WO2016021483A1 - 炭素のナノ被覆層を有する基材粉末の製造方法、これを用いたMgB2超伝導体の製造方法およびMgB2超伝導体、リチウムイオン電池用正極材の製造方法およびリチウムイオン電池、並びに光触媒の製造方法 - Google Patents

炭素のナノ被覆層を有する基材粉末の製造方法、これを用いたMgB2超伝導体の製造方法およびMgB2超伝導体、リチウムイオン電池用正極材の製造方法およびリチウムイオン電池、並びに光触媒の製造方法 Download PDF

Info

Publication number
WO2016021483A1
WO2016021483A1 PCT/JP2015/071688 JP2015071688W WO2016021483A1 WO 2016021483 A1 WO2016021483 A1 WO 2016021483A1 JP 2015071688 W JP2015071688 W JP 2015071688W WO 2016021483 A1 WO2016021483 A1 WO 2016021483A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
carbon
polycyclic aromatic
positive electrode
base
Prior art date
Application number
PCT/JP2015/071688
Other languages
English (en)
French (fr)
Inventor
熊倉 浩明
シュジュン イェ
長谷川 明
久保 佳実
栄起 安川
晃敬 野村
Original Assignee
国立研究開発法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人物質・材料研究機構 filed Critical 国立研究開発法人物質・材料研究機構
Priority to EP15829986.7A priority Critical patent/EP3178785B1/en
Priority to US15/310,161 priority patent/US10431823B2/en
Priority to JP2016540185A priority patent/JP6308507B2/ja
Publication of WO2016021483A1 publication Critical patent/WO2016021483A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • B01J35/39
    • B01J35/40
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/02Boron; Borides
    • C01B35/04Metal borides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/04Single wire
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a base powder having a carbon nano-coating layer, and particularly covers the surface of the base powder with an amorphous carbon nano-coating layer derived from pyrolytic carbon having a uniform thickness of about several nm.
  • the present invention relates to a method for producing broken base powder.
  • the present invention relates to a manufacturing method and a MgB 2 superconductor MgB 2 superconductor using the manufacturing method of the base powder having a nano-coating layer of the carbon.
  • the present invention also relates to a method for producing a positive electrode material for a lithium ion battery using the method for producing a base powder having a carbon nano-coating layer.
  • the present invention also relates to a lithium ion battery using a positive electrode material having a carbon-based substance as a conductive agent, and more particularly to an improvement of a lithium ion battery using lithium iron phosphate (LiFePO 4 ) or the like as a positive electrode material.
  • LiFePO 4 lithium iron phosphate
  • the present invention relates to a method for producing a photocatalyst using the above method for producing a base powder having a carbon nano-coating layer.
  • Covering the surface of the base powder with a carbon film having a uniform thickness of about several nanometers may be effective for modifying the base powder.
  • MgB 2 superconductor, positive electrode for lithium ion battery It is used as an intermediate manufacturing process and intermediate raw material for the production of materials and photocatalysts.
  • various types of carbon supply sources for coating the base powder are known.
  • an aromatic hydrocarbon when added, the aromatic hydrocarbon decomposes and generates hydrogen during the heat treatment. There is a possibility of causing problems in the use of the final product.
  • a method of coating carbon on the surface of the substrate powder particles by a vapor phase method has also been proposed, but it is difficult to control the carbon coating layer and the mass production of the substrate powder is difficult due to the vapor phase method (high cost) ).
  • the MgB 2 superconductor is considered promising as a practical material, and research and development are currently in progress.
  • the MgB 2 superconductor has a problem that the upper critical magnetic field Hc 2 is low.
  • Hc 2 significantly increases by substituting a part of the B site with carbon (C).
  • the most common B site C substitution method is to add SiC powder to a mixed raw material powder of Mg and B and heat-treat.
  • a method of adding aromatic hydrocarbons to Mg and B raw powders is also effective, and by adding aromatic hydrocarbons, some B sites in the MgB 2 crystal are replaced by C, so that the Jc characteristics in a high magnetic field can be improved. Improvement can be obtained (see Patent Documents 1-3).
  • lithium ion secondary batteries are widely used for portable electronic devices such as mobile phones and laptop computers, and power supplies for vehicles because of their high voltage and high energy density.
  • the positive electrode of the lithium ion secondary battery there are various such as cobalt acid lithium, lithium manganate, the LiFePO 4 for the following reasons among these, a material that is noted as a positive electrode material for large batteries is there.
  • the electrical conductivity is about 3 to 5 orders of magnitude lower than other positive electrode materials, and in order to improve the electrical conductivity, LiFePO 4 nanopowder particles are used, and a nanocarbon coat using acetylene black or the like on the surface is used. Has been done.
  • LiFePO 4 is the incorporation of a conductive agent such as nano-carbon coating to LiFePO 4 particle surface (for example, see Non-Patent Document 4).
  • a carbon coating method to LiFePO 4 there are a method of adding polyvinyl chloride powder in a solid phase method and a method using methanol (for example, see Patent Documents 4 and 5 and Non-Patent Document 7).
  • Patent Documents 4 and 5 and Non-Patent Document 7 for example, see Patent Documents 4 and 5 and Non-Patent Document 7.
  • these conventional techniques require the use of a solvent or a kiln having a rotating function, and there is a problem that none of them is simple as a process and cannot be said to be low in cost.
  • covering the surface of the electrode active material with a carbon film having a uniform thickness of about several nanometers may be effective for modifying the base powder constituting the electrode active material. It is used as an intermediate manufacturing process or intermediate raw material when manufacturing a positive electrode material.
  • various types of carbon sources for coating the base powder are known, but in the addition of aromatic hydrocarbons, aromatic hydrocarbons are decomposed during heat treatment to generate hydrogen, which is the final base powder. There is a possibility of causing problems in the use of the product.
  • a method of coating carbon on the surface of the substrate powder particles by a vapor phase method has been proposed, but it is difficult to control the carbon coating layer and the mass production of the substrate powder is difficult due to the vapor phase method (high cost ).
  • the present invention solves the above-mentioned problems, and by appropriately selecting the carbon source for coating the base powder, there is no possibility of causing problems in the use of the final product of the base powder. It is an object of the present invention to provide a method for producing a base powder having a carbon nano-coating layer from which a modified final product with good powder productivity is obtained.
  • the present invention by using the manufacturing method of the base material powder having a nano coating layer of carbon is possible to realize uniformity of excellent polycyclic aromatic hydrocarbons (nanographene) added for MgB 2 superconductor wire
  • An object of the present invention is to provide a method for producing a MgB 2 superconducting wire and a MgB 2 superconductor, which have high critical current density (Jc) characteristics and small variations in critical current density (Jc).
  • Another object of the present invention is to provide a lithium ion battery having excellent discharge characteristics as compared with the prior art by using the above method for producing a positive electrode material for a lithium ion battery.
  • an object of the present invention is to provide a novel method for producing a photocatalyst by using a method for producing a base powder having a carbon nano-coating layer.
  • the present invention provides a new production method for coating a base powder such as B powder with carbon. That is, the present inventors use coronene (C 24 H 12 ), which is an embodiment of polycyclic aromatic hydrocarbon (nanographene), mix solid coronene and B powder and enclose in vacuum, and the boiling point temperature of coronene is exceeded.
  • coronene C 24 H 12
  • the present invention has been conceived starting from the fact that carbon coating of B powder was realized by heat treatment at 600 ° C. or higher, which is higher than the thermal decomposition temperature. That is, coronene evaporates by this heat treatment, but coronene molecules undergo condensation while liberating hydrogen, which forms a multimer and deposits on the surface of the B powder to form a multimeric coating.
  • the heat treatment temperature is high, it is considered that all the hydrogen is removed and becomes carbon, so that a carbon coating layer on the surface of the base powder is obtained.
  • a polycyclic aromatic hydrocarbon is added to the base powder, and the boiling point of the polycyclic aromatic hydrocarbon is not lower than the boiling temperature + 300 ° C. And it heats at the temperature more than the thermal decomposition temperature of the said polycyclic aromatic hydrocarbon, The surface of the said base powder is covered with 1 to 300 carbon atoms. Above the boiling point temperature + 300 ° C., the vapor pressure of the polycyclic aromatic hydrocarbon becomes too high, and it becomes technically difficult to heat a large amount of the mixture of the base powder and the polycyclic aromatic hydrocarbon.
  • the method for producing a base powder having a carbon nano-coating layer comprises adding a polycyclic aromatic hydrocarbon to the base powder, and having a boiling point of + 300 ° C. above the boiling point of the polycyclic aromatic hydrocarbon.
  • the substrate powder is heated at a temperature equal to or higher than the thermal decomposition temperature of the polycyclic aromatic hydrocarbon, and the surface of the base powder is covered with carbon of 0.1 nm to 10 nm layer.
  • the nano-coating layer has the above thickness, a sufficient carbon amount and a dense carbon layer can be obtained.
  • the base powder is SnO 2 powder, LiVPO 4 powder, LiFePO 4 powder, LiNi 0.5 Mn 1.5 O 4 powder.
  • the polycyclic aromatic hydrocarbon is coronene, anthanthrene, or benzoperylene.
  • the polycyclic aromatic hydrocarbon is solid at normal temperature and pressure, and the boiling point is lower than the thermal decomposition temperature
  • the ratio C: H of the number of carbon atoms to the number of hydrogen atoms in the polycyclic aromatic hydrocarbon is preferably 1: 0.5 to 1: 0.8.
  • the base powder and carbon composite of the present invention is manufactured by any one of the above-described methods for manufacturing a positive electrode material for a lithium ion battery.
  • the electrode of the present invention is an electrode obtained by mixing the above-mentioned base powder and carbon composite with a binder and then molding.
  • the present invention relates to a method for producing a MgB 2 superconductor in which Mg powder or a mixture of MgH 2 powder and B powder is pressure-formed and heat-treated.
  • a polycyclic aromatic hydrocarbon is added to the B powder and heated at a temperature not lower than the boiling point of the polycyclic aromatic hydrocarbon and not higher than the boiling temperature + 300 ° C. and not lower than the thermal decomposition temperature of the polycyclic aromatic hydrocarbon.
  • covering the surface of the B powder with 1 to 300 layers of carbon atoms or 0.1 to 10 nm layers of carbon, Mixing the B powder whose surface is covered with carbon atoms or carbon with the Mg powder or MgH 2 powder.
  • the amount of the polycyclic aromatic hydrocarbon added is 1 to 40 mol% with respect to the theoretical or experimental amount of MgB 2 .
  • the mixture is filled in a metal tube, press-molded, and heat-treated.
  • the method of manufacturing a MgB 2 superconductor of the present invention preferably, a base powder having a nano coating layer of carbon produced by the above manufacturing method, the substrate powder is B powder, the carbon It is preferable to fill the metal tube with the B powder having the nano-coating layer and the Mg rod, press-mold, and heat-treat.
  • MgB 2 superconductor of the present invention is a MgB 2 superconductor obtained by the manufacturing method of the MgB 2 superconductor that MgB 2 core is a 1 or a plurality of certain MgB 2 wire material Features.
  • the MgB 2 superconductor of the present invention is the above-mentioned MgB 2 superconductor, and is preferably a multi-core MgB 2 wire having a plurality of MgB 2 cores.
  • this invention provides the new manufacturing method which coat
  • coronene which is one embodiment of polycyclic aromatic hydrocarbon (nanographene)
  • mix solid coronene and LiFePO 4 powder vacuum seal them in a glass tube, perform heat treatment, and perform LiFePO 4 powder. Carbon coating is applied
  • the coronene molecules condense while liberating hydrogen, which forms a multimer and accumulates on the surface of the LiFePO 4 powder.
  • the recognition of the occurrence of multimeric coating is the beginning of the present invention.
  • the heat treatment temperature is high, it is considered that all the hydrogen is removed and becomes carbon, so that a carbon coating is obtained on the surface of the LiFePO 4 powder particles.
  • the method for producing a positive electrode material for a lithium ion battery according to the present invention includes a metal oxide or a metal sulfide constituting a positive electrode material for a secondary battery using a nonaqueous electrolyte, and a surface of the metal oxide or the metal sulfide.
  • the metal oxide or the metal sulfide is SnO 2 , LiVPO 4 , LiFePO 4 , LiNi 0.5 Mn 1.5 O 4 , LiMnPO 4 , Li 2 FeSiO 4 , V 2 O 5.
  • a base powder for a lithium ion battery positive electrode material selected from the group consisting of MnO 2 , LiCoO 2 , LiNiO 2 , LiNi 0.5 Mn 0.5 O 2 , LiMn 2 O 4 , Li 2 S and SiO 2
  • a polycyclic aromatic hydrocarbon is added to the base powder, and the boiling point of the polycyclic aromatic hydrocarbon is reduced.
  • the boiling point temperature is not higher than 300 ° C. and heated at a temperature not lower than the thermal decomposition temperature of the polycyclic aromatic hydrocarbon, and the surface of the base powder is covered with one or more layers and not more than 300 layers of carbon atoms. To do.
  • a polycyclic aromatic hydrocarbon is added to the base powder, and the boiling temperature is not lower than the boiling point of the polycyclic aromatic hydrocarbon and not higher than 300 ° C. And it is good to heat at the temperature more than the thermal decomposition temperature of the said polycyclic aromatic hydrocarbon, and to cover the surface of the said base powder with 0.1 to 10 nm layer carbon.
  • the base powder is SnO 2 powder, LiVPO 4 powder, LiFePO 4 powder, LiNi 0.5 Mn 1.5 O 4 powder, LiMnPO 4 powder.
  • the polycyclic aromatic hydrocarbon is coronene, anthanthrene, benzoperylene (Benzo (ghi) perylene), circulen ( circulene), corannulene, dicolonylene, diindenoperylene, helicene, heptacene, hexacene, kekulene, ovalene, zethrene , Benzo [a] pyrene, Benzo [e] pyrene, Benzo [a] fluoranthene, Benzo [b] fluoranthene (Benzo [b] fluoranthene), benzo [j] fluoranthene, benzo [k] fluoranthene, dibenzo [a, h] anthracene, debenz Benzo [a, j] anthracene, Olympicene, pentacene, perylene, Picene,
  • the polycyclic aromatic hydrocarbon is solid at normal temperature and pressure, and has a boiling point lower than a thermal decomposition temperature, and the polycyclic aromatic hydrocarbon
  • the ratio C: H of the number of carbon atoms and the number of hydrogen atoms in the hydrocarbon is preferably 1: 0.5 to 1: 0.8.
  • the lithium ion battery of the present invention has, for example, as shown in FIG. 18, a positive electrode 61 in which a positive electrode active material is provided on a positive electrode current collector, and a negative electrode 62 that faces the positive electrode 61 through an electrolyte,
  • the positive electrode active material has a base material powder made of a lithium metal oxide and a carbon coating layer covering the periphery of the base material powder, and the carbon coating layer is the manufacture of the positive electrode material for a lithium ion battery described above. It was manufactured by any one of the methods.
  • the photocatalyst production method of the present invention is a photocatalyst using silver particles and TiO 2 particles, wherein the TiO 2 particles are used as a base powder, and the surface of the base powder is coated with a carbon coating.
  • Polycyclic aromatic hydrocarbons are added to the base powder and heated at a temperature not lower than the boiling point of the polycyclic aromatic hydrocarbons and not higher than the boiling temperature + 300 ° C. and not lower than the thermal decomposition temperature of the polycyclic aromatic hydrocarbons. And the surface of the said base powder is covered with 1 to 300 carbon atoms.
  • the photocatalyst production method of the present invention is a photocatalyst using silver particles and TiO 2 particles, wherein the TiO 2 particles are used as a base powder, and the surface of the base powder is coated with a carbon film.
  • Polycyclic aromatic hydrocarbons are added to the base powder and heated at a temperature not lower than the boiling point of the polycyclic aromatic hydrocarbons and not higher than the boiling temperature + 300 ° C. and not lower than the thermal decomposition temperature of the polycyclic aromatic hydrocarbons. Then, the surface of the base powder is covered with carbon of 0.1 nm to 10 nm layer.
  • a carbon coating layer can be obtained by a simple process in which the base powder is heat-treated in a vacuum together with a polycyclic aromatic hydrocarbon. Therefore, there is an advantage that the carbon coating layer thickness can be easily controlled by adjusting the addition amount of the polycyclic aromatic hydrocarbon, in addition to the advantage that it is convenient and suitable for mass production at low cost.
  • a carbon coating layer can be obtained by a simple process in which B powder is heat-treated in a vacuum together with a polycyclic aromatic hydrocarbon.
  • the carbon coating layer thickness can be easily controlled by adjusting the amount of polycyclic aromatic hydrocarbon added. That is, the MgB 2 superconductor manufacturing method of the present invention makes it possible to easily obtain an MgB 2 superconductor in which a part of the B site is carbon-substituted at low cost.
  • the base material and the polycyclic aromatic hydrocarbon are simply heat-treated together in a vacuum, so that they are formed on various substrates (base materials).
  • a carbon coating layer having a thickness of nanometer level can be easily provided. Therefore, the present invention is not limited to the MgB 2 superconductor, and can be applied to a method for producing a positive electrode of a lithium ion battery, a method for producing a photocatalyst, tribology, and the like, and the application range of the present invention is considered to be wide.
  • a carbon coating layer can be obtained in a simple process by simply heat-treating the base powder together with the polycyclic aromatic hydrocarbon in a vacuum, In addition to the advantage of being suitable for mass production at a low cost, there is also an advantage that the thickness of the carbon coating layer can be easily controlled by adjusting the amount of polycyclic aromatic hydrocarbon added.
  • Example 1 of this invention It is a block diagram of the carbon coating
  • FIG. 10 is a lithium mapping diagram corresponding to a transmission electron microscope image of the LiFePO 4 powder of FIG. 9.
  • FIG. 10 is a phosphorus mapping diagram corresponding to a transmission electron microscope image of the LiFePO 4 powder of FIG.
  • FIG. 10 is an oxygen mapping diagram corresponding to a transmission electron microscope image of the LiFePO 4 powder of FIG. 9. It is a high-resolution transmission electron micrograph of the LiFePO 4 powder vacuum heat treatment for one hour at 700 ° C. with coronene.
  • FIG. 4 is a Raman scattering shift diagram of LiFePO 4 powder subjected to vacuum heat treatment at 700 ° C.
  • a diagram illustrating the particle size distribution of LiFePO 4 base particles used in the positive electrode material (A) is LiFePO 4 substrate particles without a carbon bearing layer as a comparative example, (B) is LiFePO 4 with carbon-supported layer The case of substrate particles is shown. It is sectional drawing which shows typically the test lithium secondary battery (coin cell) which concerns on one test example of this invention. It is a figure explaining the detail of the trial manufacture specification which concerns on the coin cell shown in FIG. 18, and has shown the mechanical design value of a positive electrode and a negative electrode. It is a figure explaining the detail of the test article manufactured by the trial manufacture specification which concerns on the coin cell shown in FIG. It is a figure explaining the discharge capacity characteristic of the test article which concerns on one test example of this invention. It is a graph which shows the charging / discharging curve explaining the discharge capacity characteristic of the test article which concerns on one test example of this invention.
  • the “Mg internal diffusion method” is a wire preparation method in which an Mg rod is placed inside a metal tube, B powder is filled in the gap between the metal tube and the Mg rod, this composite is processed into a wire, and then heat treated. .
  • the “powder-in-tube method” is a wire preparation method in which a raw material powder of a superconductor is filled in a metal tube, processed into a wire, and then heat-treated.
  • Critical current density Jc means the maximum superconducting current density that can flow per unit cross-sectional area of the superconducting wire. Usually, it refers to the value per unit cross-sectional area of the superconductor core in the wire.
  • the MgB 2 superconductor is manufactured by pressure-forming and heat-treating a mixture of Mg powder or MgH 2 powder and B powder.
  • the average particle size of Mg powder or MgH 2 powder is preferably in the range of 200 nm to 50 ⁇ m
  • the average particle size of B powder is preferably in the range of 50 nm to 1 ⁇ m.
  • the mixing ratio it is preferable to mix Mg or MgH 2 / B in a molar ratio in a range of 0.5 / 2 to 1.5 / 2, and a molar ratio in a range of 0.8 / 2 to 1.2 / 2. It is further preferable to mix in the above.
  • an appropriate amount of polycyclic aromatic hydrocarbon and SiC can be added to the mixture of Mg or MgH 2 powder and B powder, or B powder, and further mixed sufficiently with a ball mill or the like.
  • polycyclic aromatic hydrocarbons various compounds among compounds having three or more carbocycles or heterocycles may be considered, and the number of carbons of polycyclic aromatic hydrocarbons is particularly limited. However, the range of 18-50 is preferred.
  • the polycyclic aromatic hydrocarbons may have various functional groups as long as the effects of the present invention are not impaired, and can be appropriately selected in consideration of availability, handling properties, price, and the like.
  • typical examples of the substituent include an alkyl group having 1 to 8 carbon atoms, particularly 1 to 4 carbon atoms. More specifically, coronene, anthracene, perylene, biphenyl listed in Tables 1 and 2 (FIGS.
  • carbocyclic aromatic hydrocarbons such as alkyl substitution, or heterocyclic aromatics such as thiophene.
  • examples are hydrocarbons.
  • the polycyclic aromatic hydrocarbon is preferably added at a ratio of 0.1 to 40 mol% with respect to the theoretical or experimental production amount of MgB 2 .
  • the mixture as described above is processed into a bulk material and a wire material, and the same methods and conditions as those in the conventional superconducting wire material may be employed.
  • it is a bulk material, it can be manufactured by pressure forming and heat treatment, and examples thereof include a press using a normal mold, and the pressure is preferably 100 to 300 kg / cm 2 .
  • it is a wire rod, for example, it can be manufactured by filling the mixture into a metal tube such as iron and processing it into a tape or wire with a rolling roll or the like, followed by heat treatment. May be adopted. That is, as usual, heat treatment can be performed at a temperature and time sufficient to obtain a MgB 2 superconducting phase under an inert atmosphere such as argon or vacuum.
  • the metal tube to be used, the heat treatment temperature and the heat treatment time are not essential in the C substitution at the B site, and therefore various metal tubes, heat treatment temperature and heat treatment time can be selected.
  • the MgB 2 superconductor of the present invention thus obtained includes a superconducting linear motor car, an MRI medical diagnostic device, a semiconductor single crystal pulling device, a superconducting energy storage, a superconducting rotating machine, a superconducting transformer, This is useful for improving the performance of conductive cables.
  • the LiFePO 4 powder used as a raw material may be used to adjust the appropriate mixing ratio.
  • the average particle size of the LiFePO 4 powder is preferably in the range of 200 nm to 50 ⁇ m.
  • the amount of carbon added is less than 0.1 mol%, there is a disadvantage that a sufficient carbon coat film is not formed, which is not preferable.
  • the lithium-containing powder for the positive electrode is not limited to LiFePO 4 powder, and commonly used LiCoO 2 powder, LiNiO 2 powder, LiNi 0.5 Mn 0.5 O 2 powder, LiMn 2 O 4 powder.
  • LiMnPO 4 powder and LiFeSiO 4 powder LiVPO 4 powder, LiNi 0.5 Mn 1.5 O 4 powder, V 2 O 5 powder, SiO 2 powder, MnO 2 powder, and Li 2 S powder may be used. .
  • polycyclic aromatic hydrocarbons various compounds among compounds having three or more carbocycles or heterocycles may be considered, and the number of carbons of polycyclic aromatic hydrocarbons is particularly limited. However, the range of 18-50 is preferred.
  • the polycyclic aromatic hydrocarbons may have various functional groups as long as the effects of the present invention are not impaired, and can be appropriately selected in consideration of availability, handling properties, price, and the like.
  • typical examples of the substituent include an alkyl group having 1 to 8 carbon atoms, particularly 1 to 4 carbon atoms.
  • examples include coronene, anthracene, perylene, biphenyl and carbocyclic aromatic hydrocarbons such as alkyl substitution, or heterocyclic aromatic hydrocarbons such as thiophene listed in Tables 1 and 2 above. Is done.
  • the addition amount of the polycyclic aromatic hydrocarbon is basically determined by the mol% of the carbon described above, but in the manufacturing operation, the mol% of the carbon is changed to the mol% or mass of the polycyclic aromatic hydrocarbon. It is convenient to replace with%.
  • FIG. 2 is a configuration diagram for explaining a manufacturing apparatus of a positive electrode material for a lithium ion battery according to the present invention.
  • the manufacturing apparatus includes a container 10, a vacuum state holding means 20, a heating device 30, a heat treatment control device 40, and a transfer device 50.
  • the container 10 contains a mixture obtained by adding a polycyclic aromatic hydrocarbon to a base powder used for a positive electrode material for a lithium ion battery, and has no reactivity with the base powder or the polycyclic aromatic hydrocarbon. It is made up of. Examples of the material include ceramics, metal, and glass.
  • the vacuum state holding means 20 is for holding the container 10 containing the mixture in a vacuum state.
  • a vacuum pump and a burner for sealing the glass are used.
  • a vacuum container and a vacuum pump that cover the entire ceramic container 10 are used.
  • a vacuum container and a vacuum pump that cover the entire metal container 10 may be used, or the inside of the metal container 10 is connected to the metal container 10 by a vacuum pump. May be evacuated to a vacuum state.
  • the heating device 30 heats the container 10 containing the mixture at a temperature not lower than the boiling point of the polycyclic aromatic hydrocarbon and not higher than the boiling point temperature + 300 ° C. and not lower than the thermal decomposition temperature of the polycyclic aromatic hydrocarbon.
  • a heat-resistant brick and an electric heater are combined.
  • the heat treatment control device 40 controls the heating time in the heating device 30 so as to be secured for a predetermined time so that the surface of the base powder is covered with one or more layers and 300 or less carbon atoms.
  • the heat treatment control device 40 includes a temperature sensor that measures the internal temperature of the container 10 and a regulator that controls the amount of heat generated by the heating device 30.
  • a temperature controller that stores the heat treatment pattern of the heating device 30 may be used as the controller.
  • the transport device 50 is a mechanism for transporting the container 10 in a vacuum state containing the mixture to the inside of the heating device 30, and also a mechanism for transporting the container 10 after being heat-treated by the heating device 30 to the outside of the heating device 30. Also have.
  • a manipulator or a transfer robot can be used for the transfer device 50.
  • FIG. 3 is a configuration diagram of the carbon coating apparatus used in the embodiment of the present invention.
  • 70 is a B + coronene mixed powder
  • 80 is a glass tube
  • 90 is a heat treatment furnace.
  • Amorphous nano B powder (made by Pavezyum Turkey) having a particle size of about 250 nm and coronene (C 24 H 12 ) solid powder having a particle size of several mm are weighed so that the carbon content with respect to B is 5 atomic%.
  • vacuum sealed in a quartz tube This was transferred to a heat treatment furnace and subjected to heat treatment at 630 ° C. for 3 hours.
  • FIG. 4 shows a transmission electron microscope image
  • FIG. 5 shows the B analysis result (boron mapping diagram)
  • FIG. 6 shows the carbon analysis result (carbon mapping diagram) for the sample heat-treated at 630 ° C.
  • FIG. 5 shows that an amorphous layer having a thickness of 3 to 4 nm exists on the surface of the B particles, but FIG. 6 shows that this layer is a layer containing carbon.
  • FIG. 7 shows the results of infrared spectroscopic analysis of vacuum-encapsulated and heat-treated B powder, mixed powder of B and coronene (unheated), B powder alone, and coronene powder, and FIG. 8 shows the results of X-ray diffraction.
  • the sample heat-treated at 520 ° C. shows a characteristic peak in the C—H bond of coronene, but the B powder sample heat-treated at 630 ° C. almost loses these peaks.
  • a sample heat treated at 520 ° C. shows some coronene peaks, but a sample heat treated at 630 ° C. does not show coronene or a multimer peak formed by condensation of coronene.
  • Coronene has a melting point of 438 ° C. and a boiling point of 525 ° C. At a heat treatment temperature of 630 ° C., coronene is considered to evaporate into a gas.
  • Non-Patent Document 3 it is reported that when coronene is heated to be a gas, condensation between coronene occurs one after another, hydrogen is released and a multimer is formed, and carbon is formed at 600 ° C. or higher. Further, from Non-Patent Document 4, it is also inferred that some coronene exists on the surface of the B powder particles even at a boiling point or higher, and is present as it is on the surface of the B particles as carbon by thermal decomposition. Therefore, in this experiment, the deposited layer of nanometer order on the surface of the B particles heat-treated at 630 ° C. is considered to be a carbon layer.
  • Example 2 Next, using the carbon-coated B powder produced in Example 1, an MgB 2 superconducting wire was produced by the Mg internal diffusion method. An Mg rod with a diameter of 2 mm is placed in the center of an iron tube with an outer diameter of 6 mm and an inner diameter of 4 mm, and B powder is filled in the gap between the iron tube and the Mg rod, and processed into a 0.6 mm diameter wire rod by groove rolling and die drawing. did. The wire was heat-treated at 675 ° C. for 8 hours in an argon atmosphere. For comparison, an MgB 2 wire was produced in the same manner using carbon coat B powder produced by the rf plasma method. Table 3 shows a comparison of critical current densities at 4.2 K and 10 Tesla for both wires. Since the B powder according to the present invention does not contain impurities such as Cl, it exhibits a higher critical current density than that of the rf plasma method.
  • the carbon-coated B powder according to the present invention does not contain impurities such as Cl, a higher critical current density can be obtained than the carbon-coated B powder containing Cl.
  • the carbon coating amount can be easily controlled only by changing the ratio of B to be encapsulated and coronene, and mass production is also easy.
  • Example 3 Creation of substrate particles having a carbon support layer>
  • Commercially available LiFePO 4 nanopowder having an average particle size of about 5 ⁇ m and coronene (C 24 H 12 ) solid powder are weighed so that the amount of carbon (C) with respect to LiFePO 4 is 5 mol% and mixed in a mortar, and quartz The tube was vacuum sealed. This was heat-treated at 700 ° C. for 1 hour. The structure of the LiFePO 4 powder after the heat treatment was observed with a transmission electron microscope.
  • FIG. 9 is a transmission electron microscope image of LiFePO 4 powder that was vacuum heat-treated at 700 ° C. for 1 hour together with coronene as one embodiment of the present invention.
  • 10 to 14 are diagrams showing elemental analysis mappings of C, Li, Fe, P, and O, respectively, for LiFePO 4 powder that was vacuum heat-treated at 700 ° C. for 1 hour together with coronene.
  • FIG. 15 shows a high-resolution transmission electron microscope image, from which it can be seen that this carbon layer is amorphous. Therefore, it is considered that the nanometer deposited layer covering the surface of the LiFePO 4 particles heat-treated at 700 ° C. in this experiment is an amorphous carbon layer.
  • This heat treatment process can be considered as follows. When the heat treatment temperature rises, the coronene first melts and penetrates into the LiFePO 4 powder, and the coronene covers the surface of the individual LiFePO 4 powder particles. When this temperature is 600 ° C. or higher, it is considered that coronene on the surface of the LiFePO 4 particles is decomposed and carbon remains as an amorphous state.
  • Amorphous carbon contains a mixture of conductive sp2 bonds and insulating sp3 bonds, but the electrode material film must contain many conductive sp2 bonds.
  • the Figure 16 shows the Raman scattering shift of LiFePO 4 powder not LiFePO 4 powder and carbon coating was carbon coating was heat-treated at 700 ° C.. In carbon-coated LiFePO 4 , two peaks (D and G peaks) appear, and it can be seen that these are attributable to the carbon coat layer. From Non-Patent Document 2, the ratio of sp2 bond can be evaluated from the ratio of the peak intensity of D peak and G peak I (D) / I (G) and the magnitude of shift based on graphite of G peak, From the data in FIG. 16, the ratio of sp2 bonds is estimated to be 80% or more. From the above, it is considered that the nanocarbon film produced here has sufficient conductivity and is suitable as a carbon film for an electrode material.
  • ⁇ Comparative Example 1 Creation of substrate particles having a carbon support layer>
  • Several methods for coating C on the surface of LiFePO 4 particles have been reported.
  • One of them is a method using methanol as described above (Non-patent Document 6). After putting LiFePO 4 into a kiln having a rotating function (rotary kiln), the temperature is raised to 600 ° C. Next, by supplying methanol vapor using nitrogen as a carrier gas to the furnace, a LiFePO 4 / C composite positive electrode material supporting carbon is obtained.
  • LiFePO 4 and coronene are simply sealed in a glass tube and heated, and the mass production is easy.
  • Example 1 Production of electrode sheet> Subsequently, the production of an electrode sheet for a lithium ion battery according to an embodiment of the present invention, in which base material particles having a carbon support layer created in Example 3 are used as a positive electrode material, will be described.
  • the electrode sheet has a positive electrode sheet and a negative electrode sheet as a pair.
  • FIG. 17 is a diagram for explaining the particle size distribution of LiFePO 4 base particles used for the positive electrode material.
  • A is a LiFePO 4 base particle without a carbon support layer (hereinafter referred to as “LFP”) as Comparative Example 2.
  • B shows the case of LiFePO 4 base particles having a carbon support layer as Example 3 (hereinafter sometimes referred to as “c-LFP”).
  • the particle size distribution of LFP is similar to the bell-type distribution as shown in FIG. 17A, the average particle size is 5.0 ⁇ m, the maximum particle size is 60 ⁇ m, and is about 12 times the average particle size. Particles are mixed.
  • the particle size distribution of c-LFP is similar to the bell type distribution as shown in FIG. 17B, the average particle size is 5.8 ⁇ m, the maximum particle size is 17 ⁇ m, and aggregates and aggregates are mixed. is doing.
  • a positive electrode sheet was prepared using the LFP base material particles of Comparative Example 2 and the c-LFP base material particles of Example 3.
  • LFP powder as a positive electrode active material, acetylene black as a conductive material, and polyvinylidene fluoride (PVDF) as a binder have a mass ratio of 86: 7: 7.
  • PVDF polyvinylidene fluoride
  • c-LFP powder as a positive electrode active material, acetylene black as a conductive material, and polyvinylidene fluoride (PVDF) as a binder have a mass ratio of 86: 7. : It mixed in water so that it might be set to 7, and the positive electrode active material layer forming paste was prepared.
  • PVDF polyvinylidene fluoride
  • the paste of these compositions was applied to one side of a positive electrode current collector (aluminum foil) and dried to form a positive electrode active material layer on one side of the positive electrode current collector.
  • a thin film is produced using a doctor blade for coating, and the gap is 350 ⁇ m.
  • the coating amount of the positive electrode active material layer forming paste was adjusted to be about 18 mg / cm 2 (based on solid content) after drying.
  • the graphite composition is selected.
  • graphite powder as a negative electrode active material
  • CMC carboxymethyl cellulose
  • SBR styrene butadiene rubber
  • a positive electrode active material layer forming paste was prepared by mixing in water to a ratio of 1.5: 1. In preparing this paste, water (H 2 O) is used as a solvent and 50.7% of a non-volatile component (NV) is contained.
  • a paste having this composition was applied to one side of a negative electrode current collector (copper foil) and dried to form a negative electrode active material layer on one side of the negative electrode current collector.
  • a thin film is produced using a doctor blade for coating, and the gap is 180 ⁇ m.
  • the coating amount of the positive electrode active material layer forming paste was adjusted to be about 7 mg / cm 2 (based on solid content) after drying.
  • ⁇ Test Example 2 Production of lithium ion battery> A lithium secondary battery (coin cell) was constructed using the positive electrode sheet having the LFP composition and the c-LFP composition obtained in Test Example 1. The production of the lithium secondary battery was performed as follows.
  • FIG. 18 is a cross-sectional view schematically showing a test lithium secondary battery (coin cell) according to one test example of the present invention.
  • a coin cell 60 is used for evaluating charge / discharge performance, and is a stainless steel container having a diameter of 20 mm and a thickness of 3.2 mm (2032 type), for example.
  • the positive electrode (working electrode) 61 is produced by punching the positive electrode sheet into a circle having a diameter of 16 mm.
  • the negative electrode (counter electrode) 62 is produced by punching the negative electrode sheet into a circle having a diameter of 16 mm.
  • the separator 63 is a porous polypropylene sheet having a diameter of 22 mm and a thickness of 0.02 mm, and is impregnated with an electrolytic solution.
  • the gasket 64 holds the container (negative electrode terminal) 65 and the lid (positive electrode terminal) 66 in a predetermined posture in an insulated state.
  • the coin cell 60 incorporates a non-aqueous electrolyte together with a positive electrode 61, a negative electrode 62, and a separator 63.
  • LiPF6 as a supporting salt is contained in a mixed solvent containing ethylene carbonate (EC) and diethyl carbonate (DEC) in a volume ratio of 3: 7 at a concentration of about 1 mol / liter. Used. Thereafter, an initial charge / discharge treatment (conditioning) was performed by a conventional method to obtain a test lithium secondary battery.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • FIG. 19 is a diagram for explaining the details of the prototype specifications related to the coin cell shown in FIG. 18, and shows the mechanical design values of the positive electrode and the negative electrode.
  • the thickness of the Al foil is 20 ⁇ m
  • the thickness of the electrode plate is 123 ⁇ m
  • the coating width is 16 ⁇
  • the coating area is 2.0 cm 2
  • the mixture density is 1.8 g / cm 3
  • the mixture surface density is It is 18.3 mg / cm 2
  • the specific capacity is 160 (mAh / g) at the first charge
  • the discharge is 150 (mAh / g).
  • the positive electrode having the c-LFP composition except that the electrode plate has a thickness of 116 ⁇ m, the mixture density is 1.8 g / cm 3 , and the mixture surface density is 18.1 mg / cm 2. It is the same.
  • the thickness of the Cu foil is 18 ⁇ m
  • the thickness of the electrode plate is 70 ⁇ m
  • the coating width is 16 ⁇
  • the coating area is 2.0 cm 2
  • the mixture density is 1.5 g / cm 3
  • the mixture surface density is The used capacity is 389 (mAh / g) and the discharge 350 (mAh / g) at the first charge, at 7.6 mg / cm 2 .
  • the negative electrode having the c-LFP composition is the same as the negative electrode having the LFP composition except that the mixture surface density is 7.7 mg / cm 2 .
  • FIG. 20 is a diagram for explaining the details of a test product manufactured according to the prototype specification related to the coin cell shown in FIG.
  • Two coin specimens LFP-01 and 02 were produced as coin cells having an LFP composition.
  • the positive electrode weight of LFP-01 is 47.85 mg
  • the negative electrode weight is 47.69 mg
  • the positive electrode weight is 18.401 mg / cm 2
  • the negative electrode weight is 7.627 mg / cm 2
  • the A / C ratio is 1.14
  • the design capacity is It is 4.77 mAh.
  • CLFP-01 and 02 also have numerical values as shown in FIG.
  • the numbers in bold in the third column are the average values of LFP-01 and LFP-02, and CLFP-01 and CLFP-02, respectively.
  • Example 3 Charging / discharging characteristic test of lithium ion battery> A charge / discharge test was performed on each of the test lithium secondary batteries obtained as described above. For the discharge capacity test, the battery was charged at a constant current (2.25 mA) at a room temperature of 21 ° C. until the terminal voltage reached 4.0 V, and then charged at a constant voltage of 4.0 V for 1.5 hours. . The battery after the CC-CV charge was discharged at a constant current (0.90 mA) under a temperature condition of room temperature of 21 ° C. until the voltage between terminals became 2.0 V, and the battery capacity at that time was measured. .
  • FIG. 21 is a diagram for explaining the discharge capacity characteristics of a test product according to one test example of the present invention.
  • the specific capacity is about 48 mAh / g, and the ratio to the design value is only about 32%.
  • the specific capacity is about 96 mAh / g, and the ratio to the design value is improved to about 64%.
  • FIG. 22 is a graph showing a charge / discharge curve for explaining the discharge capacity characteristics of the test product according to one test example of the present invention. Since the coin cell of the c-LFP composition uses LiFePO 4 base particles having a carbon support layer, the discharge capacity is improved about twice as compared with the coin cell of the LFP composition.
  • the aromatic hydrocarbon to be used may be other than coronene, as long as it is vaporized by heating to cause polymerization / condensation.
  • the addition amount of an aromatic hydrocarbon since the carbon amount adhering to the boron powder surface changes with addition amounts, the addition amount can be changed as needed.
  • the heat treatment temperature it is necessary to conduct heat treatment at 600 ° C. or higher because the polymerization and condensation proceed at 600 ° C. or higher and almost only carbon is obtained.
  • other aromatic hydrocarbons are specific to each. There is a temperature at which proper polymerization and condensation proceed, and it is necessary to perform heat treatment at that temperature or higher.
  • coronene is illustrated as an aromatic hydrocarbon used in embodiment concerning the manufacturing method of the positive electrode material for lithium ion batteries of this invention, this invention is not limited to this, In addition to coronene However, any material that vaporizes by heating and causes polymerization / condensation may be used. Also, the amount of aromatic hydrocarbons, the amount of carbon adhering to the LiFePO 4 powder surface by addition amount changes, it is possible to change the amount as needed. Furthermore, with regard to the heat treatment temperature, it is necessary to conduct heat treatment at 600 ° C. or higher because the polymerization and condensation proceed at 600 ° C. or higher and almost only carbon is obtained. However, other aromatic hydrocarbons are specific to each. There is a temperature at which proper polymerization and condensation proceed, and it is necessary to perform heat treatment at that temperature or higher.
  • the lithium ion battery of the present invention an example of a coin cell type is shown, but a shape other than the coin cell type widely used by those skilled in the art may be used, and a wound electrode body type or a laminated electrode body type may be used according to common use. It is good.
  • the base material and the polycyclic aromatic hydrocarbon are simply heat-treated together in a vacuum, on various substrates (base materials).
  • a carbon coating layer having a thickness of nanometer level can be easily provided, and can be applied to MgB 2 superconductors, lithium ion batteries, photocatalysts, tribology, and the like.
  • the addition of polycyclic aromatic hydrocarbons (nanographene) having excellent uniformity to the MgB 2 superconductor wire is realized, and high critical current density (Jc) characteristics and An MgB 2 superconducting wire with small variations in critical current density (Jc) can be provided.
  • the manufactured MgB 2 superconductor is suitable for use in superconducting linear motor cars, MRI medical diagnostic devices, semiconductor single crystal pulling devices, superconducting energy storage, superconducting rotating machines, superconducting transformers, superconducting cables, etc. It is.
  • a nanometer level can be formed on various substrates (base materials) by simply heat-treating the base material and the polycyclic aromatic hydrocarbon together in a vacuum.
  • a carbon coating layer having a thickness can be easily provided, and can be applied to a lithium ion battery or the like.
  • a lithium secondary battery excellent in charge and discharge characteristics can be obtained by using a lithium-containing positive electrode sheet such as a LiFePO 4 positive electrode sheet having a carbon support layer on the powder surface of the positive electrode active material. Can be built.

Abstract

 本発明の炭素のナノ被覆層を有する基材粉末の製造方法は、基材粉末に多環芳香族炭化水素を添加し、前記多環芳香族炭化水素の沸点以上で当該沸点温度+300℃以下でありかつ前記多環芳香族炭化水素の熱分解温度以上の温度で加熱して、前記基材粉末の表面を0.1nm以上10nm層以下の炭素で覆うことを特徴とする。これにより、基材粉末を被覆する炭素の供給源を適切に選択することで、基材粉末の最終製品の用途において不具合を起こす可能性がなく、基材粉末の生産性もよい、改質された最終製品が得られる炭素のナノ被覆層を有する基材粉末を提供することができる。

Description

炭素のナノ被覆層を有する基材粉末の製造方法、これを用いたMgB2超伝導体の製造方法およびMgB2超伝導体、リチウムイオン電池用正極材の製造方法およびリチウムイオン電池、並びに光触媒の製造方法
 本発明は、炭素のナノ被覆層を有する基材粉末の製造方法に関し、特に数nm程度の均一な厚さの熱分解炭素由来のアモルファス状態の炭素のナノ被覆層で基材粉末の表面を覆われた基材粉末の製造方法に関する。
 また、本発明は、上記の炭素のナノ被覆層を有する基材粉末の製造方法を用いたMgB超伝導体の製造方法およびMgB超伝導体に関する。
 また、本発明は、上記の炭素のナノ被覆層を有する基材粉末の製造方法を用いたリチウムイオン電池用正極材の製造方法に関する。
 また、本発明は、導電剤として炭素系物質を有する正極材料を用いたリチウムイオン電池に関し、特に正極材料としてリン酸鉄リチウム(LiFePO)等を用いたリチウムイオン電池の改良に関する。
 さらに、本発明は、上記の炭素のナノ被覆層を有する基材粉末の製造方法を用いた光触媒の製造方法に関する。
 基材粉末の表面を数nm程度の均一な厚さの炭素膜で覆うことは、基材粉末の改質を行うのに有効な場合があり、例えばMgB超伝導体、リチウムイオン電池用正極材、光触媒などの製造に中間製造工程や中間原料材として用いられている。この場合、基材粉末を被覆する炭素の供給源として各種のものが知られているが、芳香族炭化水素添加では熱処理時に芳香族炭化水素が分解して水素を発生し、これが基材粉末の最終製品の用途において不具合を起こす可能性がある。また、基材粉末粒子の表面に気相法で炭素をコートする方法も提案されているが、炭素被覆層の制御が難しく気相法であるために基材粉末の大量生産が困難(高コスト)という課題がある。
 次に、炭素のナノ被覆層を有する基材粉末の用途の一つであるMgB超伝導体については、実用超伝導材料に比べて臨界温度Tcが高いということの他に、実用上以下のような利点があげられる。
 i)一つの結晶粒から隣の結晶粒へ大きな超伝導電流を流すのに際して、高温酸化物超伝導体のような結晶粒の向きを揃えること(配向化)が不必要と考えられること、
 ii)資源的にも豊富で原料が比較的安価であること、
 iii)機械的にタフであること、
 iv)軽量であること。
 このため、MgB超伝導体は実用材料として有望と考えられており、現在研究開発が進行している。
 他方で、MgB超伝導体は上部臨界磁界Hcが低いという問題点がある。これに対してはBサイトの一部をカーボン(C)で置換することによってHcが大幅に上昇することが報告されている。最も一般的なBサイトのC置換法はMgとBの混合原料粉末にSiC粉末を添加して熱処理することである。またMgとBの原料粉末に芳香族炭化水素を添加する方法も有効であり、芳香族炭化水素添加によってMgB結晶における一部のBサイトがCによって置換されて、高磁界でのJc特性の向上が得られる(特許文献1-3参照)。
 しかしながら芳香族炭化水素添加では熱処理時に芳香族炭化水素が分解して水素を発生し、これが長尺の超伝導線材作製においては不具合を起こす可能性がある。一方、B粉末粒子の表面に気相法でCをコートする方法も報告されている。すなわち、BClを原料としてrfプラズマ法でBナノ粉末を作製する際にメタンガスを導入すると、炭素被覆したナノB粉末が得られる。しかしながらこの方法ではClが不純物として残留すること、また炭素被覆層の制御が難しく気相法であるためにB粉末の大量生産が困難(高コスト)という問題点がある。
 また、リチウムイオン二次電池は、高電圧でエネルギー密度が高いことから、携帯電話やノートパソコンなどの携帯電子機器、並びに車輛搭載用電源に広く使用されている。リチウムイオン二次電池の正電極としては、コバルト酸リチウムやマンガン酸リチウムなど種々のものがあるが、これらの中でLiFePOは以下の理由により、大型電池用の正極材として注目される材料である。
 (i)レアメタルフリーであること、
 (ii)無害であり、安全性が高いこと、
 (iii)サイクル特性が良いこと。
 ただし、電気伝導度は他の正極材に比べ3桁から5桁ほど低く、電気伝導度を向上させるために、LiFePOナノ粉末粒子を使い、その表面へアセチレンブラック等を用いたナノカーボンコートが行われている。
 したがってLiFePOの実用化において最も重要な技術の一つが、LiFePO粒子表面へのナノカーボンコートのような導電剤の組込みである(例えば、非特許文献4参照)。LiFePOへのカーボンコート法としては、固相法におけるポリ塩化ビニル粉末の添加やメタノールを使う方法などがある(例えば、特許文献4、5ならびに非特許文献7参照)。しかし、これらの従来技術は溶媒を使用したり、回転機能を持った窯を使用したりする必要があり、いずれもプロセスとして簡単ではなく、低コストとは言えないという課題がある。
 他方で、電極活物質の表面を数nm程度の均一な厚さの炭素膜で覆うことは、電極活物質を構成する基材粉末の改質を行うのに有効な場合があり、リチウムイオン電池用正極材などの製造に際して、中間製造工程や中間原料材として用いられている。この場合、基材粉末を被覆する炭素の供給源として各種のものが知られているが、芳香族炭化水素添加では熱処理時に芳香族炭化水素が分解され水素を発生し、これが基材粉末の最終製品の用途において不具合を起こす可能性がある。また、基材粉末粒子の表面に気相法で炭素をコートする方法も提案されているが、炭素被覆層の制御が難しく気相法であるために基材粉末の大量生産が困難(高コスト)という課題がある。
国際公開第2007/049623号 特開2007-59261号公報 特開2008-235263号公報 特開2011-76931号公報 特開2012-99468号公報
Coronene Fusion by heat treatment: Road to Nanographenes, A.V. Talyzin, et al., J. Physical Chemistry Strong enhancement of high-field critical current properties and irreversibility field of MgB2superconducting wires by coronene active carbon source addition via new B powder carbon-coating method: Ye shujun et al, Supercond. Sci & Technol. S.J. Ye, et al., Enhancement of the critical current density of internal Mg diffusion processed MgB2 wires by the addition of both SiC and liquid aromatic hydrocarbon, Physica C471 (2011) 1133 J.M. Blanco, et al., Long-Range order in an organic overlayer induced by surface reconstruction: coronene on Ge(111), J. Phys. Chem. C 118(2014) 11699 Interpretation of Raman spectra of disordered and amorphous carbon, A.C. Ferrari, et al., Phys Rev. B 61 (2000) 14095. リチウムイオン電池用LiFePO4正極活物質への新規カーボン担持方法、安永好伸他 GS Yuasa Technical Report, 2008年6月 第5巻 第1号 Material Matters 第7巻第4号第4頁-第10頁(2012年12月); http://www.sigmaaldrich.com/content/ dam/sigma-aldrich/ docs/ SAJ/Brochure/1/mm7-4_j.pdf
 本発明は、上述した課題を解決したもので、基材粉末を被覆する炭素の供給源を適切に選択することで、基材粉末の最終製品の用途において不具合を起こす可能性がなく、基材粉末の生産性もよい、改質された最終製品が得られる炭素のナノ被覆層を有する基材粉末の製造方法を提供することを目的とする。
 また、本発明は、炭素のナノ被覆層を有する基材粉末の製造方法を用いることで、MgB超伝導線材について均一性の優れた多環芳香族炭化水素(ナノグラフェン)添加を実現することができ、高い臨界電流密度(Jc)特性ならびに臨界電流密度(Jc)のバラツキの小さなMgB超伝導線材の製造方法およびMgB超伝導体を提供することを目的とする。
 また、本発明者が独自に開発した炭素のナノ被覆層を有する基材粉末の製造方法を用いることで、新規なリチウムイオン電池用正極材の製造方法を提供することを目的とする。
 また、本発明は、上記のリチウムイオン電池用正極材の製造方法を用いて、従来と比較して優れた放電特性を有するリチウムイオン電池を提供することを目的とする。
 さらに、本発明は、炭素のナノ被覆層を有する基材粉末の製造方法を用いることで、新規な光触媒の製造方法を提供することを目的とする。
 本発明はB粉末等の基材粉末に炭素被覆する新しい製造方法を提供するものである。すなわち、本発明者らが多環芳香族炭化水素(ナノグラフェン)の一態様であるコロネン(C2412)を用い、固体のコロネンとB粉末を混合して真空封入し、コロネンの沸点温度以上であって熱分解温度以上となる600℃以上で熱処理することにより、B粉末の炭素被覆を実現させたことを端緒として、本発明を想到するに至ったものである。即ち、この熱処理によってコロネンは蒸発するが、コロネン分子は水素を遊離しながら縮合を起こし、これが多量体となってB粉末表面に堆積して多量体のコーティングが起こる。熱処理温度が高い場合は、水素がすべて抜けてカーボンとなると考えられるため、基材粉末表面の炭素被覆層が得られる。
 本発明の炭素のナノ被覆層を有する基材粉末の製造方法は、基材粉末に多環芳香族炭化水素を添加し、前記多環芳香族炭化水素の沸点以上当該沸点温度+300℃以下でありかつ前記多環芳香族炭化水素の熱分解温度以上の温度で加熱して、前記基材粉末の表面を1層以上300層以下の炭素原子で覆うことを特徴とする。当該沸点温度+300℃以上では当該多環芳香族炭化水素の蒸気圧が高くなりすぎ、基材粉末と多環芳香族炭化水素の大量の混合物の加熱が技術的に難しくなる。
 また、本発明の炭素のナノ被覆層を有する基材粉末の製造方法は、基材粉末に多環芳香族炭化水素を添加し、前記多環芳香族炭化水素の沸点以上で当該沸点温度+300℃以下でありかつ前記多環芳香族炭化水素の熱分解温度以上の温度で加熱して、前記基材粉末の表面を0.1nm以上10nm層以下の炭素で覆うことを特徴とする。ナノ被覆層が上記の厚みであると、十分な炭素量かつ緻密な炭素層が得られる。
 本発明の炭素のナノ被覆層を有する基材粉末の製造方法において、好ましくは、前記基材粉末は、SnO粉末、LiVPO粉末、LiFePO粉末、LiNi0.5Mn1.5粉末、LiMnPO粉末、LiFeSiO粉末、V粉末、MnO粉末、LiCoO粉末、LiNiO粉末、LiNi0.5Mn0.5粉末、LiMn粉末、LiS粉末およびSiO粉末からなる群から選ばれたリチウムイオン電池負極材用の基材粉末、Ag粉末とTiO粉末の積層体からなる基材粉末、またはB粉末からなる基材粉末であるとよい。
 本発明の炭素のナノ被覆層を有する基材粉末の製造方法において、好ましくは、前記多環芳香族炭化水素は、コロネン(coronene)、アンタントレン(anthanthrene)、ベンゾペリレン(Benzo(ghi)perylene)、サーキュレン(circulene)、コランニュレン(corannulene)、ディコロニレン(Dicoronylene)、ディインデノペリレン(Diindenoperylene)、ヘリセン(helicene)、ヘプタセン(heptacene)、ヘキサセン(hexacene)、ケクレン(kekulene)、オバレン(ovalene)、ゼスレン(Zethrene)、ベンゾ[a]ピレン(Benzo[a]pyrene)、ベンゾ[e]ピレン(Benzo[e]pyrene)、ベンゾ[a]フルオランテン(Benzo[a]fluoranthene)、ベンゾ[b]フルオランテン(Benzo[b]fluoranthene)、ベンゾ[j]フルオランテン(Benzo[j]fluoranthene)、ベンゾ[k]フルオランテン(Benzo[k]fluoranthene)、ディベンゾ[a,h]アントラセン(Dibenz(a,h)anthracene)、ディベンゾ[a,j]アントラセン(Dibenz(a,j)anthracene)、オリンピセン(Olympicene)、ペンタセン(pentacene)、ペリレン(perylene)、ピセン(Picene)、テトラフェニレン(Tetraphenylene)、ベンゾ[a]アントラセン(Benz(a)anthracene)、ベンゾ[a]フルオレン(Benzo(a)fluorene)、ベンゾ[c]フェナントレン(Benzo(c)phenanthrene)、クリセン(Chrysene)、フルオランテン(Fluoranthene)、ピレン(pyrene)、テトラセン(Tetracene)、トリフェニレン(Triphenylene)、アントラセン(Anthracene)、フルオレン(Fluorene)、フェナレン(Phenalene)およびフェナントレン(phenanthrene)からなる群から選ばれるとよい。
 本発明の炭素のナノ被覆層を有する基材粉末の製造方法において、好ましくは、前記多環芳香族炭化水素は、常温常圧で固体であり、かつ沸点温度が熱分解温度よりも低く、前記多環芳香族炭化水素における炭素原子の数と水素原子の数の比C:Hが1:0.5から1:0.8であるとよい。比C:Hが上記の範囲であると、熱分解で生成した水素が多環芳香族炭化水素の分解に与える影響を無視できる程度に低く抑えることができる。
 本発明の基材粉末とカーボンの複合体は、上記のリチウムイオン電池用正極材の製造方法のいずれか1つの方法で製造したものである。
 本発明の電極は、上記の基材粉末とカーボンの複合体をバインダーと混合した後、成形して得られる電極である。
 本発明は、Mg粉末またはMgH粉末とB粉末との混合物を加圧成形して熱処理するMgB超伝導体の製造方法において、
 前記B粉末に多環芳香族炭化水素を添加し、前記多環芳香族炭化水素の沸点以上で当該沸点温度+300℃以下でありかつ前記多環芳香族炭化水素の熱分解温度以上の温度で加熱して、前記B粉末の表面を1層以上300層以下の炭素原子又は0.1nm以上10nm層以下の炭素で覆う工程と、
 前記炭素原子又は炭素で表面が覆われたB粉末を、前記Mg粉末またはMgH粉末と混合する工程と、を有するものである。
 本発明のMgB超伝導体の製造方法において、好ましくは、前記多環芳香族炭化水素の添加量が、MgBの理論もしくは実験生成量に対して1~40mol%であるとよい。
 本発明のMgB超伝導体の製造方法において、好ましくは、前記混合物を金属管に充填し、加圧成形して熱処理するとよい。
 本発明のMgB超伝導体の製造方法において、好ましくは、上記の製造方法で製造された炭素のナノ被覆層を有する基材粉末であって、当該基材粉末がB粉末であり、前記炭素のナノ被覆層を有するB粉末とMg棒とを金属管に充填し、加圧成形して熱処理するとよい。
 本発明のMgB超伝導体は、上記のMgB超伝導体の製造方法により得られたMgB超伝導体であって、MgBコアが1本または複数本あるMgB線材であることを特徴とする。
 本発明のMgB超伝導体は、上記のMgB超伝導体であって、MgBコアが複数本ある多芯MgB線材であるとよい。
 本発明者らの独創的な知見として、固体の多環芳香族炭化水素とB原料粉末を一緒にして真空中で加熱をすると、以下のことが起こることが判明した。まず多環芳香族炭化水素の融点以上で多環芳香族炭化水素が融解してB粉末に浸透して行き、個々のB粉末粒子は多環芳香族炭化水素に覆われる。さらに温度が上がると多環芳香族炭化水素が気化かつ熱分解してB粉末に浸透して行き、B粉末粒子の表面が熱分解炭素によって均一に覆われることが判った。また、一部の多環芳香族炭化水素は沸点以上でもB粉末表面に残留して熱分解を起こし、B粉末粒子表面上で熱分解炭素になると考えられる。そこで、本発明者らは、この原理をMgB超伝導線材の製造方法に適用して、固体の多環芳香族炭化水素を沸点温度以上であって熱分解温度以上となる温度で加熱し、B原料粉末の表面に熱分解炭素を被覆する手法を編み出した。そして、この熱分解炭素を被覆したB粉末をパウダー・イン・チューブ(PIT)法の原料として用いると均一なBサイトのC置換が起こり、高いJcとJcの均一性に優れたMgB線材を得ることができる。内部Mg拡散(IMD)法の場合もこの多環芳香族炭化水素を被覆したB粉末を原料として用いることにより、高いJc特性ならびに優れた均一性を得ることができる。
 また、本発明はリチウムイオン電池用正極材に用いる基材粉末に炭素被覆する新しい製造方法を提供するものである。すなわち、本発明者らが多環芳香族炭化水素(ナノグラフェン)の一態様であるコロネンを用い、固体のコロネンとLiFePO粉末を混合してガラス管に真空封入し、熱処理を行ってLiFePO粉末表面へのカーボンコートをおこなうものである。温度が上昇するとコロネンが融解し、コロネンがLiFePO粉末に浸透して個々のLiFePO粒子がコロネンで覆われる。さらに温度を上げて600℃以上になると、LiFePO粒子表面に存在するコロネンは分解するが、この時コロネン分子は水素を遊離しながら縮合を起こし、これが多量体となってLiFePO粉末表面に堆積して多量体のコーティングが起こることを認識した点が、本発明の端緒である。熱処理温度が高い場合は、水素はすべて抜けてカーボンになると考えられるため、LiFePO粉末粒子表面にカーボンコーティングが得られる。
 本発明のリチウムイオン電池用正極材の製造方法は、非水電解質を用いる二次電池用の正極材を構成する金属酸化物または金属硫化物と、前記金属酸化物または前記金属硫化物表面を被覆するカーボン被膜を有し、前記金属酸化物あるいは前記金属硫化物は、SnO、LiVPO、LiFePO、LiNi0.5Mn1.5、LiMnPO、LiFeSiO、V、MnO、LiCoO、LiNiO、LiNi0.5Mn0.5、LiMn、LiSおよびSiOからなる群から選ばれたリチウムイオン電池正極材用の基材粉末からなるリチウムイオン電池用正極材の製造方法において、前記基材粉末に多環芳香族炭化水素を添加し、前記多環芳香族炭化水素の沸点以上当該沸点温度+300℃以下でありかつ前記多環芳香族炭化水素の熱分解温度以上の温度で加熱して、前記基材粉末の表面を1層以上300層以下の炭素原子で覆うことを特徴とする。
 当該沸点温度+300℃以上では当該多環芳香族炭化水素の蒸気圧が高くなりすぎ、基材粉末と多環芳香族炭化水素の大量の混合物の加熱が技術的に難しくなる。
 本発明のリチウムイオン電池用正極材の製造方法において、好ましくは、基材粉末に多環芳香族炭化水素を添加し、前記多環芳香族炭化水素の沸点以上で当該沸点温度+300℃以下でありかつ前記多環芳香族炭化水素の熱分解温度以上の温度で加熱して、前記基材粉末の表面を0.1nm以上10nm層以下の炭素で覆うとよい。
 本発明のリチウムイオン電池用正極材の製造方法において、好ましくは、前記基材粉末は、SnO粉末、LiVPO粉末、LiFePO粉末、LiNi0.5Mn1.5粉末、LiMnPO粉末、LiFeSiO粉末、V粉末、MnO粉末、LiCoO粉末、LiNiO粉末、LiNi0.5Mn0.5粉末、LiMn粉末、LiS粉末およびSiO粉末からなる群から選ばれたリチウムイオン電池正極材用の基材粉末であるとよい。
 本発明のリチウムイオン電池用正極材の製造方法において、好ましくは、前記多環芳香族炭化水素は、コロネン(coronene)、アンタントレン(anthanthrene)、ベンゾペリレン(Benzo(ghi)perylene)、サーキュレン(circulene)、コランニュレン(corannulene)、ディコロニレン(Dicoronylene)、ディインデノペリレン(Diindenoperylene)、ヘリセン(helicene)、ヘプタセン(heptacene)、ヘキサセン(hexacene)、ケクレン(kekulene)、オバレン(ovalene)、ゼスレン(Zethrene)、ベンゾ[a]ピレン(Benzo[a]pyrene)、ベンゾ[e]ピレン(Benzo[e]pyrene)、ベンゾ[a]フルオランテン(Benzo[a]fluoranthene)、ベンゾ[b]フルオランテン(Benzo[b]fluoranthene)、ベンゾ[j]フルオランテン(Benzo[j]fluoranthene)、ベンゾ[k]フルオランテン(Benzo[k]fluoranthene)、ディベンゾ[a,h]アントラセン(Dibenz(a,h)anthracene)、ディベンゾ[a,j]アントラセン(Dibenz(a,j)anthracene)、オリンピセン(Olympicene)、ペンタセン(pentacene)、ペリレン(perylene)、ピセン(Picene)、テトラフェニレン(Tetraphenylene)、ベンゾ[a]アントラセン(Benz(a)anthracene)、ベンゾ[a]フルオレン(Benzo(a)fluorene)、ベンゾ[c]フェナントレン(Benzo(c)phenanthrene)、クリセン(Chrysene)、フルオランテン(Fluoranthene)、ピレン(pyrene)、テトラセン(Tetracene)、トリフェニレン(Triphenylene)、アントラセン(Anthracene)、フルオレン(Fluorene)、フェナレン(Phenalene)およびフェナントレン(phenanthrene)からなる群から選ばれるとよい。
 本発明のリチウムイオン電池用正極材の製造方法において、好ましくは、前記多環芳香族炭化水素は、常温常圧で固体であり、かつ沸点温度が熱分解温度よりも低く、前記多環芳香族炭化水素における炭素原子の数と水素原子の数の比C:Hが1:0.5から1:0.8であるとよい。
 本発明のリチウムイオン電池は、例えば図18に示すように、正極集電体上に正極活物質が設けられた正極61と、正極61と電解液を介して対向する負極62とを有し、前記正極活物質は、リチウム金属酸化物からなる基材粉末と、前記基材粉末の周囲を覆う炭素被覆層と、を有し、前記炭素被覆層は、上記のリチウムイオン電池用正極材の製造方法のいずれか1つの方法で製造されたことを特徴とする。
 本発明の光触媒の製造方法は、銀粒子とTiO粒子を用いる光触媒であって、前記TiO粒子を基材粉末とし、前記基材粉末の表面がカーボン被膜で被覆された光触媒の製造方法において、
 前記基材粉末に多環芳香族炭化水素を添加し、前記多環芳香族炭化水素の沸点以上当該沸点温度+300℃以下でありかつ前記多環芳香族炭化水素の熱分解温度以上の温度で加熱して、前記基材粉末の表面を1層以上300層以下の炭素原子で覆うことを特徴とする。
 また、本発明の光触媒の製造方法は、銀粒子とTiO粒子を用いる光触媒であって、前記TiO粒子を基材粉末とし、前記基材粉末の表面がカーボン被膜で被覆された光触媒の製造方法において、
 前記基材粉末に多環芳香族炭化水素を添加し、前記多環芳香族炭化水素の沸点以上当該沸点温度+300℃以下でありかつ前記多環芳香族炭化水素の熱分解温度以上の温度で加熱して、前記基材粉末の表面を0.1nm以上10nm層以下の炭素で覆うことを特徴とする。
 本発明の炭素のナノ被覆層を有する基材粉末の製造方法によれば、基材粉末を多環芳香族炭化水素と一緒に真空中で熱処理するだけの簡単な工程で炭素被覆層が得られるために簡便、低コストで大量生産に向くという利点があるだけでなく、多環芳香族炭化水素添加量を調節することで炭素被覆層厚を簡単に制御できるという利点もある。
 本発明のMgB超伝導体の製造方法によれば、B粉末を多環芳香族炭化水素と一緒に真空中で熱処理するだけの簡単な工程で炭素被覆層が得られるために簡便、低コストで大量生産に向くという利点があるだけでなく、多環芳香族炭化水素添加量を調節することで炭素被覆層厚を簡単に制御できるという利点もある。即ち、本発明のMgB超伝導体の製造方法によって、Bサイトの一部を炭素置換したMgB超伝導体が安価で簡便に得られるようになる。
 また、本発明の炭素のナノ被覆層を有する基材粉末の製造方法では、基材と多環芳香族炭化水素とを一緒に真空中で熱処理するだけなので、種々の基板(基材)上にナノメートルレベルの厚さの炭素被覆層を簡単に設けることが可能になる。そこで、MgB超伝導体に限定されるものではなく、リチウムイオン電池の正極の製造方法、光触媒の製造方法、トライボロジーなどに適用可能であり、本発明の応用範囲は広いと考えられる。
 本発明のリチウムイオン電池用正極材の製造方法によれば、基材粉末を多環芳香族炭化水素と一緒に真空中で熱処理するだけの簡単な工程で炭素被覆層が得られるために簡便、低コストで大量生産に向くという利点があるだけでなく、多環芳香族炭化水素添加量を調節することで炭素被覆層厚を簡単に制御できるという利点もある。
本発明の実施形態で多環芳香族炭化水素に用いられる化学物質の化学式を示す図である。 本発明の実施形態で多環芳香族炭化水素に用いられる化学物質の化学式を示す図である。 本発明の実施形態で多環芳香族炭化水素に用いられる化学物質の化学式を示す図である。 本発明の実施形態で多環芳香族炭化水素に用いられる化学物質の化学式を示す図である。 本発明の実施形態で多環芳香族炭化水素に用いられる化学物質の化学式を示す図である。 本発明の実施形態で多環芳香族炭化水素に用いられる化学物質の化学式を示す図である。 本発明のリチウムイオン電池用正極材の製造装置を説明する構成図である。 本発明の実施例1で用いるカーボン被覆装置の構成図である。 本発明の一実施例におけるコロネンと一緒に630℃で3時間の真空熱処理をしたボロンナノ粉末の透過電顕像である。 コロネンと一緒に630℃で3時間の真空熱処理したボロンナノ粉末のボロンマッピング図である。 コロネンと一緒に630℃で3時間の真空熱処理したボロンナノ粉末のカーボンマッピング図である。 真空熱処理後のB粉末、コロネンとBの混合粉末(未熱処理)、B粉末、ならびにコロネン粉末の赤外線分光分析の結果を示す図である。 真空熱処理後のB粉末、コロネンとBの混合粉末(未熱処理)、B粉末、ならびにコロネン粉末のX線回折パターンを示す図である。 本発明の別の実施形態におけるコロネンと一緒に700℃で1時間の真空熱処理をしたLiFePO粉末の透過電顕像である。 図9のLiFePO粉末の透過電顕像に対応するカーボンマッピング図である。 図9のLiFePO粉末の透過電顕像に対応するリチウムマッピング図である。 図9のLiFePO粉末の透過電顕像に対応する鉄マッピング図である。 図9のLiFePO粉末の透過電顕像に対応するリンマッピング図である。 図9のLiFePO粉末の透過電顕像に対応する酸素マッピング図である。 コロネンと一緒に700℃で1時間の真空熱処理したLiFePO粉末の高分解能透過電顕像である。 コロネンと一緒に700℃で1時間の真空熱処理したLiFePO粉末ならびに真空熱処理をしていないLiFePO粉末のラマン散乱シフト図である。 正極材料に用いられるLiFePO基材粒子の粒径分布を説明する図で、(A)は比較例としてのカーボン担持層のないLiFePO基材粒子、(B)はカーボン担持層を有するLiFePO基材粒子の場合を示している。 本発明の一試験例に係る試験用リチウム二次電池(コインセル)を模式的に示す断面図である。 図18に示すコインセルに係る試作仕様の詳細を説明する図で、正極と負極の機械的な設計値を示してある。 図18に示すコインセルに係る試作仕様で製作した試験品の詳細を説明する図である。 本発明の一試験例に係る試験品の放電容量特性を説明する図である。 本発明の一試験例に係る試験品の放電容量特性を説明する充放電カーブを示すグラフである。
 以下、図面や表を用いて本発明の実施形態を詳細に説明する。
 先ず、本発明の炭素のナノ被覆層を有する基材粉末の製造方法をMgB超伝導体の製造方法に適用した実施形態について述べる。なお、本明細書に用いる用語について、以下に定義を記載する。
 『Mg内部拡散法』は金属管の内部にMg棒を配置し、金属管とMg棒との隙間にB粉末を充填してこの複合体を線材に加工後、熱処理をする線材作製法である。
 『パウダー・イン・チューブ法』は、金属管に超伝導体の原料粉末を充填し、線材に加工後、熱処理をする線材作製法である。
 『臨界電流密度Jc』は超伝導線材の単位断面積あたりに流すことのできる最大の超伝導電流密度をいう。通常は、線材中の超伝導体コアの単位断面積あたりの値を言う。
 本実施形態では、Mg粉末またはMgH粉末とB粉末との混合物を加圧成形して熱処理することによりMgB超伝導体を製造する。
 原料として用いるMg粉末、MgH粉末、B粉末については、本出願人の提案に係る特許文献1-3に記載されたような従来と同様の純度や粒径のものを、適宜混合比を調節して用いることができる。例えば、粒径に関しては、Mg粉末またはMgH粉末の平均粒径が200nm~50μm、B粉末の平均粒径が50nm~1μmの範囲が好ましい。混合比については、モル比でMgまたはMgH/B=0.5/2~1.5/2の範囲において混合することが好ましく、モル比0.8/2~1.2/2の範囲において混合することがさらに好ましい。そして、MgあるいはMgH粉末とB粉末の混合物、あるいはB粉末に適量の多環芳香族炭化水素とSiCを加え、さらにボールミルなどで十分に混合することができる。
 多環芳香族炭化水素(ナノグラフェン)については、三環以上の炭素環または複素環を有する化合物のうちの各種のものが考慮されてよく、多環芳香族炭化水素の炭素数としては特に制限されることはないが、18~50の範囲が好ましい。多環芳香族炭化水素は、本発明の作用効果を阻害しない限り各種の官能基を有していてもよく、入手容易性や取り扱い性、価格等を考慮して適宜に選択することができる。たとえば、置換基の典型例としては、炭素数1~8、特に1~4のアルキル基等が挙げられる。より具体的には、表1、表2(図1A~1F)に掲げたコロネン、アントラセン、ペリレン、ビフェニルや、アルキル置換等の炭素環状の芳香族炭化水素、あるいはチオフェン等の複素環状の芳香族炭化水素が例示される。さらに、多環芳香族炭化水素の添加量については、MgBの理論もしくは実験生成量に対して0.1~40モル%の割合で添加することが好ましい。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 なお、上記の表1、表2の多環芳香族炭化水素(ナノグラフェン)の沸点と融点に関しては、SciFinder(American Chemical Society; https://scifinder.cas.org/ scifinder/)のデータベースに依拠しており、実測値のない場合は計算値によった(Calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02)。
 以上のような混合物を、バルク材、線材へと加工するが、超伝導線材における従来と同様の方法、条件が採用されてよい。バルク材であれば、加圧成形して熱処理をすることで製造することができ、例えば、通常の金型を用いたプレス等が例示され、圧力は100~300kg/cmが好ましい。線材であれば、例えば、混合物を鉄などの金属管に充填し、圧延ロール等でテープやワイヤーに加工した後、熱処理をすることで製造することができ、条件については従来と同様の条件が採用されてよい。すなわち、慣用のとおり、アルゴン、真空などの不活性雰囲気下で、MgB超伝導相を得るに十分な温度、時間熱処理してできる。
 また、使用する金属管や熱処理温度、熱処理時間は、BサイトのC置換において本質的ではなく、従って種々の金属管や熱処理温度、熱処理時間を選択することができる。
 このようにして得られた本発明のMgB超伝導体は、超伝導リニアモーターカー、MRI医療診断装置、半導体単結晶引き上げ装置、超伝導エネルギー貯蔵、超伝導回転機、超伝導変圧器、超伝導ケーブルなどの高能力化に有用である。
 次に、本発明の炭素のナノ被覆層を有する基材粉末の製造方法をリチウムイオン電池用正極材の製造方法に適用した実施形態について述べる。ここでは、LiFePOを用いる場合を例に説明する。
 原料として用いるLiFePO粉末については、従来と同様の純度や粒径のものを、適宜混合比を調節して用いることができる。例えば、粒径に関しては、LiFePO粉末の平均粒径が200nm~50μmの範囲が好ましい。混合比については、モル比でLiFePO/C=1.0/0.001~1.0/5.0の範囲において混合することが好ましく、モル比1.0/0.01~1.0/1.0の範囲において混合することがさらに好ましい。炭素の添加量が0.1モル%未満の場合には、十分なカーボンコート膜が形成されない、という不都合があり、好ましくない。炭素の添加量が500モル%超の場合には、不均一な厚いカーボンコート層が形成される、という不都合があり、好ましくない。そして、LiFePO粉末に適量の多環芳香族炭化水素を加え、さらにボールミルなどで十分に混合することができる。
 なお、正極用のリチウム含有粉末は、LiFePO粉末に限定されるものではなく、常用されているLiCoO粉末、LiNiO粉末、LiNi0.5Mn0.5粉末、LiMn粉末、LiMnPO粉末、LiFeSiO粉末に加えて、LiVPO粉末、LiNi0.5Mn1.5粉末、V粉末、SiO粉末、MnO粉末、およびLiS粉末などでもよい。
 多環芳香族炭化水素(ナノグラフェン)については、三環以上の炭素環または複素環を有する化合物のうちの各種のものが考慮されてよく、多環芳香族炭化水素の炭素数としては特に制限されることはないが、18~50の範囲が好ましい。多環芳香族炭化水素は、本発明の作用効果を阻害しない限り各種の官能基を有していてもよく、入手容易性や取り扱い性、価格等を考慮して適宜に選択することができる。たとえば、置換基の典型例としては、炭素数1~8、特に1~4のアルキル基等が挙げられる。より具体的には、前記の表1、表2に掲げたコロネン、アントラセン、ペリレン、ビフェニルや、アルキル置換等の炭素環状の芳香族炭化水素、あるいはチオフェン等の複素環状の芳香族炭化水素が例示される。
 さらに、多環芳香族炭化水素の添加量については、上述した炭素のモル%で定めるのが基本であるが、製造作業においては当該炭素のモル%を多環芳香族炭化水素のモル%や質量%で読み替えるのが便利である。
 図2は、本発明のリチウムイオン電池用正極材の製造装置を説明する構成図である。図において、当該製造装置は、容器10、真空状態保持手段20、加熱装置30、熱処理制御装置40、搬送装置50で構成されている。
 容器10は、リチウムイオン電池用正極材に用いる基材粉末に多環芳香族炭化水素を添加した混合物を収容するもので、基材粉末や多環芳香族炭化水素との反応性を有しない材料よりなるものである。当該材料としては、例えばセラミックス、金属、ガラス等がある。
 真空状態保持手段20は、上記混合物を収容した状態の容器10を真空状態に保持するもので、例えば容器10がガラス製の場合には、真空ポンプとガラスを封止するバーナー等が用いられる。容器10がセラミックス製の場合には、セラミックス製の容器10全体を覆う真空容器と真空ポンプが用いられる。容器10が金属製の場合には、金属製の容器10全体を覆う真空容器と真空ポンプを用いても良く、また金属製の容器10に真空ポンプを接続して、金属製の容器10の内部を真空状態に排気しても良い。
 加熱装置30は、上記混合物を収容した状態の容器10を多環芳香族炭化水素の沸点以上で当該沸点温度+300℃以下でありかつ多環芳香族炭化水素の熱分解温度以上の温度で加熱するもので、例えば耐熱煉瓦と電熱器を組み合わせてある。
 熱処理制御装置40は、加熱装置30での加熱時間が、上記基材粉末の表面を1層以上300層以下の炭素原子で覆うような所定時間の間確保されるように制御する。熱処理制御装置40には、容器10の内部温度を測定する温度センサや加熱装置30の発熱量を制御する調節器が含まれる。調節器には、加熱装置30の熱処理パターンを記憶した温度調節計を用いると良い。
 搬送装置50は、上記混合物を収容した真空状態の容器10を加熱装置30の内部に搬送する機構で、併せて加熱装置30で熱処理された後の容器10を加熱装置30の外部に搬送する機構も有する。搬送装置50には、例えばマニピレータや搬送ロボットを用いることができる。
 以下に実施例を示し、本発明をさらに詳しく説明する。もちろん、以下の例によって本発明が限定されることはない。
 <実施例1>
 図3は、本発明の実施例で用いるカーボン被覆装置の構成図である。図において、70はB+コロネン混合粉末、80はガラス管、90は熱処理炉である。粒径が約250nmのアモルファスナノB粉末(トルコPavezyum社製)と粒径が数mmのコロネン(C2412)固体粉末を、Bに対するカーボン量が5原子%となるように計量して乳鉢で混合し、石英管に真空封入した。これを熱処理炉に移して、630℃で3時間の熱処理を行った。また、比較のため、同じ混合物をコロネンの沸点(525℃)より低い520℃で1時間熱処理を行った。熱処理後のB粉末を透過型電子顕微鏡により組織観察を行った。630℃で熱処理をした試料について、図4に透過電顕像を示し、図5にBの分析結果(ボロンマッピング図)を示し、図6に炭素の分析結果(カーボンマッピング図)を示す。
 図5よりB粒子表面に厚さが3-4nmのアモルファス層が存在しているのが判るが、図6より、この層は炭素を含んだ層であることが判る。図7には真空封入-熱処理したB粉末、Bとコロネンの混合粉末(未熱処理)、B粉末のみ、ならびにコロネン粉末の赤外線分光分析の結果を、図8にはX線回折の結果を示す。
 赤外線分光分析においては、520℃で熱処理した試料ではコロネンのC-H結合に特徴的なピークが見られるものの、630℃で熱処理したB粉末試料では、これらのピークがほぼ消失している。またX線回折においては、520℃で熱処理した試料ではコロネンのピークが若干見られるものの、630℃で熱処理した試料ではコロネンやコロネンが縮合してできた多量体のピークは見られない。コロネンの融点は438℃、沸点は525℃であり、熱処理温度630℃ではコロネンは蒸発して気体になると考えられる。非特許文献3によると、コロネンを加熱して気体にした場合には、コロネン同士の縮合が次々に起こって水素が抜けるとともに多量体が形成され、600℃以上ではカーボンになると報告されている。また非特許文献4から、一部のコロネンは沸点以上でもB粉末粒子表面に存在し、熱分解により炭素となってそのままB粒子表面に存在することも推察される。従ってこの実験において630℃で熱処理したB粒子表面のナノメートル・オーダーの堆積層はカーボン層であると考えられる。
 <実施例2>
 次に、実施例1で作製した炭素被覆B粉末を用いて、Mg内部拡散法によりMgB超伝導線材を作製した。外径6mm、内径4mmの鉄管の中心に、径2mmのMg棒を配置し、鉄管とMg棒との隙間にB粉末を充填して、溝ロールならびにダイス線引きにより径0.6mmの線材に加工した。この線材を675℃で8時間アルゴン雰囲気中で熱処理した。比較のために、rfプラズマ法で作製したカーボンコートB粉末を用いて、同様にしてMgB線材を作製した。表3には、両線材の4.2K、10テスラでの臨界電流密度を比較して示す。本発明によるB粉末はCl等の不純物を含まないためにrfプラズマ法の場合よりも高い臨界電流密度を示す。
Figure JPOXMLDOC01-appb-T000003
 <比較例1>
 カーボンコートしたB粉末については、BClを原料とし、rfプラズマ法でBナノ粉末を作製する際にメタンガスを導入すると、炭素被覆したナノB粉末が得られることが報告されている。しかしながらこの方法で作製した炭素被覆B粉末にはClが不純物として混入しており、このB粉末を用いてMgB超伝導体を作製した場合、Cl不純物のために実用的に重要な臨界電流密度が低いという難点があった。また、rfプラズマ法を適用しているために、炭素被覆量の制御が難しいだけでなく、高コストで大量生産が困難という難点があった。本発明による炭素被覆B粉末ではCl等の不純物を含まないので、上記のClを含む炭素被覆B粉末に比べて高い臨界電流密度が得られる。また、本発明によれば、炭素被覆量は封入するBとコロネンの比率を変化させるだけで簡単に制御できるだけでなく、大量生産も容易という特長がある。
 <実施例3:カーボン担持層を有する基材粒子の創製>
 平均粒径が約5μmの市販のLiFePOナノ粉末とコロネン(C2412)固体粉末を、LiFePOに対するカーボン(C)量が5モル%となるように計量して乳鉢で混合し、石英管に真空封入した。これに対して700℃で1時間の熱処理を行った。熱処理後のLiFePO粉末について透過型電子顕微鏡により組織観察を行った。
 図9は本発明の一実施の形態としてのコロネンと一緒に700℃で1時間の真空熱処理をしたLiFePO粉末の透過電顕像である。図10乃至図14は、コロネンと一緒に700℃で1時間の真空熱処理したLiFePO粉末について、それぞれC、Li、Fe、P、Oの元素分析マッピングを示す図である。
 図9よりLiFePO粒子表面に厚さが3-4nmの層が存在しているのが確認できる。そして、図10乃至図14より、この層はCを含んだ層であることが判る。コロネンの融点は438℃、沸点は525℃であることから、熱処理温度700℃では、コロネンはLiFePO粒子表面には存在していないと考えられる。前出の非特許文献1によると、コロネンを加熱した場合には、コロネン同士の縮合が次々に起こって水素が抜けるとともに多量体が形成され、600℃以上では大部分の水素が抜けてカーボンになると報告されている。
 図15は高分解能透過電顕像を示すが、これよりこのカーボン層はアモルファス状であることが判る。従ってこの実験において700℃で熱処理したLiFePO粒子表面を覆っているナノメートルの堆積層はアモルファスカーボン層であると考えられる。この熱処理プロセスは次のように考えることができる。熱処理温度が上昇するとまずコロネンが融解してLiFePO粉末に浸透して行き、コロネンが個々のLiFePO粉末粒子表面を覆う。この温度が600℃以上になるとLiFePO粒子表面上のコロネンが分解してカーボンがアモルファスとして残留すると考えられる。このLiFePO粒子表面のコロネンがバリアとなってLiFePO粒子の凝集・粗大化が抑制されるので、図9に示したように熱処理後でもLiFePO粒子はナノレベルの大きさを保つことができる。これは電極材としては大きな利点である。
 アモルファスカーボンには、導電性のsp2ボンドと絶縁性のsp3ボンドが混在しているが、電極材の被膜としては導電性のsp2ボンドが多く含まれる必要がある。図16には700℃で熱処理してカーボンコートしたLiFePO粉末ならびにカーボンコートしていないLiFePO粉末のラマン散乱シフトを示す。カーボンコートしたLiFePOでは、二つのピーク(DおよびGピーク)が現れ、これらがカーボンコート層に起因することがわかる。非特許文献2から、DピークとGピークのピーク強度の比I(D)/I(G)ならびにGピークのグラファイトを基準としたシフトの大きさからsp2ボンドの比率を評価することができ、図16のデータからsp2ボンドの割合は80%以上と評価される。以上より、ここで作製したナノカーボン膜は十分な導電性を有し、電極材のカーボン被膜として適すると考えられる。
 
 <比較例1:カーボン担持層を有する基材粒子の創製>
 LiFePO粒子表面にCをコートする方法にはいくつか報告されているが、その一つが前述したメタノールを使う方法である(非特許文献6)。LiFePOを、回転機能を持った窯(ロータリーキルン)に投入した後に,600℃まで昇温する。つぎに、この炉に窒素をキャリアガスとしてメタノール蒸気を供給することによって、カーボンを担持したLiFePO/C複合正極材料が得られる。
 しかしながらこの方法はロータリーキルンが必要でプロセスとしても簡単ではなく、必ずしも低コストとは言えない。本発明の一実施例ではLiFePOとコロネンをガラス管に真空封入して加熱するだけの簡便な方法で、大量生産も容易という特長がある。また本発明では、Cコート量は封入するLiFePOとコロネンの比率を変化させるだけで簡単に制御できるという利点もある。
 <試験例1:電極シートの作製>
 続いて、実施例3で創製したカーボン担持層を有する基材粒子を正極材料として用いた、本発明の一実施形態に係るリチウムイオン電池用の電極シートの作製について説明する。電極シートは、正極シートと負極シートとを、対として有する。
 図17は、正極材料に用いられるLiFePO基材粒子の粒径分布を説明する図で、(A)は比較例2としてのカーボン担持層のないLiFePO基材粒子(以下、『LFP』と表記する場合がある)、(B)は実施例3としてのカーボン担持層を有するLiFePO基材粒子(以下、『c-LFP』と表記する場合がある)の場合を示している。LFPの粒径分布は、図17(A)に示すようなベル型分布に類似したもので、平均粒径は5.0μm、最大粒径は60μmであり、平均粒径の12倍程度の粗大粒子が混在している。c-LFPの粒径分布は、図17(B)に示すようなベル型分布に類似したもので、平均粒径は5.8μm、最大粒径は17μmであり、凝集物や塊状物が混在している。
 次に、比較例2のLFP基材粒子と、実施例3のc-LFP基材粒子を用いて、正極シートを作製した。
 LFP組成では、合剤組成として、正極活物質としてのLFP粉末と、導電材としてのアセチレンブラックと、バインダーとしてのポリフッ化ビニリデン(PVDF)とを、それらの質量比が86:7:7となるように水中で混合して正極活物質層形成用ペーストを調製した。このペースト調製にあたり、溶媒としてノルマルメチルピロリドン(NMP)を用いると共に、不揮発成分(NV)を50.7%含むものである。
 c-LFP組成では、合剤組成として、正極活物質としてのc-LFP粉末と、導電材としてのアセチレンブラックと、バインダーとしてのポリフッ化ビニリデン(PVDF)とを、それらの質量比が86:7:7となるように水中で混合して正極活物質層形成用ペーストを調製した。
 これら組成のペーストを正極集電体(アルミニウム箔)の片面に塗布して乾燥することにより、該正極集電体の片面に正極活物質層を形成した。塗工にはドクターブレードを用いて薄膜を生成しており、そのギャップは350μmである。正極活物質層形成用ペーストの塗布量は、乾燥後で約18mg/cm(固形分基準)となるように調節した。
 負極基板では、黒鉛組成を選択している。負極シートの合剤組成として、負極活物質としての黒鉛粉末と、増粘材としてのカルボキシメチルセルロース(CMC)と、バインダーとしてのスチレンブタジエンゴム(SBR)とを、それらの質量比が97.5:1.5:1となるように水中で混合して正極活物質層形成用ペーストを調製した。このペースト調製にあたり、溶媒として水(HO)を用いると共に、不揮発成分(NV)を50.7%含むものである。
 この組成のペーストを負極集電体(銅箔)の片面に塗布して乾燥することにより、該負極集電体の片面に負極活物質層を形成した。塗工にはドクターブレードを用いて薄膜を生成しており、そのギャップは180μmである。正極活物質層形成用ペーストの塗布量は、乾燥後で約7mg/cm(固形分基準)となるように調節した。
 <試験例2:リチウムイオン電池の製作>
 上記試験例1で得られたLFP組成とc-LFP組成の正極シートを用いてリチウム二次電池(コインセル)を構築した。リチウム二次電池の作製は、以下のようにして行った。
 図18は、本発明の一試験例に係る試験用リチウム二次電池(コインセル)を模式的に示す断面図である。図において、コインセル60は、充放電性能評価用のもので、例えば直径20mm、厚さ3.2mm(2032型)のステンレス製容器である。正極(作用極)61は、上記正極シートを直径16mmの円形に打ち抜いて作製したものである。負極(対極)62は、上記負極シートを直径16mmの円形に打ち抜いて作製したものである。セパレータ63は、直径22mm、厚さ0.02mmの多孔質ポリプロピレンシートで、電解液を含浸してある。ガスケット64は、容器(負極端子)65と蓋(正極端子)66を絶縁状態で所定姿勢に保持するものである。なお、コインセル60には正極61、負極62、セパレータ63と共に、非水電解液が組み込まれている。
 ここで、非水電解液としては、エチレンカーボネート(EC)と炭酸ジエチル(DEC)とを3:7の体積比で含む混合溶媒に、支持塩としてのLiPF6を約1mol/リットルの濃度で含有させたものを用いた。その後、常法により初期充放電処理(コンディショニング)を行って試験用のリチウム二次電池を得た。
 図19は、図18に示すコインセルに係る試作仕様の詳細を説明する図で、正極と負極の機械的な設計値を示してある。LFP組成の正極については、Al箔の厚みが20μm、極板の厚みが123μm、塗布幅が16φ、塗布面積が2.0cm、合剤密度が1.8g/cm、合剤面密度が18.3mg/cm、比容量が初回充電で160(mAh/g)、放電150(mAh/g)となっている。c-LFP組成の正極については、極板の厚みが116μm、合剤密度が1.8g/cm、合剤面密度が18.1mg/cmとなっている点を除き、LFP組成の正極と同様である。
 LFP組成の負極については、Cu箔の厚みが18μm、極板の厚みが70μm、塗布幅が16φ、塗布面積が2.0cm、合剤密度が1.5g/cm、合剤面密度が7.6mg/cm、使用容量が初回充電で389(mAh/g)、放電350(mAh/g)となっている。c-LFP組成の負極については、合剤面密度が7.7mg/cmとなっている点を除き、LFP組成の負極と同様である。
 図20は、図19に示すコインセルに係る試作仕様で製作した試験品の詳細を説明する図である。LFP組成のコインセルとして、LFP-01、02の二個の試験品を作製した。LFP-01の正極重量は47.85mg、負極重量は47.69mg、正極目付は18.401mg/cm、負極目付は7.627mg/cm、A/C比は1.14、設計容量は4.77mAhとなっている。LFP-02についても、LFP-01と同様である。さらに、CLFP-01、02についても、図20に示すような数値となっている。なお、3列目の太字の数値は、それぞれLFP-01とLFP-02、ならびにCLFP-01とCLFP-02の平均値である。
 <試験例3:リチウムイオン電池の充放電特性試験>
 以上のようにして得られた試験用リチウム二次電池のそれぞれに対して、充放電試験を行った。放電容量試験については、室温21℃の温度条件にて、定電流(2.25mA)で端子間電圧が4.0Vとなるまで充電した後、4.0Vの定電圧で1.5時間充電した。かかるCC-CV充電後の電池を、室温21℃の温度条件にて、端子間電圧が2.0Vとなるまで、定電流(0.90mA)で放電させて、そのときの電池容量を測定した。
 結果を図21及び図22に示す。図21は、本発明の一試験例に係る試験品の放電容量特性を説明する図である。LFP組成のコインセルでは、比容量が約48mAh/gとなって、対設計値比では約32%に留まっている。これに対して、c-LFP組成のコインセルでは、比容量が約96mAh/gとなって、対設計値比では約64%に向上している。
 図22は、本発明の一試験例に係る試験品の放電容量特性を説明する充放電カーブを示すグラフである。c-LFP組成のコインセルでは、カーボン担持層を有するLiFePO基材粒子を用いているため、放電容量はLFP組成のコインセルと比較して約2倍に向上している。
 この結果から、正極活物質層表面にカーボン担持層を有するLiFePO正極シートを用いることにより、充放電特性に優れたリチウム二次電池を構築できることが確認できた。
 本発明の特定の実施形態を例示及び説明したが、本発明の精神及び範囲から逸脱することなく、様々なその他の変形及び変更が可能であることは、当業者に明らかである。したがって、本発明の範囲内にあるそのようなすべての変形及び変更を添付の特許請求の範囲で扱うものとする。
 例えば、超伝導体の製造方法において、用いる芳香族炭化水素としては、コロネン以外にも、加熱によって気化し、重合・縮合を起こすものであれば良い。また、芳香族炭化水素の添加量については、添加量によってボロン粉末表面に付着する炭素量が変化するので、必要に応じて添加量を変化させることが出来る。さらに熱処理温度に関してはコロネンについては600℃以上で重合・縮合が進んでほぼカーボンのみが得られるために600℃以上で熱処理を行う必要があるが、他の芳香族炭化水素については、それぞれに固有な重合や縮合が進む温度があり、その温度以上で熱処理を行う必要がある。
 また、本発明のリチウムイオン電池用正極材の製造方法に掛る実施形態では用いる芳香族炭化水素としては、コロネンを例示しているが、本発明はこれに限定されるものではなく、コロネン以外にも、加熱によって気化し、重合・縮合を起こすものであれば良い。また、芳香族炭化水素の添加量については、添加量によってLiFePO粉末表面に付着する炭素量が変化するので、必要に応じて添加量を変化させることが出来る。さらに熱処理温度に関してはコロネンについては600℃以上で重合・縮合が進んでほぼカーボンのみが得られるために600℃以上で熱処理を行う必要があるが、他の芳香族炭化水素については、それぞれに固有な重合や縮合が進む温度があり、その温度以上で熱処理を行う必要がある。
 また、本発明のリチウムイオン電池では、コインセル型の実施例を示したものであるが、当業者が汎用しているコインセル型以外の形状でもよいし、また常用に従い捲回電極体型あるいは積層電極体型としてもよい。
 本発明の炭素のナノ被覆層を有する基材粉末の製造方法によれば、基材と多環芳香族炭化水素とを一緒に真空中で熱処理するだけで、種々の基板(基材)上にナノメートルレベルの厚さの炭素被覆層を簡単に設けることが可能になり、MgB超伝導体、リチウムイオン電池、光触媒、トライボロジーなどに適用可能である。
 本発明のMgB超伝導体の製造方法によれば、MgB超伝導線材について均一性の優れた多環芳香族炭化水素(ナノグラフェン)添加を実現して、高い臨界電流密度(Jc)特性ならびに臨界電流密度(Jc)のバラツキの小さなMgB超伝導線材を提供できる。製作されたMgB超伝導体は、超伝導リニアモーターカー、MRI医療診断装置、半導体単結晶引き上げ装置、超伝導エネルギー貯蔵、超伝導回転機、超伝導変圧器、超伝導ケーブルなどに用いて好適である。
 本発明のリチウムイオン電池用正極材の製造方法によれば、基材と多環芳香族炭化水素とを一緒に真空中で熱処理するだけで、種々の基板(基材)上にナノメートルレベルの厚さの炭素被覆層を簡単に設けることが可能になり、リチウムイオン電池などに適用可能である。
 また、本発明のリチウムイオン電池によれば、正極活物質の粉末表面にカーボン担持層を有するLiFePO正極シートなどのリチウム含有正極シートを用いることにより、充放電特性に優れたリチウム二次電池を構築できる。
 図2、3、18
  10 容器
  20 真空状態保持手段
  30 加熱装置
  40 熱処理制御装置
  50 搬送装置
  60 コインセル
  61 正極(作用極)
  62 負極(対極)
  63 セパレータ
  64 ガスケット
  65 容器(負極端子)
  66 蓋(正極端子)
  70 B+コロネン混合粉末
  80 ガラス管
  90 熱処理炉

Claims (18)

  1.  基材粉末に多環芳香族炭化水素を添加し、前記多環芳香族炭化水素の沸点以上当該沸点温度+300℃以下でありかつ前記多環芳香族炭化水素の熱分解温度以上の温度で加熱して、前記基材粉末の表面を1層以上300層以下の炭素原子で覆うことを特徴とする炭素のナノ被覆層を有する基材粉末の製造方法。
  2.  基材粉末に多環芳香族炭化水素を添加し、前記多環芳香族炭化水素の沸点以上で当該沸点温度+300℃以下でありかつ前記多環芳香族炭化水素の熱分解温度以上の温度で加熱して、前記基材粉末の表面を0.1nm以上10nm層以下の炭素で覆うことを特徴とする炭素のナノ被覆層を有する基材粉末の製造方法。
  3.  前記基材粉末は、SnO粉末、LiVPO粉末、LiFePO粉末、LiNi0.5Mn1.5粉末、LiMnPO粉末、LiFeSiO粉末、V粉末、MnO粉末、LiCoO粉末、LiNiO粉末、LiNi0.5Mn0.5粉末、LiMn粉末、LiS粉末およびSiO粉末からなる群から選ばれたリチウムイオン電池負極材用の基材粉末、またはAg粉末とTiO粉末との積層体およびB粉末からなる群から選ばれた基材粉末であることを特徴とする請求項1または2に記載の炭素のナノ被覆層を有する基材粉末の製造方法。
  4.  前記多環芳香族炭化水素は、コロネン(coronene)、アンタントレン(anthanthrene)、ベンゾペリレン(Benzo(ghi)perylene)、サーキュレン(circulene)、コランニュレン(corannulene)、ディコロニレン(Dicoronylene)、ディインデノペリレン(Diindenoperylene)、ヘリセン(helicene)、ヘプタセン(heptacene)、ヘキサセン(hexacene)、ケクレン(kekulene)、オバレン(ovalene)、ゼスレン(Zethrene)、ベンゾ[a]ピレン(Benzo[a]pyrene)、ベンゾ[e]ピレン(Benzo[e]pyrene)、ベンゾ[a]フルオランテン(Benzo[a]fluoranthene)、ベンゾ[b]フルオランテン(Benzo[b]fluoranthene)、ベンゾ[j]フルオランテン(Benzo[j]fluoranthene)、ベンゾ[k]フルオランテン(Benzo[k]fluoranthene)、ディベンゾ[a,h]アントラセン(Dibenz(a,h)anthracene)、ディベンゾ[a,j]アントラセン(Dibenz(a,j)anthracene)、オリンピセン(Olympicene)、ペンタセン(pentacene)、ペリレン(perylene)、ピセン(Picene)、テトラフェニレン(Tetraphenylene)、ベンゾ[a]アントラセン(Benz(a)anthracene)、ベンゾ[a]フルオレン(Benzo(a)fluorene)、ベンゾ[c]フェナントレン(Benzo(c)phenanthrene)、クリセン(Chrysene)、フルオランテン(Fluoranthene)、ピレン(pyrene)、テトラセン(Tetracene)、トリフェニレン(Triphenylene)、アントラセン(Anthracene)、フルオレン(Fluorene)、フェナレン(Phenalene)およびフェナントレン(phenanthrene)からなる群から選ばれることを特徴とする請求項1から3のいずれか1項に記載の炭素のナノ被覆層を有する基材粉末の製造方法。
  5.  前記多環芳香族炭化水素は、常温常圧で固体であり、かつ沸点温度が熱分解温度よりも低く、前記多環芳香族炭化水素における炭素原子の数と水素原子の数の比C:Hが1:0.5から1:0.8であることを特徴とする請求項1から4のいずれか1項に記載の炭素のナノ被覆層を有する基材粉末の製造方法。
  6.  請求項1から5のいずれか1項に記載の方法で製造した基材粉末とカーボンの複合体。
  7.  請求項6に記載の複合体をバインダーと混合した後、成形して得られる電極。
  8.  Mg粉末またはMgH粉末とB粉末との混合物を加圧成形して熱処理するMgB超伝導体の製造方法において、
     前記B粉末に多環芳香族炭化水素を添加し、前記多環芳香族炭化水素の沸点以上で当該沸点温度+300℃以下でありかつ前記多環芳香族炭化水素の熱分解温度以上の温度で加熱して、前記B粉末の表面を1層以上300層以下の炭素原子又は0.1nm以上10nm層以下の炭素で覆う工程と、
     前記炭素原子又は炭素で表面が覆われたB粉末を、前記Mg粉末またはMgH粉末と混合する工程と、
    を有することを特徴とするMgB超伝導体の製造方法。
  9.  前記多環芳香族炭化水素の添加量が、MgBの理論もしくは実験生成量に対して0.1~40mol%であることを特徴とする請求項8に記載のMgB超伝導体の製造方法。
  10.  前記混合物を金属管に充填し、加圧成形して熱処理することを特徴とする請求項8又は9に記載のMgB超伝導体の製造方法。
  11.  請求項1から5のいずれか1項に記載の製造方法で製造された炭素のナノ被覆層を有する基材粉末であって、当該基材粉末がB粉末であり、
     前記炭素のナノ被覆層を有するB粉末とMg棒とを金属管に充填し、加圧成形して熱処理することを特徴とするMgB超伝導体の製造方法。
  12.  請求項8から11のいずれか1項に記載のMgB超伝導体の製造方法により得られたMgB超伝導体であって、MgBコアが1本または複数本あるMgB線材であることを特徴とするMgB超伝導体。
  13.  請求項12に記載のMgB超伝導体であって、MgBコアが複数本ある多芯MgB線材であることを特徴とするMgB超伝導体。
  14.  非水電解質を用いる二次電池用の正極材を構成する金属酸化物または金属硫化物と、前記金属酸化物または前記金属硫化物表面を被覆するカーボン被膜を有し、前記金属酸化物あるいは前記金属硫化物は、SnO、LiVPO、LiFePO、LiNi0.5Mn1.5、LiMnPO、LiFeSiO、V、MnO、LiCoO、LiNiO、LiNi0.5Mn0.5、LiMn、LiSおよびSiOからなる群から選ばれたリチウムイオン電池正極材用の基材粉末からなるリチウムイオン電池用正極材の製造方法であって、
     前記基材粉末に多環芳香族炭化水素を添加し、前記多環芳香族炭化水素の沸点以上当該沸点温度+300℃以下でありかつ前記多環芳香族炭化水素の熱分解温度以上の温度で加熱して、前記基材粉末の表面を1層以上300層以下の炭素原子で覆うことを特徴とするリチウムイオン電池用正極材の製造方法。
  15.  非水電解質を用いる二次電池用の正極材を構成する金属酸化物または金属硫化物と、前記金属酸化物または前記金属硫化物表面を被覆するカーボン被膜を有し、前記金属酸化物あるいは前記金属硫化物は、SnO、LiVPO、LiFePO、LiNi0.5Mn1.5、LiMnPO、LiFeSiO、V、MnO、LiCoO、LiNiO、LiNi0.5Mn0.5、LiMn、LiSおよびSiOからなる群から選ばれたリチウムイオン電池正極材用の基材粉末からなるリチウムイオン電池用正極材の製造方法であって、
     前記基材粉末に多環芳香族炭化水素を添加し、前記多環芳香族炭化水素の沸点以上で当該沸点温度+300℃以下でありかつ前記多環芳香族炭化水素の熱分解温度以上の温度で加熱して、前記基材粉末の表面を0.1nm以上20nm層以下の炭素で覆うことを特徴とするリチウムイオン電池用正極材の製造方法。
  16.  正極集電体上に正極活物質が設けられた正極と、
     前記正極と電解液を介して対向する負極と、を有し、
     前記正極活物質は、リチウム金属酸化物からなる基材粉末と、前記基材粉末の周囲を覆う炭素被覆層と、を有し、
     前記炭素被覆層は、請求項14または15に記載の方法で製造されたことを特徴とするリチウムイオン電池。
  17.  銀粒子とTiO粒子を用いる光触媒であって、前記TiO粒子を基材粉末とし、前記基材粉末の表面がカーボン被膜で被覆された光触媒の製造方法において、
     前記基材粉末に多環芳香族炭化水素を添加し、前記多環芳香族炭化水素の沸点以上当該沸点温度+300℃以下でありかつ前記多環芳香族炭化水素の熱分解温度以上の温で加熱して、前記基材粉末の表面を1層以上300層以下の炭素原子で覆うことを特徴とする光触媒の製造方法。
  18.  銀粒子とTiO粒子を用いる光触媒であって、前記TiO粒子を基材粉末とし、前記基材粉末の表面がカーボン被膜で被覆された光触媒の製造方法において、
     前記基材粉末に多環芳香族炭化水素を添加し、前記多環芳香族炭化水素の沸点以上当該沸点温度+300℃以下でありかつ前記多環芳香族炭化水素の熱分解温度以上の温で加熱して、前記基材粉末の表面を0.1nm以上10nm層以下の炭素で覆うことを特徴とする光触媒の製造方法。
PCT/JP2015/071688 2014-08-04 2015-07-30 炭素のナノ被覆層を有する基材粉末の製造方法、これを用いたMgB2超伝導体の製造方法およびMgB2超伝導体、リチウムイオン電池用正極材の製造方法およびリチウムイオン電池、並びに光触媒の製造方法 WO2016021483A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15829986.7A EP3178785B1 (en) 2014-08-04 2015-07-30 Method for manufacturing base powder having carbon nano-coating layer, lithium ion battery and method for manufacturing lithium ion battery positive electrode material, and method for manufacturing photocatalyst
US15/310,161 US10431823B2 (en) 2014-08-04 2015-07-30 Method for manufacturing base material powder having carbon nano-coating layer, method for manufacturing MgB2 superconductor using the method, MgB2 superconductor, method for manufacturing positive electrode material for lithium ion battery, lithium ion battery, and method for manufacturing photocatalyst
JP2016540185A JP6308507B2 (ja) 2014-08-04 2015-07-30 炭素のナノ被覆層を有する基材粉末を用いたリチウムイオン電池用正極材の製造方法および光触媒の製造方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014158308 2014-08-04
JP2014-158308 2014-08-04
JP2014218800 2014-10-28
JP2014-218800 2014-10-28
JP2015-033651 2015-02-24
JP2015033651 2015-02-24

Publications (1)

Publication Number Publication Date
WO2016021483A1 true WO2016021483A1 (ja) 2016-02-11

Family

ID=55263751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071688 WO2016021483A1 (ja) 2014-08-04 2015-07-30 炭素のナノ被覆層を有する基材粉末の製造方法、これを用いたMgB2超伝導体の製造方法およびMgB2超伝導体、リチウムイオン電池用正極材の製造方法およびリチウムイオン電池、並びに光触媒の製造方法

Country Status (4)

Country Link
US (1) US10431823B2 (ja)
EP (1) EP3178785B1 (ja)
JP (1) JP6308507B2 (ja)
WO (1) WO2016021483A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159513A1 (ja) * 2017-03-03 2018-09-07 株式会社日立製作所 超伝導体の製造方法
JP2020083692A (ja) * 2018-11-22 2020-06-04 国立大学法人千葉大学 炭素材料膜及びその製造方法
KR102475067B1 (ko) * 2021-07-01 2022-12-08 숙명여자대학교 산학협력단 하드마스크용 조성물의 제조방법, 이에 의해 제조된 하드마스크용 조성물 및 하드마스크

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6161034B2 (ja) * 2013-12-17 2017-07-12 国立研究開発法人物質・材料研究機構 MgB2超伝導体の製造方法およびMgB2超伝導体
CN108772081B (zh) * 2018-07-12 2021-01-29 武汉工程大学 一种FePO4非均相可见光Fenton催化剂及处理有机废水的方法
CN111922334B (zh) * 2020-07-02 2022-09-09 嘉善君圆新材料科技有限公司 一种基于微波的碳包覆粉体及其制备方法
CN115461896A (zh) 2021-03-19 2022-12-09 积水化学工业株式会社 非水电解质二次电池用正极、以及使用了该正极的非水电解质二次电池、电池模块和电池系统
WO2023027537A1 (ko) * 2021-08-25 2023-03-02 주식회사 퀀텀에너지연구소 상온, 상압 초전도 세라믹화합물 및 그 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007059261A (ja) * 2005-08-25 2007-03-08 National Institute For Materials Science MgB2超電導体とその線材並びにそれらの製造方法
JP2011076931A (ja) * 2009-09-30 2011-04-14 Nagoya Univ リチウムイオン二次電池の正極材、およびその製造方法
JP2012099468A (ja) * 2010-10-08 2012-05-24 Semiconductor Energy Lab Co Ltd 正極活物質、及び蓄電装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2270771A1 (fr) 1999-04-30 2000-10-30 Hydro-Quebec Nouveaux materiaux d'electrode presentant une conductivite de surface elevee
JP2002126537A (ja) * 2000-10-19 2002-05-08 Nard Inst Ltd 金属酸化物系光触媒およびその製法
JP4684727B2 (ja) * 2005-04-20 2011-05-18 日本コークス工業株式会社 リチウムイオン二次電池用正極材料及びその製造方法、並びにリチウムイオン二次電池
WO2007049623A1 (ja) 2005-10-24 2007-05-03 National Institute For Materials Science MgB2超伝導線材の製造方法
EP1894906A1 (en) * 2006-08-28 2008-03-05 Bruker BioSpin AG Superconducting element containing MgB2
JP5046990B2 (ja) 2007-02-21 2012-10-10 独立行政法人物質・材料研究機構 MgB2超電導体の製造方法およびMgB2超電導体
US8808810B2 (en) * 2009-12-15 2014-08-19 Guardian Industries Corp. Large area deposition of graphene on substrates, and products including the same
JP5725350B2 (ja) * 2011-07-29 2015-05-27 トヨタ自動車株式会社 リチウム二次電池
CN103814464B (zh) * 2011-09-13 2018-04-17 野猫技术开发公司 用于电池的正极
US9843080B2 (en) * 2014-04-11 2017-12-12 Alliance For Sustainable Energy, Llc Magnesium-based methods, systems, and devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007059261A (ja) * 2005-08-25 2007-03-08 National Institute For Materials Science MgB2超電導体とその線材並びにそれらの製造方法
JP2011076931A (ja) * 2009-09-30 2011-04-14 Nagoya Univ リチウムイオン二次電池の正極材、およびその製造方法
JP2012099468A (ja) * 2010-10-08 2012-05-24 Semiconductor Energy Lab Co Ltd 正極活物質、及び蓄電装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3178785A4 *
YE SHU JUN ET AL.: "Strong enhancement of high- field critical current properties and irreversibility field of MgB2 superconducting wires by coronene active carbon source addition via the new B powder carbon-coating method", SUPERCONDUCTOR SCIENCE AND TECHNOLOGY, vol. 27, no. 8, pages 085012, 1 - 10, XP020268006, ISSN: 0953-2048, DOI: doi:10.1088/0953-2048/27/8/085012 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159513A1 (ja) * 2017-03-03 2018-09-07 株式会社日立製作所 超伝導体の製造方法
JP2018145038A (ja) * 2017-03-03 2018-09-20 株式会社日立製作所 超伝導体の製造方法
US11387017B2 (en) 2017-03-03 2022-07-12 Hitachi, Ltd. Method of producing superconductor
JP2020083692A (ja) * 2018-11-22 2020-06-04 国立大学法人千葉大学 炭素材料膜及びその製造方法
JP7215673B2 (ja) 2018-11-22 2023-01-31 国立大学法人千葉大学 炭素材料膜及びその製造方法
KR102475067B1 (ko) * 2021-07-01 2022-12-08 숙명여자대학교 산학협력단 하드마스크용 조성물의 제조방법, 이에 의해 제조된 하드마스크용 조성물 및 하드마스크

Also Published As

Publication number Publication date
EP3178785A1 (en) 2017-06-14
EP3178785B1 (en) 2019-10-23
JP6308507B2 (ja) 2018-04-11
EP3178785A4 (en) 2018-03-21
US20170263932A1 (en) 2017-09-14
JPWO2016021483A1 (ja) 2017-04-27
US10431823B2 (en) 2019-10-01

Similar Documents

Publication Publication Date Title
JP6308507B2 (ja) 炭素のナノ被覆層を有する基材粉末を用いたリチウムイオン電池用正極材の製造方法および光触媒の製造方法
Zhang et al. Structural Engineering of Hierarchical Micro‐nanostructured Ge–C Framework by Controlling the Nucleation for Ultralong‐Life Li Storage
Yao et al. Smart construction of integrated CNTs/Li4Ti5O12 core/shell arrays with superior high‐rate performance for application in lithium‐ion batteries
Li et al. Watermelon‐like structured SiOx–TiO2@ C nanocomposite as a high‐performance lithium‐ion battery anode
Xiong et al. Controllable synthesis of NC@ LiFePO4 nanospheres as advanced cathode of lithium ion batteries
Zhang et al. Binder-free Li3V2 (PO4) 3/C membrane electrode supported on 3D nitrogen-doped carbon fibers for high-performance lithium-ion batteries
Wang et al. Oxygen vacancy modulation of bimetallic oxynitride anodes toward advanced Li‐ion capacitors
Fang et al. Bi2O3 nanoparticles encapsulated by three-dimensional porous nitrogen-doped graphene for high-rate lithium ion batteries
Li et al. Tin oxide with controlled morphology and crystallinity by atomic layer deposition onto graphene nanosheets for enhanced lithium storage
Huang et al. Double-carbon coated Na3V2 (PO4) 3 as a superior cathode material for Na-ion batteries
Fu et al. Preparation and characterization of SnO2/carbon nanotube composite for lithium ion battery applications
Hu et al. Sn/SnO2@ C composite nanofibers as advanced anode for lithium-ion batteries
Hou et al. Carbon coating nanostructured-LiNi1/3Co1/3Mn1/3O2 cathode material synthesized by chemical vapor deposition method for high performance lithium-ion batteries
Zhang et al. Diatomite‐Derived Hierarchical Porous Crystalline‐AmorphousNetwork for High‐Performance and Sustainable Si Anodes
Dong et al. Synthesis of CNT@ Fe3O4-C hybrid nanocables as anode materials with enhanced electrochemical performance for lithium ion batteries
Chen et al. In situ synthesis of a silicon flake/nitrogen-doped graphene-like carbon composite from organoclay for high-performance lithium-ion battery anodes
Sun et al. Li 3 V 2 (PO 4) 3 encapsulated flexible free-standing nanofabric cathodes for fast charging and long life-cycle lithium-ion batteries
Wu et al. A hydrothermally synthesized LiFePO4/C composite with superior low-temperature performance and cycle life
Chong et al. Hierarchical encapsulation and rich sp2 N assist Sb2Se3‐based conversion‐alloying anode for long‐life sodium‐and potassium‐ion storage
Hong et al. Enhanced electrochemical properties of LiMnPO4/C composites by tailoring polydopamine-derived carbon coating
Zhu et al. Simultaneous growth of SiOx/carbon bilayers on Si nanoparticles for improving cycling stability
Shiva et al. In‐situ Stabilization of Tin Nanoparticles in Porous Carbon Matrix derived from Metal Organic Framework: High Capacity and High Rate Capability Anodes for Lithium‐ion Batteries
Yao et al. Two-dimensional sandwich-like Ag coated silicon-graphene-silicon nanostructures for superior lithium storage
Yue et al. High performance of Ge@ C nanocables as the anode for lithium ion batteries
Wan et al. Synthesis and characterization of carbon-coated Fe3O4 nanoflakes as anode material for lithium-ion batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15829986

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15310161

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016540185

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015829986

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015829986

Country of ref document: EP