WO2016021306A1 - 基地局、無線通信システムおよび通信方法 - Google Patents

基地局、無線通信システムおよび通信方法 Download PDF

Info

Publication number
WO2016021306A1
WO2016021306A1 PCT/JP2015/067638 JP2015067638W WO2016021306A1 WO 2016021306 A1 WO2016021306 A1 WO 2016021306A1 JP 2015067638 W JP2015067638 W JP 2015067638W WO 2016021306 A1 WO2016021306 A1 WO 2016021306A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
flow control
senb
menb
information
Prior art date
Application number
PCT/JP2015/067638
Other languages
English (en)
French (fr)
Inventor
林 貞福
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to CN201580054426.8A priority Critical patent/CN106797574B/zh
Priority to KR1020177005550A priority patent/KR20170039701A/ko
Priority to KR1020197006415A priority patent/KR101995693B1/ko
Priority to JP2016539891A priority patent/JP6233521B2/ja
Priority to US15/501,990 priority patent/US10194350B2/en
Priority to EP15829835.6A priority patent/EP3179761B1/en
Priority to EP19173771.7A priority patent/EP3544334A1/en
Publication of WO2016021306A1 publication Critical patent/WO2016021306A1/ja
Priority to US16/237,490 priority patent/US10674406B2/en
Priority to US16/858,186 priority patent/US11696180B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • H04W28/12Flow control between communication endpoints using signalling between network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections

Definitions

  • the present invention relates to a base station, a wireless communication system, and a communication method.
  • 3GPP 3rd Generation Partnership Project
  • eNode B eNode B
  • UE User Equipment
  • EUTRAN Evolved UMTS Terrestrial Radio Access Network.
  • UMTS Universal Mobile Telecommunications System
  • Fig. 1 shows an example of the configuration of a wireless communication system that realizes Dual Connectivity.
  • MeNodeB Master10eNodeNodeB, hereinafter referred to as MeNB
  • SeNB SeNodeB
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • the MeNB 20 is a master cell base station.
  • SeNB30 is a small cell base station.
  • the cell (SCG: Secondary : Cell Group) under the control of SeNB 30 is located within the cover area of the cell (MCG: Master Cell Group) under the control of MeNB20.
  • UE10 is a terminal which receives DL (DownLink) packet data from two MeNB20 and SeNB30. Note that the UE 10 transmits UL (UpLink) packet data only to the MeNB 20 or to the two MeNBs 20 and the SeNB 30.
  • DL DownLink
  • UL UpLink
  • the MME 40 is a core network device arranged in a CN (Core Network) and performs C (Control) -plane transmission and UE 10 mobility management.
  • the S-GW 50 is a core network device arranged in the CN, and transmits U (User) -plane packet data.
  • MeNB20 and SeNB30 are connected via X2 Interface, and MME40 and S-GW50, MeNB20 and SeNB30 are connected via S1 Interface.
  • Fig. 2 shows an example of the C-plane connection configuration in Dual Connectivity.
  • the C-plane is connected.
  • the connection of the UE 10 in the Dual-Connectivity connection state is only the S1-MME between the MeNB 20 and the MME 40.
  • RRC Radio
  • Connection of UE10 exists only in the radio area between MeNB20. That is, there is no RRC Connection in the wireless section between at least the UE 10 and the SeNB 30.
  • SeNB30 may produce the signal information relevant to the RRC message to UE10, and may transmit the created signal information to UE10 via MeNB20.
  • U-plane connection configuration in Dual Connectivity includes Split bearer option configuration and SCG bearer option configuration.
  • FIG. 3 shows an example of the U-plane connection configuration for the Split-bearer option configuration.
  • FIG. 4 shows an example of a radio-protocol connection configuration in the case of a split-bearer option configuration.
  • the DL packet data of the U-plane is transmitted only from the S-GW 50 to the MeNB 20, and not transmitted to the SeNB 30.
  • the bearer from MeNB 20 to UE 10 is referred to as MCG bearer
  • the bearer from SeNB 30 to UE 10 is referred to as SCG bearer (the same in FIGS. 5 and 6 described later). ).
  • UE10, MeNB20, and SeNB30 are taking the layer structure which consists of PDCP (PacketDataConvergenceProtocol) layer, RLC (RadioLinkControl) layer, and MAC (MediumAccessControl) layer.
  • PDCP PacketDataConvergenceProtocol
  • RLC RadioLinkControl
  • MAC MediumAccessControl
  • the packet data of the U-plane DL received from the S-GW 50 is accepted by the PDCP layer.
  • one PDCP layer (the layer on the right side in FIG. 4) of the MeNB 20 transmits some packet data (PDCPProPDU (Protocol Data Unit)) to the UE 10 via a cell under its own control.
  • Packet data (PDCP PDU) can be transmitted to the UE 10 via the SeNB 30. That is, in the PDCP layer of MeNB 20, U-plane packet data can be separated (split).
  • the MeNB 20 feeds back a Flow Control signal (flow control signal) from the SeNB 30 for the purpose of fully using the resources of the SeNB30 without squeezing the resources of the SeNB30.
  • Flow Control flow control for adjusting the data amount (PDCP-PDU amount) of DL packet data to be transmitted to the SeNB 30 using the Control signal is introduced.
  • the Flow Control signal includes information indicating the transmission status of the SeNB 30 to the UE 10 of the DL packet data received from the MeNB 20, and information indicating the remaining buffer amount of the SeNB 30.
  • the Flow control signal may include, for example, information on the transmission power of the SeNB 30, the number of bearers that can be accommodated by the SeNB 30, and the maximum bit rate that can be accommodated by the SeNB 30.
  • the MeNB 20 transmits the packet data of PDCP SN (Sequence Number) # 100, # 102, # 104, # 106, and # 108 to the UE 10 via the cell under its control. On the other hand, MeNB 20 transmits packet data of PDCP30SN # 101, # 103, # 105, # 107, # 109, and # 111 to SeNB30.
  • PDCP SN Sequence Number
  • SeNB30 has received all the packet data of PDCP SN # 101, # 103, # 105, # 107, # 109, and # 111 and was able to transmit to UE10. Further, it is assumed that the SeNB 30 determines that all packet data has been transmitted by receiving RLC Ack from the UE 10. In this case, SeNB30 feeds back SN # 111 as PDCP
  • the MeNB 20 indicates the SN # 111 as “the PDCP SN that has received RLC Ack from the UE 10 last in order” to the MeNB 20, so that the MeNB 20 can obtain the PDCP SN # 101, It can be determined that all of the packet data has been transmitted to the UE 10.
  • reception of RLC Ack from UE 10 corresponds to reception of Status PDU (or Status Report) as described in Non-Patent Document 1 (3GPP TS 36.322 V12.0.0).
  • the MeNB 20 determines that all of the packet data (PDCP PDU) transmitted to the SeNB 30 has been transmitted to the UE 10, the MeNB 20 looks at the remaining buffer amount of the SeNB 30, and then the amount of packet data (PDCP ⁇ PDU amount to be transmitted to the SeNB 30) ).
  • the SCG bearer option configuration is not related to the present invention, but will be briefly described below for reference.
  • Fig. 5 shows an example of the U-plane connection configuration in the case of the SCG bearer option configuration.
  • FIG. 6 shows an example of the radio protocol connection configuration in the case of the SCG bearer option configuration.
  • U-plane DL packet data is transmitted from the S-GW 50 to both the MeNB 20 and the SeNB 30, via the cells under each of the MeNB 20 and the SeNB 30. Is transmitted to UE10.
  • packet data transmitted and received between CN and UE10 does not go through X2-U.
  • X2-U is used to perform Data Forwarding that forwards packet data remaining in one of MeNB 20 or SeNB 30 to the other.
  • the second base station receives the downlink data received from the CN via the own station and the first base station (SeNB) (UE).
  • the first base station SeNB
  • the second base station when the second base station is a macro base station, the second base station may be connected to many first base stations.
  • the processing load related to the Flow Control of the second base station increases.
  • effects such as an increase in throughput and an increase in communication speed, which are originally aimed at Dual Connectivity, may not be obtained.
  • the second base station can be prevented from passing through a cell under its control. That is, the second base station can transmit all packet data to the terminal via the cell of the first base station.
  • the first base station may be a SeNB dedicated to Dual Connectivity in the second base station, and in this case, the Flow Control signal from the first base station is not required.
  • the first base station is not directly connected to the MME in order to reduce the connection load to the MME. That is, in this configuration, Pico eNB having the SeNB function is dedicated to SeNB.
  • one of the objects to be achieved by the embodiments disclosed in the present specification is to provide a base station, a wireless communication system, and a communication method that can solve the above-described problems.
  • the base station of the present invention A base station capable of transmitting downlink data received from a core network to a terminal via its own station and another base station, It has a communication part which transmits the information which can identify flow control availability to the other base station.
  • the wireless communication system of the present invention includes: A first base station; A second base station capable of transmitting downlink data received from the core network to the terminal via the local station and the first base station;
  • the second base station is Information capable of identifying whether flow control is possible is transmitted to the first base station.
  • the communication method of the present invention includes: A communication method by a base station capable of transmitting downlink data received from a core network to a terminal via its own station and another base station, Information capable of identifying whether flow control is possible is transmitted to the other base station.
  • SeNB 30 is a first base station.
  • the MeNB 20 is a second base station.
  • the MeNB 20 can set Dual Connectivity and transmit the DL packet data received from the CN to the UE 10 via the MeNB 20 (MeNB 20 cell) and the SeNB 30.
  • FIG. 9 shows an example of the configuration of MeNB20.
  • the MeNB 20 has a communication unit 21.
  • the communication unit 21 transmits to the SeNB 30 information that can identify whether Flow Control is possible.
  • Flow Control is to feed back a Flow Control signal from the SeNB 30 and adjust the data amount of DL packet data transmitted to the SeNB 30 using the Flow Control signal.
  • FIG. 10 shows an example of the configuration of SeNB30.
  • the SeNB 30 has a communication unit 31.
  • the communication unit 31 receives information from the MeNB 20 that can identify whether the flow control is possible.
  • the MeNB 20 transmits information to the SeNB 30 that can identify the availability of the flow control by the MeNB 20.
  • the SeNB 30 can identify whether or not the Flow Control is possible, the Flow Control signal from the SeNB 30 to the MeNB 20 can be made unnecessary when the Flow Control is not possible. Thereby, since the processing load related to Flow Control of MeNB20 can be reduced, the effect of Dual Connectivity such as increase of original throughput and speeding up of communication can be obtained.
  • the Flow control signal from SeNB30 to MeNB20 can be made unnecessary.
  • FIG. 9 shows an example of the configuration of MeNB20.
  • the MeNB 20 has a control unit 22 added as compared to the first embodiment.
  • the control unit 22 determines whether the flow control by the MeNB 20 is possible.
  • the communication unit 21 transmits to the SeNB 30 information that can be identified by the control unit 22 as to whether the flow control is possible.
  • control part 22 and the communication part 21 shall also perform operation
  • FIG. 10 shows an example of the configuration of SeNB30.
  • control part 32 is added to SeNB30 compared with 1st Embodiment.
  • the communication unit 31 receives information from the MeNB 20 that can identify whether the flow control is possible.
  • the control unit 32 identifies the availability of Flow® Control based on the information received from MeNB 20 that can identify the availability of Flow® Control, and controls the feedback of the Flow® Control signal to MeNB 20. Specifically, if Flow Control is possible, the Flow Control signal is fed back to MeNB20. On the other hand, if Flow Control is not possible, the Flow Control signal is not fed back. Note that “no feedback of the flow control signal” may be expressed as not transmitting the flow control signal to the MeNB 20.
  • control part 32 and the communication part 31 shall perform the operation
  • the MeNB 20 transmits information to the SeNB 30 that can identify the availability of the flow control by the MeNB 20.
  • the SeNB 30 can identify the availability of Flow Control, the same effect as in the first embodiment can be obtained.
  • This embodiment is a more specific operation of the second embodiment.
  • the overall configuration of the wireless communication system and the configurations of the MeNB 20 and the SeNB 30 are the same as those of the second embodiment. It is the same.
  • FIG. 11 shows an example of the procedure for setting Dual Connectivity in the wireless communication system of this embodiment. Note that the example in FIG. 11 is based on the assumption that the UE 10 is already in the Connected state.
  • step S101 the S-GW 50 receives DL packet data from a P-GW (Packet Data) Network Gateway) (not shown) or sends a Create Bearer Request message from the P-GW (not shown).
  • P-GW Packet Data
  • step S102 a Create Bearer Request message is transmitted to the MME 40 for the purpose of setting E-RAB (EUTRAN-Radio Access Bearer) to the UE10.
  • E-RAB EUTRAN-Radio Access Bearer
  • the MME 40 When receiving the Create ⁇ ⁇ Bearer Request message from the S-GW 50, the MME 40 transmits an E-RAB Setup Request message to the MeNB 20 where the UE 10 is located in Step S103.
  • the control unit 22 of the MeNB 20 determines whether or not to set Dual Connectivity in step S104. In addition, when setting Dual Connectivity, it is also determined whether Flow Control is possible.
  • FIG. 12 shows an example of a procedure for determining whether or not Flow Control is possible by the MeNB 20 in step S104 of FIG.
  • the control unit 22 of the MeNB 20 determines an E-RAB communication type set in the UE 10 in step S201.
  • step S201 If it is determined in step S201 that the E-RAB communication type belongs to a real-time service such as voice, the control unit 22 of the MeNB 20 determines that dual connectivity is not required to be set in step S202 and ends the process.
  • the control unit 22 of the MeNB 20 then moves the UE 10 into the cell under the SeNB 30 in step S203. Determine if you are in the area.
  • step S203 if the UE 10 is not located in the cell under the control of the SeNB 30, the control unit 22 of the MeNB 20 determines that dual connectivity is not required to be set in step S202, and ends the process.
  • step S203 if UE10 exists in the cell under control of SeNB30 in step S203, the control part 22 of MeNB20 will judge that Dual Connectivity needs to be set in step S204.
  • control unit 22 of the MeNB 20 determines whether or not the processing capability of the MeNB 20 exceeds the upper limit when the MeNB 20 is connected to the SeNB 30 in step S205.
  • step S205 if the processing capability of the MeNB 20 exceeds the upper limit, the control unit 22 of the MeNB 20 determines that the flow control is impossible in step S206, and ends the processing.
  • step S205 determines that the flow control is acceptable in step S207, and ends the processing.
  • step S205 determination of whether or not Flow Control is possible in step S205 can be determined by other methods besides determining whether the processing capability of the MeNB 20 exceeds the upper limit.
  • a CPU Central Processing Unit
  • QoS Quality of Service
  • an E-RAB having a high QoS ie, a high priority
  • an E-RAB having a low QoS that is, a low priority
  • QoS Quality of Service
  • Step S105 information that can identify whether the Flow Control determined in Step S104 is possible (Flow Control Indication). )
  • Flow Control Indication is an IE (Information Element) indicating whether Flow Control is possible or not.
  • FIG. 13 shows an example of a SeNB Addition Request message.
  • Flow Control Indication is indicated in the E-RAB list. This means that Flow Control Indication is set for each E-RAB.
  • Flow Control Indication may be set for each UE 10 instead of for each E-RAB.
  • FIG. 14 shows another example of the SeNB Addition Request message.
  • Flow Control Indication is indicated outside the E-RAB list. This means that Flow Control Indication is set for each UE 10.
  • 13 to 16 show examples in which the IE of the Flow Control Indication is M (Mandatory), and the Flow Control Indication indicates whether the Flow Control is possible or not.
  • Flow IE can be disabled if this IE does not exist.
  • the control unit 32 of the SeNB 30 when receiving the SeNB ⁇ ⁇ Addition Request message from the MeNB 20, the control unit 32 of the SeNB 30 sets a radio resource for executing Dual Connectivity in step S106.
  • the communication unit 31 of the SeNB 30 returns a SeNB30Addition Request Acknowledge message to the MeNB 20 in step S107.
  • the communication unit 21 of the MeNB 20 receives the SeNB Addition Request Acknowledge message from the SeNB 30, the RRC Connection Reconfiguration message is transmitted to the UE 10 in step S108, and the radio resource setting of the SeNB 30 is performed.
  • the UE 10 When the UE 10 receives the RRC Connection Reconfiguration message from the MeNB 20, the UE 10 returns an RRC Connection Reconfiguration Complete message to the MeNB 20 in Step S109.
  • the SeNB110Reconfiguration Complete message is returned to the SeNB 30 in step S110 to notify that the UE 20 is ready.
  • step S111 the UE 10 sets a radio resource for the SeNB 30, and executes Random Access Procedure.
  • the communication unit 31 of the SeNB 30 transmits a SeNB Addition Complete message to the MeNB 20 in step S112.
  • the communication unit 21 of the MeNB 20 transmits an E-RAB Setup Response message to the MME 40 in step S113, notifying that the E-RAB setting has been completed.
  • the IP (Internet Protocol) address of MeNB 20 is set in the E-RAB Setup Response message.
  • the MME 40 When the MME 40 receives the E-RAB Setup Response message from the MeNB 20, the MME 40 transmits a Create Bearer Response message in which the IP address of the MeNB 20 is set to the S-GW 50 in Step S114. In response to this, the S-GW 50 sets up a GTP (GPRS Tunneling Protocol) GPRS (General Packet Packet Radio Service) tunnel with the MeNB 20, and transmission of DL packet data is started.
  • GTP GPRS Tunneling Protocol
  • GPRS General Packet Packet Radio Service
  • the communication unit 31 of the SeNB 30 feeds back the Flow Control signal to the MeNB 20 if the Flow Control Control Indication of the SeNB Addition Request message received from the MeNB 20 is notified in Step S105. On the other hand, if the Flow Control impossibility is notified, the communication unit 31 of the SeNB 30 does not feed back the Flow Control signal.
  • the MeNB 20 sets the Flow Control Indication indicating whether the Flow Control is permitted or not in the SeNB Addition Request message and transmits it to the SeNB 30.
  • SeNB30 can identify the availability of Flow®Control, the same effect as the first embodiment can be obtained.
  • the data amount of DL packet data (amount of PDCP-PDU) transmitted from MeNB 20 to SeNB 30 is a fixed amount.
  • MeNB20 may notify not only SeNB30 but UE10 of the information "Flow Control impossible”.
  • UE10 judges that there is no feedback from SeNB30 to MeNB20 when the information of "Flow Control impossible” is notified from MeNB20 (or SeNB30), and notifies the value of HFN (Hyper frame Number) from UE10 to MeNB20. Switch control.
  • the PDCP Status Report message is periodically transmitted from the UE 10 to the MeNB 20, and the MeNB 20 that has received the PDCP Status Report message checks the reception status of the UE 10 in PDCP. If MeNB20 has transmitted, but there is PDCP SN that UE10 has not received, it is conceivable that MeNB20 retransmits the PDCP SN.
  • the MeNB 20 may attempt to reset PDCP and cause the UE 10 to execute the procedure for resetting RRC Connection. Since the UE 10 resets the RRC Connection, the PDCP SN is also reset, so that the HFN values in the MeNB 20 PDCP and the UE 10 PDCP can be matched.
  • the present embodiment is based on the premise that the UE 10 is in the idle state.
  • FIG. 17 shows the procedure for setting Dual Connectivity in the wireless communication system of this embodiment. Note that the example in FIG. 17 is based on the assumption that the UE 10 is in the idle state.
  • the S-GW 50 upon receiving DL packet data from a P-GW (not shown) in step S301, the S-GW 50 transmits a Downlink Data Notification message to the MME 40 in step S302.
  • the MME 40 When receiving the Downlink Data Notification message from the S-GW 50, the MME 40 transfers Paging to the UE 10 via the MeNB 20 where the UE 10 is located in Steps S303 and S304.
  • the communication unit 21 of the MeNB 20 transmits an Initial UE message to the MME 40 in step S306.
  • the MME 40 When receiving the Initial UE Message from the MeNB 20, the MME 40 transmits an Initial Context Setup Request message to the MeNB 20 in Step S307.
  • steps S308 to S316 similar to steps S104 to S122 of FIG. 11 of the third embodiment is performed.
  • the communication unit 21 of the MeNB 20 When the communication unit 21 of the MeNB 20 receives the SeNB Addition Complete message from the SeNB 30, it transmits an Initial Context Setup Response message to the MME 40 in step S317.
  • the MME 40 When the MME 40 receives the Initial Context Setup Response message from the MeNB 20, the MME 40 transmits a Modify Bearer Request message to the S-GW 50 in step S318. In step S319, the S-GW 50 transmits a Modify Bearer Response message to the MME 40.
  • the communication unit 31 of the SeNB 30 feeds back the Flow Control signal to the MeNB 20 if the Flow Control Control Indication of the SeNB Addition Request message received from the MeNB 20 is notified in Step S309. On the other hand, if Flow Control impossibility is notified, the Flow Control signal is not fed back.
  • the MeNB 20 sets the Flow Control Indication indicating whether the Flow Control is enabled or disabled in the SeNB 30 Addition Request message in the SeNB 30 as in the third embodiment. Send.
  • SeNB30 can identify the availability of Flow®Control, the same effect as the first embodiment can be obtained.
  • the MeNB 20 sets the Flow Control Indication in the SeNB Addition Request message.
  • the present embodiment is different from the third and fourth embodiments in that the MeNB 20 sets the Flow Control Indication in the SeNB Modification Request message.
  • the MeNB 20 determines whether or not Flow Control is possible, the Dual Connectivity is not set in the SeNB 30. For this reason, the MeNB 20 has set the Flow Control Indication in the SeNB Addition Request message to be transmitted to the SeNB 30.
  • the MeNB 20 decides whether or not Flow Control is possible, if the Dual Connectivity has already been set in the SeNB 30, a new E-RAB will be added to the SeNB 30. Therefore, in that case, the MeNB 20 sets Flow Control ⁇ Indication in the SeNB Modification Request message to be transmitted to the SeNB30.
  • the load status of the MeNB 20 may change, and the flow control status may change (from possible to impossible, or from impossible to possible).
  • the MeNB 20 can set the changed Flow Control Indication in the SeNB Modification Request message and transmit it to the SeNB 30.
  • the MeNB 20 sets the Flow Control Indication indicating whether the Flow Control is possible or not in the SeNB Modification Request message and transmits it to the SeNB 30.
  • SeNB30 can identify the availability of Flow®Control, the same effect as the first embodiment can be obtained.
  • the information that can identify the availability of Flow Control is Flow Control Indication.
  • the present embodiment is different from the third to fifth embodiments in that the information that can identify the availability of Flow Control is Flow Control Period indicating the time interval for feeding back the Flow Control signal. Different.
  • Fig. 18 shows an example of Flow Control Period IE.
  • the MeNB 20 designates the time interval for feeding back the Flow Control signal in the interval from 0 to 2047 seconds (in units of 1 second).
  • the time interval may be specified in milliseconds.
  • the time interval is a value other than 0, the value indicates the time interval for feeding back the Flow Control signal, which means that Flow Control is possible.
  • Flow Control Period can be set and transmitted in SeNB Addition Request message or SeNB Modification Request message.
  • time interval for feeding back the Flow Control signal can be determined by various methods.
  • the time interval can be increased as the CPU usage rate increases.
  • the time interval can be shortened as the QoS of the E-RAB becomes higher.
  • the MeNB 20 notifies the SeNB 30 of the Flow Control Period indicating the time interval for feeding back the Flow Control signal.
  • SeNB30 can identify the availability of Flow Control, the same effect as the first embodiment can be obtained.
  • the information that can identify the availability of Flow ⁇ Control is All PDCP-PDU indicating that all DL packet data (PDCP PDU) is transmitted to the UE 10 via the SeNB 30. This is different from the third to sixth embodiments.
  • the MeNB 20 sets the IE called All PDCP-PDU in the SeNB Addition ⁇ Request message or the SeNB Modification Request message.
  • All PDCP-PDU means that all DL packet data (PDCP ⁇ PDU) is transmitted to UE 10 via SeNB 30, but at the same time, it also means that Flow Control is disabled. . Therefore, the feedback of the Flow Control signal from the SeNB 30 to the MeNB 20 is completely unnecessary. This is effective when a certain Pico eNB is dedicated to SeNB.
  • the IE of All PDCP-PDU can be set to either M (Mandatory) or O (Option).
  • the MeNB 20 notifies the SeNB 30 of All PDCP-PDU indicating that all of the DL packet data (PDCP PDU) is transmitted to the UE 10 via the SeNB30.
  • PDCP PDU DL packet data
  • SeNB30 can identify the availability of Flow®Control, the same effect as the first embodiment can be obtained.
  • the present embodiment is the third to seventh in that information that can identify whether flow control is possible is transmitted by the Frame Protocol or User Plane Protocol exchanged between the MeNB 20 and the SeNB 30. Different from the embodiment.
  • Frame Protocol or User Plane Protocol is a protocol for transferring data.
  • 19 and 20 show examples of the format of the Flow Control Frame for transmitting information that can identify whether Flow Control is possible using the Frame Protocol.
  • the example shown in FIG. 19 is an example showing whether Flow Control is enabled or disabled in the Frame Protocol IE, as in the third to fifth embodiments.
  • RAN Container Type (0x02) indicates that this Frame is a Flow Control Frame.
  • ⁇ F is set to 0 or 1. 1 indicates that Flow Control is possible, and 0 indicates that Flow Control is not possible. However, conversely, 0 can be defined so that Flow Control is possible, and 1 can be defined to indicate that Flow Control is not possible.
  • the example shown in FIG. 20 is an example showing a time interval in which a Flow® Control signal is fed back from the SeNB 30 to the MeNB 20 in the frame protocol IE, as in the sixth embodiment.
  • RAN Container Type (0x02) indicates that this Frame is a Flow Control Frame.
  • ⁇ F is set to any value between 0 and 1023. 0 indicates that Flow Control is not possible, and other values indicate time intervals in which Flow Control is possible and the Flow Control signal is fed back from the SeNB 30 to the MeNB 20.
  • the time interval can be other than 1023.
  • the timing for transmitting information that can identify whether Flow Control is possible or not is the timing at which Frame Protocol is transmitted after the E-RAB setting is completed, that is, the processing in FIG. 11 and the processing in FIG. 17 are completed. It will be a later arbitrary timing.
  • FIG. 19 may be used when only 1 bit is allocated as F, and FIG. 20 is used otherwise.
  • the MeNB 20 transmits information that can identify whether flow control is possible or not using the frame protocol.
  • SeNB30 can identify the availability of Flow®Control, the same effect as the first embodiment can be obtained.
  • the MeNB 20 determines whether or not the Flow Control is possible and determines the time interval for feeding back the Flow Control signal when the Flow Control is possible. It was.
  • the operator determines whether or not Flow Control is possible, and when the Flow Control is enabled, determines the time interval for feeding back the Flow Control signal, and O & M of information that can identify the availability of Flow Control. Set (Operation & ance Maintenance).
  • FIG. 21 shows another example of the overall configuration of the wireless communication system that realizes Dual Connectivity.
  • the O & M server 60 is added to the wireless communication system shown in FIG.
  • the O & M server 60 sets MeNB 20 and SeNB 30 with information that can identify the availability of Flow Control.
  • SeNB30 can identify the availability of Flow®Control, the same effect as the first embodiment can be obtained.
  • the MeNB 20 directly transmits information that can identify whether or not Flow Control is possible to the SeNB 30.
  • MeNB 20 transmits information that can identify the availability of Flow Control to UE 10, and UE 10 transmits to SeNB 30.
  • the information that can identify whether flow control is possible is first transmitted by MeNB 20 to UE 10 as Flow control information, and UE 10 transmits to SeNB 30 as Flow control information.
  • information that can identify the availability of the Flow Control is transmitted from the MeNB 20 to the SeNB 30 via the UE 10.
  • SeNB30 can identify the availability of Flow®Control, the same effect as the first embodiment can be obtained.
  • the MeNB 20 directly transmits information that can identify whether flow control is possible or not to the SeNB 30.
  • the MeNB 20 transmits information that can identify the availability of Flow Control to the CN side, and the CN side transmits to the SeNB 30.
  • the information that can identify whether flow control is possible is first transmitted by the MeNB 20 to the MME 40 in the CN as flow control information, and the MME 40 transmits to the SeNB 30 as flow control information.
  • information that can identify whether Flow Control is possible is transmitted from the MeNB 20 to the SeNB 30 via the CN.
  • SeNB30 can identify the availability of Flow®Control, the same effect as the first embodiment can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 本発明の無線通信システムは、第1の基地局と、コアネットワークから受信した下りデータを、自局と前記第1の基地局とを経由して端末に送信可能な第2の基地局と、を有する。前記第2の基地局は、フロー制御の可不可を識別可能な情報を前記第1の基地局に送信する。

Description

基地局、無線通信システムおよび通信方法
 本発明は、基地局、無線通信システムおよび通信方法に関する。
 3GPP(3rd Generation Partnership Project)では、2つのeNB(eNode B)とUE(User Equipment)との間でパケットデータを送受信する、Dual Connectivityと称されるEUTRAN(Evolved UMTS Terrestrial Radio Access Network。UMTS:Universal Mobile Telecommunications System)ネットワークが制定されている。
 図1に、Dual Connectivityを実現する無線通信システムの構成の一例を示す。
 図1に示す無線通信システムは、UE10と、MeNodeB(Master eNode B。以下、MeNBと表記する)20と、SeNodeB(Secondary eNode B。以下、SeNBと表記する)30と、MME(Mobility Management Entity)40と、S-GW(Serving Gateway)50と、を有している。
 MeNB20は、マスタセル基地局である。
 SeNB30は、スモールセル基地局である。なお、SeNB30の配下のセル(SCG:Secondary Cell Group)は、MeNB20の配下のセル(MCG:Master Cell Group)のカバーエリア内に位置している。
 UE10は、2つのMeNB20およびSeNB30からDL(DownLink)のパケットデータを受信する端末である。なお、UE10は、UL(UpLink)のパケットデータについては、MeNB20のみに送信するか、または、2つのMeNB20およびSeNB30に送信することになる。
 MME40は、CN(Core Network)に配置されたコアネットワーク装置であり、C(Control)-planeの伝送やUE10の移動管理を行う。
 S-GW50は、CNに配置されたコアネットワーク装置であり、U(User)-planeのパケットデータの伝送を行う。
 なお、MeNB20とSeNB30とは、X2 Interfaceを介して接続され、MME40およびS-GW50とMeNB20およびSeNB30とは、S1 Interfaceを介して接続されている。
 図2に、Dual ConnectivityにおけるC-planeの接続構成の一例を示す。
 図2に示すように、C-planeは接続されている。Dual Connectivityの接続状態にあるUE10のConnectionは、MeNB20とMME40間のS1-MMEのみとなる。また、UE10のRRC(Radio Resource Control) Connectionも、MeNB20との間の無線区間に存在するのみである。即ち、少なくともUE10とSeNB30との間の無線区間には、RRC Connectionが存在しない。ただし、SeNB30は、UE10へのRRCメッセージに関連する信号情報を作成して、その作成した信号情報をMeNB20経由でUE10に送信することはある。
 また、Dual ConnectivityにおけるU-planeの接続構成としては、Split bearer option構成と、SCG bearer option構成と、が挙げられる。
 図3に、Split bearer option構成の場合のU-planeの接続構成の一例を示す。図4に、Split bearer option構成の場合のRadio Protocolの接続構成の一例を示す。
 図3および図4に示すように、Split bearer option構成の場合、U-planeのDLのパケットデータは、S-GW50からMeNB20にのみ送信され、SeNB30には送信されない。なお、図3および図4に示す構成において、MeNB20からUE10へのベアラは、MCG bearerと称され、SeNB30からUE10へのベアラは、SCG bearerと称される(後述の図5および図6において同じ)。
 図4に示すように、UE10、MeNB20、およびSeNB30は、PDCP(Packet Data Convergence Protocol)レイヤ、RLC(Radio Link Control)レイヤ、およびMAC(Medium Access Control)レイヤからなるレイヤ構成を取っている。
 MeNB20では、S-GW50から受信したU-planeのDLのパケットデータは、PDCPレイヤにて受け付けられる。ここで、MeNB20の一方のPDCPレイヤ(図4中右側のレイヤ)は、ある一部のパケットデータ(PDCP PDU(Protocol Data Unit))については自配下のセル経由でUE10に送信し、ある一部のパケットデータ(PDCP PDU)についてはSeNB30経由でUE10に送信することができる。即ち、MeNB20のPDCPレイヤでは、U-planeのパケットデータを分離する(Splitする)ことができる。
 このようなSplit bearer option構成においては、SeNB30のリソースを圧迫することなく、SeNB30のリソースを十分に利用するという目的のため、MeNB20が、SeNB30からFlow Control信号(フロー制御信号)をフィードバックし、Flow Control信号を用いて、SeNB30へ送信するDLのパケットデータのデータ量(PDCP PDUの量)を調整するFlow Control(フロー制御)が導入されている。
 Flow Control信号は、MeNB20から受信したDLのパケットデータのUE10へのSeNB30の送信状況を示す情報と、SeNB30の残バッファー量を示す情報と、を含む。Flow Control信号は、他にも例えばSeNB30の送信電力に関する情報、SeNB30の収容できるベアラの数、SeNB30の収容できる最大ビットレートを含んでもよい。
 ここで、Flow Controlのメカニズムについて、以下に具体例を挙げて説明する。
 MeNB20は、自配下のセル経由で、PDCP SN(Sequence Number)#100, #102, #104, #106, #108のパケットデータをUE10に送信する。その一方、MeNB20は、SeNB30には、PDCP SN#101, #103, #105, #107, #109, #111のパケットデータを送信する。
 SeNB30は、PDCP SN#101, #103, #105, #107, #109, #111のパケットデータをすべて受信し、UE10に送信することができたとする。また、SeNB30は、UE10からのRLC Ackを受信することで、パケットデータをすべて送信済みと判断したとする。この場合、SeNB30は、SeNB30の残バッファー量とともに、順番的に最後にUE10からRLC Ackを受信したPDCP SNとしてのSN#111を、Flow Control信号としてMeNB20にフィードバックする。ここで、“順番的に最後にUE10からRLC Ackを受信したPDCP SN”としてのSN#111をMeNB20に示すことで、MeNB20は、PDCP SN#101, #103, #105, #107, #109のパケットデータをすべてUE10に送信できたと判断することができる。なお、UE10からのRLC Ackの受信とは、非特許文献1(3GPP TS 36.322 V12.0.0)でいうところのStatus PDU(またはStatus Report)の受信に相当する。
 MeNB20は、SeNB30に送信したパケットデータ(PDCP PDU)のすべてがUE10に送信完了したと判断すると、SeNB30の残バッファー量を見て、次にSeNB30に送信するパケットデータのデータ量(PDCP PDUの量)を調整する。
 なお、上述した、Dual ConnectivityにおけるU-planeの接続構成のうち、SCG bearer option構成は本発明には関係しないが、参考のため、以下に簡単に説明する。
 図5に、SCG bearer option構成の場合のU-planeの接続構成の一例を示す。図6に、SCG bearer option構成の場合のRadio Protocolの接続構成の一例を示す。
 図5および図6に示すように、SCG bearer option構成の場合、U-planeのDLのパケットデータは、S-GW50からMeNB20およびSeNB30の双方に送信され、MeNB20およびSeNB30の各々の配下のセル経由でUE10に送信される。
 このようなSCG Bearer Option構成においては、CNとUE10間で送受信されるパケットデータはX2-Uを経由することがない。ただし、例えば、SeNB30の追加や削除などの場合に、MeNB20またはSeNB30の一方に残存するパケットデータを他方にForwardingするData Forwardingを行うために、X2-Uが使用される。
3GPP TS 36.322 V12.0.0 (2014-06)
 しかし、例えば、Split bearer option構成のように、第2の基地局(MeNB)が、CNから受信した下りデータを、自局と第1の基地局(SeNB)とを経由して端末(UE)に送信可能な構成である場合、以下のような問題がある。
 例えば、第2の基地局がマクロ基地局である場合、第2の基地局は多くの第1の基地局と接続することがある。しかし、第2の基地局が、多くの第1の基地局から大量のFlow Control信号を受信することになると、第2の基地局のFlow Controlに関連する処理負荷が増加する。その結果、本来Dual Connectivityが狙う効果であるスループットの増加や通信の高速化といった効果が得られなくなる可能性がある。
 また、例えば、昼間は会社にいてほぼ移動しないユーザがいたとする。このようなユーザの端末に対するパケットデータの送信において、第2の基地局は、自配下のセルを経由させないことができる。即ち、第2の基地局は、すべてのパケットデータを第1の基地局のセルを経由して端末に送信することができる。この構成では、第1の基地局を、第2の基地局におけるDual Connectivity専用のSeNBにする場合もあり、この場合は第1の基地局からのFlow Control信号を必要としない。この構成では、例えば、第1の基地局がPico eNBでありエリアに設置される数が多い場合も、MMEへの接続負荷を減らすために、第1の基地局をMMEと直接接続しない。即ち、この構成では、SeNBの機能を持つPico eNBはSeNB専用となる。
 このように、例えば、Split bearer option構成においては、第1の基地局から第2の基地局にフィードバックするFlow Control信号を不要とすることが課題となっている。
 そこで、本明細書に開示される実施形態が達成しようとする目的の1つは、上述した課題を解決することができる基地局、無線通信システムおよび通信方法を提供することにある。
 本発明の基地局は、
 コアネットワークから受信した下りデータを、自局と他の基地局とを経由して端末に送信可能な基地局であって、
 フロー制御の可不可を識別可能な情報を前記他の基地局に送信する通信部を有する。
 本発明の無線通信システムは、
 第1の基地局と、
 コアネットワークから受信した下りデータを、自局と前記第1の基地局とを経由して端末に送信可能な第2の基地局と、を有し、
 前記第2の基地局は、
 フロー制御の可不可を識別可能な情報を前記第1の基地局に送信する。
 本発明の通信方法は、
 コアネットワークから受信した下りデータを、自局と他の基地局とを経由して端末に送信可能な基地局による通信方法であって、
 フロー制御の可不可を識別可能な情報を前記他の基地局に送信する。
 本発明によれば、第2の基地局から第1の基地局にフィードバックするフロー制御信号を不要とすることができるという効果が得られる。
Dual Connectivityを実現する無線通信システムの全体構成の一例を示す図である。 Dual ConnectivityにおけるC-planeの接続構成の一例を示す図である。 Dual ConnectivityにおけるU-planeの接続構成の一例(Split bearer option)を示す図である。 Dual ConnectivityにおけるRadio Protocolの接続構成の一例(Split bearer option)を示す図である。 Dual ConnectivityにおけるU-planeの接続構成の他の例(SCG bearer option)を示す図である。 Dual ConnectivityにおけるRadio Protocolの接続構成の他の例(SCG bearer option)を示す図である。 本発明の第1の実施形態におけるMeNBの構成の一例を示すブロック図である。 本発明の第1の実施形態におけるSeNBの構成の一例を示すブロック図である。 本発明の第2の実施形態におけるMeNBの構成の一例を示すブロック図である。 本発明の第2の実施形態におけるSeNBの構成の一例を示すブロック図である。 本発明の第3の実施形態におけるDual Connectivity設定手順の一例を示すシーケンス図である。 本発明の第3の実施形態におけるMeNBによるFlow Control可不可判断処理の一例を示すフロー図である。 本発明の第3の実施形態におけるSeNB Addition Requestメッセージの一例を示す図である。 本発明の第3の実施形態におけるSeNB Addition Requestメッセージの他の例を示す図である。 本発明の第3の実施形態におけるFlow Control IndicationのIEの他の例を示す図である。 本発明の第3の実施形態におけるFlow Control IndicationのIEのさらに他の例を示す図である。 本発明の第4の実施形態におけるDual Connectivity設定手順の一例を示すシーケンス図である。 本発明の第6の実施形態におけるFlow Control PeriodのIEの一例を示す図である。 本発明の第8の実施形態におけるFlow Control Frameのフォーマットの一例を示す図である。 本発明の第8の実施形態におけるFlow Control Frameのフォーマットの他の例を示す図である。 本発明の第9の実施形態における無線通信システムの全体構成の一例を示す図である。
 以下に、本発明を実施するための形態について図面を参照して説明する。
(1)第1の実施形態
 本実施形態は、無線通信システムの全体構成自体は図1と同様であるが、MeNB20およびSeNB30に新たな機能を追加している。
 そこで、以下に、MeNB20およびSeNB30の構成について詳細に説明する。
 SeNB30は、第1の基地局である。
 MeNB20は、第2の基地局である。MeNB20は、Dual Connectivityを設定し、CNから受信したDLのパケットデータを、MeNB20(MeNB20のセル)とSeNB30とを経由してUE10に送信可能である。
 図9に、MeNB20の構成の一例を示す。
 図9に示すように、MeNB20は、通信部21を有している。
 通信部21は、Flow Controlの可不可を識別可能な情報をSeNB30に送信する。Flow Controlとは、SeNB30からFlow Control信号をフィードバックし、Flow Control信号を用いて、SeNB30に送信するDLのパケットデータのデータ量を調整することである。
 図10に、SeNB30の構成の一例を示す。
 図10に示すように、SeNB30は、通信部31を有している。
 通信部31は、Flow Controlの可不可を識別可能な情報をMeNB20から受信する。
 上述したように本実施形態においては、MeNB20は、MeNB20によるFlow Controlの可不可を識別可能な情報をSeNB30に送信する。
 したがって、SeNB30がFlow Controlの可不可を識別できるため、Flow Controlが不可の場合にSeNB30からMeNB20へのFlow Control信号を不要にできる。これにより、MeNB20のFlow Controlに関連する処理負荷を低減することができるため、本来のスループットの増加や通信の高速化といったDual Connectivityの効果を得ることができる。
 また、MeNB20が、すべてのパケットデータをSeNB30のセル経由でUE10に送信する場合に、SeNB30からMeNB20へのFlow Control信号を不要とすることができる。
(2)第2の実施形態
 本実施形態は、無線通信システムの全体構成自体は第1の実施形態と同様であるが、MeNB20およびSeNB30の構成は第1の実施形態から変更している。
 そこで、以下に、MeNB20およびSeNB30の構成について詳細に説明する。
 図9に、MeNB20の構成の一例を示す。
 図9に示すように、MeNB20は、第1の実施形態と比較して、制御部22が追加されている。
 制御部22は、MeNB20によるFlow Controlの可不可を決定する。
 通信部21は、制御部22が決定した、Flow Controlの可不可を識別可能な情報をSeNB30に送信する。
 なお、制御部22および通信部21は、上述した動作以外に、上記の背景技術で説明したMeNBの機能を実現するための動作も行うものとする。
 図10に、SeNB30の構成の一例を示す。
 図10に示すように、SeNB30は、第1の実施形態と比較して、制御部32が追加されている。
 通信部31は、Flow Controlの可不可を識別可能な情報をMeNB20から受信する。
 制御部32は、MeNB20から受信した、Flow Controlの可不可を識別可能な情報を基に、Flow Controlの可不可を識別し、MeNB20へのFlow Control信号のフィードバックを制御する。具体的には、Flow Controlが可であれば、Flow Control信号をMeNB20にフィードバックする。一方、Flow Controlが不可であれば、Flow Control信号をフィードバックしない。なお、Flow Control信号をフィードバックしない、とは、Flow Control信号をMeNB20に送信しない、と表現しても良い。
 なお、制御部32および通信部31は、上述した動作以外に、上記の背景技術で説明したSeNBの機能を実現するための動作も行うものとする。
 上述したように本実施形態においては、MeNB20は、MeNB20によるFlow Controlの可不可を識別可能な情報をSeNB30に送信する。
 したがって、SeNB30がFlow Controlの可不可を識別できるため、第1の実施形態と同様の効果が得られる。
(3)第3の実施形態
 本実施形態は、第2の実施形態の動作をより具体化したものであり、無線通信システムの全体構成とMeNB20およびSeNB30の構成とは、第2の実施形態と同様である。
 以下に、本実施形態の無線通信システムの動作について、図11を参照して説明する。
 図11に、本実施形態の無線通信システムにおけるDual Connectivityの設定手順の一例を示す。なお、図11の例は、UE10が既にConnected状態にあることを前提にしている。
 図11を参照すると、S-GW50は、ステップS101において、不図示のP-GW(Packet Data Network Gateway)からDLのパケットデータを受信するか、もしくは不図示のP-GWからCreate Bearer Requestメッセージを受信すると、ステップS102において、UE10へのE-RAB(EUTRAN-Radio Access Bearer)を設定する目的で、MME40に対し、Create Bearer Requestメッセージを送信する。
 MME40は、S-GW50からCreate Bearer Requestメッセージを受信すると、ステップS103において、UE10が在圏するMeNB20に対し、E-RAB Setup Requestメッセージを送信する。
 MeNB20の制御部22は、MME40からE-RAB Setup Requestメッセージを受信すると、ステップS104において、Dual Connectivityを設定するか否かを判断する。また、Dual Connectivityを設定する場合はFlow Controlの可不可も判断する。
 図12に、図11のステップS104におけるMeNB20によるFlow Controlの可不可の判断手順の一例を示す。
 図12を参照すると、まず、MeNB20の制御部22は、ステップS201において、UE10に設定するE-RABの通信種別を判断する。
 ステップS201において、E-RABの通信種別が音声などのリアルタイムサービスに属するものであれば、MeNB20の制御部22は、ステップS202において、Dual Connectivityを設定不要と判断し、処理を終了する。
 一方、ステップS201において、E-RABの通信種別がデータなどのノン・リアルタイムサービスに属するものであれば、続いて、MeNB20の制御部22は、ステップS203において、UE10がSeNB30の配下のセル内に在圏するかを判断する。
 ステップS203において、UE10がSeNB30の配下のセル内に在圏しなければ、MeNB20の制御部22は、ステップS202において、Dual Connectivityを設定不要と判断し、処理を終了する。
 一方、ステップS203において、UE10がSeNB30の配下のセル内に在圏すれば、MeNB20の制御部22は、ステップS204において、Dual Connectivityを設定要と判断する。
 続いて、MeNB20の制御部22は、ステップS205において、MeNB20がSeNB30と接続した場合にMeNB20の処理能力が上限を超えるか否かを判断する。
 ステップS205において、MeNB20の処理能力が上限を超えれば、MeNB20の制御部22は、ステップS206において、Flow Controlは不可と判断し、処理を終了する。
 一方、ステップS205において、MeNB20の処理能力が上限を超えなければ、MeNB20の制御部22は、ステップS207において、Flow Controlは可と判断し、処理を終了する。
 なお、ステップS205におけるFlow Controlの可不可の判断は、MeNB20の処理能力が上限を超えるか否かで判断すること以外に、その他の方法で判断することができる。
 例えば、MeNB20の負荷状況で判断することができる。例えば、MeNB20の負荷状況の指標としてCPU(Central Processing Unit)使用率を用いる場合、CPU使用率が閾値よりも高い場合に、Flow controlを不可と判断することができる。
 または、E-RABのQoS(Quality of Service)で判断することもできる。例えば、QoSの高い(即ち、プライオリティの高い)E-RABは、よりよいサービスを提供するために、Flow Controlを可と判断することができる。逆に、QoSの低い(即ち、プライオリティの低い)E-RABは、Flow Controlを不可と判断することができる。
 図11を再度参照すると、MeNB20の制御部22は、ステップS104でDual Connectivityを設定要と判断した場合、ステップS105において、ステップS104で判断したFlow Controlの可不可を識別可能な情報(Flow Control Indication)をSeNB Addition Requestメッセージに設定する。MeNB20の通信部21は、そのSeNB Addition RequestメッセージをSeNB30に送信する。ここで、Flow Control Indicationは、Flow Controlが可または不可のいずれであるかを示すIE(Information Element。情報要素)である。
 図13に、SeNB Addition Requestメッセージの一例を示す。
 図13に示すSeNB Addition Requestメッセージでは、Flow Control IndicationがE-RABリストの中に示されている。これは、Flow Control Indicationが、E-RABごとに設定されることを意味している。
 しかし、Flow Control Indicationは、E-RABごとに設定するのではなく、UE10ごとに設定しても良い。
 図14に、SeNB Addition Requestメッセージの他の例を示す。
 図14に示すSeNB Addition Requestメッセージでは、Flow Control IndicationがE-RABリストの外に示されている。これは、Flow Control Indicationが、UE10ごとに設定されることを意味している。
 図15および図16に、Flow Control IndicationのIEの他の例を示す。
 図15に示す例では、Flow Controlが可または不可のいずれであるかを“ENUMERATED”で示している。また、図16に示す例では、Flow Controlが可または不可のいずれかであるかを、“TRUE”または“FALSE”で示している。
 なお、図13~図16は、Flow Control IndicationのIEがM(Mandatory)の例を示しており、Flow Control Indicationが、Flow Controlが可または不可のいずれであるかを示している。
 しかし、Flow Control IndicationのIEがO(Option)である場合、このIEが存在しなければ、Flow Controlが不可の意味にすることができる。
 図11を再度参照すると、SeNB30の制御部32は、MeNB20からSeNB Addition Requestメッセージを受信すると、ステップS106において、Dual Connectivityを実行するための無線リソースを設定する。SeNB30の通信部31は、ステップS107において、MeNB20に対し、SeNB Addition Request Acknowledgeメッセージを返送する。
 MeNB20の通信部21は、SeNB30からSeNB Addition Request Acknowledgeメッセージを受信すると、ステップS108において、UE10に対し、RRC Connection Reconfigurationメッセージを送信し、SeNB30の無線リソース設定を行う。
 UE10は、MeNB20からRRC Connection Reconfigurationメッセージを受信すると、ステップS109において、MeNB20に対し、RRC Connection Reconfiguration Completeメッセージを返送する。
 MeNB20の通信部21は、UE10からRRC Connection Reconfiguration Completeメッセージを受信すると、ステップS110において、SeNB30に対し、SeNB Reconfiguration Completeメッセージを返送し、UE20が用意できていることを通知する。
 続いて、UE10は、ステップS111において、SeNB30に対する無線リソースの設定を行い、Random Access Procedureを実行する。
 SeNB30の通信部31は、UE10に対する無線リソースの設定が完了すると、ステップS112において、MeNB20に対し、SeNB Addition Completeメッセージを送信する。
 MeNB20の通信部21は、SeNB30からSeNB Addition Completeメッセージを受信すると、ステップS113において、MME40に対し、E-RAB Setup Responseメッセージを送信し、E-RABの設定が完了した旨を通知する。E-RAB Setup Responseメッセージには、MeNB20のIP(Internet Protocol)アドレスが設定される。
 MME40は、MeNB20からE-RAB Setup Responseメッセージを受信すると、ステップS114において、S-GW50に対し、MeNB20のIPアドレスが設定されたCreate Bearer Responseメッセージを送信する。これを受けて、S-GW50は、MeNB20との間にGTP(GPRS Tunneling Protocol。GPRS:General Packet Radio Service)トンネルを設定し、DLのパケットデータの送信が開始される。
 以降、SeNB30の通信部31は、ステップS105において、MeNB20から受信したSeNB Addition RequestメッセージのFlow Control Indicationによって、Flow Control可が通知されていれば、Flow Control信号をMeNB20にフィードバックする。一方、Flow Control不可が通知されていれば、SeNB30の通信部31は、Flow Control信号をフィードバックしない。
 上述したように本実施形態においては、MeNB20は、Flow Controlが可または不可のいずれであるかを示すFlow Control Indicationを、SeNB Addition Requestメッセージに設定してSeNB30に送信する。
 それにより、SeNB30がFlow Controlの可不可を識別できるため、第1の実施形態と同様の効果が得られる。
 なお、本実施形態においては、Flow Controlが不可の場合、MeNB20からSeNB30へ送信するDLのパケットデータのデータ量(PDCP PDUの量)は固定量となる。この場合、MeNB20が「Flow Control不可」という情報を、SeNB30だけでなくUE10に通知しても良い。UE10は、MeNB20(またはSeNB30)から「Flow Control不可」の情報が通知された場合、SeNB30からMeNB20へのフィードバックがないと判断し、UE10からMeNB20へHFN(Hyper Frame Number)の値を通知するよう制御を切り替える。
 また、Flow Controlが不可の場合、SeNB30からMeNB20へのFlow Control信号のフィードバックがないことになるため、MeNB20は、SeNB30における送信状態を知ることができない。しかし、MeNB20のPDCPとUE10のPDCPとにおけるHFNの値を一致させておく必要がある。そこで、PDCP Status ReportメッセージをUE10からMeNB20へ定期的に送信し、PDCP Status Reportメッセージを受信したMeNB20が、UE10のPDCPにおける受信状況を照らし合わせる。MeNB20が送信したが、UE10が未受信のPDCP SNがあれば、そのPDCP SNをMeNB20が再送することが考えられる。または、MeNB20は、PDCPをリセットすることを試み、UE10にRRC Connectionの再設定の手順を実行させることが考えられる。UE10がRRC Connectionを再設定することによってPDCPのSNもリセットされるので、MeNB20のPDCPとUE10のPDCPとにおけるHFNの値を一致させることができる。
(4)第4の実施形態
 第3の実施形態は、UE10が既にConnected状態にあることを前提にしている。
 これに対して、本実施形態は、UE10がIdle状態であることを前提にしている。
 以下、本実施形態の無線通信システムの動作について、図17を参照して説明する。
 図17に、本実施形態の無線通信システムにおけるDual Connectivityの設定手順を示す。なお、図17の例は、UE10がIdle状態にあることを前提にしている。
 図17を参照すると、S-GW50は、ステップS301において、不図示のP-GWからDLのパケットデータを受信すると、ステップS302において、MME40に対し、Downlink Data Notificationメッセージを送信する。
 MME40は、S-GW50からDownlink Data Notificationメッセージを受信すると、ステップS303,304において、UE10に対して、UE10が在圏するMeNB20経由でPagingを転送する。
 UE10が、ステップS305において、Pagingに応答してRRC Connection Establishメッセージを返送すると、MeNB20の通信部21は、ステップS306において、MME40に対し、Initial UE Messageを送信する。
 MME40は、MeNB20からInitial UE Messageを受信すると、ステップS307において、MeNB20に対し、Initial Context Setup Requestメッセージを送信する。
 以降、第3の実施形態の図11のステップS104~S122と同様のステップS308~S316の処理を行う。
 MeNB20の通信部21は、SeNB30からSeNB Addition Completeメッセージを受信すると、ステップS317において、MME40に対し、Initial Context Setup Responseメッセージを送信する。
 MME40は、MeNB20からInitial Context Setup Responseメッセージを受信すると、ステップS318において、S-GW50に対し、Modify Bearer Requestメッセージを送信する。S-GW50は、ステップS319において、MME40に対し、Modify Bearer Responseメッセージを送信する。
 以降、SeNB30の通信部31は、ステップS309において、MeNB20から受信したSeNB Addition RequestメッセージのFlow Control Indicationによって、Flow Control可が通知されていれば、Flow Control信号をMeNB20にフィードバックする。一方、Flow Control不可が通知されていれば、Flow Control信号をフィードバックしない。
 上述したように本実施形態においては、MeNB20は、第3の実施形態と同様に、Flow Controlが可または不可のいずれであるかを示すFlow Control Indicationを、SeNB Addition Requestメッセージに設定してSeNB30に送信する。
 それにより、SeNB30がFlow Controlの可不可を識別できるため、第1の実施形態と同様の効果が得られる。
(5)第5の実施形態
 第3および第4の実施形態は、MeNB20がFlow Control IndicationをSeNB Addition Requestメッセージに設定していた。
 これに対して、本実施形態は、MeNB20がFlow Control IndicationをSeNB Modification Requestメッセージに設定する点で、第3および第4の実施形態とは異なる。
 具体的には、第3および第4の実施形態においては、MeNB20がFlow Controlの可不可を決定した時点では、SeNB30にDual Connectivityを未設定の状態であった。そのため、MeNB20は、SeNB30に送信するSeNB Addition RequestメッセージにFlow Control Indicationを設定していた。
 これとは逆に、MeNB20がFlow Controlの可不可を決定した時点で、SeNB30にDual Connectivityを設定済みであった場合、SeNB30には新たなE-RABを追加することになる。そこで、その場合には、MeNB20は、SeNB30に送信するSeNB Modification RequestメッセージにFlow Control Indicationを設定する。
 また、MeNB20からSeNB30にFlow Control Indicationを通知した後、MeNB20の負荷状況等が変化し、Flow controlの可不可の状況が変化(可から不可へ、または、不可から可へ)する場合も考えられる。
 こうした場合も、MeNB20は、変化後のFlow Control Indicationを、SeNB Modification Requestメッセージに設定してSeNB30に送信することができる。
 上述したように本実施形態においては、MeNB20は、Flow Controlが可または不可のいずれであるかを示すFlow Control Indicationを、SeNB Modification Requestメッセージに設定してSeNB30に送信する。
 それにより、SeNB30がFlow Controlの可不可を識別できるため、第1の実施形態と同様の効果が得られる。
(6)第6の実施形態
 第3~第5の実施形態は、Flow Controlの可不可を識別可能な情報を、Flow Control Indicationとしていた。
 これに対して、本実施形態は、Flow Controlの可不可を識別可能な情報を、Flow Control信号をフィードバックする時間間隔を示すFlow Control Periodとする点で、第3~第5の実施形態とは異なる。
 図18に、Flow Control PeriodのIEの一例を示す。
 図18に示す例では、MeNB20は、Flow Control信号をフィードバックする時間間隔を、0秒から2047秒の間隔(1秒単位)で指定する。なお、時間間隔は、ミリ秒単位で指定しても良い。
 時間間隔が0である場合は、Flow Control信号のフィードバックが不要(即ち、Flow Controlが不可)を意味する。
 一方、時間間隔が0以外の値である場合は、その値は、Flow Control信号をフィードバックする時間間隔を示し、Flow Controlが可であることを意味する。
 Flow Control Periodは、SeNB Addition RequestメッセージやSeNB Modification Requestメッセージに設定して送信することができる。
 なお、Flow Control信号をフィードバックする時間間隔は種々の方法で判断することができる。
 例えば、MeNB20の負荷状況で判断することができる。例えば、MeNB20の負荷状況の指標としてCPU使用率を用いる場合、例えば、CPU使用率が高くなるにしたがって、時間間隔を長くすることができる。
 または、E-RABのQoSで判断することもできる。例えば、QoSの高い(即ち、プライオリティの高い)E-RABによりよいサービスを提供するために、E-RABのQoSが高くなるにしたがって、時間間隔を短くすることができる。
 上述したように本実施形態においては、MeNB20は、Flow Control信号をフィードバックする時間間隔を示すFlow Control PeriodをSeNB30に通知する。
 そのため、SeNB30がFlow Controlの可不可を識別できるため、第1の実施形態と同様の効果が得られる。
(7)第7の実施形態
 第3~第5の実施形態は、Flow Controlの可不可を識別可能な情報を、Flow Control Indicationとしていた。また、第6の実施形態は、Flow Controlの可不可を識別可能な情報を、Flow Control Periodとしていた。
 これに対して、本実施形態は、Flow Controlの可不可を識別可能な情報を、DLのパケットデータ(PDCP PDU)の全てをSeNB30経由でUE10に送信することを示すAll PDCP-PDUとする点で、第3~第6の実施形態とは異なる。
 具体的には、MeNB20は、SeNB Addition Requestメッセージや、SeNB Modification Requestメッセージに、All PDCP-PDUというIEを設定する。
 All PDCP-PDUは、上述したように、DLのパケットデータ(PDCP PDU)の全てをSeNB30経由でUE10に送信することを意味するものであるが、これと同時に、Flow Controlの不可をも意味する。そのため、SeNB30からMeNB20へのFlow Control信号のフィードバックは全く不要になる。これは、あるPico eNBがSeNB専用である場合に有効である。
 なお、All PDCP-PDUのIEは、M(Mandatory)またはO(Option)のどちらの設定にすることもできる。
 上述したように本実施形態においては、MeNB20は、DLのパケットデータ(PDCP PDU)の全てをSeNB30経由でUE10に送信することを示すAll PDCP-PDUをSeNB30に通知する。
 それにより、SeNB30がFlow Controlの可不可を識別できるため、第1の実施形態と同様の効果が得られる。
(8)第8の実施形態
 本実施形態は、Flow Controlの可不可を識別可能な情報を、MeNB20とSeNB30間でやり取りするFrame ProtocolもしくはUser Plane Protocolで送信する点で、第3~第7の実施形態とは異なる。Frame ProtocolもしくはUser Plane Protocolはデータを転送するプロトコルである。
 図19および図20に、Flow Controlの可不可を識別可能な情報をFrame Protocolで送信するためのFlow Control Frameのフォーマットの例を示す。
 図19に示す例は、Frame ProtocolのIEにおいて、第3~第5の実施形態と同様に、Flow Controlが可または不可のいずれであるかを示す例である。
 図19において、RAN Container Type (0x02)は、このFrameがFlow Control Frameであることを示している。
 Spareは、未使用で常に0が設定される。
 Fは0または1が設定される。1はFlow Controlが可であることを示し、0はFlow Controlが不可であることを示している。ただし、その逆に、0はFlow Controlが可、1はFlow Controlが不可を示すような定義にすることも可能である。
 図20に示す例は、Frame ProtocolのIEにおいて、第6の実施形態と同様に、Flow Control信号をSeNB30からMeNB20にフィードバックする時間間隔を示す例である。
 図20において、RAN Container Type (0x02)は、このFrameがFlow Control Frameであることを示している。
 Spareは、未使用で常に0が設定される。
 Fは、0~1023の値のいずれかが設定される。0は、Flow Controlが不可であることを示し、それ以外の値は、Flow Controlが可であり、Flow Control信号をSeNB30からMeNB20にフィードバックする時間間隔を示している。その時間間隔は1023以外も可能である。
 なお、本実施形態において、Flow Controlの可不可を識別可能な情報をFrame Protocolで送信するタイミングは、E-RABの設定が完了した後、即ち、図11の処理や図17の処理が完了した後の任意のタイミングとなる。
 また、図19および図20の使い分けの方法としては、例えば、Fとして1bit分しか割り当てられていない場合は図19を、それ以外の場合は図20を使用するといったことが考えられる。
 上述したように本実施形態においては、MeNB20はFlow Controlの可不可を識別可能な情報をFrame Protocolで送信する。
 それにより、SeNB30がFlow Controlの可不可を識別できるため、第1の実施形態と同様の効果が得られる。
(9)第9の実施形態
 第2~第8の実施形態は、MeNB20が、Flow Controlの可不可の決定や、Flow Controlが可の場合にFlow Control信号をフィードバックする時間間隔の決定を行っていた。
 これに対して、本実施形態は、オペレータがFlow Controlの可不可や、Flow Controlが可の場合にFlow Control信号をフィードバックする時間間隔を決定し、Flow Controlの可不可を識別可能な情報のO&M(Operation & Maintenance)設定を行う。
 図21に、Dual Connectivityを実現する無線通信システムの全体構成の他の例を示す。
 図21に示す無線通信システムは、図1と比較して、O&Mサーバ60が追加されている。
 Flow Controlの可不可を識別可能な情報は、オペレータがO&Mサーバ60に設定し、O&Mサーバ60がMeNB20およびSeNB30に設定する。
 上述したように本実施形態においては、O&Mサーバ60がFlow Controlの可不可を識別可能な情報をMeNB20およびSeNB30に設定する。
 それにより、SeNB30がFlow Controlの可不可を識別できるため、第1の実施形態と同様の効果が得られる。
(10)第10の実施形態
 第1~第8の実施形態は、Flow Controlの可不可を識別可能な情報を、MeNB20がSeNB30に直接送信していた。
 これに対して、本実施形態は、Flow Controlの可不可を識別可能な情報を、まず、MeNB20がUE10に送信し、UE10がSeNB30に送信する。
 具体的には、Flow Controlの可不可を識別可能な情報は、まず、MeNB20がUE10にFlow Control informationとして送信し、UE10がSeNB30にFlow Control informationとして送信する。
 上述したように本実施形態においては、Flow Controlの可不可を識別可能な情報が、MeNB20からUE10経由でSeNB30に送信される。
 それにより、SeNB30がFlow Controlの可不可を識別できるため、第1の実施形態と同様の効果が得られる。
(11)第11の実施形態
 第1~第8の実施形態は、Flow Controlの可不可を識別可能な情報を、MeNB20がSeNB30に直接送信していた。
 これに対して、本実施形態は、Flow Controlの可不可を識別可能な情報を、まず、MeNB20がCN側に送信し、CN側がSeNB30に送信する。
 具体的には、Flow Controlの可不可を識別可能な情報は、まず、MeNB20がCN内のMME40にFlow Control informationとして送信し、MME40がSeNB30にFlow Control informationとして送信する。
 上述したように本実施形態においては、Flow Controlの可不可を識別可能な情報が、MeNB20からCN経由でSeNB30に送信される。
 それにより、SeNB30がFlow Controlの可不可を識別できるため、第1の実施形態と同様の効果が得られる。
 以上、実施形態を参照して本発明を説明したが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細には、本発明の範囲内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2014年8月7日に出願された日本出願特願2014-161013を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (14)

  1.  コアネットワークから受信した下りデータを、自局と他の基地局とを経由して端末に送信可能な基地局であって、
     フロー制御の可不可を識別可能な情報を前記他の基地局に送信する通信部を有する、基地局。
  2.  前記フロー制御の可不可を識別可能な情報は、前記フロー制御が可または不可のいずれであるかを示す情報である、請求項1に記載の基地局。
  3.  前記フロー制御の可不可を識別可能な情報は、前記下りデータの全てを前記第1の基地局に送信することを示す情報である、請求項1に記載の基地局。
  4.  前記フロー制御の可不可を識別可能な情報は、前記他の基地局から自局にフロー制御信号をフィードバックする時間間隔を示す情報である、請求項1に記載の基地局。
  5.  自局が前記他の基地局と接続した場合に自局の処理能力が上限を超えるか否かに応じて、前記フロー制御の可不可を決定する制御部をさらに有する、請求項2から4のいずれか1項に記載の基地局。
  6.  自局の負荷状況に応じて、前記フロー制御の可不可を決定する制御部をさらに有する、請求項2または3に記載の基地局。
  7.  前記端末へのベアラのQoSに応じて、前記フロー制御の可不可を決定する制御部をさらに有する、請求項2または3に記載の基地局。
  8.  自局の負荷状況に応じて、前記フロー制御の可不可および前記時間間隔を決定する制御部をさらに有する、請求項4に記載の基地局。
  9.  前記端末へのベアラのQoSに応じて、前記フロー制御の可不可および前記時間間隔を決定する制御部をさらに有する、請求項4に記載の基地局。
  10.  前記制御部は、
     前記フロー制御の可不可を識別可能な情報を、SeNB Addition Requestメッセージに設定し、
     前記通信部は、
     前記SeNB Addition Requestメッセージを前記他の基地局に送信する、請求項5から9のいずれか1項に記載の基地局。
  11.  前記制御部は、
     前記フロー制御の可不可を識別可能な情報を、SeNB Modification Requestメッセージに設定し、
     前記通信部は、
     前記SeNB Modification Requestメッセージを前記他の基地局に送信する、請求項5から9のいずれか1項に記載の基地局。
  12.  前記通信部は、
     前記フロー制御の可不可を識別可能な情報を、Frame ProtocolまたはUser Plane Protocolにて前記他の基地局に送信する、請求項2から9のいずれか1項に記載の基地局。
  13.  第1の基地局と、
     コアネットワークから受信した下りデータを、自局と前記第1の基地局とを経由して端末に送信可能な第2の基地局と、を有し、
     前記第2の基地局は、
     フロー制御の可不可を識別可能な情報を前記第1の基地局に送信する、無線通信システム。
  14.  コアネットワークから受信した下りデータを、自局と他の基地局とを経由して端末に送信可能な基地局による通信方法であって、
     フロー制御の可不可を識別可能な情報を前記他の基地局に送信する、通信方法。
PCT/JP2015/067638 2014-08-07 2015-06-18 基地局、無線通信システムおよび通信方法 WO2016021306A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN201580054426.8A CN106797574B (zh) 2014-08-07 2015-06-18 基站、无线通信系统和通信方法
KR1020177005550A KR20170039701A (ko) 2014-08-07 2015-06-18 기지국, 무선 통신 시스템 및 통신 방법
KR1020197006415A KR101995693B1 (ko) 2014-08-07 2015-06-18 기지국, 무선 통신 시스템 및 통신 방법
JP2016539891A JP6233521B2 (ja) 2014-08-07 2015-06-18 基地局、無線通信システムおよび通信方法
US15/501,990 US10194350B2 (en) 2014-08-07 2015-06-18 Base station, wireless communication system, and communication method
EP15829835.6A EP3179761B1 (en) 2014-08-07 2015-06-18 Base station and communication method
EP19173771.7A EP3544334A1 (en) 2014-08-07 2015-06-18 Base station, wireless communication system, and communication method
US16/237,490 US10674406B2 (en) 2014-08-07 2018-12-31 Base station, wireless communication system, and communication method
US16/858,186 US11696180B2 (en) 2014-08-07 2020-04-24 Base station, wireless communication system, and communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-161013 2014-08-07
JP2014161013 2014-08-07

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/501,990 A-371-Of-International US10194350B2 (en) 2014-08-07 2015-06-18 Base station, wireless communication system, and communication method
US16/237,490 Continuation US10674406B2 (en) 2014-08-07 2018-12-31 Base station, wireless communication system, and communication method

Publications (1)

Publication Number Publication Date
WO2016021306A1 true WO2016021306A1 (ja) 2016-02-11

Family

ID=55263584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067638 WO2016021306A1 (ja) 2014-08-07 2015-06-18 基地局、無線通信システムおよび通信方法

Country Status (6)

Country Link
US (3) US10194350B2 (ja)
EP (2) EP3179761B1 (ja)
JP (4) JP6233521B2 (ja)
KR (2) KR20170039701A (ja)
CN (1) CN106797574B (ja)
WO (1) WO2016021306A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016125887A1 (ja) * 2015-02-06 2016-08-11 京セラ株式会社 基地局
CN109314879A (zh) * 2016-06-03 2019-02-05 瑞典爱立信有限公司 5g分离承载流控制的管理

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016021306A1 (ja) * 2014-08-07 2016-02-11 日本電気株式会社 基地局、無線通信システムおよび通信方法
WO2016152140A1 (ja) * 2015-03-25 2016-09-29 日本電気株式会社 通信装置、通信システム、制御方法
CN109547176B9 (zh) 2017-08-11 2022-07-01 华为技术有限公司 一种通信方法和装置
US20220240332A1 (en) * 2019-08-08 2022-07-28 Nec Corporation First base station, second base station, method, program, and recording medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130201841A1 (en) * 2011-08-10 2013-08-08 Interdigital Patent Holdings, Inc. Uplink feedback for multi-site scheduling

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2992563B2 (ja) 1990-11-29 1999-12-20 日本電信電話株式会社 移動通信方式
US20030135640A1 (en) * 2002-01-14 2003-07-17 Texas Instruments Incorporated Method and system for group transmission and acknowledgment
US7062568B1 (en) * 2002-01-31 2006-06-13 Forcelo Networks, Inc. Point-to-point protocol flow control extension
US20070147226A1 (en) 2005-10-27 2007-06-28 Aamod Khandekar Method and apparatus for achieving flexible bandwidth using variable guard bands
KR101187071B1 (ko) * 2006-01-05 2012-09-27 엘지전자 주식회사 이동 통신 시스템에서의 핸드오버 방법
WO2007145035A1 (ja) 2006-06-16 2007-12-21 Mitsubishi Electric Corporation 移動体通信システム及び移動端末
CN101682870B (zh) * 2007-05-24 2013-11-06 华为技术有限公司 移动通信系统、基站装置以及移动台装置
CN103024816B (zh) * 2011-09-23 2018-01-02 中兴通讯股份有限公司 数据传输方法及系统
WO2013104413A1 (en) * 2012-01-10 2013-07-18 Nokia Siemens Networks Oy Providing a radio bearer on a plurality of component carriers
CN103686834B (zh) * 2012-08-31 2018-01-26 电信科学技术研究院 一种测量上报方法及设备
US11356216B2 (en) * 2013-01-10 2022-06-07 Texas Instruments Incorporated Methods and apparatus for dual connectivity operation in a wireless communication network
US9635683B2 (en) * 2013-01-11 2017-04-25 Lg Electronics Inc. Method and apparatus for transmitting uplink control signals in wireless communication system
WO2015002466A2 (ko) * 2013-07-04 2015-01-08 한국전자통신연구원 이동 통신 시스템에서 복수 연결을 지원하기 위한 제어 방법 및 복수 연결 지원 장치
EP2830352A1 (en) * 2013-07-24 2015-01-28 Panasonic Intellectual Property Corporation of America Efficient discard mechanism in small cell deployment
US10206147B2 (en) * 2013-12-19 2019-02-12 Qualcomm Incorporated Serving gateway relocation and secondary node eligibility for dual connectivity
EP3089511B1 (en) * 2013-12-24 2019-04-24 KYOCERA Corporation Mobile communication system, base station, processor and user terminal
WO2015108291A1 (en) * 2014-01-17 2015-07-23 Lg Electronics Inc. Bearer setup method and apparatus in wierless communication system supporting dual connectivity
US10237911B2 (en) * 2014-01-30 2019-03-19 Intel IP Corporation Packet data convergence protocol (PDCP) enhancements in dual-connectivity networks
US9867148B2 (en) * 2014-01-31 2018-01-09 Nokia Solutions And Networks Oy Power control for transmissions to first and second base stations
EP4181440A1 (en) * 2014-01-31 2023-05-17 Nokia Solutions and Networks Oy Backhaul errors in dual connectivity
WO2015115959A1 (en) * 2014-01-31 2015-08-06 Telefonaktiebolaget L M Ericsson (Publ) A method between two enbs to agree on radio resource configuration for a ue which supports dual connectivity between the enbs
WO2015115992A1 (en) * 2014-01-31 2015-08-06 Telefonaktiebolaget L M Ericsson (Publ) A ue, a secondary enb and a master enb implementing dual connectivity and respective method performed thereby for calculating a system frame number's offset
WO2015115964A1 (en) * 2014-01-31 2015-08-06 Telefonaktiebolaget L M Ericsson (Publ) A master and second evolved node b and method performed thereby for modifying a radio resource of the senb with respect to a ue currently being connected to the menb
CN104853382B (zh) * 2014-02-18 2020-08-25 中兴通讯股份有限公司 一种信息交互方法、系统以及基站
US10045362B2 (en) * 2014-04-15 2018-08-07 Telefonaktiebolaget Lm Ericsson (Publ) Uplink based selection of downlink connectivity configuration
US9838282B2 (en) * 2014-05-09 2017-12-05 Telefonaktiebolaget Lm Ericsson (Publ) PDCP and flow control for split bearer
US9867096B2 (en) * 2014-05-09 2018-01-09 Telefonaktiebolaget Lm Ericsson (Publ) Uplink reconfiguration for split bearer in dual connectivity
WO2016010258A1 (en) * 2014-07-15 2016-01-21 Lg Electronics Inc. Method for handling an unknown mac pdu and device therefor
WO2016013814A1 (en) * 2014-07-23 2016-01-28 Samsung Electronics Co., Ltd. Method and apparatus for generating and transmitting power headroom report in mobile communication system
WO2016021306A1 (ja) * 2014-08-07 2016-02-11 日本電気株式会社 基地局、無線通信システムおよび通信方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130201841A1 (en) * 2011-08-10 2013-08-08 Interdigital Patent Holdings, Inc. Uplink feedback for multi-site scheduling

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BLACKBERRY UK LIMITED: "Necessity of flow control for various U-plane alternatives", 3GPP TSG RAN WG2 MEETING #84 R2-134116, 1 November 2013 (2013-11-01), XP055398192 *
NEC: "Flow Control function over X2 for Dual connectivity", 3GPP TSG-RAN WG3#83BIS R3-140679, 21 March 2014 (2014-03-21), XP050820737 *
NTT DOCOMO, INC.: "Necessity of flow control for inter-node UP aggregation", 3GPP TSG-RAN WG2 #83 R2-132438, 10 August 2013 (2013-08-10), XP050718397 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016125887A1 (ja) * 2015-02-06 2016-08-11 京セラ株式会社 基地局
JPWO2016125887A1 (ja) * 2015-02-06 2017-10-19 京セラ株式会社 基地局及び方法
JP2018033172A (ja) * 2015-02-06 2018-03-01 京セラ株式会社 基地局、方法、及びシステム
CN109314879A (zh) * 2016-06-03 2019-02-05 瑞典爱立信有限公司 5g分离承载流控制的管理
JP2019525514A (ja) * 2016-06-03 2019-09-05 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 5gスプリットベアラフロー制御の管理
US10694425B2 (en) 2016-06-03 2020-06-23 Telefonaktiebolaget Lm Ericsson (Publ) Management of 5G split bearer flow control
CN109314879B (zh) * 2016-06-03 2021-11-23 瑞典爱立信有限公司 5g分离承载流控制的管理
JP7071290B2 (ja) 2016-06-03 2022-05-18 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 5gスプリットベアラフロー制御の管理

Also Published As

Publication number Publication date
JP6885427B2 (ja) 2021-06-16
JP6569714B2 (ja) 2019-09-04
US20170230867A1 (en) 2017-08-10
JP7120383B2 (ja) 2022-08-17
EP3544334A1 (en) 2019-09-25
US10674406B2 (en) 2020-06-02
JPWO2016021306A1 (ja) 2017-05-25
CN106797574B (zh) 2021-04-06
EP3179761B1 (en) 2022-06-01
US11696180B2 (en) 2023-07-04
KR20170039701A (ko) 2017-04-11
JP6233521B2 (ja) 2017-11-22
JP2019208263A (ja) 2019-12-05
KR20190026960A (ko) 2019-03-13
EP3179761A4 (en) 2018-04-25
US10194350B2 (en) 2019-01-29
US20190141576A1 (en) 2019-05-09
EP3179761A1 (en) 2017-06-14
KR101995693B1 (ko) 2019-10-01
JP2018038065A (ja) 2018-03-08
JP2021114800A (ja) 2021-08-05
CN106797574A (zh) 2017-05-31
US20200252834A1 (en) 2020-08-06

Similar Documents

Publication Publication Date Title
EP3610673B1 (en) Access node and methods for handovers in a dual connectivity communications system
JP7120383B2 (ja) 基地局および通信方法
US10039086B2 (en) Communication method and apparatus in network environment where terminal may have dual connectivity to multiple base stations
EP2999296B1 (en) Configuring a discard timer
JP5920801B2 (ja) データ転送方法、装置、および通信システム
EP2932784B1 (en) Node apparatus and method for establishing auxiliary bearers
CN106537846B (zh) 通信系统
JP6442038B2 (ja) ユーザ機器及び基地局のデュアルコネクティビティにおけるハンドオーバのための方法及び装置
EP3557939B1 (en) Dual connection method and access network equipment
EP3174345B1 (en) Method, apparatus and system for reporting power headroom report in dual-connection
WO2013013638A1 (zh) 移动负载均衡处理方法、中继节点、宿主基站、和通讯系统
EP2836047B1 (en) Method and system for initiating data transmission, a secundary node and computer program product
EP3267724A1 (en) Data transmission method for use during base station handover, user device and base station, and storage medium
CN111213404A (zh) 承载分离方法,用户装置和基站
CN103067937B (zh) 状态信息处理方法与系统
CN105792292B (zh) 一种基站切换方法、系统及相关装置
EP3840474B1 (en) Multi-hop data transmission method and apparatus
WO2022098279A1 (en) Methods and network nodes for handling congestion associated with control plane
WO2016101617A1 (zh) 一种切换流程中安全信息的处理方法、接入网关及基站
US20230189096A1 (en) Methods and Radio Network Nodes for Handling Communication
WO2016101468A1 (zh) 移动性管理方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15829835

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016539891

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177005550

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015829835

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015829835

Country of ref document: EP