WO2016021306A1 - 基地局、無線通信システムおよび通信方法 - Google Patents
基地局、無線通信システムおよび通信方法 Download PDFInfo
- Publication number
- WO2016021306A1 WO2016021306A1 PCT/JP2015/067638 JP2015067638W WO2016021306A1 WO 2016021306 A1 WO2016021306 A1 WO 2016021306A1 JP 2015067638 W JP2015067638 W JP 2015067638W WO 2016021306 A1 WO2016021306 A1 WO 2016021306A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- base station
- flow control
- senb
- menb
- information
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/10—Flow control between communication endpoints
- H04W28/12—Flow control between communication endpoints using signalling between network elements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/24—Cell structures
- H04W16/32—Hierarchical cell structures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/0268—Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/08—Access point devices
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W92/00—Interfaces specially adapted for wireless communication networks
- H04W92/16—Interfaces between hierarchically similar devices
- H04W92/20—Interfaces between hierarchically similar devices between access points
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/10—Connection setup
- H04W76/15—Setup of multiple wireless link connections
Definitions
- the present invention relates to a base station, a wireless communication system, and a communication method.
- 3GPP 3rd Generation Partnership Project
- eNode B eNode B
- UE User Equipment
- EUTRAN Evolved UMTS Terrestrial Radio Access Network.
- UMTS Universal Mobile Telecommunications System
- Fig. 1 shows an example of the configuration of a wireless communication system that realizes Dual Connectivity.
- MeNodeB Master10eNodeNodeB, hereinafter referred to as MeNB
- SeNB SeNodeB
- MME Mobility Management Entity
- S-GW Serving Gateway
- the MeNB 20 is a master cell base station.
- SeNB30 is a small cell base station.
- the cell (SCG: Secondary : Cell Group) under the control of SeNB 30 is located within the cover area of the cell (MCG: Master Cell Group) under the control of MeNB20.
- UE10 is a terminal which receives DL (DownLink) packet data from two MeNB20 and SeNB30. Note that the UE 10 transmits UL (UpLink) packet data only to the MeNB 20 or to the two MeNBs 20 and the SeNB 30.
- DL DownLink
- UL UpLink
- the MME 40 is a core network device arranged in a CN (Core Network) and performs C (Control) -plane transmission and UE 10 mobility management.
- the S-GW 50 is a core network device arranged in the CN, and transmits U (User) -plane packet data.
- MeNB20 and SeNB30 are connected via X2 Interface, and MME40 and S-GW50, MeNB20 and SeNB30 are connected via S1 Interface.
- Fig. 2 shows an example of the C-plane connection configuration in Dual Connectivity.
- the C-plane is connected.
- the connection of the UE 10 in the Dual-Connectivity connection state is only the S1-MME between the MeNB 20 and the MME 40.
- RRC Radio
- Connection of UE10 exists only in the radio area between MeNB20. That is, there is no RRC Connection in the wireless section between at least the UE 10 and the SeNB 30.
- SeNB30 may produce the signal information relevant to the RRC message to UE10, and may transmit the created signal information to UE10 via MeNB20.
- U-plane connection configuration in Dual Connectivity includes Split bearer option configuration and SCG bearer option configuration.
- FIG. 3 shows an example of the U-plane connection configuration for the Split-bearer option configuration.
- FIG. 4 shows an example of a radio-protocol connection configuration in the case of a split-bearer option configuration.
- the DL packet data of the U-plane is transmitted only from the S-GW 50 to the MeNB 20, and not transmitted to the SeNB 30.
- the bearer from MeNB 20 to UE 10 is referred to as MCG bearer
- the bearer from SeNB 30 to UE 10 is referred to as SCG bearer (the same in FIGS. 5 and 6 described later). ).
- UE10, MeNB20, and SeNB30 are taking the layer structure which consists of PDCP (PacketDataConvergenceProtocol) layer, RLC (RadioLinkControl) layer, and MAC (MediumAccessControl) layer.
- PDCP PacketDataConvergenceProtocol
- RLC RadioLinkControl
- MAC MediumAccessControl
- the packet data of the U-plane DL received from the S-GW 50 is accepted by the PDCP layer.
- one PDCP layer (the layer on the right side in FIG. 4) of the MeNB 20 transmits some packet data (PDCPProPDU (Protocol Data Unit)) to the UE 10 via a cell under its own control.
- Packet data (PDCP PDU) can be transmitted to the UE 10 via the SeNB 30. That is, in the PDCP layer of MeNB 20, U-plane packet data can be separated (split).
- the MeNB 20 feeds back a Flow Control signal (flow control signal) from the SeNB 30 for the purpose of fully using the resources of the SeNB30 without squeezing the resources of the SeNB30.
- Flow Control flow control for adjusting the data amount (PDCP-PDU amount) of DL packet data to be transmitted to the SeNB 30 using the Control signal is introduced.
- the Flow Control signal includes information indicating the transmission status of the SeNB 30 to the UE 10 of the DL packet data received from the MeNB 20, and information indicating the remaining buffer amount of the SeNB 30.
- the Flow control signal may include, for example, information on the transmission power of the SeNB 30, the number of bearers that can be accommodated by the SeNB 30, and the maximum bit rate that can be accommodated by the SeNB 30.
- the MeNB 20 transmits the packet data of PDCP SN (Sequence Number) # 100, # 102, # 104, # 106, and # 108 to the UE 10 via the cell under its control. On the other hand, MeNB 20 transmits packet data of PDCP30SN # 101, # 103, # 105, # 107, # 109, and # 111 to SeNB30.
- PDCP SN Sequence Number
- SeNB30 has received all the packet data of PDCP SN # 101, # 103, # 105, # 107, # 109, and # 111 and was able to transmit to UE10. Further, it is assumed that the SeNB 30 determines that all packet data has been transmitted by receiving RLC Ack from the UE 10. In this case, SeNB30 feeds back SN # 111 as PDCP
- the MeNB 20 indicates the SN # 111 as “the PDCP SN that has received RLC Ack from the UE 10 last in order” to the MeNB 20, so that the MeNB 20 can obtain the PDCP SN # 101, It can be determined that all of the packet data has been transmitted to the UE 10.
- reception of RLC Ack from UE 10 corresponds to reception of Status PDU (or Status Report) as described in Non-Patent Document 1 (3GPP TS 36.322 V12.0.0).
- the MeNB 20 determines that all of the packet data (PDCP PDU) transmitted to the SeNB 30 has been transmitted to the UE 10, the MeNB 20 looks at the remaining buffer amount of the SeNB 30, and then the amount of packet data (PDCP ⁇ PDU amount to be transmitted to the SeNB 30) ).
- the SCG bearer option configuration is not related to the present invention, but will be briefly described below for reference.
- Fig. 5 shows an example of the U-plane connection configuration in the case of the SCG bearer option configuration.
- FIG. 6 shows an example of the radio protocol connection configuration in the case of the SCG bearer option configuration.
- U-plane DL packet data is transmitted from the S-GW 50 to both the MeNB 20 and the SeNB 30, via the cells under each of the MeNB 20 and the SeNB 30. Is transmitted to UE10.
- packet data transmitted and received between CN and UE10 does not go through X2-U.
- X2-U is used to perform Data Forwarding that forwards packet data remaining in one of MeNB 20 or SeNB 30 to the other.
- the second base station receives the downlink data received from the CN via the own station and the first base station (SeNB) (UE).
- the first base station SeNB
- the second base station when the second base station is a macro base station, the second base station may be connected to many first base stations.
- the processing load related to the Flow Control of the second base station increases.
- effects such as an increase in throughput and an increase in communication speed, which are originally aimed at Dual Connectivity, may not be obtained.
- the second base station can be prevented from passing through a cell under its control. That is, the second base station can transmit all packet data to the terminal via the cell of the first base station.
- the first base station may be a SeNB dedicated to Dual Connectivity in the second base station, and in this case, the Flow Control signal from the first base station is not required.
- the first base station is not directly connected to the MME in order to reduce the connection load to the MME. That is, in this configuration, Pico eNB having the SeNB function is dedicated to SeNB.
- one of the objects to be achieved by the embodiments disclosed in the present specification is to provide a base station, a wireless communication system, and a communication method that can solve the above-described problems.
- the base station of the present invention A base station capable of transmitting downlink data received from a core network to a terminal via its own station and another base station, It has a communication part which transmits the information which can identify flow control availability to the other base station.
- the wireless communication system of the present invention includes: A first base station; A second base station capable of transmitting downlink data received from the core network to the terminal via the local station and the first base station;
- the second base station is Information capable of identifying whether flow control is possible is transmitted to the first base station.
- the communication method of the present invention includes: A communication method by a base station capable of transmitting downlink data received from a core network to a terminal via its own station and another base station, Information capable of identifying whether flow control is possible is transmitted to the other base station.
- SeNB 30 is a first base station.
- the MeNB 20 is a second base station.
- the MeNB 20 can set Dual Connectivity and transmit the DL packet data received from the CN to the UE 10 via the MeNB 20 (MeNB 20 cell) and the SeNB 30.
- FIG. 9 shows an example of the configuration of MeNB20.
- the MeNB 20 has a communication unit 21.
- the communication unit 21 transmits to the SeNB 30 information that can identify whether Flow Control is possible.
- Flow Control is to feed back a Flow Control signal from the SeNB 30 and adjust the data amount of DL packet data transmitted to the SeNB 30 using the Flow Control signal.
- FIG. 10 shows an example of the configuration of SeNB30.
- the SeNB 30 has a communication unit 31.
- the communication unit 31 receives information from the MeNB 20 that can identify whether the flow control is possible.
- the MeNB 20 transmits information to the SeNB 30 that can identify the availability of the flow control by the MeNB 20.
- the SeNB 30 can identify whether or not the Flow Control is possible, the Flow Control signal from the SeNB 30 to the MeNB 20 can be made unnecessary when the Flow Control is not possible. Thereby, since the processing load related to Flow Control of MeNB20 can be reduced, the effect of Dual Connectivity such as increase of original throughput and speeding up of communication can be obtained.
- the Flow control signal from SeNB30 to MeNB20 can be made unnecessary.
- FIG. 9 shows an example of the configuration of MeNB20.
- the MeNB 20 has a control unit 22 added as compared to the first embodiment.
- the control unit 22 determines whether the flow control by the MeNB 20 is possible.
- the communication unit 21 transmits to the SeNB 30 information that can be identified by the control unit 22 as to whether the flow control is possible.
- control part 22 and the communication part 21 shall also perform operation
- FIG. 10 shows an example of the configuration of SeNB30.
- control part 32 is added to SeNB30 compared with 1st Embodiment.
- the communication unit 31 receives information from the MeNB 20 that can identify whether the flow control is possible.
- the control unit 32 identifies the availability of Flow® Control based on the information received from MeNB 20 that can identify the availability of Flow® Control, and controls the feedback of the Flow® Control signal to MeNB 20. Specifically, if Flow Control is possible, the Flow Control signal is fed back to MeNB20. On the other hand, if Flow Control is not possible, the Flow Control signal is not fed back. Note that “no feedback of the flow control signal” may be expressed as not transmitting the flow control signal to the MeNB 20.
- control part 32 and the communication part 31 shall perform the operation
- the MeNB 20 transmits information to the SeNB 30 that can identify the availability of the flow control by the MeNB 20.
- the SeNB 30 can identify the availability of Flow Control, the same effect as in the first embodiment can be obtained.
- This embodiment is a more specific operation of the second embodiment.
- the overall configuration of the wireless communication system and the configurations of the MeNB 20 and the SeNB 30 are the same as those of the second embodiment. It is the same.
- FIG. 11 shows an example of the procedure for setting Dual Connectivity in the wireless communication system of this embodiment. Note that the example in FIG. 11 is based on the assumption that the UE 10 is already in the Connected state.
- step S101 the S-GW 50 receives DL packet data from a P-GW (Packet Data) Network Gateway) (not shown) or sends a Create Bearer Request message from the P-GW (not shown).
- P-GW Packet Data
- step S102 a Create Bearer Request message is transmitted to the MME 40 for the purpose of setting E-RAB (EUTRAN-Radio Access Bearer) to the UE10.
- E-RAB EUTRAN-Radio Access Bearer
- the MME 40 When receiving the Create ⁇ ⁇ Bearer Request message from the S-GW 50, the MME 40 transmits an E-RAB Setup Request message to the MeNB 20 where the UE 10 is located in Step S103.
- the control unit 22 of the MeNB 20 determines whether or not to set Dual Connectivity in step S104. In addition, when setting Dual Connectivity, it is also determined whether Flow Control is possible.
- FIG. 12 shows an example of a procedure for determining whether or not Flow Control is possible by the MeNB 20 in step S104 of FIG.
- the control unit 22 of the MeNB 20 determines an E-RAB communication type set in the UE 10 in step S201.
- step S201 If it is determined in step S201 that the E-RAB communication type belongs to a real-time service such as voice, the control unit 22 of the MeNB 20 determines that dual connectivity is not required to be set in step S202 and ends the process.
- the control unit 22 of the MeNB 20 then moves the UE 10 into the cell under the SeNB 30 in step S203. Determine if you are in the area.
- step S203 if the UE 10 is not located in the cell under the control of the SeNB 30, the control unit 22 of the MeNB 20 determines that dual connectivity is not required to be set in step S202, and ends the process.
- step S203 if UE10 exists in the cell under control of SeNB30 in step S203, the control part 22 of MeNB20 will judge that Dual Connectivity needs to be set in step S204.
- control unit 22 of the MeNB 20 determines whether or not the processing capability of the MeNB 20 exceeds the upper limit when the MeNB 20 is connected to the SeNB 30 in step S205.
- step S205 if the processing capability of the MeNB 20 exceeds the upper limit, the control unit 22 of the MeNB 20 determines that the flow control is impossible in step S206, and ends the processing.
- step S205 determines that the flow control is acceptable in step S207, and ends the processing.
- step S205 determination of whether or not Flow Control is possible in step S205 can be determined by other methods besides determining whether the processing capability of the MeNB 20 exceeds the upper limit.
- a CPU Central Processing Unit
- QoS Quality of Service
- an E-RAB having a high QoS ie, a high priority
- an E-RAB having a low QoS that is, a low priority
- QoS Quality of Service
- Step S105 information that can identify whether the Flow Control determined in Step S104 is possible (Flow Control Indication). )
- Flow Control Indication is an IE (Information Element) indicating whether Flow Control is possible or not.
- FIG. 13 shows an example of a SeNB Addition Request message.
- Flow Control Indication is indicated in the E-RAB list. This means that Flow Control Indication is set for each E-RAB.
- Flow Control Indication may be set for each UE 10 instead of for each E-RAB.
- FIG. 14 shows another example of the SeNB Addition Request message.
- Flow Control Indication is indicated outside the E-RAB list. This means that Flow Control Indication is set for each UE 10.
- 13 to 16 show examples in which the IE of the Flow Control Indication is M (Mandatory), and the Flow Control Indication indicates whether the Flow Control is possible or not.
- Flow IE can be disabled if this IE does not exist.
- the control unit 32 of the SeNB 30 when receiving the SeNB ⁇ ⁇ Addition Request message from the MeNB 20, the control unit 32 of the SeNB 30 sets a radio resource for executing Dual Connectivity in step S106.
- the communication unit 31 of the SeNB 30 returns a SeNB30Addition Request Acknowledge message to the MeNB 20 in step S107.
- the communication unit 21 of the MeNB 20 receives the SeNB Addition Request Acknowledge message from the SeNB 30, the RRC Connection Reconfiguration message is transmitted to the UE 10 in step S108, and the radio resource setting of the SeNB 30 is performed.
- the UE 10 When the UE 10 receives the RRC Connection Reconfiguration message from the MeNB 20, the UE 10 returns an RRC Connection Reconfiguration Complete message to the MeNB 20 in Step S109.
- the SeNB110Reconfiguration Complete message is returned to the SeNB 30 in step S110 to notify that the UE 20 is ready.
- step S111 the UE 10 sets a radio resource for the SeNB 30, and executes Random Access Procedure.
- the communication unit 31 of the SeNB 30 transmits a SeNB Addition Complete message to the MeNB 20 in step S112.
- the communication unit 21 of the MeNB 20 transmits an E-RAB Setup Response message to the MME 40 in step S113, notifying that the E-RAB setting has been completed.
- the IP (Internet Protocol) address of MeNB 20 is set in the E-RAB Setup Response message.
- the MME 40 When the MME 40 receives the E-RAB Setup Response message from the MeNB 20, the MME 40 transmits a Create Bearer Response message in which the IP address of the MeNB 20 is set to the S-GW 50 in Step S114. In response to this, the S-GW 50 sets up a GTP (GPRS Tunneling Protocol) GPRS (General Packet Packet Radio Service) tunnel with the MeNB 20, and transmission of DL packet data is started.
- GTP GPRS Tunneling Protocol
- GPRS General Packet Packet Radio Service
- the communication unit 31 of the SeNB 30 feeds back the Flow Control signal to the MeNB 20 if the Flow Control Control Indication of the SeNB Addition Request message received from the MeNB 20 is notified in Step S105. On the other hand, if the Flow Control impossibility is notified, the communication unit 31 of the SeNB 30 does not feed back the Flow Control signal.
- the MeNB 20 sets the Flow Control Indication indicating whether the Flow Control is permitted or not in the SeNB Addition Request message and transmits it to the SeNB 30.
- SeNB30 can identify the availability of Flow®Control, the same effect as the first embodiment can be obtained.
- the data amount of DL packet data (amount of PDCP-PDU) transmitted from MeNB 20 to SeNB 30 is a fixed amount.
- MeNB20 may notify not only SeNB30 but UE10 of the information "Flow Control impossible”.
- UE10 judges that there is no feedback from SeNB30 to MeNB20 when the information of "Flow Control impossible” is notified from MeNB20 (or SeNB30), and notifies the value of HFN (Hyper frame Number) from UE10 to MeNB20. Switch control.
- the PDCP Status Report message is periodically transmitted from the UE 10 to the MeNB 20, and the MeNB 20 that has received the PDCP Status Report message checks the reception status of the UE 10 in PDCP. If MeNB20 has transmitted, but there is PDCP SN that UE10 has not received, it is conceivable that MeNB20 retransmits the PDCP SN.
- the MeNB 20 may attempt to reset PDCP and cause the UE 10 to execute the procedure for resetting RRC Connection. Since the UE 10 resets the RRC Connection, the PDCP SN is also reset, so that the HFN values in the MeNB 20 PDCP and the UE 10 PDCP can be matched.
- the present embodiment is based on the premise that the UE 10 is in the idle state.
- FIG. 17 shows the procedure for setting Dual Connectivity in the wireless communication system of this embodiment. Note that the example in FIG. 17 is based on the assumption that the UE 10 is in the idle state.
- the S-GW 50 upon receiving DL packet data from a P-GW (not shown) in step S301, the S-GW 50 transmits a Downlink Data Notification message to the MME 40 in step S302.
- the MME 40 When receiving the Downlink Data Notification message from the S-GW 50, the MME 40 transfers Paging to the UE 10 via the MeNB 20 where the UE 10 is located in Steps S303 and S304.
- the communication unit 21 of the MeNB 20 transmits an Initial UE message to the MME 40 in step S306.
- the MME 40 When receiving the Initial UE Message from the MeNB 20, the MME 40 transmits an Initial Context Setup Request message to the MeNB 20 in Step S307.
- steps S308 to S316 similar to steps S104 to S122 of FIG. 11 of the third embodiment is performed.
- the communication unit 21 of the MeNB 20 When the communication unit 21 of the MeNB 20 receives the SeNB Addition Complete message from the SeNB 30, it transmits an Initial Context Setup Response message to the MME 40 in step S317.
- the MME 40 When the MME 40 receives the Initial Context Setup Response message from the MeNB 20, the MME 40 transmits a Modify Bearer Request message to the S-GW 50 in step S318. In step S319, the S-GW 50 transmits a Modify Bearer Response message to the MME 40.
- the communication unit 31 of the SeNB 30 feeds back the Flow Control signal to the MeNB 20 if the Flow Control Control Indication of the SeNB Addition Request message received from the MeNB 20 is notified in Step S309. On the other hand, if Flow Control impossibility is notified, the Flow Control signal is not fed back.
- the MeNB 20 sets the Flow Control Indication indicating whether the Flow Control is enabled or disabled in the SeNB 30 Addition Request message in the SeNB 30 as in the third embodiment. Send.
- SeNB30 can identify the availability of Flow®Control, the same effect as the first embodiment can be obtained.
- the MeNB 20 sets the Flow Control Indication in the SeNB Addition Request message.
- the present embodiment is different from the third and fourth embodiments in that the MeNB 20 sets the Flow Control Indication in the SeNB Modification Request message.
- the MeNB 20 determines whether or not Flow Control is possible, the Dual Connectivity is not set in the SeNB 30. For this reason, the MeNB 20 has set the Flow Control Indication in the SeNB Addition Request message to be transmitted to the SeNB 30.
- the MeNB 20 decides whether or not Flow Control is possible, if the Dual Connectivity has already been set in the SeNB 30, a new E-RAB will be added to the SeNB 30. Therefore, in that case, the MeNB 20 sets Flow Control ⁇ Indication in the SeNB Modification Request message to be transmitted to the SeNB30.
- the load status of the MeNB 20 may change, and the flow control status may change (from possible to impossible, or from impossible to possible).
- the MeNB 20 can set the changed Flow Control Indication in the SeNB Modification Request message and transmit it to the SeNB 30.
- the MeNB 20 sets the Flow Control Indication indicating whether the Flow Control is possible or not in the SeNB Modification Request message and transmits it to the SeNB 30.
- SeNB30 can identify the availability of Flow®Control, the same effect as the first embodiment can be obtained.
- the information that can identify the availability of Flow Control is Flow Control Indication.
- the present embodiment is different from the third to fifth embodiments in that the information that can identify the availability of Flow Control is Flow Control Period indicating the time interval for feeding back the Flow Control signal. Different.
- Fig. 18 shows an example of Flow Control Period IE.
- the MeNB 20 designates the time interval for feeding back the Flow Control signal in the interval from 0 to 2047 seconds (in units of 1 second).
- the time interval may be specified in milliseconds.
- the time interval is a value other than 0, the value indicates the time interval for feeding back the Flow Control signal, which means that Flow Control is possible.
- Flow Control Period can be set and transmitted in SeNB Addition Request message or SeNB Modification Request message.
- time interval for feeding back the Flow Control signal can be determined by various methods.
- the time interval can be increased as the CPU usage rate increases.
- the time interval can be shortened as the QoS of the E-RAB becomes higher.
- the MeNB 20 notifies the SeNB 30 of the Flow Control Period indicating the time interval for feeding back the Flow Control signal.
- SeNB30 can identify the availability of Flow Control, the same effect as the first embodiment can be obtained.
- the information that can identify the availability of Flow ⁇ Control is All PDCP-PDU indicating that all DL packet data (PDCP PDU) is transmitted to the UE 10 via the SeNB 30. This is different from the third to sixth embodiments.
- the MeNB 20 sets the IE called All PDCP-PDU in the SeNB Addition ⁇ Request message or the SeNB Modification Request message.
- All PDCP-PDU means that all DL packet data (PDCP ⁇ PDU) is transmitted to UE 10 via SeNB 30, but at the same time, it also means that Flow Control is disabled. . Therefore, the feedback of the Flow Control signal from the SeNB 30 to the MeNB 20 is completely unnecessary. This is effective when a certain Pico eNB is dedicated to SeNB.
- the IE of All PDCP-PDU can be set to either M (Mandatory) or O (Option).
- the MeNB 20 notifies the SeNB 30 of All PDCP-PDU indicating that all of the DL packet data (PDCP PDU) is transmitted to the UE 10 via the SeNB30.
- PDCP PDU DL packet data
- SeNB30 can identify the availability of Flow®Control, the same effect as the first embodiment can be obtained.
- the present embodiment is the third to seventh in that information that can identify whether flow control is possible is transmitted by the Frame Protocol or User Plane Protocol exchanged between the MeNB 20 and the SeNB 30. Different from the embodiment.
- Frame Protocol or User Plane Protocol is a protocol for transferring data.
- 19 and 20 show examples of the format of the Flow Control Frame for transmitting information that can identify whether Flow Control is possible using the Frame Protocol.
- the example shown in FIG. 19 is an example showing whether Flow Control is enabled or disabled in the Frame Protocol IE, as in the third to fifth embodiments.
- RAN Container Type (0x02) indicates that this Frame is a Flow Control Frame.
- ⁇ F is set to 0 or 1. 1 indicates that Flow Control is possible, and 0 indicates that Flow Control is not possible. However, conversely, 0 can be defined so that Flow Control is possible, and 1 can be defined to indicate that Flow Control is not possible.
- the example shown in FIG. 20 is an example showing a time interval in which a Flow® Control signal is fed back from the SeNB 30 to the MeNB 20 in the frame protocol IE, as in the sixth embodiment.
- RAN Container Type (0x02) indicates that this Frame is a Flow Control Frame.
- ⁇ F is set to any value between 0 and 1023. 0 indicates that Flow Control is not possible, and other values indicate time intervals in which Flow Control is possible and the Flow Control signal is fed back from the SeNB 30 to the MeNB 20.
- the time interval can be other than 1023.
- the timing for transmitting information that can identify whether Flow Control is possible or not is the timing at which Frame Protocol is transmitted after the E-RAB setting is completed, that is, the processing in FIG. 11 and the processing in FIG. 17 are completed. It will be a later arbitrary timing.
- FIG. 19 may be used when only 1 bit is allocated as F, and FIG. 20 is used otherwise.
- the MeNB 20 transmits information that can identify whether flow control is possible or not using the frame protocol.
- SeNB30 can identify the availability of Flow®Control, the same effect as the first embodiment can be obtained.
- the MeNB 20 determines whether or not the Flow Control is possible and determines the time interval for feeding back the Flow Control signal when the Flow Control is possible. It was.
- the operator determines whether or not Flow Control is possible, and when the Flow Control is enabled, determines the time interval for feeding back the Flow Control signal, and O & M of information that can identify the availability of Flow Control. Set (Operation & ance Maintenance).
- FIG. 21 shows another example of the overall configuration of the wireless communication system that realizes Dual Connectivity.
- the O & M server 60 is added to the wireless communication system shown in FIG.
- the O & M server 60 sets MeNB 20 and SeNB 30 with information that can identify the availability of Flow Control.
- SeNB30 can identify the availability of Flow®Control, the same effect as the first embodiment can be obtained.
- the MeNB 20 directly transmits information that can identify whether or not Flow Control is possible to the SeNB 30.
- MeNB 20 transmits information that can identify the availability of Flow Control to UE 10, and UE 10 transmits to SeNB 30.
- the information that can identify whether flow control is possible is first transmitted by MeNB 20 to UE 10 as Flow control information, and UE 10 transmits to SeNB 30 as Flow control information.
- information that can identify the availability of the Flow Control is transmitted from the MeNB 20 to the SeNB 30 via the UE 10.
- SeNB30 can identify the availability of Flow®Control, the same effect as the first embodiment can be obtained.
- the MeNB 20 directly transmits information that can identify whether flow control is possible or not to the SeNB 30.
- the MeNB 20 transmits information that can identify the availability of Flow Control to the CN side, and the CN side transmits to the SeNB 30.
- the information that can identify whether flow control is possible is first transmitted by the MeNB 20 to the MME 40 in the CN as flow control information, and the MME 40 transmits to the SeNB 30 as flow control information.
- information that can identify whether Flow Control is possible is transmitted from the MeNB 20 to the SeNB 30 via the CN.
- SeNB30 can identify the availability of Flow®Control, the same effect as the first embodiment can be obtained.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
コアネットワークから受信した下りデータを、自局と他の基地局とを経由して端末に送信可能な基地局であって、
フロー制御の可不可を識別可能な情報を前記他の基地局に送信する通信部を有する。
第1の基地局と、
コアネットワークから受信した下りデータを、自局と前記第1の基地局とを経由して端末に送信可能な第2の基地局と、を有し、
前記第2の基地局は、
フロー制御の可不可を識別可能な情報を前記第1の基地局に送信する。
コアネットワークから受信した下りデータを、自局と他の基地局とを経由して端末に送信可能な基地局による通信方法であって、
フロー制御の可不可を識別可能な情報を前記他の基地局に送信する。
(1)第1の実施形態
本実施形態は、無線通信システムの全体構成自体は図1と同様であるが、MeNB20およびSeNB30に新たな機能を追加している。
本実施形態は、無線通信システムの全体構成自体は第1の実施形態と同様であるが、MeNB20およびSeNB30の構成は第1の実施形態から変更している。
本実施形態は、第2の実施形態の動作をより具体化したものであり、無線通信システムの全体構成とMeNB20およびSeNB30の構成とは、第2の実施形態と同様である。
第3の実施形態は、UE10が既にConnected状態にあることを前提にしている。
第3および第4の実施形態は、MeNB20がFlow Control IndicationをSeNB Addition Requestメッセージに設定していた。
第3~第5の実施形態は、Flow Controlの可不可を識別可能な情報を、Flow Control Indicationとしていた。
第3~第5の実施形態は、Flow Controlの可不可を識別可能な情報を、Flow Control Indicationとしていた。また、第6の実施形態は、Flow Controlの可不可を識別可能な情報を、Flow Control Periodとしていた。
本実施形態は、Flow Controlの可不可を識別可能な情報を、MeNB20とSeNB30間でやり取りするFrame ProtocolもしくはUser Plane Protocolで送信する点で、第3~第7の実施形態とは異なる。Frame ProtocolもしくはUser Plane Protocolはデータを転送するプロトコルである。
第2~第8の実施形態は、MeNB20が、Flow Controlの可不可の決定や、Flow Controlが可の場合にFlow Control信号をフィードバックする時間間隔の決定を行っていた。
第1~第8の実施形態は、Flow Controlの可不可を識別可能な情報を、MeNB20がSeNB30に直接送信していた。
第1~第8の実施形態は、Flow Controlの可不可を識別可能な情報を、MeNB20がSeNB30に直接送信していた。
Claims (14)
- コアネットワークから受信した下りデータを、自局と他の基地局とを経由して端末に送信可能な基地局であって、
フロー制御の可不可を識別可能な情報を前記他の基地局に送信する通信部を有する、基地局。 - 前記フロー制御の可不可を識別可能な情報は、前記フロー制御が可または不可のいずれであるかを示す情報である、請求項1に記載の基地局。
- 前記フロー制御の可不可を識別可能な情報は、前記下りデータの全てを前記第1の基地局に送信することを示す情報である、請求項1に記載の基地局。
- 前記フロー制御の可不可を識別可能な情報は、前記他の基地局から自局にフロー制御信号をフィードバックする時間間隔を示す情報である、請求項1に記載の基地局。
- 自局が前記他の基地局と接続した場合に自局の処理能力が上限を超えるか否かに応じて、前記フロー制御の可不可を決定する制御部をさらに有する、請求項2から4のいずれか1項に記載の基地局。
- 自局の負荷状況に応じて、前記フロー制御の可不可を決定する制御部をさらに有する、請求項2または3に記載の基地局。
- 前記端末へのベアラのQoSに応じて、前記フロー制御の可不可を決定する制御部をさらに有する、請求項2または3に記載の基地局。
- 自局の負荷状況に応じて、前記フロー制御の可不可および前記時間間隔を決定する制御部をさらに有する、請求項4に記載の基地局。
- 前記端末へのベアラのQoSに応じて、前記フロー制御の可不可および前記時間間隔を決定する制御部をさらに有する、請求項4に記載の基地局。
- 前記制御部は、
前記フロー制御の可不可を識別可能な情報を、SeNB Addition Requestメッセージに設定し、
前記通信部は、
前記SeNB Addition Requestメッセージを前記他の基地局に送信する、請求項5から9のいずれか1項に記載の基地局。 - 前記制御部は、
前記フロー制御の可不可を識別可能な情報を、SeNB Modification Requestメッセージに設定し、
前記通信部は、
前記SeNB Modification Requestメッセージを前記他の基地局に送信する、請求項5から9のいずれか1項に記載の基地局。 - 前記通信部は、
前記フロー制御の可不可を識別可能な情報を、Frame ProtocolまたはUser Plane Protocolにて前記他の基地局に送信する、請求項2から9のいずれか1項に記載の基地局。 - 第1の基地局と、
コアネットワークから受信した下りデータを、自局と前記第1の基地局とを経由して端末に送信可能な第2の基地局と、を有し、
前記第2の基地局は、
フロー制御の可不可を識別可能な情報を前記第1の基地局に送信する、無線通信システム。 - コアネットワークから受信した下りデータを、自局と他の基地局とを経由して端末に送信可能な基地局による通信方法であって、
フロー制御の可不可を識別可能な情報を前記他の基地局に送信する、通信方法。
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580054426.8A CN106797574B (zh) | 2014-08-07 | 2015-06-18 | 基站、无线通信系统和通信方法 |
KR1020177005550A KR20170039701A (ko) | 2014-08-07 | 2015-06-18 | 기지국, 무선 통신 시스템 및 통신 방법 |
KR1020197006415A KR101995693B1 (ko) | 2014-08-07 | 2015-06-18 | 기지국, 무선 통신 시스템 및 통신 방법 |
JP2016539891A JP6233521B2 (ja) | 2014-08-07 | 2015-06-18 | 基地局、無線通信システムおよび通信方法 |
US15/501,990 US10194350B2 (en) | 2014-08-07 | 2015-06-18 | Base station, wireless communication system, and communication method |
EP15829835.6A EP3179761B1 (en) | 2014-08-07 | 2015-06-18 | Base station and communication method |
EP19173771.7A EP3544334A1 (en) | 2014-08-07 | 2015-06-18 | Base station, wireless communication system, and communication method |
US16/237,490 US10674406B2 (en) | 2014-08-07 | 2018-12-31 | Base station, wireless communication system, and communication method |
US16/858,186 US11696180B2 (en) | 2014-08-07 | 2020-04-24 | Base station, wireless communication system, and communication method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-161013 | 2014-08-07 | ||
JP2014161013 | 2014-08-07 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/501,990 A-371-Of-International US10194350B2 (en) | 2014-08-07 | 2015-06-18 | Base station, wireless communication system, and communication method |
US16/237,490 Continuation US10674406B2 (en) | 2014-08-07 | 2018-12-31 | Base station, wireless communication system, and communication method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016021306A1 true WO2016021306A1 (ja) | 2016-02-11 |
Family
ID=55263584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/067638 WO2016021306A1 (ja) | 2014-08-07 | 2015-06-18 | 基地局、無線通信システムおよび通信方法 |
Country Status (6)
Country | Link |
---|---|
US (3) | US10194350B2 (ja) |
EP (2) | EP3179761B1 (ja) |
JP (4) | JP6233521B2 (ja) |
KR (2) | KR20170039701A (ja) |
CN (1) | CN106797574B (ja) |
WO (1) | WO2016021306A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016125887A1 (ja) * | 2015-02-06 | 2016-08-11 | 京セラ株式会社 | 基地局 |
CN109314879A (zh) * | 2016-06-03 | 2019-02-05 | 瑞典爱立信有限公司 | 5g分离承载流控制的管理 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016021306A1 (ja) * | 2014-08-07 | 2016-02-11 | 日本電気株式会社 | 基地局、無線通信システムおよび通信方法 |
WO2016152140A1 (ja) * | 2015-03-25 | 2016-09-29 | 日本電気株式会社 | 通信装置、通信システム、制御方法 |
CN109547176B9 (zh) | 2017-08-11 | 2022-07-01 | 华为技术有限公司 | 一种通信方法和装置 |
US20220240332A1 (en) * | 2019-08-08 | 2022-07-28 | Nec Corporation | First base station, second base station, method, program, and recording medium |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130201841A1 (en) * | 2011-08-10 | 2013-08-08 | Interdigital Patent Holdings, Inc. | Uplink feedback for multi-site scheduling |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2992563B2 (ja) | 1990-11-29 | 1999-12-20 | 日本電信電話株式会社 | 移動通信方式 |
US20030135640A1 (en) * | 2002-01-14 | 2003-07-17 | Texas Instruments Incorporated | Method and system for group transmission and acknowledgment |
US7062568B1 (en) * | 2002-01-31 | 2006-06-13 | Forcelo Networks, Inc. | Point-to-point protocol flow control extension |
US20070147226A1 (en) | 2005-10-27 | 2007-06-28 | Aamod Khandekar | Method and apparatus for achieving flexible bandwidth using variable guard bands |
KR101187071B1 (ko) * | 2006-01-05 | 2012-09-27 | 엘지전자 주식회사 | 이동 통신 시스템에서의 핸드오버 방법 |
WO2007145035A1 (ja) | 2006-06-16 | 2007-12-21 | Mitsubishi Electric Corporation | 移動体通信システム及び移動端末 |
CN101682870B (zh) * | 2007-05-24 | 2013-11-06 | 华为技术有限公司 | 移动通信系统、基站装置以及移动台装置 |
CN103024816B (zh) * | 2011-09-23 | 2018-01-02 | 中兴通讯股份有限公司 | 数据传输方法及系统 |
WO2013104413A1 (en) * | 2012-01-10 | 2013-07-18 | Nokia Siemens Networks Oy | Providing a radio bearer on a plurality of component carriers |
CN103686834B (zh) * | 2012-08-31 | 2018-01-26 | 电信科学技术研究院 | 一种测量上报方法及设备 |
US11356216B2 (en) * | 2013-01-10 | 2022-06-07 | Texas Instruments Incorporated | Methods and apparatus for dual connectivity operation in a wireless communication network |
US9635683B2 (en) * | 2013-01-11 | 2017-04-25 | Lg Electronics Inc. | Method and apparatus for transmitting uplink control signals in wireless communication system |
WO2015002466A2 (ko) * | 2013-07-04 | 2015-01-08 | 한국전자통신연구원 | 이동 통신 시스템에서 복수 연결을 지원하기 위한 제어 방법 및 복수 연결 지원 장치 |
EP2830352A1 (en) * | 2013-07-24 | 2015-01-28 | Panasonic Intellectual Property Corporation of America | Efficient discard mechanism in small cell deployment |
US10206147B2 (en) * | 2013-12-19 | 2019-02-12 | Qualcomm Incorporated | Serving gateway relocation and secondary node eligibility for dual connectivity |
EP3089511B1 (en) * | 2013-12-24 | 2019-04-24 | KYOCERA Corporation | Mobile communication system, base station, processor and user terminal |
WO2015108291A1 (en) * | 2014-01-17 | 2015-07-23 | Lg Electronics Inc. | Bearer setup method and apparatus in wierless communication system supporting dual connectivity |
US10237911B2 (en) * | 2014-01-30 | 2019-03-19 | Intel IP Corporation | Packet data convergence protocol (PDCP) enhancements in dual-connectivity networks |
US9867148B2 (en) * | 2014-01-31 | 2018-01-09 | Nokia Solutions And Networks Oy | Power control for transmissions to first and second base stations |
EP4181440A1 (en) * | 2014-01-31 | 2023-05-17 | Nokia Solutions and Networks Oy | Backhaul errors in dual connectivity |
WO2015115959A1 (en) * | 2014-01-31 | 2015-08-06 | Telefonaktiebolaget L M Ericsson (Publ) | A method between two enbs to agree on radio resource configuration for a ue which supports dual connectivity between the enbs |
WO2015115992A1 (en) * | 2014-01-31 | 2015-08-06 | Telefonaktiebolaget L M Ericsson (Publ) | A ue, a secondary enb and a master enb implementing dual connectivity and respective method performed thereby for calculating a system frame number's offset |
WO2015115964A1 (en) * | 2014-01-31 | 2015-08-06 | Telefonaktiebolaget L M Ericsson (Publ) | A master and second evolved node b and method performed thereby for modifying a radio resource of the senb with respect to a ue currently being connected to the menb |
CN104853382B (zh) * | 2014-02-18 | 2020-08-25 | 中兴通讯股份有限公司 | 一种信息交互方法、系统以及基站 |
US10045362B2 (en) * | 2014-04-15 | 2018-08-07 | Telefonaktiebolaget Lm Ericsson (Publ) | Uplink based selection of downlink connectivity configuration |
US9838282B2 (en) * | 2014-05-09 | 2017-12-05 | Telefonaktiebolaget Lm Ericsson (Publ) | PDCP and flow control for split bearer |
US9867096B2 (en) * | 2014-05-09 | 2018-01-09 | Telefonaktiebolaget Lm Ericsson (Publ) | Uplink reconfiguration for split bearer in dual connectivity |
WO2016010258A1 (en) * | 2014-07-15 | 2016-01-21 | Lg Electronics Inc. | Method for handling an unknown mac pdu and device therefor |
WO2016013814A1 (en) * | 2014-07-23 | 2016-01-28 | Samsung Electronics Co., Ltd. | Method and apparatus for generating and transmitting power headroom report in mobile communication system |
WO2016021306A1 (ja) * | 2014-08-07 | 2016-02-11 | 日本電気株式会社 | 基地局、無線通信システムおよび通信方法 |
-
2015
- 2015-06-18 WO PCT/JP2015/067638 patent/WO2016021306A1/ja active Application Filing
- 2015-06-18 CN CN201580054426.8A patent/CN106797574B/zh active Active
- 2015-06-18 KR KR1020177005550A patent/KR20170039701A/ko active Application Filing
- 2015-06-18 EP EP15829835.6A patent/EP3179761B1/en active Active
- 2015-06-18 KR KR1020197006415A patent/KR101995693B1/ko active IP Right Grant
- 2015-06-18 JP JP2016539891A patent/JP6233521B2/ja active Active
- 2015-06-18 US US15/501,990 patent/US10194350B2/en active Active
- 2015-06-18 EP EP19173771.7A patent/EP3544334A1/en active Pending
-
2017
- 2017-10-23 JP JP2017204699A patent/JP6569714B2/ja active Active
-
2018
- 2018-12-31 US US16/237,490 patent/US10674406B2/en active Active
-
2019
- 2019-07-31 JP JP2019141285A patent/JP6885427B2/ja active Active
-
2020
- 2020-04-24 US US16/858,186 patent/US11696180B2/en active Active
-
2021
- 2021-05-07 JP JP2021078895A patent/JP7120383B2/ja active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130201841A1 (en) * | 2011-08-10 | 2013-08-08 | Interdigital Patent Holdings, Inc. | Uplink feedback for multi-site scheduling |
Non-Patent Citations (3)
Title |
---|
BLACKBERRY UK LIMITED: "Necessity of flow control for various U-plane alternatives", 3GPP TSG RAN WG2 MEETING #84 R2-134116, 1 November 2013 (2013-11-01), XP055398192 * |
NEC: "Flow Control function over X2 for Dual connectivity", 3GPP TSG-RAN WG3#83BIS R3-140679, 21 March 2014 (2014-03-21), XP050820737 * |
NTT DOCOMO, INC.: "Necessity of flow control for inter-node UP aggregation", 3GPP TSG-RAN WG2 #83 R2-132438, 10 August 2013 (2013-08-10), XP050718397 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016125887A1 (ja) * | 2015-02-06 | 2016-08-11 | 京セラ株式会社 | 基地局 |
JPWO2016125887A1 (ja) * | 2015-02-06 | 2017-10-19 | 京セラ株式会社 | 基地局及び方法 |
JP2018033172A (ja) * | 2015-02-06 | 2018-03-01 | 京セラ株式会社 | 基地局、方法、及びシステム |
CN109314879A (zh) * | 2016-06-03 | 2019-02-05 | 瑞典爱立信有限公司 | 5g分离承载流控制的管理 |
JP2019525514A (ja) * | 2016-06-03 | 2019-09-05 | テレフオンアクチーボラゲット エルエム エリクソン(パブル) | 5gスプリットベアラフロー制御の管理 |
US10694425B2 (en) | 2016-06-03 | 2020-06-23 | Telefonaktiebolaget Lm Ericsson (Publ) | Management of 5G split bearer flow control |
CN109314879B (zh) * | 2016-06-03 | 2021-11-23 | 瑞典爱立信有限公司 | 5g分离承载流控制的管理 |
JP7071290B2 (ja) | 2016-06-03 | 2022-05-18 | テレフオンアクチーボラゲット エルエム エリクソン(パブル) | 5gスプリットベアラフロー制御の管理 |
Also Published As
Publication number | Publication date |
---|---|
JP6885427B2 (ja) | 2021-06-16 |
JP6569714B2 (ja) | 2019-09-04 |
US20170230867A1 (en) | 2017-08-10 |
JP7120383B2 (ja) | 2022-08-17 |
EP3544334A1 (en) | 2019-09-25 |
US10674406B2 (en) | 2020-06-02 |
JPWO2016021306A1 (ja) | 2017-05-25 |
CN106797574B (zh) | 2021-04-06 |
EP3179761B1 (en) | 2022-06-01 |
US11696180B2 (en) | 2023-07-04 |
KR20170039701A (ko) | 2017-04-11 |
JP6233521B2 (ja) | 2017-11-22 |
JP2019208263A (ja) | 2019-12-05 |
KR20190026960A (ko) | 2019-03-13 |
EP3179761A4 (en) | 2018-04-25 |
US10194350B2 (en) | 2019-01-29 |
US20190141576A1 (en) | 2019-05-09 |
EP3179761A1 (en) | 2017-06-14 |
KR101995693B1 (ko) | 2019-10-01 |
JP2018038065A (ja) | 2018-03-08 |
JP2021114800A (ja) | 2021-08-05 |
CN106797574A (zh) | 2017-05-31 |
US20200252834A1 (en) | 2020-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3610673B1 (en) | Access node and methods for handovers in a dual connectivity communications system | |
JP7120383B2 (ja) | 基地局および通信方法 | |
US10039086B2 (en) | Communication method and apparatus in network environment where terminal may have dual connectivity to multiple base stations | |
EP2999296B1 (en) | Configuring a discard timer | |
JP5920801B2 (ja) | データ転送方法、装置、および通信システム | |
EP2932784B1 (en) | Node apparatus and method for establishing auxiliary bearers | |
CN106537846B (zh) | 通信系统 | |
JP6442038B2 (ja) | ユーザ機器及び基地局のデュアルコネクティビティにおけるハンドオーバのための方法及び装置 | |
EP3557939B1 (en) | Dual connection method and access network equipment | |
EP3174345B1 (en) | Method, apparatus and system for reporting power headroom report in dual-connection | |
WO2013013638A1 (zh) | 移动负载均衡处理方法、中继节点、宿主基站、和通讯系统 | |
EP2836047B1 (en) | Method and system for initiating data transmission, a secundary node and computer program product | |
EP3267724A1 (en) | Data transmission method for use during base station handover, user device and base station, and storage medium | |
CN111213404A (zh) | 承载分离方法,用户装置和基站 | |
CN103067937B (zh) | 状态信息处理方法与系统 | |
CN105792292B (zh) | 一种基站切换方法、系统及相关装置 | |
EP3840474B1 (en) | Multi-hop data transmission method and apparatus | |
WO2022098279A1 (en) | Methods and network nodes for handling congestion associated with control plane | |
WO2016101617A1 (zh) | 一种切换流程中安全信息的处理方法、接入网关及基站 | |
US20230189096A1 (en) | Methods and Radio Network Nodes for Handling Communication | |
WO2016101468A1 (zh) | 移动性管理方法及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15829835 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016539891 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20177005550 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015829835 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015829835 Country of ref document: EP |