WO2016024060A1 - Module de turbomachine - Google Patents

Module de turbomachine Download PDF

Info

Publication number
WO2016024060A1
WO2016024060A1 PCT/FR2015/052151 FR2015052151W WO2016024060A1 WO 2016024060 A1 WO2016024060 A1 WO 2016024060A1 FR 2015052151 W FR2015052151 W FR 2015052151W WO 2016024060 A1 WO2016024060 A1 WO 2016024060A1
Authority
WO
WIPO (PCT)
Prior art keywords
sectors
foil
ring
hooks
walls
Prior art date
Application number
PCT/FR2015/052151
Other languages
English (en)
Inventor
Cyril LOISEAU
Alain Dominique Gendraud
Sébastien Jean Laurent Prestel
Original Assignee
Snecma
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snecma filed Critical Snecma
Priority to US15/501,161 priority Critical patent/US10344610B2/en
Priority to BR112017002041-6A priority patent/BR112017002041B1/pt
Priority to CN201580042433.6A priority patent/CN106574511B/zh
Priority to CA2956882A priority patent/CA2956882C/fr
Priority to RU2017103314A priority patent/RU2700847C2/ru
Priority to JP2017505608A priority patent/JP6625611B2/ja
Priority to EP15757535.8A priority patent/EP3180497B1/fr
Publication of WO2016024060A1 publication Critical patent/WO2016024060A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/005Sealing means between non relatively rotating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/246Fastening of diaphragms or stator-rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/11Shroud seal segments

Definitions

  • the present invention relates to a turbomachine module, which may be a turbine or be part of a turbine for example.
  • the state of the art includes, in particular, the documents WO-A1 -98 / 522,228, EP-A2-2,612,998 and EP-A2-2,508,715.
  • a turbomachine turbine comprises one or more stages each comprising a distributor formed of an annular row of stationary vanes carried by a casing of the turbine, and a rotor wheel rotatably mounted generally downstream of the distributor.
  • the wheel is surrounded by a sealing ring which is sectored and formed by sectors which are arranged circumferentially end to end and which are hooked on the casing of the turbine.
  • Each ring sector generally comprises a circumferentially oriented metal plate which carries a block of abradable material attached to the inner surface of the plate.
  • This block is for example of the honeycomb type and is intended to wear by friction on external annular wipers of the vanes of the wheel, to form a labyrinth seal and minimize the radial clearances between the wheel and the ring areas.
  • Each ring sector comprises at its upstream and downstream ends hooking means on the housing.
  • Each ring sector may comprise at its upstream end a circumferential hook which defines an annular groove in which is engaged, on the one hand, an annular rail of the housing, and on the other hand, a downstream circumferential hook of the distributor located upstream.
  • the downstream circumferential hook of the distributor is held tight radially against the casing rail by means of the upstream circumferential hook of the ring, which comprises two coaxial annular walls, extending one inside the other, and which extend respectively inside the distributor hook and outside the casing rail. This allows to participate in the radial maintenance of the distributor vis-à-vis the housing.
  • the circumferential or tangential maintenance of the distributor can be provided by means of an anti-rotation pin which is carried by the housing and is engaged in a notch of the distributor. Its downstream axial retention is generally ensured by a split annular ring which is mounted in an annular groove of the aforementioned casing rail, which opens radially inwards.
  • the downstream circumferential hook of the distributor is in axial support downstream on the rod which is held radially in the groove of the crankcase rail by the inner walls of the hooks of the ring sectors, which extend radially inside the ring.
  • the axial stop function of this rod can be provided directly by the casing rail.
  • This foil is sectorized and comprises an annular row of foil sectors arranged circumferentially end to end. It has a generally U-shaped or C-shaped cross section and comprises two coaxial annular walls, respectively internal and external, connected together by a median bottom wall.
  • the opening of the hooks of the ring sectors is oriented axially upstream and receives the foil sectors which are configured so that their walls lining those of the hooks of the ring sectors.
  • the inner walls of the foil sectors are intended to extend on the radially outer faces of the inner walls of the hooks of the ring sectors, the outer walls of the foil sectors are intended to extend on the radially inner faces of the outer walls.
  • hooks of the ring sectors, and the bottom walls of the foil sectors are intended to extend on radial faces upstream of the bottom walls of the hooks of the ring sectors.
  • the inner walls of the foil sectors are interposed between the inner walls of the hooks of the ring sectors and the hooks of the distributor, or even the annular ring, the outer walls.
  • foil sectors are interposed between the outer walls of the hooks of the ring sectors and the sump rail, and the bottom walls of the foil sectors are interposed between the bottom walls of the hooks of the ring sectors and the rail of the ring sectors. casing.
  • the foil sectors are made of sheet metal and make it possible to avoid direct contact between the hooks of the ring sectors and the casing rail, which makes it possible on the one hand to protect the latter against frictional wear and other to protect it thermally from the ring which can be very hot in operation because of its proximity to the combustion gases flowing in the turbine vein.
  • Due to the sectorization of the ring the longitudinal edges of the circumferential ends of two adjacent sectors of the ring are facing each other and are separated from each other by a circumferential clearance through which hot gases from the vein can pass. These hot gases tend to heat the housing which is harmful for several reasons. One reason is that heating the casing would cause expansion and deformation of the latter which could alter the radial clearances between the impeller and the ring, and thus reduce the performance of the turbine.
  • a known solution to this problem is to insert sealing tabs between the ring sectors, which are housed in grooves of the aforementioned longitudinal edges its ring sectors.
  • the longitudinal edges of the circumferential ends of two adjacent sectors of the foil are opposite one another and are separated from each other by a circumferential clearance.
  • the circumferential gaps between the foil sectors are aligned axially with the circumferential gaps between the ring sectors, and in particular with the circumferential gaps between the hooks of the ring sectors at which it is not possible to mount tabs of the aforementioned type for reasons of space in particular. Hot gases can thus pass through the circumferential gaps between the hooks of the ring sectors and between the foil sectors and heat the casing rail, which may reduce its service life.
  • the present invention aims in particular to provide a simple, effective and economical solution to this need by improving the thermal protection of the crankcase rail in the aforementioned case.
  • the present invention thus proposes a turbomachine module, comprising a mobile wheel rotatably mounted inside a housing of the module and surrounded by a sectorized sealing ring which comprises an annular row of ring sectors arranged so that that circumferential end edges of two adjacent sectors are substantially facing each other, each ring sector having at least one circumferential hook which is configured to cooperate with an annular fastening rail of the housing, the module further comprising an annular sectorized protection foil which is interposed between the hooks of the ring sectors and the crankcase rail and which comprises an annular array of sectors of foil arranged so that circumferential end edges of two adjacent sectors are substantially opposite one another, characterized in that the number of ring sectors is equal to the number of foil sectors and the foil sectors comprise rotational positioning and / or locking means configured so that the edges of the circumferential ends of the foil sectors are not aligned with the edges of the circumferential ends of the ring sectors along the longitudinal axis. of the module.
  • the invention makes it possible to better protect the casing rail because the gases that could pass between the edges of the circumferential ends of the ring sectors would then be blocked by the foil sectors (because of their angular offset with respect to ring sectors) and would not reach the crankcase rail.
  • the module according to the invention can comprise one or more of the following characteristics, taken separately or in combination with each other:
  • the number of ring sectors is equal to the number of sectors of foil
  • the ring sectors are arranged in staggered relation to the foil sectors;
  • the hooks of the ring sectors have a generally U-shaped or C-shaped cross section whose opening is oriented axially, and each comprise a bottom medial wall which connects two coaxial annular walls respectively radially internal and external;
  • the foil sectors have a generally U-shaped or C-shaped cross section whose opening is oriented axially, and each comprise a bottom medial wall which connects two respectively radially internal and external coaxial annular walls, the foil sectors being engaged. in the openings of the hooks of the ring sectors and mounted on the casing rail, so that the inner walls of the foil sectors are interposed between an inner face of the casing rail and the inner walls of the hooks of the casing sectors.
  • the bottom walls of the foil sectors are interposed between a substantially radial face of the casing rail and the bottom walls of the hooks of the ring sectors, and that the outer walls of the foil sectors are interposed between an outer face crankcase rail and the outer walls of the hooks of the ring sectors;
  • the inner walls of the hooks of the ring sectors have a radius of curvature different from that of the casing rail so as to be mounted in radial prestressing on the rail
  • the inner walls of the foil sectors comprise radial notches which open on free circumferential edges of the foil sectors and which are substantially axially aligned with the edges of the circumferential ends of the hooks of the ring sectors; these notches form positioning means in the sense of the invention;
  • said notches each have a general V-shape and are substantially formed in the middle of the internal walls of the foil sectors;
  • the inner or outer walls of the hooks of the ring sectors comprise radial notches substantially in their middle, and in which the inner or outer walls of the foil sectors comprise either radial end notches which are substantially radially aligned with the aforementioned notches of the hooks of the ring sectors, or foldable radial tabs which are configured to be folded down and engaged in the aforementioned notches of the hooks of the ring sectors; these notches and / or tabs form locking means in rotation (about the longitudinal axis of the module) within the meaning of the invention; and
  • the module is a turbine.
  • the present invention also relates to a turbomachine, comprising at least one module as described above.
  • the present invention finally relates to an annular sectorized protection foil for a module as described above, comprising an annular row of foil sectors, in which each foil sector has a generally U-shaped or C-shaped cross-section, of which aperture is oriented axially, and comprises a median bottom wall which connects two respectively radially inner and outer coaxial annular walls, said inner walls comprising radial notches substantially in their middle, which open on free circumferential edges of the sectors.
  • FIG. 1 is a partial schematic half-view in axial section of a turbomachine turbine
  • FIG. 2 is a schematic view on a larger scale of a portion of Figure 1 and shows a sealing ring and an annular foil of the turbine;
  • FIG. 3 is a partial schematic view from above of the sealing ring and the annular foil of a turbine according to the prior art
  • FIG. 4 is a partial schematic view from above of the sealing ring and the annular foil of a turbine according to the invention
  • FIG. 5 is a schematic sectional view along the line V-V of Figure 2;
  • FIGS. 6 and 7 are schematic perspective views of a ring sector and a foil sector, according to one embodiment of the invention.
  • FIG. 8 is a very schematic partial and bottom view of the foil of FIGS. 6 and 7;
  • FIGS 9 and 1 0 are schematic views, respectively in perspective and in axial section, of an alternative embodiment of a ring sector and a foil sector.
  • FIGS 1 and 2 show a turbine 1 0, here low-pressure, a turbomachine such as a turbojet or an airplane turboprop, this turbine having several stages (of which only one is here shown) each comprising a distributor 12 formed of an annular row of vanes carried by a housing 14 of the turbine, and a impeller 1 6 mounted downstream of the distributor 1 2 and rotating in a ring 1 8 attached to the housing 14.
  • a turbomachine such as a turbojet or an airplane turboprop
  • this turbine having several stages (of which only one is here shown) each comprising a distributor 12 formed of an annular row of vanes carried by a housing 14 of the turbine, and a impeller 1 6 mounted downstream of the distributor 1 2 and rotating in a ring 1 8 attached to the housing 14.
  • the ring 18 is sectored and formed of several sectors which are carried circumferentially end to end by the casing 14 of the turbine.
  • Each ring sector 18 comprises a frustoconical wall 20 and a block 22 of abradable material fixed by soldering and / or welding on the radially inner surface of the wall 20, this block 22 being of the honeycomb type and intended for wear by friction on external annular wipers 24 of the blades of the wheel 1 6 to minimize the radial clearances between the wheel and the ring sectors 1 8.
  • Each ring sector 18 comprises, at its upstream end, a circumferential hook 32 with a C or U section whose opening opens upstream and which is engaged axially downstream on a cylindrical hook 34 facing downstream of the distributor 12 located upstream of the ring sectors 18, on the one hand, and on a cylindrical rail 36 of the casing 14 on which is hooked this distributor, on the other hand.
  • each ring sector 18 comprises two circumferential walls 38 and 40 extending upstream, radially outer and radially inner respectively, which are interconnected at their upstream ends by a substantially radially medial bottom wall 42 , and which respectively extend radially outside and inside the rail 36, the inner wall 40 holding the hook 34 of the distributor radially against the rail 36.
  • the circumferential maintenance of the distributor 12 is provided by means of an anti-rotation pin 44 which is carried by the housing 14 and is engaged in a notch of the distributor 12. Its downstream axial retention is ensured by an annular ring 46 which is mounted in an annular groove 48 of the rail 36, which opens radially inwards.
  • the hook 34 of the distributor 12 bears axially downstream on the rod 46 which is held radially in the groove of the casing rail by the inner wall 40, which extends radially inside the rod 46. , the axial stop function of the rod 46 can be provided directly by the casing rail 36.
  • the downstream ends of the ring sectors 18 are clamped radially on a cylindrical rail 30 of the housing by the distributor located downstream of the ring sectors. Ring sectors 18 are supported radially outwardly on a radially inner cylindrical face of the rail 30 of the housing, and inwardly on a radially outer cylindrical face of a cylindrical rim 28 of the downstream distributor.
  • annular foil 50 which is sectored and comprises an annular row of circumferentially end-to-end foil sectors. It has a generally C or U-shaped cross section and comprises two coaxial annular walls, respectively internal 52 and external 54, interconnected by a median bottom wall 56.
  • the foil 50 is mounted on the housing rail 36 and on the hook 34 of the distributor 12 so that the inner walls 52 of the foil sectors 50 are interposed between the inner walls 40 of the hooks 32 of the ring sectors 18, on the one hand, and the hooks 34 of the distributor 12 and the ring ring 46, on the other hand, that the outer walls 54 of the foil sectors are interposed between the outer walls 38 of the hooks 32 of the ring sectors and the casing rail 36, and that the bottom walls 56 of the foil sectors are interposed between the bottom walls 42 of the hooks of the ring sectors and the casing rail 36 ( Figure 2).
  • the foil sectors 50 are made of sheet metal and make it possible to avoid direct contact between the hooks 32 of the ring sectors 1 8 and the casing rail 36, which makes it possible on the one hand to protect the latter against wear by rubbing and secondly to thermally protect it from the ring which can be very hot in operation due to its proximity to the combustion gases flowing in the turbine duct.
  • the longitudinal edges 58 of the circumferential ends of the ring sectors 18 are separated from each other by circumferential clearances through which gases hot vein from the turbine can pass.
  • the longitudinal edges 60 of the circumferential ends of the foil sectors 50 are also separated from each other by circumferential clearances which are aligned axially with the clearances between the ring sectors 1 8.
  • the aforementioned hot gases can pass through the circumferential gaps. between the hooks 32 of the ring sectors 1 8 and between the foil sectors 50 and heating the casing rail 36 (arrow 62 in Figure 2), which may reduce its life.
  • the tabs 64 which are mounted between the longitudinal edges 58 of the circumferential ends of the ring sectors 1 8 do not extend to the hooks 32 of the ring sectors 1 8 and do not prevent the passage of gas at this level.
  • the invention overcomes this problem by virtue of the angular offset of the longitudinal edges 60 of the circumferential ends of the foil sectors 50 with respect to the longitudinal edges 58 of the circumferential ends of the ring sectors 1 8.
  • FIG. embodiment of the invention in which the foil sectors 50 are arranged in staggered relation to the ring sectors 18. The gases which are capable of passing through the circumferential gaps between the hooks 32 of the sectors of FIG. ring 1 8 are then blocked by the sectors of foil 50 and do not reach the sump rail 36 which has a longer life.
  • the walls 38, 40 of the ring sectors 18 are "pre-arched" with respect to the casing rail 36, that is to say that they have radii curvature greater than that of the casing rail 36, which allows to mount them with some radial prestressing on the rail. Due to this pre-bending, the ring sector 18 shown in FIG. 5 has support zones C1, C2, C3 which are not very extensive on the rail 36.
  • the median part of the internal face of the wall 38 of the sector 18 is supported C1 on the outer face of the rail 36 (through the walls 54 of the foil sectors 50 when used) and the end portions of the outer face of the wall 40 are supported in C1 and C3 on the inner face of the rail 36 or on the hook 34 of the dispenser 12 and the rod 46, as in the example shown (via the walls 52 of the foil sectors 50 when they are used).
  • FIGS. 6 to 8 propose a particular conformation of the foil sectors. and in particular of their internal walls 52. In the absence of such a conformation, the risk would be to prematurely wear the sectors of foil 50 and to create zones of initiation of cracks in the support zones C1, C3 .
  • each clicking sector 50 comprises a notch 66 substantially in its middle.
  • This notch 66 opens on the free and upstream circumferential edge of the wall 52 and here has a general V shape.
  • Each notch 66 has a circumferential extent of between 30 and 60% of the circumferential extent of the foil sector 50 and a dimension longitudinal between 10 and 50% of the longitudinal dimension of the foil sector 50.
  • the foil sectors 50 may furthermore be equipped with means for locking in rotation.
  • these locking means comprise a notch 70 formed at a circumferential end of the inner wall 52 of each foil sector 50.
  • This notch 70 opens out on the free circumferential edge and upstream of the wall. 52 as well as on the longitudinal edge of the corresponding end of the wall. It has a general rectangular shape here.
  • Each notch 70 has a circumferential extent of between 10 and 30% of the circumferential extent of the foil section 50 and a longitudinal dimension of between 20 and 70% of the longitudinal dimension of the foil section 50.
  • the notch 70 of each foil sector 50 is aligned radially with a notch 72 of the inner wall 40 of the hook of the ring sector 18, which is located substantially in the middle of this wall.
  • the notches 70, 72 are intended to receive a lug (not shown) of the distributor 12 to immobilize in rotation the ring sector 18 and the foil sector vis-a-vis the other as well as with respect to the casing 14.
  • FIGS 9 and 10 show an alternative embodiment of the locking means which comprise here a flap 74.
  • a tab 74 is here carried by the outer wall 54 of each foil sector 50 '. It is located substantially in the middle of the sector 50 'and extends at rest radially outwards and downstream. Its outer radial end 76 is intended to be deformed and folded radially inwards so as to engage in an outer radial slot 78 of the outer wall 38 of the hook of the ring sector 18 '. This ensures immobilization in rotation of the foil sector 50 'vis-à-vis the ring sector 18'.
  • each foil sector may comprise more than one anti-rotation lug of this type.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Gasket Seals (AREA)
  • Supercharger (AREA)
  • Centrifugal Separators (AREA)

Abstract

Module de turbomachine, comprenant une roue mobile montée rotative à l'intérieur d'un carter du module et entourée par un anneau (18) sectorisé d'étanchéité qui comporte une rangée annulaire de secteurs, chaque secteur d'anneau comportant au moins un crochet circonférentiel qui est configuré pour coopérer avec un rail annulaire d'accrochage du carter, le module comprenant en outre un clinquant annulaire (50) sectorisé de protection qui est intercalé entre les crochets des secteurs d'anneau et le rail du carter et qui comporte une rangée annulaire de secteurs de clinquant, caractérisé en ce que les bords (60) des extrémités circonférentielles des secteurs de clinquant ne sont pas alignés avec les bords (58) des extrémités circonférentielles des secteurs d'anneau suivant l'axe longitudinal du module.

Description

Module de turbomachine
DOMAINE TECHNIQUE
La présente invention concerne un module de turbomachine, qui peut être une turbine ou faire partie d'une turbine par exemple.
ETAT DE L'ART
L'état de l'art comprend notamment les documents WO-A1 -98/53228, EP-A2-2 612 998 et EP-A2-2 508 715.
Une turbine de turbomachine comprend un ou plusieurs étages comportant chacun un distributeur formé d'une rangée annulaire d'aubes fixes portées par un carter de la turbine, et une roue à aubes montée rotative en général en aval du distributeur. La roue est entourée par un anneau d'étanchéité qui est sectorisé et formé par des secteurs qui sont disposés circonférentiellement bout à bout et qui sont accrochés sur le carter de la turbine.
Chaque secteur d'anneau comprend en général une plaque métallique à orientation circonférentielle qui porte un bloc de matière abradable fixé sur la surface interne de la plaque. Ce bloc est par exemple du type en nid d'abeille et est destiné à s'user par frottement sur des léchettes annulaires externes des aubes de la roue, pour former un joint d'étanchéité à labyrinthe et minimiser les jeux radiaux entre la roue et les secteurs d'anneau.
Chaque secteur d'anneau comprend à ses extrémités amont et aval des moyens d'accrochage sur le carter. Chaque secteur d'anneau peut comprendre à son extrémité amont un crochet circonférentiel qui définit une gorge annulaire dans laquelle est engagé, d'une part, un rail annulaire du carter, et d'autre part, un crochet circonférentiel aval du distributeur situé en amont. Le crochet circonférentiel aval du distributeur est maintenu serré radialement contre le rail de carter par l'intermédiaire du crochet circonférentiel amont de l'anneau, qui comprend deux parois annulaires coaxiales, s'étendant l'une à l'intérieur de l'autre, et qui s'étendent respectivement à l'intérieur du crochet du distributeur et à l'extérieur du rail de carter. Ceci permet de participer au maintien radial du distributeur vis-à-vis du carter. Le maintien circonférentiel ou tangentiel du distributeur peut être assuré par l'intermédiaire d'un pion anti-rotation qui est porté par le carter et est engagé dans une encoche du distributeur. Son maintien axial vers l'aval est en général assuré par un jonc annulaire fendu qui est monté dans une gorge annulaire du rail de carter précité, qui débouche radialement vers l'intérieur. Le crochet circonférentiel aval du distributeur est en appui axial vers l'aval sur ce jonc qui est maintenu radialement dans la gorge du rail de carter par les parois internes des crochets des secteurs d'anneau, qui s'étendent radialement à l'intérieur du jonc. En variante, la fonction d'arrêt axial de ce jonc peut être assurée directement par le rail de carter.
Il est connu d'utiliser un clinquant annulaire de protection du rail de carter, en particulier contre l'usure et les hautes températures. Ce clinquant est sectorisé et comprend une rangée annulaire de secteurs de clinquant disposés circonférentiellement bout à bout. Il a en section une forme générale en U ou en C et comprend deux parois annulaires coaxiales, respectivement interne et externe, reliées ensemble par une paroi médiane de fond.
L'ouverture des crochets des secteurs d'anneau est orientée axialement vers l'amont et reçoit les secteurs de clinquant qui sont configurés de façon à ce que leurs parois tapissent celles des crochets des secteurs d'anneau. Les parois internes des secteurs de clinquant sont destinées à s'étendre sur les faces radialement externes des parois internes des crochets des secteurs d'anneau, les parois externes des secteurs de clinquant sont destinées à s'étendre sur les faces radialement internes des parois externes des crochets des secteurs d'anneau, et les parois de fond des secteurs de clinquant sont destinées à s'étendre sur des faces radiales amont des parois de fond des crochets des secteurs d'anneau.
En position de montage des secteurs d'anneau sur le rail de carter, les parois internes des secteurs de clinquant sont intercalées entre les parois internes des crochets des secteurs d'anneau et les crochets du distributeur, voire également le jonc annulaire, les parois externes des secteurs de clinquant sont intercalées entre les parois externes des crochets des secteurs d'anneau et le rail de carter, et les parois de fond des secteurs de clinquant sont intercalées entre les parois de fond des crochets des secteurs d'anneau et le rail de carter.
Les secteurs de clinquant sont en tôle et permettent d'éviter les contacts directs entre les crochets des secteurs d'anneau et le rail de carter, ce qui permet d'une part de protéger ce dernier contre l'usure par frottement et d'autre part de le protéger thermiquement de l'anneau qui peut être très chaud en fonctionnement du fait de sa proximité avec les gaz de combustion s'écoulant dans la veine de turbine. Du fait de la sectorisation de l'anneau, les bords longitudinaux des extrémités circonférentielles de deux secteurs adjacents de l'anneau sont en regard l'un de l'autre et sont séparés l'un de l'autre par un jeu circonférentiel à travers lequel des gaz chauds de la veine peuvent passer. Ces gaz chauds ont tendance à chauffer le carter ce qui est néfaste pour plusieurs raisons. Une des raisons est qu'un chauffage du carter entraînerait une dilatation et une déformation de ce dernier qui risquerait d'altérer les jeux radiaux entre la roue mobile et l'anneau, et donc de diminuer les performances de la turbine. Une solution connue à ce problème consiste à intercaler des languettes d'étanchéité entre les secteurs d'anneau, qui sont logées dans des rainures des bords longitudinaux précités ses secteurs d'anneau.
Cependant, du fait de la sectorisation du clinquant, les bords longitudinaux des extrémités circonférentielles de deux secteurs adjacents du clinquant sont en regard l'un de l'autre et sont séparés l'un de l'autre par un jeu circonférentiel. Dans la technique actuelle, les jeux circonférentiels entre les secteurs de clinquant sont alignés axialement avec les jeux circonférentiels entre les secteurs d'anneau, et en particulier avec les jeux circonférentiels entre les crochets des secteurs d'anneau au niveau desquels il n'est pas possible de monter des languettes du type précité pour des raisons d'encombrement notamment. Des gaz chauds peuvent ainsi passer à travers les jeux circonférentiels entre les crochets des secteurs d'anneau et entre les secteurs de clinquant et chauffer le rail de carter, ce qui risque de réduire sa durée de vie.
La présente invention a notamment pour but d'apporter une solution simple, efficace et économique à ce besoin en améliorant notamment la protection thermique du rail de carter dans le cas précité.
EXPOSE DE L'INVENTION
La présente invention propose ainsi un module de turbomachine, comprenant une roue mobile montée rotative à l'intérieur d'un carter du module et entourée par un anneau d'étanchéité sectorisé qui comporte une rangée annulaire de secteurs d'anneau disposés de façon à ce que des bords d'extrémités circonférentielles de deux secteurs adjacents soient sensiblement en regard l'un de l'autre, chaque secteur d'anneau comportant au moins un crochet circonférentiel qui est configuré pour coopérer avec un rail annulaire d'accrochage du carter, le module comprenant en outre un clinquant annulaire de protection sectorisé qui est intercalé entre les crochets des secteurs d'anneau et le rail du carter et qui comporte une rangée annulaire de secteurs de clinquant disposés de façon à ce que des bords d'extrémités circonférentielles de deux secteurs adjacents soient sensiblement en regard l'un de l'autre, caractérisé en ce que le nombre de secteurs d'anneau est égal au nombre de secteurs de clinquant et en ce que les secteurs de clinquant comprennent des moyens de positionnement et/ou de blocage en rotation configurés pour que les bords des extrémités circonférentielles des secteurs de clinquant ne soient pas alignés avec les bords des extrémités circonférentielles des secteurs d'anneau suivant l'axe longitudinal du module.
L'invention permet de mieux protéger le rail de carter car les gaz qui seraient susceptibles de passer entre les bords des extrémités circonférentielles des secteurs d'anneau seraient ensuite bloqués par les secteurs de clinquant (du fait de leur décalage angulaire vis-à-vis des secteurs d'anneau) et ne parviendraient pas jusqu'au rail de carter.
Le module selon l'invention peut comprendre une ou plusieurs des caractéristiques suivantes, prises isolément ou en combinaison les unes avec les autres :
- le nombre de secteurs d'anneau est égal au nombre de secteurs de clinquant ;
- les secteurs d'anneau sont disposés en quinconce par rapport aux secteurs de clinquant ;
- les crochets des secteurs d'anneau ont en section une forme générale en U ou en C dont l'ouverture est orientée axialement, et comprennent chacun une paroi médiane de fond qui relie deux parois annulaires coaxiales respectivement radialement interne et externe ;
- les secteurs de clinquant ont en section une forme générale en U ou en C dont l'ouverture est orientée axialement, et comprennent chacun une paroi médiane de fond qui relie deux parois annulaires coaxiales respectivement radialement interne et externe, les secteurs de clinquant étant engagés dans les ouvertures des crochets des secteurs d'anneau et montés sur le rail de carter, de façon à ce que les parois internes des secteurs de clinquant soient intercalées entre une face interne du rail de carter et les parois internes des crochets des secteurs d'anneau, que les parois de fond des secteurs de clinquant soient intercalées entre une face sensiblement radiale du rail de carter et les parois de fond des crochets des secteurs d'anneau, et que les parois externes des secteurs de clinquant soient intercalées entre une face externe du rail de carter et les parois externes des crochets des secteurs d'anneau ; - les parois internes des crochets des secteurs d'anneau ont un rayon de courbure différent de celui du rail de carter de façon à être montées en précontrainte radiale sur le rail,
- les parois internes des secteurs de clinquant comprennent des encoches radiales qui débouchent sur des bords circonférentiels libres des secteurs de clinquant et qui sont sensiblement alignées axialement avec les bords des extrémités circonférentielles des crochets des secteurs d'anneau ; ces encoches forment des moyens de positionnement au sens de l'invention ;
- lesdites encoches ont chacune une forme générale en V et sont sensiblement formées au milieu des parois internes des secteurs de clinquant ;
- les extrémités circonférentielles des parois internes des crochets des secteurs d'anneau sont en appui radial sur les parois internes des secteurs de clinquant, sensiblement au droit des fonds des encoches ;
- les parois internes ou externes des crochets des secteurs d'anneau comportent des encoches radiales sensiblement en leur milieu, et dans lequel les parois internes ou externes des secteurs de clinquant comprennent, soit des encoches radiales d'extrémité qui sont sensiblement alignées radialement avec les encoches précitées des crochets des secteurs d'anneau, soit des pattes radiales rabattables qui sont configurées pour être rabattues et engagées dans les encoches précitées des crochets des secteurs d'anneau ; ces encoches et/ou pattes forment des moyens de blocage en rotation (autour de l'axe longitudinal du module) au sens de l'invention ; et
- le module est une turbine.
La présente invention concerne encore une turbomachine, comportant au moins un module tel que décrit ci-dessus.
La présente invention concerne enfin un clinquant annulaire de protection sectorisé pour un module tel que décrit ci-dessus, comportant une rangée annulaire de secteurs de clinquant, dans lequel chaque secteur de clinquant a en section une forme générale en U ou en C dont l'ouverture est orientée axialement, et comprend une paroi médiane de fond qui relie deux parois annulaires coaxiales respectivement radialement interne et externe, lesdites parois internes comprenant des encoches radiales sensiblement en leur milieu, qui débouchent sur des bords circonférentiels libres des secteurs.
DESCRIPTION DES FIGURES L'invention sera mieux comprise et d'autres détails, caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante faite à titre d'exemple non limitatif et en référence aux dessins annexés, dans lesquels :
- la figure 1 est une demi-vue schématique partielle en coupe axiale d'une turbine de turbomachine ;
- la figure 2 est une vue schématique à plus grande échelle d'une partie de la figure 1 et montre un anneau d'étanchéité et un clinquant annulaire de la turbine ;
- la figure 3 est une vue schématique partielle et de dessus de l'anneau d'étanchéité et du clinquant annulaire d'une turbine selon la technique antérieure ;
- la figure 4 est une vue schématique partielle et de dessus de l'anneau d'étanchéité et du clinquant annulaire d'une turbine selon l'invention ;
- la figure 5 est une vue schématique en coupe selon la ligne V-V de la figure 2 ;
- les figures 6 et 7 sont des vues schématiques en perspective d'un secteur d'anneau et d'un secteur de clinquant, selon un mode de réalisation de l'invention ;
- la figure 8 est une vue très schématique partielle et de dessous du clinquant des figures 6 et 7 ; et
- les figures 9 et 1 0 sont des vues schématiques, respectivement en perspective et en coupe axiale, d'une variante de réalisation d'un secteur d'anneau et d'un secteur de clinquant.
DESCRI PTION DETAILLEE
On se réfère d'abord aux figures 1 et 2 qui représentent une turbine 1 0, ici basse-pression, d'une turbomachine telle qu'un turboréacteur ou un turbopropulseur d'avion, cette turbine comportant plusieurs étages (dont un seul est ici représenté) comportant chacun un distributeur 12 formé d'une rangée annulaire d'aubes fixes portées par un carter 14 de la turbine, et une roue à aubes 1 6 montée en aval du distributeur 1 2 et tournant dans un anneau 1 8 accroché au carter 14.
L'anneau 1 8 est sectorisé et formé de plusieurs secteurs qui sont portés circonférentiellement bout à bout par le carter 14 de la turbine.
Chaque secteur d'anneau 18 comprend une paroi tronconique 20 et un bloc 22 de matière abradable fixé par brasage et/ou soudage sur la surface radialement interne de la paroi 20, ce bloc 22 étant du type en nid d'abeille et étant destiné à s'user par frottement sur des léchettes annulaires externes 24 des aubes de la roue 1 6 pour minimiser les jeux radiaux entre la roue et les secteurs d'anneau 1 8. Chaque secteur d'anneau 18 comprend à son extrémité amont un crochet circonférentiel 32 à section en C ou U dont l'ouverture débouche vers l'amont et qui est engagé axialement depuis l'aval sur un crochet cylindrique 34 orienté vers l'aval du distributeur 12 situé en amont des secteurs d'anneau 18, d'une part, et sur un rail cylindrique 36 du carter 14 sur lequel est accroché ce distributeur, d'autre part.
Le crochet 32 de chaque secteur d'anneau 18 comprend deux parois circonférentielles 38 et 40 s'étendant vers l'amont, radialement externe et radialement interne respectivement, qui sont reliées entre elles à leurs extrémités amont par une paroi médiane de fond 42 sensiblement radiale, et qui s'étendent respectivement radialement à l'extérieur et à l'intérieur du rail 36, la paroi interne 40 maintenant radialement le crochet 34 du distributeur contre le rail 36.
Le maintien circonférentiel du distributeur 12 est assuré par l'intermédiaire d'un pion anti-rotation 44 qui est porté par le carter 14 et est engagé dans une encoche du distributeur 12. Son maintien axial vers l'aval est assuré par un jonc annulaire 46 fendu qui est monté dans une gorge annulaire 48 du rail 36, qui débouche radialement vers l'intérieur. Le crochet 34 du distributeur 12 est en appui axial vers l'aval sur le jonc 46 qui est maintenu radialement dans la gorge du rail de carter par la paroi interne 40, qui s'étend radialement à l'intérieur du jonc 46. En variante, la fonction d'arrêt axial du jonc 46 peut être assurée directement par le rail de carter 36.
Les extrémités aval des secteurs d'anneau 18 sont serrées radialement sur un rail cylindrique 30 du carter par le distributeur situé en aval des secteurs d'anneau. Les secteurs d'anneau 18 sont en appui radial vers l'extérieur sur une face cylindrique radialement interne du rail 30 du carter, et vers l'intérieur sur une face cylindrique radialement externe d'un rebord cylindrique 28 du distributeur aval.
Pour protéger thermiquement et contre l'usure le rail 36, il est connu d'utiliser un clinquant annulaire 50 qui est sectorisé et comprend une rangée annulaire de secteurs de clinquant disposés circonférentiellement bout à bout. Il a en section une forme générale en C ou U et comprend deux parois annulaires coaxiales, respectivement interne 52 et externe 54, reliées ensemble par une paroi médiane de fond 56.
Le clinquant 50 est monté sur le rail de carter 36 et sur le crochet 34 du distributeur 12 de sorte que les parois internes 52 des secteurs de clinquant 50 soient intercalées entre les parois internes 40 des crochets 32 des secteurs d'anneau 18, d'une part, et les crochets 34 du distributeur 12 et le jonc annulaire 46, d'autre part, que les parois externes 54 des secteurs de clinquant soient intercalées entre les parois externes 38 des crochets 32 des secteurs d'anneau et le rail de carter 36, et que les parois de fond 56 des secteurs de clinquant soient intercalées entre les parois de fond 42 des crochets des secteurs d'anneau et le rail de carter 36 (figure 2).
Les secteurs de clinquant 50 sont en tôle et permettent d'éviter les contacts directs entre les crochets 32 des secteurs d'anneau 1 8 et le rail de carter 36, ce qui permet d'une part de protéger ce dernier contre l'usure par frottement et d'autre part de le protéger thermiquement de l'anneau qui peut être très chaud en fonctionnement du fait de sa proximité avec les gaz de combustion s'écoulant dans la veine de turbine.
Comme expliqué dans ce qui précède et illustré par la figure 3 qui représente la technique antérieure à la présente invention, les bords longitudinaux 58 des extrémités circonférentielles des secteurs d'anneau 18 sont séparés les uns des autres par des jeux circonférentiels à travers lesquels des gaz chauds de la veine de la turbine peuvent passer. Les bords longitudinaux 60 des extrémités circonférentielles des secteurs de clinquant 50 sont également séparés les uns des autres par des jeux circonférentiels qui sont alignés axialement avec les jeux entre les secteurs d'anneau 1 8. Les gaz chauds précités peuvent passer à travers les jeux circonférentiels entre les crochets 32 des secteurs d'anneau 1 8 et entre les secteurs de clinquant 50 et chauffer le rail de carter 36 (flèche 62 en figure 2), ce qui risque de réduire sa durée de vie. En effet, les languettes 64 qui sont montées entre les bords longitudinaux 58 des extrémités circonférentielles des secteurs d'anneau 1 8 ne s'étendent pas jusqu'aux crochets 32 des secteurs d'anneau 1 8 et n'empêchent pas le passage de gaz à ce niveau.
L'invention permet de remédier à ce problème grâce au décalage angulaire des bords longitudinaux 60 des extrémités circonférentielles des secteurs de clinquant 50 vis-à-vis des bords longitudinaux 58 des extrémités circonférentielles des secteurs d'anneau 1 8. La figure 4 représente un mode de réalisation de l'invention dans lequel les secteurs de clinquant 50 sont disposés en quinconce vis-à-vis des secteurs d'anneau 18. Les gaz qui sont susceptibles de passer à travers les jeux circonférentiels entre les crochets 32 des secteurs d'anneau 1 8 sont alors bloqués par les secteurs de clinquant 50 et ne parviennent pas jusqu'au rail de carter 36 qui a une meilleure durée de vie.
Comme cela est visible en figure 5, les parois 38, 40 des secteurs d'anneau 18 sont « pré-cambrés » par rapport au rail de carter 36, c'est-à-dire qu'ils ont des rayons de courbure supérieurs à celui du rail de carter 36, ce qui permet de les monter avec une certaine précontrainte radiale sur le rail. Du fait de ce pré-cambrage, le secteur d'anneau 18 représenté en figure 5 a des zones d'appui C1 , C2, C3 peu étendues sur le rail 36. La partie médiane de la face interne de la paroi 38 du secteur 18 est en appui en C1 sur la face externe du rail 36 (par l'intermédiaire des parois 54 des secteurs de clinquant 50 lorsqu'ils sont utilisés) et les parties d'extrémité de la face externe de la paroi 40 sont en appui en C1 et C3 sur la face interne du rail 36 ou sur le crochet 34 du distributeur 12 et le jonc 46, comme dans l'exemple représenté (par l'intermédiaire des parois 52 des secteurs de clinquant 50 lorsqu'ils sont utilisés).
Afin de ne pas sur-contraindre les secteurs de clinquant 50, par pincement entre les extrémités circonférentielles des secteurs d'anneau 18 et le rail de carter 36, le mode de réalisation représenté aux figures 6 à 8 propose une conformation particulière des secteurs de clinquant et en particulier de leurs parois internes 52. En l'absence d'une telle conformation, le risque serait d'user prématurément les secteurs de clinquant 50 et de créer des zones d'amorce de criques dans les zones d'appui C1 , C3.
Dans l'exemple représenté, la paroi interne 52 de chaque secteur de cliquant 50 comprend une encoche 66 sensiblement en son milieu. Cette encoche 66 débouche sur le bord circonférentiel libre et amont de la paroi 52 et a ici une forme générale en V. Chaque encoche 66 a une étendue circonférentielle comprise entre 30 et 60% de l'étendue circonférentielle du secteur de clinquant 50 et une dimension longitudinale comprise entre 10 et 50% de la dimension longitudinale du secteur de clinquant 50.
Comme cela est visible en figure 8 dans laquelle des secteurs de clinquant 50 sont représentés en traits continus et des secteurs d'anneau 18 sont représentés en traits pointillés, les bords longitudinaux 58 des extrémités circonférentielles des crochets 32 des secteurs d'anneau 18 sont situés sensiblement au droit des fonds 68 des encoches 66. Ces encoches 66 confèrent une certaine souplesse aux parois internes 52 des secteurs de clinquant 50.
Selon l'invention, les secteurs de clinquant 50 peuvent en outre être équipés de moyens de blocage en rotation.
Dans l'exemple représenté aux figures 6 à 8, ces moyens de blocage comprennent une encoche 70 formée à une extrémité circonférentielle de la paroi interne 52 de chaque secteur de clinquant 50. Cette encoche 70 débouche sur le bord circonférentiel libre et amont de la paroi 52 ainsi que sur le bord longitudinal de l'extrémité correspondante de la paroi. Elle a ici une forme générale rectangulaire. Chaque encoche 70 a une étendue circonférentielle comprise entre 10 et 30% de l'étendue circonférentielle du secteur de clinquant 50 et une dimension longitudinale comprise entre 20 et 70% de la dimension longitudinale du secteur de clinquant 50.
En position de montage, l'encoche 70 de chaque secteur de clinquant 50 est alignée radialement avec une encoche 72 de la paroi interne 40 du crochet du secteur d'anneau 18, qui est située sensiblement au milieu de cette paroi. Les encoches 70, 72 sont destinées à recevoir un ergot (non représenté) du distributeur 12 pour immobiliser en rotation le secteur d'anneau 18 et le secteur de clinquant l'un vis-à-vis de l'autre ainsi que par rapport au carter 14.
Les figures 9 et 10 représentent une variante de réalisation des moyens de blocage qui comprennent ici une patte 74 rabattable. Une patte 74 est ici portée par la paroi externe 54 de chaque secteur de clinquant 50'. Elle est située sensiblement au milieu du secteur 50' et s'étend au repos radialement vers l'extérieur et vers l'aval. Son extrémité radiale externe 76 est destinée à être déformée et rabattue radialement vers l'intérieur de façon à l'engager dans une encoche radiale externe 78 de la paroi externe 38 du crochet du secteur d'anneau 18'. Ceci assure l'immobilisation en rotation du secteur de clinquant 50' vis-à-vis du secteur d'anneau 18'. En variante, chaque secteur de clinquant peut comprendre plus d'une patte anti-rotation de ce type.

Claims

REVENDICATIONS
1 . Module de turbomachine, comprenant une roue mobile (16) montée rotative à l'intérieur d'un carter (14) du module et entourée par un anneau d'étanchéité (18, 18') sectorisé qui comporte une rangée annulaire de secteurs d'anneau disposés de façon à ce que des bords (58) d'extrémité circonférentielle de deux secteurs adjacents soient sensiblement en regard l'un de l'autre, chaque secteur d'anneau comportant au moins un crochet circonférentiel (32) qui est configuré pour coopérer avec un rail annulaire d'accrochage (36) du carter, le module comprenant en outre un clinquant annulaire de protection (50, 50') sectorisé qui est intercalé entre les crochets des secteurs d'anneau et le rail du carter et qui comporte une rangée annulaire de secteurs de clinquant disposés de façon à ce que des bords (60) d'extrémités circonférentielles de deux secteurs adjacents soient sensiblement en regard l'un de l'autre, caractérisé en ce que le nombre de secteurs d'anneau (18, 18') est égal au nombre de secteurs de clinquant (50, 50'), et en ce que les secteurs de clinquant comprennent des moyens de positionnement (66) et/ou de blocage en rotation (70, 74) configurés pour que les bords des extrémités circonférentielles des secteurs de clinquant ne soient pas alignés avec les bords des extrémités circonférentielles des secteurs d'anneau suivant l'axe longitudinal du module.
2. Module selon la revendication 1 , dans lequel les secteurs d'anneau (18, 18') sont disposés en quinconce par rapport aux secteurs de clinquant (50, 50').
3. Module selon l'une des revendications précédentes, dans lequel les crochets (32) des secteurs d'anneau (18, 18') ont en section une forme générale en U ou en C dont l'ouverture est orientée axialement, et comprennent chacun une paroi médiane (42) de fond qui relie deux parois annulaires coaxiales respectivement radialement interne (40) et externe (38), et dans lequel les secteurs de clinquant (50, 50') ont en section une forme générale en U ou en C dont l'ouverture est orientée axialement, et comprennent chacun une paroi médiane de fond (56) qui relie deux parois annulaires coaxiales respectivement radialement interne (52) et externe (54), les secteurs de clinquant étant engagés dans les ouvertures des crochets des secteurs d'anneau et montés sur le rail de carter (36), de façon à ce que les parois internes des secteurs de clinquant soient intercalées entre une face interne du rail de carter et les parois internes des crochets des secteurs d'anneau, que les parois de fond des secteurs de clinquant soient intercalées entre une face sensiblement radiale du rail de carter et les parois de fond des crochets des secteurs d'anneau, et que les parois externes des secteurs de clinquant soient intercalées entre une face externe du rail de carter et les parois externes des crochets des secteurs d'anneau.
4. Module selon la revendication 4, dans lequel les parois internes (40) des crochets (32) des secteurs d'anneau (18, 18') ont un rayon de courbure différent de celui du rail de carter (36) de façon à être montées en précontrainte radiale sur le rail.
5. Module selon la revendication 4 ou 5, dans lequel les parois internes (52) des secteurs de clinquant (50, 50') comprennent des encoches radiales (66) qui débouchent sur des bords circonférentiels libres des secteurs de clinquant et qui sont sensiblement alignées axialement avec les bords (58) des extrémités circonférentielles des crochets (32) des secteurs d'anneau (18, 18').
6. Module selon la revendication 5, dans lequel lesdites encoches (66) ont chacune une forme générale en V et sont sensiblement formées au milieu des parois internes (52) des secteurs de clinquant (50, 50').
7. Module selon la revendication 5 ou 6, dans lequel les extrémités circonférentielles des parois internes (40) des crochets (32) des secteurs d'anneau (18, 18') sont en appui radial sur les parois internes (52) des secteurs de clinquant (50, 50'), sensiblement au droit des fonds (68) des encoches (66).
8. Module selon l'une des revendications 4 à 7, dans lequel les parois internes (40) ou externes (38) des crochets (32) des secteurs d'anneau (18) comportent des encoches radiales (72, 78) sensiblement en leur milieu, et dans lequel les parois internes (52) ou externes (54) des secteurs de clinquant (50, 50') comprennent, soit des encoches radiales d'extrémité (70) qui sont sensiblement alignées radialement avec les encoches (72) précitées des crochets des secteurs d'anneau, soit des pattes radiales (74) rabattables qui sont configurées pour être rabattues et engagées dans les encoches (78) précitées des crochets des secteurs d'anneau .
9. Turbomachine, comportant au moins un module selon l'une des revendications précédentes.
10. Clinquant annulaire de protection (50, 50') sectorisé pour un module selon l'une des revendications 1 à 8, comportant une rangée annulaire de secteurs de clinquant, dans lequel chaque secteur de clinquant a en section une forme générale en U ou en C dont l'ouverture est orientée axialement, et comprend une paroi médiane de fond (56) qui relie deux parois annulaires coaxiales respectivement radialement interne (52) et externe (54), lesdites parois internes comprenant des encoches radiales (66) sensiblement en leur milieu, qui débouchent sur des bords circonférentiels libres des secteurs.
PCT/FR2015/052151 2014-08-14 2015-08-04 Module de turbomachine WO2016024060A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US15/501,161 US10344610B2 (en) 2014-08-14 2015-08-04 Turbomachine module
BR112017002041-6A BR112017002041B1 (pt) 2014-08-14 2015-08-04 Módulo de turbomáquina, turbomáquina e calço anelar de proteção
CN201580042433.6A CN106574511B (zh) 2014-08-14 2015-08-04 涡轮机模块
CA2956882A CA2956882C (fr) 2014-08-14 2015-08-04 Module de turbomachine
RU2017103314A RU2700847C2 (ru) 2014-08-14 2015-08-04 Модуль газотурбинного двигателя
JP2017505608A JP6625611B2 (ja) 2014-08-14 2015-08-04 ターボ機械のモジュール
EP15757535.8A EP3180497B1 (fr) 2014-08-14 2015-08-04 Module de turbomachine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1457829 2014-08-14
FR1457829A FR3024883B1 (fr) 2014-08-14 2014-08-14 Module de turbomachine

Publications (1)

Publication Number Publication Date
WO2016024060A1 true WO2016024060A1 (fr) 2016-02-18

Family

ID=51862465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2015/052151 WO2016024060A1 (fr) 2014-08-14 2015-08-04 Module de turbomachine

Country Status (9)

Country Link
US (1) US10344610B2 (fr)
EP (1) EP3180497B1 (fr)
JP (1) JP6625611B2 (fr)
CN (1) CN106574511B (fr)
BR (1) BR112017002041B1 (fr)
CA (1) CA2956882C (fr)
FR (1) FR3024883B1 (fr)
RU (1) RU2700847C2 (fr)
WO (1) WO2016024060A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3058458A1 (fr) * 2016-11-09 2018-05-11 Safran Aircraft Engines Etage de turbine de turbomachine pourvu de moyens d'etancheite
EP3591178A1 (fr) 2018-07-03 2020-01-08 Safran Aircraft Engines Module d'étanchéité de turbomachine d'aeronef

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3022944B1 (fr) * 2014-06-26 2020-02-14 Safran Aircraft Engines Ensemble rotatif pour turbomachine
KR101675277B1 (ko) * 2015-10-02 2016-11-11 두산중공업 주식회사 가스터빈의 팁간극 조절 조립체
US11199104B2 (en) * 2017-05-15 2021-12-14 Raytheon Technologies Corporation Seal anti-rotation
EP3412871B1 (fr) * 2017-06-09 2021-04-28 Ge Avio S.r.l. Joint pour aube directrice de turbine à gaz
FR3084103B1 (fr) * 2018-07-18 2020-07-10 Safran Aircraft Engines Ensemble d'etancheite pour un rotor de turbine de turbomachine et turbine de turbomachine comprenant un tel ensemble
FR3113923B1 (fr) * 2020-09-04 2023-12-15 Safran Aircraft Engines Turbine pour turbomachine comprenant des clinquants de protection thermique
FR3140112A1 (fr) * 2022-09-22 2024-03-29 Safran Aircraft Engines Amélioration de l’étanchéité dans une turbine de turbomachine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998053228A1 (fr) 1997-05-21 1998-11-26 Allison Advanced Development Company Dispositif de scellement d'aubes entre etages
US20060083607A1 (en) * 2004-10-15 2006-04-20 Pratt & Whitney Canada Corp. Turbine shroud segment seal
FR2961849A1 (fr) * 2010-06-28 2011-12-30 Snecma Etage de turbine dans une turbomachine
EP2508715A2 (fr) 2011-04-06 2012-10-10 Rolls-Royce plc Ensemble d'aubes de guidage
EP2535522A2 (fr) * 2011-06-17 2012-12-19 United Technologies Corporation Joint en forme de W
EP2612998A2 (fr) 2012-01-05 2013-07-10 United Technologies Corporation Garniture de fixation intégrée d'aube de stator et ressort amortisseur
EP2613011A1 (fr) * 2012-01-05 2013-07-10 General Electric Company Système et procédé de scellage d'un trajet de gaz dans une turbine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5018943A (en) * 1989-04-17 1991-05-28 General Electric Company Boltless balance weight for turbine rotors
US5201846A (en) * 1991-11-29 1993-04-13 General Electric Company Low-pressure turbine heat shield
FR2743603B1 (fr) * 1996-01-11 1998-02-13 Snecma Dispositif de jonction de segments d'un distributeur circulaire a un carter de turbomachine
FR2819010B1 (fr) * 2001-01-04 2004-05-28 Snecma Moteurs Secteur d'entretoise de support d'anneau de stator de la turbine haute pression d'une turbomachine avec rattrapage de jeux
FR2941488B1 (fr) * 2009-01-28 2011-09-16 Snecma Anneau de turbine a encoche anti-rotation
FR2989724B1 (fr) * 2012-04-20 2015-12-25 Snecma Etage de turbine pour une turbomachine
US9828865B2 (en) * 2012-09-26 2017-11-28 United Technologies Corporation Turbomachine rotor groove
FR3026430B1 (fr) * 2014-09-29 2020-07-10 Safran Aircraft Engines Roue de turbine dans une turbomachine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998053228A1 (fr) 1997-05-21 1998-11-26 Allison Advanced Development Company Dispositif de scellement d'aubes entre etages
US20060083607A1 (en) * 2004-10-15 2006-04-20 Pratt & Whitney Canada Corp. Turbine shroud segment seal
FR2961849A1 (fr) * 2010-06-28 2011-12-30 Snecma Etage de turbine dans une turbomachine
EP2508715A2 (fr) 2011-04-06 2012-10-10 Rolls-Royce plc Ensemble d'aubes de guidage
EP2535522A2 (fr) * 2011-06-17 2012-12-19 United Technologies Corporation Joint en forme de W
EP2612998A2 (fr) 2012-01-05 2013-07-10 United Technologies Corporation Garniture de fixation intégrée d'aube de stator et ressort amortisseur
EP2613011A1 (fr) * 2012-01-05 2013-07-10 General Electric Company Système et procédé de scellage d'un trajet de gaz dans une turbine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3058458A1 (fr) * 2016-11-09 2018-05-11 Safran Aircraft Engines Etage de turbine de turbomachine pourvu de moyens d'etancheite
EP3591178A1 (fr) 2018-07-03 2020-01-08 Safran Aircraft Engines Module d'étanchéité de turbomachine d'aeronef

Also Published As

Publication number Publication date
RU2017103314A (ru) 2018-09-14
US20170218785A1 (en) 2017-08-03
FR3024883A1 (fr) 2016-02-19
RU2017103314A3 (fr) 2019-02-19
BR112017002041B1 (pt) 2022-08-09
JP2017529481A (ja) 2017-10-05
US10344610B2 (en) 2019-07-09
BR112017002041A2 (pt) 2018-01-30
EP3180497B1 (fr) 2019-10-02
CN106574511A (zh) 2017-04-19
CN106574511B (zh) 2019-04-12
FR3024883B1 (fr) 2016-08-05
CA2956882A1 (fr) 2016-02-18
JP6625611B2 (ja) 2019-12-25
CA2956882C (fr) 2022-03-15
RU2700847C2 (ru) 2019-09-23
EP3180497A1 (fr) 2017-06-21

Similar Documents

Publication Publication Date Title
EP3180497B1 (fr) Module de turbomachine
EP2839117B1 (fr) Étage de turbine pour une turbomachine
EP3591178B1 (fr) Module d'étanchéité de turbomachine
EP2060750B1 (fr) Etage de turbine ou de compresseur, en particulier de turbomachine
CA2715454C (fr) Distributeur sectorise pour une turbomachine
EP2252773A2 (fr) Distributeur de turbine pour une turbomachine
EP2060751B1 (fr) Etage de turbine ou de compresseur d'un turboréacteur
FR3084103A1 (fr) Ensemble d'etancheite pour un rotor de turbine de turbomachine et turbine de turbomachine comprenant un tel ensemble
FR2989426A1 (fr) Turbomachine, telle qu'un turboreacteur ou un turbopropulseur d'avion
FR3006364A1 (fr) Roue de turbomachine, notamment pour turbine basse pression
CA2644312C (fr) Etage de turbine ou de compresseur de turbomachine
EP4028644B1 (fr) Anneau d'étanchéité de turbomachine
EP3906357B1 (fr) Distributeur pour turbine, turbine de turbomachine équipée de ce distributeur et turbomachine équipée de cette turbine
FR3024884B1 (fr) Procede de realisation d'un anneau sectorise d'etancheite et d'une turbine de turbomachine
FR2961556A1 (fr) Isolation du carter externe d'une turbine de turbomachine vis-a-vis d'un anneau sectorise
FR3113923A1 (fr) Turbine pour turbomachine comprenant des clinquants de protection thermique
FR2989725A1 (fr) Etage de turbine
FR2983247A1 (fr) Ensemble redresseur - carter intermediaire pour une turbomachine
FR2989722A1 (fr) Etage de turbine dans une turbomachine
FR3025830A1 (fr) Anneau d'etancheite de turbomachine
FR3027342A1 (fr) Anneau d'etancheite de turbomachine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15757535

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015757535

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2956882

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2017505608

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15501161

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017002041

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017103314

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112017002041

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170131