WO2016020154A1 - Batteriesystem und verfahren zu dessen betrieb - Google Patents

Batteriesystem und verfahren zu dessen betrieb Download PDF

Info

Publication number
WO2016020154A1
WO2016020154A1 PCT/EP2015/066051 EP2015066051W WO2016020154A1 WO 2016020154 A1 WO2016020154 A1 WO 2016020154A1 EP 2015066051 W EP2015066051 W EP 2015066051W WO 2016020154 A1 WO2016020154 A1 WO 2016020154A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
cell
control unit
battery cells
cells
Prior art date
Application number
PCT/EP2015/066051
Other languages
English (en)
French (fr)
Inventor
Philipp Hillenbrand
Philipp Hartmann
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to CN201580042422.8A priority Critical patent/CN106536261B/zh
Publication of WO2016020154A1 publication Critical patent/WO2016020154A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the invention relates to a method for operating a battery system with a plurality of battery cells and a battery management system for
  • a battery system is specified, which is set up in particular for carrying out the method.
  • US 2013/241471 discloses a charging control circuit for monitoring the charging of a battery circuit including a plurality of series connected battery cells, the charging control circuit comprising a plurality of switching elements respectively connected in parallel with the plurality of batteries and a charging control device for charging the charging current to reduce the respective batteries.
  • US 2001/019256 discloses a method of charge balancing a plurality of serially connected battery cells using a dissipative current loop connected to the terminals of each battery cell.
  • Battery management system one main controller and several
  • each cell control unit of a battery cell is assigned and is designed and set up to detect measurement data of the associated battery cell and to connect and disconnect the associated battery cell to an electronic circuit of the battery cells, it is provided that each cell control unit detects whether the battery system is currently charged or discharged and depending whose assigned
  • Battery cell to the electronic circuit of the battery cells on or off.
  • the decision about the switching state of the battery cell decentralized in the respective
  • the actual control function is by a
  • the main control unit performs the control variables so that the smallest possible control difference between a current and a desired output voltage of the battery system occurs.
  • Control signal is thus selected so that the summed voltage of the
  • the specification of the control variable of the battery system can advantageously be carried out via a unidirectional interface, wherein the specification of the control variable from the main control unit can be sent as a single message to all cell control units. All cell controllers receive this message and switch autonomously, i. H. in particular also independently of one another, either the assigned cell of the series connection or bypass the cell with the aid of electrically controllable switches of the cell control unit.
  • a current direction is referred to as positive when the battery system is being charged and as being negative when the battery system is being discharged.
  • the individual battery cells are switched on or off by means of the cell control units in positive or negative polarity in the series circuit.
  • the positive and negative polarity in the series connection becomes relative to the tap considered the total output voltage.
  • the polarity is through the
  • the cell control unit recognizes whether the battery system is being charged or discharged by comparing a cell voltage of a switched-on battery cell with a cell voltage of a disconnected battery cell.
  • the cell voltage may also be referred to as a terminal voltage.
  • the cell voltage of the disconnected battery cell is equal to the terminal voltage when the cell is bridged.
  • This measure is based on a simplified equivalent circuit diagram of the cell, which comprises a voltage source and an internal resistance of the cell, and in which context
  • the current direction can be determined by the following rule:
  • the quantities U Ze iie, on and U ze iie, off are detected at regular intervals by the cell control unit on each cell.
  • the battery cells are typically frequently switched on and bridged again to produce a predetermined output voltage through the battery system.
  • the main control unit controls the supply and
  • Typical control frequencies are 1 to 20 kHz.
  • the main control unit provides two numerical values, which are transmitted via the communication link from the main control unit to the cell control units and are likewise received by all cell control units.
  • Probability of connection The probability with which a switched-off cell is switched on, and the probability of switching off
  • each cell control unit a particularly preferably equally distributed random process is performed, wherein depending on the random process and the probability values, the associated battery cell is switched on or off to the electronic circuit of the battery cells.
  • the control signal is selected so that the summed voltages of the connected battery cells of a predetermined
  • Output voltage of the battery system is tracked.
  • the master control device performs the control parameters P and P a us so after that the smallest possible deviation between an actual and a desired output voltage of the battery system occurs. If the setpoint is greater than the current output voltage, an increased switch-on probability P an transmitted to the cells. If the setpoint is less than the current output voltage, then an increased switch-off probability P out is transmitted.
  • Battery system is discharged, the cell control unit and the associated battery cell depending on the size of a quality factor and away, which the
  • Cell controller determined based on a state of charge and / or an aging state of the associated battery cell. This will be a
  • the battery cell is scaled to the relevant function of the switching state of the cell received electronic value P at or Paus with the quality factor. Switched off cells with a high quality factor are more likely to switch off than cells with a lower quality factor. In addition, cells with a low quality factor are more likely to be switched off. As a result, the cells are burdened less frequently with a lower quality factor in the time average, so that an active state of charge balance takes place.
  • the cell control unit away the associated battery cell when a predetermined maximum cell voltage is reached. It is measured both when switched on and off cell. In the case of lithium-ion batteries, the predetermined maximum cell voltage of the connected battery cell z. However, since this is technology-dependent, the value in the future may well be different.
  • the cell control unit away the associated battery cell when a predetermined minimum cell voltage is reached.
  • the predetermined minimum cell voltage of the connected battery cell is 2.5 V, 2.8 V or 3 V, for example.
  • a battery system with a plurality of battery cells and a battery management system for monitoring and controlling the Battery cells provided, wherein the battery management system a
  • each cell control unit is associated with a battery cell and configured and adapted to detect measurement data of the associated battery cell and to connect the associated battery cell to an electronic circuit of the battery cells and off ,
  • each cell control unit is designed and set up to detect whether the battery system is currently being charged or discharged and, depending on this, the associated battery cell to the
  • the units of the battery management system are to be understood as functional units that are not necessarily physically separated from each other. Thus, multiple units of the battery management system may be implemented in a single physical unit, such as when multiple functions are implemented in software on a controller.
  • the units of the battery management system are to be understood as functional units that are not necessarily physically separated from each other. Thus, multiple units of the battery management system may be implemented in a single physical unit, such as when multiple functions are implemented in software on a controller.
  • Battery management system can also be used in hardware components
  • sensor units may be implemented, for example by sensor units, memory units, application specific integrated circuits (ASIC, Application Specific Circuit) or microcontroller.
  • ASIC Application Specific Circuit
  • each cell control unit has a comparator which can compare a cell voltage of the connected battery cell with a cell voltage of the disconnected battery cell.
  • the cell control units comprise random number generators and a further comparator to generate generated random numbers with the
  • Control signals of the main control unit to compare.
  • the cell control units have memory units to store quality factors or states of charge of the associated battery unit, wherein based on measured voltages and stored states of charge the quality factors can be determined for example by means of tables.
  • the main control unit is connected to the cell controllers via a unidirectional control channel.
  • the battery may in particular be a lithium-ion battery or a nickel-metal hydride battery, and be connectable to a drive system of a motor vehicle.
  • the terms "battery” and “battery unit” are used in the present description adapted to the usual language for accumulator or Akkumulatorü.
  • the battery includes one or more battery units, which may be a battery cell, a battery module, a module string or a battery pack may be designated.
  • the battery cells are preferably spatially combined and
  • BDC Battery Direct Converter
  • BDI Battery Direct Inverter
  • the motor vehicle may be configured as a pure electric vehicle and exclusively comprise an electric drive system.
  • the motor vehicle may be configured as a hybrid vehicle having an electric drive system and a
  • Internal combustion engine includes.
  • the battery of the hybrid vehicle can be charged internally via a generator with excess energy of the internal combustion engine.
  • Externally rechargeable hybrid vehicles also provide the option of charging the battery via the external power grid.
  • the present invention defines a method in which it is cost-effectively implemented that each cell control unit can determine whether the connected battery cell is being charged or discharged in the current state becomes.
  • the existing cell electronics are used to detect the cell voltage.
  • the control signals of the main controller with a quality factor scale and implement in combination with a random process, the control signal in a switching signal.
  • Figure 1 is a schematic representation of an inventive
  • Figure 2 is a schematic representation of an inventive
  • FIG. 3 is an illustration of the method according to the invention.
  • FIG. 1 shows a battery system 2 according to an embodiment of the invention.
  • the battery system 2 has a main control unit 4, which is also referred to as CCU (central control unit).
  • the main controller 4 is for control a battery unit 6 and configured, wherein the battery unit 6 in the illustrated case, a series connection of a plurality of battery cells 8 includes, for example, lithium-ion cells with a
  • Each battery cell 8 is associated with a cell control unit 10, which is also referred to as SCU (smart cell unit).
  • SCU smart cell unit
  • Battery cell 8 form a battery subunit 12, which is described and illustrated in more detail with reference to FIG.
  • Embodiments also comprise a plurality of interconnected battery cells 8, which may be interconnected both in parallel and serially to provide the required power and energy data.
  • the battery cells 8 are connected in series with one another by means of an electrical line 14 and provide an output voltage at terminals 16. Via the connections 16 further battery systems (not shown) can be connected to the battery system 2 according to the invention to more complex circuits. In the vicinity of the terminals 16, a current and voltage measuring circuit 17 is arranged for detecting the output voltage and the current through the battery unit 6.
  • the main control unit 4 has an input 18, by means of which the main control unit 4 can detect the signals of the current and voltage measuring circuit 17.
  • the main control unit 4 is connected to the cell control units 10 via a
  • Control channel 20 is connected, which may be constructed, for example, a kind of daisy chain, but preferably as a parallel bus, which allows all battery cells 8 receive a message of the main control unit 4 almost simultaneously.
  • the main control unit 4 and the cell control units 10 have suitable interfaces 22, 24 for this purpose.
  • the control channel 20 is formed unidirectionally, so that the main control unit 4 via a said broadcast operation by means of uniform control signals to all cell control units 10 can control a supply and disconnection of the battery cells 8.
  • further communication channels may be provided, via which, for example, measured values from the cell control units 10 to the
  • Main control unit 4 can be transmitted.
  • FIG. 2 shows the battery subunit 12 with the cell control unit 10 and the associated battery cell 8 according to an exemplary embodiment of the invention.
  • the cell control unit 10 has a measuring unit 26, which is set up to detect measured data of the associated battery cell 8, in particular the cell voltage or terminal voltage of the battery cell 8 in the connected case, which is also referred to as the cell voltage of the connected battery cell 8, and the cell voltage or voltage Terminal voltage of the battery cell 8 in the disconnected, d. H. bridged case, which is also referred to as the cell voltage of the disconnected battery cell 8.
  • the measuring unit 26 may be configured with appropriate circuitry to measure the current through the battery cell 8, as well
  • the measuring unit 26 is connected to a microprocessor 28, which takes over the control and switching of the battery cell 8 and which is also set up for communication with the main control unit 4.
  • the microprocessor 28 is in particular configured to detect whether the battery system 2, in particular the associated battery cell 8, is currently being charged or discharged. For this purpose, the microprocessor 28 can compare the cell voltage of the connected battery cell 8 with the cell voltage of the disconnected battery cell 8. The component of the microprocessor 28 used for this purpose is also referred to as a comparator (not shown). Furthermore, the microprocessor 28 is configured to use the received control signals of the main control unit 4, the battery cell 8 or
  • a first state can be set, in which the battery cell 8 in the
  • a further switching element 35 is also actuated in order to avoid a short circuit across the terminals of the battery cell 8.
  • the further switching element 35 is formed inversely to the switching element 34. Illustrated is an example
  • Embodiment with transistors alternatively and preferably, the
  • Switching element 34 may also be realized as a p-channel MOSFET and the further switching element 35 as an n-channel MOSFET.
  • the microprocessor 28 is also connected to a memory unit 30, in which, for example, a quality factor is stored, which is based on a current state of charge or a current state of aging of the associated
  • the memory unit 30 can also store values for predetermined maximum cell voltages and minimum cell voltages, which the microprocessor 28 uses to control the associated battery cell 8 as a function of the control signal.
  • the microprocessor 28 also comprises a random number generator 32, by means of which random numbers can be determined, in particular from an interval between 0 and 1.
  • the microprocessor 28 comprises a further unit (not shown) for receiving numerical values from the main control unit 4, which are assumed to be on or off switching probabilities be interpreted with the
  • Random number generator 32 to generate generated random numbers and depending on the switching element 34 to operate.
  • FIG. 3 shows an embodiment of a method according to the invention.
  • the main control unit 4 sends a control signal to the cell control units 10.
  • the cell control units 10 receive the control signal.
  • each cell control unit 10 recognizes the current direction.
  • each cell control unit 10 determines a random number.
  • each cell control unit 10 determines a
  • a step 110 the cell control unit 10 switches
  • Switching element 34 in response to the control signal, the current direction, the random number and optionally the quality factor.
  • the invention is not limited to the embodiments described herein and the aspects highlighted therein. Rather, within the scope given by the claims a variety of modifications are possible, which are within the scope of expert action.

Abstract

Die Erfindung betrifft ein Verfahren zum Betrieb eines Batteriesystems (2) mit mehreren Batteriezellen (8) und einem Batteriemanagementsystem zur Überwachung und Steuerung der Batteriezellen (8), wobei das Batteriemanagementsystem ein Hauptsteuergerät (4) und mehrere Zellsteuereinheiten (10) aufweist, wobei jede Zellsteuereinheit (10) einer Batteriezelle (8) zugeordnet ist und ausgebildet und eingerichtet ist, um Messdaten der zugeordneten Batteriezelle (8) zu erfassen und um die zugeordnete Batteriezelle (8) zu einer elektronischen Schaltung der Batteriezellen (8) zu-und wegzuschalten. Dabei ist vorgesehen, dass jede Zellsteuereinheit (10) erkennt, ob das Batteriesystem (2) aktuell geladen oder entladen wird und in Abhängigkeit dessen die zugeordnete Batteriezelle (8) zu der elektronischen Schaltung der Batteriezellen (8) zu-oder wegschaltet. Darüber hinaus werdenein derartiges Batteriesystem (2) und ein Kraftfahrzeug angegeben.

Description

Beschreibung
BATTERIESYSTEM UND VERFAHREN ZU DESSEN BETRIEB
Stand der Technik
Die Erfindung betrifft ein Verfahren zum Betrieb eines Batteriesystems mit mehreren Batteriezellen und einem Batteriemanagementsystem zur
Überwachung und Steuerung der Batteriezellen.
Weiterhin wird ein Batteriesystem angegeben, welches insbesondere zur Durchführung des Verfahrens eingerichtet ist.
US 2013/241471 offenbart eine Ladesteuerschaltung zur Überwachung des Ladens eines Batteriestromkreises einschließlich einer Vielzahl von in Serie geschalteten Batteriezellen, wobei die Ladesteuerschaltung eine Vielzahl von Schaltelementen umfasst, welche jeweils parallel mit der Vielzahl von Batterien verbunden sind, und ein Ladekontrollgerät, um den Ladestrom an die jeweiligen Batterien zu reduzieren.
US 2001/019256 offenbart ein Verfahren zum Ladungsausgleich einer Vielzahl von in Serie geschalteten Batteriezellen unter Verwendung einer dissipativen Stromschleife, welche mit den Terminalen jeder Batteriezelle verbunden ist.
Offenbarung der Er indung
Beim erfindungsgemäßen Ver ahren zum Betrieb eines Batteriesystems mit mehreren Batteriezellen und einem Batteriemanagementsystem zur
Überwachung und Steuerung der Batteriezellen, wobei das
Batteriemanagementsystem ein Hauptsteuergerät und mehrere
Zellsteuereinheiten aufweist, wobei jede Zellsteuereinheit einer Batteriezelle zugeordnet ist und ausgebildet und eingerichtet ist, um Messdaten der zugeordneten Batteriezelle zu erfassen und um die zugeordnete Batteriezelle zu einer elektronischen Schaltung der Batteriezellen zu- und wegzuschalten, ist vorgesehen, dass jede Zellsteuereinheit erkennt, ob das Batteriesystem aktuell geladen oder entladen wird und in Abhängigkeit dessen die zugeordnete
Batteriezelle zu der elektronischen Schaltung der Batteriezellen zu- oder wegschaltet.
Vorteilhaft erfolgt in dem erfindungsgemäßen Batteriesystem die Entscheidung über den Schaltzustand der Batteriezelle dezentral in der jeweiligen
Zellsteuereinheit. Die eigentliche Regelungsfunktion wird durch einen
aufwandsarm realisierbaren zentralen Regler des Hauptsteuergeräts umgesetzt. Zur Regelung des Batteriesystems führt das Hauptsteuergerät die Steuergrößen so nach, dass eine möglichst kleine Regeldifferenz zwischen einer aktuellen und einer gewünschten Ausgangsspannung des Batteriesystems auftritt. Das
Steuersignal ist also so gewählt, dass die summierte Spannung der
zugeschalteten Batteriezellen einer vorgegebenen Ausgangsspannung des Batteriesystems nachgeführt wird.
Die Vorgabe der Steuergröße des Batteriesystems kann vorteilhaft über eine unidirektionale Schnittstelle erfolgen, wobei die Vorgabe der Steuergröße vom Hauptsteuergerät als nur eine einzige Nachricht an alle Zellsteuereinheiten gesendet werden kann. Alle Zellsteuereinheiten empfangen diese Nachricht und schalten autonom, d. h. insbesondere auch unabhängig voneinander, entweder die zugeordnete Zelle der Reihenschaltung zu oder überbrücken die Zelle mit Hilfe von elektrisch ansteuerbaren Schaltern der Zellsteuereinheit.
Im Rahmen der vorliegenden Offenbarung wird eine Stromrichtung als positiv bezeichnet, wenn das Batteriesystem geladen wird, und als negativ bezeichnet, wenn das Batteriesystem entladen wird.
Zur Erzeugung einer geringeren Gesamtausgangsspannung des Batteriesystems werden die einzelnen Batteriezellen mithilfe der Zellsteuereinheiten in positiver oder negativer Polarität in die Reihenschaltung zugeschaltet oder ausgeschaltet. Die positive und negative Polarität in der Reihenschaltung wird relativ zum Abgriff der Gesamtausgangsspannung betrachtet. Die Polarität wird durch das
Hauptsteuergerät vorgegeben. Für den Fall, dass die Batteriezellen
ausgeschaltet werden, werden sie von der Reihenschaltung getrennt und die Anschlussklemmen der zugehörigen Zellelektronik elektrisch verbunden, so dass sich ein Zustand„überbrückt" einstellt.
Nach einer vorteilhaften Ausführungsform erkennt die Zellsteuereinheit, ob das Batteriesystem geladen oder entladen wird, indem eine Zellenspannung einer zugeschalteten Batteriezelle mit einer Zellenspannung einer weggeschalteten Batteriezelle verglichen wird.
Im Rahmen der Erfindung kann die Zellenspannung auch als Klemmenspannung bezeichnet sein. Im Rahmen der Erfindung ist außerdem die Zellenspannung der weggeschalteten Batteriezelle gleich der Klemmenspannung, wenn die Zelle überbrückt ist.
Dieser Maßnahme liegt ein vereinfachtes Ersatzschaltbild der Zelle zugrunde, welche eine Spannungsquelle und einen Innenwiderstand der Zelle umfasst, und in welchem ein Zusammenhang
Uzelle.on ~ Uzelle.off ~~ Izelle *Rzelle (1) gilt, wobei UZeiie,on die Zellenspannung der zugeschalteten Batteriezelle bezeichnet, UZeiie,off die Zellenspannung der weggeschalteten Batteriezelle bezeichnet, lZeiie den Strom durch die Zelle bezeichnet und RZeiie den
Innenwiderstand der Zelle bezeichnet.
Die Stromrichtung kann dabei durch folgende Vorschrift bestimmt werden:
Wenn UZeiie,on größer ist als UZeiie,off, dann ist die Stromrichtung positiv. Wenn Uzeiie.on kleiner ist als UZeiie,off, dann ist die Stromrichtung negativ. Die Vorzeichen in der Formel (1) sind bewusst gewählt.
Bevorzugt werden die Größen UZeiie,on und UZeiie,off in regelmäßigen Abständen durch die Zellsteuereinheit auf jeder Zelle erfasst. In dem beschriebenen Batteriesystem werden die Batteriezellen typischerweise häufig zugeschaltet und wieder überbrückt, um eine vorgegebene Ausgangsspannung durch das Batteriesystem zu erzeugen. Das Hauptsteuergerät regelt die Zu- und
Wegschaltung der Batteriezellen bevorzugt mittels Steuersignalen an alle Zellsteuereinheiten. Typische Regelfrequenzen sind dabei 1 bis 20 kHz.
Gemäß einer besonders bevorzugten Ausführungsform regelt das
Hauptsteuergerät die Zu- und Wegschaltung der Batteriezellen mittels
Steuersignalen an alle Zellsteuereinheiten, wobei die Zellsteuereinheiten die Steuersignale als Wahrscheinlichkeitswerte interpretieren.
Bei einer möglichen Realisierung gibt das Hauptsteuergerät zwei Zahlenwerte vor, welche über die Kommunikationsstrecke vom Hauptsteuergerät zu den Zellsteuereinheiten übertragen und gleichermaßen von allen Zellsteuereinheiten empfangen werden. Bevorzugt weist das Steuersignal dabei genau einen ersten Zahlenwert Pan = [0,1] und genau einen zweiten Zahlenwert Paus = [0,1] auf, wobei die Zellsteuereinheiten den ersten Zahlenwert als eine
Zuschaltwahrscheinlichkeit und den zweiten Zahlenwert als eine
Wegschaltwahrscheinlichkeit interpretieren. Dabei bezeichnet die
Zuschaltwahrscheinlichkeit die Wahrscheinlichkeit, mit der eine ausgeschaltete Zelle zugeschaltet wird, und die Wegschaltwahrscheinlichkeit die
Wahrscheinlichkeit, mit der eine eingeschaltete Zelle weggeschaltet wird.
Gemäß einer Ausführungsform wird in jeder Zellsteuereinheit ein insbesondere bevorzugt gleich verteilter Zufallsprozess durchgeführt, wobei in Abhängigkeit des Zufallsprozesses und der Wahrscheinlichkeitswerte die zugeordnete Batteriezelle zu der elektronischen Schaltung der Batteriezellen zu- oder weggeschaltet wird. Das Steuersignal ist so gewählt, dass die summierten Spannungen der zugeschalteten Batteriezellen einer vorgegebenen
Ausgangsspannung des Batteriesystems nachgeführt wird.
Zur Regelung des Batteriesystems führt das Hauptsteuergerät die Steuergrößen Pan und Paus so nach, dass eine möglichst kleine Regeldifferenz zwischen einer aktuellen und einer gewünschten Ausgangsspannung des Batteriesystems auftritt. Wenn der Sollwert größer als die aktuelle Ausgangsspannung ist, wird eine erhöhte Einschaltwahrscheinlichkeit Pan an die Zellen übermittelt. Ist der Sollwert kleiner als die aktuelle Ausgangsspannung, dann wird eine erhöhte Ausschaltwahrscheinlichkeit Paus übermittelt.
Nach einer bevorzugten Ausführungsform schaltet im Fall, dass das
Batteriesystem entladen wird, die Zellsteuereinheit die zugeordnete Batteriezelle in Abhängigkeit der Größe eines Gütefaktors zu und weg, welchen die
Zellsteuereinheit anhand eines Ladezustands und/oder eines Alterungszustands der zugeordneten Batteriezelle ermittelt. Hierdurch wird ein
Ladezustandsausgleich (balancing) erreicht, so dass der Steuerungsalgorithmus vorteilhaft erweitert wird. Die Batteriezelle skaliert dabei den in Abhängigkeit vom Schaltzustand der Zellelektronik jeweils relevanten empfangenen Wert Pan oder Paus mit dem Gütefaktor. Dabei schalten sich ausgeschaltete Zellen mit einem hohen Gütefaktor mit größerer Wahrscheinlichkeit zu als ausgeschaltete Zellen mit einem geringeren Gütefaktor. Dabei werden außerdem Zellen mit einem niedrigen Gütefaktor mit größerer Wahrscheinlichkeit ausgeschaltet. Hierdurch werden im zeitlichen Mittel die Zellen mit einem geringeren Gütefaktor weniger häufig belastet, so dass ein aktiver Ladezustandsausgleich erfolgt.
Nach einer Ausführungsform des Verfahrens schaltet im Fall, dass das
Batteriesystem geladen wird, die Zellsteuereinheit die zugeordnete Batteriezelle weg, wenn eine vorgegebene maximale Zellspannung erreicht wird. Dabei wird sowohl bei zugeschalteter als auch abgeschalteter Zelle gemessen. Im Fall von Lithium- Ionen- Batterien ist die vorgegebene maximale Zellspannung der zugeschalteten Batteriezelle z. B. 4,2 V. Da dies jedoch technologieabhängig ist, kann der Wert in Zukunft durchaus ein anderer sein.
Nach einer Ausführungsform des Verfahrens schaltet im Fall, dass das
Batteriesystem entladen wird, die Zellsteuereinheit die zugeordnete Batteriezelle weg, wenn eine vorgegebene minimale Zellspannung erreicht wird. Im Fall von Lithium- Ionen- Batterien ist die vorgegebene minimale Zellspannung der zugeschalteten Batteriezelle beispielsweise 2,5 V, 2,8 V oder 3 V.
Erfindungsgemäß wird außerdem ein Batteriesystem mit mehreren Batteriezellen und einem Batteriemanagementsystem zur Überwachung und Steuerung der Batteriezellen bereitgestellt, wobei das Batteriemanagementsystem ein
Hauptsteuergerät und mehrere Zellsteuereinheiten aufweist, welche über einen Steuerkanal miteinander in Verbindung stehen, wobei jede Zellsteuereinheit einer Batteriezelle zugeordnet ist und ausgebildet und eingerichtet ist, um Messdaten der zugeordneten Batteriezelle zu erfassen und um die zugeordnete Batteriezelle zu einer elektronischen Schaltung der Batteriezellen zu- und wegzuschalten. Dabei ist vorgesehen, dass jede Zellsteuereinheit ausgebildet und eingerichtet ist, um zu erkennen, ob das Batteriesystem aktuell geladen oder entladen wird, und um in Abhängigkeit dessen die zugeordnete Batteriezelle zu der
elektronischen Schaltung der Batteriezellen zu- oder wegzuschalten.
Die Einheiten des Batteriemanagementsystems sind als funktionale Einheiten zu verstehen, die nicht notwendigerweise physikalisch voneinander getrennt sind. So können mehrere Einheiten des Batteriemanagementsystems in einer einzigen physikalischen Einheit realisiert sein, etwa wenn mehrere Funktionen in Software auf einem Steuergerät implementiert sind. Die Einheiten des
Batteriemanagementsystems können auch in Hardware- Bausteinen
implementiert sein, beispielsweise durch Sensoreinheiten, Speichereinheiten, anwendungsspezifische integrierte Schaltkreise (ASIC, Application Specific Circuit) oder Microcontroller.
Bevorzugt weist jede Zellsteuereinheit einen Komparator auf, welcher eine Zellenspannung der zugeschalteten Batteriezelle mit einer Zellenspannung der weggeschalteten Batteriezelle vergleichen kann. Gemäß einer bevorzugten Ausführungsform umfassen die Zellsteuereinheiten Zufallszahlengeneratoren und einen weiteren Komparator, um generierte Zufallszahlen mit den
Steuersignalen des Hauptsteuergeräts zu vergleichen.
Gemäß einer Ausführungsform der Erfindung weisen die Zellsteuereinheiten Speichereinheiten auf, um Gütefaktoren oder Ladezustände der zugeordneten Batterieeinheit abzuspeichern, wobei anhand von gemessenen Spannungen und gespeicherter Ladezustände die Gütefaktoren beispielsweise mithilfe von Tabellen bestimmbar sind. Nach einer bevorzugten Ausführungsform der Erfindung ist das Hauptsteuergerät mit den Zellsteuergeräten über einen unidirektionalen Steuerkanal miteinander verbunden.
Die Batterie kann insbesondere eine Lithium- Ionen- Batterie oder eine Nickel- Metallhydrid-Batterie sein, und mit einem Antriebssystem eines Kraftfahrzeugs verbindbar sein. Die Begriffe "Batterie" und "Batterieeinheit" werden in der vorliegenden Beschreibung dem üblichen Sprachgebrauch angepasst für Akkumulator bzw. Akkumulatoreinheit verwendet. Die Batterie umfasst eine oder mehrere Batterieeinheiten, womit eine Batteriezelle, ein Batteriemodul, einen Modulstrang oder ein Batteriepack bezeichnet sein kann. In der Batterie sind die Batteriezellen vorzugsweise räumlich zusammengefasst und
schaltungstechnisch miteinander verbunden, beispielsweise seriell oder parallel zu Modulen verschaltet. Mehrere Module können sogenannte
Batteriedirektkonverter (BDC, Battery Direct Converter) bilden und mehrere Batteriedirektkonverter einen Batteriedirektinverter (BDI, Battery Direct Inverter).
Erfindungsgemäß wird außerdem ein Kraftfahrzeug mit einem derartigen
Batteriesystem zur Verfügung gestellt, wobei die Batterie des Batteriesystems mit einem Antriebssystem des Kraftfahrzeugs verbunden ist. Das Kraftfahrzeug kann als reines Elektrofahrzeug ausgestaltet sein und ausschließlich ein elektrisches Antriebssystem umfassen. Alternativ kann das Kraftfahrzeug als Hybridfahrzeug ausgestaltet sein, das ein elektrisches Antriebssystem und einen
Verbrennungsmotor umfasst. In einigen Varianten kann vorgesehen sein, dass die Batterie des Hybridfahrzeugs intern über einen Generator mit überschüssiger Energie des Verbrennungsmotors geladen werden kann. Extern aufladbare Hybridfahrzeuge (PHEV, Plug-in Hybrid Electric Vehicle) sehen zusätzlich die Möglichkeit vor, die Batterie über das externe Stromnetz aufzuladen.
Vorteile der Erfindung
Durch die vorliegende Erfindung wird ein Verfahren definiert, bei welchem kostengünstig implementiert wird, dass jede Zellsteuereinheit ermitteln kann, ob die angeschlossene Batteriezelle im aktuellen Zustand geladen oder entladen wird. Dabei wird die vorhandene Zellelektronik zur Erfassung der Zellspannung eingesetzt.
In Abhängigkeit der ermittelten Stromrichtung, d. h. in Abhängigkeit davon, ob die angeschlossene Zelle gerade entladen oder geladen wird, kann die
Zellsteuereinheit die Steuersignale des Hauptsteuergeräts mit einem Gütefaktor skalieren und in Kombination mit einem Zufallsprozess das Steuersignal in ein Schaltsignal umsetzen. Hierdurch kann ein effektiver und kostengünstiger Ladezustandsausgleich der Zellen erreicht werden.
Kurze Beschreibung der Zeichnungen
Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen
Figur 1 eine schematische Darstellung eines erfindungsgemäßen
Batteriesystems,
Figur 2 eine schematische Darstellung einer erfindungsgemäßen
Batterieuntereinheit und
Figur 3 eine Darstellung des erfindungsgemäßen Verfahrens.
Ausführungsformen der Erfindung
In der nachfolgenden Beschreibung der Ausführungsbeispiele der Erfindung werden gleiche oder ähnliche Komponenten und Elemente mit gleichen oder ähnlichen Bezugszeichen bezeichnet, wobei auf eine wiederholte Beschreibung dieser Komponenten oder Elemente in Einzelfällen verzichtet wird. Die Figuren stellen den Gegenstand der Erfindung nur schematisch dar.
Figur 1 zeigt ein Batteriesystem 2 gemäß einer Ausführungsform der Erfindung.
Das Batteriesystem 2 weist ein Hauptsteuergerät 4 auf, welches auch als CCU (central control unit) bezeichnet wird. Das Hauptsteuergerät 4 ist zur Steuerung einer Batterieeinheit 6 ausgebildet und eingerichtet, wobei die Batterieeinheit 6 im dargestellten Fall eine Reihenschaltung von mehreren Batteriezellen 8 umfasst, welche beispielsweise Lithium-Ionen-Zellen mit einem
Spannungsbereich von 2,8-4,2 V sind.
Jeder Batteriezelle 8 ist eine Zellsteuereinheit 10 zugeordnet, welche auch als SCU (smart cell unit) bezeichnet wird. Die Zellsteuereinheit 10 und die
Batteriezelle 8 bilden eine Batterieuntereinheit 12, welche mit Bezug zu Figur 2 näher beschrieben und dargestellt ist.
Dabei ist die Erfindung nicht auf die in Figur 1 dargestellte Ausführungsform beschränkt. So können die Batterieuntereinheiten 12 in alternativen
Ausführungsformen auch mehrere miteinander verschaltete Batteriezellen 8 umfassen, wobei diese sowohl parallel als auch seriell miteinander verschaltet sein können, um die geforderten Leistungs- und Energiedaten bereitzustellen.
Die Batteriezellen 8 sind mittels einer elektrischen Leitung 14 in Reihe miteinander verschaltet und stellen an Anschlüssen 16 eine Ausgangsspannung bereit. Über die Anschlüsse 16 können weitere Batteriesysteme (nicht dargestellt) mit dem erfindungsgemäßen Batteriesystem 2 zu komplexeren Schaltungen verschaltet sein. In der Nähe der Anschlüsse 16 ist eine Strom- und Spannungsmessschaltung 17 angeordnet zur Erfassung der Ausgangsspannung und des Stroms durch die Batterieeinheit 6.
Das Hauptsteuergerät 4 weist einen Eingang 18 auf, mittels welchem das Hauptsteuergerät 4 die Signale der Strom- und Spannungsmessschaltung 17 erfassen kann.
Das Hauptsteuergerät 4 ist mit den Zellsteuereinheiten 10 über einen
Steuerkanal 20 verbunden, wobei dieser beispielsweise nach Art einer Daisy Chain aufgebaut sein kann, bevorzugt aber als paralleler Bus, der es ermöglicht, dass alle Batteriezellen 8 eine Nachricht des Hauptsteuergeräts 4 nahezu gleichzeitig erhalten. Das Hauptsteuergerät 4 und die Zellsteuereinheiten 10 weisen hierzu geeignete Schnittstellen 22, 24 auf. Bevorzugt ist der Steuerkanal 20 unidirektional ausgebildet, so dass das Hauptsteuergerät 4 über einen so genannten Broadcast- Betrieb mittels einheitlichen Steuersignalen an alle Zellsteuereinheiten 10 eine Zu- und Wegschaltung der Batteriezellen 8 regeln kann. Zwischen den Zellsteuereinheiten 10 und dem Hauptsteuergerät 4 können weitere Kommunikationskanäle (nicht dargestellt) vorgesehen sein, über welche beispielsweise Messwerte von den Zellsteuereinheiten 10 an das
Hauptsteuergerät 4 übertragen werden können.
In Figur 2 ist die Batterieuntereinheit 12 mit der Zellsteuereinheit 10 und der zugeordneten Batteriezelle 8 gemäß einer beispielhaften Ausführungsform der Erfindung dargestellt.
Die Zellsteuereinheit 10 weist eine Messeinheit 26 auf, welche eingerichtet ist, um Messdaten der zugeordneten Batteriezelle 8 zu erfassen, insbesondere die Zellenspannung bzw. Klemmenspannung der Batteriezelle 8 im zugeschalteten Fall, was auch als Zellenspannung der zugeschalteten Batteriezelle 8 bezeichnet wird, und die Zellenspannung bzw. Klemmenspannung der Batteriezelle 8 im weggeschalteten, d. h. überbrückten Fall, was auch als Zellenspannung der weggeschalteten Batteriezelle 8 bezeichnet wird.
Des Weiteren kann die Messeinheit 26 mit entsprechender Verschaltung dazu eingerichtet sein, den Strom durch die Batteriezelle 8 zu messen, sowie
Temperaturen, Drücke, usw.
Die Messeinheit 26 ist mit einem Mikroprozessor 28 verbunden, welcher die Steuerung und Schaltung der Batteriezelle 8 übernimmt und welcher außerdem zur Kommunikation mit dem Hauptsteuergerät 4 eingerichtet ist.
Der Mikroprozessor 28 ist insbesondere dazu eingerichtet, zu erkennen, ob das Batteriesystem 2, insbesondere die zugeordnete Batteriezelle 8, aktuell geladen oder entladen wird. Hierzu kann der Mikroprozessor 28 die Zellenspannung der zugeschalteten Batteriezelle 8 mit der Zellenspannung der weggeschalteten Batteriezelle 8 vergleichen. Das hierzu verwendete Bauteil des Mikroprozessors 28 wird auch als ein Komparator bezeichnet (nicht dargestellt). Weiterhin ist der Mikroprozessor 28 eingerichtet, um anhand von empfangenen Steuersignalen des Hauptsteuergeräts 4 die Batteriezelle 8 zu- oder
wegzuschalten. Die Schaltung der zugeordneten Batteriezelle 8 ist im
dargestellten Ausführungsbeispiel mittels eines als Transistor ausgeführten Schaltelements 34 dargestellt. Über das Schaltelement 34 kann ein erster Zustand eingestellt werden, bei welchem die Batteriezelle 8 in der
Reihenschaltung mit weiteren Batteriezellen 8 überbrückt wird, und ein weiterer Zustand, bei welchem die Batteriezelle 8 der Reihenschaltung zugeschaltet wird. Gleichzeitig mit Betätigung des Schaltelements 34 wird außerdem ein weiteres Schaltelement 35 betätigt, um einen Kurzschluss über die Anschlüsse der Batteriezelle 8 zu vermeiden. Das weitere Schaltelement 35 ist dabei invers zu dem Schaltelement 34 ausgebildet. Dargestellt ist beispielhaft eine
Ausführungsform mit Transistoren, alternativ und bevorzugt können das
Schaltelement 34 auch als ein p- Kanal- Mosfet und das weitere Schaltelement 35 als ein n- Kanal- Mosfet realisiert sein.
Der Mikroprozessor 28 ist außerdem mit einer Speichereinheit 30 verbunden, in der beispielsweise ein Gütefaktor abgelegt wird, welcher anhand eines aktuellen Ladezustands oder eines aktuellen Alterungszustand der zugeordneten
Batteriezelle 8 ermittelt wird. In der Speichereinheit 30 können außerdem Werte für vorgegebene maximale Zellspannungen und minimale Zellspannungen abgelegt sein, welche der Mikroprozessor 28 verwendet, um in Abhängigkeit des Steuersignals die zugeordnete Batteriezelle 8 zu steuern.
Der Mikroprozessor 28 umfasst außerdem einen Zufallsgenerator 32, mittels welchem Zufallszahlen ermittelt werden können, insbesondere aus einem Intervall zwischen 0 und 1. Der Mikroprozessor 28 umfasst eine weitere Einheit (nicht dargestellt), um vom Hauptsteuergerät 4 empfange Zahlenwerte, welche als Zu- oder Wegschaltwahrscheinlichkeiten interpretiert werden, mit vom
Zufallsgenerator 32 generierten Zufallszahlen zu vergleichen und in Abhängigkeit dessen das Schaltelement 34 zu betätigen.
Figur 3 zeigt eine Ausführungsform eines erfindungsgemäßen Verfahrens. In einem Schritt 100 sendet das Hauptsteuergerät 4 ein Steuersignal an die Zellsteuereinheiten 10. In einem Schritt 102 empfangen die Zellsteuereinheiten 10 das Steuersignal. In einem Schritt 104 erkennt jede Zellsteuereinheit 10 die Stromrichtung. In einem Schritt 106 ermittelt jede Zellsteuereinheit 10 eine Zufallszahl. In einem Schritt 108 ermittelt jede Zellsteuereinheit 10 einen
Gütefaktor. In einem Schritt 110 schaltet die Zellsteuereinheit 10 das
Schaltelement 34 in Abhängigkeit des Steuersignals, der Stromrichtung, der Zufallszahl und gegebenenfalls des Gütefaktors. Die Erfindung ist nicht auf die hier beschriebenen Ausführungsbeispiele und die darin hervorgehobenen Aspekte beschränkt. Vielmehr sind innerhalb des durch die Ansprüche angegebenen Bereichs eine Vielzahl von Abwandlungen möglich, die im Rahmen fachmännischen Handelns liegen.

Claims

Ansprüche
1. Verfahren zum Betrieb eines Batteriesystems (2) mit mehreren
Batteriezellen (8) und einem Batteriemanagementsystem zur
Überwachung und Steuerung der Batteriezellen (8), wobei das
Batteriemanagementsystem ein Hauptsteuergerät (4) und mehrere Zellsteuereinheiten (10) aufweist, wobei jede Zellsteuereinheit (10) einer Batteriezelle (8) zugeordnet ist und ausgebildet und eingerichtet ist, um Messdaten der zugeordneten Batteriezelle (8) zu erfassen und um die zugeordnete Batteriezelle (8) zu einer elektronischen Schaltung der Batteriezellen (8) zu- und wegzuschalten, dadurch gekennzeichnet, dass jede Zellsteuereinheit (10) erkennt, ob das Batteriesystem (2) aktuell geladen oder entladen wird und in Abhängigkeit dessen die zugeordnete Batteriezelle (8) zu der elektronischen Schaltung der Batteriezellen (8) zu- oder wegschaltet.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die
Zellsteuereinheit (10) erkennt, ob das Batteriesystem (2) geladen oder entladen wird, indem eine Zellenspannung der zugeschalteten
Batteriezelle (8) mit einer Zellenspannung der weggeschalteten
Batteriezelle (8) verglichen wird.
3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch
gekennzeichnet, dass das Hauptsteuergerät (4) die Zu- und
Wegschaltung der Batteriezellen (8) mittels Steuersignalen an alle Zellsteuereinheiten (10) regelt, wobei die Zellsteuereinheiten (10) die Steuersignale als Wahrscheinlichkeitswerte interpretieren.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die
Zellsteuereinheiten (10) Zufallsprozesse durchführen und in
Abhängigkeit der Zufallsprozesse und der Wahrscheinlichkeitswerte die zugeordnete Batteriezelle (8) zu der elektronischen Schaltung der Batteriezellen (8) zu- oder wegschalten und dass das Steuersignal so gewählt ist, dass die summierte Spannung der zugeschalteten
Batteriezellen (8) einer vorgegebenen Ausgangsspannung des
Batteriesystems (2) nachgeführt wird.
Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass ein Steuersignal genau einen ersten Zahlenwert und einen zweiten
Zahlenwert umfasst, wobei die Zellsteuereinheiten (10) den ersten Zahlenwert als eine Zuschaltwahrscheinlichkeit und den zweiten Zahlenwert als eine Wegschaltwahrscheinlichkeit interpretieren.
Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Fall, dass das Batteriesystem (2) entladen wird, die Zellsteuereinheit (10) die zugeordnete Batteriezelle (8) zusätzlich in Abhängigkeit der Größe eines Gütefaktors zu- und wegschaltet, welchen die Zellsteuereinheit (10) anhand eines
Ladezustands und/oder eines Alterungszustands der zugeordneten Batteriezelle (8) ermittelt.
Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Fall, dass das Batteriesystem (2) geladen wird, die Zellsteuereinheit (10) die zugeordnete Batteriezelle (8) wegschaltet, wenn eine vorgegebene maximale Zellspannung erreicht wird.
Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Fall, dass das Batteriesystem (2) entladen wird, die Zellsteuereinheit (10) die zugeordnete Batteriezelle (8) wegschaltet, wenn eine vorgegebene minimale Zellspannung erreicht wird.
Batteriesystem (2) mit mehreren Batteriezellen (8) und einem
Batteriemanagementsystem zur Überwachung und Steuerung der Batteriezellen (8), wobei das Batteriemanagementsystem ein
Hauptsteuergerät (4) und mehrere Zellsteuereinheiten (10) aufweist, welche über einen Steuerkanal (20) miteinander in Verbindung stehen, wobei jede Zellsteuereinheit (10) einer Batteriezelle (8) zugeordnet ist und ausgebildet und eingerichtet ist, um Messdaten der zugeordnete Batteriezelle (8) zu erfassen und um die zugeordnete Batteriezelle (8) zu einer elektronischen Schaltung der Batteriezellen (8) zu- und
wegzuschalten, dadurch gekennzeichnet, dass jede Zellsteuereinheit (10) ausgebildet und eingerichtet ist, um zu erkennen, ob das
Batteriesystem (2) aktuell geladen oder entladen wird, und um in Abhängigkeit dessen die zugeordnete Batteriezelle (8) zu der elektronischen Schaltung der Batteriezellen (8) zu- oder wegzuschalten.
Kraftfahrzeug mit einem Batteriesystem (2) nach Anspruch 9.
PCT/EP2015/066051 2014-08-08 2015-07-14 Batteriesystem und verfahren zu dessen betrieb WO2016020154A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580042422.8A CN106536261B (zh) 2014-08-08 2015-07-14 电池组系统和用于运行电池组系统的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014215773.0A DE102014215773A1 (de) 2014-08-08 2014-08-08 Verfahren zum Betrieb eines Batteriesystems
DE102014215773.0 2014-08-08

Publications (1)

Publication Number Publication Date
WO2016020154A1 true WO2016020154A1 (de) 2016-02-11

Family

ID=53546628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/066051 WO2016020154A1 (de) 2014-08-08 2015-07-14 Batteriesystem und verfahren zu dessen betrieb

Country Status (3)

Country Link
CN (1) CN106536261B (de)
DE (1) DE102014215773A1 (de)
WO (1) WO2016020154A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107154666A (zh) * 2017-07-20 2017-09-12 山东圣阳电源股份有限公司 一种电池组管理系统及供电系统
WO2023046857A1 (en) * 2021-09-23 2023-03-30 Volvo Car Corporation Battery control with dual broadcast

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015223580A1 (de) * 2015-11-27 2017-06-01 Robert Bosch Gmbh Batteriesystem
CN107276170B (zh) * 2017-07-12 2020-06-12 合肥国轩高科动力能源有限公司 一种主动保护纯电动汽车电池的系统及方法
DE102018213261A1 (de) * 2018-08-08 2020-02-13 Robert Bosch Gmbh Verfahren zum Betreiben eines Batteriesystems und Elektrofahrzeugs
CN109398153A (zh) * 2018-11-15 2019-03-01 重庆工业职业技术学院 电池容量的控制装置及控制方法
TWI721534B (zh) * 2019-03-20 2021-03-11 立錡科技股份有限公司 電池系統及其中之電池模組及電池控制電路
CN109941149B (zh) * 2019-04-12 2021-08-20 爱驰汽车有限公司 多源电池包充放电方法、装置、电子设备、存储介质
DE102020206014A1 (de) * 2020-05-13 2021-11-18 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zur Ermittlung der Kapazität einer elektrischen Energiespeichereinheit
EP4142137B1 (de) * 2021-08-23 2024-03-13 SAX Power GmbH Schaltungsanordnung und verfahren zur erzeugung einer wechselspannung
EP4312336A1 (de) 2022-07-29 2024-01-31 STABL Energy GmbH Batteriespeichersystem mit stochastischem abgleich

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011002548A1 (de) * 2011-01-12 2012-07-12 Sb Limotive Company Ltd. Verfahren zur Steuerung einer Batterie und Batterie zur Ausführung des Verfahrens
DE102011079365A1 (de) * 2011-07-19 2013-01-24 Sb Limotive Company Ltd. Verfahren zum Laden einer Batterie und Batterie zur Ausführung des Verfahrens
DE102012209652A1 (de) * 2012-06-08 2013-12-12 Robert Bosch Gmbh Verfahren zur Bestimmung eines ohmschen Innenwiderstandes eines Batteriemoduls, Batteriemanagementsystem und Kraftfahrzeug
US20140210380A1 (en) * 2013-01-30 2014-07-31 Samsung Sdi Co., Ltd. Battery having a Plurality of Battery Cells and Method for Regulating a Battery Voltage of a Battery Using Switch-On Probabilities of the Battery Cells

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2805934B1 (fr) 2000-03-01 2002-07-26 Agence Spatiale Europeenne Procede et dispositif d'equilibrage des charges d'une pluralite de cellules de batteries montees en serie
US7075194B2 (en) * 2003-07-31 2006-07-11 The Titan Corporation Electronically reconfigurable battery
TW200913433A (en) * 2007-09-10 2009-03-16 J Tek Inc Scattered energy storage control system
JP5722875B2 (ja) * 2009-04-10 2015-05-27 ザ リージェンツ オブ ザ ユニバーシティ オブ ミシガン 大規模バッテリシステムのための動的に再構成可能な構造
JP5635608B2 (ja) * 2009-07-29 2014-12-03 ザ・リージェンツ・オブ・ザ・ユニバーシティ・オブ・ミシガンThe Regents Of The University Of Michigan バッテリ充電及び放電のスケジューリングシステム
TWI427885B (zh) * 2010-09-13 2014-02-21 Richpower Microelectronics 電池包及其保護電路與方法
US8816639B2 (en) * 2011-06-02 2014-08-26 Aerojet Rocketdyne Of De, Inc. Charge balancing topology
US20130026992A1 (en) * 2011-07-25 2013-01-31 Joy Ride Technology Co., Ltd. Rechargeable battery device, and power supplying system incorporating the same
JP2013192394A (ja) 2012-03-14 2013-09-26 Ricoh Co Ltd 充電制御回路及び電池装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011002548A1 (de) * 2011-01-12 2012-07-12 Sb Limotive Company Ltd. Verfahren zur Steuerung einer Batterie und Batterie zur Ausführung des Verfahrens
DE102011079365A1 (de) * 2011-07-19 2013-01-24 Sb Limotive Company Ltd. Verfahren zum Laden einer Batterie und Batterie zur Ausführung des Verfahrens
DE102012209652A1 (de) * 2012-06-08 2013-12-12 Robert Bosch Gmbh Verfahren zur Bestimmung eines ohmschen Innenwiderstandes eines Batteriemoduls, Batteriemanagementsystem und Kraftfahrzeug
US20140210380A1 (en) * 2013-01-30 2014-07-31 Samsung Sdi Co., Ltd. Battery having a Plurality of Battery Cells and Method for Regulating a Battery Voltage of a Battery Using Switch-On Probabilities of the Battery Cells

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107154666A (zh) * 2017-07-20 2017-09-12 山东圣阳电源股份有限公司 一种电池组管理系统及供电系统
WO2023046857A1 (en) * 2021-09-23 2023-03-30 Volvo Car Corporation Battery control with dual broadcast

Also Published As

Publication number Publication date
DE102014215773A1 (de) 2016-02-11
CN106536261B (zh) 2019-10-11
CN106536261A (zh) 2017-03-22

Similar Documents

Publication Publication Date Title
WO2016020154A1 (de) Batteriesystem und verfahren zu dessen betrieb
EP3616295B1 (de) Schaltungsanordnung und ladeverfahren für ein elektrisches energiespeichersystem
EP2721685B1 (de) Batteriesystem und verfahren zum bereitstellen einer zwischenspannung
DE102014016620B4 (de) Verfahren zum Betrieb einer Energiespeichereinrichtung in einem Kraftfahrzeug und Kraftfahrzeug
DE102014110380B4 (de) Batteriesteuerung mit Blockauswahl
WO2017102414A1 (de) Ladeschaltung und ladeverfahren für ein elektrisches energiespeichersystem
DE102016224002A1 (de) Entladen von einem wenigstens zwei Batteriezellen aufweisenden Batteriemodul einer wenigstens zwei Batteriemodule aufweisenden Batterie
EP2355229A1 (de) Hochstrombatteriesystem und Verfahren zur Steuerung eines Hochstrombatteriesystems
DE102012209615A1 (de) Batteriezustand-Meldeeinheit, Busschienenmodul, Batteriepack und Batteriezustand-Überwachungssystem
EP2822808B1 (de) Bordnetz für ein fahrzeug
EP2435279A1 (de) Bordnetz für ein fahrzeug sowie steuervorrichtung für ein bordnetz
DE102017222979A1 (de) Managementvorrichtung, elektrische Speichervorrichtung, elektrisches Speichersystem und elektrische Anordnung
DE102014107670A1 (de) Ladungsübertragungsverfahren und -schaltung mit Energiezwischenspeicherung
WO2013113585A2 (de) Verfahren zum ladungsausgleich von batterieelementen, batteriesystem und kraftfahrzeug mit einem solchen batteriesystem
EP3079222B1 (de) Energieversorgungsvorrichtung für ein batteriemanagementsystem
EP3573864A1 (de) Batterieeinheit und verfahren zum betrieb einer batterieeinheit
DE102017100771A1 (de) Batteriesystem für ein Fahrzeug
DE102019212000A1 (de) Batterieschaltung zum Einstellen von Ladungszuständen von Batterieelementen sowie Verfahren zum Betreiben einer Batterieschaltung
DE102018001301B4 (de) Bordnetz für ein Kraftfahrzeug
EP3079223B1 (de) Batteriesystem zur elektrischen verbindung mit einer komponente
DE102013005104A1 (de) Vorrichtung und Verfahren zum Auf- und Entladen eines Energiespeichers
WO2016155962A1 (de) Verfahren zum betrieb einer batterieeinheit
EP3268243B1 (de) Leistungspuffer für ein batteriesystem zum betreiben einer elektrischen maschine und verfahren zum einstellen einer mittels eines batteriesystems zum betreiben einer elektrischen maschine bereitstellbaren elektrischen leistung
EP3326231B1 (de) Zelleinheit und verfahren zur bestimmung eines durch eine zelleinheit fliessenden stroms
WO2019072511A1 (de) Verfahren zum laden eines elektrischen energiespeichers mittels spannungspulsen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15738075

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15738075

Country of ref document: EP

Kind code of ref document: A1