WO2016019746A1 - 基于双波段光纤激光器的超宽带超连续谱光源 - Google Patents

基于双波段光纤激光器的超宽带超连续谱光源 Download PDF

Info

Publication number
WO2016019746A1
WO2016019746A1 PCT/CN2015/078698 CN2015078698W WO2016019746A1 WO 2016019746 A1 WO2016019746 A1 WO 2016019746A1 CN 2015078698 W CN2015078698 W CN 2015078698W WO 2016019746 A1 WO2016019746 A1 WO 2016019746A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
band
fiber
supercontinuum
ultra
Prior art date
Application number
PCT/CN2015/078698
Other languages
English (en)
French (fr)
Inventor
郭春雨
阮双琛
林怀钦
文亮
欧阳德钦
余军
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2016019746A1 publication Critical patent/WO2016019746A1/zh
Priority to US15/060,626 priority Critical patent/US9647409B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06729Peculiar transverse fibre profile
    • H01S3/06733Fibre having more than one cladding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3528Non-linear optics for producing a supercontinuum
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/32Photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0092Nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • H01S3/094007Cladding pumping, i.e. pump light propagating in a clad surrounding the active core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1608Solid materials characterised by an active (lasing) ion rare earth erbium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1618Solid materials characterised by an active (lasing) ion rare earth ytterbium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1691Solid materials characterised by additives / sensitisers / promoters as further dopants
    • H01S3/1698Solid materials characterised by additives / sensitisers / promoters as further dopants rare earth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2383Parallel arrangements
    • H01S3/2391Parallel arrangements emitting at different wavelengths

Definitions

  • the invention belongs to the field of fiber laser technology, and particularly relates to an ultra-wideband supercontinuum light source based on a dual-band fiber laser, which can be applied in biomedical, remote sensing detection, environmental monitoring, multi-channel optical fiber communication and spectroscopy.
  • Fiber supercontinuum source can produce high-brightness and high-coherence broadband light, which is equivalent to broadband laser, and has important application prospects in biomedicine, laser spectroscopy, environmental monitoring, remote sensing detection and other fields.
  • Ultra-wideband spectral output is the core goal of supercontinuum research, and the generation of broadband supercontinuum requires the pump laser wavelength to be located in the anomalous dispersion region of the fiber and as close as possible to the zero-dispersion wavelength of the fiber (Zero Dispersion Wavelength, ZDW), to facilitate the expansion of the ultrashort pulse evolved from the pump to the normal dispersion region.
  • the current mainstream technology for producing supercontinuum is to pump quartz or some non-quartz fiber using a high power fiber laser of a certain wavelength band of 1 ⁇ m and 1.5 ⁇ m/2 ⁇ m.
  • the fiber matched with the 1 ⁇ m band ytterbium (Yb) fiber laser dispersion is a quartz photonic crystal fiber (Photonic Crystal) Fibers, PCF), the combination of the two can produce a super-continuous spectrum of short-wavelength coverage in the visible light band, but the strong infrared absorption of the quartz material limits the expansion of the supercontinuum to the long-wave direction, so that the spectral energy is mainly concentrated in the visible and near-infrared bands. It is difficult to break through 2.5 ⁇ m.
  • the fiber matched with the 2 ⁇ m band fiber laser dispersion is a non-quartz glass fiber (fluoride, sulfide, etc.), which can generate a super-continuous spectrum of 5 ⁇ m mid-infrared band in a non-quartz glass fiber under high-power pumping, but The zero-dispersion wavelength and the pump wavelength of the fiber are both in the long-wavelength band of 1.5 ⁇ m or more.
  • the super-continuous spectrum generated in the non-quartz glass fiber is usually difficult to break through 0.8 ⁇ m in the short-wave direction, and the spectral energy is mainly concentrated in the infrared band of 1 ⁇ m or more.
  • the single-band laser pumping of a single material fiber makes the supercontinuum difficult to expand simultaneously in the visible and mid-infrared bands, limiting the implementation of ultra-wideband supercontinuum covering the visible-near-infrared-mid-infrared bands.
  • the technical problem to be solved by the present invention is to provide an ultra-wideband supercontinuum light source based on a dual-band fiber laser, which aims to realize an ultra-wideband supercontinuum with a wavelength covering the visible-near-infrared-mid-infrared band.
  • an ultra-wideband supercontinuum source based on a dual-band fiber laser comprising:
  • a first fiber laser for generating a first band laser, wherein the first band laser is used to evolve into a visible light-near infrared band supercontinuum;
  • a second fiber laser for generating a second band laser for use in a near-infrared to mid-infrared supercontinuum
  • a wavelength division multiplexer for combining the first band laser and the second band laser
  • Quartz PCF one end of which is connected to the output end of the wavelength division multiplexer through an optical fiber, and is used for performing the first-order nonlinear action on the combined laser, and then outputting the first-band laser into visible light-near Infrared band supercontinuum and second band laser evolved into modulation instability ultrashort pulses;
  • the non-quartz glass fiber has one end connected to the output end of the quartz PCF through an optical fiber, and is used for performing a second-order nonlinear action on the laser after the first-stage nonlinear action, so that the modulation instability is ultrashort pulse. It evolved into a near-infrared-mid-infrared supercontinuum spectrum, which outputs an ultra-wideband continuum covering the visible-near-infrared-mid-infrared band.
  • the wavelength band of the first wavelength laser is 1 ⁇ m
  • the wavelength band of the second wavelength laser is 1.5 ⁇ m or 2 ⁇ m.
  • two input ends of the wavelength division multiplexer are respectively connected to the first fiber laser and the second fiber laser, and an output end is connected to one end of the quartz PCF through an optical fiber.
  • the ultra-wideband supercontinuum light source further includes a dual-band optical fiber amplifier for simultaneously amplifying the first-band laser and the second-band laser;
  • the wavelength division multiplexer is connected to the quartz PCF through the dual band fiber amplifier.
  • the dual band fiber amplifier includes:
  • a pump combiner for combining pumping of a plurality of pump lasers
  • Er-Yb co-doped double-clad fiber connected between the output of the pump combiner and the quartz PCF;
  • a pump source for pumping Er-Yb co-doped double-clad fibers through the pump combiner for pumping Er-Yb co-doped double-clad fibers through the pump combiner.
  • the pump source is a semiconductor laser of 915 nm or 976 nm.
  • the second fiber laser and the wavelength division multiplexer are connected by a fiber isolator.
  • the invention uses two different wavelength fiber lasers as seed sources to form a dual-band fiber laser that simultaneously outputs a dual-band laser, and uses this dual-band fiber laser to pump the cascaded evolution components.
  • the specific dual-band laser passes through the first-order evolution component, part of the laser evolves into visible-near-infrared supercontinuum, while the other part of the laser evolves into ultrashort pulse, which are coupled into the second-order evolution component, and the ultrashort pulse is Among them, the near-infrared-middle-infrared supercontinuum is evolved, and the visible-near-infrared supercontinuum generated by the pre-stage is transmitted with low loss. The final output of the ultra-wideband covering the visible-near-mid-mid-infrared band from the cascaded fiber is output. Super continuum.
  • FIG. 1 is a structural diagram of an ultra-wideband supercontinuum source based on an Er-Yb co-doped fiber amplifier according to a first embodiment of the present invention
  • FIG. 2 is a structural diagram of an ultra-wideband supercontinuum source based on an Er-Yb-free co-doped fiber amplifier according to a second embodiment of the present invention.
  • the invention adopts 1 ⁇ m and 1.5 ⁇ m/2 ⁇ m
  • Two fiber lasers in the band are used as seed sources, and the two laser seeds are amplified by an Er-Yb co-doped fiber amplifier to realize a dual-band fiber laser capable of simultaneously outputting lasers of 1 ⁇ m and 1.5 ⁇ m/2 ⁇ m, and the dual-band fiber is used.
  • the laser pumps a cascade of fibers consisting of quartz PCF and non-quartz fibers.
  • the 1 ⁇ m laser evolves into a visible-near-infrared supercontinuum spectrum
  • the 1.5 ⁇ m/2 ⁇ m laser evolves into an ultrashort pulse, which are coupled into the rear-stage non-quartz glass fiber.
  • 1.5 ⁇ m/2 ⁇ m ultrashort pulse evolved into near-infrared-mid-infrared supercontinuum in the later-stage non-quartz glass fiber, while the visible-near-infrared supercontinuum generated in the pre-stage was transmitted in the low-loss transmission of the non-quartz glass fiber in the latter stage.
  • the ultra-wideband supercontinuum covering the visible-near-infrared-mid-infrared band is finally output from the cascaded fiber.
  • the specific structure is as shown in FIG.
  • the first fiber laser 1 and the second fiber laser 2 are lasers of different wavelength bands respectively.
  • the first fiber laser 1 is a 1 ⁇ m fiber laser
  • the first fiber laser 2 is a 1.5 ⁇ m or 2 ⁇ m fiber laser.
  • the two can be pulsed laser output, or both are continuous wave laser outputs, or one of them is a continuous wave laser output, and the other is a pulsed laser output. If both are pulse output modes, the two pulses can be either synchronous pulses or non-synchronized pulses.
  • Wavelength Division Multipler (Wavelength Division) Multiplexing (WDM) 5 is used to multiplex the output of the first fiber laser 1 and the second fiber laser 2 into the same fiber.
  • the first fiber laser 1 and the wavelength division multiplexer 5 are connected by a 1 ⁇ m fiber isolator 3, and the second fiber laser 2 and the wavelength division multiplexer 5 are connected by a 1.5 ⁇ m or 2 ⁇ m fiber isolator 4. It is used to ensure the one-way transmission of the laser, and avoids the damage of the laser beam of the latter system to the pre-stage fiber laser, thereby ensuring the stable operation of the system.
  • the pump combiner 7, the semiconductor laser pump source 6, and the Er-Yb co-doped double-clad fiber 8 together form a dual-band fiber amplifier 15 of 1 ⁇ m and 1.5 ⁇ m or 1 ⁇ m and 2 ⁇ m, simultaneously for the dual-band seed from the WDM output. Amplification was performed to output high power lasers of 1 ⁇ m and 1.5 ⁇ m/2 ⁇ m.
  • Quartz PCF10 performs the first-order nonlinear effect on the input 1 ⁇ m and 1.5 ⁇ m/2 ⁇ m dual-band lasers.
  • the 1 ⁇ m band laser evolves into a visible-near-infrared supercontinuum, and the 1.5 ⁇ m/2 ⁇ m band laser evolves into a modulation instability.
  • Ultra-short pulse Ultra-short pulse.
  • Non-quartz glass fiber 12 pairs from pre-stage quartz PCF The visible-near-infrared supercontinuum and the 1.5 ⁇ m/2 ⁇ m modulation instability pulse in 10 perform the second-order nonlinear action, and the 1.5 ⁇ m/2 ⁇ m ultrashort pulse evolves into the near-infrared-mid-infrared supercontinuum, the pre-stage The resulting visible-near-infrared supercontinuum is transmitted with low loss, and finally the ultra-wideband supercontinuum covering the visible-near-infrared-mid-infrared band is output from the "end cap" 14 in the cascaded fiber.
  • Fig. 1 denotes the pigtail and quartz PCF of the Er-Yb co-doped double-clad fiber 8.
  • the splice point of 10, 11 represents the coupling point of quartz PCF 10 and non-quartz glass fiber 12.
  • WDM multiplexes two high-power fiber lasers of 1 ⁇ m and 1.5 ⁇ m (or two high-power fiber lasers of 1 ⁇ m and 2 ⁇ m), and the output of high-power WDM is directly connected to the quartz PCF/ZBLAN (fluorine fiber) cascade fiber.
  • quartz PCF/ZBLAN fluorine fiber
  • UWB supercontinuum output covering the visible-near-infrared-mid-infrared band can also be achieved using the same fiber nonlinear optics principle.
  • 6 represents high power WDM
  • the output fiber of 6 is connected to the quartz PCF 7 and 8 is the coupling point of the quartz PCF 7 and the non-quartz glass fiber 9.
  • Cascaded fiber composed of quartz PCF/non-quartz glass fiber is pumped by 1 ⁇ m/1.5 ⁇ m or 1 ⁇ m/2 ⁇ m dual-band laser, because 1 ⁇ m and 1.5 ⁇ m/2 ⁇ m laser in dual band correspond to quartz PCF and non-quartz glass fiber respectively.
  • a 1 ⁇ m laser produces a visible-near-infrared supercontinuum spectrum in a quartz PCF
  • a 1.5 ⁇ m/2 ⁇ m laser produces a near-infrared-mid-infrared supercontinuum in a non-quartz glass fiber, which is ultimately covered by a cascaded fiber output. Visible - near-infrared - mid-infrared three-band ultra-wideband supercontinuum.
  • the high-power stable operation of Er-Yb co-doped fiber amplifier needs to eliminate the amplified spontaneous emission (Yb-ASE) in the Yb band to avoid the occurrence of parasitic oscillation and self-pulsation, and simultaneously inject it at the 1.5 ⁇ m/2 ⁇ m laser seed end.
  • 1 ⁇ m laser seed can convert Yb-ASE into Yb laser output, which improves the system stability and laser conversion efficiency of Er-Yb co-doped fiber.
  • This patent uses an Er-Yb co-doped fiber amplifier to simultaneously amplify two laser seeds of 1 ⁇ m and 1.5 ⁇ m/2 ⁇ m to achieve high power output of two-band lasers of 1 ⁇ m and 1.5 ⁇ m/2 ⁇ m.
  • the 1 ⁇ m laser is located in the anomalous dispersion region near the zero-dispersion wavelength of quartz PCF, in which the visible-near-infrared band is covered by nonlinear effects such as modulation instability, soliton self-frequency shift, cross-phase modulation, four-wave mixing, and soliton capture.
  • the supercontinuum output, 1.5 ⁇ m or 2 ⁇ m laser is located in the anomalous dispersion region of the quartz PCF away from the zero-dispersion wavelength, in which the modulation instability ultrashort pulse is generated by nonlinear effects such as modulation instability.
  • the non-quartz glass fiber uses a fiber material with low loss in the visible-near-infrared band, which allows the visible-near-infrared super-continuous low-loss transmission generated in the quartz PCF, while the ultra-short pulse of 1.5 ⁇ m or 2 ⁇ m generated in the quartz PCF is
  • Non-quartz glass fiber reaches its anomalous dispersion region by stimulated Raman scattering effect, and then uses the nonlinear effects such as modulation instability, soliton self-frequency shift, cross-phase modulation, four-wave mixing, soliton capture to produce near-infrared coverage.
  • the supercontinuum spectrum in the mid-infrared band combines the visible-near-infrared supercontinuum generated in the pre-stage fiber to finally output the ultra-wideband supercontinuum in the visible-near-infrared-mid-infrared band.
  • the present invention can realize ultra-wideband supercontinuum covering three wavelengths of visible-near-infrared-mid-infrared, and can control the flatness of supercontinuum by adjusting the power comparison of two laser seeds of 1 ⁇ m and 1.5 ⁇ m/2 ⁇ m. Degree and its energy distribution in different spectral bands.
  • the device has the advantages of high power and full fiber, and is suitable for various application fields.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Lasers (AREA)

Abstract

一种适用于光纤激光技术领域的基于双波段光纤激光器的超宽带超连续谱光源,包括:第一光纤激光器(1)、第二光纤激光器(2)、波分复用器(3)、级联的两级超连续谱演化组件。采用两个不同波段的光纤激光器作为种子源,形成同时输出双波段激光的双波段光纤激光器,并以此双波段光纤激光器泵浦级联的演化组件。具体双波段激光通过第一级演化组件时,一个波段激光演化为可见光-近红外超连续谱,而另一波段激光演化为超短脉冲,二者共同耦合进入第二级演化组件,超短脉冲又在其中演化为近红外-中红外超连续谱,前级产生的可见光-近红外超连续谱在其中低损耗传输,从级联光纤中最终输出覆盖可见光-近红外-中红外三个波段的超宽带超连续谱。

Description

基于双波段光纤激光器的超宽带超连续谱光源 技术领域
本发明属于光纤激光技术领域,尤其涉及一种基于双波段光纤激光器的超宽带超连续谱光源,可应用在生物医学、遥感探测、环境监测、多通道光纤通信及光谱学等方面。
背景技术
光纤超连续谱光源可产生高亮度、高相干的宽带光,相当于宽带激光器,在生物医学、激光光谱学、环境监测、遥感探测等领域具有重要的应用前景。
超宽带光谱输出是超连续谱研究追求的核心目标,而宽带超连续谱的产生要求泵浦激光波长位于光纤反常色散区并且尽量接近光纤零色散波长(Zero Dispersion Wavelength,ZDW),以利于从泵浦演化的超短脉冲扩展到正常色散区。目前产生超连续谱的主流技术是采用1μm、1.5μm/2μm某一波段的高功率光纤激光器泵浦石英或某种非石英材质的光纤。
与1μm 波段掺镱(Yb)光纤激光器色散匹配的光纤是石英光子晶体光纤(Photonic Crystal Fibers,PCF),二者相结合可以产生短波覆盖可见光波段的超连续谱,但是石英材料的强红外吸收限制了超连续谱向长波方向的扩展,使得光谱能量主要集中于可见光和近红外波段,而难以突破2.5µm。
与1.5μm 和2μm波段光纤激光器色散匹配的光纤是非石英玻璃光纤(氟化物、硫化物等材质光纤),在高功率泵浦下非石英玻璃光纤中可以产生长波覆盖5μm中红外波段的超连续谱,但是由于光纤零色散波长和泵浦波长都位于1.5μm以上的长波波段,非石英玻璃光纤中产生的超连续谱在短波方向通常难以突破0.8μm,光谱能量主要集中于1μm以上的红外波段。
因此,单一波段激光泵浦单一材质光纤的技术导致超连续谱难以在可见光和中红外波段同时扩展,限制了覆盖可见-近红外-中红外三个波段的超宽带超连续谱的实现。
技术问题
本发明所要解决的技术问题在于提供一种基于双波段光纤激光器的超宽带超连续谱光源,旨在实现波长可覆盖可见光-近红外-中红外波段的超宽带超连续谱。
技术解决方案
本发明是这样实现的,一种基于双波段光纤激光器的超宽带超连续谱光源,包括:
第一光纤激光器,用于产生第一波段激光,所述第一波段激光用于演化为可见光-近红外波段超连续谱;
第二光纤激光器,用于产生第二波段激光,所述第二波段激光用于演化为近红外-中红外波段超连续谱;
波分复用器,用于将所述第一波段激光和第二波段激光进行合束;
石英PCF,其一端通过光纤与所述波分复用器的输出端连接,用于对合束后的激光进行第一级非线性作用后输出,使其中的第一波段激光演化为可见光-近红外波段超连续谱、第二波段激光演化为调制不稳定性超短脉冲;
非石英玻璃光纤,其一端通过光纤与所述石英PCF的输出端连接,用于对经过第一级非线性作用后的激光进行第二级非线性作用,使其中的调制不稳定性超短脉冲演化为近红外-中红外波段超连续谱,从而输出覆盖可见光-近红外-中红外波段的超宽带连续谱。
进一步地,所述第一波段激光的波段为1μm,所述第二波段激光的波段为1.5μm或2μm。
进一步地,所述波分复用器的两个输入端分别与所述第一光纤激光器、第二光纤激光器连接,输出端通过光纤与所述石英PCF的一端连接。
进一步地,所述超宽带超连续谱光源还包括双波段光纤放大器,用于对所述第一波段激光、第二波段激光同时进行放大;
所述波分复用器通过所述双波段光纤放大器与所述石英PCF连接。
进一步地,所述双波段光纤放大器包括:
泵浦合束器,用于将多个泵浦激光进行合束泵浦;
Er-Yb共掺双包层光纤,连接在所述泵浦合束器的输出端与石英PCF之间;
泵浦源,用于通过所述泵浦合束器泵浦Er-Yb共掺双包层光纤。
进一步地,所述泵浦源为915nm或976nm的半导体激光器。
进一步地,所述第一光纤激光器与波分复用器之间、所述第二光纤激光器与波分复用器之间均通过光纤隔离器连接。
有益效果
本发明采用两个不同波段的光纤激光器作为种子源,形成同时输出双波段激光的双波段光纤激光器,并以此双波段光纤激光器泵浦级联的演化组件。具体双波段激光通过第一级演化组件时,部分激光演化为可见光-近红外超连续谱,而另一部分激光演化为超短脉冲,二者共同耦合进入第二级演化组件,超短脉冲又在其中演化为近红外-中红外超连续谱,前级产生的可见光-近红外超连续谱在其中低损耗传输,从级联光纤中最终输出覆盖可见光-近红外-中红外三个波段的超宽带超连续谱。
附图说明
图1是本发明第一实施例提供的基于有Er-Yb共掺光纤放大器的超宽带超连续谱光源的结构图;
图2是本发明第二实施例提供的基于无Er-Yb共掺光纤放大器的超宽带超连续谱光源的结构图。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明采用1μm和1.5μm/2μm 波段两个光纤激光器作为种子源,利用Er-Yb共掺光纤放大器对这两个激光种子进行放大,实现可同时输出1μm和1.5μm/2μm波段激光的双波段光纤激光器,并以此双波段光纤激光器泵浦由石英PCF和非石英光纤组成的级联光纤。双波段激光通过级联光纤中的前段石英PCF时,1μm激光演化为可见光-近红外超连续谱,而1.5μm/2μm激光演化为超短脉冲,二者共同耦合进入后级非石英玻璃光纤,然后1.5μm/2μm超短脉冲在后级非石英玻璃光纤中演化为近红外-中红外超连续谱,而前级产生的可见光-近红外超连续谱在后级非石英玻璃光纤中低损耗传输,最终从级联光纤中最终输出覆盖可见光-近红外-中红外三个波段的超宽带超连续谱。具体结构如附图1所示。
第一光纤激光器1和第二光纤激光器2分别为不同波段的激光器,具体第一光纤激光器1为1μm的光纤激光器,第一光纤激光器2为1.5μm或2μm的光纤激光器。二者作为双波段放大的种子源,可以都是脉冲激光输出,或都是连续波激光输出,或其一为连续波激光输出,另外一个为脉冲激光输出。如果都是脉冲输出方式,两脉冲可以是同步脉冲,也可以是非同步脉冲。
波分复用器(Wavelength Division Multiplexing,简称WDM)5用来将第一光纤激光器1和第二光纤激光器2输出激光复用到同一个光纤中。而在第一光纤激光器1与波分复用器5之间通过1μm光纤隔离器3连接,在第二光纤激光器2与波分复用器5之间通过1.5μm或2μm光纤隔离器4连接,用于保证激光的单向传输,避免后级系统的激光反馈对前级光纤激光器的损伤,进而保证系统稳定运转。
泵浦合束器7、半导体激光器泵浦源6以及Er-Yb共掺双包层光纤8共同构成1μm与1.5μm或1μm与2μm的双波段光纤放大器15,对来自WDM输出端的双波段种子同时进行放大,输出1μm和1.5μm/2μm高功率激光。
石英PCF10对输入的1μm和1.5μm/2μm双波段激光进行第一级非线性作用,1μm波段激光在其中演化为可见光-近红外超连续谱,1.5μm/2μm波段激光在其中演化为调制不稳定性超短脉冲。
非石英玻璃光纤12对来自前级石英PCF 10中的可见光-近红外超连续谱和1.5μm/2μm调制不稳定性脉冲进行第二级非线性作用,1.5μm/2μm超短脉冲在其中演化为近红外-中红外超连续谱,前级产生的可见光-近红外超连续谱在其中低损耗传输,最终从级联光纤中的“端帽”14输出覆盖可见光-近红外-中红外三个波段的超宽带超连续谱。图1中,9表示Er-Yb共掺双包层光纤8的尾纤与石英PCF 10的熔接点,11表示石英PCF 10与非石英玻璃光纤12的耦合点。
当然,作为本发明的第二个实施例,也可以去掉系统中由泵浦合束器7、半导体激光器泵浦源6以及Er-Yb共掺双包层光纤8组成的光纤放大器,利用高功率WDM复用1μm和1.5μm两个高功率光纤激光器(或1μm和2μm两个高功率光纤激光器),高功率WDM的输出端直接与石英PCF/ZBLAN(氟化物光纤)级联光纤连接,对其进行双波段泵浦,利用同样的光纤非线性光学原理,也可以实现覆盖可见-近红外-中红外波段的超宽带超连续谱输出。如附图2所示,其中6表示高功率WDM 6的输出光纤与石英PCF 7熔接点,8表示石英PCF 7与非石英玻璃光纤9的耦合点。
利用1μm/1.5μm或1μm/2μm双波段激光泵浦由石英PCF/非石英玻璃光纤组成的级联光纤,由于双波段中的1μm和1.5μm/2μm激光分别对应石英PCF和非石英玻璃光纤的最佳泵浦波长区,1μm激光在石英PCF中产生可见-近红外超连续谱,1.5μm/2μm激光在非石英玻璃光纤中产生近红外-中红外超连续谱,最终通过级联光纤输出覆盖可见-近红外-中红外三个波段的超宽带超连续谱。
具体工作原理和过程如下:
Er-Yb共掺光纤放大器高功率稳定运转需要消除Yb波段的放大的自发辐射(Yb-ASE),以避免引发寄生震荡及自脉动等不良现象,而在其1.5μm/2μm激光种子端同时注入另外1μm激光种子,可以将Yb-ASE转化为Yb激光输出,进而提高Er-Yb共掺光纤器的系统稳定性和激光转化效率。本专利利用Er-Yb共掺光纤放大器对1μm和1.5μm/2μm两个激光种子同时进行放大,实现1μm和1.5μm/2μm两波段激光的高功率输出。
1μm激光位于石英PCF零色散波长附近的反常色散区,在其中通过调制不稳定性、孤子自频移、交叉相位调制、四波混频、孤子捕获等非线性效应产生覆盖可见光-近红外波段的超连续谱输出,1.5μm或2μm激光位于石英PCF远离零色散波长的反常色散区,在其中通过调制不稳定性等非线性效应产生调制不稳定性超短脉冲。
非石英玻璃光纤选用对可见-近红外波段具有低损耗的光纤材质,可以让石英PCF中产生的可见光-近红外超连续低损耗传输,而在石英PCF中产生的1.5μm或2μm超短脉冲在非石英玻璃光纤中通过受激拉曼散射效应达到其反常色散区,进而利用调制不稳定性、孤子自频移、交叉相位调制、四波混频、孤子捕获等非线性效应产生覆盖近红外-中红外波段的超连续谱,结合前级光纤中产生的可见光-近红外超连续谱,最终输出覆盖可见光-近红外-中红外波段的超宽带超连续谱。
综上所述,本发明可以实现覆盖可见光-近红外-中红外三个波段的超宽带超连续谱,通过调节1μm和1.5μm/2μm两个激光种子的功率对比,可以控制超连续谱的平坦度及其不同光谱波段的能量分布。此外,本装置具有高功率及全光纤化的优点,适合于各种应用领域的需求。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

  1. 一种基于双波段光纤激光器的超宽带超连续谱光源,其特征在于,所述超宽带超连续谱光源包括:
    第一光纤激光器,用于产生第一波段激光,所述第一波段激光用于演化为可见光-近红外波段超连续谱;
    第二光纤激光器,用于产生第二波段激光,所述第二波段激光用于演化为近红外-中红外波段超连续谱;
    波分复用器,用于将所述第一波段激光和第二波段激光进行合束;
    石英PCF,其一端通过光纤与所述波分复用器的输出端连接,用于对合束后的激光进行第一级非线性作用后输出,使其中的第一波段激光演化为可见光-近红外波段超连续谱、第二波段激光演化为调制不稳定性超短脉冲;
    非石英玻璃光纤,其一端通过光纤与所述石英PCF的输出端连接,用于对经过第一级非线性作用后的激光进行第二级非线性作用,使其中的调制不稳定性超短脉冲演化为近红外-中红外波段超连续谱,从而输出覆盖可见光-近红外-中红外波段的超宽带连续谱。
  2. 如权利要求1所述的超宽带超连续谱光源,其特征在于,所述第一波段激光的波段为1μm,所述第二波段激光的波段为1.5μm或2μm。
  3. 如权利要求1所述的超宽带超连续谱光源,其特征在于,所述波分复用器的两个输入端分别与所述第一光纤激光器、第二光纤激光器连接,输出端通过光纤与所述石英PCF的一端连接。
  4. 权利要求1或3所述的超宽带超连续谱光源,其特征在于,所述超宽带超连续谱光源还包括双波段光纤放大器,用于对所述第一波段激光、第二波段激光同时进行放大;
    所述波分复用器通过所述双波段光纤放大器与所述石英PCF连接。
  5. 权利要求4所述的超宽带超连续谱光源,其特征在于,所述双波段光纤放大器包括:
    泵浦合束器,用于将多个泵浦激光进行合束泵浦;
    Er-Yb共掺双包层光纤,连接在所述泵浦合束器的输出端与石英PCF之间;
    泵浦源,用于通过所述泵浦合束器泵浦Er-Yb共掺双包层光纤。
  6. 如权利要求5所述的超宽带超连续谱光源,其特征在于,所述泵浦源为915nm或976nm的半导体激光器。
  7. 如权利要求1所述的超宽带超连续谱光源,其特征在于,所述第一光纤激光器与波分复用器之间、所述第二光纤激光器与波分复用器之间均通过光纤隔离器连接。
PCT/CN2015/078698 2014-08-06 2015-05-11 基于双波段光纤激光器的超宽带超连续谱光源 WO2016019746A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/060,626 US9647409B2 (en) 2014-08-06 2016-03-04 Ultra-wideband supercontinuum light source based on dual-band fiber laser

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410385054.4 2014-08-06
CN201410385054.4A CN104201545B (zh) 2014-08-06 2014-08-06 基于双波段光纤激光器的超宽带超连续谱光源

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/060,626 Continuation US9647409B2 (en) 2014-08-06 2016-03-04 Ultra-wideband supercontinuum light source based on dual-band fiber laser

Publications (1)

Publication Number Publication Date
WO2016019746A1 true WO2016019746A1 (zh) 2016-02-11

Family

ID=52086800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/078698 WO2016019746A1 (zh) 2014-08-06 2015-05-11 基于双波段光纤激光器的超宽带超连续谱光源

Country Status (3)

Country Link
US (1) US9647409B2 (zh)
CN (1) CN104201545B (zh)
WO (1) WO2016019746A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104201545B (zh) * 2014-08-06 2016-06-15 深圳大学 基于双波段光纤激光器的超宽带超连续谱光源
CN104577677B (zh) * 2015-01-22 2018-08-14 中国科学院上海光学精密机械研究所 级联光子晶体光纤激光器
CN104934844A (zh) * 2015-07-02 2015-09-23 武汉安扬激光技术有限责任公司 拥有同相位高功率单波长半导体激光的新型超连续谱光源系统
CN105048259A (zh) * 2015-07-28 2015-11-11 湖南大学 可选择性激发超连续谱的方法
JP6062018B1 (ja) * 2015-10-30 2017-01-18 株式会社フジクラ ファイバレーザシステム
CN105633775A (zh) * 2016-03-24 2016-06-01 中国人民解放军国防科学技术大学 一种高斜率效率、高功率的中红外超连续谱光源
CN105826800B (zh) * 2016-04-21 2020-06-16 宁波大学 一种全光纤化宽带平坦中红外超连续谱光源
CN105790073B (zh) * 2016-05-11 2019-07-23 中国科学院上海技术物理研究所 一种平坦光谱输出的超连续谱激光器
CN106785835B (zh) * 2016-12-14 2019-02-19 电子科技大学 一种全光纤中红外超宽带超连续激光发射器
CN106785865A (zh) * 2016-12-22 2017-05-31 北京大学深圳研究生院 一种超连续光谱产生装置
CN106840395B (zh) * 2017-01-16 2021-01-15 中国人民解放军国防科学技术大学 用于主动高光谱成像的近红外超连续谱照明系统
CN107702797B (zh) * 2017-08-31 2023-06-23 中国工程物理研究院激光聚变研究中心 可调谐脉冲序列发生装置
CN108512020B (zh) * 2017-09-22 2019-06-25 中国人民解放军国防科技大学 一种光谱可控、输出功率可调谐的非相干超连续谱光源
WO2020107030A1 (en) * 2018-11-23 2020-05-28 Nuburu, Inc Multi-wavelength visible laser source
CN109361148B (zh) * 2018-12-05 2020-11-24 深圳市创鑫激光股份有限公司 一种固体激光器
CN111697424A (zh) * 2019-03-12 2020-09-22 中国移动通信有限公司研究院 一种光源产生装置、方法、设备及计算机可读存储介质
EP4231090A1 (en) * 2022-02-17 2023-08-23 ASML Netherlands B.V. A supercontinuum radiation source and associated metrology devices
CN115347441B (zh) * 2022-05-17 2024-04-26 北京工业大学 基于频移拉曼孤子的级联泵浦3.5微米全光纤飞秒放大器
CN115313130B (zh) * 2022-07-22 2024-04-23 北京工业大学 基于掺钬氟化铟光纤的2-5μm宽光谱光纤光源

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120281720A1 (en) * 2011-05-06 2012-11-08 Imra America, Inc. Broadband generation of coherent continua with optical fibers
CN102820606A (zh) * 2012-08-03 2012-12-12 北京工业大学 超连续谱光源激励的中红外超连续谱光纤激光器
CN103022867A (zh) * 2012-12-18 2013-04-03 中国人民解放军国防科学技术大学 一种高功率高效率的超连续谱光源
CN103502884A (zh) * 2011-03-14 2014-01-08 Imra美国公司 通过光纤宽带生成中红外相干连续谱
CN103825164A (zh) * 2013-12-03 2014-05-28 上海交通大学 一种高平均功率全光纤中红外超连续谱光源
CN104201545A (zh) * 2014-08-06 2014-12-10 深圳大学 基于双波段光纤激光器的超宽带超连续谱光源
CN204067843U (zh) * 2014-08-06 2014-12-31 深圳大学 一种基于双波段光纤激光器的超宽带超连续谱光源

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6212310B1 (en) * 1996-10-22 2001-04-03 Sdl, Inc. High power fiber gain media system achieved through power scaling via multiplexing
US7130512B2 (en) * 2005-03-04 2006-10-31 Corning Incorporated Supercontinuum emitting device
WO2010079773A1 (ja) * 2009-01-07 2010-07-15 株式会社フジクラ 光ファイバ増幅器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103502884A (zh) * 2011-03-14 2014-01-08 Imra美国公司 通过光纤宽带生成中红外相干连续谱
US20120281720A1 (en) * 2011-05-06 2012-11-08 Imra America, Inc. Broadband generation of coherent continua with optical fibers
CN102820606A (zh) * 2012-08-03 2012-12-12 北京工业大学 超连续谱光源激励的中红外超连续谱光纤激光器
CN103022867A (zh) * 2012-12-18 2013-04-03 中国人民解放军国防科学技术大学 一种高功率高效率的超连续谱光源
CN103825164A (zh) * 2013-12-03 2014-05-28 上海交通大学 一种高平均功率全光纤中红外超连续谱光源
CN104201545A (zh) * 2014-08-06 2014-12-10 深圳大学 基于双波段光纤激光器的超宽带超连续谱光源
CN204067843U (zh) * 2014-08-06 2014-12-31 深圳大学 一种基于双波段光纤激光器的超宽带超连续谱光源

Also Published As

Publication number Publication date
US9647409B2 (en) 2017-05-09
CN104201545A (zh) 2014-12-10
CN104201545B (zh) 2016-06-15
US20160190764A1 (en) 2016-06-30

Similar Documents

Publication Publication Date Title
WO2016019746A1 (zh) 基于双波段光纤激光器的超宽带超连续谱光源
WO2016045396A1 (zh) 一种基于可调谐脉冲光纤激光器泵浦的超连续谱光源
CN104283097A (zh) 一种780nm的高功率光纤飞秒激光器
CN204067843U (zh) 一种基于双波段光纤激光器的超宽带超连续谱光源
CN107046220A (zh) 一种全光纤化高功率中远红外超连续谱光源
WO2015172700A1 (zh) 一种基于绿光光纤激光器泵浦的可见光超连续谱光源
CN103296566A (zh) 一种提高氟化物光纤中超连续谱长波功率比例的方法
CN102012597B (zh) 一种基于微结构光纤的双泵浦光纤参量放大器
WO2018205441A1 (zh) 一种宽带光参量啁啾脉冲放大器
CN113794094A (zh) 基于氟化物光纤的高功率全光纤中红外波段宽光谱光源
CN108879302B (zh) 一种基于光参量振荡的光频率梳产生器
CN201886253U (zh) 一种基于微结构光纤的双泵浦光纤参量放大器
CN108628058B (zh) 一种片上集成中红外超连续谱光源
CN204088868U (zh) 一种780nm的高功率光纤飞秒激光器
CN204405194U (zh) 基于全光纤器件的低噪声近红外上转换单光子探测器
CN111834877A (zh) 三倍布里渊频移间隔的多波长布里渊光纤激光器
Zhao et al. Overcoming the quantum noise limit with Continuous-wave Phase-Sensitive parametric amplification based on a single integrated silicon-nitride waveguide
CN110082983A (zh) 基于反向偏置pin硅波导参量放大器
CN110858698B (zh) 中红外飞秒光纤激光光源系统
Luo et al. High-average-power femtosecond fiber self-similar amplification
Nguyen et al. Widely tunable normal dispersion fiber optical parametric oscillator
CN102722060A (zh) 过滤闲频光实现增益优化的单泵浦光纤参量放大器
Zhu et al. High-power Femtosecond Optical Frequency Comb
Singh et al. Distributed Raman fiber amplifiers for S-band
Li et al. 1.7 µm all-fiber gas Raman laser source

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15830122

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15830122

Country of ref document: EP

Kind code of ref document: A1