CN105839129B - 一种硫掺杂纳米碳及其电化学制备方法与用途 - Google Patents

一种硫掺杂纳米碳及其电化学制备方法与用途 Download PDF

Info

Publication number
CN105839129B
CN105839129B CN201610179713.8A CN201610179713A CN105839129B CN 105839129 B CN105839129 B CN 105839129B CN 201610179713 A CN201610179713 A CN 201610179713A CN 105839129 B CN105839129 B CN 105839129B
Authority
CN
China
Prior art keywords
sulfur doping
electrode
sized carbon
carbon
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610179713.8A
Other languages
English (en)
Other versions
CN105839129A (zh
Inventor
汪的华
陈志刚
邓博文
朱华
肖巍
毛旭辉
甘复兴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CN201610179713.8A priority Critical patent/CN105839129B/zh
Publication of CN105839129A publication Critical patent/CN105839129A/zh
Application granted granted Critical
Publication of CN105839129B publication Critical patent/CN105839129B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Hybrid Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及一种硫掺杂纳米碳及其电化学制备方法与用途,其使用碱金属碳酸盐作为熔盐电解质体系;采用惰性材料为阳极,以金属或非金属材料为阴极;采用电化学反应装置;将含有CO2和SO2的火电厂、水泥厂、化工厂除尘脱硫后的工业烟气通入熔盐电解质中,在350‑900℃的温度范围内,进行电解,制得硫掺杂纳米碳。本发明的有益效果是:方法工艺简单,制备的硫掺杂纳米碳硫含量可控、碳材料的形貌可控。该硫掺杂的纳米碳相对于单纯的纳米碳粉,表现出更广泛及优异的应用性能,可作为超级电容器用储能材料、锂离子电池正极材料、电催化材料以及吸附水体中及空气中的污染物。

Description

一种硫掺杂纳米碳及其电化学制备方法与用途
技术领域
本发明涉及一种硫掺杂纳米碳及其电化学制备方法与用途,属于炭材料领域,也属于电化学领域。
背景技术
近年来,熔盐电解转化二氧化碳制备无定形的纳米碳被认为是一种有效的纳米碳制备技术。Licht等人提出了一种将太阳能和太阳光辐射热结合加热熔盐的方法捕集利用二氧化碳(J.Physical.Chem.C.2011,115(23):11803-11821)。Groult等人在熔盐碳酸盐中采用恒电位电解的方法转化二氧化碳为纳米级的碳(J.Electrochem.Soc.2002,149(5):D72-D78)。中国专利CN102895847A报道了一种CO2捕集资源化的方法,该方法采用Li2CO3-Na2CO3-K2CO3三元碳酸盐作为熔盐电解质,通过恒槽压电解的方法制备了无定形的纳米级别碳。
这些方法制备的产品均为纯的纳米级别碳,如何使用熔盐电化学电解制备性能更优异的硫掺杂纳米碳是一项新的技术挑战。
发明内容
为了制备硫掺杂的纳米碳,本发明提供了一种熔盐电解制备硫掺杂纳米碳及其方法,该硫掺杂纳米碳可作为超级电容器用储能材料、锂离子电池正极材料、电催化材料以及有效吸附水体中及空气中污染物。
本发明所采用的技术方案是:一种硫掺杂纳米碳电化学制备方法,其使用碱金属碳酸盐作为熔盐电解质体系;采用惰性材料为阳极,以金属或非金属材料为阴极;采用电化学反应装置;将含有CO2和SO2的火电厂、水泥厂、化工厂除尘脱硫后的工业烟气通入熔盐电解质中,在350-900℃的温度范围内,进行电解,制得硫掺杂纳米碳。
一种硫掺杂纳米碳电化学制备方法,其使用碱金属碳酸盐与碱金属硫酸盐的混合体作为熔盐电解质体系;采用惰性材料为阳极,以金属或非金属材料为阴极;采用电化学反应装置;将CO2或者含有CO2和SO2的火电厂、水泥厂、化工厂除尘脱硫后的工业烟气通入熔盐电解质中,在350-900℃的温度范围内,进行电解,制得硫掺杂纳米碳。
按上述方案,所述的碱金属碳酸盐为Li2CO3、Na2CO3和K2CO3中的任意一种或者多种的混合。
按上述方案,所述的碱金属硫酸盐为Li2SO4、Na2SO4和K2SO4中的任意一种或者多种的混合。
按上述方案,所述阳极为二氧化锡陶瓷电极、石墨电极以及钛电极、金电极、铂电极、铱电极、钯电极及其合金电极中的任意一种;所述的阴极为石墨电极以及镍电极、铜电极、钼电极、钛电极、铝电极、银电极、金电极、铂电极及其合金电极中的任意一种。
按上述方案,控制电化学反应装置的电解槽压在2.8V-6V之间。
按上述方案,所述的电化学反应装置分为阴极区和阳极区,采用全封闭或者半封闭的隔膜将阴极区和阳极区分开,防止阳极区产生的氧气扩散至阴极区,避免阴极区得到的硫掺杂碳材料被二次氧化。
上述任意一项制备方法所得的硫掺杂纳米碳。
按上述方案,所述的硫掺杂纳米碳的形貌为蜂窝状,其粒径为200-250nm,所述的硫掺杂纳米碳中硫主要以C-S-C的成键方式形成。
所述的硫掺杂纳米碳作为超级电容器用储能材料、锂离子电池正极材料、电催化材料以及有效吸附水体中及空气中的污染物的材料的应用。
本发明的反应机理:当施加一定的电压在上述碳酸盐熔盐中时,碳酸盐发生分解,生成单质碳和金属氧化物,以Li2CO3-Na2CO3-K2CO3(摩尔比Li2CO3:Na2CO3:K2CO3=43.5:31.5:25)掺杂不同浓度的Li2SO4的为例,介绍反应机理如下:
根据热力学计算,三元碳酸盐Li2CO3、Na2CO3、K2CO3中,首先发生的分解反应为Li2CO3的分解。
Li2CO3=Li2O+C+O2(g)[1a]
当通入的气体为纯二氧化碳,熔盐中含有Li2SO4时,反应[1a]生成的C与Li2SO4发生反应生成硫掺杂的碳,反应[1a]生成的Li2O与二氧化碳反应生成Li2CO3以保持熔盐的稳定,反应式如下:
C+Li2SO4→C-S-C+S(g)+Li+Li2SO3[1b]
Li2O+CO2=Li2CO3[1c]
当通入的气体为除尘脱硫后含少量二氧化硫和大量二氧化碳的烟气,熔盐中不含硫酸盐时,反应[1a]生成的Li2O与二氧化碳发生反应[1c]生成Li2CO3以保持熔盐的稳定,反应[1a]生成的Li2O和O2与烟气中的SO2发生反应[1d]生成Li2SO4,反应[1d]生成的Li2SO4与C发生[1b]的反应生成硫掺杂的碳,反应[1d]如下:
2Li2O+2SO2+O2=2Li2SO4[1d]
本发明阴极碳材料中硫的含量可控。硫在阴极碳材料中主要以C-S-C的成键方式形成。通过本发明制得的硫掺杂的纳米碳,可作为超级电容器用储能材料、锂离子电池正极材料、电催化材料以及有效吸附水体中及空气中的污染物。
与现有技术相比,本发明的有益效果是:提出了一种新的硫掺杂纳米碳的制备方法。该方法工艺简单,制备的硫掺杂纳米碳硫含量可控、碳材料的形貌可控。该硫掺杂的纳米碳相对于单纯的纳米碳粉,表现出更广泛及优异的应用性能,可作为超级电容器用储能材料、锂离子电池正极材料、电催化材料以及吸附水体中及空气中的污染物。
附图说明
图1.反应装置示意图;
图2.某一槽压电解阴极得到的硫掺杂碳材料SEM图;
图3.某一槽压电解阴极得到的硫掺杂碳材料XPS图;
图4.某一槽压电解阴极得到的硫掺杂碳材料在H2SO4溶液中的充放电测试图。
具体实施方式
下面结合附图对本发明进一步说明,其在于进一步描述而非限制本发明。
实施例1:
以Li2CO3-Na2CO3-K2CO3(摩尔比Li2CO3:Na2CO3:K2CO3=43.5:31.5:25)掺杂不同浓度的Li2SO4(Li2SO4%=1.45mol%,4mol%,8mol%)熔盐作为电解质,475℃条件下,二氧化锡陶瓷电极做阳极,镍片做阴极,两电极体系,阴极区电极用两端开口的氧化铝管套住,防止阳极区产生的氧气扩散至阴极区,避免阴极区硫掺杂的碳材料被二次氧化(图1)。选定4.5V、5V以及5.5V槽压,恒槽压电解,电解的过程中不间断通入含二氧化硫和二氧化碳混合气体的烟气,不同槽压下阴极镍片上制得不同形貌不同含量硫掺杂的纳米碳。
图2为某一槽压电解阴极得到的硫掺杂碳材料SEM图,如图2所示,阴极碳材料的形貌为蜂窝状,粒径为200-250nm。
图3为某一槽压电解阴极得到的硫掺杂碳材料XPS图,如图3所示,硫在阴极碳材料中主要以C-S-C的成键方式形成。
实施例2:
以不同配比的Li2CO3-Na2CO3-K2CO3三元混合盐作为电解质,在温度为350℃-900℃范围内,二氧化锡陶瓷电极做阳极,镍片做阴极,两电极体系,阴极区电极用两端开口的氧化铝管套住,防止阳极区产生的氧气扩散至阴极区,避免阴极区硫掺杂的碳材料被二次氧化(图1)。以一定的槽压电解,电解的过程中不间断通入含二氧化硫和二氧化碳的烟气,不同槽压下阴极镍片上制得不同形貌不同含量硫掺杂的纳米碳。由此说明该硫掺杂的纳米碳中硫源可来自烟气中的二氧化硫。
实施例3:
以不同配比的Li2CO3-Na2CO3-K2CO3三元混合盐掺杂不同浓度的Li2SO4作为电解质,在温度为350℃-900℃范围内,二氧化锡陶瓷电极做阳极,镍片做阴极,两电极体系,阴极区电极用两端开口的氧化铝管套住,防止阳极区产生的氧气扩散至阴极区,避免阴极区硫掺杂的碳材料被二次氧化(图1)。以一定的槽压电解,电解的过程中不间断通入纯的二氧化碳气体,不同槽压下阴极镍片上制得不同形貌不同含量硫掺杂的纳米碳。由此说明该硫掺杂的纳米碳中硫源可来自盐中掺杂的Li2SO4
实施例4:
以不同配比的Li2CO3-K2CO3二元混合碳酸盐掺杂不同浓度的硫酸盐作为电解质,在温度为350℃-900℃范围内,二氧化锡陶瓷电极做阳极,镍片做阴极,两电极体系,阴极区电极用两端开口的氧化铝管套住,防止阳极区产生的氧气扩散至阴极区,避免阴极区硫掺杂的碳材料被二次氧化(图1)。以一定的槽压电解,电解的过程中不间断通入含二氧化硫和二氧化碳的烟气,不同槽压下阴极镍片上制得不同形貌不同含量硫掺杂的纳米碳。
实施例5:
以Li2CO3单元熔盐为电解质,升温至Li2CO3的熔点温度723℃或以上,保持熔融状态,二氧化锡陶瓷电极做阳极,镍片做阴极,两电极体系,阴极区电极用两端开口的氧化铝管套住,防止阳极区产生的氧气扩散至阴极区,避免阴极区硫掺杂的碳材料被二次氧化(图1)。以一定的槽压电解,电解的过程中不间断通入含二氧化硫和二氧化碳的烟气,不同槽压下阴极镍片上制得不同形貌不同含量硫掺杂的纳米碳。
实施例6:
将由实施例1制得的硫掺杂碳粉作为电极材料制备为超级电容器电极,在475℃,8mol%Li2SO4掺杂,4.5V恒定槽压下制得的硫掺杂碳粉,当恒流充放电电流密度为2A/g、1A/g、0.5A/g以及0.2A/g时,比电容为:346.4F/g,415F/g,489.5F/g以及712F/g(图4)。由此说明该硫掺杂的纳米碳具备优异的电容性能。
实施例7:
将由实施例1制得的硫掺杂碳粉作为锂离子电池材料,将该硫掺杂的碳粉作为锂离子电池的正极,锂片作为负极,组装成锂硫电池,将该锂硫电池进行电化学性能测试,在0.5C的下的放电比容量为967mAh/g。由此说明该硫掺杂的纳米碳具备较好的容量优势。
实施例8:
将由实施例1制得的硫掺杂碳粉作为氧还原用催化剂,在0.1M KOH溶液中测试该硫掺杂碳粉的氧还原催化性能,氧还原峰电流密度可高达4mA/cm2。由此说明该硫掺杂的纳米碳具备优良的氧还原催化效果。
实施例9:
将由实施例1制得的硫掺杂纳米碳作为吸附剂吸附水中污染物,以吸附水中阳离子染料亚甲基蓝为例,该硫掺杂的碳粉对水中亚甲基蓝的去除率高达95%以上。
实施例10:
将由实施例1制得的硫掺杂纳米碳作为空气中甲醛吸附用材料,当甲醛浓度为255ppm时,该硫掺杂的纳米碳对甲醛的吸附容量可达166.84ppm/g。由此说明该硫掺杂纳米碳可作为空气中污染物吸附用材料。

Claims (8)

1.一种硫掺杂纳米碳电化学制备方法,其使用碱金属碳酸盐作为熔盐电解质体系,所述的碱金属碳酸盐为Li2CO3、Na2CO3和K2CO3的混合;采用惰性材料为阳极,以金属或非金属材料为阴极;采用电化学反应装置,控制电化学反应装置的电解槽压在2.8V-6V之间;将含有CO2和SO2的火电厂、水泥厂、化工厂除尘脱硫后的工业烟气通入熔盐电解质中,在350-900℃的温度范围内,进行电解,制得硫掺杂纳米碳。
2.一种硫掺杂纳米碳电化学制备方法,其使用碱金属碳酸盐与碱金属硫酸盐的混合体作为熔盐电解质体系,所述的碱金属碳酸盐为Li2CO3、Na2CO3和K2CO3的混合;采用惰性材料为阳极,以金属或非金属材料为阴极;采用电化学反应装置,控制电化学反应装置的电解槽压在2.8V-6V之间;将CO2或者含有CO2和SO2的火电厂、水泥厂、化工厂除尘脱硫后的工业烟气通入熔盐电解质中,在350-900℃的温度范围内,进行电解,制得硫掺杂纳米碳。
3.根据权利要求2所述的硫掺杂纳米碳电化学制备方法,其特征在于,所述的碱金属硫酸盐为Li2SO4、Na2SO4和K2SO4中的任意一种或者多种的混合。
4.根据权利要求1或2所述的硫掺杂纳米碳电化学制备方法,其特征在于,所述阳极为二氧化锡陶瓷电极、石墨电极以及钛电极、金电极、铂电极、铱电极、钯电极及其合金电极中的任意一种;所述的阴极为石墨电极以及镍电极、铜电极、钼电极、钛电极、铝电极、银电极、金电极、铂电极及其合金电极中的任意一种。
5.根据权利要求1或2所述的硫掺杂纳米碳电化学制备方法,其特征在于:所述的电化学反应装置分为阴极区和阳极区,采用全封闭或者半封闭的隔膜将阴极区和阳极区分开,防止阳极区产生的氧气扩散至阴极区,避免阴极区得到的硫掺杂碳材料被二次氧化。
6.权利要求1-5任意一项制备方法所得的硫掺杂纳米碳。
7.根据权利要求6所述的硫掺杂纳米碳,其特征在于,所述的硫掺杂纳米碳的形貌为蜂窝状,其粒径为200-250nm,所述的硫掺杂纳米碳中硫主要以C-S-C的成键方式形成。
8.权利要求6所述的硫掺杂纳米碳作为超级电容器用储能材料、锂离子电池正极材料、电催化材料以及有效吸附水体中及空气中的污染物的材料的应用。
CN201610179713.8A 2016-03-25 2016-03-25 一种硫掺杂纳米碳及其电化学制备方法与用途 Expired - Fee Related CN105839129B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610179713.8A CN105839129B (zh) 2016-03-25 2016-03-25 一种硫掺杂纳米碳及其电化学制备方法与用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610179713.8A CN105839129B (zh) 2016-03-25 2016-03-25 一种硫掺杂纳米碳及其电化学制备方法与用途

Publications (2)

Publication Number Publication Date
CN105839129A CN105839129A (zh) 2016-08-10
CN105839129B true CN105839129B (zh) 2018-05-01

Family

ID=56584598

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610179713.8A Expired - Fee Related CN105839129B (zh) 2016-03-25 2016-03-25 一种硫掺杂纳米碳及其电化学制备方法与用途

Country Status (1)

Country Link
CN (1) CN105839129B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106732613A (zh) * 2017-01-11 2017-05-31 中国石油大学(华东) 一种新型纳米碳材料的制备方法及其电催化制氢应用
EP3585725A4 (en) * 2017-02-21 2021-01-06 C2Cnt Llc METHODS AND SYSTEMS FOR MANUFACTURING DOPED CARBON NANOMATERIALS
CN107723731B (zh) * 2017-09-18 2020-04-21 武汉大学 一种利用废弃烟气低温电化学制备石墨的方法
CN108011084A (zh) * 2017-11-23 2018-05-08 武汉大学 一种硅/碳复合材料的熔盐电化学制备方法
EP3810352A4 (en) 2018-06-20 2022-09-07 David Alan McBay METHOD, SYSTEM AND APPARATUS FOR EXTRACTING THERMAL ENERGY FROM A BRACKISH GEOTHERMAL FLUID
CN109841810B (zh) * 2019-01-07 2020-12-15 浙江工业大学 一种Ni-NiO/C复合材料的制备方法及应用
CN109735862B (zh) * 2019-01-29 2020-04-28 东北大学 利用无锂钙基熔盐法处理冶金废气并资源化利用的方法
CN109695048B (zh) * 2019-02-28 2020-08-07 武汉大学 自支撑碳基体表面原位电化学生长纳米碳化物基电催化膜层的方法及应用
CN111740174B (zh) * 2020-06-16 2022-03-15 武汉大学 一种高析氢过电位碳材料在铅/碳电池中的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4191620A (en) * 1978-11-13 1980-03-04 Union Oil Company Of California Electrochemical conversion of sulfur-containing anions to sulfur
US4357308A (en) * 1980-06-06 1982-11-02 Erickson Donald C Dual temperature dual desulfurization
CN102895847A (zh) * 2011-07-26 2013-01-30 武汉大学 一种co2捕集并资源化的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4191620A (en) * 1978-11-13 1980-03-04 Union Oil Company Of California Electrochemical conversion of sulfur-containing anions to sulfur
US4357308A (en) * 1980-06-06 1982-11-02 Erickson Donald C Dual temperature dual desulfurization
CN102895847A (zh) * 2011-07-26 2013-01-30 武汉大学 一种co2捕集并资源化的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CO2 to CO Electrochemical Conversion in Molten Li2CO3 Is Stable with Respect to Sulfur Contamination;Valery Kaplan et al;《Journal of The Electrochemical Society》;20131120;F54-57页 *

Also Published As

Publication number Publication date
CN105839129A (zh) 2016-08-10

Similar Documents

Publication Publication Date Title
CN105839129B (zh) 一种硫掺杂纳米碳及其电化学制备方法与用途
Liu et al. Structural design strategy and active site regulation of high‐efficient bifunctional oxygen reaction electrocatalysts for Zn–air battery
Tan et al. Co3O4 nanosheets as active material for hybrid Zn batteries
Gencten et al. A critical review on progress of the electrode materials of vanadium redox flow battery
Fei et al. Hierarchical nanoreactor with multiple adsorption and catalytic sites for robust lithium–sulfur batteries
Lv et al. Electrochemical fixation of carbon dioxide in molten salts on liquid zinc cathode to zinc@ graphitic carbon spheres for enhanced energy storage
Shi et al. Ultrathin Ni-Co double hydroxide nanosheets with conformal graphene coating for highly active oxygen evolution reaction and lithium ion battery anode materials
Abbasi et al. Facile template-free synthesis of 3D hierarchical ravine-like interconnected MnCo2S4 nanosheet arrays for hybrid energy storage device
Xue et al. Hierarchical porous nickel cobaltate nanoneedle arrays as flexible carbon-protected cathodes for high-performance lithium–oxygen batteries
Shu et al. Bifunctional porous non-precious metal WO 2 hexahedral networks as an electrocatalyst for full water splitting
CN105609783B (zh) 一种碳结构集流体、电池负极、电池正极和锂电池
Zhang et al. One-step coaxial electrodeposition of Co 0.85 Se on CoNi 2 S 4 nanotube arrays for flexible solid-state asymmetric supercapacitors
Meng et al. Ultralong cycle life Li–O2 battery enabled by a MOF-derived ruthenium–carbon composite catalyst with a durable regenerative surface
Yan et al. Confining ZnS/SnS2 Ultrathin Heterostructured Nanosheets in Hollow N‐Doped Carbon Nanocubes as Novel Sulfur Host for Advanced Li‐S Batteries
Wei et al. Insight into the boosted electrocatalytic oxygen evolution performance of highly hydrophilic nickel–iron hydroxide
Zhang et al. Doping engineering: modulating the intrinsic activity of bifunctional carbon-based oxygen electrocatalysts for high-performance zinc–air batteries
Pongilat et al. Electrocatalysis of ruthenium nanoparticles-decorated hollow carbon spheres for the conversion of Li2S2/Li2S in lithium–sulfur batteries
Yang et al. Recent progress on the design of hollow carbon spheres to host sulfur in room-temperature sodium–sulfur batteries
Dan et al. Ni-doped cobalt phosphite, Co11 (HPO3) 8 (OH) 6, with different morphologies grown on Ni foam hydro (solvo) thermally for high-performance supercapacitor
Xiang et al. Synergistic capture and conversion of polysulfides in cathode composites with multidimensional framework structures
Zhang et al. A heterogeneous FeP-CoP electrocatalyst for expediting sulfur redox in high-specific-energy lithium-sulfur batteries
Kakaei et al. Oxygen reduction reaction
Sun et al. Integration of desulfurization and lithium–sulfur batteries enabled by amino‐functionalized porous carbon nanofibers
Lin et al. A COF-coated MOF framework polysulfide barrier design for enhanced performance in lithium-sulfur batteries
CN105664682A (zh) 一种熔盐深度脱硫及烟气资源化利用的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180501

Termination date: 20200325