WO2016021590A1 - Open-type compressor - Google Patents

Open-type compressor Download PDF

Info

Publication number
WO2016021590A1
WO2016021590A1 PCT/JP2015/072069 JP2015072069W WO2016021590A1 WO 2016021590 A1 WO2016021590 A1 WO 2016021590A1 JP 2015072069 W JP2015072069 W JP 2015072069W WO 2016021590 A1 WO2016021590 A1 WO 2016021590A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil supply
supply passage
drive shaft
axial
oil
Prior art date
Application number
PCT/JP2015/072069
Other languages
French (fr)
Japanese (ja)
Inventor
善彰 宮本
央幸 木全
後藤 利行
創 佐藤
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to KR1020187028281A priority Critical patent/KR20180112091A/en
Priority to AU2015300143A priority patent/AU2015300143B2/en
Priority to KR1020167036107A priority patent/KR102096139B1/en
Priority to CN201580033419.XA priority patent/CN106662093A/en
Priority to EP15829255.7A priority patent/EP3150855B1/en
Publication of WO2016021590A1 publication Critical patent/WO2016021590A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication
    • F04B27/109Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation

Definitions

  • the present invention enables oil supply to a sliding part through an oil supply passage which is provided on the outer periphery of the drive shaft and pumped up by an oil supply pump driven by the drive shaft along the axial direction in the drive shaft. It relates to an open type compressor.
  • one end of the drive shaft that is rotatably supported inside the housing via a bearing protrudes outside the housing and is driven by power from the outside.
  • the drive shaft is driven by the drive shaft as shown in Patent Document 1.
  • the oil pump is provided, and the oil pumped up by the oil pump is supplied to the sliding portion through an oil passage formed in the drive shaft along the axial direction.
  • a centrifugal or positive displacement oil pump is provided at the shaft end of the drive shaft, and the lubricating oil filled in the sealed container is supplied to the oil pump.
  • a configuration is adopted in which the oil is pumped by the oil and the oil is supplied to the sliding portion through an oil supply passage which is perforated in the drive shaft along the axial direction.
  • an oil supply passage formed in the drive shaft along the axial direction is provided with a predetermined dimension offset with respect to the axis, and oil supply is performed using centrifugal force.
  • Japanese Patent Application Laid-Open No. H10-228707 discloses a device that improves performance.
  • JP 2005-282446 A Japanese Patent Laid-Open No. 8-219063
  • the present invention has been made in view of such circumstances, and is particularly capable of suppressing a decrease in the amount of oil supply due to an increase in flow path pressure loss in a high rotation speed range and improving the reliability with respect to the lubrication performance.
  • An object is to provide a mold compressor.
  • a drive shaft that is rotatably supported in a housing, one end of which protrudes outside the housing, and an outer peripheral portion of the drive shaft.
  • An oil pump to be driven a pump chamber formed around the drive shaft and from which oil pumped up by the oil pump is discharged, and drilled along the axial direction in the drive shaft, from the pump chamber
  • An open type compressor comprising: an axial oil supply passage for supplying oil to a sliding portion; and a radial oil supply passage provided in the drive shaft and guiding the oil in the pump chamber to the axial oil supply passage.
  • the axial oil supply passage is provided at a position that is decentered by a predetermined dimension with respect to the axis of the drive shaft, and the radial oil supply passage is an open type compressor provided on the eccentric direction side of the axial oil supply passage. .
  • the axial oil supply passage formed in the drive shaft is provided at a position deviated by a predetermined dimension with respect to the axis of the drive shaft, and the pump pumped up by the oil pump Since the radial oil supply passage that guides the chamber oil to the axial oil supply passage is provided in the eccentric direction of the axial oil supply passage, the axial oil supply passage is eccentric, and the radial oil supply passage is provided on the eccentric direction side. Accordingly, the passage length of the radial direction oil supply passage can be shortened, and the flow path pressure loss due to the centrifugal force generated at the inlet portion of the radial direction oil supply passage can be reduced.
  • the length of the radial oil supply passage is the drive shaft radius, but when the radial oil supply passage is provided on the eccentric side of the axial oil supply passage, The passage length can be made shorter than the radius, and the flow path pressure loss can be reduced accordingly. Further, by decentering the axial oil supply passage by a predetermined dimension, it is possible to improve the oil supply performance for the sliding portion by utilizing the centrifugal pump effect that acts on the oil in the axial oil supply passage.
  • the synergistic effect of the reduction effect of the flow pressure pressure loss in the radial direction oil supply passage and the improvement effect of the oil supply performance by the axial direction oil supply passage suppresses the decrease in the oil supply amount especially in the high rotation speed range, and the reliability for the lubrication performance. Can increase the sex.
  • the radial direction oil supply passage may be provided at a position where the passage length is the shortest length on the axis line in the eccentric direction.
  • the length of the radial direction oil supply passage is set to the axial direction oil supply passage. It is possible to minimize the flow path pressure loss due to the centrifugal force generated at the inlet portion of the radial direction oil supply passage by shortening the length by the amount corresponding to the eccentric dimension. Thereby, the amount of oil supply in the high rotation speed region can be improved, and the oil supply performance can be further improved.
  • a passage diameter of the axial oil supply passage may be larger than a passage diameter of the radial oil supply passage.
  • the passage diameter of the axial oil supply passage is larger than the passage diameter of the radial oil supply passage, it is easy to obtain the centrifugal pump effect due to eccentricity, and the flow passage in the passage Pressure loss can be reduced.
  • the connecting portion between the radial direction oil supply passage and the axial direction oil supply passage is processed so as not to cause steps or burrs, and flow pressure loss occurs at the connection portion between the radial direction oil supply passage and the axial direction oil supply passage.
  • the oil supply performance can be improved by suppressing the decrease in the oil supply amount in the high rotation speed range.
  • the axial oil supply passage is decentered, the length of the radial oil supply passage is shortened by the amount of the radial oil supply passage provided on the eccentric direction side, and is generated at the inlet portion of the radial oil supply passage.
  • the flow pressure loss due to the centrifugal force can be reduced, and the axial oil supply passage is decentered by a predetermined size, so that the centrifugal pump effect that acts on the oil in the axial oil supply passage is used to supply oil to the sliding portion.
  • the oil supply amount can be reduced, especially in the high engine speed range due to the synergistic effect of reducing the flow pressure pressure loss in the radial direction oil supply passage and the effect of improving the oil supply performance by the axial direction oil supply passage. It can suppress and can improve the reliability with respect to lubrication performance.
  • FIG. 3 is a cross-sectional view corresponding to aa in FIG. It is sectional drawing equivalent to FIG. 3 of the modification of the radial direction oil supply path provided in the said drive shaft. It is a graph which shows the oil supply characteristic in the said open type compressor.
  • FIG. 1 is a longitudinal sectional view of an open type compressor according to an embodiment of the present invention.
  • FIG. 2 is a sectional view (A) of a drive shaft and a right side view (B) thereof, and FIGS. FIG. 2A is a cross-sectional view corresponding to the line aa in FIG.
  • the open-type compressor 1 includes a cylindrical housing 2 in which a front housing 3 and a rear housing 4 having a bottomed shape are integrally coupled via bolts 5.
  • a bearing member 6 is fixedly installed via a bolt 7 on the opening end side of the front housing 3 in the housing 2, and a radial bearing portion 6 ⁇ / b> A of the bearing member 6 and a rolling bearing 8 installed in the front housing 3.
  • the drive shaft 9 is rotatably supported.
  • One end of the drive shaft 9 protrudes outside through the front housing 3, and power from an external drive source such as an engine is input to the protruding portion via the pulley 10 and the electromagnetic clutch 11. ing.
  • the pulley 10 is rotatably supported on the outer periphery of a flange member 13 fixedly installed on the front end surface of the front housing 3 via a bolt 12 via a rolling bearing 14, and a coil assembly 15 of the electromagnetic clutch 11 is incorporated therein.
  • the armature assembly 16 of the electromagnetic clutch 11 is assembled to the external projecting end of the drive shaft 9 with a bolt 17 through the boss portion so as to face the pulley 10.
  • a mechanical seal 18 for sealing and sealing the penetrating portion of the drive shaft 9 is installed on the inner periphery of the flange member 13.
  • a compression mechanism 19 is incorporated inside the housing 2 on the rear housing 4 side.
  • the compression mechanism 19 is a scroll compression mechanism 19 including a pair of fixed scrolls 20 and a turning scroll 21.
  • the scroll compression mechanism 19 is configured such that a pair of fixed scroll 20 and orbiting scroll 21 are engaged with each other by shifting the phase by 180 °, and a plurality of compression chambers 22 are formed between the scrolls 20, 21. 19 itself is well known.
  • the fixed scroll 20 is fastened and fixed to the bearing member 6 via bolts 23, and a discharge cavity 26 is formed between the rear surface of the end plate and the inner surface of the rear housing 4.
  • a discharge port 24 that discharges compressed gas into the discharge cavity 26 and a discharge valve 25 that opens and closes the discharge port 24 are provided on the end plate of the fixed scroll 20.
  • the rear housing 4 is provided with a discharge port 27 for discharging the compressed gas discharged into the discharge cavity 26 to the outside so that a discharge pipe constituting a refrigeration cycle can be connected.
  • the orbiting scroll 21 has a boss portion 28 on the back surface of the end plate, and a crank pin 9A provided on the inner end side of the drive shaft 9 with respect to the boss portion 28 via a drive bush 29 and an orbiting bearing 30. It is configured to be coupled and driven to rotate through the crankpin 9A by the rotation of the drive shaft 9. Further, the orbiting scroll 21 is supported by a thrust bearing 31 provided on the end plate back surface on the bearing member 6, and an Oldham link or pin ring interposed between the end plate back surface and the bearing member 6. The rotation is prevented by a well-known rotation prevention mechanism 32 composed of the above, and the revolving turning drive is performed with respect to the fixed scroll 20.
  • a suction port 33 for connecting a suction pipe on the refrigeration cycle side is provided on the outer periphery on the front end side of the rear housing 4, and the low pressure gas sucked into the suction cavity 34 from the suction port 33 is compressed in the compression chamber 22 of the scroll compression mechanism 19. It is configured to be sucked into and compressed.
  • the compression mechanism 19 is provided with a step portion for changing the wrap height in the spiral direction of the fixed scroll 20 and the orbiting scroll 21, and the outer wrap height is made higher than the inner wrap height.
  • the so-called stepped scroll compression mechanism 19 capable of three-dimensional compression capable of compressing the gas not only in the circumferential direction but also in the axial direction is not limited to this.
  • a required amount of lubricating oil is filled in the front housing 3, and the lower space in the front housing 3 is used as an oil reservoir 35 so that the oil is collected in the oil reservoir 35.
  • the oil in the oil sump 35 is sucked into the oil supply pump 37 through the suction passage 36.
  • the oil supply pump 37 forms an eccentric portion 9B (see FIG. 2) in the outer peripheral portion of the drive shaft 9 penetrating the front end surface of the front housing 3, and the front end surface of the front housing 3 is opposed to the eccentric portion 9B.
  • a known rotary positive displacement pump having a configuration in which a rotor 38 that rotates eccentrically in a cylinder formed between the end faces of the flange member 13 is fitted.
  • Oil pumped from the oil reservoir 35 by the oil supply pump 37 is discharged into a pump chamber 39 formed between the eccentric portion 9B around the drive shaft 9 and the mechanical seal 18.
  • the oil pumped into the pump chamber 39 slides through the radial bearing portion 6A, the drive bush 29, the swivel bearing 30, the thrust bearing 31 and the like through the radial oil supply passage 40 and the axial oil supply passage 41 provided in the drive shaft 9. It is supplied to a part or a sliding part of the mechanical seal 18.
  • the axial oil supply passage 41 provided along the axis L in the drive shaft 9 has a predetermined dimension (eccentric dimension) ⁇ h with respect to the axis L of the drive shaft 9. It is provided at an eccentric position.
  • a radial oil supply passage 40 that guides oil in the pump chamber 39 to the axial oil supply passage 41 is provided in the eccentric direction of the axial oil supply passage 41.
  • the radial direction oil supply passage 40 is provided at a position where the passage length h1 is the shortest length on the axis line in the eccentric direction.
  • the present invention is not limited to the case where the radial direction oil supply passage 40 is provided on the eccentric axis, and the passage length h1 is the shortest length.
  • the radial oil supply passage 40A may be provided in a direction having a certain angle with respect to the first oil supply passage. Even with such a configuration, the passage length h2 of the radial oil supply passage 40A can be made shorter than the passage length h of the axial oil supply passage 41 provided on the axis L of the drive shaft 9.
  • the passage length h2 is h1 ⁇ h2 ⁇ h.
  • the radial oil supply passage that guides the oil in the pump chamber 39 to the axial oil supply passage 41 is not limited to the eccentric axial line, and is provided on the eccentric direction side of the axial oil supply passage 41 to drive the length of the passage.
  • the axial oil supply passage 41 can be shortened as compared with the case where the axial oil supply passage 41 is provided on the axis L of the shaft 9.
  • the axial direction oil supply passage 41 is formed as a blind hole formed along the axis L from one end of the crankpin 9A.
  • the radial oil supply passages 40, 40A are holes provided perpendicular to the radial direction in the vicinity of the end of the blind hole, and at the intersection (connecting portion), steps and burrs that cause flow path pressure loss are formed. It is necessary to prevent this from occurring.
  • the axial oil supply passage 41 has a centrifugal pump effect due to eccentricity. It is easy to obtain, and it is configured to be able to reduce the flow path pressure loss in the passage and to perform communication processing so that a step, a burr, or the like does not occur at the connecting portion between both passages 40, 40A and 41.
  • the following operational effects can be obtained.
  • the open compressor 1 when the electromagnetic clutch 11 is turned on, the power input from the external drive source via the pulley 10 is transmitted to the drive shaft 9, and the drive shaft 9 is rotationally driven.
  • the orbiting scroll 21 of the scroll compression mechanism 19 is driven to revolve around the fixed scroll 20, and the low pressure gas sucked into the suction cavity 34 from the suction port 33 is sucked into the compression chamber 22, compressed to a high pressure and discharged.
  • the liquid is discharged from the port 24 into the discharge cavity 26 and discharged from the discharge port 27 to the refrigeration cycle.
  • the oil supply pump 37 driven by the rotation of the drive shaft 9 sucks the lubricating oil in the oil sump 35 through the suction passage 36 and pumps it into the pump chamber 39.
  • the oil pumped into the pump chamber 39 lubricates the sliding portion of the mechanical seal 18 and is guided to the axial oil supply passage 41 via the radial oil supply passages 40, 40 ⁇ / b> A.
  • Supplied to the sliding portions such as the bearing portion 6A, the drive bush 29, the slewing bearing 30, the thrust bearing 31 and the like, and lubricates each sliding portion.
  • the oil that has lubricated the sliding parts is collected in an oil sump 35 at the bottom of the housing 2 and recirculated.
  • the axial oil supply passage 41 is provided at a position eccentric by a predetermined dimension ⁇ h with respect to the axis L of the drive shaft 9, and the oil in the pump chamber 39 is supplied to the axial oil supply passage 41.
  • Radial direction oil supply passages 40, 40 ⁇ / b> A for guiding are provided on the eccentric direction side of the axial direction oil supply passage 41. Accordingly, the passage lengths h1 and h2 can be made shorter (h1 ⁇ h2 ⁇ h) than that in which the axial oil supply passage 41 is provided on the axis L of the drive shaft 9.
  • the passage lengths h1 and h2 of the radial oil supply passages 40 and 40A are shortened corresponding to the dimension ⁇ h in which the axial oil supply passage 41 is decentered, and this occurs at the inlet portion of the radial oil supply passages 40 and 40A.
  • Flow path pressure loss due to centrifugal force can be reduced.
  • the oil supply performance for the sliding portion can be enhanced by utilizing the centrifugal pump effect that acts on the oil in the axial oil supply passage 41.
  • FIG. 5 is a graph showing the oil supply characteristics when the forced oil supply method is employed, with the horizontal axis representing the rotational speed (rpm) of the drive shaft 9 and the vertical axis representing the oil supply amount (cm 3 / min).
  • the horizontal axis representing the rotational speed (rpm) of the drive shaft 9
  • the vertical axis representing the oil supply amount (cm 3 / min).
  • the length h of the radial direction oil supply passage becomes longer. Refueling amount will decrease.
  • the synergistic effect of the effect of reducing the flow pressure pressure loss in the radial direction oil supply passages 40 and 40A and the effect of improving the oil supply performance by the axial direction oil supply passage 41, the oil supply amount in the high rotation speed region is reduced. It is possible to suppress the decrease and increase the reliability with respect to the lubricating performance.
  • the radial direction oil supply passage 40 is provided at a position where the passage length h1 is the shortest length on the axis line in the eccentric direction. Therefore, the passage length h1 of the radial direction oil supply passage 40 is shortened by an amount corresponding to the eccentric dimension ⁇ h of the axial direction oil supply passage 41, and the length h1 is set as the shortest length at the inlet portion of the radial direction oil supply passage 40.
  • the flow path pressure loss due to the generated centrifugal force can be minimized. Thereby, the amount of oil supply in the high rotation speed region can be improved, and the oil supply performance can be further improved.
  • the passage diameter d1 of the axial direction oil supply passage 41 is larger than the passage diameter d2 of the radial direction oil supply passages 40, 40A (d1> d2).
  • the centrifugal pump effect due to the eccentricity of the axial oil supply passage 41 can be easily obtained, and the flow pressure loss in the passage can be reduced.
  • the connecting portion between the radial direction oil supply passages 40 and 40A and the axial direction oil supply passage 41 is processed so as not to generate a step or a burr, and the flow path pressure loss at the connecting portion between both the passages 40, 40A and 41 is processed. Therefore, the synergistic effect can suppress the decrease in the amount of oil supply in the high engine speed range and improve the oil supply performance.
  • the open type compressor 1 can improve the lubrication performance when applied to the open type scroll compressor 1 adopting a forced oiling system that operates at a high speed of 3600 rpm or more.
  • this invention is not limited to the invention concerning the said embodiment, A deformation
  • an example in which the present invention is applied to a scroll type compressor has been described as an example of the open type compressor 1.
  • other types of open type compressors such as a rotary type, a swash plate type, and a reciprocating type are also described. Of course, the same applies.
  • the oil pump 37 has been described with respect to an example in which a rotary positive displacement pump is applied.
  • the present invention is not limited to this, and other types of oil pumps such as a screw pump may be used. Good.

Abstract

Provided is an open-type compressor with which it is possible to prevent a reduction in oil supply amount caused by an increase in flow-path pressure loss particularly in a high rotational speed range, and to improve reliability in lubrication performance. Disclosed is an open-type compressor (1) comprising: a drive shaft (9) having one end protruding outside a housing (2); an oil supply pump (37) provided in an outer circumferential section of the drive shaft (9); a pump chamber (39) that is formed around the drive shaft (9), and into which oil pumped up by the oil supply pump (37) is discharged; an axial-direction oil supply passage (41) that is pierced inside the drive shaft (9) along the direction of the axis L thereof, and that supplies the oil from the pump chamber (39) to a sliding part; and a radial-direction oil supply passage (40) that guides the oil in the pump chamber (39) to the axial-direction oil supply passage (41). The axial-direction oil supply passage (41) is provided in a position that is decentered by a predetermined dimension Δh with respect to the axis L of the drive shaft (9). The radial-direction oil supply passage (40) is provided on a side toward which the axial-direction oil supply passage (41) is decentered.

Description

開放型圧縮機Open type compressor
 本発明は、駆動軸の外周に設けられ、その駆動軸で駆動される給油ポンプにより汲み上げた油を駆動軸内に軸方向に沿って穿設している給油通路を通して摺動部位に給油可能としている開放型圧縮機に関するものである。 The present invention enables oil supply to a sliding part through an oil supply passage which is provided on the outer periphery of the drive shaft and pumped up by an oil supply pump driven by the drive shaft along the axial direction in the drive shaft. It relates to an open type compressor.
 ハウジングの内部に軸受を介して回転自在に支持している駆動軸の一端部が、ハウジングの外部に突出し、外部から動力を得て駆動される横置きタイプの開放型圧縮機においては、油溜めの潤滑油を給油ポンプにより汲み上げ、その油を軸受等の摺動部位に給油して潤滑する強制給油方式を採用する場合、特許文献1に示すように、駆動軸の外周に該駆動軸により駆動される給油ポンプを設け、その給油ポンプにより汲み上げた油を駆動軸内に軸方向に沿って穿設している給油通路を通して摺動部位に給油する構成としている。 In a horizontal type open type compressor, one end of the drive shaft that is rotatably supported inside the housing via a bearing protrudes outside the housing and is driven by power from the outside. In the case of adopting a forced oiling system in which the lubricating oil is pumped up by an oil supply pump and then lubricated to a sliding part such as a bearing, the drive shaft is driven by the drive shaft as shown in Patent Document 1. The oil pump is provided, and the oil pumped up by the oil pump is supplied to the sliding portion through an oil passage formed in the drive shaft along the axial direction.
 密閉型圧縮機の場合、縦置き型、横置き型に限らず、一般に駆動軸の軸端に遠心式や容積式等の給油ポンプを設け、密閉容器内に充填している潤滑油を給油ポンプによって汲み上げ、その油をそのまま駆動軸内に軸方向に沿って穿設している給油通路を通して摺動部位に給油する構成を採用している。このような強制給油方式のものにあって、駆動軸の内部に軸方向に沿って穿設している給油通路を、その軸線に対して所定寸法オフセットさせて設け、遠心力を利用して給油性能を向上させるようにしたものが特許文献2に開示されている。 In the case of a hermetic compressor, it is not limited to a vertical type or a horizontal type. Generally, a centrifugal or positive displacement oil pump is provided at the shaft end of the drive shaft, and the lubricating oil filled in the sealed container is supplied to the oil pump. A configuration is adopted in which the oil is pumped by the oil and the oil is supplied to the sliding portion through an oil supply passage which is perforated in the drive shaft along the axial direction. In such a forced oil supply system, an oil supply passage formed in the drive shaft along the axial direction is provided with a predetermined dimension offset with respect to the axis, and oil supply is performed using centrifugal force. Japanese Patent Application Laid-Open No. H10-228707 discloses a device that improves performance.
特開2005-282446号公報JP 2005-282446 A 特開平8-219063号公報Japanese Patent Laid-Open No. 8-219063
 上記の如く、強制給油方式を採用した圧縮機において、密閉型の場合、外部動力を得る必要がなく、駆動軸の一端を開放端とし、軸方向に給油通路を穿設できることから、遠心力による影響を受け難くし、駆動軸の回転数に比例して給油ポンプの回転数や遠心力を増加することができる。これによって、給油量を増加し、給油性能を向上することができるため、特段問題はない。しかし、開放型圧縮機の場合、外部動力を得る必要があり、駆動軸の一端を開放端とすることが難しい。そのため、給油ポンプによって汲み上げた油をいったん駆動軸周りに形成しているポンプ室に吐出し、そのポンプ室から駆動軸にラジアル方向に設けた給油通路により軸方向に穿設している給油通路に油を供給する必要がある。 As described above, in the case of a hermetic compressor that employs a forced oiling system, it is not necessary to obtain external power, and since one end of the drive shaft can be opened and an oiling passage can be drilled in the axial direction, It is difficult to be affected, and the rotational speed and centrifugal force of the oil supply pump can be increased in proportion to the rotational speed of the drive shaft. As a result, the amount of oil supply can be increased and the oil supply performance can be improved, so there is no particular problem. However, in the case of an open type compressor, it is necessary to obtain external power, and it is difficult to make one end of the drive shaft an open end. Therefore, the oil pumped up by the oil pump is once discharged into the pump chamber formed around the drive shaft, and the oil passage is provided in the axial direction by the oil passage provided in the radial direction from the pump chamber to the drive shaft. It is necessary to supply oil.
 従って、構造的にラジアル方向に穿設している給油通路の入口部分において、遠心力による圧損が発生することは避けられない。この流路圧損は、駆動軸の回転数が増すにつれて増加する傾向になることから、軸方向給油通路が駆動軸の軸線(偏心なし)上に設けられている場合、特に高回転数域において、図3に示すように、給油量が低下する特性があった。 Therefore, pressure loss due to centrifugal force is unavoidable at the inlet portion of the oil supply passage that is structurally drilled in the radial direction. Since this flow path pressure loss tends to increase as the rotational speed of the drive shaft increases, particularly when the axial oil supply passage is provided on the axis (no eccentricity) of the drive shaft, As shown in FIG. 3, there was a characteristic that the amount of oil supply decreased.
 本発明は、このような事情に鑑みてなされたものであって、特に高回転数域における流路圧損の増大による給油量の低下を抑制し、潤滑性能に対する信頼性を向上することができる開放型圧縮機を提供することを目的とする。 The present invention has been made in view of such circumstances, and is particularly capable of suppressing a decrease in the amount of oil supply due to an increase in flow path pressure loss in a high rotation speed range and improving the reliability with respect to the lubrication performance. An object is to provide a mold compressor.
 本発明の第1の態様は、ハウジング内に回転自在に支持され、その一端部が前記ハウジングの外部に突出している駆動軸と、前記駆動軸の外周部に設けられ、該駆動軸の回転により駆動される給油ポンプと、前記駆動軸周りに形成され、前記給油ポンプにより汲み上げた油が吐出されるポンプ室と、前記駆動軸内にその軸線方向に沿って穿設され、前記ポンプ室からの油を摺動部位に給油する軸方向給油通路と、前記駆動軸に設けられ、前記ポンプ室の油を前記軸方向給油通路に導くラジアル方向給油通路と、を備えた開放型圧縮機において、前記軸方向給油通路は、前記駆動軸の軸線に対して所定寸法偏心した位置に設けられ、前記ラジアル方向給油通路は、前記軸方向給油通路の偏心方向側に設けられている開放型圧縮機である。 According to a first aspect of the present invention, there is provided a drive shaft that is rotatably supported in a housing, one end of which protrudes outside the housing, and an outer peripheral portion of the drive shaft. An oil pump to be driven, a pump chamber formed around the drive shaft and from which oil pumped up by the oil pump is discharged, and drilled along the axial direction in the drive shaft, from the pump chamber An open type compressor comprising: an axial oil supply passage for supplying oil to a sliding portion; and a radial oil supply passage provided in the drive shaft and guiding the oil in the pump chamber to the axial oil supply passage. The axial oil supply passage is provided at a position that is decentered by a predetermined dimension with respect to the axis of the drive shaft, and the radial oil supply passage is an open type compressor provided on the eccentric direction side of the axial oil supply passage. .
 本発明の第1の態様によれば、駆動軸内に穿設されている軸方向給油通路が、駆動軸の軸線に対して所定寸法偏心した位置に設けられるとともに、給油ポンプにより汲み上げられたポンプ室の油を軸方向給油通路に導くラジアル方向給油通路が、軸方向給油通路の偏心方向に設けられているため、軸方向給油通路を偏心させ、その偏心方向側にラジアル方向給油通路を設けている分だけラジアル方向給油通路の通路長さを短くし、ラジアル方向給油通路の入口部分において発生する遠心力による流路圧損を低減することができる。つまり、軸方向給油通路を偏心させていないものでは、ラジアル方向給油通路の通路長さは駆動軸半径となるが、ラジアル方向給油通路を軸方向給油通路の偏心方向側に設けた場合、駆動軸半径よりも通路長さを短くすることができ、その分だけ流路圧損を低減することができる。また、軸方向給油通路を所定寸法偏心させたことにより、軸方向給油通路内で油に作用する遠心ポンプ効果を利用して摺動部位に対する給油性能を高めることができる。従って、ラジアル方向給油通路での流路圧損の低減効果と軸方向給油通路による給油性能の向上効果との相乗効果により、特に高回転数域での給油量の低下を抑制し、潤滑性能に対する信頼性を高めることができる。 According to the first aspect of the present invention, the axial oil supply passage formed in the drive shaft is provided at a position deviated by a predetermined dimension with respect to the axis of the drive shaft, and the pump pumped up by the oil pump Since the radial oil supply passage that guides the chamber oil to the axial oil supply passage is provided in the eccentric direction of the axial oil supply passage, the axial oil supply passage is eccentric, and the radial oil supply passage is provided on the eccentric direction side. Accordingly, the passage length of the radial direction oil supply passage can be shortened, and the flow path pressure loss due to the centrifugal force generated at the inlet portion of the radial direction oil supply passage can be reduced. In other words, in the case where the axial oil supply passage is not decentered, the length of the radial oil supply passage is the drive shaft radius, but when the radial oil supply passage is provided on the eccentric side of the axial oil supply passage, The passage length can be made shorter than the radius, and the flow path pressure loss can be reduced accordingly. Further, by decentering the axial oil supply passage by a predetermined dimension, it is possible to improve the oil supply performance for the sliding portion by utilizing the centrifugal pump effect that acts on the oil in the axial oil supply passage. Therefore, the synergistic effect of the reduction effect of the flow pressure pressure loss in the radial direction oil supply passage and the improvement effect of the oil supply performance by the axial direction oil supply passage suppresses the decrease in the oil supply amount especially in the high rotation speed range, and the reliability for the lubrication performance. Can increase the sex.
 本発明の第1態様の開放型圧縮機において、前記ラジアル方向給油通路は、前記偏心方向の軸線上において通路長さが最短長さとなる位置に設けられてもよい。 In the open type compressor of the first aspect of the present invention, the radial direction oil supply passage may be provided at a position where the passage length is the shortest length on the axis line in the eccentric direction.
 本発明の第1態様によれば、ラジアル方向給油通路を、偏心方向の軸線上において通路長さが最短長さとなる位置に設けているため、ラジアル方向給油通路の通路長さを軸方向給油通路の偏心寸法に相当する分だけ短くし、その長さを最短長さとして、ラジアル方向給油通路の入口部分において発生する遠心力による流路圧損を最小限化することができる。これによって、高回転数域での給油量を向上し、給油性能を一層向上することができる。 According to the first aspect of the present invention, since the radial direction oil supply passage is provided at a position where the passage length is the shortest length on the axis line in the eccentric direction, the length of the radial direction oil supply passage is set to the axial direction oil supply passage. It is possible to minimize the flow path pressure loss due to the centrifugal force generated at the inlet portion of the radial direction oil supply passage by shortening the length by the amount corresponding to the eccentric dimension. Thereby, the amount of oil supply in the high rotation speed region can be improved, and the oil supply performance can be further improved.
 本発明の第1態様の上述のいずれかの開放型圧縮機において、前記軸方向給油通路の通路径は、前記ラジアル方向給油通路の通路径よりも大径とされてもよい。 In any one of the above-described open type compressors according to the first aspect of the present invention, a passage diameter of the axial oil supply passage may be larger than a passage diameter of the radial oil supply passage.
 本発明の第1態様によれば、軸方向給油通路の通路径を、ラジアル方向給油通路の通路径よりも大径としているため、偏心による遠心ポンプ効果を得やすく、かつ通路内での流路圧損を低減することができる。加えて、ラジアル方向給油通路と軸方向給油通路との繋ぎ部を段差やバリ等が発生しないように連通加工し、ラジアル方向給油通路と軸方向給油通路との繋ぎ部での流路圧損の発生を防ぐことができ、高回転数域での給油量の低下を抑制して給油性能を向上することができる。 According to the first aspect of the present invention, since the passage diameter of the axial oil supply passage is larger than the passage diameter of the radial oil supply passage, it is easy to obtain the centrifugal pump effect due to eccentricity, and the flow passage in the passage Pressure loss can be reduced. In addition, the connecting portion between the radial direction oil supply passage and the axial direction oil supply passage is processed so as not to cause steps or burrs, and flow pressure loss occurs at the connection portion between the radial direction oil supply passage and the axial direction oil supply passage. The oil supply performance can be improved by suppressing the decrease in the oil supply amount in the high rotation speed range.
 本発明によれば、軸方向給油通路を偏心させ、その偏心方向側にラジアル方向給油通路を設けている分だけラジアル方向給油通路の通路長さを短くし、ラジアル方向給油通路の入口部分において発生する遠心力による流路圧損を低減することができるとともに、軸方向給油通路を所定寸法偏心させたことにより、軸方向給油通路内で油に作用する遠心ポンプ効果を利用して摺動部位に対する給油性能を向上することができるため、ラジアル方向給油通路での流路圧損の低減効果と軸方向給油通路による給油性能の向上効果との相乗効果により、特に高回転数域での給油量の低下を抑制し、潤滑性能に対する信頼性を高めることができる。 According to the present invention, the axial oil supply passage is decentered, the length of the radial oil supply passage is shortened by the amount of the radial oil supply passage provided on the eccentric direction side, and is generated at the inlet portion of the radial oil supply passage. The flow pressure loss due to the centrifugal force can be reduced, and the axial oil supply passage is decentered by a predetermined size, so that the centrifugal pump effect that acts on the oil in the axial oil supply passage is used to supply oil to the sliding portion. Since the performance can be improved, the oil supply amount can be reduced, especially in the high engine speed range due to the synergistic effect of reducing the flow pressure pressure loss in the radial direction oil supply passage and the effect of improving the oil supply performance by the axial direction oil supply passage. It can suppress and can improve the reliability with respect to lubrication performance.
本発明の実施形態に係る開放型圧縮機の縦断面図である。It is a longitudinal section of an open type compressor concerning an embodiment of the present invention. 上記開放型圧縮機における駆動軸の断面図(A)とその右側面図(B)である。It is sectional drawing (A) of the drive shaft in the said open type compressor, and its right view (B). 図2(A)中のa-a断面相当図である。FIG. 3 is a cross-sectional view corresponding to aa in FIG. 上記駆動軸に設けられるラジアル方向給油通路の変形例の図3に相当する断面図である。It is sectional drawing equivalent to FIG. 3 of the modification of the radial direction oil supply path provided in the said drive shaft. 上記開放型圧縮機における給油特性を示すグラフである。It is a graph which shows the oil supply characteristic in the said open type compressor.
 以下に、本発明にかかる実施形態について、図1ないし図5を参照して説明する。
 図1は、本発明の実施形態に係る開放型圧縮機の縦断面図を示し、図2は、その駆動軸の断面図(A)とその右側面図(B)、図3および図4は、それぞれ図2(A)中のa-a断面相当図を示している。
 開放型圧縮機1は、有底形状をなすフロントハウジング3とリアハウジング4とをボルト5を介して一体に結合した円筒状のハウジング2を備えている。
Embodiments according to the present invention will be described below with reference to FIGS. 1 to 5.
FIG. 1 is a longitudinal sectional view of an open type compressor according to an embodiment of the present invention. FIG. 2 is a sectional view (A) of a drive shaft and a right side view (B) thereof, and FIGS. FIG. 2A is a cross-sectional view corresponding to the line aa in FIG.
The open-type compressor 1 includes a cylindrical housing 2 in which a front housing 3 and a rear housing 4 having a bottomed shape are integrally coupled via bolts 5.
 ハウジング2内のフロントハウジング3側の開口端側には、軸受部材6がボルト7を介して固定設置され、この軸受部材6のラジアル軸受部6Aと、フロントハウジング3内に設置された転がり軸受8とによって駆動軸9を回転自在に支持している。駆動軸9の一端部は、フロントハウジング3を貫通して外部に突出しており、その突出部位にエンジン等の外部駆動源からの動力がプーリ10および電磁クラッチ11を介して入力されるようになっている。 A bearing member 6 is fixedly installed via a bolt 7 on the opening end side of the front housing 3 in the housing 2, and a radial bearing portion 6 </ b> A of the bearing member 6 and a rolling bearing 8 installed in the front housing 3. Thus, the drive shaft 9 is rotatably supported. One end of the drive shaft 9 protrudes outside through the front housing 3, and power from an external drive source such as an engine is input to the protruding portion via the pulley 10 and the electromagnetic clutch 11. ing.
 プーリ10は、フロントハウジング3の前端面にボルト12を介して固定設置した鍔部材13の外周に転がり軸受14を介して回転自在に支持され、その内部に電磁クラッチ11のコイル組立15を組み込んだものである。また、プーリ10と対向するように、電磁クラッチ11のアーマチュア組立16を、ボス部を介して駆動軸9の外部突出端にボルト17により組み付けている。更に、この鍔部材13の内周には、駆動軸9の貫通部を密封シールするためのメカニカルシール18を設置している。 The pulley 10 is rotatably supported on the outer periphery of a flange member 13 fixedly installed on the front end surface of the front housing 3 via a bolt 12 via a rolling bearing 14, and a coil assembly 15 of the electromagnetic clutch 11 is incorporated therein. Is. Further, the armature assembly 16 of the electromagnetic clutch 11 is assembled to the external projecting end of the drive shaft 9 with a bolt 17 through the boss portion so as to face the pulley 10. Further, a mechanical seal 18 for sealing and sealing the penetrating portion of the drive shaft 9 is installed on the inner periphery of the flange member 13.
 ハウジング2のリアハウジング4側の内部に、圧縮機構19を組み込んでいる。ここでは、圧縮機構19を一対の固定スクロール20と、旋回スクロール21とを備えたスクロール圧縮機構19としている。スクロール圧縮機構19は、一対の固定スクロール20および旋回スクロール21を180°位相をずらして噛み合わせ、両スクロール20,21間に複数の圧縮室22を形成したものであり、このようなスクロール圧縮機構19自体は周知のものである。 A compression mechanism 19 is incorporated inside the housing 2 on the rear housing 4 side. Here, the compression mechanism 19 is a scroll compression mechanism 19 including a pair of fixed scrolls 20 and a turning scroll 21. The scroll compression mechanism 19 is configured such that a pair of fixed scroll 20 and orbiting scroll 21 are engaged with each other by shifting the phase by 180 °, and a plurality of compression chambers 22 are formed between the scrolls 20, 21. 19 itself is well known.
 固定スクロール20は、軸受部材6にボルト23を介して締付け固定されており、その端板背面とリアハウジング4の内面との間に吐出キャビティ26を形成している。この固定スクロール20の端板に、圧縮されたガスを吐出キャビティ26内に吐出する吐出ポート24と、その吐出ポート24を開閉する吐出弁25を設けている。また、リアハウジング4には、吐出キャビティ26内に吐出された圧縮ガスを外部に吐き出す吐出口27が開口され、冷凍サイクルを構成する吐出配管を接続可能としている。 The fixed scroll 20 is fastened and fixed to the bearing member 6 via bolts 23, and a discharge cavity 26 is formed between the rear surface of the end plate and the inner surface of the rear housing 4. A discharge port 24 that discharges compressed gas into the discharge cavity 26 and a discharge valve 25 that opens and closes the discharge port 24 are provided on the end plate of the fixed scroll 20. Further, the rear housing 4 is provided with a discharge port 27 for discharging the compressed gas discharged into the discharge cavity 26 to the outside so that a discharge pipe constituting a refrigeration cycle can be connected.
 旋回スクロール21は、端板背面にボス部28を有し、そのボス部28に対して、駆動軸9の内端側に設けられているクランクピン9Aをドライブブッシュ29および旋回軸受30を介して連結し、駆動軸9の回転によりクランクピン9Aを介して旋回駆動される構成としている。また、旋回スクロール21は、端板背面が軸受部材6に設けられているスラスト軸受31で支持されるとともに、その端板背面と軸受部材6との間に介装されたオルダムリンクまたはピンリング等からなる周知の自転阻止機構32により自転が阻止されており、固定スクロール20に対して公転旋回駆動するようになっている。 The orbiting scroll 21 has a boss portion 28 on the back surface of the end plate, and a crank pin 9A provided on the inner end side of the drive shaft 9 with respect to the boss portion 28 via a drive bush 29 and an orbiting bearing 30. It is configured to be coupled and driven to rotate through the crankpin 9A by the rotation of the drive shaft 9. Further, the orbiting scroll 21 is supported by a thrust bearing 31 provided on the end plate back surface on the bearing member 6, and an Oldham link or pin ring interposed between the end plate back surface and the bearing member 6. The rotation is prevented by a well-known rotation prevention mechanism 32 composed of the above, and the revolving turning drive is performed with respect to the fixed scroll 20.
 リアハウジング4の前端側の外周に、冷凍サイクル側の吸入配管を接続する吸入口33を設けており、該吸入口33から吸入キャビティ34内に吸入した低圧ガスをスクロール圧縮機構19の圧縮室22に吸い込ませて圧縮する構成としている。本実施形態においては、圧縮機構19を、固定スクロール20および旋回スクロール21の渦巻き方向において、ラップ高さを変化させる段部を設け、内周側ラップ高さに対して外周側ラップ高さを高くし、ガスを周方向だけでなく、軸方向にも圧縮できる三次元圧縮が可能な所謂段付きスクロール圧縮機構19としているが、これに限定されるものではない。 A suction port 33 for connecting a suction pipe on the refrigeration cycle side is provided on the outer periphery on the front end side of the rear housing 4, and the low pressure gas sucked into the suction cavity 34 from the suction port 33 is compressed in the compression chamber 22 of the scroll compression mechanism 19. It is configured to be sucked into and compressed. In the present embodiment, the compression mechanism 19 is provided with a step portion for changing the wrap height in the spiral direction of the fixed scroll 20 and the orbiting scroll 21, and the outer wrap height is made higher than the inner wrap height. The so-called stepped scroll compression mechanism 19 capable of three-dimensional compression capable of compressing the gas not only in the circumferential direction but also in the axial direction is not limited to this.
 一方、フロントハウジング3の内部に、所要量の潤滑油を充填しており、フロントハウジング3内の下部空間を油溜め35とすることにより、その油溜め35に油を集めるようにしている。この油溜め35の油を、吸入通路36を経て給油ポンプ37に吸入する構成としている。 On the other hand, a required amount of lubricating oil is filled in the front housing 3, and the lower space in the front housing 3 is used as an oil reservoir 35 so that the oil is collected in the oil reservoir 35. The oil in the oil sump 35 is sucked into the oil supply pump 37 through the suction passage 36.
 給油ポンプ37は、フロントハウジング3の前端面を貫通している駆動軸9の外周部位に偏心部9B(図2参照)を形成し、その偏心部9Bに対して、フロントハウジング3の前端面と鍔部材13の端面間に形成されるシリンダ内を偏心回動するロータ38を嵌合した構成の公知のロータリ式容積型ポンプとしている。 The oil supply pump 37 forms an eccentric portion 9B (see FIG. 2) in the outer peripheral portion of the drive shaft 9 penetrating the front end surface of the front housing 3, and the front end surface of the front housing 3 is opposed to the eccentric portion 9B. A known rotary positive displacement pump having a configuration in which a rotor 38 that rotates eccentrically in a cylinder formed between the end faces of the flange member 13 is fitted.
 給油ポンプ37により油溜め35から汲み上げられた油は、駆動軸9周りの偏心部9Bとメカニカルシール18との間に形成したポンプ室39内に吐出される。このポンプ室39に汲み上げられた油は、駆動軸9内に設けたラジアル方向給油通路40および軸方向給油通路41を通してラジアル軸受部6Aやドライブブッシュ29、旋回軸受30、スラスト軸受31等の摺動部位あるいはメカニカルシール18の摺動部位等に供給される。 Oil pumped from the oil reservoir 35 by the oil supply pump 37 is discharged into a pump chamber 39 formed between the eccentric portion 9B around the drive shaft 9 and the mechanical seal 18. The oil pumped into the pump chamber 39 slides through the radial bearing portion 6A, the drive bush 29, the swivel bearing 30, the thrust bearing 31 and the like through the radial oil supply passage 40 and the axial oil supply passage 41 provided in the drive shaft 9. It is supplied to a part or a sliding part of the mechanical seal 18.
 駆動軸9の内部に、その軸線Lに沿って設けられる軸方向給油通路41を、図2および図3に示すように、駆動軸9の軸線Lに対して、所定寸法(偏心寸法)Δhだけ偏心した位置に設けている。また、ポンプ室39内の油を軸方向給油通路41に導くラジアル方向給油通路40を、軸方向給油通路41の偏心方向に設けている。本実施形態では、ラジアル方向給油通路40を偏心方向の軸線上でその通路長さh1が最短長さとなる位置に設けている。これによって、軸方向給油通路41を駆動軸9の軸線L上に設けたものの通路長さhに比べ、ラジアル方向給油通路40の通路長さh1を、Δh(Δh=h-h1)分だけ短くすることができる。 As shown in FIGS. 2 and 3, the axial oil supply passage 41 provided along the axis L in the drive shaft 9 has a predetermined dimension (eccentric dimension) Δh with respect to the axis L of the drive shaft 9. It is provided at an eccentric position. A radial oil supply passage 40 that guides oil in the pump chamber 39 to the axial oil supply passage 41 is provided in the eccentric direction of the axial oil supply passage 41. In this embodiment, the radial direction oil supply passage 40 is provided at a position where the passage length h1 is the shortest length on the axis line in the eccentric direction. Accordingly, the passage length h1 of the radial direction oil supply passage 40 is shorter by Δh (Δh = h−h1) than the passage length h of the axial direction oil supply passage 41 provided on the axis L of the drive shaft 9. can do.
 但し、本発明は、上記の如く、ラジアル方向給油通路40を偏心方向の軸線上に設け、その通路長さh1を最短長さとしたものに限らず、図4に示すように、偏心方向の軸線に対して一定角度を持った方向にラジアル方向給油通路40Aを設けてもよい。かかる構成によっても、ラジアル方向給油通路40Aの通路長さh2を、軸方向給油通路41を駆動軸9の軸線L上に設けたものの通路長さhに比べて短くすることができ、この場合の通路長さh2は、h1<h2<hとなる。つまり、ポンプ室39の油を軸方向給油通路41に導くラジアル方向給油通路は、偏心方向の軸線上に限らず、軸方向給油通路41の偏心方向側に設けることによって、その通路長さを駆動軸9の軸線L上に軸方向給油通路41を設けたものに比べて短くすることができる。 However, as described above, the present invention is not limited to the case where the radial direction oil supply passage 40 is provided on the eccentric axis, and the passage length h1 is the shortest length. As shown in FIG. Alternatively, the radial oil supply passage 40A may be provided in a direction having a certain angle with respect to the first oil supply passage. Even with such a configuration, the passage length h2 of the radial oil supply passage 40A can be made shorter than the passage length h of the axial oil supply passage 41 provided on the axis L of the drive shaft 9. The passage length h2 is h1 <h2 <h. In other words, the radial oil supply passage that guides the oil in the pump chamber 39 to the axial oil supply passage 41 is not limited to the eccentric axial line, and is provided on the eccentric direction side of the axial oil supply passage 41 to drive the length of the passage. The axial oil supply passage 41 can be shortened as compared with the case where the axial oil supply passage 41 is provided on the axis L of the shaft 9.
 また、上記の如く、軸方向給油通路41およびラジアル方向給油通路40,40Aを設けるに当たり、軸方向給油通路41を、クランクピン9Aの一端から軸線Lに沿って穿設した止まり孔としている。一方、ラジアル方向給油通路40,40Aを、その止まり孔の先端部付近でラジアル方向に直交して設けた孔としており、その交差部(繋ぎ部)において、流路圧損の要因となる段差やバリ等が生じないようにする必要がある。そこで、軸方向給油通路41の通路径d1を、ラジアル方向給油通路40,40Aの通路径d2よりも大径(d1>d2)とすることにより、軸方向給油通路41で偏心による遠心ポンプ効果を得やすく、かつその通路内での流路圧損を低減するとともに、両通路40,40Aと41の繋ぎ部において段差やバリ等が生じないように連通加工できる構成としている。 Further, as described above, when the axial direction oil supply passage 41 and the radial direction oil supply passages 40, 40A are provided, the axial direction oil supply passage 41 is formed as a blind hole formed along the axis L from one end of the crankpin 9A. On the other hand, the radial oil supply passages 40, 40A are holes provided perpendicular to the radial direction in the vicinity of the end of the blind hole, and at the intersection (connecting portion), steps and burrs that cause flow path pressure loss are formed. It is necessary to prevent this from occurring. Therefore, by making the passage diameter d1 of the axial direction oil supply passage 41 larger than the passage diameter d2 of the radial direction oil supply passages 40, 40A (d1> d2), the axial oil supply passage 41 has a centrifugal pump effect due to eccentricity. It is easy to obtain, and it is configured to be able to reduce the flow path pressure loss in the passage and to perform communication processing so that a step, a burr, or the like does not occur at the connecting portion between both passages 40, 40A and 41.
 以上に説明の構成により、本実施形態によると、以下の作用効果を奏する。
 上記開放型圧縮機1において、電磁クラッチ11がONされると、プーリ10を介して外部駆動源から入力された動力は、駆動軸9に伝達され、駆動軸9が回転駆動される。これによって、スクロール圧縮機構19の旋回スクロール21が固定スクロール20周りに公転旋回駆動され、吸入口33から吸入キャビティ34内に吸入された低圧ガスを圧縮室22内に吸込み、高圧に圧縮して吐出ポート24から吐出キャビティ26内に吐出し、吐出口27から冷凍サイクルへと吐出する。
With the configuration described above, according to the present embodiment, the following operational effects can be obtained.
In the open compressor 1, when the electromagnetic clutch 11 is turned on, the power input from the external drive source via the pulley 10 is transmitted to the drive shaft 9, and the drive shaft 9 is rotationally driven. As a result, the orbiting scroll 21 of the scroll compression mechanism 19 is driven to revolve around the fixed scroll 20, and the low pressure gas sucked into the suction cavity 34 from the suction port 33 is sucked into the compression chamber 22, compressed to a high pressure and discharged. The liquid is discharged from the port 24 into the discharge cavity 26 and discharged from the discharge port 27 to the refrigeration cycle.
 この間、駆動軸9の回転により駆動される給油ポンプ37は、吸入通路36を介して油溜め35内の潤滑油を吸入し、ポンプ室39に汲み上げる。ポンプ室39内に汲み上げられた油は、メカニカルシール18の摺動部位を潤滑するとともに、ラジアル方向給油通路40,40Aを介して軸方向給油通路41へと導かれ、軸方向給油通路41を通してラジアル軸受部6Aやドライブブッシュ29、旋回軸受30、スラスト軸受31等の摺動部位に対して供給され、それぞれの摺動部位を潤滑する。各摺動部位を潤滑した油は、ハウジング2の底部である油溜め35に集められ、再循環される。 During this time, the oil supply pump 37 driven by the rotation of the drive shaft 9 sucks the lubricating oil in the oil sump 35 through the suction passage 36 and pumps it into the pump chamber 39. The oil pumped into the pump chamber 39 lubricates the sliding portion of the mechanical seal 18 and is guided to the axial oil supply passage 41 via the radial oil supply passages 40, 40 </ b> A. Supplied to the sliding portions such as the bearing portion 6A, the drive bush 29, the slewing bearing 30, the thrust bearing 31 and the like, and lubricates each sliding portion. The oil that has lubricated the sliding parts is collected in an oil sump 35 at the bottom of the housing 2 and recirculated.
 ここで、本実施形態においては、軸方向給油通路41を、駆動軸9の軸線Lに対して所定寸法Δhだけ偏心した位置に設けるとともに、その軸方向給油通路41にポンプ室39内の油を導くラジアル方向給油通路40,40Aを、軸方向給油通路41の偏心方向側に設ける。これにより、その通路長さh1,h2を、軸方向給油通路41を駆動軸9の軸線L上に設けたものに比べて短く(h1<h2<h)できるようにしている。 Here, in the present embodiment, the axial oil supply passage 41 is provided at a position eccentric by a predetermined dimension Δh with respect to the axis L of the drive shaft 9, and the oil in the pump chamber 39 is supplied to the axial oil supply passage 41. Radial direction oil supply passages 40, 40 </ b> A for guiding are provided on the eccentric direction side of the axial direction oil supply passage 41. Accordingly, the passage lengths h1 and h2 can be made shorter (h1 <h2 <h) than that in which the axial oil supply passage 41 is provided on the axis L of the drive shaft 9.
 このため、軸方向給油通路41を偏心させた寸法Δh分に相当してラジアル方向給油通路40,40Aの通路長さh1,h2を短くし、ラジアル方向給油通路40,40Aの入口部分において発生する遠心力による流路圧損を低減することができる。また、軸方向給油通路41を所定寸法Δh偏心させたことにより、軸方向給油通路41内で油に作用する遠心ポンプ効果を利用して摺動部位に対する給油性能を高めることができる。 For this reason, the passage lengths h1 and h2 of the radial oil supply passages 40 and 40A are shortened corresponding to the dimension Δh in which the axial oil supply passage 41 is decentered, and this occurs at the inlet portion of the radial oil supply passages 40 and 40A. Flow path pressure loss due to centrifugal force can be reduced. Further, by decentering the axial oil supply passage 41 by the predetermined dimension Δh, the oil supply performance for the sliding portion can be enhanced by utilizing the centrifugal pump effect that acts on the oil in the axial oil supply passage 41.
 図5は、上記強制給油方式を採用した場合の給油特性を横軸に駆動軸9の回転数(rpm)、縦軸に給油量(cm/min)を取って表したグラフである。実線で示す理論値に対して、軸方向給油通路41を軸線L上に設けているものの場合、ラジアル方向給油通路の通路長さhが長くなるため、プロット□で示す通り高回転数域で理論値に対する給油量が低下する。本実施形態の如く、軸方向給油通路41を軸線Lに対して偏心して設け、ラジアル方向給油通路40,40Aをその偏心方向側に設けて通路長さh1,h2を短くしたものの場合、プロット▲で示す通り高回転数域での給油量を向上し、理論値に近づけることができる。 FIG. 5 is a graph showing the oil supply characteristics when the forced oil supply method is employed, with the horizontal axis representing the rotational speed (rpm) of the drive shaft 9 and the vertical axis representing the oil supply amount (cm 3 / min). In contrast to the theoretical value indicated by the solid line, in the case where the axial direction oil supply passage 41 is provided on the axis L, the length h of the radial direction oil supply passage becomes longer. Refueling amount will decrease. In the case where the axial oil supply passage 41 is provided eccentrically with respect to the axis L and the radial oil supply passages 40, 40A are provided on the eccentric direction side and the passage lengths h1, h2 are shortened as in this embodiment, plot ▲ As shown by, the amount of oil supply in the high rotation speed region can be improved and brought close to the theoretical value.
 従って、本実施形態によると、ラジアル方向給油通路40,40Aでの流路圧損の低減効果と軸方向給油通路41による給油性能の向上効果との相乗効果により、高回転数域での給油量の低下を抑制し、潤滑性能に対する信頼性を高めることができる。 Therefore, according to the present embodiment, the synergistic effect of the effect of reducing the flow pressure pressure loss in the radial direction oil supply passages 40 and 40A and the effect of improving the oil supply performance by the axial direction oil supply passage 41, the oil supply amount in the high rotation speed region is reduced. It is possible to suppress the decrease and increase the reliability with respect to the lubricating performance.
 特に、ラジアル方向給油通路40を偏心方向の軸線上において、通路長さh1が最短長さとなる位置に設けている。このため、ラジアル方向給油通路40の通路長さh1を軸方向給油通路41の偏心寸法Δhに相当する分だけ短くし、その長さh1を最短長さとして、ラジアル方向給油通路40の入口部分において発生する遠心力による流路圧損を最小限化することができる。これによって、高回転数域での給油量を向上し、給油性能を一層向上することができる。 Particularly, the radial direction oil supply passage 40 is provided at a position where the passage length h1 is the shortest length on the axis line in the eccentric direction. Therefore, the passage length h1 of the radial direction oil supply passage 40 is shortened by an amount corresponding to the eccentric dimension Δh of the axial direction oil supply passage 41, and the length h1 is set as the shortest length at the inlet portion of the radial direction oil supply passage 40. The flow path pressure loss due to the generated centrifugal force can be minimized. Thereby, the amount of oil supply in the high rotation speed region can be improved, and the oil supply performance can be further improved.
 また、ラジアル方向給油通路40,40Aおよび軸方向給油通路41について、軸方向給油通路41の通路径d1をラジアル方向給油通路40,40Aの通路径d2よりも大径(d1>d2)としているため、軸方向給油通路41の偏心による遠心ポンプ効果を得やすく、かつその通路内での流路圧損を低減することができる。加えて、ラジアル方向給油通路40,40Aと軸方向給油通路41との繋ぎ部を段差やバリ等が発生しないように連通加工し、両通路40,40Aと41との繋ぎ部での流路圧損の発生を防ぐことができるため、その相乗効果によって、高回転数域での給油量の低下を抑制し、給油性能を向上することができる。 Further, in the radial direction oil supply passages 40, 40A and the axial direction oil supply passage 41, the passage diameter d1 of the axial direction oil supply passage 41 is larger than the passage diameter d2 of the radial direction oil supply passages 40, 40A (d1> d2). The centrifugal pump effect due to the eccentricity of the axial oil supply passage 41 can be easily obtained, and the flow pressure loss in the passage can be reduced. In addition, the connecting portion between the radial direction oil supply passages 40 and 40A and the axial direction oil supply passage 41 is processed so as not to generate a step or a burr, and the flow path pressure loss at the connecting portion between both the passages 40, 40A and 41 is processed. Therefore, the synergistic effect can suppress the decrease in the amount of oil supply in the high engine speed range and improve the oil supply performance.
 特に、本実施形態に係る開放型圧縮機1は、3600rpm以上の高速運転をする強制給油方式を採用した開放型スクロール圧縮機1に適用した場合に、潤滑性能を向上することができる。 Particularly, the open type compressor 1 according to the present embodiment can improve the lubrication performance when applied to the open type scroll compressor 1 adopting a forced oiling system that operates at a high speed of 3600 rpm or more.
 なお、本発明は、上記実施形態にかかる発明に限定されるものではなく、適宜変形が可能である。例えば、上記実施形態では、開放型圧縮機1の一例として、スクロール式圧縮機に適用した例について説明したが、他形式の、例えばロータリ式や斜板式、レシプロ式等の開放型圧縮機にも同様に適用できることはもちろんである。 In addition, this invention is not limited to the invention concerning the said embodiment, A deformation | transformation is possible suitably. For example, in the above embodiment, an example in which the present invention is applied to a scroll type compressor has been described as an example of the open type compressor 1. However, other types of open type compressors such as a rotary type, a swash plate type, and a reciprocating type are also described. Of course, the same applies.
 また、給油ポンプ37についても、上記実施形態では、ロータリ式の容積型ポンプを適用した例について説明したが、これに限定されるものではなく、ネジ式のポンプ等、他形式の給油ポンプとしてもよい。 Further, in the above embodiment, the oil pump 37 has been described with respect to an example in which a rotary positive displacement pump is applied. However, the present invention is not limited to this, and other types of oil pumps such as a screw pump may be used. Good.
1 開放型圧縮機
2 ハウジング
9 駆動軸
37 給油ポンプ
39 ポンプ室
40,40A ラジアル方向給油通路
41 軸方向給油通路
L 駆動軸の軸線
Δh 偏心寸法
h1,h2 ラジアル方向給油通路の通路長さ
d1 軸方向給油通路の通路径
d2 ラジアル方向給油通路の通路径
DESCRIPTION OF SYMBOLS 1 Open type compressor 2 Housing 9 Drive shaft 37 Oil supply pump 39 Pump chamber 40, 40A Radial direction oil supply passage 41 Axial oil supply passage L Drive shaft axis line Δh Eccentric dimension h1, h2 Radial direction oil supply passage length d1 Axial direction Oil supply passage diameter d2 Radial direction oil supply passage diameter

Claims (3)

  1.  ハウジング内に回転自在に支持され、その一端部が前記ハウジングの外部に突出している駆動軸と、
     前記駆動軸の外周部に設けられ、該駆動軸の回転により駆動される給油ポンプと、
     前記駆動軸周りに形成され、前記給油ポンプにより汲み上げた油が吐出されるポンプ室と、
     前記駆動軸内にその軸線方向に沿って穿設され、前記ポンプ室からの油を摺動部位に給油する軸方向給油通路と、
     前記駆動軸に設けられ、前記ポンプ室の油を前記軸方向給油通路に導くラジアル方向給油通路と、を備えた開放型圧縮機において、
     前記軸方向給油通路は、前記駆動軸の軸線に対して所定寸法偏心した位置に設けられ、
     前記ラジアル方向給油通路は、前記軸方向給油通路の偏心方向側に設けられている開放型圧縮機。
    A drive shaft that is rotatably supported in the housing and has one end projecting to the outside of the housing;
    An oil supply pump provided on an outer peripheral portion of the drive shaft and driven by rotation of the drive shaft;
    A pump chamber formed around the drive shaft and from which oil pumped by the oil pump is discharged;
    An axial oil supply passage which is perforated along the axial direction in the drive shaft and supplies oil from the pump chamber to a sliding portion;
    In an open type compressor provided with the radial direction oil supply passage provided in the drive shaft, and guiding the oil of the pump chamber to the axial direction oil supply passage,
    The axial oil supply passage is provided at a position decentered by a predetermined dimension with respect to the axis of the drive shaft,
    The radial oil supply passage is an open-type compressor provided on an eccentric side of the axial oil supply passage.
  2.  前記ラジアル方向給油通路は、前記偏心方向の軸線上において通路長さが最短長さとなる位置に設けられている請求項1に記載の開放型圧縮機。 2. The open type compressor according to claim 1, wherein the radial direction oil supply passage is provided at a position where the passage length is the shortest on the axis in the eccentric direction.
  3.  前記軸方向給油通路の通路径は、前記ラジアル方向給油通路の通路径よりも大径とされている請求項1または2に記載の開放型圧縮機。
     
    The open type compressor according to claim 1 or 2, wherein a passage diameter of the axial oil supply passage is larger than a diameter of the radial oil supply passage.
PCT/JP2015/072069 2014-08-08 2015-08-04 Open-type compressor WO2016021590A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020187028281A KR20180112091A (en) 2014-08-08 2015-08-04 Open-type compressor
AU2015300143A AU2015300143B2 (en) 2014-08-08 2015-08-04 Open-type compressor
KR1020167036107A KR102096139B1 (en) 2014-08-08 2015-08-04 Open-type compressor
CN201580033419.XA CN106662093A (en) 2014-08-08 2015-08-04 Open-type compressor
EP15829255.7A EP3150855B1 (en) 2014-08-08 2015-08-04 Open-type compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-162441 2014-08-08
JP2014162441A JP6462265B2 (en) 2014-08-08 2014-08-08 Open type compressor

Publications (1)

Publication Number Publication Date
WO2016021590A1 true WO2016021590A1 (en) 2016-02-11

Family

ID=55263852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072069 WO2016021590A1 (en) 2014-08-08 2015-08-04 Open-type compressor

Country Status (6)

Country Link
EP (1) EP3150855B1 (en)
JP (1) JP6462265B2 (en)
KR (2) KR102096139B1 (en)
CN (1) CN106662093A (en)
AU (1) AU2015300143B2 (en)
WO (1) WO2016021590A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05149277A (en) * 1991-11-26 1993-06-15 Mitsubishi Heavy Ind Ltd Horizontal type closed scroll compressor
JP2005282446A (en) * 2004-03-29 2005-10-13 Mitsubishi Heavy Ind Ltd Scroll compressor
JP2012097577A (en) * 2010-10-29 2012-05-24 Daikin Industries Ltd Compressor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04279792A (en) * 1991-03-08 1992-10-05 Toshiba Corp Fluid compressor
JPH08219063A (en) 1995-02-13 1996-08-27 Daikin Ind Ltd Lubricating oil feeding structure for rotary shaft
CN2688935Y (en) * 2004-01-21 2005-03-30 柳州高新区浦发汽车空调有限公司 Volumetric vortex fluid compressor
CN202520559U (en) * 2012-03-14 2012-11-07 广东美芝精密制造有限公司 Crankshaft structure of rolling rotor compressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05149277A (en) * 1991-11-26 1993-06-15 Mitsubishi Heavy Ind Ltd Horizontal type closed scroll compressor
JP2005282446A (en) * 2004-03-29 2005-10-13 Mitsubishi Heavy Ind Ltd Scroll compressor
JP2012097577A (en) * 2010-10-29 2012-05-24 Daikin Industries Ltd Compressor

Also Published As

Publication number Publication date
CN106662093A (en) 2017-05-10
KR102096139B1 (en) 2020-04-01
JP2016037922A (en) 2016-03-22
EP3150855B1 (en) 2020-04-22
AU2015300143A1 (en) 2017-01-19
KR20180112091A (en) 2018-10-11
AU2015300143B2 (en) 2018-05-10
EP3150855A1 (en) 2017-04-05
EP3150855A4 (en) 2017-06-28
JP6462265B2 (en) 2019-01-30
KR20170010406A (en) 2017-01-31

Similar Documents

Publication Publication Date Title
US10781817B2 (en) Compressor having centrifugation and differential pressure structure for oil supplying
JP6628957B2 (en) Scroll compressor
WO2012144067A1 (en) Scroll compressor
JP6664879B2 (en) Open type compressor
US9512842B2 (en) Rotary compressor
JP6554926B2 (en) Scroll compressor
JP2012219654A (en) Rotary fluid machine
JP2009030570A (en) Fluid machine
JP2013024086A (en) Compressor
JP6906887B2 (en) Scroll fluid machine
JP2015040472A (en) Rotary compressor
KR20210012231A (en) Rotary comppresor
JP6207828B2 (en) Scroll compressor
JP6462265B2 (en) Open type compressor
CN108350869B (en) Fluid machinery
JP5999922B2 (en) Scroll compressor
US20170342981A1 (en) Scroll compressor
EP2735742B1 (en) Fluid machine
JP2010031729A (en) Scroll compressor
JP2006241993A (en) Scroll compressor
JP2019056336A (en) Scroll type fluid machine
JP3574904B2 (en) Closed displacement compressor
JP5764715B2 (en) Scroll compressor
JP2012229684A (en) Hermetic electric compressor
JP6756551B2 (en) Open compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15829255

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167036107

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015829255

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015829255

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015300143

Country of ref document: AU

Date of ref document: 20150804

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE