module 63 are not limited, as long as the motor can be realized.
  • the phase current can be detected. It is worth noting that when detecting the phase current of the motor, it is possible to detect the current of any phase of the motor and use the detected current as the phase current of the motor.
  • the adjustment module 64 includes a target torque coefficient determining unit 641, a current torque coefficient determining unit 642, a compensation angle determining unit 643, an adjustment angle obtaining unit 644, and a power supply adjusting unit 645;
  • the target torque coefficient determining unit 641 is configured to: determine the target torque coefficient according to the opposite electromotive force-torque coefficient relationship model according to the opposite electromotive force detected by the opposite electromotive force detecting module 62;
  • the current torque coefficient determining unit 642 is configured to: determine a current torque coefficient according to a phase current-torque coefficient relationship model according to the phase current detected by the phase current detecting module 63;
  • the compensation angle determining unit 643 is configured to: if the difference between the current torque coefficient and the target torque coefficient does not belong to the first error interval, determine the compensation angle according to the rotor angle compensation model;
  • the adjustment angle obtaining unit 644 is configured to: compensate the current angle detected by the angle detecting module 61 by the compensation angle, and obtain an adjustment angle;
  • the power supply adjusting unit 645 is configured to: adjust power supply to the motor by a magnetic field orientation technique according to the adjustment angle.
  • the adjustment module 64 uses a single-chip microcomputer or a programmable logic device (for example, a Complex Programmable Logic Device (CPLD) or a Field-Programmable Gate Array (Field-Programmable Gate Array). , FPGA)), ARM processor and other devices with processor functions and memory functions.
  • CPLD Complex Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • Fig. 5 shows an optimized composition of a motor driving device according to an embodiment of the present invention. For the convenience of description, only parts related to the embodiment of the present invention are shown.
  • the motor driving device includes a rotation speed detecting module.
  • the rotation speed detecting module 65 includes the Hall sensor for detecting the position of the rotor; and further, the rotation speed detecting module 65 can change the position of the rotor detected according to a period of time. , determine the speed of the rotor.
  • the rotation speed detecting module 65 and the angle detecting module 61 are implemented by the same module.
  • the rotation speed detecting module 65 is configured to: when the rotor of the motor rotates, detect the rotation speed of the rotor through the Hall sensor at the current moment;
  • the phase current-torque coefficient relationship model is: ⁇ ⁇ , the current torque coefficient, and the ⁇ is a pre-detected or calculated load torque, Said / is the peak value of the phase current of the motor.
  • FIG. 6 shows still another optimized composition structure of the motor driving device according to the embodiment of the present invention. For the convenience of description, only parts related to the embodiment of the present invention are shown.
  • the adjustment module 64 further includes a first determining unit 646 and a unit 647;
  • the first determining unit 646 is configured to: determine whether the current torque coefficient and the target torque coefficient satisfy a torque coefficient error model, where the torque coefficient error model is ⁇ ⁇ , and the s is An error interval is determined;
  • the unit 647 is configured to: if the current torque coefficient and the target torque coefficient satisfy a torque coefficient error model, use the current angle as the adjustment angle;
  • the compensation angle determining unit 643 is specifically configured to: if the current torque coefficient and the target torque coefficient do not satisfy the torque coefficient error model, determine the compensation angle according to the rotor angle compensation model.
  • FIG. 7 shows still another optimized composition structure of the motor driving device according to the embodiment of the present invention. For the convenience of description, only parts related to the embodiment of the present invention are shown.
  • the compensation angle determining unit 643 specifically includes a second determining unit 648, a first compensation angle determining unit 649, and a second compensation angle determining unit 66;
  • the second determining unit 648 is configured to: determine whether a difference between the current torque coefficient and the target torque coefficient is Belongs to the second error interval;
  • each unit included in the motor driving apparatus provided by the embodiment of the present invention is only divided according to functional logic, but is not limited to the above division, as long as the corresponding functions can be realized;
  • the specific names of the functional units are also for convenience of distinguishing from each other and are not intended to limit the scope of the present invention.
  • Embodiments of the present invention also provide an electric appliance using a motor, the electric appliance including the above-described motor driving device and motor.
  • the electric appliance including the above-described motor driving device and motor.
  • the above is a further detailed description of the present invention in conjunction with the specific preferred embodiments. It is not intended that the specific embodiments of the invention are limited to the description. It will be apparent to those skilled in the art that ⁇ RTIgt; ⁇ / RTI> ⁇ RTIgt; ⁇ / RTI> ⁇ RTIgt; ⁇ / RTI> ⁇ RTIgt; The scope of patent protection as determined by the book.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

提供一种电机驱动方法和装置、电器。电机的转子转动时,在当前时刻通过霍尔传感器检测转子的当前角度,在所述当前时刻检测电机的相反电动势,在所述当前时刻检测电机的相电流;根据所述相反电动势,以相反电动势-转矩系数关系模型确定目标转矩系数;根据检测到的相电流,以相电流-转矩系数关系模型确定当前转矩系数;如果当前转矩系数与目标转矩系数的差值不属于第一误差区间,则根据转子角度补偿模型确定补偿角度;以所述补偿角度对所述当前角度进行补偿并得到调整角度;根据所述调整角度,以磁场定向技术调整对电机的供电,能够降低电机驱动同样的负载转矩所需的有功功率,相应的降低电机所需的相电流。

Description

电机驱动方法和装置、 电器
技术领域
本发明属于电机领域, 尤其涉及电机驱动方法和装置、 电器。 说
背景 术
永磁同步电机, 具有功率密度大、 调速性能好等优点, 得到各种电器设备的广泛采用。 目前, 电器设备成为日常生活的必需品, 大量电器设备的耗电量与日俱增; 其中, 电 器设备消耗的电能, 电机要占绝大部分; 为节省电机的耗电量, 目前 FOC (Field Oriented
Control-磁场定向控制) 技术来控制对电机的供电。
在采用 F0C技术控制对电机的供电时, 需实时获知转子位置, 现有技术常采用位置传 感器检测转子位置。 在众多的位置传感器中, 霍尔传感器因其具有可靠性高、 造价低、 安装 方便等优点, 使其得以大量应用。
然而, 受到制造、 安装工艺所限, 霍尔传感器在安装时难免存在安装误差, 致使霍尔 传感器检测到的转子位置与实际的转子位置存在一定的误差,这个误差会影响 F0C技术对电 机的控制精度, 造成电机效率降低, 起动失败甚至反转起动等异常现象。
目前, 针对霍尔传感器的安装误差, 主要补偿手段是: 根据霍尔传感器输出信号与永 磁同步电机的相反电动势的相位关系, 人工检测检测并确定霍尔安装误差, 对该误差进行补 偿。 该补偿手段效率低、 人工成本高。 技术问题
本发明的目的在于提供电机驱动方法和装置、 电器, 以解决人工检测霍尔传感器的安 装误差并进行误差补偿, 效率低下且人工成本高的问题。 技术解决方案
第一方面, 本发明提供一种电机驱动方法, 所述电机驱动方法包括:
电机的转子转动时, 在当前时刻通过霍尔传感器检测转子的当前角度, 在所述当前时 刻检测电机的相反电动势, 在所述当前时刻检测电机的相电流; 根据所述相反电动势, 以相反电动势 -转矩系数关系模型确定目标转矩系数; 根据检测到的相电流, 以相电流 -转矩系数关系模型确定当前转矩系数;
如果当前转矩系数与目标转矩系数的差值不属于第一误差区间, 则根据转子角度补偿 模型确定补偿角度;
以所述补偿角度对所述当前角度进行补偿并得到调整角度;
根据所述调整角度, 以磁场定向技术调整对电机的供电。
第二方面, 本发明提供一种电机驱动装置, 所述电机驱动装置包括角度检测模块、 相 反电动势检测模块、 相电流检测模块和调整模块;
所述角度检测模块用于: 电机的转子转动时, 在所述当前时刻通过霍尔传感器检测转 子的当前角度;
所述相反电动势检测模块用于: 电机的转子转动时, 在所述当前时刻检测电机的相反 电动势;
所述相电流检测模块用于: 电机的转子转动时, 在所述当前时刻检测电机的相电流; 所述调整模块包括目标转矩系数确定单元、 当前转矩系数确定单元、 补偿角度确定单 元、 调整角度得到单元和供电调整单元:
所述目标转矩系数确定单元用于: 根据所述相反电动势检测模块检测到的所述相反电 动势, 以相反电动势 -转矩系数关系模型确定目标转矩系数;
所述当前转矩系数确定单元用于: 根据所述相电流检测模块检测到的相电流, 以相电 流 -转矩系数关系模型确定当前转矩系数;
所述补偿角度确定单元用于: 如果当前转矩系数与目标转矩系数的差值不属于第一误 差区间, 则根据转子角度补偿模型确定补偿角度;
所述调整角度得到单元用于: 以所述补偿角度对所述角度检测模块检测到的当前角度 进行补偿并得到调整角度;
所述供电调整单元用于: 根据所述调整角度, 以磁场定向技术调整对电机的供电。 第三方面, 本发明提供一种使用电机的电器, 所述电器包括上述的电机驱动装置和电 机。 有益效果
本发明的有益效果: 在电机上电工作, 电机的转子转动时, 在当前时刻同时检测转子 的当前角度、 检测电机的相反电动势、 检测电机的相电流; 以所述相反电动势为参数, 根据 相反电动势 -转矩系数关系模型确定目标转矩系数; 以检测到的相电流为参数, 根据相电流- 转矩系数关系模型确定当前转矩系数;如果当前转矩系数与目标转矩系数的差值不属于第一 误差区间, 代表当前角度与目标角度(在霍尔传感器的安装不存在误差的情况下, 通过霍尔 传感器检测到的转子的角度)存在误差, 则需要根据转子角度补偿模型确定补偿角度, 以该 补偿角度对当前角度进行补偿并得到调整角度; 该调整角度相对于该当前角度, 更加接近该 目标角度; 进而以该调整角度为参数并采用 F0C技术调整对电机的供电, 能够降低电机驱动 同样的负载转矩所需的有功功率, 相应地降低电机所需的相电流。 并且即使霍尔传感器存在 错误安装, 也不需要人为重新调整该霍尔传感器, 节省人力物力。 附图 i兑明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需 要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得 其他的附图。
图 1是本发明实施例提供的电机驱动方法的实现流程图;
图 2是图 1中步骤 A14的一种实现流程图;
图 3是图 1中步骤 A14的又一种实现流程图;
图 4是本发明实施例提供的电机驱动装置的组成结构图;
图 5是本发明实施例提供的电机驱动装置的一种优化组成结构图;
图 6是本发明实施例提供的电机驱动装置的又一种优化组成结构图;
图 7是本发明实施例提供的电机驱动装置的又一种优化组成结构图。 具体实施方式
为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实施例, 对本发 明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅仅用以解释本发明, 并不用 于限定本发明。 为了说明本发明所述的技术方案, 下面通过具体实施例来进行说明。
在本发明实施例中, 电机中转子的位置是采用霍尔传感器检测并确定的。进而在持续通 过霍尔传感器确定转子的过程中, 可确定一段时间内转子的转速。
需强调的是, 本发明实施例采用磁场定向技术 (Field Oriented Control , F0C) 控制 对电机的供电时所采用的转子的角度这一参数, 是通过该霍尔传感器检测并确定的。在本发 明实施例中,可用于 F0C技术的 F0C控制策略包括但不限于:直轴电流设定为零的控制策略、 恒磁链控制策略、 弱磁控制策略等。 但对于霍尔传感器的电机,采用 F0C技术控制对电机的供电时需使用通过该霍尔传感器 检测到的转子的角度, 如果霍尔传感器的安装存在误差(例如, 在需以 120度间隔安装三个 霍尔传感器时, 没有实现 120度的等间隔安装) , 则影响 F0C技术对电机供电的控制精度。
鉴于霍尔传感器可能存在安装误差,本发明实施例在采用 F0C技术控制对电机的供电时, 通过对转子的角度进行角度补偿的方式逐步逼近目标角度; 该目标角度为: 在霍尔传感器的 安装不存在误差的情况下, 通过霍尔传感器检测到的转子的角度; 以该目标角度为参数采用 F0C技术控制对电机的供电, 电机需要的有功功率是最小的。
作为本发明实施例一具体实施方式, 所述电机选用永磁同步电机实现。
本发明实施例通过对转子的角度进行角度补偿、采用 F0C技术控制对电机的供电的具体 方法参见图 1, 图 1示出了本发明实施例提供的电机驱动方法的实现流程, 为了便于描述, 仅示出了与本发明实施例相关的部分。
本发明实施例提供的电机驱动方法, 如图 1所示, 所述电机驱动方法包括步骤 Al l、步 骤 A12、 步骤 A13、 步骤 A14、 步骤 A15和步骤 A16。
步骤 Al l , 电机的转子转动时, 在当前时刻通过霍尔传感器检测转子的当前角度, 在所 述当前时刻检测电机的相反电动势, 在所述当前时刻检测电机的相电流。
在本发明实施例中, 通过 F0C技术控制对电机的供电, 电机上电工作, 电机的转子转 动; 电机上设有霍尔传感器, 通过该霍尔传感器检测转子的位置。
对于某一时刻, 根据转子的位置可确定转子的在该时刻的角度; 例如: 对于当前时刻, 可根据霍尔传感器检测到在当前时刻的位置, 确定转子在当前时刻转子所在的角度, 将该角 度作为转子的当前角度。
对于在某段时间, 可根据霍尔传感器确定该段时间内的不同时间点该转子的角度, 进 而根据不同时间点的该转子的角度, 计算出转子在该段时间的转速。
在本发明实施例中, 在转子转动时检测电机的相反电动势, 对于采用何种方式检测电 机的相反电动势, 在此不做限定。
在本发明实施例中, 在转子转动时检测电机的相电流, 对于采用何种方式检测电机的 相电流, 在此不做限定。 优选的, 在检测电机的相电流时, 可检测电机的任一相的电流,将 检测到的电流作为本发明实施例所述的电机的相电流。
在本发明实施例中, 电机上电工作后, 电机转子转动, 执行步骤 Al l ; 具体对于执行步 骤 Al l的要求, 需在当前时刻进行检测; SP, 在该当前时刻通过霍尔传感器检测转子的当前 角度, 同时在该当前时刻检测电机的相反电动势, 同时在该当前时刻检测电机的相电流。
以当前时刻检测到的电机的相反电动势, 执行步骤 A12; 以当前时刻检测到的电机的相 电流, 执行步骤 A13。
步骤 A12, 根据所述相反电动势, 以相反电动势 -转矩系数关系模型确定目标转矩系数。 在本发明实施例中, 所述相反电动势-转矩系数关系模型为: 在电机领域, 电机的相反 电动势与电机的转矩系数之间的数学模型。 因此, 本发明实施例对相反电动势 -转矩系数关 系模型为基于电机的哪一种具体的数学模型, 在此不做限定。
由于该相反电动势-转矩系数关系模型确定了电机相反电动势与电机的转矩系数之间 的数学关系, 如果检测到电机的相反电动势, 可根据该相反电动势-转矩系数关系模型计算 出电机的转矩系数。
作为本发明实施例一实施方式, 所述电机驱动方法还包括: 电机的转子转动时, 在所 述当前时刻通过霍尔传感器检测转子的转速。在本实施方式中, 转子的转速也是通过霍尔传 感器检测的。对于在包含当前时刻的某段较短时间, 可根据霍尔传感器确定该段较短时间内 的不同时间点该转子的角度, 进而根据不同时间点的该转子的角度, 计算出转子在该段较短 时间的转速, 将计算出的转速作为转子在当前时刻的转速。
对应地, 对于步骤 A12, 所述根据所述相反电动势以相反电动势-转矩系数关系模型确 定目标转矩系数这一步骤具体为:
根据所述相反电动势和所述转速, 以第一转矩系数模型确定所述目标转矩系数; 其中, 所述第一转矩系数模型为:
^ 3 E 60 .
Κτ =— χ― X—— ( U ,
2 η 2π
所述 为所述目标转矩系数, 所述 E为所述相反电动势的峰值, 所述 Μ为所述转子的 转速。
在本实施例中, 在当前时刻检测电机的相反电动势, 同时在该当前时刻检测转子的转 速。根据相反电动势的峰值和当前时刻的转速, 以相反电动势系数模型确定当前时刻的相反 电动势系数 , 该相反电动势系数模型为:
Ke = - ( 2 ) ,
n
所述 E为所述相反电动势的峰值, 所述 M为所述转子的转速。
进而根据相反电动势系数与电机的转矩系数的关系模型计算转矩系数, 该相反电动势 系数与电机的转矩系数的关系模型为:
Κτ = - χ Κ χ— ( 3 ) ;
τ 2 e 2π 这样, 在确定当前时刻的相反电动势系数 之后, 可根据公式(3 )确定电机在当前时 刻的转矩系数。
即在本实施方式中, 结合公式 (2 )所示的相反电动势系数模型和相反电动势系数与公 式 (3 )所示的电机的转矩系数的关系模型, 得到公式 (1 )所示的第一转矩系数模型, 在确 定所述相反电动势 E的峰值、 检测出转子在当前时刻的转速 M之后, 可根据第一转矩系数模 型 (1 ) 计算出当前时刻的目标转矩系数 。
步骤 Α13, 根据检测到的相电流, 以相电流 -转矩系数关系模型确定当前转矩系数。 在本发明实施例中, 所述相电流-转矩系数关系模型为: 在电机领域, 电机的相电流与 电机的转矩系数之间的数学模型。 因此, 本发明实施例对相电流 -转矩系数关系模型为基于 电机的哪一种具体的数学模型, 在此不做限定。
待在当前时刻检测到的电机的相电流之后, 执行步骤 Α13, 以相电流-转矩系数关系模 型, 计算出电机在当前时刻的转矩系数, 将计算出的转矩系数作为所述当前转矩系数。
作为本发明实施例一实施方式, 所述相电流-转矩系数关系模型为;
Κτ = - ( 4 ) , 所述 为所述当前转矩系数, 所述 Γ为预先加载的负载转矩, 所述 /为电机的所述相 电流的峰值。
在本实施方式中, 对于当前时间的负载转矩 Γ是可以检测的, 例如通过电机的负载转 矩观测器检测出。
在本实施方式中, 由于已预先检测出负载转矩 Γ, 进而在检测出电机在当前时刻的相 电流之后, 取该相电流的峰值以公式(4 )所示的相电流-转矩系数关系模型计算出当前时刻 的当前转矩系数 。
步骤 Α14, 如果当前转矩系数与目标转矩系数的差值不属于第一误差区间, 则根据转子 角度补偿模型确定补偿角度。
在本发明实施例中, 预先确定第一误差区间, 确定该第一误差区间的具体方法, 在此 不做限定, 可人为设定, 也可根据实验数据确定。 由于当前转矩系数是几乎不会持续等于目 标转矩系数; 本发明实施例作如下定义: 如果当前转矩系数与目标转矩系数的差值属于第一 误差区间, 则认为所述当前转矩系数与所述目标转矩系数近似相等。
因此, 如果所述当前转矩系数与所述目标转矩系数的差值不属于所述第一误差区间, 则不能将所述当前转矩系数与所述目标转矩系数认定为近似相等,确定为所述当前转矩系数 与所述目标转矩系数存在误差。
由于在目标角度 (在霍尔传感器的安装不存在误差的情况下, 通过霍尔传感器检测到 的转子的角度)下, 即在所述当前转矩系数与所述目标转矩系数相等的情况下, 电机需克服 同样的负载转矩所需的有功功率是最小的, 因此, 在采用 F0C技术控制对电机的供电时,需 对转子的当前角度进行补偿, 以使得补偿得到的调整角度逐渐趋近于或逼近于该目标角度, 这时对于同一负载转矩, 电机所需的有功功率时最小的, 即电机所需的相电流也是最小的。
在本发明实施例中, 如果当前转矩系数与目标转矩系数的差值不属于第一误差区间, 是根据转子角度补偿模型确定补偿角度的。对用于确定补偿角度的转子角度补偿模型, 本发 明实施例不做限定, 只要满足以下条件即可, 该条件为: 根据该转子角度补偿模型确定的补 偿角度, 以该补偿角度补偿该当前角度得到的调整角度, 该调整角度相对于该当前角度逐渐 趋近于或逼近于目标角度。
图 2示出了步骤 A14的一种实现流程, 为了便于描述, 仅示出了与本发明实施例相关 的部分。
在本发明实施例一实施方式中, 参见图 2, 对于步骤 A14, 所述如果当前转矩系数与目 标转矩系数的差值不属于第一误差区间,则根据转子角度补偿模型确定补偿角度这一步骤包 括步骤 A141、 步骤 A142和步骤 A143。
步骤 A141, 判断所述当前转矩系数和所述目标转矩系数是否满足转矩系数误差模型, 所述转矩系数误差模型为:
Figure imgf000009_0001
所述 s由所述第一误差区间确定;在本实施方式中,在确定所述第一误差区间的情况下, 根据所述第一误差区间确定的 s会包含满足所述当前转矩系数与目标转矩系数的差值属于 第一误差区间这一条件的所有取值。
优选地, 所述 s的取值为 5%。
步骤 A142, 如果满足, 则将所述当前角度作为所述调整角度。
在本实施方式中, 如果当前时刻的当前转矩系数和当前时刻的目标转矩系数满足公式 ( 5 ) 所示的转矩系数误差模型, 则判定为:
霍尔传感器的安装误差较小, 该当前角度已趋近于或逼近于目标角度, 可判定为当前 转矩系数与所述目标转矩系数近似相等;
或者, 如果是已结合上次的补偿角度 (根据当前时刻之前的时刻所确定的补偿角度) 得到上次的调整角度, 并根据该上次的调整角度以 F0C技术调整对电机的供电之后, 对于所 述目标转矩系数和在当前时刻确定的当前转矩系数,如果当前转矩系数和所述目标转矩系数 满足公式 (5 ) , 则认为该当前角度已趋近于或逼近于目标角度, 可判定为当前转矩系数与 所述目标转矩系数近似相等。
在本实施方式中,在当前时刻的当前转矩系数和当前时刻的目标转矩系数满足公式(5 ) 所示的转矩系数误差模型时, 不需要对当前角度继续进行角度补偿, 即不需要根据所述转子 角度补偿模型确定补偿角度, 在当前时刻直接将所述当前角度作为所述调整角度。
步骤 A143, 如果不满足, 则根据所述转子角度补偿模型确定补偿角度。
在本实施方式中, 如果当前时刻的当前转矩系数和当前时刻的目标转矩系数不满足公 式 (5 ) 所示的转矩系数误差模型, 则判定为:
该当前角度与该目标角度之间还存在误差, 需要继续确定补偿角度, 以该补偿角度对 当前角度进行角度补偿,以使得根据调整角度(结合该补偿角度对当前角度计算出的)以 F0C 技术调整对电机的供电之后, 下次确定的转矩系数和所述目标转矩系数满足公式 (5 ) ; 或 者, 下次确定的转矩系数和所述目标转矩系数仍不满足公式 (5 ) , 但下次确定的转矩系数 逼近于或趋近于所述目标转矩系数 (即下次检测到的角度趋近于或逼近于目标角度) 。
图 3示出了步骤 A14的又一种实现流程, 为了便于描述, 仅示出了与本发明实施例相 关的部分。
在本发明实施例一具体实施方式中, 参见图 3, 对于步骤 A14, 所述根据转子角度补偿 模型确定补偿角度这一步骤, 具体包括步骤 A144、 步骤 A145和步骤 A146。
步骤 A144,判断所述当前转矩系数与所述目标转矩系数的差值是否属于第二误差区间。 在本实施案例中, 不但确定了第一误差区间, 还确定了第二误差区间, 所述第二误差 区间包含所述第一误差区间。
由于在执行步骤 A14时, 已确定当前转矩系数与目标转矩系数的差值不属于第一误差 区间, 需要根据转子角度补偿模型确定补偿角度, 进而本实施方式进一步执行步骤 A1431进 行更大误差范围的判断,判断所述当前转矩系数与所述目标转矩系数的差值是否属于第二误 差区间;
如果所述当前转矩系数与所述目标转矩系数的差值不属于第二误差区间, 则执行步骤 A145确定补偿角度,根据步骤 A145确定的补偿角度的角度值较大,根据该步骤 A145确定的 较大的补偿角度进行较大角度的补偿, 以使得结合步骤 A145确定的补偿角度和当前角度而 得到的调整角度, 该调整角度逐渐大角度快速逼近于或趋近于所述目标角度;
如果所述当前转矩系数与所述目标转矩系数的差值属于第二误差区间但不属于第一误 差区间, 则执行步骤 A146确定补偿角度, 根据步骤 A146确定的补偿角度的角度值小, 根据 该步骤 A146确定的较小的补偿角度进行较小角度的补偿, 以使得结合步骤 A146确定的补偿 角度和当前角度而得到的调整角度, 该调整角度逐渐小角度逼近于或趋近于所述目标角度。
步骤 A145, 如果所述差值不属于所述第二误差区间, 以第一转子角度补偿模型确定所 述补偿角度 ^, 所述第一转子角度补偿模型为:
. = 2' χ Δ ( 6 ) ,
所述 为第 次的补偿角度, 所述 大于 1, 所述 Δ为单位角度。
在本实施方式中, 预先人为设定单位角度 Δ, 或根据实验数据确定所述单位角度 Δ。 在本实施方式中, 如果当前时刻的当前转矩系数与当前时刻的目标转矩系数的差值不 属于第二误差区间时, 对当前时刻检测到的当前角度进行角度补偿, 对当前时刻检测到的当 前角度进行的角度补偿为第 次的补偿角度。
由于第 次的补偿角度是第 -1次的补偿角度的两倍, 使得转子的角度大角度快速逼近 于或趋近于所述目标角度。
步骤 A146, 如果所述差值属于所述第二误差区间, 以第二转子角度补偿模型确定所述 补偿角度 ^, 所述第二转子角度补偿模型为: θ. = ( 7 ) ,
Figure imgf000011_0001
所述 为第 次的补偿角度, 所述 为第 - 1次的补偿角度, 所述 ― 2为第 - 2次的补 偿角度。
在本实施方式中, 如果当前时刻的当前转矩系数与当前时刻的目标转矩系数的差值属 于第二误差区间但不属于第一误差区间时, 对当前时刻检测到的当前角度进行角度补偿,对 当前时刻检测到的当前角度进行的角度补偿为第 次的补偿角度。
在本实施方式中, 如果当前时刻的当前转矩系数与当前时刻的目标转矩系数的差值属 于第二误差区间但不属于第一误差区间时, 逐渐减小补偿角度; 以当前次为例, 当前次确定 的补偿角度 , 该补偿角度 为: 第 - 1次的补偿角度 ―!与第 - 2次的补偿角度 的差值 的绝对值的二分之一。这样逐渐减小补偿角度, 以使得转子的角度逐渐小角度趋近于目标角 度; 进而, 电机所需的有功功率会趋近于在目标角度采用 F0C技术所需的有功功率, 电机的 相电流会趋近于在目标角度采用 F0C技术时所检测到的相电流。
作为本发明实施例一实施方式, 结合图 2和图 3, 执行所示的步骤 A141判断所述当前 转矩系数和所述目标转矩系数是否满足转矩系数误差模型, 如果满足, 执行步骤 A142, 如果 不满足, 执行步骤 A144; 在执行步骤 A144时判断所述当前转矩系数与所述目标转矩系数的差值是否属于第二误 差区间; 如果所述差值不属于所述第二误差区间, 以第一转子角度补偿模型确定所述补偿角 度 , 如果所述差值属于所述第二误差区间但不属于第一误差区间, 以第二转子角度补偿模 型确定所述补偿角度 。
在本实施方式的一实施案例中, 通常情况下, 一开始时, 所述当前转矩系数与所述目 标转矩系数的差值不属于第二误差区间, 执行步骤 A145确定较大的补偿角度, 以较大的补 偿角度补偿转子角度, 以使得转子角度快速逼近于或趋近于所述目标角度, 电机所需的有功 功率会大幅度减小, 电机的相电流也会大幅度减小; 一次或多次以较大的补偿角度使得转子 角度快速逼近于或趋近于所述目标角度之后,所述当前转矩系数与所述目标转矩系数的差值 属于第二误差区间但不属于第一误差区间, 执行步骤 A146确定的较小的补偿角度, 以较小 的补偿角度补偿转子角度, 以使得转子角度小角度逼近于或趋近于所述目标角度, 电机所需 的有功功率会小幅度减小, 电机的相电流也会小幅度减小; 一次或多次以较小的补偿角度使 得转子角度小角度逼近于或趋近于所述目标角度之后, 电机所需的有功功率会趋近于在目标 角度采用 F0C技术所需的有功功率, 电机的相电流会趋近于在目标角度采用 F0C技术时所检 测到的相电流。
步骤 A15, 以所述补偿角度对所述当前角度进行补偿并得到调整角度。
在本发明实施例中, 在满足以下条件时确定所述调整角度, 该条件为: 以所述当前角 度采用 F0C技术调整对电机的供电时所检测的相电流, 小于或等于以所述调整角度采用 F0C 技术调整对电机的供电时所检测的相电流。
作为本发明实施例一具体实施方式, 在将所述当前角度加上所述补偿角度的和值作为 调整角度时, 如果该调整角度满足该条件, 则将所述当前角度加上所述补偿角度的和值作为 所述调整角度; 反之, 在将所述当前角度减去所述补偿角度的差值作为调整角度时, 如果该 调整角度满足该条件, 则将所述当前角度减去所述补偿角度的差值作为所述调整角度。
作为本发明实施例一具体实施方式, 在将所述当前角度加上所述补偿角度的和值作为 调整角度时, 如果当次检测到的相电流(在当前时刻检测到的相电流) 的峰值小于或等于下 次检测到的相电流(在当前时刻之后的某时刻检测到的相电流) 的峰值, 则将所述当前角度 加上所述补偿角度的和值作为调整角度; 反之, 如果当次检测到的相电流的峰值大于下次检 测到的相电流的峰值, 则将所述当前角度减去所述补偿角度的差值作为所述调整角度。
作为本发明实施例又一具体实施方式, 在将所述当前角度减去所述补偿角度的差值作 为调整角度时, 如果当次检测到的相电流(在当前时刻检测到的相电流) 的峰值小于或等于 下次检测到的相电流(在当前时刻之后的某时刻检测到的相电流) 的峰值, 则将所述当前角 度减去所述补偿角度的差值作为调整角度; 反之, 如果当次检测到的相电流的峰值大于下次 检测到的相电流的峰值, 则将所述当前角度加上所述补偿角度的和值作为所述调整角度。
步骤 A16, 根据所述调整角度, 以磁场定向技术调整对电机的供电。
在本发明实施例中, 待确定当前时刻的调整角度之后, 根据该调整角度将对电机供电 的供电电流调整为直轴电流和交轴电流,根据所述直轴电流和所述交轴电流以磁场定向技术 调整对对电机的供电。
作为步骤 A16的一具体实施方式, 采用坐标变换模型将三相电机的供电电流调整为直 轴电流和 电流; 所述坐标变换模型为:
Figure imgf000013_0001
所述 /„、 /v、 /w分别为对三相电机的三相的供电电流, 所述 ^为调整角度, 所述 为 电机的直轴电流, 所述 /。为电机的交轴电流; 所述调整角度 ^为: 以所述补偿角度对所述当 前角度进行补偿而得到的角度。
进而电机的直轴电流 Id和电机的交轴电流 Iq, 以磁场定向技术调整对对电机的供电。 本领域普通技术人员还可以理解,实现上述实施例方法中的全部或部分步骤是可以通过 程序来指令相关的硬件来完成, 所述的程序可以在存储于一计算机可读取存储介质中, 所述 的存储介质, 包括 R0M/RAM、 磁盘、 光盘等。
需要说明的是, 本发明实施例提供的电机驱动方法与本发明实施例提供的电机驱动装 置相互适用。 图 4示出了本发明实施例提供的电机驱动装置的组成结构, 为了便于描述,仅 示出了与本发明实施例相关的部分。
本发明实施例提供的一种电机驱动装置, 参见图 4, 所述电机驱动装置包括角度检测模 块 61、 相反电动势检测模块 62、 相电流检测模块 63和调整模块 64。
对于所述电机驱动装置包括的角度检测模块 61, 所述角度检测模块 61用于: 电机的转 子转动时, 在当前时刻通过霍尔传感器检测转子的当前角度。
在本发明实施例中, 该角度检测模块 61包括该霍尔传感器, 该霍尔传感器用于检测转 子的位置; 进而, 该角度检测模块 61可根据当前时刻检测到的转子的位置确定转子的当前 角度。
对于所述电机驱动装置包括的相反电动势检测模块 62,所述相反电动势检测模块 62用 于: 电机的转子转动时, 在所述当前时刻检测电机的相反电动势。
在本发明实施例中, 电机的转子转动时, 通过相反电动势检测模块 62检测电机的相反 电动势; 本发明实施例对于相反电动势检测模块 62不做限定, 对该相反电动势检测模块 62 的内部电路、所包含的器件以及内部结构均不做限定, 只要能够实现对电机的相反电动势进 行检测即可, 例如: 采用现有技术提供的检测器实现。
对于所述电机驱动装置包括的相电流检测模块 63, 所述相电流检测模块 63用于: 电机 的转子转动时, 在所述当前时刻检测电机的相电流。
在本发明实施例中, 本发明实施例对于相电流检测模块 63不做限定, 对该相电流检测 模块 63的内部电路、 所包含的器件以及内部结构均不做限定, 只要能够实现对电机的相电 流进行检测即可。 值得说明的是, 在检测电机的相电流时, 可以检测电机任一相的电流,将 检测到的电流作为电机的相电流。
所述调整模块 64包括目标转矩系数确定单元 641、 当前转矩系数确定单元 642、 补偿 角度确定单元 643、 调整角度得到单元 644和供电调整单元 645;
所述目标转矩系数确定单元 641用于: 根据所述相反电动势检测模块 62检测到的所述 相反电动势, 以相反电动势 -转矩系数关系模型确定目标转矩系数;
所述当前转矩系数确定单元 642用于: 根据所述相电流检测模块 63检测到的相电流, 以相电流 -转矩系数关系模型确定当前转矩系数;
所述补偿角度确定单元 643用于: 如果当前转矩系数与目标转矩系数的差值不属于第 一误差区间, 则根据转子角度补偿模型确定补偿角度;
所述调整角度得到单元 644用于: 以所述补偿角度对所述角度检测模块 61检测到的当 前角度进行补偿并得到调整角度;
所述供电调整单元 645用于: 根据所述调整角度, 以磁场定向技术调整对电机的供电。 作为本发明实施例一实施方式,所述调整模块 64采用单片机、可编程逻辑器件(例如: 复杂可编程逻辑器件 (Complex Programmable Logic Device, CPLD) 、 或者现场可编程门 阵列 (Field— Programmable Gate Array, FPGA) ) 、 ARM处理器等具有处理器功能和存储 功能的器件。
图 5示出了本发明实施例提供的电机驱动装置的一种优化组成结构, 为了便于描述, 仅示出了与本发明实施例相关的部分。
作为本发明实施例一具体实施方式, 参见图 5, 所述电机驱动装置包括转速检测模块 65; 在本发明实施例中, 该转速检测模块 65包括该霍尔传感器, 该霍尔传感器用于检测转 子的位置; 进而, 该转速检测模块 65可根据一段时间内检测到的转子的位置变化, 确定转 子的转速。 优选地, 转速检测模块 65和角度检测模块 61采用同一模块实现。
所述转速检测模块 65用于: 电机的转子转动时, 在所述当前时刻通过霍尔传感器检测 转子的转速;
所述目标转矩系数确定单元 641具体用于: 根据所述相反电动势检测模块 62检测到的 相反电动势和所述转速检测模块 65检测到的转速, 以第一转矩系数模型确定所述目标转矩 系数; 其中, 所述第一转矩系数模型为: KT = x ^< ^~, 所述 J ^为所述目标转矩系数, 所 述 E为所述相反电动势的峰值, 所述 M为所述转子的转速。 作为本发明实施例一具体实施方式, 所述相电流-转矩系数关系模型为; κτ ,所述 为所述当前转矩系数,所述 Γ为预先检测或计算出的负载转矩,所述 /为电机的所述相电 流的峰值。
图 6示出了本发明实施例提供的电机驱动装置的又一种优化组成结构, 为了便于描述, 仅示出了与本发明实施例相关的部分。
作为本发明实施例一具体实施方式, 参见图 6, 所述调整模块 64还包括第一判断单元 646和作为单元 647 ;
所述第一判断单元 646用于: 判断所述当前转矩系数和所述目标转矩系数是否满足转 矩系数误差模型, 所述转矩系数误差模型为 ≤ε , 所述 s由所述第一误差区间确定;
Figure imgf000015_0001
所述作为单元 647用于: 如果所述当前转矩系数和所述目标转矩系数满足转矩系数误 差模型, 则将所述当前角度作为所述调整角度;
所述补偿角度确定单元 643具体用于: 如果所述当前转矩系数和所述目标转矩系数不 满足转矩系数误差模型, 则根据所述转子角度补偿模型确定补偿角度。
图 7示出了本发明实施例提供的电机驱动装置的又一种优化组成结构, 为了便于描述, 仅示出了与本发明实施例相关的部分。
作为本发明实施例一具体实施方式, 参见图 7, 所述补偿角度确定单元 643具体包括第 二判断单元 648、 第一补偿角度确定单元 649和第二补偿角度确定单元 66 ;
所述第二判断单元 648用于: 判断所述当前转矩系数与所述目标转矩系数的差值是否 属于第二误差区间;
所述第一补偿角度确定单元 649用于: 如果所述差值不属于所述第二误差区间, 以第 一转子角度补偿模型确定所述补偿角度 ^,所述第一转子角度补偿模型为 ^, = 2' χ Δ,所述 为第 次的补偿角度, 所述 大于 1, 所述 Δ为单位角度;
所述第二补偿角度确定单元 66用于: 如果所述差值属于所述第二误差区间, 以第二转 子角度补偿模型确定所述补偿角度 , 所述第二转子角度补偿模型为 = x (| — ! - — 2|),所 述 为第 次的补偿角度, 所述 为第 - 1次的补偿角度, 所述 ― 2为第 - 2次的补偿角度。
本领域技术人员可以理解为本发明实施例提供的电机驱动装置所包括的各个单元只是 按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外, 各功能单元的具体名称也只是为了便于相互区分, 并不用于限制本发明的保护范围。
本发明实施例还提供一种使用电机的电器, 所述电器包括上述的电机驱动装置和电机。 以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明, 不能认定本发 明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说, 在不脱离 本发明构思的前提下做出若干等同替代或明显变型, 而且性能或用途相同, 都应当视为属于 本发明由所提交的权利要求书确定的专利保护范围。

Claims

权 利 要 求 书
1. 一种电机驱动方法, 其特征在于, 所述电机驱动方法包括:
电机的转子转动时, 在当前时刻通过霍尔传感器检测转子的当前角度, 在所述当前时 刻检测电机的相反电动势, 在所述当前时刻检测电机的相电流;
根据所述相反电动势, 以相反电动势 -转矩系数关系模型确定目标转矩系数; 根据检测到的相电流, 以相电流 -转矩系数关系模型确定当前转矩系数;
如果当前转矩系数与目标转矩系数的差值不属于第一误差区间, 则根据转子角度补偿 模型确定补偿角度;
以所述补偿角度对所述当前角度进行补偿并得到调整角度;
根据所述调整角度, 以磁场定向技术调整对电机的供电。
2. 如权利要求 1所述的电机驱动方法, 其特征在于, 所述电机驱动方法还包括: 电机的转子转动时, 在所述当前时刻通过霍尔传感器检测转子的转速;
所述根据所述相反电动势以相反电动势-转矩系数关系模型确定目标转矩系数这一步 骤具体为:
根据所述相反电动势和所述转速, 以第一转矩系数模型确定所述目标转矩系数; 其中, 所述第一转矩系数模型为: KT = x ^< ^~, 所述 J ^为所述目标转矩系数, 所 述 E为所述相反电动势的峰值, 所述 M为所述转子的转速。
3. 如权利要求 1或 2所述的电机驱动方法, 其特征在于, 所述相电流-转矩系数关系 模型为; κτ , 所述 J ^为所述当前转矩系数, 所述 Γ为预先加载的负载转矩, 所述 /为 电机的所述相电流的峰值。
4. 如权利要求 3所述的电机驱动方法, 其特征在于, 所述如果当前转矩系数与目标转 矩系数的差值不属于第一误差区间, 则根据转子角度补偿模型确定补偿角度这一步骤包括: 判断所述当前转矩系数和所述目标转矩系数是否满足转矩系数误差模型, 所述转矩系 数误差模型为 < ε , 所述 s由所述第一误差区间确定;
Figure imgf000017_0001
如果满足, 则将所述当前角度作为所述调整角度; 如果不满足, 则根据所述转子角度补偿模型确定补偿角度。
5. 如权利要求 1所述的电机驱动方法, 其特征在于, 所述根据转子角度补偿模型确定 补偿角度这一步骤, 具体包括:
判断所述当前转矩系数与所述目标转矩系数的差值是否属于第二误差区间;
如果所述差值不属于所述第二误差区间, 以第一转子角度补偿模型确定所述补偿角度 θ', 所述第一转子角度补偿模型为 3 = 2' χ Δ, 所述 ^为第 次的补偿角度, 所述 大于 1,所 述 Δ为单位角度;
如果所述差值属于所述第二误差区间, 以第二转子角度补偿模型确定所述补偿角度 , 所述第二转子角度补偿模型为 = >< (| — 所述 为第 ί次的补偿角度,所述 !为第 z' - l次的补偿角度, 所述 为第 - 2次的补偿角度。
6. 一种电机驱动装置, 其特征在于, 所述电机驱动装置包括角度检测模块、 相反电动 势检测模块、 相电流检测模块和调整模块;
所述角度检测模块用于: 电机的转子转动时, 在所述当前时刻通过霍尔传感器检测转 子的当前角度;
所述相反电动势检测模块用于: 电机的转子转动时, 在所述当前时刻检测电机的相反 电动势;
所述相电流检测模块用于: 电机的转子转动时, 在所述当前时刻检测电机的相电流; 所述调整模块包括目标转矩系数确定单元、 当前转矩系数确定单元、 补偿角度确定单 元、 调整角度得到单元和供电调整单元:
所述目标转矩系数确定单元用于: 根据所述相反电动势检测模块检测到的所述相反电 动势, 以相反电动势 -转矩系数关系模型确定目标转矩系数;
所述当前转矩系数确定单元用于: 根据所述相电流检测模块检测到的相电流, 以相电 流 -转矩系数关系模型确定当前转矩系数;
所述补偿角度确定单元用于: 如果当前转矩系数与目标转矩系数的差值不属于第一误 差区间, 则根据转子角度补偿模型确定补偿角度;
所述调整角度得到单元用于: 以所述补偿角度对所述角度检测模块检测到的当前角度 进行补偿并得到调整角度;
所述供电调整单元用于: 根据所述调整角度, 以磁场定向技术调整对电机的供电。
7. 如权利要求 6所述的电机驱动装置, 其特征在于, 所述电机驱动装置包括转速检测 模块;
所述转速检测模块用于: 电机的转子转动时, 在所述当前时刻通过霍尔传感器检测转 子的转速;
所述目标转矩系数确定单元具体用于: 根据所述相反电动势检测模块检测到的相反电 动势和所述转速检测模块检测到的转速, 以第一转矩系数模型确定所述目标转矩系数; 其中, 所述第一转矩系数模型为: KT 所述 J ^为所述目标转矩系数, 所
Figure imgf000019_0001
述 E为所述相反电动势的峰值, 所述 Μ为所述转子的转速。
8. 如权利要求 7所述的电机驱动装置, 其特征在于, 所述相电流 -转矩系数关系模型 为; ΚΤ ,所述 为所述当前转矩系数, 所述 Γ为预先检测或计算出的负载转矩, 所述 / 为电机的所述相电流的峰值。
9. 如权利要求 8所述的电机驱动装置, 其特征在于, 所述调整模块还包括第一判断单 元和作为单元;
所述第一判断单元用于: 判断所述当前转矩系数和所述目标转矩系数是否满足转矩系
KL - K^
数误差模型, 所述转矩系数误差模型为 < ε , 所述 s由所述第一误差区间确定; 所述作为单元用于: 如果所述当前转矩系数和所述目标转矩系数满足转矩系数误差模 型, 则将所述当前角度作为所述调整角度;
所述补偿角度确定单元具体用于: 如果所述当前转矩系数和所述目标转矩系数不满足 转矩系数误差模型, 则根据所述转子角度补偿模型确定补偿角度。
10. 如权利要求 6所述的电机驱动装置, 其特征在于, 所述补偿角度确定单元具体包 第二判断单元、 第一补偿角度确定单元和第二补偿角度确定单元;
所述第二判断单元用于: 判断所述当前转矩系数与所述目标转矩系数的差值是否属于 二误差区间;
所述第一补偿角度确定单元用于: 如果所述差值不属于所述第二误差区间, 以第一转 子角度补偿模型确定所述补偿角度 ,所述第一转子角度补偿模型为 ,=2'χΔ,所述 为第 次的补偿角度, 所述 大于 1, 所述 Δ为单位角度;
所述第二补偿角度确定单元用于: 如果所述差值属于所述第二误差区间, 以第二转子 角度补偿模型确定所述补偿角度 , 所述第二转子角度补偿模型为 =><(| — !- — 2|), 所述 为第 次的补偿角度, 所述 !为第 ί-l次的补偿角度, 所述 2为第 -2次的补偿角度。
11. 一种使用电机的电器, 其特征在于, 所述电器包括权利要求 7至 10任一项所述的 电机驱动装置和电机。
PCT/CN2014/084895 2014-08-21 2014-08-21 电机驱动方法和装置、电器 WO2016026114A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017510549A JP6437633B2 (ja) 2014-08-21 2014-08-21 モータ駆動方法及び装置、電子機器
KR1020177006240A KR101897934B1 (ko) 2014-08-21 2014-08-21 모터 구동 방법과 장치, 전기 제품
US15/505,283 US9887651B2 (en) 2014-08-21 2014-08-21 Method and apparatus for driving motor and appliance
PCT/CN2014/084895 WO2016026114A1 (zh) 2014-08-21 2014-08-21 电机驱动方法和装置、电器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/084895 WO2016026114A1 (zh) 2014-08-21 2014-08-21 电机驱动方法和装置、电器

Publications (1)

Publication Number Publication Date
WO2016026114A1 true WO2016026114A1 (zh) 2016-02-25

Family

ID=55350106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/084895 WO2016026114A1 (zh) 2014-08-21 2014-08-21 电机驱动方法和装置、电器

Country Status (4)

Country Link
US (1) US9887651B2 (zh)
JP (1) JP6437633B2 (zh)
KR (1) KR101897934B1 (zh)
WO (1) WO2016026114A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109814616A (zh) * 2017-11-21 2019-05-28 深圳市优必选科技有限公司 一种舵机力矩的控制方法、系统及终端设备
CN111474424B (zh) * 2020-04-03 2022-06-24 合肥工业大学 微电机驱动阀响应时间测试系统及测试方法
CN113131807B (zh) * 2021-05-14 2023-01-20 深圳市好盈科技股份有限公司 一种有感无刷直流电机进角检测方法及系统
JP2023031835A (ja) 2021-08-25 2023-03-09 日本電産株式会社 モータ調整方法
CN115694303B (zh) * 2022-11-18 2024-01-02 苏州博迷科技有限公司 宽转速自适应调节的新能源汽车用永磁同步电机控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1728538A (zh) * 2004-07-28 2006-02-01 松下电器产业株式会社 电机驱动装置及电机驱动方法
CN101248399A (zh) * 2005-08-24 2008-08-20 米勒魏因加滕股份公司 用于控制和调节伺服电压力机的力的方法和装置
CN101603997A (zh) * 2009-07-03 2009-12-16 哈尔滨工业大学 同步电机参数测试方法及实现该方法的装置
JP2010161833A (ja) * 2009-01-06 2010-07-22 Nissan Motor Co Ltd 電動機制御装置
CN101895252A (zh) * 2010-07-09 2010-11-24 上海新时达电气股份有限公司 电机伺服驱动器控制器参数自动调整装置及其方法
CN103414427A (zh) * 2013-08-12 2013-11-27 南京工程学院 无刷直流电机控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5677605A (en) * 1989-08-22 1997-10-14 Unique Mobility, Inc. Brushless DC motor using phase timing advancement
US5859510A (en) * 1993-02-17 1999-01-12 Pitney Bowes Inc. Commutation board for brushless motor
US5319291A (en) * 1993-02-17 1994-06-07 Pitney Bowes Inc. Brushless motor utilizing FET drivers
US5552682A (en) * 1993-04-27 1996-09-03 Sankyo Seiki Mfg. Co., Ltd. Device for detecting rotational position of brushless motor
KR100258434B1 (ko) * 1996-09-02 2000-06-01 윤종용 1-홀 신호를 이용한 3상 비엘디시 모터의 구동회로
JP2002051580A (ja) * 2000-08-03 2002-02-15 Matsushita Electric Ind Co Ltd 同期モータの位置センサレス制御方法および位置センサレス制御装置。

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1728538A (zh) * 2004-07-28 2006-02-01 松下电器产业株式会社 电机驱动装置及电机驱动方法
CN101248399A (zh) * 2005-08-24 2008-08-20 米勒魏因加滕股份公司 用于控制和调节伺服电压力机的力的方法和装置
JP2010161833A (ja) * 2009-01-06 2010-07-22 Nissan Motor Co Ltd 電動機制御装置
CN101603997A (zh) * 2009-07-03 2009-12-16 哈尔滨工业大学 同步电机参数测试方法及实现该方法的装置
CN101895252A (zh) * 2010-07-09 2010-11-24 上海新时达电气股份有限公司 电机伺服驱动器控制器参数自动调整装置及其方法
CN103414427A (zh) * 2013-08-12 2013-11-27 南京工程学院 无刷直流电机控制方法

Also Published As

Publication number Publication date
KR20170077108A (ko) 2017-07-05
JP2017529037A (ja) 2017-09-28
US20170272010A1 (en) 2017-09-21
US9887651B2 (en) 2018-02-06
KR101897934B1 (ko) 2018-09-12
JP6437633B2 (ja) 2018-12-12

Similar Documents

Publication Publication Date Title
WO2016026114A1 (zh) 电机驱动方法和装置、电器
EP2696496B1 (en) Motor control device
CN104601075B (zh) 变频空调器的控制方法及其控制系统
WO2012115917A3 (en) Method and system for evaluating electrical connections between a motor controller and motor
CN103404018B (zh) 内嵌式永磁电机系统和用于控制内嵌式永磁电机的方法
CN112549986B (zh) 一种电动车启动控制方法
CN106788072B (zh) 永磁同步电机转子初始角度修正方法及修正系统
JP2019071755A (ja) モータ駆動装置及びモータ駆動装置の制御方法
CN104201947A (zh) 电机驱动方法和装置、电器
CA2702748A1 (en) Wheel diameter measuring apparatus of electric vehicle
CN104779849A (zh) 室外风机逆风运行正反转检测控制方法
CN106772052B (zh) 永磁同步电机转子初始角度修正方法及修正系统
JP2014204451A (ja) 車両用発電電動機の制御装置およびその方法
US11233472B2 (en) Motor control method and system
US9520824B2 (en) Inverter apparatus
JP2003506808A (ja) 電気駆動部の測定システムの監視装置
CN103997262B (zh) 基于无传感器轮毂式电机的电动自行车正弦波控制方法
WO2014022066A1 (en) Hybrid closed loop speed control using open loop position for electric machines controls
CN103401488B (zh) 电梯门机控制方法
CN109450303A (zh) 一种单相无刷电机磁阻转矩波动的补偿方法
US20130214714A1 (en) Method and device for controlling a synchronous machine
WO2015092462A1 (en) Method and system for controlling an electric motor
CN106033946B (zh) 空调室外机电机转速及电机转子位置检测方法
CN206602477U (zh) 永磁同步电机的位置传感器的转子偏移量检测系统
CN106059425A (zh) 一种双绕组磁悬浮开关磁阻发电机的控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14900206

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017510549

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15505283

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177006240

Country of ref document: KR

Kind code of ref document: A

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01/08/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14900206

Country of ref document: EP

Kind code of ref document: A1