WO2016020251A1 - Energieversorgungssystem für ein kraftfahrzeug mit elektro- oder hybridantrieb - Google Patents

Energieversorgungssystem für ein kraftfahrzeug mit elektro- oder hybridantrieb Download PDF

Info

Publication number
WO2016020251A1
WO2016020251A1 PCT/EP2015/067462 EP2015067462W WO2016020251A1 WO 2016020251 A1 WO2016020251 A1 WO 2016020251A1 EP 2015067462 W EP2015067462 W EP 2015067462W WO 2016020251 A1 WO2016020251 A1 WO 2016020251A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
energy storage
component
supply system
energy
Prior art date
Application number
PCT/EP2015/067462
Other languages
English (en)
French (fr)
Inventor
Stefan Ziegler
Gergely GALAMB
Original Assignee
Robert Bosch Gmbh
Samsung Sdi Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh, Samsung Sdi Co., Ltd. filed Critical Robert Bosch Gmbh
Priority to CN201580041519.7A priority Critical patent/CN106660458B/zh
Publication of WO2016020251A1 publication Critical patent/WO2016020251A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/12Buck converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/14Boost converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Definitions

  • the invention relates to an energy supply system for a motor vehicle with electric or hybrid drive, the energy supply system (i) having a low-voltage supply network, (ii) a high-voltage energy storage device, in particular high-voltage battery device, which in turn has a plurality of memory cells having high-voltage energy storage and at least one control and / or regulating device for this energy store and (iii) has a high-voltage power supply supplied by the high-voltage energy storage with electrical energy for supplying an electric drive machine of the electric or hybrid drive, wherein the between the electrical potentials of the two Supply networks lying potential difference of the voltage of the high-voltage energy storage is determined.
  • the invention further relates to a corresponding control and / or regulating device for a high-voltage energy storage device of an energy supply system.
  • Such an energy system with two supply networks in which the potential difference between the electrical potentials of two supply networks is determined by the voltage of a high-voltage battery designed as a high-voltage battery is known for motor vehicles with electric or hybrid drive.
  • the low-voltage supply network is the usual electrical system of the motor vehicle and has, for example, an operating voltage of 12 volts.
  • the powered by the high-voltage energy storage high-voltage power supply to supply the electric drive motor of the electric or hybrid drive usually provides a voltage of well more than 100 volts DC.
  • high-voltage supply network is meant a network isolated from the vehicle potential in at least one driving state, ⁇
  • the battery cells are usually connected in series in order to provide a high voltage and thus low currents at high powers. This results in system voltages of up to 450V in current high-voltage energy storage systems.
  • the high-voltage supply system in the vehicle is galvanically decoupled from the low-voltage supply network, ie the on-board or vehicle network or vehicle mass.
  • Such a structure is referred to in electrical engineering as an IT network.
  • the isolation distances are designed and tested for overvoltages of several kV, for example 2.7 kV. But that also means that from a potential difference of more than 2700V, a rollover can occur. It is not defined where the flashover occurs, and battery components may be damaged.
  • the control and / or regulating device designed as BCU usually has a part on the electrical potential of the high-voltage supply network on its printed circuit board (circuit board) and a part on the electrical potential of the low-voltage supply network. In between there is an isolation ditch to keep the necessary insulation distances. Signal transmission with simultaneous electrical isolation across the trench is usually via optocouplers or relays.
  • the printed circuit board is usually the weak point for flashovers between the supply networks because the dielectric strength of the components (eg of the relay) or the insulation distances on the electronics is limited for availability, space and cost reasons. If a flashover occurs, components can be damaged and cause a breakdown in the insulation between the high and low voltage parts. Thus, the high voltage safety of the battery is no longer guaranteed.
  • control and / or regulating device offers the advantage that in the control and / or interconnected components are better protected against transient overvoltages.
  • an energy supply system provision is made for this to have at least one surge arrester component and / or varistor component and / or other electrical component connected between the two supply networks, which voltage is applied up to a defined voltage limit of an applied voltage, e.g. 2.7kV, is non-conductive and becomes temporarily conductive when this voltage limit is exceeded.
  • the varistor component is a varistor component which isolates in a high-impedance manner during non-conduction.
  • This measure according to the invention makes it possible to comply with the required voltage strengths and, when the limits are exceeded, to ensure a secure equipotential bonding between the high and low-voltage potentials without damaging components.
  • the two supply networks are arranged-the bypass by the varistor component once except- galvanically separated from each other.
  • the control and / or regulating device has a circuit arrangement, which in turn has a first circuit part which is connected in the low-voltage supply network, and has a second circuit part which is interconnected in the high-voltage supply network, wherein the control - And / or control device further comprises the at least one intermediate between the two circuit parts Sprintwoodsabieiter- and / or varistor and / or other electrical component having.
  • the components / components of the control and / or regulating device are particularly effectively protected.
  • the two circuit parts are arranged on a common circuit board or at least interconnected components of both circuit parts on this circuit board, wherein also the at least one surge arrester and / or varistor and / or other electrical component is connected to this printed circuit board.
  • the surge arrester component is designed as a gas-filled surge arrester.
  • control and / or regulating device is set up to take over at least one of the following functions with regard to the high-voltage energy storage device:
  • the high-voltage supply network has an inverter (inverter), is supplied via the interconnected in the high-voltage power supply electric drive machine with electrical energy.
  • the high-voltage energy storage device of a plurality of electrically interconnected energy storage modules is modular, wherein the energy storage modules in turn each have a plurality of electrically interconnected memory cells.
  • the invention further relates to a control and / or regulating device for a
  • control and / or regulating device comprises a first circuit part, which is connectable in a low-voltage supply network of the power supply system and having a second circuit part, which is connected in the high voltage supply network of the power supply system. It is provided that the one control and / or regulating device further comprises at least one intermediate circuit between the two circuit parts. voltage diverter component and / or varistor component and / or another electrical component which is non-conductive up to a defined voltage limit of a voltage present between the supply networks and becomes temporarily conductive when this voltage limit is exceeded.
  • the energy supply system is designed as an energy supply system described above.
  • Figure 1 is a schematic representation of an energy supply system for a motor vehicle with electric or hybrid drive and
  • FIG. 2 shows a printed circuit board of a control and / or regulating device for an energy storage of the power supply system.
  • the energy supply system 10 comprises a low-voltage supply network 12, which is indicated as a frame and forms the usual vehicle or vehicle electrical system of the motor vehicle. Furthermore, the energy supply system 10 has a high-voltage supply network 14 galvanically isolated from the low-voltage supply network 12 for supplying an electric drive machine 16 of the electric or hybrid drive. The separation is symbolized by double arrows 18.
  • high-voltage supply network 14 is designed as a high-voltage battery device high-voltage energy storage device 20 is connected, which in turn has a plurality of memory cells 22 having high-voltage energy storage 24 and a control and / or regulating device 26 for this energy storage 24.
  • the control and / or regulating device 26 shown here is a battery control device or a battery management system.
  • the high-voltage energy store 24 is made up of a plurality of (in the example three) interconnected with each other electrically interconnected energy storage modules 28, wherein the energy storage modules 28 in turn each have a plurality of electrically interconnected memory cells 22.
  • the high-voltage supply network 14 has a between the energy storage 24 and the drive machine 16 intermediate inverter (inverter) 30, via which the electric drive machine 16 is supplied with electrical energy, wherein between the energy storage 24 and the inverter 30 contactors 32 are connected.
  • the control and / or regulating device 26 is connected in two supply networks 12, 14 and has an intermediate between the two supply networks 12, 14 surge arrester component 34.
  • This overvoltage arrester component 34 is designed as a gas-filled surge arrester 36.
  • control and / or regulating device 26 has a circuit arrangement 38 indicated in FIG. 2, which in turn has a first circuit part 40 which is connected in the low-voltage supply network 12 and a second circuit part 42 which is interconnected in the high-voltage supply network 14 is.
  • the two circuit parts 40, 42 are arranged on a common printed circuit board 44 or at least components of both circuit parts 40, 42 are connected on this printed circuit board 44.
  • the surge arrester component 34 arranged in the control and / or regulating device is interposed between the two circuit parts 40, 42, whereby this component too
  • Power supply system 10 and to ensure a secure potential equalization between the potentials of the two supply networks 12, 14 (the high and low voltage potentials) when exceeding the limits, without damaging components of the energy storage device 20 or other system components.
  • transient overvoltages may occur (for example, due to lightning strikes nearby). These overvoltages are defined for low-voltage networks in the standard DIN EN 60664-1 for different devices. Depending on how "close” that is
  • the maximum overvoltages are divided into different categories. To occur at the Transient overvoltages To maintain the potential separation between the high and low voltage networks, the corresponding withstand voltages must be maintained. In the worst case, overvoltages may occur above 2.7kV, so the potential difference between high voltage power supply (short HV system) 14 and low voltage power supply (short LV system) 12 (battery case or vehicle ground) is the value to which the insulation is exceeded. In this case, surge arrester device 34 (typically a gas-filled surge arrester 36) is to be inserted between the HV and LV systems.
  • the surge arrester component 34 is galvanically isolated under a threshold voltage, and when this voltage is exceeded (eg, 2.7 kV), an arc arises between the terminals, so that the two potentials are equalized. After the potential difference has fallen below a certain value, the arc extinguishes and the insulation is again galvanic. In this case, the surge arrester component 34 is not destroyed.
  • a threshold voltage e.g, 2.7 kV
  • the power supply system 10 has a "defined weak point" at the surge arrester component 34, which protects the other components
  • the arrester component 34 can be installed both on the electronics (see FIG. 2) or between components on HV (eg cables) , Busbars, cells) or LV. It is not necessary that the surge arrester
  • Component 34 is installed in the energy storage device 20, it can also be integrated elsewhere in the HV system (inverter 30, cable, motor 16). Instead of a surge arrester component 34, it would also be possible to interpose a varistor component or another electrical component (not shown) which is nonconductive up to a defined voltage limit of an applied voltage and becomes conductive when this voltage limit is exceeded.
  • a plurality of electrical components 34 which are responsible for a defined potential equalization, can be installed in different positions between the HV and LV systems. Thus, it can be ensured that at no point the maximum fused dielectric strength of n

Abstract

Die Erfindung betrifft ein Energieversorgungssystem (10) für ein Kraftfahrzeug mit Elektro-oder Hybridantrieb, mit - einem Niederspannungs-Versorgungsnetz (12), - einer Hochvolt-Energiespeichereinrichtung (20), insbesondere Hochvolt-Batterieeinrichtung, die ihrerseits einen mehrere Speicherzellen (22) aufweisenden Hochvolt-Energiespeicher (24) und mindestens eine Steuer- und/oder Regeleinrichtung (26) für diesen Energiespeicher (24) aufweist und - einem von dem Hochvolt-Energiespeicher (24) mit elektrischer Energie gespeisten Hochspannungs-Versorgungsnetz (14) zur Versorgung einer elektrischen Antriebsmaschine (16) des Elektro-oder Hybridantriebs, wobei zwischen den elektrischen Potentialen der beiden Versorgungsnetze (12, 4) eine von der Spannung des Hochvolt-Energiespeichers (24) abhängige Potentialdifferenz liegt. Es ist mindestens ein zwischen die beiden Versorgungsnetze (12, 14) zwischengeschaltetes Überspannungsableiter-Bauelement (34) und/oder Varistor-Bauelement und/oder sonstiges elektrisches Bauelement vorgesehen, welches bis zu einer definierten Spannungsgrenze einer zwischen den Versorgungsnetzen (12, 14) anliegenden Spannung nicht leitend ist und beim Überschreiten dieser Spannungsgrenze temporär leitfähig wird. Die Erfindung betrifft weiterhin eine Steuer- und/oder Regeleinrichtung (26) für eine Hochvolt-Energiespeichereinrichtung (20) eines Energieversorgungssystems (10).

Description

_
Beschreibung
Titel
Energieversorgungssystem für ein Kraftfahrzeug mit Elektro- oder Hybridantrieb
Die Erfindung betrifft ein Energieversorgungssystem für ein Kraftfahrzeug mit Elektro- oder Hybridantrieb, wobei das Energieversorgungssystem (i) ein Niederspannungs-Versorgungsnetz aufweist, (ii) eine Hochvolt- Energiespeichereinrichtung, insbesondere Hochvolt-Batterieeinrichtung, aufweist, die ihrerseits einen mehrere Speicherzellen aufweisenden Hochvolt- Energiespeicher und mindestens eine Steuer- und/oder Regeleinrichtung für diesen Energiespeicher aufweist und (iii) ein von dem Hochvolt-Energiespeicher mit elektrischer Energie gespeisten Hochspannungs-Versorgungsnetz zur Versorgung einer elektrischen Antriebsmaschine des Elektro- oder Hybridantriebs aufweist, wobei die zwischen den elektrischen Potentialen der beiden Versorgungsnetze liegende Potentialdifferenz von der Spannung des Hochvolt- Energiespeichers bestimmt wird. Die Erfindung betrifft weiterhin eine entsprechende Steuer- und/oder Regeleinrichtung für eine Hochvolt- Energiespeichereinrichtung eines Energieversorgungssystems.
Stand der Technik
Eine solches Energiesystem mit zwei Versorgungsnetzen, bei denen die zwischen den elektrischen Potentialen zweier Versorgungsnetze liegende Potentialdifferenz von der Spannung eines als Hochvolt-Batterie ausgebildeten Hochvolt- Energiespeichers bestimmt wird ist für Kraftfahrzeug mit Elektro- oder Hybridantrieb bekannt. Das Niederspannungs-Versorgungsnetz ist das übliche Bordnetz des Kraftfahrzeugs und hat beispielsweise eine Betriebsspannung von 12 Volt. Das von dem Hochvolt-Energiespeicher gespeiste Hochspannungs- Versorgungsnetz zur Versorgung der elektrischen Antriebsmaschine des Elektro- oder Hybridantriebs liefert üblicherweise eine Spannung von deutlich mehr als 100 Volt Gleichspannung. Mit Hochspannungs-Versorgungsnetz ist ein vom Fahrzeugpotenzial in mindestens einem Fahrzustand isoliertes Netz gemeint, Λ
welches eine Mindestspannungsfestigkeit zum Niederspannungsnetz des Fahrzeuges hat.
Bei Hochvolt-Batteriespeichern für Kraftfahrzeuge werden die Batteriezellen meist in Reihe geschaltet, um eine hohe Spannung und so bei hohen Leistungen geringe Ströme liefern zu müssen. Es entstehen so Systemspannungen von bis zu 450V in aktuellen Hochvolt-Energiespeichern. Aus Sicherheitsgründen ist das Hochspannungs-Versorgungsnetz im Fahrzeug galvanisch vom Niederspannungs-Versorgungsnetz, also dem Bord- oder Fahrzeugnetz bzw. der Fahrzeugmasse entkoppelt. Ein derartiger Aufbau wird in der Elektrotechnik als IT-Netz bezeichnet. Das Hochspannungs-Versorgungsnetz ist somit ein in sich geschlossener Stromkreis. Es hat (bei offenen Schützen) keinen definierten Potenzialunterschied zur Fahrzeugmasse (=Batteriegehäuse). Üblicherweise werden die Isolationsabstande auf Überspannungen von mehreren kV, beispielsweise 2,7kV, ausgelegt und getestet. Das heisst aber auch, dass ab einem Potenzialunterschied von mehr als 2700V ein Überschlag auftreten kann. Es ist hierbei nicht definiert, wo der Überschlag stattfindet und unter Umständen können Batteriekomponenten beschädigt werden.
Die als BCU (Battery control unit, Batterie-Steuergerät) ausgebildete Steuer- und/oder Regeleinrichtung hat üblicherweise auf ihrer Leiterplatte (Platine) einen Teil auf dem elektrischen Potential des Hochspannungs-Versorgungsnetzes und einen Teil auf dem elektrischen Potential des Niederspannungs- Versorgungsnetzes. Dazwischen gibt es einen Isolationsgraben, um die Notwendigen Isolationsstrecken einzuhalten. Eine Signalübertragung bei gleichzeitiger Potenzialtrennung über den Graben erfolgt meist über Optokoppler oder Relais.
Die Leiterplatte ist meist die Schwachstelle für Überschläge zwischen den Versorgungsnetzen weil die Spannungsfestigkeit der Komponenten (z. B. des Relais) beziehungsweise die Isolationsstrecken auf der Elektronik aus Verfügbar- keits-, Bauraum- und Kostengründen begrenzt ist. Wenn ein Überschlag auftritt, können Komponenten beschädigt werden und für einen Ausfall der Isolation zwischen den Hoch- und Niederspannungsteilen sorgen. Somit ist die Hochspannungssicherheit der Batterie nicht mehr gewährleistet. „
Die erfindungsgemäße Steuer- und/oder Regeleinrichtung mit den in Anspruch 1 genannten Merkmalen bietet den Vorteil, dass in der Steuer- und/oder verschaltete Bauteile besser vor transienten Überspannungen geschützt sind.
Bei dem erfindungsgemäßen ein Energieversorgungssystem ist vorgesehen, dass dieses mindestens ein zwischen die beiden Versorgungsnetze zwischengeschaltetes Überspannungsableiter-Bauelement und/oder Varistor-Bauelement und/oder sonstiges elektrisches Bauelement aufweist, welches bis zu einer definierten Spannungsgrenze einer anliegenden Spannung, z.B. 2,7kV, nicht leitend ist und beim Überschreiten dieser Spannungsgrenze temporär leitfähig wird. Das Varistor-Bauelement ist dabei ein Varistor-Bauelement, das beim Nichtleiten ho- chohmig isoliert.
Diese erfindungsgemäße Maßnahme erlaubt es, die geforderten Spannungsfestigkeiten einzuhalten und beim Überschreiten der Grenzen für einen sicheren Potenzialausgleich zwischen den Hoch- und Niederspannungspotentialen zu sorgen, ohne dass Komponenten beschädigt werden.
Mit Vorteil sind die beiden Versorgungsnetze dabei -die Überbrückung durch das Varistor-Bauelement einmal ausgenommen- voneinander galvanisch getrennt angeordnet.
Gemäß einer vorteilhaften Weiterbildung der Erfindung weist die Steuer- und/oder Regeleinrichtung eine Schaltungsanordnung auf, die ihrerseits einen ersten Schaltungsteil aufweist, der im Niederspannungs-Versorgungsnetz verschaltet ist, und einen zweiten Schaltungsteil aufweist, der im Hochspannungs- Versorgungsnetz verschaltetet ist, wobei die Steuer- und/oder Regeleinrichtung weiterhin auch das mindestens eine zwischen die beiden Schaltungsteilen zwischengeschaltete Überspannungsabieiter- und/oder Varistor- und/oder sonstige elektrische Bauelement aufweist, aufweist. Durch diese Maßnahme werden die Bauteile/Komponenten der Steuer- und/oder Regeleinrichtung besonders effektiv geschützt.
Gemäß einer weiteren vorteilhaften Ausgestaltung der Erfindung sind die beiden Schaltungsteile auf einer gemeinsamen Leiterplatte angeordnet oder zumindest Bauteile beider Schaltungsteile auf dieser Leiterplatte verschaltet, wobei auch das mindestens eine Überspannungsabieiter- und/oder Varistor- und/oder sonstige elektrische Bauelement auf dieser Leiterplatte verschaltet ist.
Bei einer bevorzugten Ausführungsform ist das Überspannungsableiter- Bauelement als gasgefüllter Überspannungsabieiter ausgebildet.
Gemäß noch einer weiteren vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, dass die Steuer- und/oder Regeleinrichtung eingerichtet ist, bezüglich der Hochvolt-Energiespeichereinrichtung zumindest eine der folgenden Funktionen zu übernehmen:
- Ladekontrolle,
- Lastmanagement,
- Bestimmung des Ladezustandes der Speicherzellen,
- Bestimmung des Gesundheitszustandes der Speicherzellen,
- Ausbalancieren der Speicherzellen,
- Thermomanagement,
- Authentifizierung und Identifizierung und
- Kommunikation der Energiespeichereinrichtung. Weiterhin ist mit Vorteil vorgesehen, dass das Hochspannungs-Versorgungsnetz einen Inverter (Wechselrichter) aufweist, über die im Hochspannungs- Versorgungsnetz verschaltete elektrische Antriebsmaschine mit elektrischer Energie versorgt wird. Schließlich ist mit Vorteil vorgesehen, dass der Hochvolt-Energiespeicher aus mehreren miteinander elektrisch verschalteten Energiespeichermodulen modular aufgebaut ist, wobei die Energiespeichermodule ihrerseits jeweils mehrere miteinander elektrisch verschaltete Speicherzellen aufweisen. Die Erfindung betrifft weiterhin eine Steuer- und/oder Regeleinrichtung für eine
Hochvolt-Energiespeichereinrichtung eines Energieversorgungssystems, wobei die Steuer- und/oder Regeleinrichtung einen ersten Schaltungsteil aufweist, der in einem Niederspannungs-Versorgungsnetz des Energieversorgungssystems verschaltbar ist und einen zweiten Schaltungsteil aufweist, der im Hochspan- nungs-Versorgungsnetz des Energieversorgungssystems verschaltbar ist. Es ist vorgesehen, dass die eine Steuer- und/oder Regeleinrichtung weiterhin mindestens ein zwischen den beiden Schaltungsteilen zwischengeschaltetes Über- spannungsableiter-Bauelement und/oder Varistor-Bauelement und/oder ein sonstiges elektrisches Bauelement, welches bis zu einer definierten Spannungsgrenze einer zwischen den Versorgungsnetzen anliegenden Spannung nicht leitend ist und beim Überschreiten dieser Spannungsgrenze temporär leitfähig wird..
Gemäß einer vorteilhaften Weiterbildung der Erfindung ist das Energieversorgungssystem als vorstehend beschriebenes Energieversorgungssystem ausgebildet.
Die Erfindung wird im Folgenden anhand von Abbildungen näher erläutert. Es zeigen
Figur 1 in einer schematischen Darstellung ein Energieversorgungssystem für ein Kraftfahrzeug mit Elektro- oder Hybridantrieb und
Figur 2 eine Leiterplatte einer Steuer- und/oder Regeleinrichtung für einen Energiespeicher des Energieversorgungssystems.
Die Figur 1 zeigt in einer schematischen Darstellung ein Energieversorgungssystem 10 für ein (nicht gezeigtes) Kraftfahrzeug mit Elektro- oder Hybridantrieb. Das Energieversorgungssystem 10 umfasst ein als Rahmen angedeutetes Niederspannungs-Versorgungsnetz 12, das das übliche Fahrzeug- oder Bordnetz des Kraftfahrzeugs bildet. Weiterhin weist das Energieversorgungssystem 10 ein vom Niederspannungs-Versorgungsnetz 12 galvanisch getrenntes Hochspannungs-Versorgungsnetz 14 zur Versorgung einer elektrischen Antriebsmaschine 16 des Elektro- oder Hybridantriebs auf. Die Trennung ist durch Doppelpfeile 18 symbolisiert. In dem Hochspannungs-Versorgungsnetz 14 ist eine als Hochvolt- Batterieeinrichtung ausgebildete Hochvolt-Energiespeichereinrichtung 20 verschaltet, die ihrerseits einen mehrere Speicherzellen 22 aufweisenden Hochvolt- Energiespeicher 24 und eine Steuer- und/oder Regeleinrichtung 26 für diesen Energiespeicher 24 aufweist. Die hier gezeigte Steuer- und/oder Regeleinrichtung 26 ist ein Batterie-Steuergrät bzw. ein Batteriemanagementsystem. Der Hochvolt-Energiespeicher 24 ist aus mehreren (im Beispiel drei) miteinander elektrisch verschalteten Energiespeichermodulen 28 modular aufgebaut, wobei die Energiespeichermodule 28 ihrerseits jeweils mehrere miteinander elektrisch verschaltete Speicherzellen 22 aufweisen. Weiterhin weist das Hochspannungs- Versorgungsnetz 14 einen zwischen den Energiespeicher 24 und die Antriebs- maschine 16 zwischengeschalteten Wechselrichter (Inverter) 30 auf, über den die elektrische Antriebsmaschine 16 mit elektrischer Energie versorgt wird, wobei zwischen dem Energiespeicher 24 und dem Wechselrichter 30 Schütze 32 verschaltet sind.
Die Steuer- und/oder Regeleinrichtung 26 ist in beiden Versorgungsnetzen 12, 14 verschaltet und weist ein zwischen die beiden Versorgungsnetze 12, 14 zwischengeschaltetes Überspannungsableiter-Bauelement 34 auf. Dieses Über- spannungsableiter-Bauelement 34 ist als gasgefüllter Überspannungsabieiter 36 ausgeführt.
Die Steuer- und/oder Regeleinrichtung 26 weist dazu eine in Fig. 2 angedeutete Schaltungsanordnung 38 auf, die ihrerseits einen ersten Schaltungsteil 40 besitzt, der im Niederspannungs-Versorgungsnetz 12 und einen zweiten Schal- tungsteil 42 auf, der im Hochspannungs-Versorgungsnetz 14 verschaltetet ist.
Die beiden Schaltungsteile 40, 42 sind auf einer gemeinsamen Leiterplatte 44 angeordnet oder es sind zumindest Bauteile beider Schaltungsteile 40, 42 auf dieser Leiterplatte 44 verschaltet. Das in der Steuer- und/oder Regeleinrichtung angeordnete Überspannungsableiter-Bauelement 34 ist dabei zwischen den bei- den Schaltungsteilen 40, 42 zwischengeschaltet, wobei auch dieses Bauelement
34 auf der Leiterplatte 44 verschaltet ist.
Es ergibt sich folgende Funktion: Die gezeigte Maßnahme erlaubt es, die geforderten Spannungsfestigkeiten des
Energieversorgungssystems 10 einzuhalten und beim Überschreiten der Grenzen für einen sicheren Potenzialausgleich zwischen den Potentialen der beiden Versorgungsnetze 12, 14 (den Hoch- und Niederspannungspotentialen) zu sorgen, ohne dass Komponenten der Energiespeichereinrichtung 20 oder andere Systemkomponenten beschädigt werden.
Bei angeschlossenem Energiespeicher 24 an das Stromversorgungsnetz 12 können (z.B. durch Blitzeinschläge in der Nähe) transiente Überspannungen auftreten. Diese Überspannungen werden für Niederspannungsnetze in der Norm DIN EN 60664-1 für unterschiedliche Geräte definiert. Je nachdem, wie„nah" das
Gerät an der Hochspannungs- Überlandleitung ist, werden die maximalen Überspannungen in unterschiedliche Kategorien eingeteilt. Um bei den auftretenden Transienten Überspannungen die Potenzialtrennung zwischen den Hoch- und Niedervoltnetzten aufrecht zu halten, müssen die entsprechenden Spannungsfestigkeiten eingehalten werden. Im ungünstigsten Fall können Überspannungen über 2,7kV auftreten, so dass der Potentialunterschied zwischen Hochspannungs-Versorgungsnetz (kurz HV- System) 14 und Niederspannungs-Versorgungsnetz (kurz LV-System) 12 (Batteriegehäuse bzw. Fahrzeugmasse) den Wert, auf den die Isolation ausgelegt ist, überschreitet. Für diesen Fall soll das Überspannungsableiter-Bauelement 34 (typischerweise ein gasgefüllter Überspannungsabieiter 36) zwischen das HV und LV-System eingebracht werden. Das Überspannungsableiter-Bauelement 34 isoliert unter einer Grenzspannung galvanisch und wenn diese Spannung überschritten wird (z.B. 2,7kV) entsteht ein Lichtbogen zwischen den Anschlüssen, so dass sich die zwei Potentiale angleichen. Nachdem der Potentialunterschied ei- nen bestimmten Wert unterschritten hat, erlischt der Lichtbogen und die Isolation ist wieder galvanisch. Dabei wird das Überspannungsableiter-Bauelement 34 nicht zerstört.
Es werden bei dem Vorgang keine Bauteile beschädigt, es entsteht kein Sicher- heitsrisiko durch die kurzzeitige Leitfähigkeit zwischen HV und LV-System. Das
Energieversorgungssystem 10 hat am Überspannungsableiter-Bauelement 34 eine„definierte Schwachstelle", die die sonstigen Komponenten schützt. Das Ab- leiter-Bauelement 34 kann dabei sowohl auf der Elektronik verbaut sein (s. Fig. 2) oder zwischen Bauteilen auf HV (z.B. Kabel, Stromschienen, Zellen) bzw. LV verbaut sein. Es ist nicht notwendig, dass das Überspannungsabieiter-
Bauelement 34 in der Energiespeichereinrichtung 20 verbaut ist, es kann auch an anderer stelle im HV System integriert sein (Inverter 30, Kabel, Motor 16). Anstatt eines Überspannungsableiter-Bauelements 34 könnte auch ein (nicht gezeigtes) Varistor-Bauelement oder ein sonstiges elektrisches Bauelement zwi- schengeschaltet sein, welche bis zu einer definierten Spannungsgrenze einer anliegenden Spannung nicht leitend ist und beim Überschreiten dieser Spannungsgrenze leitfähig werden.
Erfindungsgemäß können mehrere elektrische Bauelemente 34, die für einen de- finierten Potenzialausgleich zuständig sind, zwischen das HV und LV System jeweils an unterschiedliche Positionen verbaut werden. Somit kann sichergestellt werden, dass an keiner Stelle die maximal abgesicherte Spannungsfestigkeit der n
Komponenten überschritten wird.

Claims

R. 345589 2016/020251 Λ PCT/EP2015/067462 Ansprüche
1 . Energieversorgungssystem (10) für ein Kraftfahrzeug mit Elektro- oder Hybridantrieb, mit
- einem Niederspannungs-Versorgungsnetz (12),
- einer Hochvolt-Energiespeichereinrichtung (20), insbesondere Hochvolt- Batterieeinrichtung, die ihrerseits einen mehrere Speicherzellen (22) aufweisenden Hochvolt-Energiespeicher (24) und mindestens eine Steuer- und/oder Regeleinrichtung (26) für diesen Energiespeicher (24) aufweist und
- einem von dem Hochvolt-Energiespeicher (24) mit elektrischer Energie gespeisten Hochspannungs-Versorgungsnetz (14) zur Versorgung einer elektrischen Antriebsmaschine (16) des Elektro- oder Hybridantriebs, wobei zwischen den elektrischen Potentialen der beiden Versorgungsnetze (12, 14) eine von der Spannung des Hochvolt-Energiespeichers (24) abhängige Potentialdifferenz liegt,
gekennzeichnet durch mindestens ein zwischen die beiden Versorgungsnet- ze (12, 14) zwischengeschaltetes Überspannungsableiter-Bauelement (34) und/oder Varistor-Bauelement und/oder sonstiges elektrisches Bauelement, welches bis zu einer definierten Spannungsgrenze einer zwischen den Versorgungsnetzen (12, 14) anliegenden Spannung nicht leitend ist und beim Überschreiten dieser Spannungsgrenze temporär leitfähig wird.
2. Energieversorgungssystem (10) nach Anspruch 1 , dadurch gekennzeichnet, dass die Steuer- und/oder Regeleinrichtung (26) eine Schaltungsanordnung (38) aufweist, die ihrerseits einen ersten Schaltungsteil (40) aufweist, der im Niederspannungs-Versorgungsnetz (12) verschaltet ist, und einen zweiten Schaltungsteil (42) aufweist, der im Hochspannungs-Versorgungsnetz (14) verschaltetet ist, wobei die Steuer- und/oder Regeleinrichtung (26) weiterhin auch das mindestens eine zwischen den beiden Schaltungsteilen (40, 42) zwischengeschaltete Bauelement (34) aufweist.
3. Energieversorgungssystem (10) nach Anspruch 2, dadurch gekennzeichnet, dass die beiden Schaltungsteile (40, 42) auf einer gemeinsamen Leiterplatte (44) angeordnet sind oder zumindest Bauteile beider Schaltungsteile (40, 42) R. 345589
2016/020251 PCT/EP2015/067462
- 10 - auf dieser Leiterplatte (44) verschaltet sind und dass auch das Uberspan- nungsableiter-Bauelement (34) und/oder Varistor-Bauelement und/oder sonstige Bauelement auf dieser Leiterplatte (44) verschaltet ist.
Energieversorgungssystem (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Überspannungsableiter-Bauelement (34) als gasgefüllter Überspannungsabieiter (36) ausgebildet ist.
Energieversorgungssystem (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Steuer- und/oder Regeleinrichtung (26) eingerichtet ist, bezüglich der Hochvolt-Energiespeichereinrichtung (20) zumindest eine der folgenden Funktionen zu übernehmen:
- Ladekontrolle des Hochvolt-Energiespeichers (24),
- Lastmanagement des Hochvolt-Energiespeichers (24),
- Bestimmung des Ladezustandes der Speicherzellen (22),
- Bestimmung des Gesundheitszustandes der Speicherzellen (22),
- Ausbalancieren der Speicherzellen (22),
- Thermomanagement des Hochvolt-Energiespeichers (24),
- Authentifizierung und Identifizierung des Hochvolt-Energiespeichers (24) und
- Kommunikation der Energiespeichereinrichtung (20).
Energieversorgungssystem (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Hochspannungs-Versorgungsnetz (14) einen Wechselrichter (30) aufweist, über den die im Hochspannungs- Versorgungsnetz (14) verschaltete elektrische Antriebsmaschine (16) mit elektrischer Energie versorgt wird.
Energieversorgungssystem (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Hochvolt-Energiespeicher (24) aus mehreren miteinander elektrisch verschalteten Energiespeichermodulen (28) modular aufgebaut ist, wobei die Energiespeichermodule (28) ihrerseits jeweils mehrere miteinander elektrisch verschaltete Speicherzellen (22) aufweisen.
Steuer- und/oder Regeleinrichtung (26) für eine Hochvolt-Energiespeichereinrichtung (20) eines Energieversorgungssystems (10), insbesondere eines Energieversorgungssystems (10) nach einem der Ansprüche 1 bis 7, wobei R. 345589
2016/020251 PCT/EP2015/067462
- 11 - die Steuer- und/oder Regeleinrichtung (26) einen ersten Schaltungsteil (40) aufweist, der im Niederspannungs-Versorgungsnetz (12) des Energieversorgungssystems (10) verschaltbar ist und einen zweiten Schaltungsteil (42) aufweist, der im Hochspannungs-Versorgungsnetz (14) des Energieversorgungssystems (10) verschaltbar ist, gekennzeichnet durch mindestens einen zwischen den beiden Schaltungsteilen (40, 42) zwischengeschaltetes Über- spannungsableiter-Bauelement (34) und/oder Varistor-Bauelement und/oder ein sonstiges elektrisches Bauelement, welches bis zu einer definierten
Spannungsgrenze einer zwischen den Versorgungsnetzen (12, 14) anliegenden Spannung nicht leitend ist und beim Überschreiten dieser Spannungsgrenze temporär leitfähig wird..
PCT/EP2015/067462 2014-08-04 2015-07-30 Energieversorgungssystem für ein kraftfahrzeug mit elektro- oder hybridantrieb WO2016020251A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580041519.7A CN106660458B (zh) 2014-08-04 2015-07-30 用于具有电驱动装置或混合动力驱动装置的机动车的能量供给系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014215289.5 2014-08-04
DE102014215289.5A DE102014215289A1 (de) 2014-08-04 2014-08-04 Energieversorgungssystem für ein Kraftfahrzeug mit Elektro- oder Hybridantrieb

Publications (1)

Publication Number Publication Date
WO2016020251A1 true WO2016020251A1 (de) 2016-02-11

Family

ID=53783697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/067462 WO2016020251A1 (de) 2014-08-04 2015-07-30 Energieversorgungssystem für ein kraftfahrzeug mit elektro- oder hybridantrieb

Country Status (3)

Country Link
CN (1) CN106660458B (de)
DE (1) DE102014215289A1 (de)
WO (1) WO2016020251A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017210430A1 (de) * 2017-06-21 2018-12-27 Bayerische Motoren Werke Aktiengesellschaft Energieversorgungseinrichtung für ein Kraftfahrzeug
DE102019124213A1 (de) * 2019-09-10 2021-03-11 Audi Ag Galvanisch verbundenes AC-Ladegerät mit Überwachungs- und Diagnosesystem

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2591696A1 (en) * 1998-11-12 2000-05-12 General Electric Company Method and apparatus for a hybrid battery configuration for use in an electric or hybrid electric motive power system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1252905A (de) * 1968-05-17 1971-11-10
CA1260170A (en) * 1985-08-20 1989-09-26 Kenji Takato Subscriber line interface circuit
US4933825A (en) * 1987-04-09 1990-06-12 Isco, Inc. Power supply
KR0138266B1 (ko) * 1988-06-17 1998-06-15 제임스 씨. 워 전력제어시스템의 장치간에 절연을 제공하고 그 절연수단을 통해 전력 및 데이타를 전송하기 위한 회로
GB8827627D0 (en) * 1988-11-25 1989-05-17 Smiths Industries Plc Electrical protection assemblies
DE19707769A1 (de) * 1997-02-26 1998-09-03 Siemens Ag Einrichtung zum Schutz von elektrischen Schaltungen, insbesondere der Automobiltechnik, vor elektrostatischen Entladungen
DE10247308B3 (de) * 2002-10-10 2004-05-27 Siemens Ag Anordnung und Verfahren zum Schutz eines Zweispannungsnetzes bei Spannungsüberschläge zwischen beiden Spannungsniveaus
DE102010029299B4 (de) * 2010-05-26 2023-06-29 Robert Bosch Gmbh Verfahren zum Betreiben eines Systems, System, Steuerung und Computergrogrammprodukt
GB201119046D0 (en) * 2011-11-04 2011-12-14 Rolls Royce Plc Electrial harness
DE102012200823A1 (de) * 2012-01-20 2013-07-25 Robert Bosch Gmbh Bordnetz mit Gleichspannungswandler, Steuereinrichtung und zugehöriges Betriebsverfahren
CN103715909B (zh) * 2013-01-16 2016-06-22 株洲中车轨道交通装备有限公司 一种电力机车用电子式电压互感器及其使用方法
CN103490639A (zh) * 2013-09-27 2014-01-01 国家电网公司 一种基于全柔性控制的柔性配电变压器

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2591696A1 (en) * 1998-11-12 2000-05-12 General Electric Company Method and apparatus for a hybrid battery configuration for use in an electric or hybrid electric motive power system

Also Published As

Publication number Publication date
DE102014215289A1 (de) 2016-02-04
CN106660458B (zh) 2019-07-26
CN106660458A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
DE102017009355A1 (de) Verfahren zum Betreiben von elektrischen Bordnetzen
DE102017114339A1 (de) Sichere Energieversorgungseinrichtung für ein Fahrzeug
DE102005008766B3 (de) U-Boot-Gleichstromnetz
DE102016008263A1 (de) Batterieanordnung für ein Kraftfahrzeug
DE102018203489B4 (de) Wechselstromladevorrichtung für ein Kraftfahrzeug und Verfahren zum Betreiben einer Wechselstromladevorrichtung für ein Kraftfahrzeug
DE102013008586A1 (de) Vorladen eines Kraftfahrzeug-Hochvoltnetzes
WO2017060354A1 (de) Fahrzeugbatterievorrichtung
DE102017106058A1 (de) Batteriesystem und Verfahren zu dessen Betrieb
DE102004057694A1 (de) Bordnetz mit höherer Spannung
DE102017208030B4 (de) Bordnetz für ein Kraftfahrzeug zur Bereitstellung einer redundanten Energieversorgung für Sicherheitsverbraucher und Kraftfahrzeug
DE102016203923B4 (de) Batteriesystem mit räumlich getrennten Teilbatterien
DE102011105971A1 (de) Bordnetzanordnung für ein Kraftfahrzeug
DE102015007264B4 (de) Schnelles Übertragen von elektrischer Energie von einer Ladestation zu einem Verbraucher
WO2016020251A1 (de) Energieversorgungssystem für ein kraftfahrzeug mit elektro- oder hybridantrieb
DE102019117345A1 (de) Batteriesystem, Verfahren zum Betreiben eines Batteriesystems sowie Kraftfahrzeug
DE102021003843B4 (de) Isolationswächter und Verfahren zu dessen Betrieb
DE102018206269A1 (de) Gleichspannungswandler, Bordnetz mit einem Gleichspannungswandler
DE102014016239A1 (de) Gleichspannungswandler für ein Kraftfahrzeug und Verfahren zum Betreiben eines derartigen Gleichspannungswandlers
DE102015226587B4 (de) Batterieanschlussvorrichtung und Verfahren zum Unterbrechen einer elektrischen Verbindung zwischen einer Hochvoltbatterie und einem Kraftfahrzeug-Bordnetz
WO2022084141A1 (de) Ladeschaltung mit einem gleichstromanschluss und einem wechselstromanschluss sowie bordnetz mit einer ladeschaltung
DE102016012849A1 (de) Batterie zum Anschließen an eine elektrische Anlage eines elektrisch antreibbaren Kraftfahrzeugs
EP2904677B1 (de) Schaltungsanordnung mit einem wechselrichter
DE102019005123A1 (de) Energiewandler zum galvanischen Koppeln eines ersten Gleichspannungszwischenkreises mit einem zweiten Gleichspannungszwischenkreis
DE102014215733A1 (de) Batteriesystem mit einer zum Versorgen eines Hochvoltnetzes mit elektrischer Energie ausgebildeten Batterie, die elektrische Energie zum Versorgen eines Niedervoltnetz bereitstellt und entsprechendes Verfahren
DE102018202590A1 (de) Schaltvorrichtung für ein Hochvolt-Bordnetz eines Kraftfahrzeugs, ein Kraftfahrzeug mit einem Hochvolt-Bordnetz sowie ein Steuerverfahren für ein Hochvolt-Bordnetz eines Kraftfahrzeugs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15747418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15747418

Country of ref document: EP

Kind code of ref document: A1