WO2012144067A1 - Scroll compressor - Google Patents

Scroll compressor Download PDF

Info

Publication number
WO2012144067A1
WO2012144067A1 PCT/JP2011/059938 JP2011059938W WO2012144067A1 WO 2012144067 A1 WO2012144067 A1 WO 2012144067A1 JP 2011059938 W JP2011059938 W JP 2011059938W WO 2012144067 A1 WO2012144067 A1 WO 2012144067A1
Authority
WO
WIPO (PCT)
Prior art keywords
eccentric
loss
groove
bearing
crankshaft
Prior art date
Application number
PCT/JP2011/059938
Other languages
French (fr)
Japanese (ja)
Inventor
小山田 具永
柳瀬 裕一
小山 昌喜
佐藤 英治
大野 耕作
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2011/059938 priority Critical patent/WO2012144067A1/en
Publication of WO2012144067A1 publication Critical patent/WO2012144067A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • F04C29/0057Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions for eccentric movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/023Lubricant distribution through a hollow driving shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings
    • F04C2240/54Hydrostatic or hydrodynamic bearing assemblies specially adapted for rotary positive displacement pumps or compressors

Abstract

A scroll compressor equipped with: a stationary scroll (112); a rotating scroll (109); a crankshaft (103) at the end of which is an eccentric part (108); an oil supply hole (115) that penetrates the interior of the crankshaft in the axial direction and has an aperture part at the end face of the eccentric part; a rotating sliding bearing (110) that is provided on the rotating scroll, and engages the eccentric part and slides; and an oil supply passage (116) provided at the outer circumference of the eccentric part. The scroll compressor is constructed such that the interval between the eccentric part and the rotating sliding bearing is lubricated by means of lubricating oil supplied from the oil supply hole. A loss reduction groove (117) is provided separately from the oil supply passage at the outer circumference of the eccentric part in the axial direction, and seal parts (118a, 118b) are provided on the eccentric part end-face side and/or the eccentric part base side of this loss reduction groove. Thus, the shear resistance of the oil film due to the lubricating oil present between the outer circumferential surface of the eccentric part of the crankshaft and the inner circumferential surface of the rotating sliding bearing can be reduced, and bearing loss during fluid lubrication can be reduced.

Description

スクロール圧縮機Scroll compressor
 本発明は、冷凍空調装置に使用されるスクロール圧縮機に関し、特にクランク軸の偏心部と係合して摺動する旋回滑り軸受を旋回スクロールに備えるスクロール圧縮機に関する。 The present invention relates to a scroll compressor used in a refrigerating and air-conditioning apparatus, and more particularly to a scroll compressor provided with an orbiting sliding bearing that engages and slides with an eccentric portion of a crankshaft.
 スクロール圧縮機は、渦巻き状の歯型形状を有する2つのスクロール部材を相対的に旋回運動させることにより、冷媒等の気体の圧縮を行う圧縮機である。一般には、ネジや溶接等で拘束された固定スクロールに対して、もう一方の可動な旋回スクロールが旋回運動するように構成されている。旋回スクロールには、クランク軸の偏心部と係合して摺動する旋回滑り軸受が設けられており、クランク軸の偏心部と前記旋回滑り軸受とが潤滑油を介して摺動をしながら、クランク軸の振れ回り回転運動を旋回スクロールに伝達して旋回運動させる機構が多く採用されている。 The scroll compressor is a compressor that compresses a gas such as a refrigerant by relatively swiveling two scroll members having a spiral tooth shape. Generally, the other movable orbiting scroll is configured to orbit with respect to a fixed scroll that is constrained by screws or welding. The orbiting scroll is provided with an orbiting sliding bearing that engages and slides with the eccentric portion of the crankshaft, while the eccentric portion of the crankshaft and the orbiting sliding bearing slide through the lubricating oil, Many mechanisms have been adopted in which the rotational movement of the crankshaft is transmitted to the orbiting scroll for the orbiting movement.
 近年、スクロール圧縮機のエネルギー消費量の低減、及び電動機の負荷低減のため、軸と軸受との摺動により生じる軸受損失の低減が課題となっている。 
 この軸受損失の低減を図るようにした従来技術としては、特開2003-239876号公報(特許文献1)に記載のものがある。この文献には、「旋回スクロールの下部に形成されたハブの挿入溝にフローティングリング部材が自転と空転自在に保持され、フローティングリング部材の中心には、回転軸の偏心部に固定されたスライドブッシュが挿入されてスクロール圧縮機の摩擦損失低減装置を構成する」と記載されている。
In recent years, in order to reduce the energy consumption of the scroll compressor and reduce the load on the electric motor, reduction of bearing loss caused by sliding between the shaft and the bearing has been an issue.
As a conventional technique for reducing the bearing loss, there is a technique described in Japanese Patent Laid-Open No. 2003-239876 (Patent Document 1). This document states that “a floating ring member is rotatably and idly held in a hub insertion groove formed in a lower part of the orbiting scroll. Is inserted to constitute a friction loss reducing device for a scroll compressor. "
 一般に、2つの面が潤滑油を介して滑り摺動する軸受等の摺動部においては、滑り速度の増加に伴い、摩擦損失が増加することが知られている。前記特許文献1に記載のものでは、潤滑油で満たされた回転軸の偏心部とハブ(旋回ボス部)との間の空間に、自転可能なスライドブッシュを挿入した構造としている。これにより、回転軸とハブとの間で生ずる摺動を、回転軸外周とスライドブッシュ内周との間での摺動と、スライドブッシュ外周とハブ内周との間での摺動とに分散させることができ、各摺動部位における相対滑り速度を低減して、特に高速運転時の軸受の摩擦損失を低減するようにしている。 Generally, it is known that in a sliding portion such as a bearing in which two surfaces slide and slide through a lubricating oil, friction loss increases as the sliding speed increases. In the thing of the said patent document 1, it is set as the structure which inserted the slide bush which can rotate in the space between the eccentric part of the rotating shaft filled with lubricating oil, and a hub (rotating boss | hub part). As a result, the sliding that occurs between the rotating shaft and the hub is distributed to the sliding between the outer periphery of the rotating shaft and the inner periphery of the slide bush and the sliding between the outer periphery of the slide bush and the inner periphery of the hub. The relative sliding speed at each sliding part is reduced, and the friction loss of the bearing during high speed operation is reduced.
 他の従来技術としては、特開平11-159484号公報(特許文献2)に記載のものがある。この特許文献2には、「クランク軸に対して偏心ピン部の偏心方向からクランク軸の反回転方向に30°以上120°以下の範囲内の偏心ピン部の外周面にDカットが形成されている」と記載されている。また、前記Dカットについては「偏心軸部と軸受部との隙間の比較的大きい領域に給油用切欠が設けられ」と記載されている。 Another conventional technique is described in Japanese Patent Laid-Open No. 11-159484 (Patent Document 2). This patent document 2 states that “a D-cut is formed on the outer peripheral surface of the eccentric pin portion within the range of 30 ° or more and 120 ° or less from the eccentric direction of the eccentric pin portion to the crankshaft in the counter-rotating direction with respect to the crankshaft. It is described. In addition, the D cut is described as “a lubrication notch is provided in a relatively large area between the eccentric shaft portion and the bearing portion”.
 偏心軸部と軸受部との隙間の比較的大きい領域に前記給油用切欠(Dカット)を設けることにより、起動時、低速運転時及び過渡運転時にも安定的な給油を促し、これにより油膜切れの防止と流体潤滑の確保が図られる。この結果、クランク軸外周と軸受内周との直接接触が防止され、摩擦損失の増加を防止することができる。 By providing the oil supply notch (D cut) in a relatively large area between the eccentric shaft part and the bearing part, stable oil supply is promoted during start-up, low-speed operation and transient operation. Prevention and ensuring fluid lubrication. As a result, direct contact between the outer periphery of the crankshaft and the inner periphery of the bearing is prevented, and an increase in friction loss can be prevented.
特開2003-239876号公報JP 2003-239876 A 特開平11-159484号公報Japanese Patent Laid-Open No. 11-159484
 しかし、上記特許文献1のものでは、部品数が増加するので構造が複雑になり、摺動箇所も増加するため、軸受隙間寸法に高い管理精度が要求される等、新たな課題が生じる。また、低速運転時には滑り速度の減少により油膜ができにくくなり、スライドブッシュとの間で直接接触が起きやすくなる課題もある。 However, in the case of the above-mentioned Patent Document 1, since the number of parts increases, the structure becomes complicated, and the number of sliding parts also increases. Therefore, new problems arise, such as high control accuracy required for the bearing gap dimension. Further, during low speed operation, there is a problem that an oil film is difficult to be formed due to a decrease in the sliding speed, and direct contact with the slide bush is likely to occur.
 また、上記特許文献2のものでは、外部から軸受隙間への潤滑油の流入を促して油膜切れを防止し、軸と軸受の直接接触を防止する点では有効であるが、偏心軸部と軸受部との隙間の大きいところに切欠きを設けるため、流体潤滑油膜のせん断抵抗の低減は期待できないか、或いは低減効果が小さい。従って、一旦、流体潤滑油膜が形成されて直接接触部分のない状態が形成されると、それ以上の損失低減はなされないか、限定的であった。 Further, in the above-mentioned Patent Document 2, it is effective in that the lubricating oil flows from the outside into the bearing gap to prevent the oil film from being cut and the direct contact between the shaft and the bearing is prevented. Since a notch is provided at a large gap with the part, reduction of the shear resistance of the fluid lubricating oil film cannot be expected or the reduction effect is small. Therefore, once the fluid lubricating oil film is formed and the state without the direct contact portion is formed, the loss is not further reduced or is limited.
 本発明の目的は、前記クランク軸の偏心部の外周面と前記旋回滑り軸受の内周面との間に存在する潤滑油による油膜のせん断抵抗を低減することにより、流体潤滑時の軸受損失を低減することにある。 An object of the present invention is to reduce bearing loss during fluid lubrication by reducing the shear resistance of an oil film caused by lubricating oil existing between the outer peripheral surface of the eccentric portion of the crankshaft and the inner peripheral surface of the orbiting slide bearing. It is to reduce.
 上記目的を達成するため、本発明は、固定スクロールと、この固定スクロールと噛み合う旋回スクロールと、この旋回スクロールを旋回運動させるために端部に偏心部を有するクランク軸と、該クランク軸内を軸方向に貫通し、前記偏心部の端面に開口部を有する給油穴と、前記旋回スクロールに設けられ前記クランク軸の偏心部と係合して摺動する旋回滑り軸受と、前記クランク軸の偏心部の外周に、該偏心部の上端側と下端側を連通するように設けられた給油通路とを備え、前記給油穴から供給された潤滑油により前記偏心部と前記旋回滑り軸受との間を潤滑するように構成されたスクロール圧縮機において、前記クランク軸の偏心部の外周に、前記給油通路とは別に設けられた軸方向の損失低減溝と、この損失低減溝における前記偏心部の端面側と基端側の少なくとも一方に設けられたシール部とを備えることを特徴とする。 In order to achieve the above object, the present invention provides a fixed scroll, a turning scroll meshing with the fixed scroll, a crankshaft having an eccentric portion at the end for turning the turning scroll, and a shaft inside the crankshaft. An oil supply hole penetrating in the direction and having an opening at an end surface of the eccentric portion, a orbiting sliding bearing provided in the orbiting scroll and slidably engaged with the eccentric portion of the crankshaft, and the eccentric portion of the crankshaft An oil supply passage provided on the outer periphery of the eccentric portion so as to communicate the upper end side and the lower end side of the eccentric portion, and lubrication between the eccentric portion and the orbiting slide bearing is performed by the lubricating oil supplied from the oil supply hole. In the scroll compressor configured to be configured, an axial loss reduction groove provided separately from the oil supply passage on the outer periphery of the eccentric portion of the crankshaft, and the offset in the loss reduction groove. Characterized in that it comprises a sealing portion provided at least one end face side and the base end side parts.
 本発明によれば、クランク軸の偏心部の外周面と旋回滑り軸受の内周面との間に存在する潤滑油による油膜のせん断抵抗を低減することができ、流体潤滑時の軸受損失を低減することができる効果がある。 According to the present invention, the shear resistance of the oil film due to the lubricating oil existing between the outer peripheral surface of the eccentric part of the crankshaft and the inner peripheral surface of the orbiting sliding bearing can be reduced, and the bearing loss during fluid lubrication is reduced. There is an effect that can be done.
本発明のスクロール圧縮機の実施例1を示す縦断面図である。It is a longitudinal cross-sectional view which shows Example 1 of the scroll compressor of this invention. 図1に示す偏心部付近の拡大斜視図である。FIG. 2 is an enlarged perspective view near an eccentric portion shown in FIG. 1. 図1に示す偏心部付近の拡大断面図である。It is an expanded sectional view of the eccentric part vicinity shown in FIG. 図3のA-A断面図である。FIG. 4 is a cross-sectional view taken along line AA in FIG. 3. 図3のB-B断面図である。FIG. 4 is a sectional view taken along line BB in FIG. 3. 図3のC-C断面図である。FIG. 4 is a sectional view taken along the line CC of FIG. 3. 図3のB-B断面における軸回転方向、角度位置、軸受荷重方向を説明する図である。FIG. 4 is a diagram for explaining a shaft rotation direction, an angular position, and a bearing load direction in a BB cross section of FIG. 3. 本発明における損失低減溝の開始位置を説明する図で、(a)は損失低減溝の開始位置と相対軸受損失との関係を説明する線図、(b)は損失低減溝の開始位置と相対最小油膜厚さとの関係を説明する線図である。FIG. 4 is a diagram for explaining a start position of a loss reduction groove in the present invention, where (a) is a diagram for explaining the relationship between the start position of the loss reduction groove and relative bearing loss, and (b) is a relative view of the start position of the loss reduction groove It is a diagram explaining the relationship with the minimum oil film thickness. 本発明における損失低減溝の深さと相対軸受損失との関係を説明する線図である。It is a diagram explaining the relationship between the depth of the loss reduction groove | channel and relative bearing loss in this invention. 本発明における損失低減溝の周方向角度幅と相対軸受損失との関係を説明する線図である。It is a diagram explaining the relationship between the circumferential direction angular width of the loss reduction groove | channel in this invention, and a relative bearing loss. 本発明における軸の回転速度と相対軸受損失との関係を説明する線図である。It is a diagram explaining the relationship between the rotational speed of the axis | shaft in this invention, and a relative bearing loss. クランク軸の外周に設けた損失低減溝の他の例を示す偏心部付近の拡大斜視図である。It is an expansion perspective view of the eccentric part vicinity which shows the other example of the loss reduction groove | channel provided in the outer periphery of a crankshaft. クランク軸の外周に設けた損失低減溝の更に他の例を示す偏心部付近の拡大斜視図である。It is an expansion perspective view of the eccentric part vicinity which shows the other example of the loss reduction groove | channel provided in the outer periphery of a crankshaft. クランク軸の外周に設けた損失低減溝の更に他の例を示す偏心部付近の拡大斜視図である。It is an expansion perspective view of the eccentric part vicinity which shows the other example of the loss reduction groove | channel provided in the outer periphery of a crankshaft.
 以下、本発明のスクロール圧縮機の具体的実施例を、図面を用いて説明する。各図において、同一符号を付した部分は同一或いは相当する部分を示している。 Hereinafter, specific examples of the scroll compressor of the present invention will be described with reference to the drawings. In each figure, the part which attached | subjected the same code | symbol has shown the part which is the same or it corresponds.
 図1は本発明のスクロール圧縮機の実施例1を示す縦断面図である。 
 図1に示すスクロール圧縮機1は、エアコンなどの空調装置や冷凍装置などの冷凍空調用に使用される密閉形のスクロール圧縮機である。密閉容器2内の上部には固定スクロール112と、この固定スクロール112と噛み合って旋回運動する旋回スクロール109が設けられている。また、密閉容器2内には電動機102が設けられ、この電動機102にはクランク軸103が接続され、このクランク軸103は、密閉容器2内に固設されたフレーム104に設けられている主軸受105、及び下フレーム106に設けられた副軸受107により回転自在に支持されている。
FIG. 1 is a longitudinal sectional view showing Embodiment 1 of the scroll compressor of the present invention.
A scroll compressor 1 shown in FIG. 1 is a hermetic scroll compressor used for an air conditioner such as an air conditioner or a refrigeration air conditioner such as a refrigeration apparatus. A fixed scroll 112 and an orbiting scroll 109 that engages with the fixed scroll 112 and performs an orbiting motion are provided at the upper part in the sealed container 2. An electric motor 102 is provided in the sealed container 2, and a crankshaft 103 is connected to the electric motor 102, and the crankshaft 103 is a main bearing provided on a frame 104 fixed in the sealed container 2. 105 and a sub-bearing 107 provided on the lower frame 106 are rotatably supported.
 クランク軸103の上部には偏心部108が設けられており、この偏心部108は前記旋回スクロール109の端板下面に設けられた旋回滑り軸受110と係合して摺動し、偏心部108の振れ回り回転運動(偏心運動)は旋回スクロール109に伝達される。この旋回スクロール109は、オルダムリング111により自転が規制されており、固定スクロール112に対して旋回運動をする。これにより、吸入口113から低圧の冷媒ガスを吸い込み、圧縮した後に、吐出口114を介して外部へ吐出する。 An eccentric part 108 is provided at the upper part of the crankshaft 103, and the eccentric part 108 engages and slides with the orbiting sliding bearing 110 provided on the lower surface of the end plate of the orbiting scroll 109. The whirling rotational motion (eccentric motion) is transmitted to the orbiting scroll 109. The orbiting scroll 109 is controlled to rotate by the Oldham ring 111 and revolves with respect to the fixed scroll 112. Thereby, the low-pressure refrigerant gas is sucked from the suction port 113 and compressed, and then discharged to the outside through the discharge port 114.
 なお、クランク軸103の内部には、その下端から前記偏心部108の端面(上端面)側まで貫通する給油穴115が設けられており、密閉容器下部に溜められた潤滑油3が、圧力差により、或いはクランク軸下端部に別途取り付けられたポンプにより、給油穴115を通じて押し上げられ、各軸受部(主軸受105、副軸受107、旋回滑り軸受110)などの摺動部に供給されるように構成されている。本実施例では、密閉容器2内は吐出圧力となっており、また前記旋回スクロール109の端板背面の中間室(背圧室)119は吐出圧力と吸込圧力との中間の圧力となっている。このため、密閉容器下部に溜められている潤滑油は吐出圧力と前記中間圧力との圧力差で前記給油穴115を介して前記各軸受部などに給油される構成となっている。 The crankshaft 103 is provided with an oil supply hole 115 penetrating from the lower end thereof to the end surface (upper end surface) side of the eccentric portion 108, and the lubricating oil 3 stored in the lower part of the sealed container receives the pressure difference. Or by a pump separately attached to the lower end portion of the crankshaft so as to be pushed up through the oil supply hole 115 and supplied to a sliding portion such as each bearing portion (main bearing 105, sub-bearing 107, slewing sliding bearing 110). It is configured. In the present embodiment, the inside of the sealed container 2 has a discharge pressure, and the intermediate chamber (back pressure chamber) 119 on the back of the end plate of the orbiting scroll 109 has an intermediate pressure between the discharge pressure and the suction pressure. . For this reason, the lubricating oil stored in the lower part of the sealed container is supplied to the bearings and the like through the oil supply holes 115 due to a pressure difference between the discharge pressure and the intermediate pressure.
 図2は図1に示す偏心部108付近の拡大斜視図である。偏心部108の上端面には、前記給油穴115が開口している。偏心部108には、その上端(端面)108a側から下端(基端)108b側を連通するように軸方向の給油通路116が設けられている。また、前記給油通路116とは別に、偏心部108の外周面を掘り込んだ損失低減溝117が軸方向に形成されている。この損失低減溝117の上端108a側と下端108b側には、それぞれ、前記偏心部108の外周面を掘り込んでいないシール部118a,118bが設けられている。 FIG. 2 is an enlarged perspective view near the eccentric portion 108 shown in FIG. The oil supply hole 115 is opened at the upper end surface of the eccentric portion 108. The eccentric portion 108 is provided with an axial oil supply passage 116 so as to communicate from the upper end (end surface) 108a side to the lower end (base end) 108b side. In addition to the oil supply passage 116, a loss reduction groove 117 is formed in the axial direction by digging the outer peripheral surface of the eccentric portion 108. On the upper end 108a side and the lower end 108b side of the loss reducing groove 117, seal portions 118a and 118b, respectively, in which the outer peripheral surface of the eccentric portion 108 is not dug are provided.
 図3は図1に示す偏心部108付近の拡大断面図である。旋回スクロール109の旋回ボス部109a内には旋回滑り軸受110が設けられており、この旋回滑り軸受110内にはクランク軸103の偏心部108が挿入して係合され、この偏心部108と前記旋回滑り軸受110とは滑り摺動する。前記偏心部108の上端(端面)108aと旋回スクロール109との間に囲まれた空間は前記給油穴115と連通しており、給油経路の上流のため、ここに供給された潤滑油の圧力はほぼ吐出圧力となっている。 FIG. 3 is an enlarged sectional view near the eccentric portion 108 shown in FIG. An orbiting sliding bearing 110 is provided in the orbiting boss 109a of the orbiting scroll 109, and an eccentric part 108 of the crankshaft 103 is inserted into and engaged with the orbiting sliding bearing 110. The sliding bearing 110 slides and slides. The space enclosed between the upper end (end surface) 108a of the eccentric part 108 and the orbiting scroll 109 communicates with the oil supply hole 115, and since the upstream of the oil supply path, the pressure of the lubricating oil supplied here is The discharge pressure is almost the same.
 これに対し、偏心部108の下端(基端)108b側の圧力は、前記上端108側より低圧の前記中間室119と連通しており、給油穴115から供給された潤滑油は、旋回スクロール109と偏心部108と旋回滑り軸受110とで囲まれた空間(旋回ボス部内空間)4を満たした後、前記給油通路116などを通って下方の中間室119へと排出される。 On the other hand, the pressure on the lower end (base end) 108b side of the eccentric portion 108 communicates with the intermediate chamber 119 having a lower pressure than the upper end 108 side, and the lubricating oil supplied from the oil supply hole 115 passes through the orbiting scroll 109. And the space surrounded by the eccentric portion 108 and the orbiting and sliding bearing 110 (the inner space of the orbiting boss portion) 4 is filled, and then discharged to the lower intermediate chamber 119 through the oil supply passage 116 and the like.
 前記給油通路116は、前記偏心部108の外周を内側に掘り込んだ掘り込み溝或いは切欠きにより形成され、この給油通路116は、偏心部108と旋回滑り軸受110との隙間を拡大させると共に、旋回滑り軸受110を軸方向に跨いで偏心部108の上端108a側と下端108b側の両方に通じている。従って、旋回ボス部内空間4の潤滑油が給油通路116を通って中間室119に流れる流路抵抗は、偏心部108外周面の前記給油通路116以外の部分を流れる潤滑油の流路抵抗よりも小さくなる。 The oil supply passage 116 is formed by a digging groove or a notch formed by digging the outer periphery of the eccentric portion 108 inward, and the oil supply passage 116 enlarges a gap between the eccentric portion 108 and the orbiting / sliding bearing 110, and The slewing bearing 110 extends across the axial direction and communicates with both the upper end 108a side and the lower end 108b side of the eccentric portion 108. Therefore, the flow resistance of the lubricating oil in the inner space 4 of the swivel boss portion flowing through the oil supply passage 116 to the intermediate chamber 119 is greater than the flow resistance of the lubricating oil flowing through a portion other than the oil supply passage 116 on the outer peripheral surface of the eccentric portion 108. Get smaller.
 一方、前記損失低減溝117も、偏心部108の外周を内側に掘り込んだ掘り込み溝或いは切欠きにより形成されているが、この損失低減溝117の上端108a側と下端108b側には、偏心部108の外周面と同径のシール部118が形成されており、損失低減溝117の軸方向長さは前記旋回滑り軸受110よりも短くなっている。従って、前記損失低減溝117は、前記旋回滑り軸受110を軸方向に跨がず、偏心部108の上端108a側と下端108b側とに同時には開口しない構成となっている。 On the other hand, the loss reduction groove 117 is also formed by a digging groove or a notch formed by digging the outer periphery of the eccentric portion 108 inward. The loss reduction groove 117 has an eccentricity on the upper end 108a side and the lower end 108b side. A seal portion 118 having the same diameter as the outer peripheral surface of the portion 108 is formed, and the axial length of the loss reducing groove 117 is shorter than that of the orbiting slide bearing 110. Therefore, the loss reducing groove 117 does not straddle the slewing plain bearing 110 in the axial direction, and does not open simultaneously on the upper end 108a side and the lower end 108b side of the eccentric portion 108.
 更に、前記シール部118a,118bの部分においては、偏心部108の外周と旋回滑り軸受110の内周との隙間が、偏心部108の外周における前記給油通路116以外の部分と同等となる。即ち、前記損失低減溝117を通過して偏心部108の上端108aから下端108bへ向かう流路抵抗は、偏心部108外周面の給油通路116以外の部分を流れる流路抵抗と概略同等となる。このため、給油穴115から旋回ボス部内空間4に供給された潤滑油は、給油通路116の部分を優先的に通過して、中間室119側に流れ易くなっている。また、旋回滑り軸受110の部分全体において、潤滑油が軸方向に流れる流路抵抗は、前記損失低減溝117を設けない場合と概略同等となり、損失低減溝117を設けても給油量の増大は防止される。 Further, in the portions of the seal portions 118 a and 118 b, the gap between the outer periphery of the eccentric portion 108 and the inner periphery of the orbiting / sliding bearing 110 is equal to the portion other than the oil supply passage 116 on the outer periphery of the eccentric portion 108. That is, the flow resistance flowing from the upper end 108a to the lower end 108b of the eccentric portion 108 through the loss reducing groove 117 is substantially equal to the flow resistance flowing through a portion other than the oil supply passage 116 on the outer peripheral surface of the eccentric portion 108. For this reason, the lubricating oil supplied from the oil supply hole 115 to the inner space 4 of the turning boss part preferentially passes through the oil supply passage 116 and easily flows to the intermediate chamber 119 side. In addition, the flow resistance in which the lubricating oil flows in the axial direction in the entire portion of the slewing bearing 110 is substantially the same as that in the case where the loss reducing groove 117 is not provided, and even if the loss reducing groove 117 is provided, the amount of oil supply is increased. Is prevented.
 図4は図3のA-A断面図、図5は図3のB-B断面図、図6は図3のC-C断面図である。偏心部108の外周面の直径は旋回滑り軸受110の内周面の直径よりも小さいため、それらの間には隙間が存在し、この隙間は潤滑油で満たされている。 4 is a cross-sectional view taken along the line AA in FIG. 3, FIG. 5 is a cross-sectional view taken along the line BB in FIG. 3, and FIG. 6 is a cross-sectional view taken along the line CC in FIG. Since the diameter of the outer peripheral surface of the eccentric part 108 is smaller than the diameter of the inner peripheral surface of the orbiting / sliding bearing 110, there is a gap between them, and this gap is filled with lubricating oil.
 図4に示すように、給油通路116は偏心部108の上端108aの部分で開口し、この給油通路116の部分と旋回滑り軸受110との間の隙間は、給油通路116が設けられていない部分の偏心部108と旋回滑り軸受110との間の隙間よりも特に広くなっている。 As shown in FIG. 4, the oil supply passage 116 opens at a portion of the upper end 108 a of the eccentric portion 108, and a gap between the oil supply passage 116 and the swivel bearing 110 is a portion where the oil supply passage 116 is not provided. The gap between the eccentric portion 108 and the slewing plain bearing 110 is particularly wide.
 また、前記偏心部108の軸方向中間の部位においては、図5に示すように、偏心部108の給油通路116と旋回滑り軸受110との間の隙間、及び偏心部108の損失低減溝117と旋回滑り軸受110との間の隙間が、偏心部108のその他の部分と旋回滑り軸受110との間の隙間よりも特に広くなっている。 Further, as shown in FIG. 5, in the axially intermediate portion of the eccentric portion 108, the gap between the oil supply passage 116 of the eccentric portion 108 and the swivel slide bearing 110 and the loss reduction groove 117 of the eccentric portion 108 The gap between the slewing plain bearing 110 and the slewing plain bearing 110 is particularly wider than the gap between the other part of the eccentric portion 108 and the slewing plain bearing 110.
 更に、前記偏心部108の軸方向の下端(基端)付近では、図6に示すように、前記損失低減溝117は存在しておらず、偏心部108の給油通路116の部分と旋回滑り軸受110との間の隙間が、給油通路116が設けられていない部分の偏心部108と旋回滑り軸受110との間の隙間よりも特に広くなっている。 Further, in the vicinity of the lower end (base end) of the eccentric portion 108 in the axial direction, as shown in FIG. 6, the loss reduction groove 117 does not exist, and the portion of the oil supply passage 116 of the eccentric portion 108 and the slewing slide bearing 110 is particularly wider than the gap between the eccentric portion 108 where the oil supply passage 116 is not provided and the slewing plain bearing 110.
 図7は図3のB-B断面における軸回転方向、角度位置、軸受荷重方向を説明する図である。給油通路116、損失低減溝117、クランク軸103の回転方向120及び偏心部108に対して、旋回滑り軸受110が押し付けられる軸受荷重方向121の位置は、図7に示すようになる。更に詳しく説明する。まず、偏心部108の中心を基準とし、偏心部108の偏心方向の反対側を0°とした座標系を使用して、各種部位の角度位置を説明する。 FIG. 7 is a diagram for explaining the shaft rotation direction, the angular position, and the bearing load direction in the BB cross section of FIG. FIG. 7 shows the positions in the bearing load direction 121 where the swivel bearing 110 is pressed against the oil supply passage 116, the loss reduction groove 117, the rotation direction 120 of the crankshaft 103, and the eccentric portion 108. This will be described in more detail. First, the angular positions of various parts will be described using a coordinate system in which the center of the eccentric part 108 is used as a reference and the opposite side of the eccentric part 108 is 0 °.
 クランク軸103が、軸回転方向120に示すように、図の時計回りに回転運動すると、旋回スクロール109はガスを圧縮する反力と、旋回スクロールが偏心方向に振り回される遠心力との合力として、軸受荷重方向121に軸受荷重が発生する。この時、偏心部108と旋回滑り軸受110との間の隙間は、周方向に均一ではなく偏りを生じ、前記軸受荷重方向121から反回転方向にシフトした最小隙間部122において最小となる。 When the crankshaft 103 rotates in the clockwise direction as shown in the axial rotation direction 120, the orbiting scroll 109 has a resultant force of a reaction force that compresses the gas and a centrifugal force that the orbiting scroll is swung in the eccentric direction. A bearing load is generated in the bearing load direction 121. At this time, the gap between the eccentric portion 108 and the orbiting / sliding bearing 110 is not uniform in the circumferential direction but is biased, and is minimized at the minimum gap portion 122 shifted from the bearing load direction 121 to the counter-rotating direction.
 軸の外周に前記損失低減溝117を設け、この軸を円筒状の滑り軸受に対して潤滑油を介して摺動を行った場合の油膜せん断による軸受損失の評価を行い、前記損失低減溝による軸受損失の低減効果を検証した。この検証結果を図8~図11に示す。また、この結果から、効果的に軸受損失を低減できる前記損失低減溝117の位置、深さ、幅を検討した。なお、この検証にあたっては、エアコン用のスクロール圧縮機で、前記偏心部の軸径が14~18mmのものを想定して検証している。 
 以下、図8~図11を用いて詳細に説明する。
The loss reduction groove 117 is provided on the outer periphery of the shaft, and the bearing loss due to oil film shear when the shaft is slid with respect to the cylindrical sliding bearing through the lubricating oil is evaluated. The effect of reducing bearing loss was verified. The verification results are shown in FIGS. From this result, the position, depth, and width of the loss reducing groove 117 that can effectively reduce the bearing loss were examined. In this verification, the verification is performed assuming that the shaft diameter of the eccentric portion is 14 to 18 mm in a scroll compressor for an air conditioner.
Hereinafter, this will be described in detail with reference to FIGS.
 図8は、本発明における損失低減溝117の開始位置を説明する図で、(a)は損失低減溝117の開始位置と相対軸受損失との関係を説明する線図、(b)は損失低減溝の開始位置と相対最小油膜厚さとの関係を説明する線図である。 FIG. 8 is a diagram for explaining the starting position of the loss reducing groove 117 according to the present invention. FIG. 8A is a diagram for explaining the relationship between the starting position of the loss reducing groove 117 and the relative bearing loss, and FIG. It is a diagram explaining the relationship between the starting position of a groove | channel and a relative minimum oil film thickness.
 前記(a)図は、損失低減溝117を、軸の外周を掘り込んで掘り込み溝に形成し、円筒状の滑り軸受に対して潤滑油を介して摺動を行った場合の油膜せん断による軸受損失を示し、軸の外周に形成した前記損失低減溝117の周方向開始位置を種々変えて評価を行ったものである。横軸は、損失低減溝117の周方向開始位置を、縦軸は、損失低減溝117の無い軸を使用した場合の軸受損失を100%とし、これに対する相対軸受損失を示している。また、前記損失低減溝117は、深さが0.1mmで、周方向に30度の角度範囲(角度幅)に渡る掘り込み溝とした。 In the figure (a), the loss reduction groove 117 is formed by digging the outer periphery of the shaft into a digging groove, and is caused by oil film shearing when sliding is performed on the cylindrical slide bearing through the lubricating oil. The bearing loss is shown, and the evaluation is performed by changing various circumferential start positions of the loss reducing groove 117 formed on the outer periphery of the shaft. The horizontal axis represents the circumferential start position of the loss reducing groove 117, and the vertical axis represents the relative bearing loss relative to the bearing loss when the shaft without the loss reducing groove 117 is used. The loss reducing groove 117 is a digging groove having a depth of 0.1 mm and an angular range (angular width) of 30 degrees in the circumferential direction.
 この検証の結果、(a)図に示すように、相対軸受損失は、損失低減溝の開始角度が140度から210度の範囲で、特に減少する傾向を示している。従って、損失低減溝117の開始位置は140°~210°の範囲に設けることが好ましく、この範囲とすることにより、軸受損失を少なくとも2%以上低減できる。また、前記開始位置を145°~180°の範囲にすると最も低減効果が大きくなる。なお、前記140°~210°の範囲に前記損失低減溝117の少なくとも一部が存在するように設ければ、軸受損失低減効果を従来のものより低減できる。 As a result of this verification, as shown in FIG. (A), the relative bearing loss tends to decrease particularly when the starting angle of the loss reducing groove is in the range of 140 degrees to 210 degrees. Accordingly, the starting position of the loss reducing groove 117 is preferably provided in the range of 140 ° to 210 °, and by setting this range, the bearing loss can be reduced by at least 2% or more. In addition, when the start position is in the range of 145 ° to 180 °, the reduction effect is greatest. If the loss reduction groove 117 is provided so that at least a part of the loss reduction groove 117 exists in the range of 140 ° to 210 °, the bearing loss reduction effect can be reduced as compared with the conventional one.
 前記(b)図は、損失低減溝の開始位置と相対最小油膜厚さとの関係を示す図であり、横軸は、損失低減溝117の周方向開始位置を、縦軸は、損失低減溝117の無い軸を使用した場合の最小油膜厚さを100%とし、これに対する相対最小油膜厚さを示している。この図に示すように、損失低減溝117の開始位置が140度以下では、損失低減溝117の開始位置が最小油膜厚さとなる角度付近になってしまうため、140度よりも小さな角度範囲に軸受低減溝117を設けると、軸受挙動が不安定となり、軸と軸受との接触による摩耗が進行し易くなるので、少なくとも140度以上の角度範囲に前記損失低減溝117の開始位置を決めることが好ましい。なお、損失低減溝117の一部が210度以上の部分に掛っても最小油膜厚さは十分に大きいので、損失低減溝117の開始位置が140°~210°の範囲にあれば、その終了位置は210度以上の位置となっても良い。 FIG. 7B is a diagram showing the relationship between the start position of the loss reduction groove and the relative minimum oil film thickness, where the horizontal axis represents the circumferential start position of the loss reduction groove 117 and the vertical axis represents the loss reduction groove 117. The minimum oil film thickness when using a shaft without a mark is 100%, and the relative minimum oil film thickness is shown. As shown in this figure, when the starting position of the loss reducing groove 117 is 140 degrees or less, the starting position of the loss reducing groove 117 is close to the angle at which the minimum oil film thickness is obtained. If the reduction groove 117 is provided, the bearing behavior becomes unstable, and wear due to contact between the shaft and the bearing is likely to proceed. Therefore, it is preferable to determine the start position of the loss reduction groove 117 in an angle range of at least 140 degrees or more. . Note that the minimum oil film thickness is sufficiently large even if a part of the loss reduction groove 117 covers 210 ° or more, so if the start position of the loss reduction groove 117 is in the range of 140 ° to 210 °, the end The position may be a position of 210 degrees or more.
 図9は本発明における損失低減溝117の深さと相対軸受損失との関係を説明する線図である。前記損失低減溝117は、軸の外周を掘り込んだ掘り込み溝とし、円筒状の滑り軸受に対して潤滑油を介して摺動を行った場合の油膜せん断による軸受損失を示し、軸の外周に形成した前記損失低減溝117の深さ(加工前の前記偏心部外周円からの径方向深さ)を種々変えて評価を行ったものである。横軸は、損失低減溝117の深さ(掘り込み深さ)を、縦軸は、損失低減溝117の無い軸を使用した場合の軸受損失を100%とし、これに対する相対軸受損失を示している。また、損失低減溝117は、周方向に30度の角度範囲(角度幅)で形成し、この損失低減溝の開始角度は150度とした。 FIG. 9 is a diagram for explaining the relationship between the depth of the loss reducing groove 117 and the relative bearing loss in the present invention. The loss reduction groove 117 is a digging groove formed by digging the outer periphery of the shaft, and indicates a bearing loss due to oil film shear when sliding is performed on the cylindrical sliding bearing through the lubricating oil. The depth of the loss reducing groove 117 formed in (the radial depth from the outer peripheral circle of the eccentric portion before processing) was variously evaluated. The horizontal axis represents the depth of the loss reduction groove 117 (digging depth), and the vertical axis represents the bearing loss when a shaft without the loss reduction groove 117 is used as 100%, and shows the relative bearing loss relative thereto. Yes. Further, the loss reduction groove 117 was formed in an angle range (angle width) of 30 degrees in the circumferential direction, and the start angle of the loss reduction groove was 150 degrees.
 この検証の結果、図9に示すように、損失低減溝の掘り込み深さを0.002mm以上とすることにより、軸受損失を少なくとも2%以上低減できる。また、前記損失低減溝の深さを0.01mm以上とすれば少なくとも5%以上の軸受損失低減効果があり、前記損失低減溝の深さを0.05mm以上にすると軸受損失低減効果が最も大きくなる。なお、損失低減溝117の深さを大きくし過ぎると軸の剛性低下を引き起こすので、損失低減溝117の深さは最大でも軸径(クランク軸の偏心部の軸径)の20%以下とすることが好ましい。従って、一般には、前記損失低減溝の深さを0.05~0.5mm程度とするのが好ましい。 As a result of this verification, as shown in FIG. 9, the bearing loss can be reduced by at least 2% by setting the depth of the loss reducing groove to 0.002 mm or more. Further, if the depth of the loss reducing groove is 0.01 mm or more, there is at least a 5% or more bearing loss reducing effect, and if the depth of the loss reducing groove is 0.05 mm or more, the bearing loss reducing effect is the largest. Become. If the depth of the loss reducing groove 117 is excessively increased, the rigidity of the shaft is reduced. Therefore, the depth of the loss reducing groove 117 is 20% or less of the shaft diameter (the shaft diameter of the eccentric portion of the crankshaft) at the maximum. It is preferable. Therefore, generally, the depth of the loss reducing groove is preferably about 0.05 to 0.5 mm.
 図10は本発明における損失低減溝の周方向角度幅と相対軸受損失との関係を説明する線図である。前記損失低減溝117は、軸の外周を掘り込んだ掘り込み溝とし、円筒状の滑り軸受に対して潤滑油を介して摺動を行った場合の油膜せん断による軸受損失を示し、軸の外周に形成した前記損失低減溝117の周方向角度幅を種々変えて評価を行ったものである。横軸は、損失低減溝117の周方向角度幅を、縦軸は、損失低減溝117の無い軸を使用した場合の軸受損失を100%とし、これに対する相対軸受損失を示している。また、損失低減溝117の深さは0.1mm、該溝の開始角度は150度とした。 FIG. 10 is a diagram illustrating the relationship between the circumferential angle width of the loss reducing groove and the relative bearing loss in the present invention. The loss reduction groove 117 is a digging groove formed by digging the outer periphery of the shaft, and indicates a bearing loss due to oil film shear when sliding is performed on the cylindrical sliding bearing through the lubricating oil. The evaluation was performed by changing the circumferential angle width of the loss reducing groove 117 formed in various ways. The horizontal axis represents the angular width in the circumferential direction of the loss reducing groove 117, and the vertical axis represents the relative bearing loss with respect to the bearing loss when the shaft without the loss reducing groove 117 is used as 100%. The depth of the loss reducing groove 117 was 0.1 mm, and the starting angle of the groove was 150 degrees.
 この検証の結果、図10に示すように、相対軸受損失は、損失低減溝117の周方向角度幅を10度以上、即ちこの例では開始角度150度の位置から周方向に10度以上の角度幅とすることにより、軸受損失を少なくとも2%以上低減できる。また、損失低減溝を開始角度150°から周方向角度幅60度まで次第に広げた場合、相対軸受損失は周方向角度幅の増加に応じて減少し、60度よりも広い角度幅にしても相対軸受損失はほとんど減少しない傾向を示している。従って、前記角度幅は、軸受損失溝117の加工性なども考慮すると20°~60°の範囲とすることが好ましい。 As a result of this verification, as shown in FIG. 10, the relative bearing loss is an angle of 10 degrees or more in the circumferential direction from the position of the starting angle 150 degrees in the circumferential direction of the loss reducing groove 117 in this example, that is, 10 degrees or more. By setting the width, the bearing loss can be reduced by at least 2%. In addition, when the loss reduction groove is gradually expanded from the starting angle 150 ° to the circumferential angle width 60 °, the relative bearing loss decreases as the circumferential angle width increases, and even if the angular width is wider than 60 °, Bearing loss shows a tendency to hardly decrease. Therefore, the angle width is preferably in the range of 20 ° to 60 ° in consideration of the workability of the bearing loss groove 117 and the like.
 以上説明したことから、クランク軸103の偏心部108の外周に損失低減溝117を形成するにあたっては、掘り込み溝や切欠きにより、図7に示した座標系における角度140度から210度の範囲に、掘り込み深さが0.002mm以上となる部分を設けることにより、軸受損失を低減でき、特に、前記損失低減溝117の開始位置を、図7に示した座標系における角度150度付近の位置とし、その溝の角度幅を20°~60°、該溝の深さを0.01mm以上とすれば、大きな軸受損失低減効果が得られることが検証された。 As described above, when the loss reducing groove 117 is formed on the outer periphery of the eccentric portion 108 of the crankshaft 103, the angle range from 140 degrees to 210 degrees in the coordinate system shown in FIG. By providing a portion where the digging depth is 0.002 mm or more, bearing loss can be reduced. In particular, the starting position of the loss reduction groove 117 is set at an angle of about 150 degrees in the coordinate system shown in FIG. It was verified that a great bearing loss reduction effect can be obtained by setting the position, the angular width of the groove to 20 ° to 60 °, and the depth of the groove to 0.01 mm or more.
 図11は、本発明における軸の回転速度と相対軸受損失との関係を説明する線図である。即ち、外周に損失低減溝117を設けた軸と、損失低減溝の無い軸とを用い、円筒状の軸受に対して潤滑油を介して摺動を行った場合の油膜せん断による軸受損失を示し、軸の回転速度を種々変えて評価を行ったものである。図11の横軸は、回転速度を、縦軸は、損失低減溝の無い軸を使用して回転数6000回転/分で回転させた場合の軸受損失を100%とし、これに対する相対軸受損失を示している。また、前記損失低減溝117の深さは0.1mmの掘り込み溝とし、該損失低減溝117を周方向に30度の角度範囲(角度幅)で形成すると共に、この損失低減溝の開始角度は150度とした。 FIG. 11 is a diagram illustrating the relationship between the rotational speed of the shaft and the relative bearing loss in the present invention. That is, it shows the bearing loss due to oil film shearing when a shaft with a loss reduction groove 117 on the outer periphery and a shaft without a loss reduction groove are slid with respect to a cylindrical bearing through lubricating oil. The evaluation was made by changing the rotational speed of the shaft in various ways. The horizontal axis in FIG. 11 is the rotational speed, and the vertical axis is the bearing loss when rotating at a rotational speed of 6000 rpm using an axis without a loss reduction groove, and the relative bearing loss relative to this is shown. Show. The loss reduction groove 117 is a digging groove having a depth of 0.1 mm, and the loss reduction groove 117 is formed in an angular range (angle width) of 30 degrees in the circumferential direction, and the start angle of the loss reduction groove is Was 150 degrees.
 この検証の結果、図11に示すように、損失低減溝117を設けることにより各回転数において軸受損失が低減しているのを確認できた。また、回転速度が増加すると軸受損失は増加するが、損失低減溝を設けた本発明の方が、損失低減溝を設けていない従来のものに対し、回転速度が増加するほど相対的に軸受損失低減効果も増加していることがわかる。 As a result of this verification, as shown in FIG. 11, it was confirmed that the bearing loss was reduced at each rotation speed by providing the loss reduction groove 117. In addition, the bearing loss increases as the rotational speed increases. However, the present invention with the loss reduction groove is relatively less as the rotational speed increases than the conventional one without the loss reduction groove. It can be seen that the reduction effect is also increasing.
 図12~図14は、それぞれ、クランク軸の外周に設けた前記損失低減溝117の他の例を示す偏心部付近の拡大斜視図である。 
 前記損失低減溝117については、図9から明らかなように、加工前の軸外周面から深さ0.05mm以上掘り込んだ掘り込み溝とすることが望ましいが、図12に示すように、切欠き形状としても良く、掘り込み溝とした場合とほぼ同様の軸受損失低減効果を得ることができる。
12 to 14 are enlarged perspective views of the vicinity of the eccentric portion showing another example of the loss reducing groove 117 provided on the outer periphery of the crankshaft.
As is apparent from FIG. 9, the loss reduction groove 117 is preferably a digging groove having a depth of 0.05 mm or more from the shaft outer peripheral surface before processing. However, as shown in FIG. A notch shape may be used, and a bearing loss reduction effect that is almost the same as that in the case of the digging groove can be obtained.
 このような切欠き形状とした場合には、軸の加工前の外周面から軸中心方向への深さが、周方向の角度位置により、0mmから連続的に増減するため、軸受損失低減効果が特に大きくなる0.05mm以上の深さを確保するためには、より広い周方向角度幅が必要となる。しかし、図12に示すような切欠き形状とした方が、図2に示す掘り込み溝として形成する場合よりも加工コストを低減できる効果がある。 In the case of such a notch shape, the depth from the outer peripheral surface of the shaft before machining to the axial center direction continuously increases or decreases from 0 mm depending on the angular position in the circumferential direction. In order to secure a particularly large depth of 0.05 mm or more, a wider circumferential angular width is required. However, the notch shape as shown in FIG. 12 has an effect that the processing cost can be reduced as compared with the case of forming the digging groove as shown in FIG.
 また、図12の例では、前記損失低減溝117における前記偏心部の端面108a側にシール部118aを、基端108b側にはシール部118bをそれぞれ設けているが、このシール部118は前記シール部118aと118bのうち少なくとも一方に設けるようにしても良い。図13に示す例では、シール部118を損失低減溝117の基端108b側(中間室側)にのみ設けた構造としている。この場合、偏心部108の上端に開口した給油穴115から流出した潤滑油は、損失低減溝117に流れ込み易くなり、給油量は多少増加する。しかし、図13の例とした場合、損失低減溝117の周方向幅が同じであっても、損失低減溝117の面積を増加させることができるので、軸受損失低減効果をより向上できる利点がある。また、中間室側(基端側)に隣接してシール部118を設けておけば、極端な給油量の増加は防止できる。 In the example of FIG. 12, a seal part 118a is provided on the end face 108a side of the eccentric part in the loss reducing groove 117, and a seal part 118b is provided on the base end 108b side. It may be provided in at least one of the portions 118a and 118b. In the example shown in FIG. 13, the seal portion 118 is provided only on the base end 108 b side (intermediate chamber side) of the loss reducing groove 117. In this case, the lubricating oil flowing out from the oil supply hole 115 opened at the upper end of the eccentric portion 108 is likely to flow into the loss reduction groove 117, and the amount of oil supply increases somewhat. However, in the example of FIG. 13, even if the circumferential width of the loss reduction groove 117 is the same, the area of the loss reduction groove 117 can be increased, so that there is an advantage that the bearing loss reduction effect can be further improved. . Further, if the seal portion 118 is provided adjacent to the intermediate chamber side (base end side), an extreme increase in the amount of oil supply can be prevented.
 また、損失低減溝117については、図14に示すように、前記偏心部108の周方向に複数個形成するようにしても良い。即ち、前記偏心部108の反偏心方向からクランク軸の反回転方向に140度の位置を、前記損失低減溝117の開始位置とし、その溝の終了位置を210度とした場合、損失低減溝117の周方向角度幅は70度になる。このように広い角度幅の溝とする場合、その途中に、偏心軸の外周面に切欠きを設けない部分を、図14に示すように、例えば周方向に20度程度の幅でとり、前記損失低減溝117を、前記角度位置で、140°~165°の範囲の損失低減溝117aと、185°~210°の範囲の損失低減溝117bとなるように分割して設け、損失低減溝117の中間部の165°~185°の範囲には前記切欠きを設けていない部分を残すようにする。 Further, a plurality of loss reduction grooves 117 may be formed in the circumferential direction of the eccentric portion 108 as shown in FIG. That is, when the position of 140 degrees in the anti-eccentric direction of the eccentric part 108 in the counter-rotating direction of the crankshaft is the start position of the loss reduction groove 117 and the end position of the groove is 210 degrees, the loss reduction groove 117 The circumferential angular width is 70 degrees. When a groove having such a wide angular width is taken, a portion where no notch is provided in the outer peripheral surface of the eccentric shaft is taken in the middle of the groove with a width of about 20 degrees in the circumferential direction, for example, as shown in FIG. The loss reduction groove 117 is divided into a loss reduction groove 117a in the range of 140 ° to 165 ° and a loss reduction groove 117b in the range of 185 ° to 210 ° at the angular position, and the loss reduction groove 117 is provided. A portion not provided with the notch is left in a range of 165 ° to 185 ° of the intermediate portion.
 損失低減溝117の部分は軸受荷重を支持する油膜圧力が形成しにくいが、図14に示したように、損失低減溝を周方向に複数に分けて設け、その間に、ある周方向角度範囲で掘り込み溝や切欠きを形成せずに偏心軸外周面を残すことにより、この偏心軸外周面を残した部分には油膜圧力をある程度発生させる能力を確保できる。これにより、万一、地震や大きな振動などが発生して、前記損失低減溝の部分に予期せぬ動的な荷重が負荷されたような場合でも、偏心軸108と旋回滑り軸受110との衝突を防止でき、かじりや焼付きなどの発生を防止できる。 The loss reduction groove 117 does not easily form an oil film pressure that supports the bearing load. However, as shown in FIG. 14, the loss reduction groove is divided into a plurality of portions in the circumferential direction. By leaving the outer circumferential surface of the eccentric shaft without forming a digging groove or notch, it is possible to secure the ability to generate oil film pressure to some extent in the portion where the outer circumferential surface of the eccentric shaft is left. As a result, even if an earthquake or a large vibration occurs and an unexpected dynamic load is applied to the portion of the loss reduction groove, the collision between the eccentric shaft 108 and the orbiting slide bearing 110 is caused. Can be prevented, and the occurrence of galling or seizure can be prevented.
 なお、この図14に示す例において、複数個形成されている前記損失低減溝117a,117bの両方共、その周方向開始位置を、前記偏心部の中心周りに、前記偏心部の反偏心方向から前記クランク軸の反回転方向に、140°~210°の位置に設けることが好ましいが、前記複数個の損失低減溝のうちの少なくとも1つの周方向開始位置を、前記140°~210°の位置に設けることで前記軸受損失低減効果は得られる。 In the example shown in FIG. 14, both of the plurality of loss reduction grooves 117a and 117b, whose circumferential start positions are located around the center of the eccentric portion from the anti-eccentric direction of the eccentric portion. It is preferable to provide at a position of 140 ° to 210 ° in the counter-rotating direction of the crankshaft. However, at least one circumferential start position of the plurality of loss reduction grooves is a position of the 140 ° to 210 °. The bearing loss reduction effect can be obtained by providing it in
 以上述べた本実施例によれば、クランク軸の偏心部の外周面と旋回滑り軸受の内周面とが潤滑油を介して摺動する構造において、前記偏心部外周面と前記滑り軸受内周面との間に存在する潤滑油による油膜のせん断抵抗を低減することができるので、流体潤滑時の軸受損失を低減することができる。この効果を更に詳しく説明する。 According to the present embodiment described above, in the structure in which the outer peripheral surface of the eccentric portion of the crankshaft and the inner peripheral surface of the orbiting sliding bearing slide through the lubricating oil, the outer peripheral surface of the eccentric portion and the inner peripheral surface of the slide bearing. Since the shear resistance of the oil film due to the lubricating oil existing between the surfaces can be reduced, bearing loss during fluid lubrication can be reduced. This effect will be described in more detail.
 一般に、薄い流体潤滑油膜のせん断応力τは、潤滑油の軸回転方向流速Uの油膜厚さh方向に関する変化勾配dU/dhと、潤滑油粘度ηに伴い、増加する関係を有することが知られている。本実施例によれば、油膜圧力により荷重支持を行う役割がほとんど無く、且つ偏心軸外周と旋回滑り軸受内周との隙間が比較的小さくなる部分の隙間を、偏心軸外周に前記掘り込み溝或いは切欠きにより形成した損失低減溝を設けることにより拡大することができる。この結果、前記損失低減溝の部分を満たす潤滑油による油膜厚さhを増加できるから、前記変化勾配dU/dhを減少させて、油膜のせん断応力を減少できる。従って、前記せん断応力の積分値である油膜のせん断抵抗が低減されるから、軸受損失を低減できる。 In general, it is known that the shear stress τ of a thin fluid lubricating oil film has a relationship of increasing with a change gradient dU / dh in the direction of the oil film thickness h in the axial rotation direction flow velocity U of the lubricating oil and the lubricating oil viscosity η. ing. According to the present embodiment, there is almost no role of supporting the load by the oil film pressure, and the digging groove is formed in the outer periphery of the eccentric shaft so that the gap between the outer periphery of the eccentric shaft and the inner periphery of the orbiting slide bearing becomes relatively small. Or it can expand by providing the loss reduction groove | channel formed by the notch. As a result, the oil film thickness h by the lubricating oil that fills the loss reduction groove can be increased, so that the change gradient dU / dh can be reduced to reduce the shear stress of the oil film. Therefore, since the shear resistance of the oil film, which is the integral value of the shear stress, is reduced, bearing loss can be reduced.
 また、前記損失低減溝における前記偏心部の端面(上端)側と基端(下端)側の少なくとも一方に、クランク軸の軸方向への流路抵抗となるシール部を設けているので、前記の損失低減溝は、前記旋回滑り軸受を軸方向に跨いで、前記偏心部の端面側と基端側に同時には連通しない。一方、前記給油通路は、前記前記旋回滑り軸受を軸方向に跨いで、前記偏心部の端面側と基端側に連通させる構成となっている。この結果、軸方向の流路抵抗は、前記給油通路において最小となり、給油穴から供給された潤滑油が前記給油通路に優先的に流れる。従って、前記偏心部における潤滑油の給油状態は、前記損失低減溝を設けていない従来のものと概略同様に維持され、本実施例のように損失低減溝を設けても、給油量が増大したり給油状態が悪化するのを防止できる。 In addition, since at least one of the end face (upper end) side and the base end (lower end) side of the eccentric part in the loss reducing groove is provided with a seal part that serves as a flow path resistance in the axial direction of the crankshaft, The loss reducing groove straddles the slewing bearing in the axial direction and does not communicate with the end face side and the base end side of the eccentric part at the same time. On the other hand, the oil supply passage is configured to communicate with the end face side and the base end side of the eccentric portion across the slewing plain bearing in the axial direction. As a result, the axial flow resistance is minimized in the oil supply passage, and the lubricating oil supplied from the oil supply hole flows preferentially in the oil supply passage. Accordingly, the lubricating oil supply state in the eccentric portion is maintained in the same manner as the conventional one not provided with the loss reduction groove, and even if the loss reduction groove is provided as in this embodiment, the amount of oil supply increases. It is possible to prevent the oiling condition from getting worse.
 本実施例では、前記損失低減溝の開始位置を、前記偏心軸の中心周りに、前記偏心部の反偏心方向から前記クランク軸の反回転方向に140°~210°の角度範囲内に設ける構造としている。この理由は前述したように、前記損失低減溝の開始位置を140度以下にすると、荷重を支持する油膜圧力の発生が妨げられ、軸受損失を低減する効果が無くなるほか、油膜圧力を低下させてしまうので油膜切れを引き起こす可能性があるため、140度以上としている。また、前記損失低減溝の開始位置を210度以上にしても、その領域はスクロール圧縮機の運転中において軸と軸受との隙間が元々比較的大きい状態にある部分であるため、前記変化勾配dU/dhを低減させて油膜せん断応力を低減させ軸受損失を低減させる効果は得られ難く、従って210度以下としている。 In this embodiment, the start position of the loss reducing groove is provided around the center of the eccentric shaft within an angle range of 140 ° to 210 ° from the anti-eccentric direction of the eccentric portion to the counter-rotating direction of the crankshaft. It is said. As described above, if the start position of the loss reducing groove is 140 degrees or less, the generation of the oil film pressure supporting the load is hindered, the effect of reducing the bearing loss is lost, and the oil film pressure is reduced. Therefore, the oil film may be cut, so the angle is 140 degrees or more. Even when the starting position of the loss reducing groove is 210 degrees or more, since the region is a portion where the clearance between the shaft and the bearing is originally relatively large during the operation of the scroll compressor, the change gradient dU It is difficult to obtain the effect of reducing the oil film shear stress by reducing / dh and reducing the bearing loss.
 また、本実施例では、前記損失低減溝は、その加工前の前記偏心部外周円から0.002mm以上(好ましくは0.01~0.05mm以上)の径方向深さとなる部分が、前記偏心部の反偏心方向から前記クランク軸の反回転方向に140°~210°(好ましくは145°~180°)の範囲内に存在するよう形成されているので、寸法誤差等によるばらつきの少ない安定的な軸受損失低減効果を得ることができる。 Further, in this embodiment, the loss reducing groove has a portion having a radial depth of 0.002 mm or more (preferably 0.01 to 0.05 mm or more) from the outer peripheral circle of the eccentric part before processing. It is formed so that it exists in the range of 140 ° to 210 ° (preferably 145 ° to 180 °) from the anti-eccentric direction of the part to the counter-rotating direction of the crankshaft, so that there is little variation due to dimensional errors, etc. Can reduce the bearing loss.
1:スクロール圧縮機、2:密閉容器、3:潤滑油、4:旋回ボス部内空間、
102:電動機、103:クランク軸、104:フレーム、105:主軸受、
106:下フレーム、107:副軸受、
108:偏心部、108a:端面(上端)、108b:基端(下端)、
109:旋回スクロール、110:旋回滑り軸受、
111:オルダムリング、
112:固定スクロール、
113:吸入口、
114:吐出口、
115:給油穴、
116:給油通路、
117,117a,117b:損失低減溝、
118,118a,118b:シール部、
119:中間室(背圧室)、
120:軸回転方向、121:軸受荷重方向、
122 最小隙間部。
1: Scroll compressor, 2: Sealed container, 3: Lubricating oil, 4: Space in the rotating boss part,
102: Electric motor, 103: Crankshaft, 104: Frame, 105: Main bearing,
106: lower frame, 107: auxiliary bearing,
108: eccentric part, 108a: end face (upper end), 108b: base end (lower end),
109: orbiting scroll, 110: orbiting sliding bearing,
111: Oldham ring,
112: Fixed scroll,
113: inlet
114: discharge port,
115: Refueling hole,
116: Refueling passage,
117, 117a, 117b: loss reduction grooves,
118, 118a, 118b: seal part,
119: Intermediate chamber (back pressure chamber),
120: shaft rotation direction, 121: bearing load direction,
122 Minimum gap.

Claims (9)

  1.  固定スクロールと、この固定スクロールと噛み合う旋回スクロールと、
     この旋回スクロールを旋回運動させるために端部に偏心部を有するクランク軸と、
     該クランク軸内を軸方向に貫通し、前記偏心部の端面に開口部を有する給油穴と、
     前記旋回スクロールに設けられ前記クランク軸の偏心部と係合して摺動する旋回滑り軸受と、
     前記クランク軸の偏心部の外周に、該偏心部の端面側と基端側を連通するように設けられた給油通路とを備え、
     前記給油穴から供給された潤滑油により前記偏心部と前記旋回滑り軸受との間を潤滑するように構成されたスクロール圧縮機において、
     前記クランク軸の偏心部の外周に、前記給油通路とは別に設けられた軸方向の損失低減溝と、
     この損失低減溝における前記偏心部の端面側と基端側の少なくとも一方に設けられたシール部と
    を備えることを特徴とするスクロール圧縮機。
    A fixed scroll, a turning scroll meshing with the fixed scroll,
    A crankshaft having an eccentric portion at an end portion thereof for turning the orbiting scroll;
    An oil supply hole penetrating the crankshaft in the axial direction and having an opening at an end face of the eccentric part;
    An orbiting slide bearing that is provided on the orbiting scroll and engages and slides with an eccentric portion of the crankshaft;
    An oil supply passage provided on the outer periphery of the eccentric portion of the crankshaft so as to communicate the end face side and the base end side of the eccentric portion;
    In the scroll compressor configured to lubricate between the eccentric portion and the orbiting and sliding bearing with the lubricating oil supplied from the oil supply hole,
    An axial loss reduction groove provided separately from the oil supply passage on the outer periphery of the eccentric portion of the crankshaft;
    A scroll compressor comprising: a seal portion provided on at least one of an end face side and a base end side of the eccentric portion in the loss reducing groove.
  2.  請求項1に記載のスクロール圧縮機において、前記損失低減溝の開始位置は、前記偏心部の中心周りに、前記偏心部の反偏心方向から前記クランク軸の反回転方向に、140°~210°の位置に設けられていることを特徴とするスクロール圧縮機。 The scroll compressor according to claim 1, wherein the start position of the loss reducing groove is around 140 ° to 210 ° around the center of the eccentric portion from the anti-eccentric direction of the eccentric portion to the anti-rotating direction of the crankshaft. A scroll compressor characterized by being provided at the position of.
  3.  請求項2に記載のスクロール圧縮機において、前記損失低減溝の開始位置は、前記偏心部の中心周りに、前記偏心部の反偏心方向から前記クランク軸の反回転方向に、145°~180°の位置に設けられていることを特徴とするスクロール圧縮機。 The scroll compressor according to claim 2, wherein the starting position of the loss reducing groove is 145 ° to 180 ° around the center of the eccentric portion from the anti-eccentric direction of the eccentric portion to the counter-rotating direction of the crankshaft. A scroll compressor characterized by being provided at the position of.
  4.  請求項2に記載のスクロール圧縮機において、前記給油通路及び前記損失低減溝は、それぞれ前記偏心部の外周に、掘り込み溝或いは切欠きにより形成されており、且つ、前記損失低減溝はその加工前の前記偏心部外周円から0.002mm以上の径方向深さとなる部分が存在するよう形成されていることを特徴とするスクロール圧縮機。 3. The scroll compressor according to claim 2, wherein the oil supply passage and the loss reduction groove are each formed by an excavation groove or a notch on an outer periphery of the eccentric portion, and the loss reduction groove is processed. A scroll compressor characterized in that a portion having a radial depth of 0.002 mm or more from the previous outer peripheral circle of the eccentric portion exists.
  5.  請求項4に記載のスクロール圧縮機において、前記損失低減溝の深さを0.01mm以上とし、且つ前記偏心部の軸径の20%以下としたことを特徴とするスクロール圧縮機。 5. The scroll compressor according to claim 4, wherein a depth of the loss reducing groove is 0.01 mm or more and 20% or less of a shaft diameter of the eccentric portion.
  6.  請求項5に記載のスクロール圧縮機において、前記損失低減溝の深さを0.05~0.5mmとしたことを特徴とするスクロール圧縮機。 6. The scroll compressor according to claim 5, wherein the loss reducing groove has a depth of 0.05 to 0.5 mm.
  7.  請求項1に記載のスクロール圧縮機において、前記損失低減溝は、前記偏心部の周方向に複数個形成されていることを特徴とするスクロール圧縮機。 2. The scroll compressor according to claim 1, wherein a plurality of the loss reducing grooves are formed in a circumferential direction of the eccentric portion.
  8.  請求項7に記載のスクロール圧縮機において、複数個形成されている前記損失低減溝のうちの少なくとも1つは、前記偏心部の中心周りに、前記偏心部の反偏心方向から前記クランク軸の反回転方向に、140°~210°の位置に設けられていることを特徴とするスクロール圧縮機。 8. The scroll compressor according to claim 7, wherein at least one of the plurality of loss reduction grooves formed around the center of the eccentric portion is opposite to the crankshaft from the eccentric direction of the eccentric portion. A scroll compressor provided at a position of 140 ° to 210 ° in the rotational direction.
  9.  請求項1に記載のスクロール圧縮機において、前記シール部は、前記損失低減溝における前記偏心部の基端側には少なくとも設けられていることを特徴とするスクロール圧縮機。 2. The scroll compressor according to claim 1, wherein the seal portion is provided at least on a proximal end side of the eccentric portion in the loss reduction groove.
PCT/JP2011/059938 2011-04-22 2011-04-22 Scroll compressor WO2012144067A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/059938 WO2012144067A1 (en) 2011-04-22 2011-04-22 Scroll compressor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
TR2018/16164T TR201816164T4 (en) 2011-04-22 2011-04-22 Snail compressor.
CN201180070247.5A CN103502645B (en) 2011-04-22 2011-04-22 Scroll compressor
EP11863892.3A EP2700818B1 (en) 2011-04-22 2011-04-22 Scroll compressor
KR20137023891A KR101484728B1 (en) 2011-04-22 2011-04-22 Scroll compressor
PCT/JP2011/059938 WO2012144067A1 (en) 2011-04-22 2011-04-22 Scroll compressor
JP2013510807A JP5581440B2 (en) 2011-04-22 2011-04-22 Scroll compressor

Publications (1)

Publication Number Publication Date
WO2012144067A1 true WO2012144067A1 (en) 2012-10-26

Family

ID=47041214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059938 WO2012144067A1 (en) 2011-04-22 2011-04-22 Scroll compressor

Country Status (6)

Country Link
EP (1) EP2700818B1 (en)
JP (1) JP5581440B2 (en)
KR (1) KR101484728B1 (en)
CN (1) CN103502645B (en)
TR (1) TR201816164T4 (en)
WO (1) WO2012144067A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014228002A (en) * 2013-05-22 2014-12-08 オプリスト エンジニアリング ゲーエムベーハーOBRIST ENGINEERING GmbH Scroll compressor and co2 vehicle air conditioning system including scroll compressor
JP2014228003A (en) * 2013-05-22 2014-12-08 オプリスト エンジニアリング ゲーエムベーハーOBRIST ENGINEERING GmbH Scroll compressor and co2 vehicle air conditioning system including scroll compressor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9488171B2 (en) 2014-06-06 2016-11-08 Hamilton Sundstrand Corporation Gear pump drive gear stationary bearing
KR102234708B1 (en) * 2014-08-06 2021-04-01 엘지전자 주식회사 compressor
CN108266374A (en) * 2017-12-26 2018-07-10 广州万宝集团压缩机有限公司 A kind of horizontal type scroll compressor
KR20200065608A (en) * 2018-11-30 2020-06-09 한온시스템 주식회사 Scroll compressor
FR3102792B1 (en) * 2019-11-05 2021-10-29 Danfoss Commercial Compressors Scroll compressor comprising a crank pin having an upper recess

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63146222U (en) * 1987-03-18 1988-09-27
JPH0454296A (en) * 1990-06-22 1992-02-21 Hitachi Ltd Scroll compressor
JPH0424684U (en) * 1990-06-21 1992-02-27
JPH06173954A (en) * 1992-12-07 1994-06-21 Hitachi Ltd Bearing lubricating device for scroll compressor
JPH11159484A (en) 1997-11-26 1999-06-15 Daikin Ind Ltd Scroll type fluid machine
JP2003239876A (en) 2002-02-09 2003-08-27 Lg Electronics Inc Friction loss reducing device for scroll compressor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4954057A (en) * 1988-10-18 1990-09-04 Copeland Corporation Scroll compressor with lubricated flat driving surface
JPH0712068A (en) * 1993-06-22 1995-01-17 Hitachi Ltd Bearing oil feed device for scroll fluid machine
JPH11141478A (en) * 1997-11-06 1999-05-25 Zexel:Kk Scroll type compressor
US6354822B1 (en) * 2000-05-16 2002-03-12 Scroll Technologies Oil retention in compressor slider block

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63146222U (en) * 1987-03-18 1988-09-27
JPH0424684U (en) * 1990-06-21 1992-02-27
JPH0454296A (en) * 1990-06-22 1992-02-21 Hitachi Ltd Scroll compressor
JPH06173954A (en) * 1992-12-07 1994-06-21 Hitachi Ltd Bearing lubricating device for scroll compressor
JPH11159484A (en) 1997-11-26 1999-06-15 Daikin Ind Ltd Scroll type fluid machine
JP2003239876A (en) 2002-02-09 2003-08-27 Lg Electronics Inc Friction loss reducing device for scroll compressor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2700818A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014228002A (en) * 2013-05-22 2014-12-08 オプリスト エンジニアリング ゲーエムベーハーOBRIST ENGINEERING GmbH Scroll compressor and co2 vehicle air conditioning system including scroll compressor
JP2014228003A (en) * 2013-05-22 2014-12-08 オプリスト エンジニアリング ゲーエムベーハーOBRIST ENGINEERING GmbH Scroll compressor and co2 vehicle air conditioning system including scroll compressor

Also Published As

Publication number Publication date
EP2700818A1 (en) 2014-02-26
TR201816164T4 (en) 2018-11-21
EP2700818A4 (en) 2014-12-03
KR20130125812A (en) 2013-11-19
JPWO2012144067A1 (en) 2014-07-28
CN103502645A (en) 2014-01-08
KR101484728B1 (en) 2015-01-20
EP2700818B1 (en) 2018-08-01
JP5581440B2 (en) 2014-08-27
CN103502645B (en) 2016-07-13

Similar Documents

Publication Publication Date Title
JP5581440B2 (en) Scroll compressor
JP4859730B2 (en) Scroll compressor
JP2011064189A (en) Scroll compressor
JP2008240597A (en) Variable crank mechanism and scroll fluid machine having variable crank mechanism
JP5370425B2 (en) Compressor
JP6664879B2 (en) Open type compressor
JP6862294B2 (en) Scroll compressor
AU2015300143B2 (en) Open-type compressor
JPWO2004029461A1 (en) Scroll compressor
JP4790757B2 (en) Scroll compressor
JP6679399B2 (en) Scroll compressor
JP2017172484A (en) Scroll compressor
JP2006241993A (en) Scroll compressor
JP5863436B2 (en) Fluid machinery
JP2019056336A (en) Scroll type fluid machine
JP6917845B2 (en) Scroll type fluid machine
JP2020094557A (en) Fluid machine
JP6618663B1 (en) Slide bearing structure and scroll compressor
JPH09105390A (en) Scroll type fluid machinery
JP6758867B2 (en) Fluid machine
US20130236346A1 (en) Two step compressor unit and compressor system having the same
WO2018030066A1 (en) Fluid machine
JP2012189004A (en) Scroll fluid machine
JP2011137523A (en) Rotary shaft and compressor
JP3988524B2 (en) Hermetic compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11863892

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013510807

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137023891

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011863892

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE