WO2016024743A1 - Method for forming transparent electrode and transparent electrode laminate - Google Patents

Method for forming transparent electrode and transparent electrode laminate Download PDF

Info

Publication number
WO2016024743A1
WO2016024743A1 PCT/KR2015/008059 KR2015008059W WO2016024743A1 WO 2016024743 A1 WO2016024743 A1 WO 2016024743A1 KR 2015008059 W KR2015008059 W KR 2015008059W WO 2016024743 A1 WO2016024743 A1 WO 2016024743A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent electrode
electrode layer
conductive
forming
protective layer
Prior art date
Application number
PCT/KR2015/008059
Other languages
French (fr)
Korean (ko)
Inventor
이정열
안민석
변자훈
이승준
차영철
홍우성
박성연
정재훈
배민영
김동민
Original Assignee
주식회사 동진쎄미켐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 동진쎄미켐 filed Critical 주식회사 동진쎄미켐
Priority to CN201580043221.XA priority Critical patent/CN106575552A/en
Publication of WO2016024743A1 publication Critical patent/WO2016024743A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present invention relates to a method of forming a transparent electrode having a finer line width and capable of more stably forming a transparent electrode pattern having a larger aspect ratio, and a transparent electrode laminate formed therefrom.
  • Transparent electrodes are defined as thin films that are transparent and electrically conductive to visible light, and are used in various fields such as plasma display panels, liquid crystal display devices, light emitting diode devices, organic electroluminescent devices, touch panels, and solar cells. Recently, as various devices or touch panels become ultra fine and highly sensitive, a transparent electrode pattern having a finer line width and a larger aspect ratio, for example, a line and space type having a thinner line width and a larger height The formation of the transparent electrode pattern is desired.
  • the present invention provides a method for forming a transparent electrode, which can more stably form a transparent electrode pattern having a finer line width and a large aspect ratio.
  • the present invention also provides a transparent electrode laminate including a transparent electrode pattern formed on a substrate through the method of forming the transparent electrode.
  • the present invention comprises the steps of forming a transparent electrode layer on the substrate comprising at least one conductive material selected from the group consisting of a conductive polymer, a conductive carbon-based material, a metal nanostructure and a conductive metal oxide; Forming a protective layer on the transparent electrode layer, the protective layer including at least one selected from the group consisting of a polysiloxane polymer, an acrylic polymer, and a urethane polymer; Forming a photoresist pattern on the protective layer; And non-conducting the transparent electrode layer by surface-treating the protective layer and the transparent electrode layer in the area opened by the photoresist pattern with an oxidant.
  • the present invention also includes at least one selected from the group consisting of polysiloxane polymers, acrylic polymers and urethane polymers, and includes a protective layer formed on the transparent electrode layer, wherein the first region of the transparent electrode layer is non-conductive. The remaining second region maintains conductivity to provide a transparent electrode laminate that defines a transparent electrode pattern.
  • a transparent electrode layer comprising at least one conductive material selected from the group consisting of a conductive polymer, a conductive carbon-based material, a metal nanostructure and a conductive metal oxide on a substrate;
  • a protective layer on the transparent electrode layer, the protective layer including at least one selected from the group consisting of a polysiloxane polymer, an acrylic polymer, and a urethane polymer;
  • Forming a photoresist pattern on the protective layer And non-conducting the transparent electrode layer by surface-treating the protective layer and the transparent electrode layer in the area opened by the photoresist pattern with an oxidant.
  • a photoresist pattern defining a transparent electrode pattern on the protective layer is photographed and etched. Form by. Thereafter, the photoresist pattern is used as a mask, and the protective layer and the transparent electrode layer of the open area are surface-treated with an oxidant, instead of removing the transparent electrode layer or the like in the open area.
  • the oxidant can pass through the protective layer to selectively oxidize the conductive material of the transparent electrode layer, and as a result, it is possible to unconvert the transparent electrode layer in the area opened by the photoresist pattern (so-called chemical ON / OFF process).
  • a transparent electrode layer of the remaining region that maintains the conductivity can be formed, and the transparent electrode layer that maintains the conductivity can form a transparent electrode pattern as a whole. have.
  • the transparent electrode layer and the protective layer remain intact even in the non-conductive region between the transparent electrode patterns, the risk of damaging the transparent electrode pattern or deteriorating its electrical characteristics by etching is minimized. Even if a transparent electrode pattern having a finer line width and a larger aspect ratio is formed, there is no fear that the transparent electrode pattern will collapse. Therefore, a transparent electrode pattern having a finer line width and excellent electrical characteristics can be formed well, and this can be applied to a touch panel, various display elements, or solar cells.
  • FIG. 1 is a process flowchart schematically illustrating an example of a method of forming a transparent electrode according to an embodiment.
  • a transparent electrode layer including at least one conductive material selected from the group consisting of a conductive polymer, a conductive carbon-based material, a metal nanostructure, and a conductive metal oxide is formed on a substrate. To form.
  • all of the conventional substrates can be applied without particular limitations.
  • any glass substrate, resin substrate, etc. which show transparency and transparency to visible light can be used.
  • the transparent electrode layer is formed according to a conventional electrode forming method including the above conductive material, after forming a solution or dispersion containing the at least one conductive material, an organic solvent or an aqueous solvent, and then apply it to a transparent substrate and It can be dried and formed.
  • the solution or dispersion may further include a suitable dispersant or binder.
  • the transparent electrode layer is formed using any conductive material known to be able to form a transparent electrode, for example, a conductive polymer, a conductive carbon-based material, a metal nanostructure or a conductive metal oxide, without any particular limitation. can do.
  • conductive materials include conductive polymers such as polyaniline polymers, polypyrrole polymers or polythiophene polymers; Conductive carbon-based materials such as carbon nanotubes or graphene; Metal nanostructures such as silver nanowires (AgNw) or copper nanoparticles; Conductive metal oxides such as indium tin oxide or antimony tin oxide, and the like, and the transparent electrode may be formed using various conductive materials.
  • the transparent electrode layer may have a thickness of about 0.03 urn to 0.5 im, or about 0.05 m to 0.3.
  • the effective sheet resistance may also be greatly reduced, resulting in uneven sheet resistance, and when the thickness of the transparent electrode layer is too thick, transparency or optical characteristics may be degraded.
  • the transparent electrode layer may have a sheet resistance of about 80i) / sq to 400 ⁇ / sq, or about 150il / sq to 280 O / sq.
  • a protective layer containing at least one selected from the group consisting of a polysiloxane polymer, an acrylic polymer and a urethane polymer may be formed on the transparent electrode layer.
  • a protective layer can protect a transparent electrode layer and can suppress that a transparent electrode layer is removed by the said oxidant in the surface treatment using the oxidizing agent mentioned later and the nonelectroconductive process by this, a transparent electrode layer. That is, by forming such a protective layer, the transparent electrode layer in a certain region is not removed, and only the oxidant passes through the protective layer and then reflects with the transparent electrode layer to make the transparent. Only selective oxidation and non-conduction of the electrode layer can proceed.
  • the protective layer may be formed using a polysiloxane polymer, an acrylic polymer or a urethane polymer, and among these, a polysiloxane polymer may be more suitably used.
  • a polysiloxane polymer may exhibit better surface properties when treated with the oxidizing agent, and when formed as a protective layer, minimize the insulation effect related to conductivity, and also have excellent water resistance and chemical resistance as the original purpose, and the photo above It is because it can show high coating property and adhesiveness also with respect to a resist pattern.
  • the polysiloxane-based polymer and the protective layer including the same include an alkyloxy silane monomer, an amino silane monomer, a vinyl silane monomer, an epoxy silane monomer, a methacryloxy silane monomer, an isocyanate silane monomer, and a fluorine silane monomer. It may include one polymer or two or more co-polymers selected from.
  • the polysiloxane-based polymer and the protective layer are tetraethyloxysilane, vinyltriethoxysilane, vinyltrimethoxysilane, vinyltris ( ⁇ -methoxyethoxy) silane, and ⁇ -methacryloxypropyltrimethoxysilane , ⁇ - (3, 4-epoxycyclonucleosilane) ethyltrimethoxysilane, ⁇ -glycidoxy propyltrimethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -aminopropyltrieoxysilane, ⁇ --(Aminoethyl) aminopropyltrimethoxysilane, ⁇ -euraidpropyltrioxysilane, phenyltriethyloxysilane, methyltriethoxysilane, methyltrimethoxysilane, polyethylene oxide modified silane monomers, p
  • the polysiloxane polymer and the protective layer may be about 60 to 90 weight of tetraethyloxysilane.
  • the content of tetraethyloxysilane is less than about 60 wt.
  • the content of tetraethyloxysilane in the monomer is greater than about 90% by weight 0 /.
  • the density of the protective layer may be excessively high or surface cracking may occur and the moisture resistance may be greatly reduced.
  • the protective layer may be used using an acrylic polymer or a urethane polymer, and specific examples thereof are not particularly limited, and any of those known to be usable as a protective layer or a coating layer of a conductive layer has been known. Both acrylic polymers or urethane polymers can be used without any particular limitation.
  • the protective layer may have a thickness of about 0.05 urn to 0.4 urn, or about 0.12 urn to 0.35 kPa.
  • the transparent electrode layer having such a protective layer may have a sheet resistance of about 80 Q / sq to 400 ⁇ / sq, or about 150 £ l / sq to 280 ⁇ / sq.
  • a photoresist pattern defining a region in which the transparent electrode pattern is to be formed may be formed on the protective layer, as shown in FIG. 1.
  • photoresist patterns may be formed by performing exposure and development processes using commonly known photosensitive resin compositions or photoresist compositions, and the progress conditions and methods of such exposure and development processes may be determined by those skilled in the art according to the type of each photoresist composition. Since it is well known, further description thereof will be omitted.
  • the photoresist composition for forming the photoresist pattern may include a positive photoresist composition including an alkali-soluble resin; Or a monomer or oligomer and a photoinitiator containing one or more anti-male functional group, the negative photoresist composition comprising; may be used, it is possible to more suitably use the positive-working photoresist composition.
  • the photoresist pattern may be formed through a conventional exposure and development process after the photoresist composition layer is formed to have a thickness of about 1 / m to 5 ⁇ , or about 2 kPa to 4. If the thickness of the photoresist composition layer is too thin, staining or appearance damage may occur in the photoresist composition layer (pattern) and / or the protective insect during exposure and development, and a cloudy appearance may occur. If the thickness of the photoresist composition layer is too thick, the exposure may not be easy and development may not occur sufficiently or mismatch of line width may occur.
  • the step of non-conducting the transparent electrode layer by surface treatment of the protective layer and the transparent electrode layer of the area opened by the photoresist pattern with an oxidant Proceed the step of non-conducting the transparent electrode layer by surface treatment of the protective layer and the transparent electrode layer of the area opened by the photoresist pattern with an oxidant Proceed.
  • the oxidant passes through the protective layer, thereby selectively oxidizing and non-conducting the transparent electrode layer thereunder.
  • the transparent electrode layer may remain unconducted in the region opened and oxidized by the photoresist pattern, and the transparent electrode layer may be formed while the transparent electrode layer remains conductive in the remaining regions.
  • oxidizing agent for such a surface treatment without substantially removing or damaging the protective layer and the transparent electrode layer (for example, the protective layer thickness change before and after the surface treatment: about 200 nm or less), through the protective layer
  • Any material capable of selectively oxidizing and nonconducting the transparent electrode layer may be used. More specific examples of such oxidizing agents include hypochlorous acid or salts thereof (e.g. hypochlorous acid in the form of a mixture with acids such as hypochlorite or acetic acid), dichloromethane or salts thereof (e.g. alkali metal salts such as potassium salts).
  • Permanganic acid or salts thereof e.g., alkali metal salts such as potassium salts
  • strong acids having oxidative properties such as hydrogen peroxide, nitric acid or hydrochloric acid, and mixtures of copper chloride and acids (e.g. hydrochloric acid, etc.)
  • One selected, black may include two or more combinations selected for these diseases, and various other oxidizing agents may be used.
  • hypochlorous acid or a salt thereof may be further considered in consideration of the characteristic of selectively oxidizing and non-converting the transparent electrode worm and not causing defects such as stains or turbidity on the protective layer and the transparent electrode layer. It can use suitably.
  • the oxidizing agent can be used more suitably as a hypochlorous acid form (see Example 2 described later) in which hypochlorite and a weak acid such as acetic acid are mixed. As a result, the transparent electrode can be more effectively oxidized and nonconducted without further causing defects in the protective layer.
  • the surface treatment process using the oxidant may proceed by a method of diluting such an oxidant component to an appropriate concentration in the liquid phase to apply or spray the surface.
  • the step of removing the photoresist pattern may be further performed, and the removing of the photoresist pattern may be performed according to a stripping process of a conventional photoresist pattern.
  • a transparent electrode layer including at least one conductive material selected from the group consisting of a conductive polymer, a conductive carbon-based material, a metal nanostructure, and a conductive metal oxide, and formed on a substrate; And at least one member selected from the group consisting of polysiloxane polymers, acrylic polymers, and urethane polymers, the protective layer being formed on the transparent electrode layer, wherein the first region of the transparent electrode layer is non-conductive.
  • the second region may have a transparent electrode stack that maintains conductivity to define a transparent electrode pattern.
  • the transparent electrode layer of the first region can remain on the substrate in an unconducted state with a sheet resistance of 150 C ⁇ / sq to 280 ⁇ / sq, and the transparent electrode layer of the remaining second region.
  • Silver can maintain the excellent conductivity originally possessed by a conductive material. Accordingly, the fine transparent electrode pattern can be formed, but the transparent electrode layer and the protective layer of the non-conducted first region remain intact, whereby a finer transparent electrode pattern can be better formed without collapse of the pattern. .
  • various types of transparent electrode patterns may be formed, and typically, a plurality of lines may be formed by forming the transparent electrode layer of the non-conducted first region and the transparent electrode layer of the remaining second region.
  • the transparent electrode pattern of the line & space form which has the pattern form alternately arranged can be formed suitably. This makes it possible to form a line and space-shaped transparent electrode pattern having a very fine line width and a large aspect ratio without sacrificing such a pattern. ⁇ Effects of the Invention ⁇
  • the transparent electrode pattern in the process of performing a conventional photolithography process, the transparent electrode pattern may be damaged or the electrical characteristics thereof may be degraded, and the transparent electrode pattern having a finer line width and a larger aspect ratio may be transparent.
  • a transparent electrode forming method substantially free of the possibility of collapse of the electrode pattern, and a transparent electrode laminate formed through this can be provided.
  • the present invention it is possible to form a transparent electrode pattern having a finer line width and excellent electrical properties with good, it can be applied to a touch panel, various display elements or solar cells very preferably.
  • FIG. 1 is a process flowchart schematically illustrating an example of a method of forming a transparent electrode according to an embodiment, for each process sequence.
  • FIG. 2 is a view showing electron micrographs before and after surface treatment (after removing to a photoresist pattern) in Example 2.
  • FIG. 2 is a view showing electron micrographs before and after surface treatment (after removing to a photoresist pattern) in Example 2.
  • a dispersion of conductive polymer PEDOT: PSS [Poly (3,4-ethylenedioxythiophene) Polystyrene sulfonate, solids 1wt%], and a dispersion of silver nanowai solids 1wt%] were obtained by IPA (isopropylene alcohol), MeOH (methanol) and It manufactured using the mixed solvent of this ISO (dimethyl sulfoxide).
  • the conductive polymer dispersion and silver nanowiser The dispersions were mixed at a weight ratio of 1: 1, which was coated on a 100-thick PET substrate with a coating liquid thickness of 6.86 // m using a bar coater. Thereafter, hot air was dried under the condition of 120 ° C./1 min to form a transparent electrode layer.
  • the sheet resistance of this transparent electrode layer was found to be 80 Q / sq.
  • TEOS tetraethyloxysilane
  • PTMS phenyltrimethoxysilane
  • IPA isopropyl alcohol
  • acetic acid 1.4 parts by weight of acetic acid
  • This protective coating material was coated with a bar coater on a substrate on which the electrode layer was formed to a thickness of 11.43 / im, and then hot-air dried under the condition of 120 ° C / 10 min. As a result, a protective layer was formed to a thickness of 0.178 um, and the sheet resistance was found to be 90 Q / sq.
  • Dongjin Semichem photoresist (Positive Type) SJ-631 (10cP, solid content 23wt%) was applied to the formed protective layer using a bar coating, dried for 1 minute at 120 ° C temperature of about 2.5 ⁇ thickness photo The resist was formed, and after the 50mJ exposure with the SUSS Microtec MA-6 exposure apparatus, development was carried out at room temperature for 25 seconds using a developer DPD-200 of Dongjin Semichem to form a photoresist pattern.
  • the protective layer and the transparent electrode layer in the area opened by the photoresist pattern were surface treated.
  • hypochlorite (12%) and acetic acid were mixed at a content of 1: 1 to prepare 6% of the mixture. The appearance at this time was found to be acidic and take the form of hypochlorous acid.
  • Aqueous chemical PED-2102 (solid content 30wt%), which is a water-dispersible urethane polymer, was diluted in a weight ratio of 1: 9 using isopropyl alcohol as a diluent to prepare 500 g of a protective layer coating solution. Solid content at this time was 3 wt%.
  • the protective layer coating solution was coated on the crawfish on which the electrode layer was formed to a thickness of 11.43 using a bar coater, and then hot air dried under a condition of 120 ° C./10 min. As a result, a protective layer was formed to a thickness of 0.34 um, and the surface resistance was confirmed as ⁇ ⁇ / sq. Thereafter, the process was performed in the same manner as in Example 2 to form a photoresist pattern, and the protective layer and the transparent electrode layer in the area opened by the photoresist pattern were treated with an aqueous hypochlorite solution.
  • Example 4
  • Takamatsh oil & fat co., Ltd. a water-dispersible acrylic ester polymer
  • PESRESIN A-645GH solid content 30wt%
  • isopropyl alcohol a diluent
  • a protective layer coating solution 500 g was prepared. Solid content at this time was 3 wt%.
  • This protective layer coating liquid is applied to the substrate on which the electrode layer is formed using a bar coater
  • Example 2 electron micrographs before and after the surface treatment using hypochlorous acid and after the surface treatment (after removing the photoresist pattern) are respectively shown in FIG. 2.
  • the characteristics of the transparent electrode patterns of Examples 1, 2, 3, and 4 were evaluated under the following criteria, and the evaluation results are shown in Table 1 below.
  • the color difference meter satisfies only one change amount before and after "0" (that is, only one of A Eab ⁇ 3 or Haze ⁇ 0.5).
  • electrical disconnection of more than 80% of the length parameter for the transparent electrode patterns of line and space;
  • Example 1 Example 2
  • Example 3 Example 4 Surface property evaluation ⁇ 0 0 0 0 Defect generation evaluation 0 0 0 0 Open circuit evaluation 0 0 0 O
  • a good transparent electrode pattern electrically disconnected between the surface treated region and the untreated region was formed.
  • the protective layer is formed of a urethane-based polymer or an acrylic polymer, it was confirmed that a good transparent electrode pattern can be formed, similarly to Examples 1 and 2.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention relates to a method for forming a transparent electrode capable of more stably forming a transparent electrode pattern having a finer line width and a great aspect ratio, and a transparent electrode laminate formed thereby. The method for forming a transparent electrode comprises the steps of: forming, on a substrate, a transparent electrode layer including one or more conductive materials selected from a group consisting of a conductive polymer, a conductive carbon-based material, a metal nanostructure, and a conductive metal oxide; forming, on the transparent electrode layer, a protection layer including one or more materials selected from a group consisting of a polysiloxane-based polymer, an acrylic polymer, and an urethane-based polymer; forming a photoresist pattern on the protection layer; and making the transparent electrode layer non-conductive by surface-treating, with an oxidizer, the protection layer and the transparent electrode layer in a region which has been opened by the photoresist pattern.

Description

【명세서】  【Specification】
[발명의 명칭]  [Name of invention]
투명 전극의 형성 방법과, 투망 전극 적층체  Formation method of transparent electrode and projection mesh laminated body
【기술분야】  Technical Field
본 발명은 보다 미세한 선폭을 가지며, 종횡비 (aspect ratio)가 큰 투명 전극 패턴을 보다 안정적으로 형성할 수 있는 투명 전극의 형성 방법과, 이로부터 형성된 투명 전극 적층체에 관한 것이다.  The present invention relates to a method of forming a transparent electrode having a finer line width and capable of more stably forming a transparent electrode pattern having a larger aspect ratio, and a transparent electrode laminate formed therefrom.
【배경기술]  Background technology
투명 전극은 가시광선에 대해 투명하고 전기전도성이 있는 박막으로 정의되며, 플라즈마 디스플레이패널, 액정 디스플레이소자, 발광다이오드소자, 유기전자발광소자, 터치패널, 태양전지 등과 같은 다양한 분야에 이용되고 있다. 최근 들어, 각종 소자 또는 터치패널이 초미세화 및 고감도화됨에 따라, 보다 미세한 선폭을 가지며, 종횡비 (aspect ratio)가 큰 투명 전극 패턴, 예를 들어, 보다 얇은 선폭 및 큰 높이를 갖는 라인&스페이스 형태의 투명 전극 패턴의 형성이 요구되고 있다.  Transparent electrodes are defined as thin films that are transparent and electrically conductive to visible light, and are used in various fields such as plasma display panels, liquid crystal display devices, light emitting diode devices, organic electroluminescent devices, touch panels, and solar cells. Recently, as various devices or touch panels become ultra fine and highly sensitive, a transparent electrode pattern having a finer line width and a larger aspect ratio, for example, a line and space type having a thinner line width and a larger height The formation of the transparent electrode pattern is desired.
기존에는 투명 도전성 물질을 기판 상에 형성한 후, 포토레지스트 패턴을 사용한 노광, 현상 및 식각의 사진 식각 공정을 통해, 상기 투명 도전성 물질을 식각 및 패터닝하는 방법으로, 주로 라인&스페이스 형태 등을 갖는 투명 전극 패턴을 형성하는 것이 일반적이었다. 그러나, 이러한 기존의 방법에 의할 경우, 포토레지스트 패턴을 마스크로 하는 식각 공정의 마진 등으로 인해, 미세한 선폭을 갖는 투명 전극 패턴의 상부 또는 하부가 손상되는 등의 문제가 발생하였고, 이로 인해 우수한 도전성을 갖는 투명 전극 패턴을 형성하기 어려운 경우가 나타났다. 이러한 문제점은 상기 투명 전극 패턴이 보다 미세한 선폭을 가지며, 보다 큰 종횡비를 가질수록 더욱 두드러지게 나타났으며, 심하게는 투명 전극 패턴이 무너지는 등의 현상도 발생하였다.  Conventionally, after forming a transparent conductive material on a substrate, the method of etching and patterning the transparent conductive material through a photolithography process of exposure, development and etching using a photoresist pattern, mainly having a line & space form It was common to form a transparent electrode pattern. However, according to the conventional method, a problem such as damage to the upper or lower portion of the transparent electrode pattern having a fine line width occurs due to the margin of the etching process using the photoresist pattern as a mask, which is excellent. It was difficult to form a transparent electrode pattern having conductivity. This problem is more prominent as the transparent electrode pattern has a finer line width, has a larger aspect ratio, and worse, the transparent electrode pattern collapses.
이러한 종래 기술의 문제점으로 인해, 보다 미세한 선폭을 가지며, 보다 종횡비를 갖는 투명 전극 패턴을 보다 안정적이고 양호하게 형성할 수 있는 방법이 계속적으로 요구되고 있다.  Due to the problems of the prior art, there is a continuous need for a method of more stably and satisfactorily forming a transparent electrode pattern having a finer line width and having a more aspect ratio.
【발명의 내용】  [Content of invention]
【해결하려는 과제】 이에 본 발명은 보다 미세한 선폭을 가지며, 종횡비 (aspect ratio)가 큰 투명 전극 패턴을 보다 안정적으로 형성할 수 있는 투명 전극의 형성 방법을 제공하는 것이다. [Problem to solve] Accordingly, the present invention provides a method for forming a transparent electrode, which can more stably form a transparent electrode pattern having a finer line width and a large aspect ratio.
본 발명은 또한, 상기 투명 전극의 형성 방법을 통해, 기판 상에 형성된 투명 전극 패턴을 포함하는 투명 전극 적층체를 제공하는 것이다.  The present invention also provides a transparent electrode laminate including a transparent electrode pattern formed on a substrate through the method of forming the transparent electrode.
[과제의 해결 수단】  [Solution of problem]
이에 본 발명은 전도성 고분자, 전도성 탄소계 소재, 금속 나노 구조체 및 전도성 금속 산화물로 이루어진 군에서 선택된 1 종 이상의 도전성 물질을 포함하는 투명 전극층을 기판 상에 형성하는 단계; 폴리실록산계 중합체, 아크릴계 중합체 및 우레탄계 중합체로 이루어진 군에서 선택된 1 종 이상을 포함하는 보호층을 상기 투명 전극층 상에 형성하는 단계; 상기 보호층 상에 포토레지스트 패턴을 형성하는 단계; 및 상기 포토레지스트 패턴에 의해 개방된 영역의 보호층 및 투명 전극층을 산화제로 표면 처리하여 상기 투명 전극층을 비도전화시키는 단계를 포함하는 투명 전극의 형성 방법을 제공한다.  Accordingly, the present invention comprises the steps of forming a transparent electrode layer on the substrate comprising at least one conductive material selected from the group consisting of a conductive polymer, a conductive carbon-based material, a metal nanostructure and a conductive metal oxide; Forming a protective layer on the transparent electrode layer, the protective layer including at least one selected from the group consisting of a polysiloxane polymer, an acrylic polymer, and a urethane polymer; Forming a photoresist pattern on the protective layer; And non-conducting the transparent electrode layer by surface-treating the protective layer and the transparent electrode layer in the area opened by the photoresist pattern with an oxidant.
본 발명은 또한, 폴리실록산계 중합체, 아크릴계 중합체 및 우레탄계 중합체로 이루어진 군에서 선택된 1 종 이상을 포함하고, 상기 투명 전극층 상에 형성되어 있는 보호층을 포함하고, 상기 투명 전극층의 제 1 영역은 비도전화되어 있고, 나머지 제 2 영역은 도전성을 유지하여 투명 전극 패턴을 정의하고 있는 투명 전극 적층체를 제공한다.  The present invention also includes at least one selected from the group consisting of polysiloxane polymers, acrylic polymers and urethane polymers, and includes a protective layer formed on the transparent electrode layer, wherein the first region of the transparent electrode layer is non-conductive. The remaining second region maintains conductivity to provide a transparent electrode laminate that defines a transparent electrode pattern.
이하 발명의 구체적인 구현예에 따른 투명 전극의 형성 방법 및 이로부터 형성된 투명 전극 적층체에 대해 보다 상세하게 설명하기로 한다.  Hereinafter, a method of forming a transparent electrode and a transparent electrode laminate formed therefrom according to a specific embodiment of the present invention will be described in detail.
발명의 일 구현예에 따르면, 전도성 고분자, 전도성 탄소계 소재, 금속 나노 구조체 및 전도성 금속 산화물로 이루어진 군에서 선택된 1 종 이상의 도전성 물질을 포함하는 투명 전극층을 기판 상에 형성하는 단계; 폴리실록산계 중합체, 아크릴계 중합체 및 우레탄계 중합체로 이루어진 군에서 선택된 1 종 이상을 포함하는 보호층을 상기 투명 전극층 상에 형성하는 단계; 상기 보호층 상에 포토레지스트 패턴을 형성하는 단계; 및 상기 포토레지스트 패턴에 의해 개방된 영역의 보호층 및 투명 전극층을 산화제로 표면 처리하여 상기 투명 전극층을 비도전화시키는 단계를 포함하는 투명 전극의 형성 방법이 제공된다. 이러한 일 구현예의 형성 방법에서는, 소정의 도전성 물질을 포함하는 투명 전극층을 형성하고 나서, 소정의 보호층을 형성한 후, 이러한 보호층 상에 투명 전극 패턴을 정의하는 포토레지스트 패턴을 사진, 식각 공정에 의해 형성한다. 이후, 이러한 포토레지스트 패턴을 마스크로, 개방된 영역의 투명 전극층 등을 제거하는 것이 아니라, 상기 개방된 영역의 보호층 및 투명 전극층을 산화제로 표면 처리한다. According to one embodiment of the invention, forming a transparent electrode layer comprising at least one conductive material selected from the group consisting of a conductive polymer, a conductive carbon-based material, a metal nanostructure and a conductive metal oxide on a substrate; Forming a protective layer on the transparent electrode layer, the protective layer including at least one selected from the group consisting of a polysiloxane polymer, an acrylic polymer, and a urethane polymer; Forming a photoresist pattern on the protective layer; And non-conducting the transparent electrode layer by surface-treating the protective layer and the transparent electrode layer in the area opened by the photoresist pattern with an oxidant. In the forming method of this embodiment, after forming a transparent electrode layer including a predetermined conductive material, and then forming a predetermined protective layer, a photoresist pattern defining a transparent electrode pattern on the protective layer is photographed and etched. Form by. Thereafter, the photoresist pattern is used as a mask, and the protective layer and the transparent electrode layer of the open area are surface-treated with an oxidant, instead of removing the transparent electrode layer or the like in the open area.
이러한 표면 처리 과정에서, 상기 산화제는 보호층을 통과하여 투명 전극층의 도전성 물질을 선택적으로 산화시킬 수 있으며, 그 결과 상기 포토레지스트 패턴에 의해 개방된 영역의 투명 전극층을 비도전화할 수 있다 (소위 화학적 ON/OFF 공정). 이러한 공정을 진행한 결과, 비도전화된 영역의 투명 전극층 사이에, 도전성을 그대로 유지하고 있는 나머지 영역의 투명 전극층이 형성될 수 있고, 상기 도전성을 유지한 투명 전극층이 전체적으로 투명 전극 패턴을 형성할 수 있다.  In this surface treatment, the oxidant can pass through the protective layer to selectively oxidize the conductive material of the transparent electrode layer, and as a result, it is possible to unconvert the transparent electrode layer in the area opened by the photoresist pattern (so-called chemical ON / OFF process). As a result of this process, between the transparent electrode layer of the non-conducted region, a transparent electrode layer of the remaining region that maintains the conductivity can be formed, and the transparent electrode layer that maintains the conductivity can form a transparent electrode pattern as a whole. have.
이러한 일 구현예의 방법에 따르면, 투명 전극 패턴 사이의 비도전화된 영역에서도 투명 전극층 및 보호층이 그대로 남아 있기 때문에, 식각에 의해 투명 전극 패턴이 손상되거나, 그 전기적 특성이 저하될 우려가 최소화되고, 보다 미세한 선폭 및 큰 종횡비를 갖는 투명 전극 패턴을 형성하더라도, 투명 전극 패턴이 무너질 우려가 실질적으로 없어지게 된다. 따라서, 보다 미세한 선폭을 가지며, 우수한 전기적 특성을 갖는 투명 전극 패턴을 양호하게 형성할 수 있으며, 이를 터치패널, 각종 표시 소자 또는 태양전지 등에 매우 바람직하게 적용할 수 있다.  According to the method of this embodiment, since the transparent electrode layer and the protective layer remain intact even in the non-conductive region between the transparent electrode patterns, the risk of damaging the transparent electrode pattern or deteriorating its electrical characteristics by etching is minimized. Even if a transparent electrode pattern having a finer line width and a larger aspect ratio is formed, there is no fear that the transparent electrode pattern will collapse. Therefore, a transparent electrode pattern having a finer line width and excellent electrical characteristics can be formed well, and this can be applied to a touch panel, various display elements, or solar cells.
이하, 첨부한 도면을 참고로, 일 구현예의 투명 전극 형성 방법을 각 공정 별로 설명하기로 한다. 도 1 은 일 구현예에 따른 투명 전극의 형성 방법의 일 례를 각 공정 순서별로 간략화하여 나타낸 공정 순서도이다.  Hereinafter, with reference to the accompanying drawings, a transparent electrode forming method of an embodiment will be described for each process. FIG. 1 is a process flowchart schematically illustrating an example of a method of forming a transparent electrode according to an embodiment.
도 1 의 첫 번째 도면을 참고하면, 일 구현예의 방법에서는 먼저 전도성 고분자, 전도성 탄소계 소재, 금속 나노 구조체 및ᅵ 전도성 금속 산화물로 이루어진 군에서 선택된 1 종 이상의 도전성 물질을 포함하는 투명 전극층을 기판 상에 형성한다.  Referring to the first drawing of FIG. 1, in one embodiment, a transparent electrode layer including at least one conductive material selected from the group consisting of a conductive polymer, a conductive carbon-based material, a metal nanostructure, and a conductive metal oxide is formed on a substrate. To form.
이때, 상기 기판으로는 본건의 투명 전극 형성 방법이 적용될 소자 등의 종류를 고려하여, 통상적인 기판을 별다른 제한없이 모두 적용할 수 있고, 예를 들어, 가시광선에 대한 투과성 및 투명성을 나타내는 임의의 유리 기판 또는 수지 기판 등을 모두 사용할 수 있다. In this case, in consideration of the type of the device, etc. to which the transparent electrode forming method of the present invention is applied, all of the conventional substrates can be applied without particular limitations. For example, any glass substrate, resin substrate, etc. which show transparency and transparency to visible light can be used.
또, 상기 투명 전극층은 위 도전성 물질을 포함하는 통상적인 전극 형성 방법에 따라, 상기 1 종 이상의 도전성 물질과, 유기 용매 또는 수계 용매를 포함하는 용액 또는 분산액을 형성한 후, 이를 투명 기판에 도포 및 건조하여 형성할 수 있다. 이때, 필요에 따라, 상기 도전성 물질의 종류에 따라, 상기 용액 또는 분산액은 적절한 분산제 또는 바인더 등을 더 포함할 수도 있다.  In addition, the transparent electrode layer is formed according to a conventional electrode forming method including the above conductive material, after forming a solution or dispersion containing the at least one conductive material, an organic solvent or an aqueous solvent, and then apply it to a transparent substrate and It can be dried and formed. At this time, if necessary, depending on the type of the conductive material, the solution or dispersion may further include a suitable dispersant or binder.
그리고, 상기 투명 전극층은 이전부터 투명 전극을 형성할 수 있는 것으로 알려진 임의의 도전성 물질, 예를 들어, 전도성 고분자, 전도성 탄소계 소재, 금속 나노 구조체 또는 전도성 금속 산화물 등을 별다른 제한 없이 모두 사용하여 형성할 수 있다. 이러한 도전성 물질의 구체적인 예로는, 폴리아닐린계 고분자, 폴리피를계 고분자 또는 폴리티오펜계 고분자와 같은 전도성 고분자; 탄소 나노 튜브 또는 그래핀과 같은 전도성 탄소계 소재; 은 나노 와이어 (AgNw) 또는 구리 나노 입자와 같은 금속 나노 구조체; 산화 인듐 주석 (Indium Tin Oxide) 또는 산화 안티몬 주석 (Antimony Tin oxide)과 같은 전도성 금속 산화물 등을 들 수 있으며, 이외에도 다양한 도전성 물질을 사용하여 상기 투명 전극을 형성할 수 있다.  The transparent electrode layer is formed using any conductive material known to be able to form a transparent electrode, for example, a conductive polymer, a conductive carbon-based material, a metal nanostructure or a conductive metal oxide, without any particular limitation. can do. Specific examples of such conductive materials include conductive polymers such as polyaniline polymers, polypyrrole polymers or polythiophene polymers; Conductive carbon-based materials such as carbon nanotubes or graphene; Metal nanostructures such as silver nanowires (AgNw) or copper nanoparticles; Conductive metal oxides such as indium tin oxide or antimony tin oxide, and the like, and the transparent electrode may be formed using various conductive materials.
또, 상기 투명 전극층은 약 0.03 urn 내지 0.5 im, 또는 약 0.05 m 내지 0.3 의 두께를 가질 수 있다. 상기 투명 전극층의 두께가 너무 얇아지면 유효 면저항 또한 크게 저하되어 면저항이 불균일해질 수 있고, 상기 투명 전극층의 두께가 너무 두꺼워지면 투명도나 광학 특성이 저하될 수 있다.  In addition, the transparent electrode layer may have a thickness of about 0.03 urn to 0.5 im, or about 0.05 m to 0.3. When the thickness of the transparent electrode layer is too thin, the effective sheet resistance may also be greatly reduced, resulting in uneven sheet resistance, and when the thickness of the transparent electrode layer is too thick, transparency or optical characteristics may be degraded.
그리고, 상기 투명 전극층은 약 80i)/sq 내지 400 Ω/sq, 또는 약 150il/sq 내지 280 O/sq의 면저항을 가질 수 있다.  The transparent electrode layer may have a sheet resistance of about 80i) / sq to 400 Ω / sq, or about 150il / sq to 280 O / sq.
한편, 상기 투명 전극층을 형성한 후에는, 폴리실록산계 중합체, 아크릴계 중합체 및 우레탄계 중합체로 이루어진 군에서 선택된 1 종 이상을 포함하는 보호층올 상기 투명 전극층 상에 형성할 수 있다. 이러한 보호층은 이하에 후술할 산화제를 사용한 표면 처리 및 이에 의한 투명 전극층의 비도전화 공정에서, 투명 전극층을 보호하고 상기 산화제에 의해 투명 전극층이 제거되는 것을 억제할 수 있다. 즉, 이러한 보호층의 형성에 의해, 일정 영역의 투명 전극층이 제거되지 않고, 단지 산화제가 보호층을 통과한 후 투명 전극층과 반옹하여 상기 투명 전극층의 선택적인 산화 및 비도전화만이 진행될 수 있다. 그 결과, 일 구현예의 방법이 의도하는 투명 전극 패턴의 무너짐 등을 억제하는 효과가 달성될 수 있다. 이러한 보호층의 역할을 고려하여, 상기 보호층은 폴리실록산계 중합체, 아크릴계 중합체 또는 우레탄계 중합체를 사용하여 형성할 수 있는데, 이중에서도 폴리실록산계 중합체를 보다 적합하게 사용할 수 있다. 이러한 폴리실록산계 중합체는 상기 산화제를 사용한 처리시 보다 우수한 표면 특성을 나타낼 수 있으며, 보호층으로 형성시, 도전성과 관련된 절연효과를 최소화하면서도, 본연의 목적인 내수성 및 내약품성 또한 우수하고, 그 상부의 포토레지스트 패턴에 대해서도 높은 코팅성 및 부착성을 나타낼 수 있기 때문이다. On the other hand, after the transparent electrode layer is formed, a protective layer containing at least one selected from the group consisting of a polysiloxane polymer, an acrylic polymer and a urethane polymer may be formed on the transparent electrode layer. Such a protective layer can protect a transparent electrode layer and can suppress that a transparent electrode layer is removed by the said oxidant in the surface treatment using the oxidizing agent mentioned later and the nonelectroconductive process by this, a transparent electrode layer. That is, by forming such a protective layer, the transparent electrode layer in a certain region is not removed, and only the oxidant passes through the protective layer and then reflects with the transparent electrode layer to make the transparent. Only selective oxidation and non-conduction of the electrode layer can proceed. As a result, the effect of suppressing the collapse of the transparent electrode pattern and the like, which the method of one embodiment is intended, can be achieved. In consideration of the role of the protective layer, the protective layer may be formed using a polysiloxane polymer, an acrylic polymer or a urethane polymer, and among these, a polysiloxane polymer may be more suitably used. Such polysiloxane-based polymers may exhibit better surface properties when treated with the oxidizing agent, and when formed as a protective layer, minimize the insulation effect related to conductivity, and also have excellent water resistance and chemical resistance as the original purpose, and the photo above It is because it can show high coating property and adhesiveness also with respect to a resist pattern.
이러한 폴리실록산계 중합체 및 이를 포함한 보호층은 알킬옥시 실란계 단량체, 아미노 실란계 단량체, 비닐 실란계 단량체, 에폭시 실란계 단량체, 메타크릴옥시 실란계 단량체, 이소시아네이트 실란계 단량체 및 불소 실란계 단량체로 이루어진 군에서 선택된 1 종의 중합체 또는 2 종 이상의 공증합체를 포함할 수 있다.  The polysiloxane-based polymer and the protective layer including the same include an alkyloxy silane monomer, an amino silane monomer, a vinyl silane monomer, an epoxy silane monomer, a methacryloxy silane monomer, an isocyanate silane monomer, and a fluorine silane monomer. It may include one polymer or two or more co-polymers selected from.
구체적으로, 상기 폴리실록산계 중합체 및 보호층은 테트라에틸옥시실란, 비닐트리에록시실란, 비닐트리메록시실란, 비닐트리스 ( β -메특시에톡시)실란, Υ - 메타크릴옥시프로필트리메록시실란, β -(3, 4-에폭시시클로핵실)에틸트리메록시실란, γ -글리시드옥시프로필트리메특시실란, γ -머캅토프로필트리메록시실란, γ - 아미노프로필트리에특시실란, Ν- - (아미노에틸) 아미노프로필트리메특시실란, γ -유레이드프로필트리에특시실란, 페닐트리에특시실란, 메틸트리에톡시실란, 메틸트리메특시실란, 폴리에틸렌옥사이드 변성 실란 단량체, 플리메틸에톡시실록산 및 핵사메틸디시라진으로 이루어진 군에서 선택된 1 종의 중합체 또는 2종 이상의 공중합체를 포함할 수 있다. Specifically, the polysiloxane-based polymer and the protective layer are tetraethyloxysilane, vinyltriethoxysilane, vinyltrimethoxysilane, vinyltris (β-methoxyethoxy) silane, and Υ-methacryloxypropyltrimethoxysilane , Β- (3, 4-epoxycyclonucleosilane) ethyltrimethoxysilane, γ -glycidoxy propyltrimethoxysilane, γ -mercaptopropyltrimethoxysilane, γ -aminopropyltrieoxysilane, Ν --(Aminoethyl) aminopropyltrimethoxysilane, γ -euraidpropyltrioxysilane, phenyltriethyloxysilane, methyltriethoxysilane, methyltrimethoxysilane, polyethylene oxide modified silane monomers, ply It may comprise one polymer or two or more copolymers selected from the group consisting of methylethoxysiloxane and nuxamethyldisirazine.
더 나아가, 상기 폴리실록산계 중합체를 포함한 보호층이 이웃하는 다른 층에 대하여 보다 높은 결합력 또는 접착력을 가지면서 낮은 면저항을 확보하기 위해서, 상기 폴리실록산계 중합체 및 보호층은 테트라에틸옥시실란 약 60 내지 90 중량0 /。; 및 비닐트리에톡시실란, 비닐트리메톡시실란, 비닐트리스 ( β - 메톡시에톡시)실란, 메타크릴옥시프로필트리메톡시실란, β -(3,4- 에폭시시클로핵실)에틸트리메특시실란, 글리시드옥시프로필트리메특시실란, Υ - 머캅토프로필트리메톡시실란, 아미노프로필트리에특시실란 Ν- β - (아미노에틸) - 아미노프로필트리메특시실란, 유레이드프로필트리에특시실란, 페닐트리에특시실란, 메틸트리에록시실란, 메틸트리메록시실란, 폴리에틸렌옥사이드 변성 실란 단량체/ 폴리메틸에록시실록산 및 핵사메틸디시라진으로 이루어진 군에서 선택된 1 종 이상의 화합물 약 10 내지 40중량0 /0; 간의 공중합체를 포함할 수 있다. Furthermore, in order to secure a low sheet resistance while the protective layer including the polysiloxane polymer has a higher bonding strength or adhesion to another neighboring layer, the polysiloxane polymer and the protective layer may be about 60 to 90 weight of tetraethyloxysilane. 0 / 。; and vinyltriethoxysilane, vinyltrimethoxysilane, vinyltris (β-methoxyethoxy) silane, methacryloxypropyltrimethoxysilane, β- (3,4-epoxycyclonucleosilane) ethyl Trimethoxysilane, glycidoxypropyltrimethoxysilane, Υ- mercaptopropyltrimethoxysilane, aminopropyltriethyl silane Ν- β-(aminoethyl)- Aminopropyltrimethoxysilane, Euraid propyltrioxysilane, Phenyltrioxysilane, Methyltriethoxysilane, Methyltrimethoxysilane, Polyethyleneoxide Modified Silane Monomer / Polymethylethoxysiloxane and Nuxamethyldicy at least one compound selected from the group consisting of piperazine for about 10 to 40 parts by weight 0/0; And hepatic copolymers.
만일, 상기 공중합체 등의 합성에 사용되는 단량체 중 테트라에틸옥시실란의 함량이 약 60중량。/。미만이면 상기 보호층의 면쩌항이 크게 증가할 수 있다. 또한, 상기 단량체 중 테트라에틸옥시실란의 함량이 약 90 중량0 /。 초과이면, 상기 보호층의 밀도가 과다하게 높아지거나 표면의 깨지는 현상이 발생할 수 있고 내수분성이 크게 저하될 수 있다. If the content of tetraethyloxysilane is less than about 60 wt. In addition, when the content of tetraethyloxysilane in the monomer is greater than about 90% by weight 0 /., The density of the protective layer may be excessively high or surface cracking may occur and the moisture resistance may be greatly reduced.
한편, 이러한 폴리실록산계 중합체 외에도, 아크릴계 중합체 또는 우레탄계 중합체를 사용하여 상기 보호층을 사용할 수 있는데, 이의 구체적인 예는 특히 한정되지 않으며, 이전부터 도전층의 보호층 또는 코팅층 등으로 사용 가능한 것으로 알려진 임의의 아크릴계 중합체 또는 우레탄계 중합체를 별다른 제한 없이 모두 사용할 수 있다.  Meanwhile, in addition to the polysiloxane polymer, the protective layer may be used using an acrylic polymer or a urethane polymer, and specific examples thereof are not particularly limited, and any of those known to be usable as a protective layer or a coating layer of a conductive layer has been known. Both acrylic polymers or urethane polymers can be used without any particular limitation.
그리고, 상기 보호층은 약 0.05 urn 내지 0.4 urn, 또는 약 0.12 urn 내지 0.35 卿의 두께를 가질 수 있다. 또한, 상술한 바와 같이, 이러한 보호층을 갖는 투명 전극층은 약 80Q/sq 내지 400 Ω/sq, 또는 약 150£l/sq 내지 280 Ω/sq 의 면저항을 가질 수 있다. 이로서, 후술할 산화제의 표면 처리 및 일정 영역의 투명 전극층 비도전화 공정에서, 하부의 투명 전극층을 적절히 보호하면서 선택적으로 비도전화할 수 있으며, 최종 형성된 투명 전극 패턴 및 적층체가 우수한 전기적 특성을 나타내게 할 수 있다.  The protective layer may have a thickness of about 0.05 urn to 0.4 urn, or about 0.12 urn to 0.35 kPa. In addition, as described above, the transparent electrode layer having such a protective layer may have a sheet resistance of about 80 Q / sq to 400 Ω / sq, or about 150 £ l / sq to 280 Ω / sq. As a result, in the surface treatment of the oxidizing agent and the transparent electrode layer nonconducting step of the region to be described later, it is possible to selectively nonconductive while appropriately protecting the lower transparent electrode layer, and the finally formed transparent electrode pattern and the laminate can exhibit excellent electrical properties. have.
한편, 상술한 투명 전극층 및 보호층을 순차 형성한 후에는, 도 1 에 도시된 바와 같이, 상기 보호층 상에 투명 전극 패턴이 형성될 영역을 정의하는 포토레지스트 패턴을 형성할 수.있다.  After the transparent electrode layer and the protective layer are sequentially formed, a photoresist pattern defining a region in which the transparent electrode pattern is to be formed may be formed on the protective layer, as shown in FIG. 1.
이러한 포토레지스트 패턴은 통상적으로 알려진 감광성 수지 조성물 또는 포토레지스트 조성물을 사용한 노광 및 현상 공정을 진행하여 형성할 수 있으며, 이러한 노광 및 현상 공정의 진행 조건 및 방법은 각 포토레지스트 조성물의 종류에 따라 당업자에게 잘 알려져 있으므로, 이에 관한 추가적인 설명은 생략하기로 한다. 그리고, 상기 포토레지스트 패턴의 형성을 위한 포토레지스트 조성물로는, 알카리 가용성 수지를 포함한 포지티브 포토레지스트 조성물; 또는 1 이상의 반웅성 작용기를 포함한 단량체 또는 다량체 및 광개시제를 ,포함한 네가티브 포토레지스트 조성물;을 사용할 수 있고, 보다 적절하게는 포지티브 포토레지스트 조성물을 사용할 수 있다. Such photoresist patterns may be formed by performing exposure and development processes using commonly known photosensitive resin compositions or photoresist compositions, and the progress conditions and methods of such exposure and development processes may be determined by those skilled in the art according to the type of each photoresist composition. Since it is well known, further description thereof will be omitted. The photoresist composition for forming the photoresist pattern may include a positive photoresist composition including an alkali-soluble resin; Or a monomer or oligomer and a photoinitiator containing one or more anti-male functional group, the negative photoresist composition comprising; may be used, it is possible to more suitably use the positive-working photoresist composition.
그리고, 상기 포토레지스트 패턴은 약 1 / m 내지 5 Ά, 또는 약 2 卿 내지 4 의 두께를 갖도록 포토레지스트 조성물층을 형성한 후, 통상적인 노광 및 현상 공정을 거쳐 형성할 수 있다. 만일, 포토레지스트 조성물층의 두께가 너무 얇으면, 노광 및 현상 과정에서 상기 포토레지스트 조성물층 (패턴) 및 /또는 보호충 등에 얼룩이나 외관 손상이 발생하여 백탁 현상이 나타날 수 있다. 상기 포토레지스트 조성물층의 두께가 너무 두꺼우면 노광이 용이하지 않아서 현상이 충분히 일어나지 않 나 또는 선폭의 불일치가 발생할 수 있다.  The photoresist pattern may be formed through a conventional exposure and development process after the photoresist composition layer is formed to have a thickness of about 1 / m to 5 Ά, or about 2 kPa to 4. If the thickness of the photoresist composition layer is too thin, staining or appearance damage may occur in the photoresist composition layer (pattern) and / or the protective insect during exposure and development, and a cloudy appearance may occur. If the thickness of the photoresist composition layer is too thick, the exposure may not be easy and development may not occur sufficiently or mismatch of line width may occur.
한편, 상술한 포토레지스트 패턴을 형성한 후에는, 도 1 에 도시된 바와 같이, 상기 포토레지스트 패턴에 의해 개방된 영역의 보호층 및 투명 전극층을 산화제로 표면 처리하여 상기 투명 전극층을 비도전화시키는 단계를 진행한다. 이러한 과정을 진행하면, 상기 산화제가 보호층을 통과하여, 그 하부의 투명 전극층을 선택적으로 산화 및 비도전화하게 된다. 그 결과, 포토레지스트 패턴에 의해 개방되어 산화처리된 영역에서는 투명 전극층이 비도전화된 상태로 잔류하고, 나머지 영역에서는 투명 전극층이 도전화된 상태로 유지되에 투명 전극 패턴이 형성될 수 있다.  On the other hand, after forming the above-described photoresist pattern, as shown in Figure 1, the step of non-conducting the transparent electrode layer by surface treatment of the protective layer and the transparent electrode layer of the area opened by the photoresist pattern with an oxidant Proceed. In this process, the oxidant passes through the protective layer, thereby selectively oxidizing and non-conducting the transparent electrode layer thereunder. As a result, the transparent electrode layer may remain unconducted in the region opened and oxidized by the photoresist pattern, and the transparent electrode layer may be formed while the transparent electrode layer remains conductive in the remaining regions.
이러한 표면 처리를 위한 산화제로는, 상기 보호층 및 투명 전극층을 실질적으로 제거 또는 손상시키지 않으면서 (예를 들여, 상기 표면 처리 전후의 보호층 두께 변화: 약 200nm 이하), 상기 보호층을 통과하여 상기 투명 전극층을 선택적으로 산화 및 비도전화시킬 수 있는 임의의 물질을 사용할 수 있다. 이러한 산화제의 보다 구체적인 예로는, 차아염소산 또는 이의 염 (예를 들어, 차아염소산염, 혹은 아세트산 등의 산과 흔합된 형태의 차아염소산), 중크름산 또는 이의 염 (예를 들어, 칼륨염 등의 알칼리금속염), 과망간산 또는 이의 염 (예를 들어, 칼륨염 등의 알칼리금속염), 과산화수소, 질산 또는 염산 등의 산화성을 갖는 강산 및 염화구리 및 산 (예를 들어, 염산 등)의 흔합물로 이루어진 군에서 선택된 1 종, 흑은 이들 증에 선택된 2 종 이상의 흔합물을 들 수 있고, 기타 다양한 산화제를 사용할 수 있다. As the oxidizing agent for such a surface treatment, without substantially removing or damaging the protective layer and the transparent electrode layer (for example, the protective layer thickness change before and after the surface treatment: about 200 nm or less), through the protective layer Any material capable of selectively oxidizing and nonconducting the transparent electrode layer may be used. More specific examples of such oxidizing agents include hypochlorous acid or salts thereof (e.g. hypochlorous acid in the form of a mixture with acids such as hypochlorite or acetic acid), dichloromethane or salts thereof (e.g. alkali metal salts such as potassium salts). ), Permanganic acid or salts thereof (e.g., alkali metal salts such as potassium salts), strong acids having oxidative properties such as hydrogen peroxide, nitric acid or hydrochloric acid, and mixtures of copper chloride and acids (e.g. hydrochloric acid, etc.) One selected, black may include two or more combinations selected for these diseases, and various other oxidizing agents may be used.
이 중에서도, 투명 전극충을 선택적으로 산화 및 비도전화할 수 있고, 보호층 및 투명 전극층 표면에 얼룩이나 백탁 등 결함 (defect)을 발생시키지 않는 특성을 고려하여, 상기 차아염소산 또는 이의 염 등을 보다 적절히 사용할 수 있다. 또한, 더욱 적절하게는 차아염소산염과, 아세트산 등의 약산을 흔합한 차아염소산 형태 (후술하는 실시예 2 참조)로서 상기 산화제를 사용할 수 있다. 이로서, 보호층에 결함을 더욱 발생시키기 않으면서, 투명 전극을 보다 효과적으로 산화 및 비도전화할 수 있다.  Among them, the above-mentioned hypochlorous acid or a salt thereof may be further considered in consideration of the characteristic of selectively oxidizing and non-converting the transparent electrode worm and not causing defects such as stains or turbidity on the protective layer and the transparent electrode layer. It can use suitably. Further, the oxidizing agent can be used more suitably as a hypochlorous acid form (see Example 2 described later) in which hypochlorite and a weak acid such as acetic acid are mixed. As a result, the transparent electrode can be more effectively oxidized and nonconducted without further causing defects in the protective layer.
그리고, 상기 산화제를 이용한 표면 처리 공정은 이러한 산화제 성분을 액상으로 적절한 농도로 희석하여 표면 도포 또는 분사하는 방법으로 진행할 수 있다.  In addition, the surface treatment process using the oxidant may proceed by a method of diluting such an oxidant component to an appropriate concentration in the liquid phase to apply or spray the surface.
한편, 상술한 산화제 표면 처리 단계 후에, 상기 포토레지스트 패턴을 제거하는 단계를 더 진행할 수 있으며, 이러한 포토레지스트 패턴의 제거 공정은 통상적인 포토레지스트 패턴의 스트립 공정 등에 따라 진행할 수 있다.  Meanwhile, after the oxidant surface treatment step described above, the step of removing the photoresist pattern may be further performed, and the removing of the photoresist pattern may be performed according to a stripping process of a conventional photoresist pattern.
상술한 일 구현예의 공정을 거치면, 기판; 전도성 고분자, 전도성 탄소계 소재, 금속 나노 구조체 및 전도성 금속 산화물로 이루어진 군에서 선택된 1 종 이상의 도전성 물질을 포함하고, 기판 상에 형성되어 있는 투명 전극층; 및 폴리실록산계 중합체, 아크릴계 중합체 및 우레탄계 중합체로 이루어진 군에서 선택된 1 종 이상을 포함하고, 상기 투명 전극층 상에 형성되어 있는 보호층을 포함하고, 상기 투명 전극층의 제 1 영역은 비도전화되어 있고, 나머지 제 2 영역은 도전성을 유지하여 투명 전극 패턴을 정의하고 있는 투명 전극 적층체가 형성될 수 있다.  After the process of the above-described embodiment, a substrate; A transparent electrode layer including at least one conductive material selected from the group consisting of a conductive polymer, a conductive carbon-based material, a metal nanostructure, and a conductive metal oxide, and formed on a substrate; And at least one member selected from the group consisting of polysiloxane polymers, acrylic polymers, and urethane polymers, the protective layer being formed on the transparent electrode layer, wherein the first region of the transparent electrode layer is non-conductive. The second region may have a transparent electrode stack that maintains conductivity to define a transparent electrode pattern.
이러한 투명 ―전극 적층체에서, 상기 제 1 영역의 투명 전극층은 150C}/sq 내지 280 Ω/sq 의 면 저항을 갖는 비도전화된 상태로 기판 상에 잔류할 수 있고, 나머지 제 2 영역의 투명 전극층은 원래 도전성 물질이 갖는 우수한 도전성을 유지할 수 있다. 이에 따라, 미세한 투명 전극 패턴을 형성할 수 있으면서도, 비도전화된 제 1 영역의 투명 전극층 및 보호층이 그대로 남아 있기 때문에ᅳ 보다 미세한 투명 전극 패턴을 이러한 패턴의 무너짐 없이 보다 양호하게 형성할 수 있게 된다. 상술한 일 구현예의 투명 전극 형성 방법을 통해, 다양한 형태의 투명 전극 패턴을 형성할 수 있으며, 대표적으로 상기 비도전화된 제 1 영역의 투명 전극층과, 나머지 제 2 영역의 투명 전극층이 복수의 라인이 교대 배열된 패턴 형태를 갖는 라인&스페이스 형태의 투명 전극 패턴을 적절히 형성할 수 있다. 이로서 매우 미세한 선폭 및 큰 종횡비를 갖는 라인&스페이스 형태의 투명 전극 패턴을 이러한 패턴이 무너질 우려 없이 매우 양호하게 형성할 수 있게 된다. 【발명의 효과】 In this transparent electrode stack, the transparent electrode layer of the first region can remain on the substrate in an unconducted state with a sheet resistance of 150 C} / sq to 280 Ω / sq, and the transparent electrode layer of the remaining second region. Silver can maintain the excellent conductivity originally possessed by a conductive material. Accordingly, the fine transparent electrode pattern can be formed, but the transparent electrode layer and the protective layer of the non-conducted first region remain intact, whereby a finer transparent electrode pattern can be better formed without collapse of the pattern. . Through the transparent electrode forming method of the above-described embodiment, various types of transparent electrode patterns may be formed, and typically, a plurality of lines may be formed by forming the transparent electrode layer of the non-conducted first region and the transparent electrode layer of the remaining second region. The transparent electrode pattern of the line & space form which has the pattern form alternately arranged can be formed suitably. This makes it possible to form a line and space-shaped transparent electrode pattern having a very fine line width and a large aspect ratio without sacrificing such a pattern. 【Effects of the Invention】
본 발명에 따르면, 기존의 사진 식각 공정을 진행하는 과정에서, 투명 전극 패턴이 손상되거나, 그 전기적 특성이 저하될 우려가 최소화되고, 보다 미세한 선폭 및 큰 종횡비를 갖는 투명 전극 패턴을 형성하더라도, 투명 전극 패턴이 무너질 우려가 실질적으로 없는 투명 전극 형성 방법과, 이를 통해 형성된 투명 전극 적층체가 제공될 수 있다.  According to the present invention, in the process of performing a conventional photolithography process, the transparent electrode pattern may be damaged or the electrical characteristics thereof may be degraded, and the transparent electrode pattern having a finer line width and a larger aspect ratio may be transparent. A transparent electrode forming method substantially free of the possibility of collapse of the electrode pattern, and a transparent electrode laminate formed through this can be provided.
따라서, 이러한 본 발명을 적용하여, 보다 미세한 선폭을 가지몌 우수한 전기적 특성을 갖는 투명 전극 패턴을 양호하게 형성할 수 있으며, 이를 터치패널, 각종 표시 소자 또는 태양전지 등에 매우 바람직하게 적용할 수 있다.  Therefore, by applying the present invention, it is possible to form a transparent electrode pattern having a finer line width and excellent electrical properties with good, it can be applied to a touch panel, various display elements or solar cells very preferably.
【도면의 간단한 설명】  [Brief Description of Drawings]
도 1 은 일 구현예에 따른 투명 전극의 형성ᅳ 방법의 일 례를 각 공정 순서별로 간략화하여 나타낸 공정 순서도이다.  FIG. 1 is a process flowchart schematically illustrating an example of a method of forming a transparent electrode according to an embodiment, for each process sequence.
도 2 는 실시예 2 에서 표면 처리하기 전과, 표면 처리한 후 (포토레지스트 패턴까지 제거된 후)의 전자 현미경 사진을 나타내는 도면이다.  FIG. 2 is a view showing electron micrographs before and after surface treatment (after removing to a photoresist pattern) in Example 2. FIG.
【발명을 실시하기 위한 구체적인 내용】  [Specific contents to carry out invention]
발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다.  The invention is explained in more detail in the following examples. However, the following examples are merely to illustrate the invention, but the content of the present invention is not limited by the following examples.
[전극층의 형성】 [Formation of electrode layer]
전도성 고분자인 PEDOT:PSS[Poly(3,4-ethylenedioxythiophene) Polystyrene sulfonate, 고형분 1wt%]의 분산액과, 은 나노 와이에고형분 1wt%]의 분산액을 각각 IPA (이소프로필렌 알코올), MeOH (메탄올) 및 이 ISO (다이메틸설폭사이드)의 흔합 용매를 사용하여 제조하였다. 상기 전도성 고분자 분산액 및 은 나노 와이서 분산액을 1 : 1 의 중량비로 흔합하고, 이를 바 코터를 이용하여, 코팅액 두께 6.86 //m로 100 두께의 PET 기재 위에 코팅하였다. 이후, 120 °C/1 min 의 조건 하에 열풍 건조하여 투명 전극층을 형성하였다. 이러한 투명 전극층의 면 저항은 80 Q/sq으로 확인되었다. A dispersion of conductive polymer PEDOT: PSS [Poly (3,4-ethylenedioxythiophene) Polystyrene sulfonate, solids 1wt%], and a dispersion of silver nanowai solids 1wt%] were obtained by IPA (isopropylene alcohol), MeOH (methanol) and It manufactured using the mixed solvent of this ISO (dimethyl sulfoxide). The conductive polymer dispersion and silver nanowiser The dispersions were mixed at a weight ratio of 1: 1, which was coated on a 100-thick PET substrate with a coating liquid thickness of 6.86 // m using a bar coater. Thereafter, hot air was dried under the condition of 120 ° C./1 min to form a transparent electrode layer. The sheet resistance of this transparent electrode layer was found to be 80 Q / sq.
[실시예 1] Example 1
전극층 위에 보호층 코팅액을 형성하기 위해, 먼저, TEOS (테트라에틸옥시실란) 16.08 중량부, PTMS (페닐트리메록시실란) 4.02 중량부, 물 23.55 중량부, IPA (이소프로필 알코을) 54.95 중량부, 아세트산 1.4 중량부를 흔합하고, 70 °C에서 3 시간 동안 졸-겔 반웅시켜 폴리실록산계 중합체를 형성하였다. 이를 통해, 졸-겔 반웅액 100g 을 얻었다. 이때, 고형분은 7.8wt0/。이었다. 이를 희석제인 이소프로필 알코을을 이용하여, 무게비로 1 :4 희석하고 보호층 코팅액 500g을 제조하였다. 이때의 고형분은 1.56wt%였다. In order to form a protective coating liquid on the electrode layer, first, 16.08 parts by weight of TEOS (tetraethyloxysilane), 4.02 parts by weight of PTMS (phenyltrimethoxysilane), 23.55 parts by weight of water, 54.95 parts by weight of IPA (isopropyl alcohol), 1.4 parts by weight of acetic acid were mixed and sol-gel reacted at 70 ° C. for 3 hours to form a polysiloxane-based polymer. As a result, 100 g of a sol-gel reaction solution was obtained. In this case, the solid content was 7.8wt 0 /.. This was diluted 1: 4 by weight ratio using isopropyl alcohol as a diluent to prepare 500 g of a protective layer coating solution. Solid content at this time was 1.56 wt%.
이러한 보호충 코팅액을 전극층이 형성된 기재 위에 바 코터를 이용하여 11.43 /im 두께로 코팅한 다음, 120 °C/10min의 조건 하에 열풍 건조하였다. 이로서, 0.178um 두께로 보호층을 형성하였으며, 면 저항은 90 Q/sq로 확인되었다. This protective coating material was coated with a bar coater on a substrate on which the electrode layer was formed to a thickness of 11.43 / im, and then hot-air dried under the condition of 120 ° C / 10 min. As a result, a protective layer was formed to a thickness of 0.178 um, and the sheet resistance was found to be 90 Q / sq.
이후, 동진쎄미켐 포토레지스트 (Positive Type) SJ-631 (10cP, 고형분 23wt%)를 상기 형성된 보호층 상에 바 코팅을 이용하여 도포하고, 120°C 온도에서 1 분간 건조하여 약 2.5 βνΆ 두께의 포토레지스트충을 형성하고, 이에 대해 SUSS Microtec MA-6 노광 장비로 50mJ 노광 후, 동진쎄미켐의 현상액 DPD-200 을 이용하여 상온에서 25 초간 현상하여 포토레지스트 패턴을 형성하였다. Then, Dongjin Semichem photoresist (Positive Type) SJ-631 (10cP, solid content 23wt%) was applied to the formed protective layer using a bar coating, dried for 1 minute at 120 ° C temperature of about 2.5 βνΆ thickness photo The resist was formed, and after the 50mJ exposure with the SUSS Microtec MA-6 exposure apparatus, development was carried out at room temperature for 25 seconds using a developer DPD-200 of Dongjin Semichem to form a photoresist pattern.
그리고 나서, 차아염소산염 (Hypochroite Salt, 12%)를 증류수에 희석하여, Then, dilute hypochlorite (Hypochroite Salt, 12%) in distilled water,
3%의 농도의 차아염소산염 수용액을 제조한 후, 상기 포토레지스트 패턴에 의해 개방된 영역의 보호층 및 투명 전극층을 표면 처리하였다. After preparing an aqueous hypochlorite solution at a concentration of 3%, the protective layer and the transparent electrode layer in the area opened by the photoresist pattern were surface treated.
[실시예 2】 Example 2
차아염소산염 (Hypochroite Salt, 12%)과 아세트산을 함량으로 1 :1 로 혼합하여, 6%의 흔합물을 제조하였다. 이때의 성상은 산성으로 차아염소산의 형태를 취하는 것으로 확인되었다. 이를 사용하여 상기 포토레지스트 패턴에 의해 개방된 영역의 보호층 및 투명 전극층을 표면 처리한 것을 제외하고는, 실시예Hypochlorite (12%) and acetic acid were mixed at a content of 1: 1 to prepare 6% of the mixture. The appearance at this time was found to be acidic and take the form of hypochlorous acid. By using the photoresist pattern Example, except that the protective layer and the transparent electrode layer of the open area is surface-treated
1과 동일한 방법으로 투명 전극 적층체 및 패턴을 형성하였다. [실시예 3] In the same manner as in 1, a transparent electrode laminate and a pattern were formed. Example 3
수분산성 우레탄계 중합체인 애경화학 PED-2102(고형분 30wt%)를 희석제인 이소프로필 알코을을 이용하여, 무게비 1 :9 로 희석하고 보호층 코팅액 500g을 제조하였다. 이때의 고형분은 3wt%였다.  Aqueous chemical PED-2102 (solid content 30wt%), which is a water-dispersible urethane polymer, was diluted in a weight ratio of 1: 9 using isopropyl alcohol as a diluent to prepare 500 g of a protective layer coating solution. Solid content at this time was 3 wt%.
이러한 보호층 코팅액을 전극층이 형성된 가재 위에 바 코터를 이용하여 11 .43 두께로 코팅한 다음, 120 °C/10min의 조건 하에 열풍 건조하였다. 이로서 , 0.34um 두께로 보호층을 형성하였으며, 면 저항은 Ι Ι Ο Ω/sq 로 확인되었다. 이후 공정을 실시예 2 와 동일하게 진행하여, 포토레지스트 패턴을 형성하고, 차아염소산염 수용액으로 포토레지스트 패턴에 의해 개방된 영역의 보호층 및 투명 전극층을 표면 처리하였다. [실시예 4 ] The protective layer coating solution was coated on the crawfish on which the electrode layer was formed to a thickness of 11.43 using a bar coater, and then hot air dried under a condition of 120 ° C./10 min. As a result, a protective layer was formed to a thickness of 0.34 um, and the surface resistance was confirmed as ΙΙΟ Ω / sq. Thereafter, the process was performed in the same manner as in Example 2 to form a photoresist pattern, and the protective layer and the transparent electrode layer in the area opened by the photoresist pattern were treated with an aqueous hypochlorite solution. Example 4
수분산성 아크릴 에스테르계 중합체인 타카마츠 오일앤 팻社 (Takamatsh oil& fat co. LTD) PESRESIN A-645GH (고형분 30wt%)를 희석제인 이소프로필 알코올을 이용하여, 무게비 1 :9 로 희석하고 보호층 코팅액 500g 을 제조하였다. 이때의 고형분은 3wt%였다.  Takamatsh oil & fat co., Ltd., a water-dispersible acrylic ester polymer, was diluted to 1: 9 by weight ratio of PESRESIN A-645GH (solid content 30wt%) using isopropyl alcohol, a diluent, and a protective layer coating solution. 500 g was prepared. Solid content at this time was 3 wt%.
이러한 보호층 코팅액을 전극층이 형성된 기재 위에 바 코터를 이용하여 This protective layer coating liquid is applied to the substrate on which the electrode layer is formed using a bar coater
11 .43 두께로 코팅한 다음, 120 °C/10min의 조건 하에 열풍 건조하였다. 이로서, 0.33um 두께로 보호층을 형성하였으며, 면 저항은 Ι Ι Ο Ω/sq 로 확인되었다. 이후 공정을 실시예 2 와 동일하게 진행하여, 포토레지스트 패턴을 형성하고, 차아염소산염 수용액으로 포토레지스트 패턴에 의해 개방된 영역의 보호층 및 투명 전극층을 표면 처리하였다. 먼저, 상기 실시예 2 에서, 차아염소산을 사용한 표면 처리하기 전과, 표면 처리한 후 (포토레지스트 패턴까지 제거된 후)의 전자 현미경 사진을 도 2 에 각각 도시하였다. 또한, 실시예 1 , 2, 3 및 4 의 투명 전극 패턴의 특성을 다음의 기준 하에 평가하여, 그 평가 결과를 하기 표 1에 나타내었다. It was coated with a thickness of 11 .43 and then hot air dried under a condition of 120 ° C./10 min. As a result, a protective layer was formed to a thickness of 0.33 um, and the surface resistance was confirmed as ΙΙΟ Ω / sq. Thereafter, the process was performed in the same manner as in Example 2 to form a photoresist pattern, and the protective layer and the transparent electrode layer of the area opened by the photoresist pattern were treated with an aqueous hypochlorite solution. First, in Example 2, electron micrographs before and after the surface treatment using hypochlorous acid and after the surface treatment (after removing the photoresist pattern) are respectively shown in FIG. 2. In addition, the characteristics of the transparent electrode patterns of Examples 1, 2, 3, and 4 were evaluated under the following criteria, and the evaluation results are shown in Table 1 below.
(1 ) 표면 특성 평가: 하기 기준에 의해, 표면 처리 전후에 보호층 및 투명 전극층의 화학적 변화가 있는지 여부를 평가하였다.  (1) Surface property evaluation: Based on the following criteria, it was evaluated whether or not there were chemical changes in the protective layer and the transparent electrode layer before and after the surface treatment.
0: 색차계에 의해서, 전후 변화량이 Δ Eab <3, Haze<0.5  0: by the color difference meter, the amount of front and rear change is ΔEab <3, Haze <0.5
Δ : 색차계에 의해서, 전후 변화량이 "0" 대비 하나만 만족 (즉, A Eab <3 또는 Haze<0.5 중 하나만 만족).  Δ: The color difference meter satisfies only one change amount before and after "0" (that is, only one of A Eab <3 or Haze <0.5).
X: 색차계에 의해서, 전후 변화량이 Δ Eab >3, Haze>0.5  X : The amount of front and rear change by the color difference meter is ΔEab> 3, Haze> 0.5
(2) 투명 전극 표면의 결함 발생 평가: 하기 기준에 의해, 표면 처리 후에 보호층 및 투명 전극층의 표면에 결함 발생 정도를 평가하였다. ' ᄋ: line 과 Space 의 투명 전극 패턴에 대해 관찰 모수 100% 이물 등 결점이 없을 때; . (2) Evaluation of defect occurrence on the surface of the transparent electrode: According to the following criteria, the degree of defect occurrence was evaluated on the surfaces of the protective layer and the transparent electrode layer after the surface treatment. ' ᄋ: When there are no defects such as 100% foreign matters on the transparent electrode pattern of line and space; .
Δ : line 과 Space 의 투명 전극 패턴에 대해 관찰 모수 80%이상 이물 등 결점이 없을 때;  Δ: when there are no defects such as foreign matters over 80% of the observed parameters for the transparent electrode patterns of the line and the space;
X: line 과 Space 의 투명 전극 패턴에 대해 관찰 모수 60%이상 이물 등 결점이 없을 때  X : Observation on transparent electrode patterns of line and space.
(3) 단선 여부 평가: 하기 기준에 의해, 표면 처리 후에, 표면 처리된 영역과, 미처리된 영역 간의 투명 전극층의 전기적 단선 여부를 평가하였다.  (3) Evaluation of disconnection: On the basis of the following criteria, it was evaluated whether electrical disconnection of the transparent electrode layer between the surface-treated region and the untreated region was performed after the surface treatment.
0: line 과 Space 의 투명 전극 패턴에 대해 측정 모수 100% 전기적 단선일 경우;  0: measurement parameter 100% electrical disconnection for transparent electrode patterns of line and space;
Δ : line 과 Space 의 투명 전극 패턴에 대해 측장 모수 80%이상 전기적 단선일 경우;  Δ: electrical disconnection of more than 80% of the length parameter for the transparent electrode patterns of line and space;
X: line 과 Space 의 투명 전극 패턴에 대해 측정 모수 60%이상 전기적 단선일 경우  X : When the measurement parameter is 60% or more for the transparent electrode pattern of line and space
[표 1] TABLE 1
실시예 1 실시예 2 실시예 3 실시예 4 표면 특성 평가 Δ 0 0 0 결함 발생 평가 0 0 0 0 단선 여부 평가 0 0 0 O 도 2 및 상기 표 1을 참고하면, 실시예 1 및 2에 의해, 표면 처리돤 영역 및 미처리된 영역 간에 전기적으로 단선된 양호한 투명 전극 패턴이 형성되었음을 확인하였다. 또한, 실시예 3 및 4 를 참고하면, 우레탄계 중합체 또는 아크릴계 중합체로 보호층을 형성한 경우에도, 실시예 1 및 2 와 상웅하게 양호한 투명 전극 패턴을 형성할 수 있음을 확인하였다. Example 1 Example 2 Example 3 Example 4 Surface property evaluation Δ 0 0 0 Defect generation evaluation 0 0 0 0 Open circuit evaluation 0 0 0 O Referring to FIG. 2 and Table 1, it was confirmed by Examples 1 and 2 that a good transparent electrode pattern electrically disconnected between the surface treated region and the untreated region was formed. In addition, referring to Examples 3 and 4, even when the protective layer is formed of a urethane-based polymer or an acrylic polymer, it was confirmed that a good transparent electrode pattern can be formed, similarly to Examples 1 and 2.
또한, 이러한 투명 전극 패턴의 형성은, 표면 처리된 영역에서 투명 전극층 '이 산화 (화학적 변화)되어 비도전화된 현상에 기인하였음을 확인하였다. 그리고, 상기 표면 처리된 영역에서도 상기 보호층 및 투명 전극층이 물리적 손상 없이 실질적으로 그대로 그 두께를 유지하고 있음을 확인하였고, 전체적으로 보호층 및 투명 전극층에 결함 등이 거의 발생하지 않아 양호한 표면 특성 등을 유지하고 있음을 확인하였다. In addition, it was confirmed that the formation of such a transparent electrode pattern was caused by a phenomenon in which the transparent electrode layer ' was oxidized (chemically changed) and unconverted in the surface treated region. In addition, it was confirmed that the protective layer and the transparent electrode layer maintained their thickness substantially without physical damage even in the surface treated region, and almost no defects occurred in the protective layer and the transparent electrode layer as a whole, thereby providing good surface characteristics. It was confirmed that it was maintained.

Claims

【특허청구범위】 [Patent Claims]
【청구항 1】  [Claim 1]
전도성 고분자, 전도성 탄소계 소재, 금속 나노 구조체 및 전도성 금속 산화물로 이루어진 군에서 선택된 1 종 이상의 도전성 물질을 포함하는 투명 전극층을 기판 상에 형성하는 단계;  Forming a transparent electrode layer on the substrate, the transparent electrode layer comprising at least one conductive material selected from the group consisting of a conductive polymer, a conductive carbonaceous material, a metal nanostructure, and a conductive metal oxide;
폴리실록산계 중합체, 아크릴계 중합체 및 우레탄계 중합체로 이루어진 군에서 선택된 1 종 이상을 포함하는 보호층을 상기 투명 전극층 상에 형성하는 단계;  Forming a protective layer on the transparent electrode layer, the protective layer including at least one selected from the group consisting of a polysiloxane polymer, an acrylic polymer, and a urethane polymer;
상기 보호층 상에 포토레지스트 패턴을 형성하는 단계; 및' Forming a photoresist pattern on the protective layer; And '
상기 포토레지스트 패턴에 의해 개방된 영역의 보호층 및 투명 전극층을 산화제로 표면 처리하여 상기 투명 전극층을 비도전화시키는 단계를 포함하는 투명 전극의 형성 방법.  And surface-treating the protective layer and the transparent electrode layer in the area opened by the photoresist pattern with an oxidant to thereby non-convert the transparent electrode layer.
【청구항 2】 [Claim 2]
제 1 항에 있어서, 상기 도전성 물질은 폴리아닐린계 고분자, 폴리피롤계 고분자, 폴리티오펜계 '고분자, 탄소 나노 튜브, 그래핀, 은 나노 와이어 (AgNw), 구리 나노 입자, 산화 인듐 주석 (Indium Tin Oxide) 및 산화 안티몬 주석 (Antimony Tin oxide)으로 이루어진 군에서 선택된 1종 이상인 투명 전극의 형성 방법. The method of claim 1, wherein the conductive material is a polyaniline-based polymers, polypyrrole-based polymers, polythiophene-based, polymer, carbon nanotubes, graphene, the nanowire (AgNw), copper nanoparticles, indium tin oxide (Indium Tin Oxide And at least one transparent electrode selected from the group consisting of antimony tin oxide.
【청구항 3】 [Claim 3]
제 1 항에 있어서, 상기 폴리실록산계 중합체는 테트라에틸옥시실란 60 내지 90 중량 %; 및 비닐트리에톡시실란, 비닐트리메특시실란, 비닐트리스 ( β - 메톡시에톡시)실란, 메타크릴옥시프로필트리메록시실란, 13 -(3, The method of claim 1, wherein the polysiloxane polymer is 60 to 90% by weight of tetraethyloxysilane; And vinyltriethoxysilane, vinyltrimethoxysilane, vinyltris (β-methoxyethoxy) silane, methacryloxypropyltrimethoxysilane, 13- (3,
4- 에폭시시클로핵실)에틸트리메록시실란, Υ -글리시드옥시프로필트리메톡시실란, - 머캅토프로필트리메록시실란, Υ -아미노프로필트리에톡시실란 Ν-β - (아미노에틸) - γ -아미노프로필트리메록시실란, Υ -유레이드프로필트리에록시실란, 페닐트리에톡시실란, 메틸트리에톡시실란, 메틸트리메록시실란, 폴리에틸렌옥사이드 변성 실란 단량체, 폴리메틸에톡시실록산 및 핵사메틸디시라진으로 이루어진 군에서 선택된 1 종 이상의 화합물 10 내지 40중량0 /0; 간의 공중합체를 포함하는 투명 전극의 형성 방법. 【청구항 4】 4-epoxycyclonucleosilane) ethyltrimethoxysilane, Υ-glycidoxypropyltrimethoxysilane, -mercaptopropyltrimethoxysilane, Υ-aminopropyltriethoxysilane Ν-β-(aminoethyl) -Aminopropyltrimethoxysilane, Υ-euraidpropyltriethoxysilane, phenyltriethoxysilane, methyltriethoxysilane, methyltrimethoxysilane, polyethylene oxide modified silane monomer, polymethylethoxysiloxane and nuxamethyl DC l of at least one member selected from the group consisting of compounds 10 to 40 parts by weight 0/0; A method of forming a transparent electrode comprising a copolymer of liver. [Claim 4]
제 1 항에 있어서, 상기 투명 전극층은 0.03 내지 0.5 ; win의 두께 및 80Q/sq 내지 400 Q/sq의 면저항을 갖는 투명 전극의 형성 방법 .  The method for forming a transparent electrode according to claim 1, wherein the transparent electrode layer has a thickness of 0.03 to 0.5; win and a sheet resistance of 80 Q / sq to 400 Q / sq.
【청구항 5] [Claim 5]
제 1 항에 있어서, 상기 보호층은 0.05 내지 0.40 卿의 두께를 갖는, 투명 전극의 형성 방법.  The method of claim 1, wherein the protective layer has a thickness of 0.05 to 0.40 mm 3.
【청구항 6】 [Claim 6]
제 1 항에 있어서, 상기 산화제는 차아염소산 또는 이의 염, 중크롬산 또는 이의 염, 과망간산 또는 이의 염, 과산화수소, 질산, 염산 및 염화구리 및 산의 흔합물로 이루어진 군에서 선택된 1 종 이상을 포함하는 투명 전극의 형성 방법.  The transparent oxidizing agent of claim 1, wherein the oxidizing agent comprises at least one selected from the group consisting of hypochlorous acid or salts thereof, dichromic acid or salts thereof, permanganic acid or salts thereof, hydrogen peroxide, nitric acid, hydrochloric acid, and copper chloride and a mixture of acids. Method of forming the electrode.
【청구항 7】 [Claim 7]
제 1 항에 있어서, 상기 비도전화된 영역의 투명 전극층과, 나머지 영역의 투명 전극층은 복수의 라인이 교대 배열된 패턴 형태를 갖는 투명 전극의 형성 방법.  The method of claim 1, wherein the transparent electrode layer of the non-conductive region and the transparent electrode layer of the remaining region have a pattern in which a plurality of lines are alternately arranged.
【청구항 8】 [Claim 8]
제 1 항에 있어서, 상기 산화제 표면 처리 단계 후에, 상기 포토레지스트 패턴을 제거하는 단계를 더 포함하는 투명 전극의 형성 방법.  The method of claim 1, further comprising removing the photoresist pattern after the oxidant surface treatment step.
【청구항 9】 [Claim 9]
기판;  Board;
전도성 고분자, 전도성 탄소계 소재, 금속 나노 구조체 및 전도성 금속 산화물로 이루어진 군에서 선택된 1 종 이상의 도전성 물질을 포함하고, 기판 상에 형성되어 있는 투명 전극층; 및 폴리실록산계 중합체, 아크릴계 중합체 및 우레탄계 중합체로 이루어진 군에서 선택된 1 종 이상을 포함하고, 상기 투명 전극층 상에 형성되어 있는 보호층을 포함하고, A transparent electrode layer including at least one conductive material selected from the group consisting of a conductive polymer, a conductive carbon-based material, a metal nanostructure, and a conductive metal oxide, and formed on a substrate; And At least one selected from the group consisting of polysiloxane polymers, acrylic polymers and urethane polymers, and includes a protective layer formed on the transparent electrode layer,
상기 투명 전극층의 제 1 영역은 비도전화되어 있고, 나머지 제 2 영역은 도전성을 유지하여 투명 전극 패턴을 정의하고 있는 투명 전극 적층체.  A transparent electrode laminate, in which the first region of the transparent electrode layer is unconducted, and the remaining second region maintains conductivity to define a transparent electrode pattern.
【청구항 10】 [Claim 10]
제 1 항에 있어서, 상기 제 1 영역의 비도전화된 투명 전극층은 150i /sq 내지 280 £l/sq의 면 저항을 갖는 투명 전극 적층체.  The transparent electrode stack of claim 1, wherein the non-conducted transparent electrode layer in the first region has a sheet resistance of 150i / sq to 280 £ l / sq.
【청구항 11】 [Claim 11]
제 1 항에 있어서, 상기 제 1 영역 및 제 2 영역의 투명 전극층은 복수의 라인이 교대 배열된 패턴 형태를 갖는'투명 전극 적층체. The method of claim 1 wherein "a transparent electrode stacked body having the first area and the transparent electrode layer pattern forms a plurality of lines alternating arrangement of the second area.
PCT/KR2015/008059 2014-08-13 2015-07-31 Method for forming transparent electrode and transparent electrode laminate WO2016024743A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580043221.XA CN106575552A (en) 2014-08-13 2015-07-31 Method for forming transparent electrode and transparent electrode laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140105310A KR102243747B1 (en) 2014-08-13 2014-08-13 Manufacturing method of transparent electrod and transparent electrod laminate
KR10-2014-0105310 2014-08-13

Publications (1)

Publication Number Publication Date
WO2016024743A1 true WO2016024743A1 (en) 2016-02-18

Family

ID=55304328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/008059 WO2016024743A1 (en) 2014-08-13 2015-07-31 Method for forming transparent electrode and transparent electrode laminate

Country Status (4)

Country Link
KR (1) KR102243747B1 (en)
CN (1) CN106575552A (en)
TW (1) TWI683039B (en)
WO (1) WO2016024743A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109312191A (en) * 2016-06-29 2019-02-05 霍尼韦尔国际公司 The peelable silicon oxide-containing alkane coating of low temperature SC1

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108962504A (en) * 2018-08-06 2018-12-07 深圳市希诺威光电科技有限公司 A kind of preparation method and patterned transparent electrode of patterned transparent electrode
WO2021010637A1 (en) * 2019-07-12 2021-01-21 주식회사 엔씨티 Apparatus for detecting hazardous chemical substance

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130030494A (en) * 2011-09-19 2013-03-27 삼성전기주식회사 Plating pattern and method of manufacturing the same
KR20130068908A (en) * 2011-12-16 2013-06-26 삼성전기주식회사 Transparent panel and manufacturing method thereof
KR20130086461A (en) * 2012-01-25 2013-08-02 삼성전기주식회사 Electrode forming method
KR101321097B1 (en) * 2012-02-27 2013-10-23 경북대학교 산학협력단 Carbon nano tube transparent electrode, method for manufacturing the same, and coating composition for carbon nano tube transparent electrode
US20130280660A1 (en) * 2012-04-20 2013-10-24 Far Eastern New Century Corporation Method of pattering nonmetal conductive layer

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0213A (en) * 1987-10-13 1990-01-05 Hitachi Chem Co Ltd Composition for forming protective film for transparent electrode of liquid crystal display element
CN101292362B (en) * 2005-08-12 2011-06-08 凯博瑞奥斯技术公司 Transparent conductors and its preparation method, lamination structure and display device
CN100476531C (en) * 2007-11-02 2009-04-08 友达光电股份有限公司 Touch control type planar display and producing method thereof
JP4756712B2 (en) * 2008-07-07 2011-08-24 シチズン電子株式会社 Transparent electrode, method for forming the same, and display device using the same
CN101908478B (en) * 2009-06-05 2012-01-18 华映视讯(吴江)有限公司 Manufacturing method of copper electrode structure and application thereof
KR101991676B1 (en) * 2012-03-08 2019-06-21 주식회사 동진쎄미켐 Conductive ink composition for forming transparent electrode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130030494A (en) * 2011-09-19 2013-03-27 삼성전기주식회사 Plating pattern and method of manufacturing the same
KR20130068908A (en) * 2011-12-16 2013-06-26 삼성전기주식회사 Transparent panel and manufacturing method thereof
KR20130086461A (en) * 2012-01-25 2013-08-02 삼성전기주식회사 Electrode forming method
KR101321097B1 (en) * 2012-02-27 2013-10-23 경북대학교 산학협력단 Carbon nano tube transparent electrode, method for manufacturing the same, and coating composition for carbon nano tube transparent electrode
US20130280660A1 (en) * 2012-04-20 2013-10-24 Far Eastern New Century Corporation Method of pattering nonmetal conductive layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109312191A (en) * 2016-06-29 2019-02-05 霍尼韦尔国际公司 The peelable silicon oxide-containing alkane coating of low temperature SC1

Also Published As

Publication number Publication date
TW201623694A (en) 2016-07-01
KR20160020230A (en) 2016-02-23
KR102243747B1 (en) 2021-04-23
CN106575552A (en) 2017-04-19
TWI683039B (en) 2020-01-21

Similar Documents

Publication Publication Date Title
US20220154025A1 (en) Method for forming patterned electrically conductive transparent coating including fused metal nanowires
KR102056146B1 (en) Metal nanowire inks for the formation of transparent conductive films with fused networks
JP5868771B2 (en) Conductive member, manufacturing method thereof, touch panel and solar cell
TWI504702B (en) Electroconductive member, method for manufacturing the same, touch panel, solar cell and composition containing metal nanowire
US20140034360A1 (en) Conductive member, production method of the same, touch panel, and solar cell
WO2015056609A1 (en) Composition for forming transparent conductive film, transparent conductor, and production method for transparent conductor
KR102287289B1 (en) TRANSPARENT ElECTROD COMPLEX
TW200831644A (en) Etching solution for electrically-conductive polymer use and method of patterning conductive polymer
KR20130053403A (en) Etch patterning of nanostructure transparent conductors
WO2012147815A1 (en) Electroconductive member, method for manufacturing same, touch panel, and solar cell
JP5646671B2 (en) Conductive member, manufacturing method thereof, touch panel, and solar cell
WO2016024743A1 (en) Method for forming transparent electrode and transparent electrode laminate
US20220132672A1 (en) Silver-based transparent conductive layers interfaced with copper traces and methods for forming the structures
JP5080180B2 (en) Etching solution for conductive polymer and method for patterning conductive polymer
JP2015173010A (en) Method of producing transparent conductive pattern and transparent conductive sheet
JP2012064498A (en) Transparent electrode substrate
CN107799198A (en) Conductive composition and conductive laminate using same
KR101367729B1 (en) Etchant for conductive polymer membrane and method for patterning conductive polymer membrane using the same
CN115280239A (en) Transfer film, photosensitive material, pattern forming method, method for manufacturing circuit board, and method for manufacturing touch panel
JP2013200998A (en) Method for manufacturing conductive material, conductive material manufactured thereby, touch panel with the same, and display device with touch panel function

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15831715

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15831715

Country of ref document: EP

Kind code of ref document: A1