WO2016021876A1 - 염소 또는 염소계 활성물질을 생산하는 이차전지, 이를 이용한 선박 평형수 처리 장치 및 처리 방법 - Google Patents

염소 또는 염소계 활성물질을 생산하는 이차전지, 이를 이용한 선박 평형수 처리 장치 및 처리 방법 Download PDF

Info

Publication number
WO2016021876A1
WO2016021876A1 PCT/KR2015/008003 KR2015008003W WO2016021876A1 WO 2016021876 A1 WO2016021876 A1 WO 2016021876A1 KR 2015008003 W KR2015008003 W KR 2015008003W WO 2016021876 A1 WO2016021876 A1 WO 2016021876A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
chlorine
ballast water
positive electrode
active material
Prior art date
Application number
PCT/KR2015/008003
Other languages
English (en)
French (fr)
Inventor
김영식
박정선
정무영
Original Assignee
국립대학법인 울산과학기술대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150103942A external-priority patent/KR101788180B1/ko
Application filed by 국립대학법인 울산과학기술대학교 산학협력단 filed Critical 국립대학법인 울산과학기술대학교 산학협력단
Publication of WO2016021876A1 publication Critical patent/WO2016021876A1/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B13/00Conduits for emptying or ballasting; Self-bailing equipment; Scuppers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J4/00Arrangements of installations for treating ballast water, waste water, sewage, sludge, or refuse, or for preventing environmental pollution not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/38Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a secondary battery capable of layer discharge. More specifically, the present invention relates to a secondary battery and a ballast water treatment apparatus and treatment method using the same, which are capable of producing chlorine or chlorine-based active materials during charging and discharging.
  • the secondary battery refers to a battery capable of layer charge and discharge by converting between chemical energy and electrical energy by using a material capable of electrochemical reaction at the positive electrode and the negative electrode.
  • Such secondary batteries are mainly used in places where a large amount of power storage such as a vehicle or a ship is required.
  • Representative examples of secondary batteries include lithium secondary batteries that generate electric energy by a change in the chemical potential (chemi cal potent al) when lithium ions are intercalated / deintercalated at a positive electrode and a negative electrode.
  • the lithium secondary battery is prepared by using a material capable of reversible intercalation / deintercalation of lithium ions as a positive electrode and a negative electrode active material, and layering an organic electrolyte or a polymer electrolyte between the positive electrode and the negative electrode.
  • a material capable of reversible intercalation / deintercalation of lithium ions as a positive electrode and a negative electrode active material
  • layering an organic electrolyte or a polymer electrolyte between the positive electrode and the negative electrode is present in a limited amount on the earth and is generally obtained through a difficult process from minerals and salt ponds. Accordingly, there is a problem in that high cost and high energy are used for manufacturing a battery, and a situation in which a next generation secondary battery capable of replacing lithium is required.
  • Ballast ⁇ Ballast water is seawater that fills the bottom or left and right tanks to maintain the ship's center of gravity.
  • the ballast water for example, is filled in the ship at the marina and then moved to the next destination and discharged from the ship. During this process, harmful organisms contained in ballast water are displaced and disturbed, disrupting and destroying the indigenous ecosystems in the area. Is generated.
  • the present invention provides a secondary battery for producing chlorine or chlorine-based active material, and a ballast water treatment apparatus and treatment method using the same, using sea water instead of lithium, and capable of producing chlorine or chlorine-based active material from sea water.
  • the present invention also provides a chlorine or chlorine-based active material production secondary battery capable of treating ballast water using chlorine or chlorine-based active material produced from the secondary battery, and a ballast water treatment apparatus and a treatment method using the same. [Measures of problem]
  • a secondary battery in one embodiment, includes a liquid positive electrode portion including a sodium-containing solution and a positive electrode current collector impregnated in the sodium-containing solution; A negative electrode portion including a liquid organic electrolyte, a negative electrode current collector impregnated in the liquid organic electrolyte, and a negative electrode active material layer positioned on a surface of the negative electrode current collector; And a solid electrolyte positioned between the positive electrode part and the negative electrode part, and may have a structure of producing chlorine and / or chlorine-based active material in the positive electrode part during charging.
  • It may further include a discharge portion connected to the anode portion for withdrawing the chlorine and / or chlorine-based active material generated in the anode portion during layer transfer to the outside.
  • the discharge part may include a drawing tube installed on the upper part of the positive electrode part containing the sodium-containing solution to selectively open and close the chlorine discharge during the battery layer charging or completion of charging.
  • the discharge part may include a discharge pipe installed under the positive electrode part containing the sodium-containing solution to selectively open and close the battery layer during charging or completion of charging to discharge the chlorine-based active material.
  • the anode portion has an inlet of sodium-containing solution and sodium-containing on one side
  • the outlet of the solution may be located.
  • the organic electrolyte in the negative electrode portion may include a non-aqueous organic solvent and / or sodium salt.
  • the non-aqueous organic solvent may be a carbonate-based, ester-based, ether-based, ketone bran 1, alcohol-based, aprotic solvent, or a combination thereof.
  • the sodium salt may be NaC10 4 , NaPF 4) NaPF 6 , NaAsF 6 , NaTFSI, Na Beti (NaN [S0 2 C 2 F 5 ] 2 ) or a combination thereof.
  • the anode active material may include an electrode material having a potential of less than 4.07 V vs Na / Na + .
  • the carbonaceous material may be natural graphite, artificial graphite, soft carbon, hard carbon, or a combination thereof. More specifically, it may be a hard carbon.
  • the sodium a ii oy material is Si, Sn, Bi, Si0 2 , Sb 2 0 4 , Si / C, Sn / C, Sb / C composite, SnSb / C composite, amorphous P / C composite, or a combination thereof
  • the sodium intercalation material is Li 4 Ti 5 0 12, NaCo 2 0 4, Na 2 Ti 3 07, Fe 3 0 4, Ti0 2, TiS 2) VS 2, Sb 2 0 4, Sb / C composite (composite ), A SnSb / C composite, an amorphous P / C composite, or a combination thereof.
  • the electrode material having a potential of less than 4.07 V vs Na / Na + is Na 2 FeP0 4 F, NaFeP0 4 , BP0E, NMHFC, Na 3 V (P0 4 ) 3 / C, Nai. 5 VP0 4 .8 Fo. 7 or a combination thereof.
  • the conductive material may be a carbon-based material including natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, or carbon fiber; Metal powder including copper, nickel, aluminum, or silver; Metal fibers; Conductive polymers; Metal oxides including ruthenium oxide or iridium oxide; Or a combination thereof.
  • the binder is polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, polyvinyl chloride, carboxylated polyvinyl chloride polyvinyl fluoride, polymer containing ethylene oxide, polyvinylpyridone, Polyurethane, polytetrafluoroethylene polyvinylidene fluoride, polyethylene, polypropylene, styrene-butadiene rubber, acrylated styrene-butadiene rubber, epoxy resin, nylon, or combinations thereof
  • the solid electrolyte may be ⁇ -alumina ( ⁇ - ⁇ 1 2 0 3 ), amorphous ion conducting material (phosphorus-based gl ass, oxide-based glass, oxide / sul fide based gl ass), nacicon (Na super ioni c conductor , NASI CON), sodium sulfide-based solid electrolyte, sodium oxide-based solid electrolyte, or a combination thereof.
  • the positive electrode current collector may be carbon paper, carbon fiber, carbon cloth, carbon felt, metal, metal oxide, metal thin film, DSA (insoluble) electrode, or a combination thereof.
  • the positive electrode current collector may have a structure coated with carbon black such as a vulcan, metal catalyst, metal oxide catalyst, conductive material, graphene oxide, or a combination thereof.
  • the porosity of the positive electrode current collector may be 1 an to 250 urn.
  • the secondary battery may occur at the following reaction formula 1 and / or bivalent positive electrode portion during discharge. "[Equation 1 banung;
  • the secondary battery may occur at the following semi-formula 3 and / or tetravalent positive electrode during layer charging.
  • the sodium containing solution may be seawater.
  • the ballast water treatment apparatus of the present embodiment is connected to the secondary battery, a ballast water supply unit connected to the anode portion of the secondary battery to supply the ballast water to the anode portion during layer display, and the ballast water treated at the anode portion of the secondary battery.
  • a ballast water discharge portion discharged from the secondary battery to the outside, through the secondary battery It may be a structure for sterilization treatment.
  • the ballast water treatment apparatus of the present embodiment is connected to the secondary battery, the positive electrode of the secondary battery discharge portion for discharging the chlorine generated from the positive electrode portion during charging, and collects the chlorine discharged from the discharge portion Chlorine collecting unit; It may be connected to the chlorine collection unit may include a sterilizer to selectively receive chlorine from the chlorine collection unit to disinfect the ballast water.
  • the ballast water treatment device of the present embodiment includes a discharge part for discharging chlorine-based active material generated at the positive electrode part when the layer is connected to the secondary battery, the positive electrode part of the secondary battery to the outside, and the chlorine-based active discharged from the discharge part. It may include a collecting unit for collecting the material, the sterilizer for disinfecting the ballast water by selectively receiving the chlorine-based active material from the collecting unit.
  • reaction formulas 5 and / or 6 may occur at the positive electrode when the sterilizer or the secondary battery layer is charged.
  • the method of treating ballast water of the present embodiment includes supplying ballast water to the anode part when the secondary battery is charged, and is contained in the anode part with a chlorine-based active material generated when the secondary battery is charged. Sterilizing the ballast water of the vessel, may include the step of discharging the sterilized ballast water from the secondary battery positive electrode.
  • the ballast water treatment method of this embodiment may include collecting chlorine discharged from the positive electrode portion of the secondary battery, and sterilizing the ballast water using the collected chlorine.
  • the ballast water treatment method of this embodiment may include collecting chlorine-based active material discharged from the positive electrode portion of the secondary battery, and disinfecting the ballast water using the collected chlorine-based active material.
  • Additives are added to the positive electrode of the secondary battery to generate chlorine-based active materials. It may further comprise the step of adjusting.
  • the chlorine-based active substance may be hypochlorous acid (H0C1) or sodium hypochlorite (NaOCl).
  • the additive may be sulfuric acid (3 ⁇ 4SO 4 ) and / or chlorite (2NaC10 3 ).
  • the secondary battery may generate chlorine dioxide by adding an additive.
  • reaction formulas 7 and / or 8 may occur at the positive electrode when the additive is added.
  • the secondary battery which can be operated at a lower cost can be manufactured by using abundant and easy to obtain resources such as seawater.
  • the charging and discharging process of the secondary battery can be provided by converting the seawater to chlorine or chlorine-based active material, it is possible to disinfect ballast water with less energy without the production facilities of chlorine or chlorine-based active material.
  • FIG. 1 is a schematic view of a secondary battery according to the present embodiment.
  • FIG. 2 is a schematic diagram illustrating a reaction model generated at the anode part during layer conversion of the secondary battery according to the present embodiment.
  • FIG 3 shows charge and discharge data of a secondary battery according to the present embodiment.
  • 5 is charging data of a secondary battery according to a scanning speed according to the present embodiment.
  • 6 is E. coli treatment characteristic evaluation data of ballast water according to the present embodiment;
  • a secondary battery includes a liquid positive electrode portion including a sodium-containing solution and a positive electrode current collector impregnated in the sodium-containing solution; A negative electrode portion including a liquid organic electrolyte, a negative electrode current collector impregnated in the liquid organic electrolyte, and a negative electrode active material layer positioned on a surface of the negative electrode current collector; A solid electrolyte positioned between the anode portion and the cathode portion; And a discharge part connected to the positive electrode part for extracting chlorine and / or chlorine-based active material generated from the positive electrode part during layer formation to the outside.
  • the discharge part is installed on the upper part of the positive electrode part containing the sodium-containing solution is selectively opened and closed to discharge the chlorine at the time of charging the battery or after the layer is completed.
  • the discharge portion may be provided on the top of the anode portion may include a withdrawal tube that is selectively opened and closed.
  • the discharge unit is capable of discharging the chlorine-based active material generated in the positive electrode when charging the secondary battery.
  • the discharge portion includes a discharge pipe that is installed in the lower portion of the positive electrode portion containing the sodium-containing solution is selectively opened and closed, and selectively opened and closed during the charging of the battery or after the completion of charging to remove the chlorine-based active Will be discharged.
  • the secondary battery may have a structure in which a chlorine-based active material is drawn out through the outlet if necessary by using an outlet part provided to distribute sodium to the positive electrode part as a discharge part through which the chlorine-based active material is discharged.
  • 1 is a schematic view of a secondary battery according to an embodiment of the present invention.
  • 1 is an embodiment of the present invention, it will be described by taking sea water as an example of a sodium-containing solution.
  • sea water as an example of a sodium-containing solution.
  • an embodiment of the present invention will be described with reference to FIG. 1.
  • FIG. 1 (a) shows the schematic principle of a secondary battery, from FIG. 1 (a) in a sodium containing solution (eg seawater). It can be seen that a secondary battery according to an embodiment of the present invention is driven by using a potential difference according to a change in the concentration of sodium ions.
  • a sodium containing solution eg seawater
  • 1 (b) and (c) are schematic diagrams and photographs of charging and discharging experiments using Na counter electrodes on the negative electrode.
  • 1 (d) and (e) are schematic diagrams showing the chemical reaction during layer discharge of a half cell (hal f cel l) using a Na counter electrode as a cathode.
  • the negative electrode may be replaced with a new structure negative electrode including the negative electrode active material.
  • Figure 2 shows a model that can occur in the positive electrode during the layer charge of the secondary battery.
  • Reaction Schemes 1 and / or bivalent may occur at the positive electrode portion during discharge.
  • the secondary battery according to an embodiment of the present invention may occur in the following reaction formula 3 and / or tetravalent positive electrode portion during charging. Through this reaction, chlorine is obtained at the anode part during layer transfer.
  • charging and discharging may be possible using a sodium-containing solution (for example, seawater) and a human body fluid having a similar composition.
  • a sodium-containing solution for example, seawater
  • a human body fluid having a similar composition for example, the application can be expanded in various ways.
  • One side of the anode may be an inlet of the sodium-containing solution and an outlet of the sodium-containing solution. This may allow for a continuous supply of sodium containing solution in the anode.
  • the secondary battery is removed by moving sodium to the negative electrode in the positive electrode by a reaction formula occurring at the positive electrode during charging.
  • the sodium-containing solution contained in the anode portion is converted to chlorine.
  • the chlorine in the anode part may be drawn out to the outside by opening a drawing tube provided at the upper end of the anode part when all of the sodium in the anode part is removed and the layer is completed.
  • the secondary battery may have the following reactions 5 and / or 6 occurring at the positive electrode.
  • the chlorine-based active material is generated in the positive electrode of the secondary battery during charging.
  • the chlorine-based active material may be taken out to the outside by opening the discharge pipe provided in the lower portion of the anode when the layer conversion is completed.
  • the chlorine-based active material produced in the positive electrode portion of the secondary battery may be hypochlorous acid (H0C1) or sodium hypochlorite (NaOCl).
  • the chlorine-based active material may be not only H0C1 or NaOCl but also HC10 2 , HC10 3 , NaC10 2 , NaC10 3 , CIO “ , C10 2 " , CIO3 "
  • the chlorine-based active material may be understood as a salt containing chlorine as described above. .
  • the secondary battery of the present embodiment supplies electrical energy through layer discharge of the secondary battery, and charges seawater to chlorine and / or chlorine-based active materials during charging. It can be converted and provided.
  • the negative electrode unit may include an organic electrolyte, and the organic electrolyte in the negative electrode unit may include a non-aqueous organic solvent and / or a sodium salt.
  • the non-aqueous organic solvent serves as a medium through which ions involved in the electrochemical reaction of the cell can move.
  • a carbonate-based, ester-based, ether-based, ketone-based alcohol-based or aprotic solvent may be used.
  • the carbonate solvent include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), methylethyl carbonate (MEC), and ethylene carbonate ( EC), propylene carbonate (PC), butylene carbonate (BC) and the like can be used
  • the ester solvent is methyl acetate, ethyl acetate, n-propyl acetate, 1, 1-dimethylethyl acetate, methyl propionate ,.
  • Ethyl propionate, ⁇ -butyrolactone, decanolide, valerolactone, mevalonol actone, caprolactone and the like can be used.
  • ether solvent dibutyl ether, tetraglyme, diglyme, dimethoxyethane, 2-methyltetrahydrofuran, tetrahydrofuran, and the like may be used.
  • ketone solvent cyclonucanon may be used. have.
  • R-CN R is a C2 to C20 linear, branched or cyclic hydrocarbon group, Amides such as nitriles and dimethylformamide, and dioxolanes such as 1,3-dioxolane and sulfolanes such as 1,3-dioxolane and the like.
  • the non-aqueous organic solvent may be used alone or in combination of one or more, and the mixing ratio in the case of using one or more in combination can be appropriately adjusted according to the desired battery performance, which is widely understood by those skilled in the art Can be.
  • the carbonate solvent it is preferable to use a cyclic carbonate and a chain carbonate in combination.
  • the cyclic carbonate and the chain carbonate may be mixed and used in a volume ratio of about 1: 1 to about 1: 9, so that the performance of the electrolyte may be excellent.
  • the non-aqueous organic solvent may further include the aromatic hydrocarbon organic solvent in the carbonate solvent.
  • the carbonate-based solvent and the aromatic hydrocarbon-based organic solvent may be mixed in a volume ratio of about 1: 1 to about 30: 1.
  • aromatic hydrocarbon-based organic solvent may be used an aromatic hydrocarbon compound of the formula (4).
  • 3 ⁇ 4 to 3 ⁇ 4 are each independently hydrogen, halogen, an alkyl group of C 10 in C 1, a haloalkyl group of C 1 to C 10, or a combination thereof.
  • the aromatic hydrocarbon organic solvent is benzene, fluorobenzene 1,2-difluorobenzene, 1,3-difluorobenzene, 1,4-difluorobenzene
  • 1,2,3-triiodoluene, 1,2, 4-triiodoluene, xylene or a combination thereof may be used.
  • the non-aqueous electrolyte may further include vinylene carbonate or an ethylene carbonate compound of Formula 5 to improve battery life.
  • R 7 and R 8 are each independently hydrogen, halogen eu cyano group (CN), nitro (N0 2) or a fluoroalkyl group of C1 to C5, and at least one of the R 7 and R 8 Is a halogen group, cyano group (CN), nitro group (N0 2 ) or a C1 to C5 fluoroalkyl group.
  • ethylene carbonate compound examples include difluoro ethylene carbonate, chloroethylene carbonate, dichloroethylene carbonate, bromoethylene carbonate, dibromoethylene carbonate, nitroethylene carbonate cyanoethylene carbonate, and fluoroethylene carbonate. have.
  • the amount thereof may be appropriately adjusted to improve life.
  • the sodium salt is a substance that dissolves in the non-aqueous organic solvent, acts as a source of sodium ions in the battery, thereby enabling the operation of a basic secondary battery and promoting the movement of sodium ions between the positive and negative electrodes. .
  • the sodium salt is NaC10 4 , NaPF 4 , NaPF 6 , NaAsF 6) NaTFSI,
  • Na Bet i NaN [S0 2 C 2 F 5 ] 2 ) or a combination thereof.
  • the concentration of the sodium salt may be 0.001 to 10M, more specifically, it may be in the range of 0.01 to 2.0M.
  • concentration of the sodium salt is included in the above range, since the electrolyte has an appropriate conductivity and viscosity, it can exhibit excellent electrolyte performance, and sodium ions can move effectively.
  • the negative electrode active material layer positioned on the surface of the negative electrode current collector includes a negative electrode active material, a conductive material, and / or a binder, and the negative electrode active material includes a carbonaceous material, sodium al loy material, sodium intercalation, and / or a combination thereof. Phosphorus complex material.
  • the anode active material may include an electrode material having a potential of less than 4.07 V vs Na / Na + .
  • the carbonaceous material may be natural or artificial graphite, soft carbon, hard carbon, or a combination thereof. More specifically, it may be a hard carbon.
  • the sodium alloy material may be Si, Sn, Bi, Si02, Sb204, Si / C, Sn / C, Sb / C composite, SnSb / C composite, amorphous P / C composite , Or a combination thereof. More specifically, it may be Sn / C.
  • the sodium intercalation material is Li 4 Ti 5 0i 2 , NaCo 2 0 4 , Na 2 Ti 3 0 7 , Fe 3 0 4) Ti0 2 , TiS 2 , VS 2 , Sb 2 0 4 , Sb / C composite (composite ), A SnSb / C composite, an amorphous P / C composite, or a combination thereof. More specifically, the sodium intercalation material may be Li 4 Ti 5 0i 2 .
  • the electrode material having a potential of less than 4.07 V vs Na / Na + is Na 2 FeP0 4 F, NaFeP0 4 , BP0E, Li HFC, Na 3 V (P0 4 ) 3 / C, Na L5 VP0 4 . 8 F 0 . 7 or a combination thereof.
  • the negative electrode active material layer also includes a binder, and may optionally further include a conductive material.
  • the binder adheres the negative electrode active material particles to each other well, and also adheres the negative electrode active material to the current collector.
  • the binder include polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl salose, polyvinyl chloride, and carbon. Polymerized polyvinylchloride, polyvinylfluoride, ethylene oxide, polyvinylpyridone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene-butadiene rubber, Acrylic styrene-butadiene rubber, epoxy resin, nylon and the like can be used, but is not limited thereto.
  • the conductive material is used to impart conductivity to the electrode. Any conductive material may be used as long as it is an electron conductive material without causing chemical change in the battery. For example, natural graphite, artificial graphite, carbon black, acetylene black, and ketjen black. Carbon-based materials such as carbon fiber; Metal materials such as metal powder or metal fibers such as copper, nickel, aluminum and silver; Conductive polymers such as polyphenylene derivatives; A conductive material containing a metal oxide such as ruthenium oxide, iridium oxide, or a mixture thereof can be used.
  • the current collector may be copper foil, nickel foil, stainless steel foil, titanium foil, nickel Foams, copper foams, polymeric substrates coated with conductive metals, or combinations thereof may be used.
  • the negative electrode is prepared by mixing an active material, a binder, and a conductive material in a solvent to prepare an active material composition, and applying the composition to a current collector. Since such an electrode manufacturing method is well known in the art, detailed description thereof will be omitted. N-methylpyrrolidone may be used as the solvent, but is not limited thereto.
  • the solid electrolyte is a material that is fast to move the sodium and silver fast and stable with aqueous solutions and organic solutions, amorphous silver conductive material (phosphorus-based gl ass, oxide-based gl ass, oxide / sul fide based gl ass), Na super ion conductor (NASI CON), sodium sulfide based solid electrolyte, sodium oxide based solid electrolyte, or a combination thereof.
  • it may be nasicon, in which case the conductivity may be further improved.
  • the positive electrode current collector included in the positive electrode portion may be carbon paper, carbon fiber, carbon cloth, carbon felt, metal thin film, metal oxide, DSA (insoluble) electrode, or a combination thereof, and more specifically, may be carbon paper. have. In the case of carbon paper, it is possible to minimize the by-products resulting from the oxidation / reduction reaction of other metal ions contained in the sodium-containing solution.
  • the positive electrode current collector may have a structure coated with carbon black such as a vulcan, metal catalyst, metal oxide catalyst, conductive material, graphene oxide, or a combination thereof.
  • the porosity of the positive electrode current collector may range from 1 kW to 250 ⁇ . When this range is satisfied, more electrode reactions can be induced by constructing an electrode having a large surface area.
  • the ballast water treatment device has a structure for directly treating the ballast water in the secondary battery.
  • the ballast water treatment apparatus of this embodiment includes a ballast water supply unit connected to a positive electrode of the secondary battery and supplying ballast water to the positive electrode when charged, and a ballast water treated at the positive electrode of the secondary battery. Including a ballast water discharge portion discharged to the outside in the structure, the ballast water of the vessel through the secondary battery without sterilizer sterilization treatment It is.
  • the ballast water supply unit may be, for example, formed at an upper portion of the secondary battery and connected to an inlet unit for supplying seawater into the positive electrode unit and supplying ballast water to the vessel through the inlet unit.
  • the ballast water discharge part may be, for example, connected to an outlet portion formed under the positive electrode portion of the secondary battery, and may have a structure for discharging the ballast water that has been sterilized through the outlet portion.
  • the treatment apparatus continuously supplies the ballast water to the positive electrode of the secondary battery through the ballast water supply unit and the ballast water discharge unit during charging of the secondary battery, and sterilizes the ballast water during the secondary battery charging process.
  • the banung formula 5 and / or banung formula 6 occurs in the positive electrode portion to generate a chlorine-based active material in the positive electrode portion.
  • the chlorine-based active material produced in the positive electrode portion of the secondary battery may be hypochlorous acid (H0C1) or sodium hypochlorite (NaOCl).
  • the chlorine-based active material thus produced has a very high bactericidal power to sterilize bacteria and marine microorganisms remaining in the ballast water.
  • the active material may be formed together with H0C1 or NaOCl as well as HC10 2 , HC10 3 , NaC10 2 , NaC10 3 , CIO “ , C10 2 " , and CIO3 " .
  • an additive may be added to the positive electrode to control the generation of the chlorine-based active material.
  • the additive is sulfuric acid (H 2 S0 4 ) and / or Chlorite (2NaC10 3 ). Additional reactions produced by adding additives may be of the following schemes 7 and / or 8.
  • chlorine dioxide is produced when the additive is added, looking at the reaction process is as follows.
  • chlorine dioxide may be generated by reacting chlorine and chloric acid generated by reacting an inorganic acid (HC1 or H2S04) with chlorite.
  • Banungsik is as follows.
  • hypochlorous acid produced at this time reacts with chlorous acid to form chloric acid.
  • a hypochlorite and a mineral acid may be by oxidizing the chlorite to chlorate to chlorine dioxide synthesis.
  • the scheme is as follows.
  • hypochlorite and chlorite are produced by hypochlorite and chlorite by acid, and hypochlorite oxidizes chlorite to produce chloric acid. At this time, the newly produced chloric acid causes condensation reaction with chlorine acid to produce chlorine dioxide and water.
  • the chlorite can be oxidized to chlorine to produce chlorine dioxide.
  • chlorine is hydrolyzed by fresh water to produce hypochlorous acid and hydrochloric acid
  • hydrochloric acid is converted to chlorite
  • the resulting chlorite is reacted with hypochlorous acid and chloric acid is produced.
  • the produced chloric acid condenses reaction with chlorous acid to produce chlorine dioxide and water. Their chemical reactions are as follows.
  • the It is connected to the discharge part of the secondary battery includes a collecting unit for collecting chlorine produced in the secondary battery, and a sterilizer for disinfecting the ballast water by receiving the chlorine from the collecting unit.
  • the collector stores chlorine and supplies chlorine to the sterilizer if necessary.
  • the sterilizer sterilizes the ballast water using the chlorine supplied from the collecting unit.
  • the chlorine produced in the positive electrode while driving the secondary battery is transferred to the collecting unit connected to the discharge unit and stored. Chlorine stored in the collection is fed to the sterilizer if necessary.
  • the sterilizer disinfects ballast water by using chlorine supplied from the collecting unit. At this time, in the sterilizer, the following reactions 5 and / or 6 occur to sterilize the ballast water.
  • the ballast water treatment apparatus is connected to the positive electrode portion of the secondary battery discharge portion for discharging the chlorine-based active material generated in the positive electrode portion during layer discharge to the outside, and the chlorine-based discharged from the discharge portion It includes a collecting unit for collecting the active material, the sterilizer for disinfecting the ballast water by selectively receiving the chlorine-based active material from the collecting unit.
  • the discharge part is installed at the bottom of the positive electrode portion containing the sodium-containing solution is selectively opened and closed when the battery is charged or after the charge is completed to discharge the chlorine-based active material generated in the positive electrode portion.
  • the chlorine-based active substance may be hypochlorous acid (H0C1) or sodium hypochlorite (NaOCl).
  • the collection unit stores the chlorine-based active material and supplies the chlorine-based active material to the sterilizer if necessary.
  • the sterilizer sterilizes the ballast water using the chlorine-based active material supplied from the collecting unit. Accordingly, the chlorine-based active material produced at the positive electrode while the secondary battery is driven is transferred to the collecting unit connected to the discharge unit and stored. Chlorine stored in the collection is fed to the sterilizer if necessary.
  • the sterilizer sterilizes the ballast water using the chlorine-based active material supplied from the collecting unit.
  • Hypochlorite or sodium hypochlorite which are active materials produced in the secondary battery of the present embodiment, has a very high sterilizing power and sterilizes bacteria and marine microorganisms remaining in the ballast water.
  • Carbon paper (Fuel Cel l Store, 2050-A) was used as the current collector. After the seawater was added to the cathode container, the current collector was impregnated with seawater to prepare a cathode portion. The porosity of the carbon paper is 28. Preparation of Cathode Part
  • Stainless steel (McMASTER) was used as the current collector.
  • McMASTER hard carbon
  • TIMCAL conductive material super P carbon black
  • binder poly terrafluoroethylene
  • the organic electrolyte was prepared by mixing ethylene carbonate (EC): diethylene carbonate (DEC) (1: 1vol ratio) and 1M NaC10 4 sodium salt (Aldri ch).
  • NASICON Na 3 Zr 2 Si 2 P0 12
  • the solid electrolyte was made through a solid id-state react ion in the laboratory. Solid reactions well known in the art will be omitted for specific methods.
  • a solid electrolyte was placed between the positive electrode and the negative electrode. The thickness of the solid electrolyte is 1 kPa.
  • An inlet and an outlet for supplying a sodium-containing solution were installed at the side and bottom of the vessel forming the anode, and a discharge tube was installed at the top of the vessel to be used as a chlorine discharge portion.
  • FIG. 3 is charge and discharge data of a rechargeable battery according to an exemplary embodiment of the present invention.
  • FIG. 4 is cycle characteristic data of a rechargeable battery according to an exemplary embodiment of the present invention. It can be seen from FIG. 4 that the first cycle shows stable reversible capacity after SEI formation and 84% efficiency after about 40 cycles.
  • 5 is a layer of the battery by the scanning speed according to an embodiment of the present invention Data.
  • E. coli treatment characteristic evaluation data of ballast water according to an embodiment of the present invention.
  • the concentration of microorganisms in the seawater before driving the secondary battery is about 2 ⁇ 10 3 cfu, indicating that various kinds of microorganisms are growing.
  • the concentration of marine microorganisms in the seawater contained in the secondary battery positive electrode portion is 0 cfu, indicating that all of the marine microorganisms have been killed.
  • an active material having strong sterilizing power such as hypochlorous acid and sodium hypochlorite is produced in the positive electrode portion to sterilize bacteria and marine microorganisms such as E. coli. Therefore, the ballast water of the ship can be treated with only the secondary battery of the present embodiment without providing a separate device such as a conventional electrolysis facility.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Toxicology (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

이차 전지 및 이차 전지 시스템에 관한 것으로, 나트륨 함유 용액 및 상기 나트륨 함유 용액에 함침된 양극 집전체를 포함하는 액상의 양극부; 액상의 유기 전해질, 상기 액상의 유기 전해질에 함침된 음극 집전체 및 상기 음극 집전체 표면에 위치하는 음극 활물질 층을 포함하는 음극부; 및 상기 양극부와 상기 음극부 사이에 위치하는 고체 전해질; 및 상기 양극부에 연결되어 충전시 양극부에서 발생되는 염소를 외부로 인출하는 염소배출부;를 포함하는 염소 생산 이차 전지를 제공한다.

Description

【명세서】
【발명의 명칭】
염소 또는 염소계 활성물질을 생산하는 이차전지, 이를 이용한 선박 평형수 처리 장치 및 처리 방법
【기술분야】
본 발명은 층방전이 가능한 이차 전지에 관한 것이다. 보다 상세하게 본 발명은 충방전 과정에서 염소 또는 염소계 활성물질을 생산할 수 있도록 된 이차 전지와 이를 이용한 선박 평형수 처리장치 및 처리 방법에 관한 것이다.
【발명의 배경이 되는 기술】
일반적으로 이차 전지는 양극과 음극에 전기 화학 반웅이 가능한 물질을 사용함으로써, 화학 에너지와 전기 에너지 간의 전환을 통해 층전과 방전이 가능한 전지를 의미한다. 이러한 이차 전지는 차량이나 선박 등 대용량의 전력 저장이 요굿되는 곳에 주로 사용된다. 이차 전지 중 대표적인 예로는 양극 및 음극에서 리튬 이온이 인터칼레이션 /디인터칼레이션될 때의 화학전위 (chemi cal potent i al )의 변화에 의하여 전기 에너지를 생성하는 리튬 이차 전지가 있다. 상기 리튬 이차 전지는 리튬 이온의 가역적인 인터칼레이션 /디인터칼레이션이 가능한 물질을 양극과 음극 활물질로 사용하고, 상기 양극과 음극 사이에 유기 전해액 또는 폴리머 전해액을 층전시켜 제조한다. 다만, 리튬은 지구상에 한정된 양만이 존재하며 일반적으로 광물, 염호 둥으로부터 어려운 공정을 통해 수득되고 있다. 이에 전지의 제조를 위해 고비용과 고에너지가 사용되는 문제가 있어, 리튬을 대체할 수 있는 차세대 이차 전지가 필요한 실정이다.
이차 전지가 사용되는 선박은, 이차 전지와 별도로 선박 평형수 (bal l ast water )의 처리를 위한 다양한 연구가 진행되고 있다. 선박 평형수는 배의 무게중심을 유지하기 위해 배 밑바닥이나 좌우에 설치된 탱크에 채우는 바닷물이다. 선박 평형수는 예를 들어, 정박지에서 선박 내에 채워진 후 다음 목적지로 이동하여 선박에서 배출된다. 이 과정에서 선박 평형수에 포함된 유해 생물이 이동 배출되어 해당 지역의 토착 생태계를 교란 파괴하는 문제가 발생된다.
종래의 경우, 상기한 이차 전지와 이차전지가 탑재된 선박의 선박 평형수 처리는 각각 별도로 연구되어 개별적으로 설치되어 사용되고 있어, 이들을 하나로 통합시켜 운영하기 위한 기술의 개발이 요구되고 있다.
【발명의 내용】
【해결하고자 하는 과제】
리튬 대신 해수를 이용하며, 해수로부터 염소 또는 염소계 활성물질을 생산할 수 있도록 된 염소 또는 염소계 활성물질 생산 이차전지와 이를 이용한 선박 평형수 처리 장치 및 처리 방법을 제공한다.
또한, 이차전지로부터 생산된 염소 또는 염소계 활성물질을 이용하여 선박 평형수를 처리할 수 있도록 된 염소 또는 염소계 활성물질 생산 이차전지와 이를 이용한 선박 평형수 처리 장치 및 처리 방법을 제공한다. 【과제의 해결 수단】
본 발명의 일 실시예에서 이차 전지는, 나트륨 함유 용액 및 상기 나트륨 함유 용액에 함침된 양극 집전체를 포함하는 액상의 양극부; 액상의 유기 전해질, 상기 액상의 유기 전해질에 함침된 음극 집전체 및 상기 음극 집전체 표면에 위치하는 음극 활물질 층을 포함하는 음극부 ; 상기 양극부와 상기 음극부 사이에 위치하는 고체 전해질;을 포함하고, 충전시 상기 양극부에서 염소 및 /또는 염소계 활성물질을 생산하는 구조일 수 있다.
상기 양극부에 연결되어 층전시 양극부에서 발생되는 염소 및 /또는 염소계 활성물질을 외부로 인출하는 배출부를 더 포함할 수 있다.
상기 배출부는 나트륨 함유 용액이 수용된 양극부 상단에 설치되어 전지 층전시 또는 충전 완료 후 선택적으로 개폐되어 염소를 배출하는 인출관을 포함할 수 있다.
상기 배출부는 나트륨 함유 용액이 수용된 양극부 하부에 설치되어 전지 층전시 또는 충전 완료 후 선택적으로 개폐되어 염소계 활성물질을 배출하는 배출관을 포함할 수 있다.
상기 양극부는 일 측면에 나트륨 함유 용액의 유입부 및 나트륨 함유 용액의 유출부가 위치할 수 있다.
상기 음극부 내 유기 전해질은, 비수성 유기 용매 및 /또는 나트륨염을 포함할 수 있다.
상기 비수성 유기 용매는 카보네이트계, 에스테르계, 에테르계, 케톤겨 1, 알코올계, 비양성자성 용매, 또는 이들의 조합일 수 있다.
상기 나트륨염은 NaC104, NaPF4) NaPF6, NaAsF6, NaTFSI , Na Beti (NaN[S02C2F5]2) 또는 이들의 조합일 수 있다.
상기 음극 집전체 표면에 위치하는 음극 활물질 층은, 음극 활물질, 도전재, 및 /또는 바인더를 포함하고, 상기 음극 활물질은 탄소계 재료, 나트륨 alloy 물질, 나트륨 인터칼레이션, 및 /또는 이들의 조합인 복합물질을 포함할 수 있다.
상기 음극 활물질은 전위가 4.07 V vs Na/Na+보다 작은 전극물질을 포함할 수 있다.
상기 탄소계 재료는 천연흑연, 인조혹연, 소프트카본, 하드카본, 또는 이들의 조합이 될 수 있다. 보다 구체적으로 하드카본일 수 있다.
상기 나트륨 aiioy 물질은 Si, Sn, Bi, Si02, Sb204, Si/C, Sn/C, Sb/C 복합체 (composite), SnSb/C 복합체 (composite) , 비정질 (amorphous) P/C 복합체 (composite), 또는 이들의 조합일 수 있다
상기 나트륨 인터칼레이션 물질은 Li4Ti5012, NaCo204, Na2Ti307, Fe304, Ti02, TiS2) VS2, Sb204, Sb/C 복합체 (composite), SnSb/C 복합체 (composite), 비정질 (amorphous) P/C 복합체 (composite) , 또는 이들의 조합일 수 있다.
상기 전위가 4.07 V vs Na/Na+ 보다 작은 전극물질은 Na2FeP04F, NaFeP04, BP0E, NMHFC, Na3V(P04)3/C, Nai.5VP04.8Fo.7 또는 이들의 조합일 수 있다.
상기 도전재는 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 또는 탄소섬유를 포함하는 탄소계 물질; 구리, 니켈, 알루미늄, 또는 은을 포함하는 금속 분말; 금속 섬유; 도전성 폴리머; 산화루테늄 또는 산화이리듐을 포함하는 금속산화물; 또는 이들의 흔합물일 수 있다.
상기 바인더는 폴리비닐알콜, 카르복시메틸셀를로즈, 히드록시프로필셀를로즈, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드 폴리비닐플루오라이드, 에틸렌 옥사이드를 포함하는 폴리머, 폴리비닐피를리돈, 폴리우레탄, 폴리테트라플루오로에틸렌 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔 러버, 아크릴레이티드 스티렌-부타디엔 러버, 에폭시 수지, 나일론, 또는 이들의 조합일 수 있다ᅳ
상기 고체 전해질은 β-알루미나 (β-Α1203) , 비정질 이온 전도도 물질 (phosphorus-based gl ass , oxide-based glass , oxide/sul f ide based gl ass) , 나시콘 (Na super ioni c conductor , NASI CON) , 나트륨황화물계 고체전해질, 나트륨산화물계 고체전해질, 또는 이들의 조합을 포함할 수 있다.
상기 양극 집전체는 탄소 페이퍼, 탄소 섬유, 탄소 천, 탄소 펠트, 금속, 금속산화물, 금속박막, DSA (불용성)전극, 또는 이들의 조합일 수 있다.
상기 양극 집전체는 벌칸과 같은 카본블랙, 금속류 촉매, 산화금속류 촉매, 도전재, 그래핀 산화물, 또는 이들의 조합을 코팅한 구조일 수 있다.
상기 양극 집전체의 기공도는 1 an 내지 250 urn 일 수 있다.
상기 이차 전지는 방전 시 하기 반웅식 1 및 /또는 2가 양극부에서 일어날 수 있다. ' [반웅식 1]
Na+ + ¾0 + e" -> NaOH + 1/2H2
[반응식 2]
Na+ + 1/2¾0 + 1/402 + eᅳ NaOH
상기 이차 전지는 층전 시 하기 반웅식 3 및 /또는 4가 양극부에서 일어날 수 있다.
[반응식 3]
NaCl -> Na + 1/2C12
[반웅식 4]
NaOH -> Na + 1/2¾0 + 1/402 상기 나트륨 함유 용액은 해수일 수 있다.
본 실시예의 선박 평형수 처리 장치는 상기 이차 전지와, 상기 이차전지의 양극부에 연결되어 층전시 양극부로 선박 평형수를 공급하는 평형수공급부와, 이차전지의 양극부에서 처리된 선박 평형수를 이차전지에서 외부로 배출하는 평형수배출부를 포함하여, 상기 이차전지를 통해 선박 평형수를 살균 처리하는 구조일 수 있다.
본 실시예의 선박 평형수 처리 장치는 상기 이차전지와, 상기 이차전지의 양극부에 연결되어 충전시 양극부에서 발생되는 염소를 외부로 배출하는 배출부와, 상기 배출부에서 배출되는 염소를 포집하는 염소포집부; 상기 염소포집부에 연결되어 염소포집부로부터 염소를 선택적으로 공급받아 선박 평형수를 소독하는 소독기를 포함할 수 있다 .
본 실시예의 선박 평형수 처리 장치는 상기 이차전지와, 상기 이차전지의 양극부에 연결되어 층전시 양극부에서 발생되는 염소계 활성물질을 외부로 배출하는 배출부와, 상기 배출부에서 배출되는 염소계 활성물질을 포집하는 포집부, 상기 포집부로부터 염소계 활성물질을 선택적으로 공급받아 선박 평형수를 소독하는 소독기를 포함할 수 있다.
상기 소독기 또는 상기 이차 전지 층전 시 양극부에서 하기 반웅식 5 및 /또는 6이 일어날 수 있다.
[반웅식 5]
Cl2 + ¾0 -> HC1 + H0C1
H0C1 -> H+ + 0C1 -
[반웅식 6]
NaOH + Cl2 -> NaOCl + HC1 본 실시예의 선박 평형수 처리 방법은 상기 이차전지의 충전시 양극부로 선박 평형수를 공급하는 단계와, 이차전지를 충전시 생성된 염소계 활성물질로 양극부에 수용된 선박 평형수를 살균 처리하는 단계, 살균 처리된 선박 평형수를 이차전지 양극부에서 배출하는 단계를 포함할 수 있다.
본 실시예의 선박 평형수 처리 방법은 상기 이차전지의 양극부에서 배출되는 염소를 포집하고, 포집된 염소를 이용하여 선박 평형수를 살균 처리하는 단계를 포함할 수 있다.
본 실시예의 선박 평형수 처리 방법은 이차 전지.의 양극부에서 배출되는 염소계 활성물질을 포집하고, 포집된 염소계 활성물질을 이용하여 선박 평형수를 소독하는 단계를 포함할 수 있다.
상기 이차 전지의 양극부에 첨가제를 투입하여 염소계 활성물질 생성을 조절하는 단계를 더 포함할 수 있다.
상기 염소계 활성물질은 차아염소산 (H0C1 ) 또는 차아염소산나트륨 (NaOCl )일 수 있다.
상기 첨가제는 황산 (¾S04) 및 /또는 아염소산염 (2NaC103)일 수 있다.
상기 이차 전지는 첨가제를 투입하여 이산화염소를 생성할 수 있다.
상기 이차 전지는 첨가제 투입시 하기 반웅식 7 및 /또는 8이 양극부에서 일어날 수 있다.
[반응식 7]
2NaC103 + ¾S04 → 2HC103 + Na2S04
HClOs + H2S03 → HCIO2 + H2S04
HCIO3+ HCIO2 → 2C102 + H20
[반웅식 8]
2NaC103+ 2HC1 → 2HC103 + 2NaCl
Figure imgf000008_0001
HCIO3+ HC102 → 2C102 + H20
【발명의 효과】
본 실시예에 의하면, 해수와 같은 풍부하고 획득이 용이한 자원을 이용함으로써 보다 낮은 비용으로 운영이 가능한 이차 전지를 제조할 수 있다. 또한, 이차 전지의 충방전 과정에서 해수를 염소나 염소계 활성물질로 변환하여 제공할 수 있어, 별도의 염소나 염소계 활성물질의 생산 시설 없이 보다 적은 에너지로 선박 평형수를 소독할 수 있게 된다.
또한, 해수를 이용하여 전기의 충방전은 물론 염소 생산이 가능하여, 선박에서 전력 문제를 해결할 수 있고, 더불어 얻어진 염소나 염소계 활성물질을 이용하여 선박 평형수를 용이하게 처리할 수 있게 된다.
이에, 선박 평형수 처리를 위해 전기분해설비와 같이 별도의 설비를 갖출 필요가 없으며, 이차 전지만으로 전력 문제와 선박 평형수 처리 문제를 동시에 해결할 수 있게 된다. 【도면의 간단한 설명】 도 1은 본 실시예에 따른 이차 전지의 개략도이다.
도 2는 본 실시예에 따른 이차 전지의 층전시 양극부에서 일어나는 반웅 모형을 도시한 개략도이다.
도 3은 본 실시예에 따른 이차 전지의 충방전 데이터이다.
도 4는 본 실시예에 따른 이차 전지의 사이클 특성 데이터이다.
도 5는 본 실시예에 따른 주사속도에 의한 이차 전지의 충전 데이터이다. 도 6은 본 실시예에 따른 선박 평형수의 대장균 처리 특성 평가 데이터이다ᅳ
도 7은 본 실시예에 따른 선박 평형수의 해양 미생물에 대한 처리 특성 평가 데이터이다.
【발명을 실시하기 위한 구체적인 내용】
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구항의 범주에 의해 정의될 뿐이다. 본 발명의 일 구현예에 따른 이차전지는 나트륨 함유 용액 및 상기 나트륨 함유 용액에 함침된 양극 집전체를 포함하는 액상의 양극부; 액상의 유기 전해질, 상기 액상의 유기 전해질에 함침된 음극 집전체 및 상기 음극 집전체 표면에 위치하는 음극 활물질 층을 포함하는 음극부; 상기 양극부와 상기 음극부 사이에 위치하는 고체 전해질; 및 상기 양극부에 연결되어 층전시 양극부에서 발생되는 염소 및 /또는 염소계 활성물질을 외부로 인출하는 배출부;를 포함한다. 상기 배출부는 나트륨 함유 용액이 수용된 양극부 상단에 설치되어 전지 충전시 또는 층전 완료 후 선택적으로 개폐되어 염소를 배출하게 된다. 이를 위해, 상기 배출부는 양극부의 상단에 설치되어 선택적으로 개폐되는 인출관을 포함할 수 있다.
또한, 상기 배출부는 이차전지의 충전시 양극부에서 발생되는 염소계 활성물질을 배출할 수 있도록 되어 있다. 이를 위해, 상기 배출부는 나트륨 함유 용액이 수용된 양극부 하부에 설치되어 선택적으로 개폐되는 배출관을 포함하여, 전지 충전시 또는 충전 완료 후 선택적으로 개폐되어 염소계 활성물질을 배출하게 된다.
상기 이차전지는 예를 들어, 양극부로 나트륨을 유통시키기 위해 구비된 유출부를 염소계 활성물질이 배출되는 배출부로 이용하여, 필요시 유출부를 통해 염소계 활성물질을 인출하는 구조일 수 있다.
도 1은 본 발명의 일 구현예에 따른 이차 전지의 개략도이다. 도 1은 본 발명의 일 구현예이며, 나트륨 함유 용액의 일 예로 해수를 들어 설명하도록 한다. 이하 도 1을 참조하여 본 발명의 일 구현예에 대해 설명하도록 한다.
도 1(a)는 이차 전지의 개략적인 원리를 나타낸 것으로, 도 1(a)로부터 나트륨 함유 용액 (예를 들어, 해수) 내. 나트륨 이온의 농도 변화에 따른 전위 차이를 이용하여 본 발명의 일 구현예에 따른 이차 전지가 구동되는 것을 알 수 있다.
도 1(b) 및 (c)는 음극에 Na 대극을 이용하여 충방전 실험을 수행한 개략도 및 사진이다. 또한, 도 1(d) 및 (e)는 음극에 Na 대극을 이용한 하프셀 (hal f cel l )의 층방전 시의 화학 반응을 나타낸 개략도이다. 상기 구조에서 음극은 음극 활물질을 포함하는 새로운 구조의 음극으로 대체될 수 있다. 도 2는 이차 전지의 층전시 양극부에서 일어날 수 있는 모형을 보여준다.
본 발명의 일 구현예에 따른 이차 전지는 방전 시 하기 반응식 1 및 /또는 2가 양극부에서 일어날 수 있다.
[반웅식 1]
Na+ + ¾0 + e" -> NaOH + 1/2H2
[반웅식 2]
Na+ + 1/2¾0 + 1/402 + e— -> NaOH
또한, 본 발명의 일 구현예에 따른 이차 전지는 충전 시 하기 반웅식 3 및 /또는 4가 양극부에서 일어날 수 있다. 이러한 반웅식을 통해 층전시 양극부에서 염소가 얻어진다.
[반웅식 3]
NaCl ᅳ> Na + 1/2C12
[반응식 4]
NaOH -> Na + 1/2H20 + 1/402
상기 반웅으로부터 전지의 충방전이 이루어질 수 있다. 이러한 구조의 전지는 리튬 대신 나트륨을 에너지원으로 이용하기 때문에 리튬 이후의 차세대 대안이 될 수 있다. ᅳ
또한, 나트륨 함유 용액 (예를 들어, 해수)과 유사 조성의 인간의 체액을 이용해서도 충방전이 가능할 것으로 예상된다. 이러할 경우 응용분야는 매우 다양하게 확장될 수 있다.
상기 양극부의 일 측면에는 나트륨 함유 용액의 유입부 및 나트륨 함유 용액의 유출부가 위치할 수 있다. 이로부터 양극부 내 나트륨 함유 용액의 지속적인 공급이 가능할 수 있다.
상기 이차 전지는 충전시 양극부에서 일어나는 반응식에 의해 양극부 내에서 나트륨이 음극부로 이동하여 제거된다. 이에, 양극부 내에 수용된 나트륨 함유 용액은 염소로 변환된다. 양극부 내의 염소는 예를 들어, 층전이 완료되어 양극부 내의 나트륨이 모두 제거되었을 때 양극부 상단에 구비된 인출관을 개방하여 외부로 인출할 수 있다.
상기 반웅식 외에 상기 이차전지는 충전 시 하기 반웅식 5 및 /또는 6이 양극부에서 일어날 수 있다.
[반웅식 5]
Cl2 + ¾0 -> HC1 + H0C1
H0C1 -> H+ + 0C1—
[반웅식 6]
NaOH + Cl2 -> NaOC l + HC1
이러한 반웅식을 통해 충전시 이차전지 양극부에서 염소계 활성물질이 생성된다. 염소계 활성물질은 예를 들어, 층전이 완료되었을 때 양극부 하부에 구비된 배출관을 개방하여 외부로 인출할 수 있다.
본 실시예에서, 상기 이차 전지의 양극부에서 생산되는 염소계 활성물질은 차아염소산 (H0C1 ) 또는 차아염소산나트륨 (NaOCl )일 수 있다. 상기 염소계 활성물질은 H0C1 또는 NaOCl 뿐만 아니라 HC102 , HC103 , NaC102 , NaC103 , CIO" , C102 " , CIO3" 일 수 있다. 상기 염소계 활성물질은 이와 같이 염소를 포함한 염으로 이해할 수 있다.
이와 같이, 본 실시예의 이차 전지는 이차 전지의 층방전을 통해 전기 에너지를 공급하며 더불어 충전시 해수를 염소 및 /또는 염소계 활성물질로 변환하여 제공할 수 있게 된다.
상기 음극부는 유기 전해질을 포함할 수 있으며, 상기 음극부 내 유기 전해질은, 비수성 유기 용매 및 /또는 나트륨염을 포함할 수 있다.
상기 비수성 유기 용매는 전지의 전기화학적 반웅에 관여하는 이온들이 이동할 수 있는 매질 역할을 한다.
상기 비수성 유기용매로는 카보네이트계, 에스테르계, 에테르계, 케톤겨ᄂ 알코올계 또는 비양성자성 용매를 사용할 수 있다. 상기 카보네이트계 용매로는 디메틸 카보네이트 (DMC) , 디에틸 카보네이트 (DEC) , 디프로필 카보네이트 (DPC) , 메틸프로필 카보네이트 (MPC) , 에틸프로필 카보네이트 (EPC) , 메틸에틸 카보네이트 (MEC) , 에틸렌 카보네이트 (EC) , 프로필렌 카보네이트 (PC) , 부틸렌 카보네이트 (BC) 등이 사용될 수 있으며, 상기 에스테르계 용매로는 메틸 아세테이트, 에틸 아세테이트, n-프로필 아세테이트, 1 , 1-디메틸에틸 아세테이트, 메틸프로피오네이트, . 에틸프로피오네이트, γ-부티로락톤, 데카놀라이드 (decanol ide) , 발레로락톤, 메발로노락톤 (mevalonol actone), 카프로락톤 (caprol actone) 등이 사용될 수 있다. 상기 에테르계 용매로는 디부틸 에테르, 테트라글라임, 디글라임, 디메톡시에탄 , 2-메틸테트라히드로퓨란, 테트라히드로퓨란 등이 사용될 수 있으며, 상기 케톤계 용매로는 시클로핵사논 등이 사용될 수 있다. 또한 상기 알코올계 용매로는 에틸알코올, 이소프로필 알코을 등이 사용될 수 있으며, 상기 비양성자성 용매로는 R-CN(R은 C2 내지 C20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류 디메틸포름아미드 등의 아미드류, 1,3-디옥솔란 등의 디옥솔란류 설포란 (sul fol ane)류 등이 사용될 수 있다.
상기 비수성 유기 용매는 단독으로 또는 하나 이상 흔합하여 사용할 수 있으며, 하나 이상 흔합하여 사용하는 경우의 흔합 비율은 목적하는 전지 성능에 따라 적절하게 조절할 수 있고, 이는 당해 분야에 종사하는 사람들에게는 널리 이해될 수 있다.
또한, 상기 카보네이트계 용매의 경우 환형 (cycl i c) 카보네이트와 사슬형 (chain) 카보네이트를 흔합하여 사용하는 것이 좋다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1 : 1 내지 약 1 : 9의 부피비로 흔합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다. 상기 비수성 유기용매는 상기 카보네이트계 용매에 상기 방향족 탄화수소계 유기용매를 더 포함할 수도 있다. 이때 상기 카보네이트계 용매와 상기 방향족 탄화수소계 유기용매는 먁 1 : 1 내지 약 30 : 1의 부피비로 흔합될 수 있다.
상기 방향족 탄화수소계 유기용매로는 하기 화학식 4의 방향족 탄화수소계 화합물이 사용될 수 있다.
[화학식 4]
Figure imgf000013_0001
상기 화학식 4에서, ¾ 내지 ¾는 각각 독립적으로 수소, 할로겐, C1 내 C10의 알킬기, C1 내지 C10의 할로알킬기 또는 이들의 조합이다.
상기 방향족 탄화수소계 유기용매는 벤젠, 플루오로벤젠 1,2-디플루오로벤젠, 1,3-디플루오로벤젠, 1 ,4-디플루오로벤젠
1,2,3-트리플루오로벤젠, 1,2,4ᅳ트리플루오로벤젠, 클로로벤젠, 1 , 2-디클로로벤젠 1,3-디클로로벤젠, 1 ,4-디클로로벤젠, 1,2,3-트리클로로벤젠 1,2,4-트리클로로벤젠, 아이오도벤젠, 1 ,2-디아이오도벤젠, 1 ,3-디아이오도벤젠 1,4-디아이오도벤젠, 1,2,3-트리아이오도벤젠, 1,2,4-트리아이오도벤젠, 를루엔 플루오로를루엔, 1, 2-디플루오로를루엔, 1, 3-디플루오로를루엔
1 ,4-디플루오로를루엔, 1,2,3-트리플루오로를루엔, 1,2 ,4—트리플루오로를루엔 클로로를루엔, 1,2ᅳ디클로로를루엔, 1,3-디클로로를루엔, 1,4-디클로로를루엔 1,2,3-트리클로로를루엔, 1,2,4-트리클로로를루엔, 아이오도를루엔
1 , 2-디아이오도를루엔, 1,3-디아이오도를루엔, 1,4-디아이오도를루엔
1,2,3-트리아이오도를루엔, 1 ,2 , 4-트리아이오도를루엔, 자일렌 또는 이들의 조합을 사용할 수 있다.
상기 비수성 전해질은 전지 수명을 향상시키기 위하여 비닐렌 카보네이트 또는 하기 화학식 5의 에틸렌 카보네이트계 화합물을 더욱 포함할 수도 있다.
[화학식 5]
Figure imgf000014_0001
상기 화학식 5에서, R7 및 R8는 각각 독립적으로 수소, 할로겐기ᅳ 시아노기 (CN) , 니트로기 (N02) 또는 C1 내지 C5의 플루오로알킬기이며, 상기 R7과 R8중 적어도 하나는 할로겐기, 시아노기 (CN) , 니트로기 (N02) 또는 C1 내지 C5의 플루오로알킬기이다.
상기 에틸렌 카보네이트계 화합물의 대표적인 예로는 디플루오로 에틸렌카보네이트, 클로로에틸렌 카보네이트, 디클로로에틸렌 카보네이트, 브로모에틸렌 카보네이트, 디브로모에틸렌 카보네이트, 니트로에틸렌 카보네이트 시아노에틸렌 카보네이트, 플루오로에틸렌 카보네이트 둥을 들 수 있다. 상기 비닐렌 카보네이트 또는 상기 에틸렌 카보네이트계 화합물을 더욱 사용하는 경우 그 사용량을 적절하게 조절하여 수명을 향상시킬 수 있다.
상기 나트륨염은 상기 비수성 유기 용매에 용해되어, 전지 내에서 나트륨 이온의 공급원으로 작용하여 기본적인 이차 전지의 작동을 가능하게 하고, 양극과 음극 사이의 나트륨 이온의 이동을 촉진하는 역할을 하는 물질이다.
보다 구체적으로, 상기 나트륨염은 NaC104 , NaPF4 , NaPF6 , NaAsF6 ) NaTFSI ,
Na Bet i (NaN[S02C2F5]2) 또는 이들의 조합일 수 있다.
상기 나트륨염의 농도는 0.001 내지 10M일 수 있으며, 보다 구체적으로, 0. 1 내지 2 .0M 범위 내일 수 있다. 나트륨염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 나트륨 이온이 효과적으로 이동할 수 있다.
상가 음극 집전체 표면에 위치하는 음극 활물질 층은 음극 활물질, 도전재, 및 /또는 바인더를 포함하고, 상기 음극 활물질은 탄소계 재료, 나트륨 al loy 물질, 나트륨 인터칼레이션, 및 /또는 이들의 조합인 복합물질을 포함할 수 있다.
상기 음극 활물질은 전위가 4.07 V vs Na/Na+보다 작은 전극물질을 포함할 수 있다. 상기 탄소계 재료는 천연혹연, 인조혹연, 소프트카본, 하드카본, 또는 이들의 조합이 될 수 있다. 보다 구체적으로 하드카본일 수 있다.
상기 나트륨 alloy 물질은 Si, Sn, Bi, Si02, Sb204, Si/C, Sn/C, Sb/C 복합체 (composite), SnSb/C 복합체 (composite), 비정질 (amorphous) P/C 복합체 (composite), 또는 이들의 조합이 될 수 있다. 보다 구체적으로 Sn/C 일 수 있다.
상기 나트륨 인터칼레이션 물질은 Li4Ti50i2, NaCo204, Na2Ti307, Fe304) Ti02, TiS2, VS2, Sb204, Sb/C 복합체 (composite), SnSb/C 복합체 (composite), 비정질 (amorphous) P/C 복합체 (composite), 또는 이들의 조합일 수 있다. 보다 구체적으로 상기 나트륨 인터칼레이션 물질은 Li4Ti50i2 일 수 있다.
상기 전위가 4.07 V vs Na/Na+ 보다 작은 전극물질은 Na2FeP04F, NaFeP04, BP0E, 丽 HFC, Na3V(P04)3/C, NaL5VP04.8F0.7 또는 이들의 조합일 수 있다.
상기 음극 활물질 층은 또한 바인더를 포함하며, 선택적으로 도전재를 더욱 포함할 수도 있다.
상기 바인더는 음극 활물질 입자들을 서로 잘 부착시키고, 또한 음극 활물질을 전류 집전체에 잘 부착시키는 역할을 하며, 그 대표적인 예로 폴리비닐알콜, 카르복시메틸셀를로즈, 히드록시프로필샐를로즈, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드를 포함하는 폴리머, 폴리비닐피를리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스티렌—부타디엔 러버, 아크릴레이티드 스티렌-부타디엔 러버, 에폭시 수지, 나일론 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용가능하며, 그 예로 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 등의 금속계 물질; 플리페닐렌 유도체 등의 도전성 폴리머; 산화루테늄, 산화 이리듐 등의 금속산화물 또는 이들의 흔합물을 포함하는 도전성 재료를 사용할 수 있다.
상기 집전체로는 구리 박, 니켈 박, 스테인레스강 박, 티타늄 박, 니켈 발포체 ( foam) , 구리 발포체, 전도성 금속이 코팅된 폴리머 기재, 또는 이들의 조합을 사용할 수 있다.
상기 음극은 활물질, 바인더, 및 도전재를 용매 중에서 흔합하여 활물질 조성물을 제조하고, 이 조성물을 전류 집전체에 도포하여 제조한다. 이와 같은 전극 제조 방법은 당해 분야에 널리 알려진 내용이므로 본 명세서에서 상세한 설명은 생략하기로 한다. 상기 용매로는 N-메틸피롤리돈 등을 사용할 수 있으나 이에 한정되는 것은 아니다.
상기 고체 전해질은, 상기 고체 전해질은 나트륨 이은의 이동 속도가 빠르고 수용액 및 유기용액과 안정할 수 있는 물질로서, 비정질 이은 전도도 물질 (phosphorus-based gl ass , oxide-based gl ass , oxide/sul f ide based gl ass) , 나시콘 (Na super ioni c conductor , NASI CON) , 나트륨황화물계 고체전해질, 나트륨산화물계 고체전해질, 또는 이들의 조합을 포함할 수 있다.
보다 구체적으로 나시콘일 수 있으며, 이러한 경우 이은 전도도가 보다 개선될 수 있다.
상기 양극부 내 포함되는 상기 양극 집전체는 탄소 페이퍼, 탄소 섬유, 탄소 천, 탄소 펠트, 금속박막, 금속산화물, DSA (불용성)전극, 또는 이들의 조합일 수 있으며, 보다 구체적으로 탄소 페이퍼일 수 있다. 탄소 페이퍼의 경우 나트륨 함유 용액 내 포함된 기타 금속 이온의 산화 /환원 반웅으로부터 발생할 수 있는 부산물을 최소화할 수 있다.
상기 양극 집전체는 벌칸과 같은 카본블랙, 금속류 촉매, 산화금속류 촉매, 도전재, 그래핀 산화물, 또는 이들의 조합을 코팅한 구조일 수 있다.
상기 양극 집전체의 기공도의 범위는 1 卿 내지 250 β 일 수 있다. 이러한 범위를 만족시키는 경우, 넓은 표면적을 가진 전극을 구성하여 보다 많은 전극반웅을 유도할 수 있다.
한편, 본 발명의 일 구현예에서, 선박 평형수 처리 장치는 상기 이차전지에서 선박 평형수를 직접 처리하는 구조로 되어 있다. 이를 위해 본 실시예의 선박 평형수 처리장치는, 상기 이차전지의 양극부에 연결되어 충전시 양극부로 선박 평형수를 공급하는 평형수공급부와, 이차전지의 양극부에서 처리된 선박 평형수를 이차전지에서 외부로 배출하는 평형수배출부를 포함하여, 별도의 소독기 없이 상기 이차전지를 통해 선박 평형수가 살균 처리되는 구조로 되어 있다.
상기 평형수공급부는 예를 들어, 이차전지의 상부에 형성되어 양극부 내부로 해수를 공급하는 유입부에 연결되어, 상기 유입부를 통해 선박 평형수를 공급하는 구조일 수 있다.
상기 평형수배출부는 예를 들어, 이차전지의 양극부 하부에 형성된 유출부에 연결되어, 상기 유출부를 통해 살균 처리된 선박 평형수를 배출시키는 구조일 수 있다.
본 처리장치는 이차전지의 충전시 평형수공급부와 평형수배출부를 통해 이차전지의 양극부로 선박 평형수를 연속적으로 공급하게 되며, 이차전지 충전 과정에서 선박 평형수를 살균 처리하게 된다.
상기 이차전지의 양극부 내에서는 충전시 하기 반웅식 5 및 /또는 6이 일어나 선박 평형수를 살균 처리하게 된다.
[반웅식 5]
Cl2 + ¾0 -> HC1 + H0C1
H0C1 -> H+ + 0C1"
[반웅식 6]
NaOH + Cl2 -> NaOCl + HC1 이차 전지 층전시 상기 반웅식 5 및 /또는 반웅식 6이 양극부에서 일어나면서 양극부에서 염소계 활성물질이 생성된다. 본 실시예에서, 상기 이차 전지의 양극부에서 생산되는 염소계 활성물질은 차아염소산 (H0C1 ) 또는 차아염소산나트륨 (NaOCl )일 수 있다.
이렇게 생성된 염소계 활성물질은 대단히 높은 살균력을 갖고 있어, 선박 평형수 내에 잔존하는 세균이나 해양 미생물을 살균시키게 된다.
이차전지 양극부의 반웅온도 및 주사속도 또는 흔합시간 등에 따라 활성물질은 H0C1 또는 NaOCl 뿐만 아니라 HC102 , HC103 , NaC102 , NaC103 , CIO" , C102 " , CIO3" 이 함께 생성될 수 있다.
여기서, 상기 이차전지에서 염소계 활성물질을 생성하는 과정에서 양극부에 첨가제를 투입하여 염소계 활성물질의 생성을 조절할 수 있다.
본 실시예에서, 상기 첨가제는 황산 (H2S04) 및 /또는 아염소산염 (2NaC103)일 수 있다. 첨가제를 추가하여 생산되는 부가적 반웅은 하기 반응식 7 및 /또는 8일 수 있다.
[반웅식 7]
2NaC103 + H2S04 → 2HC103 + Na2S04
HCIO3 + H2S03→ HCIO2 + H2S04
HCIO3+ HC102 → 2C102 + H20
[반웅식 8]
2NaC103+ 2HC1 → 2HC103 + 2NaCl
HC103+ HC1 → HCIO2 + HC10
HCIO3+ HCIO2 → 2C102 + H20 상기 첨가제에 의해 부산물의 생성이 억제되고, 차아염소산 (H0C1 ) 또는 차아염소산나트륨 (NaOCl )의 생성이 보다 활성화된다.
또한, 첨가제를 투입하게 되면 이산화염소가 제조되며, 그 제조되는 반웅 과정을 살펴보면 다음과 같다.
즉, 일 공정으로, 무기산 (HC1 또는 H2S04)과 아염소산염을 반응하여 생성된 아염소산과 염소산을 반웅하여 이산화염소를 생성할 수 있다.
이때, 반웅식은 다음과 같다.
NaC102 + HC1 → HC102 + NaCl
2NaC102 + H2S04 → 2HC102 + Na2S04
아염소산의 농도와 무기산의 양과 농도에 따라 불균등 분해 반응을 한다.
2HC102 → HC103 + HC10
이때 생성된 차아염소산은 다시 아염소산과 반웅하여 염소산이 된다. HC10 + HC102 → HC103 + HC1
새로 생성된 2분자의 염소산은 2분자의 아염소산과 축합반웅을 하여
4분자의 이산화염소가 생성된다.
2HC103 + 2HC102 → 4C102 + 2¾0
위의 반웅식올 종합하면
5NaC102 + 4HC1 → 4C102 + 5NaCl + 2H20
5NaC102 + 2H2S04 → 4C102 Hr 2Na2S04 + NaCl + 2¾0 다른 공정으로, 차아염소산염과 무기산 (HC1 또는 H2S04)이 아염소산염을 염소산으로 산화시켜 이산화염소를 합성할 수 있다.
반응식은 다음과 같다.
2NaC102 + NaCIO + 2HC1 → 2C102 + 3NaCl + ¾0
2NaC102 + NaCIO + H2S04 → 2C102 + Na2S04 + NaCl + ¾0
위의 두 반응식에 있어서 차아염소산염과 아염소산염은 산에 의하여 차아염소산과 아염소산이 생성되며 이 차아염소산이 아염소산을 산화하여 염소산을 생성한다. 이때 새로 생성된 염소산이 아염소산과 축합반웅을 일으켜 이산화염소와 물이 생성된다.
다른 공정으로, 아염소산염을 염소로 산화하여 이산화염소를 생성할 수 있다.
염소로 산화하는 방법은 염소가 담수에 의하여 가수분해 되어 차아염소산과 염산이 생성되며 염산은 아염소산염을 아염소산으로 만들고, 생성된 아염소산은 차아염소산과 반웅하며 염소산이 생성된다. 이 생성된 염소산이 아염소산과 축합반웅을 하여 이산화염소와 물이 생성된다. 이들의 화학적 반웅식은 다음과 같다.
Cl2 + ¾0 → HC10 + HC1
NaC102 + HC1 → HC102 + NaCl
HC10 + HC102 → HCIO3 + HC1
NaC102 + HC1 → HC102 + NaCl
HCIO3 + HC102 → 2C102 + H20
위식을 간단히 정리하면,
2NaC102 + Cl2 → 2C102 + 2NaCl
언급한 공정들에서 보는 바와 같이 아염소산염을 출발 화합물로부터 이산화염소를 합성할 경우 차아염소산, 아염소산, 염소산이 필연적으로 필요하게 된다. 이때 아염소산염, 산의 양과 농도가 균일하고 신속한 흔합 및 반응 온도에 따라 C102뿐만 아니라 C102 C103 " , Cl2 , cr이 함께 생성되므로 상기 반웅조건을 확립하여 부산물을 억제할 수 있다. 본 발명의 또 다른 구현예에 따른 선박 평형수 처리 장치는, 상기 이차전지의 배출부에 연결되어 이차전지에서 생산된 염소를 포집하는 포집부와, 상기 포집부로부터 염소를 공급받아 선박 평형수를 소독하는 소독기를 포함한다. 상기 포집부는 염소를 저장하며 필요시 소독기로 염소를 공급한다. 상기 소독기는 포집부로부터 공급된 염소를 이용하여 선박 평형수를 살균 소독한다. 이에, 이차전지 구동 중에 양극부에서 생산된 염소는 배출부에 연결된 포집부로 이송되어 저장된다. 포집부에 저장된 염소는 필요시 소독기로 공급된다.
상기 소독기는 포집부에서 공급받은 염소를 이용하여 선박 평형수를 소독 처리한다. 이때, 소독기에서는 하기 반웅식 5 및 /또는 6이 일어나 선박 평형수를 살균 처리하게 된다.
[반응식 5]
Cl2 + ¾0 -> HC1 + H0C1
H0C1 -> H+ + 0C1"
[반웅식 6]
NaOH + Cl 2 -> NaOCl + HC1
상기 반응식과 같이 염소는 수중에서 차아염소산 (H0C1 )으로 가수분해된다. 차아염소산의 산화력에 의해 선박 평형수 내의 균체가 파괴되어 살균 처리된다. 본 발명의 또다른 구현예로, 선박 평형수 처리 장치는 상기 이차전지의 양극부에 연결되어 층전시 양극부에서 발생되는 염소계 활성물질을 외부로 배출하는 배출부와, 상기 배출부에서 배출되는 염소계 활성물질을 포집하는 포집부, 상기 포집부로부터 염소계 활성물질을 선택적으로 공급받아 선박 평형수를 소독하는 소독기를 포함한다.
상기 배출부는 나트륨 함유 용액이 수용된 양극부 하단에 설치되어 전지 충전시 또는 충전 완료 후 선택적으로 개폐되어 양극부 내에서 생성된 염소계 활성물질을 배출하게 된다. 상기 염소계 활성물질은 차아염소산 (H0C1 ) 또는 차아염소산나트륨 (NaOCl )일 수 있다.
상기 포집부는 염소계 활성물질을 저장하며 필요시 소독기로 염소계 활성물질을 공급한다. 상기 소독기는 포집부로부터 공급된 염소계 활성물질을 이용하여 선박 평형수를 살균 소독한다. 이에, 이차전지 구동 중에 양극부에서 생산된 염소계 활성물질은 배출부에 연결된 포집부로 이송되어 저장된다. 포집부에 저장된 염소는 필요시 소독기로 공급된다.
상기 소독기는 포집부에서 공급받은 염소계 활성물질을 이용하여 선박 평형수를 살균 처리한다. 본 실시예의 이차전지에서 생성되는 활성물질인 차아염소산 또는 차아염소산나트륨은 대단히 높은 살균력을 갖고 있어, 선박 평형수 내에 잔존하는 세균이나 해양 미생물을 살균시키게 된다. 이하 본 발명의 실시예 및 비교예를 기재한다. 그러한 하기한 실시예는 본 발명의 일 실시예일뿐 본 발명이 하기한 실시예에 한정되는 것은 아니다. 실시예: 이차 전지의 제조
양극부의 제조
카본 페이퍼 (Fuel Cel l Store , 2050-A)를 집전체로 이용하였다. 양극부 용기 내 해수를 투입 후 상기 집전체를 해수에 함침시켜 양극부를 제조하였다. 상기 카본 페이퍼의 공극률은 28 이다. 음극부의 제조
스테인리스 스틸 (McMASTER)을 집전체로 이용하였다. 상기 집전체 상에 하드 카본 (MTI ) :도전재인 super P 카본 블랙 (TIMCAL):바인더인 폴리 (테라플루오로에틸렌)을 70 : 20 : 10 (중량 %)로 흔합하여 음극 활물질층을 형성하여 음극을 제조하였다.
음극 용기 내 유기 전해질을 투입 후 상기 제조된 음극을 함침시켰다. 상기 유기 전해질은 에틸렌 카보네이트 (EC) :디에틸렌 카보네이트 (DEC) ( 1 : 1부피비 ) 및 1M의 NaC104 나트륨염 (Aldri ch)을 흔합하여 제조하였다. 고체 전해질의 제조
NASICON (Na3Zr2Si2P012)을 고체 전해질로 사용하였다. 상기 고체 전해질은 본 실험실에서 고상 반웅 (sol id-state react ion) 을 거쳐 만들어 졌다. 당업계에 잘 알려진 고상 반웅으로 구체적인 방법에 대해서는 생략하도록 한다. 상기 양극부 및 음극부 사이에 고체 전해질을 위치시켰다. 상기 고체 전해질의 두께는 1醒이다. 염소배출부의 제조
양극부를 이루는 용기의 측면과 하단에 나트륨 함유 용액을 공급하는 유입부와 유출부를 설치하고, 용기 상단에 인출관을 설치하여 염소가 배출되는 염소배출부로 이용하였다.
염소배출부에는 개폐밸브를 설치하여 필요시 양극부 내의 염소를 배출할 수 있도록 하였다. 양극부 내에 나트륨 함유 용액을 공급하고 층전 개시 후 층전이 완료되어 양극부 내의 나트륨이 모두 음극부로 이동되었을 때를 1사이클로 하여, 매 사이클마다 상기 개폐밸브를 개방하여 양극부 내의 염소를 외부로 배출하였다. 실험예: 전지 특성 평가
충방전 특성 평가
도 3은 본 발명의 실시예에 따른 이차 전지의 충방전 데이터이다.
도 3으로부터, 해수 전지를 충전함으로써 해수에 녹아 있는 나트륨 이온이 음극 에 있는 하드 카본에 축적되는 것을 알수 있다. 축적된 나트륨 이온은 전지를 방전할 때 전기를 생산하면서 다시 해수에 방전된다. 층전 전압은 약 평균 3 V 이며, 방전 전압은 평균 약 2 .3V 에서 나타남을 볼 수 있다. 첫 사이클에서 약 31% 의 비가역 용량이 나타났는데, 이것은 나트륨 이온이 처음 음극으로 처음 들어갈 때 음극 표면에 생성되는 고체 전해질 계면 (Sol i d El ect ro lyte Int er face , SEI ) 형성 시 소모되는 양을 나타낸다. SEI 형성후, 안정된 가역용량올 보여주고 있다. 사이클 특성 평가
도 4는 본 발명의 실시예에 따른 이차 전지의 사이클 특성 데이터이다. 첫사이클에서 SEI 형성후 안정한 가역 용량을 보이고 있으며, 약 40 사이클 후에도 84% 의 효율을 보이고 있는 것을 도 4로부터 알 수 있다.
도 5는 본 발명의 실시예에 따른 주사속도에 의한 전지의 층전 데이터이다.
도 5로부터, 주사속도를 점점 높임으로써 전압이 조금씩 상승하는 것을 알 수 있다. 0. 15mA의 주사속도가 상승함에 따라 0.7V 가량의 전압이 상승함을 알 수 있다. 이로부터 높은 주사속도에서도 안정한 전압을 유지함을 알 수 있다. 염소계 활성물질을 이용한 선박 평형수 처리 특성 평가
도 6은 본 발명의 실시예에 따른 선박 평형수의 대장균 처리 특성 평가 데이터이다.
본 실시예에 따른 이차전지 충방전시 양극부에서 생성되는 활성물질로 해수 (선박 평형수)의 살균 처리가 이루어지는 지 여부에 대해 실험을 실시하였다. 실험은 본 실시예의 이차전지에 대해 20mA로 20시간 충전을 진행한 후 양극부에 수용된 해수의 대장균 농도와, 이차전지 구동 전에 양극부에 채워지는 해수의 대장균 농도를 검출하여 비교하였다.
실험 결과, 도 6에 도시된 바와 같이, 이차전지 구동 전에는 해수의 대장균의 농도가 약 5 * 106 cfu임을 알 수 있다. 이차전지를 구동하여 충전을 진행한 후 이차전지 양극부에 수용된 해수의 대장균의 농도는 0 cfu로 대장균이 모두 사멸되었음을 알 수 있다.
또한, 도 7은 해양 미생물에 대한 처리 특성을 평가한 데이터이다. 실험 조건은 대장균에 대한 실험과 동일하다.
도 7에 도시된 바와 같이, 실험 결과, 이차 전지 구동 전 해수의 미생물 농도는 약 2 X 103cfu로, 다양한 종류의 미생물이 자라고 있음을 알 수 있다. 이차전지를 구동하여 충전을 진행한 후 이차전지 양극부에 수용된 해수의 해양미생물 농도는 0 cfu로, 해양 미생물이 모두 사멸되었음을 알 수 있다.
이와 같이, 본 실시예의 이차전지를 충전함으로써 양극부에서 차아염소산이나 차아염소산나트륨 등의 강력한 살균력을 갖는 활성물질이 생성되어 대장균 등의 세균이나 해양 미생물을 살균 처리함을 알 수 있다. 따라서, 종래 전기분해설비와 같은 별도의 장치를 구비하지 않고, 본 실시예의 이차전지만으로 선박의 평형수를 처리할 수 있게 된다.
본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims

【특허청구범위】
【청구항 1】
나트륨 함유 용액 및 상기 나트륨 함유 용액에 함침된 양극 집전체를 포함하는 액상의 양극부;
액상의 유기 전해질, 상기 액상의 유기 전해질에 함침된 음극 집전체 및 상기 음극 집전체 표면에 위치하는 음극 활물질 층을 포함하는 음극부; 및
상기 양극부와 상기 음극부 사이에 위치하는 고체 전해질;을 포함하고 , 충전시 양극부에서 염소 및 /또는 염소계 활성물질을 생산하는 이차 전지.
【청구항 2】
제 1항에 있어서,
상기 양극부에 연결되어 충전시 양극부에서 발생되는 염소 및 /또는 염소계 활성물질을 외부로 인출하는 배출부를 더 포함하고,
상기 배출부는 나트륨 함유 용액이 수용된 양극부 상단에 설치되어 전지 층전시 또는 충전 완료 후 선택적으로 개폐되어 염소를 배출하는 인출관 및 /또는 '양극부 하부에 설치되어 전지 충전시 또는 충전 완료 후 선택적으로 개폐되어 염소계 활성물질을 배출하는 배출관을 포함하는 이차 전지.
【청구항 3】
제 1항에 있어서,
상기 양극부의 일측에 나트륨 함유 용액의 유입부 및 나트륨 함유 용액의 유출부가 구비된 이차 전지 .
【청구항 4]
제 1항 내지 제 3 항 중 어느 한 항에 있어서,
상기 음극부 내 유기 전해질은, 비수성 유기 용매 및 /또는 나트륨염을 포함하는 것인 이차 전지ᅳ
【청구항 5】
제 4항에 있어서,
상기 비수성 유기 용매는 카보네이트계, 에스테르계, 에테르계, 케톤계, 알코을계, 비양성자성 용매, 또는 이들의 조합이고,
상기 나트륨염은 NaC104 , NaPF4 , NaPF6 > NaAsF6 , NaTFSI , Na Bet i (NaN[S02C2F5]2) , 또는 이들의 조합인 것인 이차 전지 .
【청구항 6】
제 1항 내지 제 3항 중 어느 한 항에 있어서,
상기 음극 집전체 표면에 위치하는 음극 활물질 층은, 음극 활물질, 도전재, 및 /또는 바인더를 포함하고, 상기 음극 활물질은 탄소계 재료, 나트륨 alloy 물질, 나트륨 인터칼레이션, 전위가 4.07 V vs Na/Na+보다 작은 전극물질, 및 /또는 이들의 조합인 복합물질을 포함하는 것인 이차 전지.
【청구항 7]
제 6항에 있어서,
상기 전위가 4.07 V vs Na/Na+ 보다 작은 전극물질은 Na2FeP04Fᅳ NaFeP04, BPOE, MHFC, Na3V(P04)3/C, Na1.5VPO4.sFo.7 또는 이들의 조합인 이차 전지.
【청구항 8】
제 6항에 있어서,
상기 탄소계 재료는 천연혹연, 인조흑연, 소프트카본, 하드카본, 또는 이들의 조합인 것인 이차 전지.
【청구항 9】
제 8항에 있어서,
상기 나트륨 alloy 물질은 Si, Sn, Bi, Si02, Sb204, Si/C, Sn/C, Sb/C 복합체 (composite), SnSb/C 복합체 (composite) , 비정질 (amorphous) P/C 복합체 (composite), 또는 이들의 조합인 것인 이차 전지.
【청구항 10】
제 6항에 있어서,
상기 나트륨 인터칼레이션 물질은 Li4Ti50i2, NaCo204) Na2Ti307) Fe304, Ti02l TiS2, VS2, Sb204) Sb/C 복합체 (composite), SnSb/C 복합체 (composite), 비정질 (amorphous) P/C 복합체 (composite), 또는 이들의 조합인 것인 이차 전지 .
【청구항 11】
제 6항에 있어서,
상기 도전재는 천연 흑연, 인조 혹연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 또는 탄소섬유인 탄소계 물질; 구리, 니켈, 알루미늄, 또는 은인 금속 분말; 금속 섬유; 도전성 폴리머; 산화루테늄, 산화이리듐인 금속산화물; 또는 이들의 흔합물인 것인 이차 전지.
【청구항 12]
제 6항에 있어서,
상기 바인더는 폴리비닐알콜, 카르복시메틸셀를로즈 히드록시프로필셀를로즈, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드를 포함하는 폴리머, 폴리비닐피를리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔 러버, 아크릴레이티드 스티렌—부타디엔 러버, 에폭시 수지 , 나일론, 또는 이들의 조합인 것인 이차 전지 .
【청구항 13】
제 1항 내지 제 3항 중 어느 한 항에 있어서,
상기 고체 전해질은, βᅳ알루미나 (β-Α1203) , 비정질 이온 전도도 물질 (phosphorus-based gl ass , oxide-based glass , oxide/sul f ide based gl ass) , 나시콘 (Na super ioni c conductor , NASI CON) , 나트륨황화물계 고체전해질, 나트륨산화물계 고체전해질, 또는 이들의 조합을 포함하는 것인 이차 전지.
【청구항 14】
제 1항 내지 제 3항 중 어느 한 항에 있어서,
상기 양극 집전체는 탄소 페이퍼, 탄소 섬유, 탄소 천, 탄소 펠트, 금속박막, 금속산화물, DSA (불용성)전극, 또는 이들의 조합인 것인 이차 전지.
【청구항 15】
게 1항 내지 제 3항 중 어느 한 항에 있어서,
상기 양극 집전체의 기공도는 1 내지 250 인 염소 생산 이차 전지.
【청구항 16]
게 1항 내지 제 3항 중 어느 한 항에 있어서,
상기 이차 전지는 방전 시 하기 반웅식 1 및 /또는 2가 양극부에서 일어나는 것인 이차 전지 .
[반웅식 1]
Na+ + ¾0 + -> NaOH + 1/2¾
[반웅식 2]
Na+ + 1/2H20 + 1/402 + e" -> NaOH
【청구항 17】 제 1항 내지 제 3항 중 어느 한 항에 있어서,
상기 이차 전지는 층전 시 하기 반웅식 3 및 /또는 4 가 양극부에서 일어나는 것인 이차 전지.
[반응식 3]
NaCl -> Na + 1/2C12
[반응식 4]
NaOH -> Na + 1/2¾0 + 1/402
【청구항 18】
제 1항 내지 제 3항 중 어느 한 항에 있어서,
상기 이차 전지는 충전 시 하기 반응식 5 및 /또는 6이 양극부에서 일어나는 것인 이차 전지.
[반웅식 5]
C12 + H20 -> HC1 + H0C1
H0C1 -> H+ + 0C1 - [반웅식 6]
NaOH + C12 -> NaOCl + HC1
【청구항 19】
제 1항 내지 제 3항 중 어느 한 항에 있어서,
상기 나트륨 함유 용액은 해수인 것인 이차 전지.
【청구항 20】
거 U항 내지 제 3항 중 어느 한 항의 이차전지,
상기 이차전지의 양극부에 연결되어 충전시 양극부로 선박 평형수를 공급하는 평형수공급부, 및
이차전지의 양극부에서 처리된 선박 평형수를 이차전지에서 외부로 배출하는 평형수배출부
를 포함하여, 상기 이차전지를 통해 선박 평형수를 살균 처리하는 구조의 선박 평형수 처리 장치.
【청구항 21】
제 1항 내지 제 3항 중 어느 한 항의 이차전지,
상기 이차전지의 양극부에 연결되어 양극부의 배출부로부터 배출되는 염소 또는 염소계 활성물질을 포집하는 포집부, 및
상기 포집부에 연결되어 포집부로부터 염소 또는 염소계 활성물질을 선택적으로 공급받아 선박 평형수를 소독하는 소독기
를 포함하는 선박 평형수 처리 장치.
【청구항 22】
제 21항에 있어서,
상기 염소계 활성물질은 차아염소산 (H0C1 ) 또는 차아염소산나트륨 (NaOCl )인 선박 평형수 처리 장치.
【청구항 23】
게 1항 내지 제 3항 중 어느 한 항의 이차전지 양극부로 선박 평형수를 공급하는 단계,
상기 이차전지를 충전시 생성된 염소계 활성물질로 양극부에 수용된 선박 평형수를 살균 처리하는 단계, 및
살균 처리된 선박 평형수를 이차전지 양극부에서 배출하는 단계
를 포함하는 선박 평형수 처리 방법 .
【청구항 24】
게 1항 내지 제 3항 증 어느 한 항의 이차전지 양극부에서 배출되는 염소 또는 염소계 활성물질을 포집하고, 포집된 염소 또는 염소계 활성물질을 이용하여 선박 평형수를 소독하는 단계를 포함하는 선박 평형수 처리 방법 .
【청구항 25】
제 23항 또는 제 24항에 있어서,
상기 이차 전지의 양극부에 첨가제를 투입하여 염소계 활성물질 생성을 조절하는 단계를 더 포함하는 선박 평형수 처리 방법.
【청구항 26]
제 25항에 있어서,
상기 염소계 활성물질은 차아염소산 (H0C1 ) 또는 차아염소산나트륨 (NaOCl )인 선박 평형수 처리 방법.
【청구항 27】
제 25항에 있어서,
상기 첨가제는 황산 (H2S04) 및 /또는 아염소산염 (2NaC103)인 선박 평형수 처리 방법.
【청구항 28】
제 27항에 있어서,
상기 활성물질 생성 조절 단계에서 이차전지 층전시 하기 반웅식 7 및 /또는 8이 양극부에서 일어나는 선박 평형수 처리 방법.
[반웅식 7]
2NaC103 + H2S04 → 2HC103 + Na2S04
HCIO3 + H2S03 → HCIO2 + H2S04
Figure imgf000030_0001
[반웅식 8]
2NaC103+ 2HC1 → 2HC103 + 2NaCl
Figure imgf000030_0002
HCIO3+ HCIO2→ 2C102 + H20
PCT/KR2015/008003 2014-08-08 2015-07-30 염소 또는 염소계 활성물질을 생산하는 이차전지, 이를 이용한 선박 평형수 처리 장치 및 처리 방법 WO2016021876A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20140102604 2014-08-08
KR10-2014-0102604 2014-08-08
KR10-2015-0103942 2015-07-22
KR1020150103942A KR101788180B1 (ko) 2014-08-08 2015-07-22 염소 또는 염소계 활성물질을 생산하는 이차전지, 이를 이용한 선박 평형수 처리 장치 및 처리 방법

Publications (1)

Publication Number Publication Date
WO2016021876A1 true WO2016021876A1 (ko) 2016-02-11

Family

ID=55264089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/008003 WO2016021876A1 (ko) 2014-08-08 2015-07-30 염소 또는 염소계 활성물질을 생산하는 이차전지, 이를 이용한 선박 평형수 처리 장치 및 처리 방법

Country Status (1)

Country Link
WO (1) WO2016021876A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200133053A (ko) * 2019-05-15 2020-11-26 울산과학기술원 담수 생산을 위한 이차 전지 및 이를 포함하는 담수화 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090116658A (ko) * 2008-05-07 2009-11-11 (주) 테크로스 밸러스트수 처리시스템
KR20120114182A (ko) * 2011-04-06 2012-10-16 (주) 테크윈 해수전해 및 연료전지 복합시스템
KR101200561B1 (ko) * 2012-04-27 2012-11-13 주식회사 엑스에프씨 해수전해설비를 이용한 연료전지, 해수전해설비를 이용하여 가성소다, 암모니아, 요소, pvc의 제조방법 및 그 통합시스템
KR20140014166A (ko) * 2011-02-15 2014-02-05 스미또모 가가꾸 가부시키가이샤 나트륨 이차 전지 전극 및 나트륨 이차 전지
US20140076730A1 (en) * 2012-03-04 2014-03-20 Indiana University Research and Technology Corporation Method and apparatus for extracting energy and metal from seawater electrodes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090116658A (ko) * 2008-05-07 2009-11-11 (주) 테크로스 밸러스트수 처리시스템
KR20140014166A (ko) * 2011-02-15 2014-02-05 스미또모 가가꾸 가부시키가이샤 나트륨 이차 전지 전극 및 나트륨 이차 전지
KR20120114182A (ko) * 2011-04-06 2012-10-16 (주) 테크윈 해수전해 및 연료전지 복합시스템
US20140076730A1 (en) * 2012-03-04 2014-03-20 Indiana University Research and Technology Corporation Method and apparatus for extracting energy and metal from seawater electrodes
KR101200561B1 (ko) * 2012-04-27 2012-11-13 주식회사 엑스에프씨 해수전해설비를 이용한 연료전지, 해수전해설비를 이용하여 가성소다, 암모니아, 요소, pvc의 제조방법 및 그 통합시스템

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200133053A (ko) * 2019-05-15 2020-11-26 울산과학기술원 담수 생산을 위한 이차 전지 및 이를 포함하는 담수화 장치
KR102240030B1 (ko) * 2019-05-15 2021-04-14 울산과학기술원 담수 생산을 위한 이차 전지 및 이를 포함하는 담수화 장치

Similar Documents

Publication Publication Date Title
KR101788180B1 (ko) 염소 또는 염소계 활성물질을 생산하는 이차전지, 이를 이용한 선박 평형수 처리 장치 및 처리 방법
US10992002B2 (en) Secondary battery
US9531003B2 (en) Sodium iron(II)-hexacyanoferrate(II) battery electrode
JP6866289B2 (ja) リチウム生成槽、及び、リチウムの生成方法
CN102027625B (zh) 钠离子为主的水相电解质电化学二次能源储存装置
KR20150091834A (ko) 이산화탄소 포집 이차전지
KR20150091984A (ko) 담수 생산 이차전지
US20140076730A1 (en) Method and apparatus for extracting energy and metal from seawater electrodes
CN110325481B (zh) 基于铋的储氯电极
Abraham A brief history of non-aqueous metal-air batteries
US20210066706A1 (en) High-energy rechargeable al-co2 battery for co2 capture/conversion and electric power generation/storage
Srimuk et al. High-performance ion removal via zinc–air desalination
CN105839129B (zh) 一种硫掺杂纳米碳及其电化学制备方法与用途
KR20160121998A (ko) 이차 전지 및 파우치형 이차 전지
Arnold et al. Dual‐use of seawater batteries for energy storage and water desalination
WO2019132381A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
KR20160136703A (ko) 통합 전지 시스템
KR102131094B1 (ko) 담수 생산 이차전지
US20200036046A1 (en) Membrane-free non-flowing single cell zinc bromine battery with bromine-trapping composite carbon foam electrode
Guo et al. The concept, structure, and progress of seawater metal-air batteries
WO2016021876A1 (ko) 염소 또는 염소계 활성물질을 생산하는 이차전지, 이를 이용한 선박 평형수 처리 장치 및 처리 방법
Liu et al. Beyond metal–air battery, emerging aqueous metal–hydrogen peroxide batteries with improved performance
JPH03252057A (ja) 電気化学セル
JP6589925B2 (ja) 金属リチウムの製造装置、炭酸リチウムの分解装置、金属リチウムの製造方法及び炭酸リチウムの分解方法
WO2015119414A1 (ko) 담수 생산 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15830592

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15830592

Country of ref document: EP

Kind code of ref document: A1