WO2016019699A1 - 一种电容驱动电致发光显示器及其制造方法 - Google Patents

一种电容驱动电致发光显示器及其制造方法 Download PDF

Info

Publication number
WO2016019699A1
WO2016019699A1 PCT/CN2015/000553 CN2015000553W WO2016019699A1 WO 2016019699 A1 WO2016019699 A1 WO 2016019699A1 CN 2015000553 W CN2015000553 W CN 2015000553W WO 2016019699 A1 WO2016019699 A1 WO 2016019699A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
column
row
display substrate
charging switch
Prior art date
Application number
PCT/CN2015/000553
Other languages
English (en)
French (fr)
Inventor
石益坚
石嘉琨
Original Assignee
石益坚
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石益坚 filed Critical 石益坚
Priority to US15/501,708 priority Critical patent/US10186564B2/en
Publication of WO2016019699A1 publication Critical patent/WO2016019699A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • G09G3/3241Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element the current through the light-emitting element being set using a data current provided by the data driver, e.g. by using a two-transistor current mirror
    • G09G3/325Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element the current through the light-emitting element being set using a data current provided by the data driver, e.g. by using a two-transistor current mirror the data current flowing through the driving transistor during a setting phase, e.g. by using a switch for connecting the driving transistor to the data driver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1255Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs integrated with passive devices, e.g. auxiliary capacitors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/814Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1216Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being capacitors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment

Definitions

  • the present invention relates to a driving technique for an electroluminescent display, and more particularly to a capacitively driven electroluminescent display and a method of fabricating the same.
  • electroluminescent displays such as organic light emitting diode (OLED) displays
  • PM passive matrix
  • AM active matrix
  • An OLED display (ie, PMOLED) using a PM driving mode uses a completely external driving circuit to perform progressive voltage scanning on pixels on the display screen: that is, pixels are sequentially alternately lit in units of rows.
  • the PMOLED panel consists of a set of laterally arranged electrodes (row electrodes) and a set of longitudinally arranged electrodes (column electrodes); wherein the layer of organic light-emitting material is sandwiched between the row and column electrodes (see Figure 1A). .
  • a PMOLED display screen (1000) is composed of a substrate (1001), a column electrode (1002), an organic layer (1003), and a row electrode (1004).
  • the substrate 1001 is composed of a transparent material.
  • Column electrode 1002 is typically a positive electrode and is composed of a transparent metal oxide such as indium tin oxide (ITO).
  • the organic layer 1003 usually contains a plurality of layers of organic materials having different functions, such as a hole injection (HI) layer, a hole conduction (HT) layer, an electron blocking (EB) layer, an illuminating (EM) layer, and a hole blocking (HB) layer. , an electron conducting (ET) layer, an electron injecting (EI) layer, and the like.
  • the organic material used may be either a polymeric material or a small molecular organic material.
  • a charge separation layer is also included between adjacent devices.
  • the row electrode 1004 is typically a negative power supply and is shared by the same row of pixels. The brightness of the pixel is determined by the voltages V 1 , V 2 , V 3 ... V m of the column electrodes (see Fig. 1A).
  • Row electrode 1004 is typically an aluminum electrode having a thickness of approximately 150 nanometers.
  • the terms "organic light emitting diode” or “OLED” are used to mean polymer OLED, small molecule OLED, and “tandem OLED”; the term “row electrode” refers specifically to the same electrode.
  • Figure 1B shows a waveform diagram of the PMOLED scan pulse voltage.
  • the pixels of each row are illuminated once in each scan cycle; the lighting time is inversely proportional to the total number of row electrodes. Since the lighting time is short, it is required that the brightness of the pixel in the lighting state is extremely high in order to achieve a high apparent brightness.
  • the time ⁇ t o of lighting is approximately
  • an array of fourth recesses for accommodating the charging switch; disposing the charging switch in the fourth recess; setting the centering electrode on the charging switch; a material for forming a driving capacitor is disposed on the display substrate on which the center electrode is disposed; a row electrode or a column electrode is disposed on the material for forming the driving capacitor corresponding to the center electrode; a light window is etched at a position corresponding to the center electrode on the row electrode or the column electrode, and a second is etched at a position corresponding to the center electrode on the material for forming the driving capacitor a recess; the electroluminescent device is disposed in the second recess such that the electroluminescent device is electrically connected to the center electrode.
  • a column electrode or a row electrode is disposed on the display substrate; a first insulating material is disposed on the display substrate on which the column or row electrode has been applied; and the first insulating material is a fourth groove array for accommodating the charging switch is etched at a position corresponding to the column electrode or the row electrode; the charging switch is disposed in the fourth groove; and the middle switch is disposed on the charging switch Laying an electrode; laying a material for forming a driving capacitor on the display substrate on which the center electrode is disposed, and etching an array of the driving capacitor at a position corresponding to the center electrode; The display substrate etched out of the array of driving capacitors is planarized by a second insulating material; corresponding to the center electrode on the display substrate after the planarization of the second insulating material Laying a row electrode or a column electrode; etching a light window at a position corresponding to the center electrode on the row electrode or the column electrode, and placing the light on the second insulating material A position
  • a column electrode or a row electrode is disposed on the display substrate; the charging switch is disposed at a corresponding position on the column electrode or the row electrode; and the display substrate for which the charging switch has been disposed is used first
  • the insulating material is planarized; the center electrode is disposed on the charging switch; a material for forming a driving capacitor is disposed on the display substrate on which the center electrode is disposed; and the driving is used to form a driving a row electrode or a column electrode is disposed on the material of the capacitor corresponding to the center electrode; a light window is etched at a position corresponding to the center electrode on the row electrode or the column electrode, and is used for Forming a second recess at a position corresponding to the center electrode on a material forming the driving capacitor; disposing the electroluminescent device in the second recess such that the electroluminescent device is electrically connected
  • the middle electrode is described.
  • a column electrode or a row electrode is disposed on the display substrate; the charging switch is disposed at a corresponding position on the column electrode or the row electrode; and the display substrate for which the charging switch has been disposed is used first
  • the insulating material is planarized; the center electrode is disposed on the charging switch; a material for forming a driving capacitor is laid on the display substrate on which the center electrode is disposed, and the driving is etched
  • An array of capacitors; the display substrate on which the array of drive capacitors has been etched is planarized with a second insulating material; a row electrode or a column electrode is disposed on the display substrate after the material planarization treatment corresponding to the center electrode; and a light window is etched at a position corresponding to the center electrode on the row electrode or the column electrode And etching a second groove at a position corresponding to the center electrode on the second insulating material; providing the electroluminescent device in the second groove such that the electroluminescence The device is electrically connected to the center electrode
  • a third recess for accommodating the column or row electrode is etched on the display substrate, and then an electrode material is filled in the third recess to form the column or row electrode.
  • the display substrate made of or consisting of a thermoplastic material is heat treated and then the column or row electrodes are pressed into the heat softened surface of the display substrate.
  • an organic layer is deposited in the second recess, and then a transparent electrode electrically connected to the row electrode or the column electrode portion at the light exit window is formed on top of the organic layer to form the electricity A light-emitting device, wherein at least the transparent electrode is located in the light exit window.
  • the transparent electrode is deposited on the top of the organic layer and the row or column electrode at the exit window through a shadow mask.
  • the charging switch is generated directly on the column or row electrodes.
  • the center electrode is obtained by performing metal plating on the charging switch.
  • the present invention still further provides a method of manufacturing a capacitively driven electroluminescent display, comprising: laying a column electrode on a display substrate; setting a charging switch at a corresponding position on the display substrate; setting at a corresponding position on the display substrate a central electrode; a driving capacitor disposed at a corresponding position on the display substrate; an electroluminescent device disposed at a corresponding position on the display substrate; an additional electrode disposed at a corresponding position on the display substrate; and laying on the display substrate a row electrode; wherein the electroluminescent device and the driving capacitor are located on both sides of the column electrode or the row electrode, and the driving capacitor is located at the center electrode and the column electrode or the row Between the electrodes, the additional electrode electrically connects the electroluminescent device and the center electrode such that the electroluminescent device and the drive capacitor are electrically connected in parallel.
  • a column electrode or a row electrode is disposed on the display substrate; a charging switch is disposed at a corresponding position on the column electrode or the row electrode; and the display substrate on which the charging switch has been disposed is flattened with a first insulating material Providing a central electrode on the charging switch; laying a second insulating material on the display substrate on which the central electrode is disposed; and corresponding to the central electrode on the second insulating material Positioning a first recess accommodating the drive capacitor; loading the first recess with a material forming the drive capacitor; applying a row or column electrode corresponding to the center electrode; Laying a third insulating material on the row or column electrode; etching a second recess for accommodating the electroluminescent device at a position corresponding to the center electrode on the third insulating material; and allowing the additional electrode to Center electrode a channel through which the additional electrode is applied; and the electroluminescent device that is electrically connected to the additional electrode and the row or column electrode, respectively, is
  • a column electrode or a row electrode is disposed on the display substrate; a first insulating material is disposed on the display substrate on which the column electrode or the row electrode has been applied; and the column electrode is on the first insulating material Arranging an array of fourth recesses for accommodating the charging switch at a position corresponding to the row electrodes; disposing the charging switch in the fourth recess; setting the centering on the charging switch An electrode; a second insulating material is disposed on the display substrate on which the center electrode is disposed; and a first groove accommodating the driving capacitor is etched on the second insulating material at a position corresponding to the center electrode Filling the first groove with a material forming the driving capacitor; applying a row electrode or a column electrode corresponding to the center electrode; laying a third insulating material on the row electrode or the column electrode; Separating a second recess for accommodating the electroluminescent device and a passage for the additional electrode to the center electrode on a position of the third insulating material corresponding to the center
  • a column electrode or a row electrode is disposed on the display substrate; a first insulating material is disposed on the display substrate on which the column electrode or the row electrode has been applied; and the column electrode is on the first insulating material Arranging an array of fourth recesses for accommodating the charging switch at a position corresponding to the row electrodes; disposing the charging switch in the fourth recess; setting the centering on the charging switch An electrode; a material for forming a driving capacitor is disposed on the display substrate on which the center electrode is disposed; and a row electrode or column is disposed on the material for forming the driving capacitor corresponding to the center electrode a third insulating material is disposed on the row electrode or the column electrode; a second groove for accommodating the electroluminescent device is etched on the third insulating material at a position corresponding to the center electrode and allowed to be attached a channel leading to the center electrode; the additional electrode being laid through the channel; and the second groove is provided with the respective electrodes electrically connected to the row electrode or the column
  • a column electrode or a row electrode is disposed on the display substrate; a first insulating material is disposed on the display substrate on which the column electrode or the row electrode has been applied; and the column electrode is on the first insulating material Arranging an array of fourth recesses for accommodating the charging switch at a position corresponding to the row electrodes; disposing the charging switch in the fourth recess; setting the centering on the charging switch An electrode; a material for forming a driving capacitor is disposed on the display substrate on which the center electrode is disposed, and an array of the driving capacitor is etched; and the array of the driving capacitor has been etched
  • the display substrate is planarized by a second insulating material; a row electrode or a column electrode is disposed on the display substrate after the planarization of the second insulating material, corresponding to the center electrode; Laying a third insulating material on the electrode or the column electrode; etching a second groove for accommodating the electroluminescent device on the third insulating material at a position corresponding to
  • a column electrode or a row electrode is disposed on the display substrate; a charging switch is disposed at a corresponding position on the column electrode or the row electrode; and the display substrate on which the charging switch has been disposed is flattened with a first insulating material a central electrode disposed on the charging switch; a material for forming a driving capacitor on the display substrate on which the central electrode is disposed; and a material for forming a driving capacitor a row electrode or a column electrode is disposed correspondingly to the center electrode; a third insulating material is disposed on the row electrode or the column electrode; and a position corresponding to the center electrode is etched on the third insulating material to accommodate a second recess of the electroluminescent device and a passage for the additional electrode to lead to the center electrode; the additional electrode is laid through the passage; and the additional electrode and the spacer are respectively disposed in the second recess The electroluminescent device in which the row or column electrodes are electrically connected.
  • a column electrode or a row electrode is disposed on the display substrate; a charging switch is disposed at a corresponding position on the column electrode or the row electrode; and the display substrate on which the charging switch has been disposed is flattened with a first insulating material a central electrode is disposed on the charging switch; a material for forming a driving capacitor is laid on the display substrate on which the central electrode is disposed, and an array of the driving capacitor is etched; The display substrate etched out of the pattern array of the driving capacitors is planarized by a second insulating material; and the center electrode is formed on the display substrate after the second insulating material is planarized
  • a row electrode or a column electrode is disposed; a third insulating material is disposed on the row electrode or the column electrode; and the electroluminescent device is etched at a position corresponding to the center electrode on the third insulating material a second groove and a passage for the additional electrode to the center electrode; the additional electrode is laid through the passage;
  • a third recess for accommodating the column or row electrode is etched on the display substrate, and then an electrode material is filled in the third recess to form the column or row electrode.
  • the display substrate made of or consisting of a thermoplastic material is heat treated and then the column or row electrodes are pressed into the heat softened surface of the display substrate.
  • an organic layer is deposited in the second recess, and then a transparent electrode electrically connected to the additional electrode is formed on top of the organic layer to form the electroluminescent device.
  • the transparent electrode is deposited on the top of the organic layer and the additional electrode through a shadow mask.
  • the charging switch is generated directly on the column or row electrodes.
  • the center electrode is obtained by performing metal plating on the charging switch.
  • the present invention still further provides a method of manufacturing a capacitively driven electroluminescent display, comprising: displaying in a transparent a column electrode is disposed on the display substrate; an electroluminescent device is disposed directly on the transparent display substrate; a driving capacitor is disposed at a corresponding position on the transparent display substrate; and a corresponding position is set on the transparent display substrate a charging switch; a row electrode is disposed on the transparent display substrate; wherein the electroluminescent device and the driving capacitor are connected in parallel and electrically connected to the charging switch.
  • the manufacturing method further includes: providing a center electrode at a corresponding position on the transparent display substrate; wherein the electroluminescent device and the driving capacitor are electrically connected in parallel to the center electrode On the side, the other side of the center electrode is electrically connected to the charging switch.
  • a transparent electrode is disposed on the transparent display substrate in a predetermined array; a column electrode or a row electrode is disposed on the transparent display substrate according to the predetermined array; and the column electrode or the row electrode corresponds to the Etching a light window at a position of the transparent electrode; laying a first insulating material on the column or row electrode on which the light exit window has been etched; and forming the column electrode or the row electrode on the first insulating material Correspondingly etching a first recess for accommodating the drive capacitor, wherein a certain first insulating material is left in the first recess; and a first driving capacitor is formed in the first recess a material; removing the certain first insulating material to form a second recess; providing an organic layer in the second recess to form the electroluminescent device together with the transparent electrode;
  • the middle electrode is disposed on the light emitting device and the material for forming the driving capacitor; the charging switch is disposed on the center electrode; the transparent display in which the charging
  • a transparent electrode is disposed on the transparent display substrate in a predetermined array; a column electrode or a row electrode is disposed on the transparent display substrate according to the predetermined array; and the column electrode or the row electrode corresponds to the Etching a light window at a position of the transparent electrode; laying a material for forming a driving capacitor on the column or row electrode on which the light exiting window has been etched, and etching the driving corresponding to the predetermined array
  • An array of capacitors; the transparent display substrate on which the array of drive capacitors has been etched is planarized with a first insulating layer material; after the planarization process has been performed with the first insulating layer material Forming a second recess on a transparent display substrate at a position corresponding to the transparent electrode; providing an organic layer in the second recess to form the electroluminescent device together with the transparent electrode;
  • the electroluminescent device is disposed with an area larger than the center electrode of the electroluminescent device such that the center electrode covers the electroluminescent
  • transparent electrodes are disposed on the transparent display substrate in a predetermined array; according to the predetermined array Laminating a column electrode or a row electrode on the transparent display substrate; etching a light window at a position corresponding to the transparent electrode on the column electrode or the row electrode; wherein the column of the light exit window has been etched a material for forming a driving capacitor is disposed on the electrode or the row electrode; a second groove is etched at a position corresponding to the transparent electrode on the material for forming the driving capacitor; and in the second groove Forming an organic layer to form the electroluminescent device together with the transparent electrode; providing a centering electrode on the electroluminescent device that is larger than the electroluminescent device such that the center electrode is covered The electroluminescent device and a portion of the material for forming a driving capacitor; laying a second insulating layer material on the transparent display substrate on which the center electrode has been applied; laying the second insulating layer a third groove accommodating the charging switch is etched at a position
  • a transparent electrode is disposed on the transparent display substrate in a predetermined array; a column electrode or a row electrode is disposed on the transparent display substrate according to the predetermined array; and the column electrode or the row electrode corresponds to the Etching a light window at a position of the transparent electrode; laying a first insulating material on the column or row electrode on which the light exit window has been etched; and forming the column electrode or the row electrode on the first insulating material Correspondingly etching a first recess for accommodating the drive capacitor, wherein a certain first insulating material is left in the first recess; and a first driving capacitor is formed in the first recess a material; removing the certain first insulating material to form a second recess; providing an organic layer in the second recess to form the electroluminescent device together with the transparent electrode; Disposing the center electrode on the light emitting device and the material for forming the driving capacitor; laying the second insulating layer material on the transparent display substrate on which the center
  • a transparent electrode is disposed on the transparent display substrate in a predetermined array; a column electrode or a row electrode is disposed on the transparent display substrate according to the predetermined array; and the column electrode or the row electrode corresponds to the Etching a light window at a position of the transparent electrode; laying a material for forming a driving capacitor on the column electrode or row electrode on which the light exit window has been etched, and etching an array of the driving capacitor;
  • the transparent display substrate etched out of the array of drive capacitors is planarized with a first insulating layer material; on the transparent display substrate that has been planarized with the first insulating layer material a second groove is etched at a corresponding position of the transparent electrode; an organic layer is disposed in the second groove to form the electroluminescent device together with the transparent electrode; and the electroluminescent device is Providing an upper surface larger than the center electrode of the electroluminescent device such that the center electrode covers the electroluminescent device and a portion of the device is used to form a driving
  • a transparent electrode is disposed on the transparent display substrate in a predetermined array; a column electrode or a row electrode is disposed on the transparent display substrate according to the predetermined array; and the column electrode or the row electrode corresponds to the Etching a light window at a position of the transparent electrode; laying a material for forming a driving capacitor on the column electrode or row electrode on which the light exit window has been etched; on the material for forming the driving capacitor a second recess is etched at a position corresponding to the transparent electrode; an organic layer is disposed in the second recess to form the electroluminescent device together with the transparent electrode; on the electroluminescent device Providing an area larger than the center electrode of the electroluminescent device such that the center electrode covers the electroluminescent device and a portion of the material for forming a driving capacitor; and the center electrode is disposed on the center electrode a charging switch; laying a second insulating material on the transparent display substrate on which the charging switch is disposed, the second insulating material not
  • the nano-scale transparent electrode is deposited on the transparent display substrate by a method of coating.
  • the organic layer is deposited in the light exit window such that at least a portion of the organic layer is located in the light exit window.
  • the charging switch is generated directly on the center electrode.
  • a metal protective layer having a larger area than the electroluminescent device is deposited on the electroluminescent device, and then a certain thickness of metal is deposited, and the center electrode is obtained by photolithography.
  • the depth of the first groove is capable of accommodating a plurality of tandem electroluminescent devices.
  • Cap-OLED Compared with traditional PMOLED and AMOLED, Cap-OLED has the following advantages: simplifying the production process and reducing the production cost; reducing the panel thickness of the OLED display; the row and column electrodes of the Cap-OLED have a very low resistance, so A large current is transmitted without generating significant heat; since the charging switch effectively prevents the capacitor from being discharged through the external circuit (ie, the row and column electrodes), the utilization of the electric energy is greatly improved; since the driving capacitor greatly lengthens the lighting of the pixel Time, the initial brightness of the pixel is much lower than the instantaneous brightness of the general PMOLED pixel, so the lifetime of the Cap-OLED is much higher than that of the PMOLED; the Cap-OLED can be used for high resolution, large size display.
  • the energy utilization rate of Cap-OLED can reach more than 90%, which is not only much higher than PMOLED but also significantly higher than AMOLED. At present, the energy utilization rate of AMOLED is about 50% (the TFT circuit consumes about 50% of the power).
  • FIG. 1A is a schematic structural view of a PMOLED in the prior art.
  • FIG. 1B is a schematic diagram of a pulse waveform of a PMOLED scanning voltage in the prior art.
  • FIG. 2A is a schematic structural view of an AMOLED in the prior art.
  • 2B is an example of a TFT driving circuit diagram used in the prior art AMOLED.
  • FIG. 3A is a schematic structural view of a capacitor-driven OLED circuit.
  • FIG. 3B is another schematic structural diagram of a capacitor-driven OLED circuit.
  • FIG. 3C is a comparison diagram of a “brightness-time” relationship between a capacitor-driven OLED circuit and a PMOLED circuit.
  • Figure 3D is a graphical illustration of the "brightness-time” change curve for a capacitively driven OLED circuit and the definition of the device illumination time extension ( ⁇ t).
  • FIG. 4 is a schematic structural view of a capacitively driven OLED display employing a "parallel" layout.
  • Figure 5 is an example of "insertion" of row electrodes into the substrate.
  • Fig. 6 is an example of a substrate after a charging switch is provided.
  • Fig. 7 is an example of a substrate after the center electrode is provided.
  • FIG. 8 is an example of a method of manufacturing the module 4000.
  • FIG. 9 is another example of a method of manufacturing the assembly 4000.
  • FIG. 10 is another example of a method of manufacturing the assembly 4000.
  • FIG. 11 is an example of a method of manufacturing the module 5000.
  • FIGS. 13A-13C are schematic diagrams showing the structure of a single pixel in a capacitively driven OLED display employing a "serial" layout.
  • Figure 15 is a block diagram showing the structure of a single pixel in a capacitively driven OLED display using a "downlight" type "side-by-side” layout.
  • 16 is an example of a method of manufacturing a capacitively driven OLED display of a "downlight” type "parallel" layout.
  • 17 is another example of a method of fabricating a "parallel" capacitively driven OLED display.
  • Fig. 19 is another example of a method of manufacturing a capacitively driven OLED display of a "downlight" type "side-by-side” layout.
  • the invention is applicable to all current driven types of electroluminescent displays, such as organic light emitting diode (OLED) displays, organic light emitting triode (OLET) displays, and light emitting diode (LED) displays.
  • OLED organic light emitting diode
  • OLET organic light emitting triode
  • LED light emitting diode
  • a capacitively driven electroluminescent display will be described by taking a capacitively driven OLED (Cap-OLED) as an example with reference to the drawings.
  • Cap-OLED capacitively driven OLED
  • the capacitively driven OLED employs a row and column electrode layout similar to the PMOLED shown in FIG. 1A, wherein each One pixel is placed at the intersection of the row and column electrodes.
  • the external drive circuit also adopts a progressive scan method similar to PMOLED. But unlike PMOLED, a capacitor driver component is added to each pixel to extend the pixel's lighting time.
  • the pixel assembly includes a driving capacitor, a charging switch, and an OLED device, and the driving capacitor is electrically connected to the OLED device in parallel and then electrically connected to the charging switch. Wherein, one end of the capacitor driving component is connected to the row electrode, and the other end is connected to the column electrode; when the charging switch has a control end, the control terminal is usually electrically connected to the row electrode.
  • FIG. 3A is a schematic structural view of a capacitor-driven OLED circuit.
  • the capacitor-driven OLED circuit includes a row electrode 3001, a column electrode 3002, an OLED device 3003, a driving capacitor 3004, and a charging switch 3005.
  • the driving capacitor 3004 is connected in parallel with the OLED device 3003, and the charging switch 3005 is connected in parallel with one end.
  • the driving capacitor 3004 is electrically connected to one end of the OLED device 3003, such that the charging switch 3005 is connected in series with the parallel driving capacitor 3004 and the OLED device 3003, and the other end of the charging switch 3005 is connected to the row electrode 3001, and connected in parallel.
  • the latter drive capacitor 3004 and the other end of the OLED device 3003 are electrically connected to the column electrode 3002.
  • FIG. 3B is another schematic structural diagram of a capacitor-driven OLED circuit.
  • the capacitor-driven OLED circuit also includes a row electrode 3001, a column electrode 3002, an OLED device 3003, a driving capacitor 3004, and a charging switch 3005.
  • the driving capacitor 3004 is connected in parallel with the OLED device 3003, and one end of the charging switch 3005 is
  • the parallel driving capacitor 3004 and one end of the OLED device 3003 are electrically connected, such that the charging switch 3005 is connected in series with the parallel driving capacitor 3004 and the OLED device 3003, and the other end of the charging switch 3005 is electrically connected to the column electrode 3002.
  • the drive capacitor 3004 and the other end of the OLED device 3003 connected in parallel are electrically connected to the row electrode 3001.
  • driver capacitor includes: (a) a single capacitor, and (b) a capacitor bank consisting of a plurality of capacitors in parallel;
  • charge switch includes: (a) any unidirectional conduction Capable electronic components such as diodes, (b) electronic switches consisting of multiple electronic components, and (c) electronically controlled micromachine switches.
  • the basic working principle of the capacitor-driven OLED circuit is that the charging switch 3005 is turned on at the moment when the scanning pulse arrives, and the OLED device 3003 is ignited while charging the driving capacitor 3004; the charging switch 3005 is automatically broken after the scanning pulse passes.
  • the driving capacitor 3004 is discharged by the OLED device 3003 to keep it in a lit state until the voltage across the driving capacitor 3004 is lower than the lowest lighting voltage ( Von ) of the OLED device.
  • Von lowest lighting voltage
  • the row electrode 3001 is set as a common electrode and is set to a zero potential reference point, then the apparent brightness of the pixel is obtained by the capacity of the driving capacitor 3004 and the scanning pulse added by the column electrode 3002.
  • the peak value of the voltage ie, the charging voltage of the drive capacitor
  • the capacity of the drive capacitor 3004 can be appropriately adjusted so that the pixel is extinguished on the eve of the next scan pulse.
  • the OLED device 3003 pixel
  • the OLED device 3003 can operate at a lower initial brightness to obtain a higher average brightness, thereby effectively extending the life of the OLED device 3003 and improving the OLED device 3003. Electro-optical conversion efficiency.
  • the amount of luminescence of the OLED device in each scan cycle is determined by the area contained under the "brightness-time" curve - the larger the area, the greater the amount of illumination, The greater the apparent brightness.
  • This area L 0 is equal to the scan pulse width ⁇ t o and the instantaneous brightness of the device.
  • B P see Figure 3C.
  • I P is the current flowing through the OLED at the luminance B P ;
  • K is the electro-optic conversion efficiency of the device;
  • the area under the "brightness-time" curve consists of two parts (L 0 + L C ) (see Figure 3C).
  • the former is the same as PMOLED, and the size of the latter L C is proportional to the amount of charge Q C of the capacitor discharged through the OLED, ie
  • B(t) is the function of OLED brightness as a function of time (t) during discharge of the capacitor; I(t) is a function of current as a function of time during discharge of the capacitor; C is the capacitance of the capacitor; V on is the OLED The lowest lighting voltage; V P is the peak value of the scan pulse voltage (ie, the peak value of the capacitor charging voltage).
  • FIG. 3C the relationship between the "brightness-time” variation curve of the general PMOLED (such as the upper graph in FIG. 3C) and the "brightness-time” variation of the capacitively driven OLED is also shown in FIG. 3C (as shown in FIG. 3C). The picture below).
  • the actual effect of the capacitive drive is to increase the area (or apparent brightness) under the "brightness-time" curve by the original L 0 (equivalent to the amount of luminescence of the PMOLED pixel).
  • the amount of C. Therefore, the actual effect of the capacitive drive can be expressed by the multiple L C /L 0 of the apparent brightness increase.
  • the actual effect of capacitive drive is equivalent to The scan pulse width ( ⁇ t 0 ) in the original PM drive mode is extended by the amount of ⁇ t.
  • the advantage over PMOLED is more obvious.
  • V P and I P are mutually dependent functional relationships determined by the electrical characteristics of the OLED device.
  • V on is a constant for the same type of device (depending on the electrical characteristics of the OLED device).
  • ⁇ t 0 is inversely proportional to the scanning frequency z and the total number n of row electrodes (see equation (1)). Therefore, in the case where the other parameters are constant, ⁇ t 0 decreases as the number of row electrodes n increases ( ⁇ t 0 ⁇ 1 / n); thus ⁇ t / ⁇ t 0 will increase as n increases ( ⁇ t / ⁇ t 0 ⁇ n). It can be seen that the advantages of capacitively driven OLEDs relative to PMOLEDs become more apparent as screen size increases and resolution increases (n increases). In other words, Cap-OLED just makes up for the shortcomings of PMOLED not being used for large screens.
  • the capacitively driven electroluminescent display includes a display substrate, row and column electrodes disposed on the display substrate, and an array of illuminating pixels, wherein the illuminating pixels include an electroluminescent device, a driving capacitor, and a charging switch.
  • the connection order of the row electrode, the column electrode, the electroluminescent device, the driving capacitor and the charging switch in the circuit is: row (or column) electrode-charging switch-parallel driving capacitor and electroluminescent device-column (or row) Electrode (refer to Figures 3A, 3B).
  • the apparent brightness of the luminescent pixel is controlled by the applied scan voltage between the row and column electrodes. Due to the presence of the drive capacitor and the charge switch, the lighting time of the pixel is significantly longer than the lighting time of the pixel without the drive capacitor and the charge switch.
  • the above charging switch has two functions: first, at the moment when the scanning pulse arrives, the switch is turned on, the external circuit charges the driving capacitor through the row electrode and the column electrode, and simultaneously lights up the pixel; when the scanning pulse passes, the switch immediately Automatic disconnection prevents the capacitor from discharging through the external circuit - the capacitor is thus forced to discharge through the OLED device.
  • the charging switch can be acted upon by any device having unidirectional conductivity, such as by one or more rectifier diodes, with an electronic switching circuit composed of one or more diodes or triodes, or by an electronically controlled micromechanical switch.
  • the electroluminescent device can be any device that converts current into light, such as LED, OLED, and OLET, and the like.
  • Cap-OLED capacitively driven OLED display
  • the capacitor-driven OLED display (Cap-OLED) 7000 includes a substrate 4001, a row electrode 4002, a charging switch 5001 (for example, a rectifier diode), a first insulating layer (insulating material) 5002, a center electrode 6001, and a driving capacitor.
  • the electric layer 7001 (forming the driving capacitor 3004 in FIGS. 3A and 3B), the second insulating layer (insulating material) 7002, the column electrode 7003, and the OLED device 7008.
  • the charging switch 5001 corresponds to the charging switch 3005 in FIGS. 3A and 3B
  • the dielectric layer 7001 of the driving capacitor corresponds to the driving capacitor 3004 in FIGS. 3A and 3B
  • the OLED device 7008 corresponds to FIG. 3A and FIG. OLED device 3003 in 3B.
  • FIG. 4a is a schematic diagram of the overall structure of the above capacitively driven OLED display 7000. As shown in FIG. 4a, the row electrode 4002 and the column electrode 7003 crossing the row electrode 4002 are provided in parallel on the substrate 4001 at regular intervals. The OLED device 7008 described above is disposed at the intersection of the row electrode 4002 and the column electrode 7003. A first insulating layer 5002 and a second insulating layer 7002 are sequentially provided between the row electrode 4002 and the column electrode 7003.
  • FIG. 4b is a cross-sectional view of the capacitively driven OLED display 7000 of FIG. 4a taken along line A-A
  • FIG. 4c is a cross-sectional view of the capacitively driven OLED display 7000 of FIG. 4a taken along line B-B.
  • the row electrode 4002 is provided in parallel on the substrate 4001 at a predetermined interval
  • the charging switch 5001 is provided at a position corresponding to the column electrode on the row electrode 4002.
  • the above-mentioned central electrode 6001 is disposed on the charging switch 5001, and the OLED device 7008 and the dielectric layer 7001 of the driving capacitor are arranged side by side on the central electrode 6001, so that the OLED is operated by the central electrode 6001.
  • the device 7008 and the dielectric layer 7001 of the above described drive capacitor are connected in parallel.
  • the column electrode 7003 is provided with a groove 7004 (refer to FIG. 12) for accommodating the OLED device 7008 at a position corresponding to the intersection of the row electrode 4002, and is located at the adjacent two column electrodes 7003 and the row electrode.
  • the charging switch 5001 at the intersection of 4002, the middle electrode 6001, the dielectric layer 7001 of the driving capacitor, and the OLED device 7008 are separated by the first insulating layer 5002 and the second insulating layer 7002, respectively. It can be packaged into a circuit as shown by FIG. 3A or FIG. 3B.
  • the resolution and size of capacitively driven OLED displays are much higher than those of general PMOLEDs, it is expected that the driving current will be much higher than that of PMOLEDs. Therefore, the requirements for the conductivity of the row and column electrodes are also higher than those of the PMOLED. Wherein, since the row electrode is a common electrode and all the pixels of the same row need to be powered at the same time (assuming that the line scan is used), the current of the row electrode is higher than that of the column electrode. In order to reduce the loss on the row electrodes, it is necessary to increase the thickness of the row electrodes to reduce the resistance of the row electrodes.
  • the thickness of the row electrode may vary over a wide range (10 0 - 10 3 microns) depending on the efficiency of the OLED device, the size of the screen, and the resolution. Since this thickness is much higher than the normal thickness of the OLED device (100-200 nm), if necessary, the row electrode can be "inserted" into the substrate to obtain a flat surface so that the subsequent steps can be carried out smoothly. .
  • Figure 5 is an example of "insertion” of row electrodes into the substrate. As shown in Figure 5, in component 4000, The electrode 4002 is “inserted” into the substrate 4001, thereby forming a flat surface on the surface of the assembly 4000.
  • Fig. 6 is an example of a substrate after a charging switch is provided.
  • the charging switch 5001 is disposed in an array at a corresponding position on the assembly 4000, wherein the first insulating layer 5002 is filled between two adjacent charging switches 5001.
  • Fig. 7 is an example of a substrate after the center electrode is provided.
  • the middle electrode 6001 is arranged in an array in a corresponding position of the charging switch 5001 on the component 5000, wherein the arrangement of the middle electrode 6001 is aligned with the arrangement of the charging switch 5001. Consistent.
  • Figure 7b is a schematic cross-sectional view of the assembly 6000 of Figure 7a taken along line A-A.
  • the substrate 4001 is provided with the row electrode 4002, and the upper surface of the row electrode 4002 is flush with the upper surface of the substrate 4001.
  • the charging switch 5001 is provided on the row electrode 4002, and the first insulating layer 5002 is filled between two adjacent charging switches 5001.
  • the upper surface of the charging switch 5001 is flush with the upper surface of the first insulating layer 5002.
  • the above-described center electrode 6001 is provided on the above-described charging switch 5001.
  • the OLED device 7008 and the dielectric layer 7001 of the driving capacitor are disposed side by side on each of the central electrodes 6001, and are filled between the adjacent OLED device 7008 and the dielectric layer 7001 of the driving capacitor.
  • the upper surface of the dielectric layer 7001 of the above drive capacitor is flush with the upper surface of the second insulating layer 7002.
  • the column electrode 7003 is disposed on the second insulating layer 7002, the dielectric layer 7001 of the driving capacitor, and the OLED device 7008.
  • the portion of the OLED device 7008 protruding from the surface of the dielectric layer 7001 of the driving capacitor is located at the column electrode 7003. In the above slot 7004.
  • FIG. 8 is an example of a method of manufacturing the module 4000.
  • the substrate 4001 is processed to make the surface of the substrate 4001 flat; 2) the groove 4003 for accommodating the row electrode is etched on the substrate 4001 having a flat surface in parallel at a certain interval; Then, the electrode material constituting the row electrode 4002 is filled in the groove 4003.
  • the electrode material is a metal material; 4) flattening and polishing the surface of the substrate 4001 filled with the electrode material to obtain Component 4000.
  • FIG. 9 is another example of a method of manufacturing the assembly 4000.
  • 1) the substrate 4001 is processed so that the surface of the substrate 4001 is flat; 2) the metal plating film 4004 is performed on the substrate 4001 having a flat surface; 3) is parallel to the metal plating film 4004 at a certain interval.
  • FIG. 10 is another example of a method of manufacturing the assembly 4000.
  • a substrate 4001 or a sheet made of a thermoplastic material The substrate 4001 having a layer of thermoplastic material can be fabricated using the method shown in FIG. Specifically, 1) heat-treating the surface of the substrate 4001 so that at least the thermoplastic material on the surface of the substrate 4001 is softened by heat to the extent that the row electrode 4002 can be pressed into the surface; 2) the row electrode 4002 is pressed in parallel at a certain interval.
  • the selection of the row electrode 4002 selects a suitable metal material, such as copper, aluminum, iron, nickel, tungsten, chromium, gold, depending on the temperature involved in the production process and the conductivity requirements of the display panel.
  • a suitable metal material such as copper, aluminum, iron, nickel, tungsten, chromium, gold, depending on the temperature involved in the production process and the conductivity requirements of the display panel.
  • Metal materials such as platinum or alloys thereof. If necessary, a combination of multiple layers of different metals can be used to meet some special requirements. For example, a layer of gold or platinum may be plated on the surface of the metal electrode which is easily oxidized to prevent the surface of the electrode from being oxidized to affect its conductivity.
  • the charge switch 3005 can generate or "transplant" the charge switch 3005, which has been completed elsewhere, directly onto the surface of the assembly 4000.
  • the diode can be directly formed on the surface of the row electrode 4002 of the above-mentioned component 4000 by a standard semiconductor manufacturing process or the diode formed on the single crystal silicon wafer can be sliced and pasted. At the corresponding portion on the surface of the row electrode 4002, the surface is then re-processed to obtain the assembly 5000.
  • FIG. 11 is an example of a method of manufacturing the module 5000.
  • 1) an array of charging switches 5001 is mounted on the row electrodes 4002 of the above-mentioned assembly 4000; 2) the above-described assembly 4000 having the array of the above-described charging switches 5001 mounted is planarized, preferably with an insulating material 5002.
  • the (first insulating layer) fills the gap between the above-described charging switches 5001 to perform a planarization process, and then performs a polishing process to obtain the above-described component 5000 (see FIG. 6).
  • the first insulating layer 5002 may be laid on the row electrode 4002 of the component 4000 by an insulating material, and the first insulating layer 5002 may be etched at a position corresponding to the row electrode 4002.
  • the array of recesses for accommodating the above-described charging switch 5001 is then provided with the above-described charging switch 5001 in the above-described recess to form the above-described assembly 5000 having the above-described array of charging switches 5001.
  • an array of the corresponding central electrodes 6001 is mounted on the array of the charging switches 5001 of the component 5000, such that the lower end of the charging switch 5001 is connected to the row electrode 4002, and the upper end thereof is electrically connected to the OLED device 3003 and the driving capacitor 3004.
  • the centrally connected electrode 6001 is electrically connected (see Figures 4 and 7).
  • the above-mentioned center electrode 6001 can perform metal plating using physical vapor deposition (PVD) commonly used in the semiconductor industry, and then etch a desired pattern by photolithography.
  • PVD physical vapor deposition
  • other printing methods such as screen printing or vacuum evaporation through a shadow mask can also be used. Vacuum evaporation is obtained.
  • the size of the center electrode 6001 is approximately equal to the maximum usable area of the pixel, and the length and width thereof are respectively equal to or slightly larger than the widths of the row and column electrodes.
  • Figure 7 shows a 3D rendering of the assembly 6000 and a cross-sectional view of the pixel locations.
  • the driving capacitor 3004 and the OLED device 3003 above the above-described center electrode 6001 are connected in parallel in circuit connection manner (see FIGS. 3A, 3B), "parallel” can be used in space (the driving capacitor and the OLED device are in the same
  • the layout of the "on-line” or “serial” (the OLED device is located above the drive capacitor).
  • the advantage of using a "side-by-side” layout is that the production process is relatively simple.
  • the disadvantage is that since the OLED device and the driving capacitor are on the same plane, the area of the OLED device (i.e., the effective light-emitting area of the pixel) is reduced due to the presence of the driving capacitor.
  • the area of the capacitor is A C
  • the transparent electrode of the OLED device in the Cap-OLED can be made very thin (see description in detail later)
  • the light extraction rate of the device is correspondingly improved, and to some extent, the light emission due to the decrease in the effective light-emitting area of the pixel is compensated. The amount is reduced. Therefore, when the electro-optic conversion efficiency and brightness of the OLED device are relatively high, a "side-by-side" structure can be employed.
  • the manufacturing method of the "parallel" capacitively driven OLED display mainly comprises the following steps:
  • etching a "return"-shaped groove 7005 accommodating the capacitor dielectric material 7001 (ie, a dielectric layer for forming a driving capacitor) on the second insulating layer 7002 corresponding to the center electrode 6001;
  • the portion of the second columnar insulating layer 7002 of the "back" word is reserved for the OLED device 7008, which will be removed in a later step;
  • the column electrodes 7003 are disposed corresponding to the electrodes 6001 in each of the arrays of the middle electrodes 6001, so that the column electrodes 7003 are laid in parallel at regular intervals, and at the same time
  • the column electrode 7003 intersects the row electrode 4002 as viewed from a plane;
  • etching the recess 7004 for accommodating the OLED device preferably, etching the recess 7004 of the OLED device in a portion corresponding to the portion of the second insulating layer 7002 of the "back" central column, and accommodating the OLED device by etching
  • the groove 7004 completely removes the portion of the second insulating layer 7002 of the "back" word center column;
  • An organic layer 7006 i.e., a body portion of the OLED device 7008 is deposited in the above-described groove 7004, and a transparent electrode 7007 electrically connected to the above-described column electrode 7003 is formed on the top of the organic layer 7006, thereby forming the OLED device 7008.
  • the transparent electrode 7007 is slightly larger than the recess 7004 so as to ensure that the transparent electrode 7007 can be electrically connected to the column electrode 7003.
  • the generation of the capacitor dielectric material 7001 and the second insulating layer 7002 may be performed according to different materials.
  • materials for ceramic materials, sputtering, physical vapor deposition (PVD), chemical vapor deposition (CVD), atomic layer deposition (ALD), etc. may be used; for polymer materials, spin coating may be used. ), method of doctor blade coating, spray coating, and the like.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • ALD atomic layer deposition
  • the order of generating the above capacitor dielectric material 7001 and the second insulating layer 7002 may also be reversed: first, a dielectric layer 7001 of the capacitor is formed on the middle electrode 6001, and then a second insulating layer is applied. 7002 planarizes the surface.
  • the specific implementation method includes, but is not limited to, for example, depositing a dielectric 7001 on the surface of the component 6000 by plasma enhanced chemical vapor deposition (PECVD) or ALD, and then etching the desired driving capacitor pattern array by photolithography. Finally, a spin-on glass material was used as the 7002 layer for planarization.
  • PECVD plasma enhanced chemical vapor deposition
  • ALD atomic layer deposition
  • a metal plating film may be first performed by a sputtering plating method, and then the column electrode lines may be etched by photolithography.
  • the step of etching the recess 7004 for accommodating the OLED device may further be divided into two steps: first, etching to the dielectric/insulation on the column electrode 7003 corresponding to the portion of the OLED device 7008.
  • the window or OLED device 7008 of the layer is on the light exit of the column electrode 7003 (i.e., the upper half of the recess 7004), and then the remaining 7002 portion is removed through this window.
  • the metal plating may be performed by a sputtering method in the step of applying the column electrode 7003, and then the step of etching the recess 7004 of the OLED device may be performed, and then etched out by photolithography. Electrode wire.
  • the final production process of the method of manufacturing the capacitively driven OLED display is to generate an OLED device 7008 including depositing an organic layer 7006, forming a transparent electrode 7007, and packaging. Since these processes are the same as the conventional OLED display production process, they are not described in detail here.
  • the organic layer 7006 generally includes organic materials having different layers of functions; the transparent electrode 7007 on the top of the OLED device 7008 may be any transparent conductive material such as carbon nanotubes, carbene, metal oxides.
  • a very thin metal film such as 1-5 nm thick gold, silver, copper, aluminum, magnesium, lithium or a combination thereof may also be used.
  • each pixel since each pixel has its own transparent electrode 7007 in a capacitively driven OLED display, the current required by each transparent electrode 7007 is a single pixel, which is usually small (on the order of microamperes). . Therefore, the transparent electrode 7007 in a capacitively driven OLED display can allow for a relatively large resistance. Therefore, through The thickness of the bright electrode 7007 can be much smaller than that of the conventional OLED transparent electrode of 100-200 nm. If the transparent electrode 7007 is made of a low-resistance material such as aluminum, silver, or gold, the required thickness may not exceed one nanometer. Therefore, the transparent electrode 7007 of the present invention has a higher light transmittance than a transparent electrode of a general AMOLED or PMOLED. In addition, the light extraction rate can be further improved by optimizing the geometry of the device and using optical effects. Therefore, the decrease in the amount of luminescence due to the reduction in area can be partially compensated by an increase in the light extraction efficiency.
  • the effective light-emitting area is generally only 50%-70% of the panel area.
  • the area A 0 of the OLED device 7008 can be selected between A/4 and A/2 in the "parallel" capacitively driven OLED display after comprehensively considering the effects of all of the above factors.
  • the present invention is not limited thereto, and a "day" type layout may be adopted between the dielectric layer 7001 of the driving capacitor and the OLED device 7008 (the dielectric layer 7001 of the driving capacitor and the OLED device 7008 are disposed one by one) or " The "shape" layout (the OLED device 7008 is centered, the dielectric layer 7001 of the drive capacitor is divided into one left and one right portions and are respectively disposed on both sides of the OLED device 7008).
  • the thickness of the organic layer 7006 of the OLED device 7008 is substantially the same as the thickness of the capacitor dielectric material 7001 described above.
  • the resolution and size of the capacitively driven OLED display are much higher than that of the general PMOLED, so the driving current is also much higher than that of the PMOLED. Therefore, the requirements for the conductivity of the row and column electrodes are also higher than those of the PMOLED.
  • the current of the row electrode is higher than that of the column electrode. In order to reduce the loss on the row electrodes, it is necessary to increase the thickness of the electrodes to reduce the resistance of the electrodes.
  • the thickness of the row electrode may vary over a wide range (10 0 - 10 3 microns), and this thickness is far. It is higher than the normal thickness of the OLED device (100-200 nm), so this problem can be solved by "inserting" the row electrode into the substrate to obtain a flat surface.
  • a row electrode metal film 4004 is deposited on the substrate 4001 by sputtering, and then a photoresist is spin-coated on the row electrode metal film 4004.
  • the row electrode 4002 is etched by drying, exposure, development, and etching (see FIG. 9). These steps are referred to as photolithography in this embodiment.
  • a layer of spin-on glass i.e., insulating material 4005 is applied by a doctor blade coating method. Reactive ion etching (RIE) The spin-on glass material falling on the surface of the row electrode 4002 is removed to obtain the assembly 4000.
  • a layer of N-type semiconductor, a layer of P-type semiconductor, and a metal protective layer are sequentially deposited on the assembly 4000 by plasma enhanced chemical vapor deposition (PECVD) or atomic layer deposition (ALD). -100 nm chromium). Then, the metal protective layer and the semiconductor material except the position where the charging switch 5001 is located are removed by photolithography, thereby obtaining an array of diodes (ie, the charging switch 5001, see FIG. 11) attached to the row electrode 4002 (in FIG. 11, The chrome protective layer on top of the charging switch 5001 is not marked).
  • PECVD plasma enhanced chemical vapor deposition
  • ALD atomic layer deposition
  • a layer of spin-on glass material i.e., first insulating layer 5002 is then applied by spin coating (or by knife coating) to fill the gap between the diodes 5001. Finally, the spin-on glass material 5002 attached to the top of the protective layer of the diode 5001 is removed by RIE to obtain the assembly 5000.
  • a high work function metal such as 100-200 nm tungsten, nickel, chromium, gold or alloy thereof, is deposited on the component 5000 by sputtering, and then the center electrode 6001 array is etched by photolithography (see the figure). 7, component 6000).
  • silicon dioxide (SiO 2 ) i.e., second insulating layer 7002
  • second insulating layer 7002 200 nm of silicon dioxide (SiO 2 ) (i.e., second insulating layer 7002) was deposited by PECVD on assembly 6000.
  • a "back" shaped groove 7005 for accommodating the dielectric layer of the driving capacitor is etched by photolithography at a portion of the silicon dioxide layer 7002 corresponding to the center electrode 6001, that is, left in the center of the "back” shaped groove 7005.
  • the silicon dioxide layer 7002 material is reserved for the organic layer 7006 region of the OLED device 7008, corresponding to the "small mouth" portion of the "back” word center.
  • the thickness of the silicon dioxide layer 7002 in the side-by-side capacitively driven OLED display should be substantially equivalent to the thickness of the organic layer 7006.
  • a slurry of BaTiO 3 material i.e., a dielectric 7001 for driving the capacitor
  • a slurry of BaTiO 3 material i.e., a dielectric 7001 for driving the capacitor
  • the surface is polished and then dried.
  • a column electrode metal film for example, 100 nm chromium
  • a column electrode 7003 by photolithography
  • a photolithography step on the column electrode 7003 corresponding to the portion of the organic layer 7006 (that is, The center of the drive capacitor corresponds to the "back" shaped "small port") etches out the exit window of the OLED device 7008 (ie, the upper half of the recess 7004, see Figure 12); then passes the SiO 2 portion of the lower half through chemistry The method is removed to obtain component 7000.
  • the final step of generating the OLED device 7008 is identical to the general "on-light" type OLED display except for the top transparent electrode 7007.
  • the organic material may be deposited by vacuum evaporation in a recess 7004 reserved for it by a shadow mask; the polymer material may be inkjet printed.
  • the transparent electrode on top of the OLED device can be deposited on the surface of the organic layer 7006 and the portion of the column electrode 7003 through another shadow mask.
  • the selection of the transparent electrode 7007 of the OLED device 7008 can depend on the nature of the OLED material used. Common cathode combinations of OLED device 7008, such as LiF/Al, Mg/Ag, Li/Al, can be used herein as long as the thickness is reduced to be sufficiently transparent, such as less than 10 nanometers, less than 5 nanometers, or 1-2 nanometers.
  • a "serial" structure can be employed, that is, the OLED device is located above the driving capacitor.
  • the acquisition and structure of the component 6000 are the same as those in the embodiment (1), and the description thereof will not be repeated here.
  • FIGS. 13A-13C are schematic diagrams showing the structure of a single pixel in a capacitively driven OLED display employing a "serial" layout.
  • the structure of the single pixel shown in FIG. 13A is a three-dimensional structure diagram (component 8000) before the OLED device is formed
  • the structure of the single pixel shown in FIG. 13B is a cross-sectional structure diagram along the center line direction of the row electrode after the OLED device is formed ( Device 8100)
  • Device 8100 the structure of the single pixel shown in FIG. 13C is a cross-sectional structural view (device 8100) along the centerline direction of the column electrode after the OLED device is formed.
  • the capacitively driven OLED display includes a substrate 4001, a row electrode 4002, a charging switch 5001 (eg, a rectifier diode), a first insulating layer 5002, a center electrode 6001, and a dielectric layer 8003 of the driving capacitor (
  • the driving capacitor 3004 in FIGS. 3A and 3B is formed, the second insulating layer 8001, the column electrode 8004, the third insulating layer (insulating material) 8005, the additional electrode 8008, the organic layer 8009, and the transparent electrode 8010 (organic layer 8009 and The transparent electrode 8010 constitutes an OLED device 3003 corresponding to that in FIGS. 3A and 3B.
  • the row electrode 4002 is disposed in parallel on the substrate 4001 at a certain interval, and the row electrode 4002 is "inserted" into the substrate 4001 such that the upper surface of the row electrode 4002 is flush with the upper surface of the substrate 4001. Level up to get a flat surface.
  • the charging switch 5001 is disposed on the row electrode 4002 in a predetermined array, and the first insulating layer 5002 is formed by filling an insulating material between the charging switches 5001 (see FIG. 6).
  • the middle switch 6001 is disposed on the charging switch 5001 to form an array of the center electrodes 6001 (see FIG. 7), and the dielectric layer 8003 of the driving capacitor is disposed on the center electrode 6001, respectively.
  • the middle electrode 6001 and the dielectric layer 8003 of the adjacent drive capacitor are separated by a second insulating layer 8001.
  • the column electrode 8004 is disposed on the dielectric layer 8003 of the drive capacitor in a position in the array formed by the dielectric layer 8003 of the drive capacitor and the row electrode 4002.
  • An OLED device composed of an organic layer 8009 and a transparent electrode 8010 is disposed on the column electrode 8004 opposite to the dielectric layer 8003 of the driving capacitor and at corresponding positions thereof, wherein each column electrode 8004 and each OLED are disposed.
  • the devices are isolated by a third insulating layer 8005.
  • the transparent electrode 8010 is electrically connected to the center electrode 6001 via the additional electrode 8008.
  • a method of manufacturing a "serial" capacitively driven OLED display includes the following steps:
  • a recess 8002 accommodating a capacitor dielectric material 8003 (ie, a dielectric layer for forming a driving capacitor) on the second insulating layer 8001 corresponding to the center electrode 6001;
  • the column electrodes 8004 are disposed corresponding to the electrodes 6001 in each of the arrays of the middle electrodes 6001, so that the column electrodes 8004 are laid in parallel at regular intervals, and at the same time
  • the column electrode 8004 intersects the row electrode 4002 as seen from a plane;
  • each of the pixels has a plurality of the above-mentioned channels 8007, preferably Ground, two channels 8007 are disposed on opposite sides of each pixel;
  • An organic layer 8009 is deposited in the above-described groove 8006 and a transparent electrode 8010 electrically connected to the above-described additional electrode 8008 is formed on the top of the above-described organic layer 8009, thereby forming the OLED device 3003.
  • the transparent electrode 8010 is slightly larger than the recess 8006 to ensure that the transparent electrode 8010 can be electrically connected to the additional electrode 8008.
  • Step 5) to step 9) generate OLED device 3003. Since the OLED device 3003 is located above the column electrode 8004, the transparent electrode 8010 on the top of the organic layer 8009 needs to be electrically connected to the middle electrode 6001 at the lower portion of the above-mentioned driving capacitor (capacitor dielectric material 8003) through an additional electrode 8008. Therefore, after the third insulating layer 8005 is applied in the step 6), it is necessary to etch the via 8007 to the center electrode 6001 while etching the recess 8006 (step 7) accommodating the organic layer 8009. Step 9) is the same as the production process of a general OLED, and will not be described in detail herein. In addition, other related processes are the same as those of the embodiment (1).
  • the formation of the capacitor dielectric material 8003 and the second insulating layer 8001 may be selected according to different materials. For example, for ceramic materials, sputtering, physical vapor deposition (PVD), chemical vapor deposition (CVD), atomic layer deposition (ALD), etc. may be used; for polymer materials, spin coating may be used. ), method of doctor blade coating, spray coating, and the like. It should be noted that the above sequence of generating the capacitor dielectric material 8003 and the second insulating layer 8001 may be reversed: first, a dielectric layer 8003 of the capacitor is formed on the middle electrode 6001, and then a second insulating layer is applied. 8001 flattened the surface.
  • Specific implementation methods include, but are not limited to, for example, depositing dielectric 8003 on the surface of component 6000 by plasma enhanced chemical vapor deposition (PECVD) or ALD, and then using photolithography. The pattern of the desired driving capacitance pattern is etched; finally, the spin-on glass material is used as the 8003 layer for planarization.
  • PECVD plasma enhanced chemical vapor deposition
  • ALD atomic layer deposition
  • the capacitive drive electroluminescent display can also adopt a “blow-out” type (the front side of the display is below the substrate).
  • Figure 15 is a block diagram showing the structure of a single pixel in a capacitively driven OLED display using a "downlight" type "side-by-side” layout.
  • the capacitively driven OLED display 9000 includes a transparent substrate 9001, a column electrode 9003, a first insulating layer (insulating material) 9005, and a dielectric layer 9007 of a driving capacitor (forming the driving capacitor 3004 in FIGS. 3A and 3B).
  • the center electrode 9010, the charge switch 9011 (for example, a rectifier diode), the second insulating layer (insulating material) 9012, the row electrode 9013, and the OLED device 9014 (corresponding to the OLED device 3003 in FIGS. 3A and 3B).
  • the column electrode 9003 and the column electrode 9013 intersecting the column electrode 9003 are provided in parallel on the substrate 9001 at regular intervals.
  • the OLED device 9014 described above is provided at the intersection of the row electrode 9013 and the column electrode 9003.
  • the OLED device 9014 has a transparent electrode 9002 and an organic layer 9009 of an OLED, wherein the transparent electrode 9002 can be directly disposed on the transparent substrate 9001, and the OLED device 9014 is on the transparent substrate 9001. Set according to the predetermined array.
  • the OLED device 9014 has one end of the transparent electrode 9002 embedded in the column electrode 9003 such that the column electrode 9003 is electrically connected to the OLED device 9014.
  • a dielectric layer 9007 of the above-described driving capacitor is disposed around the organic layer 9009 of the OLED of the OLED device 9014 above the column electrode 9003.
  • the first insulating layer 9005 is disposed between the column electrodes 9003 and between the OLED devices 9014 of the respective pixels and between the dielectric layers 9007 of the driving capacitors of the respective pixels.
  • the middle electrode 9010 is provided on the dielectric layer 9007 of the driving capacitor and the organic layer 9009, and the charging switch 9011 is provided on the center electrode 9010.
  • the above-described row electrode 9013 is provided on the above-described charging switch 9011.
  • the second insulating layer 9012 is provided between the middle electrodes 9010 of the respective pixels and the charging switch 9011 of each pixel.
  • each of the above-described capacitively driven OLED displays 9000 can be packaged into a circuit as shown in FIG. 3A or FIG. 3B.
  • the manufacturing method of the "down-light" type "parallel" layout of the capacitively driven OLED display comprises the following steps:
  • a recess 9006 for accommodating the dielectric layer 9007 of the driving capacitor is etched around the position of the light-emitting window 9004 at a position corresponding to the column electrode 9003 on the first insulating layer 9005.
  • the size of the groove 9006 corresponds to the size of the center electrode 9010.
  • the groove 9006 and the light exit window 9004 are covered by the middle electrode 9010;
  • a mesoelectrode 9010 is applied to the dielectric layer 9007 of the drive capacitor and the organic layer 9009.
  • the above-mentioned center electrode 9010 is a cathode of the above OLED device 9014;
  • the row electrode 9013 is applied to the charging switch 9011 corresponding to the row in the array formed by the charging switch 9011.
  • 20 nm ITO (transparent electrode 9002) and 100 nm metal tungsten may be deposited on the transparent substrate 9001 by sputtering, and then the column electrode lines are separately etched by two-step photolithography. 9003 and OLED light window 9004.
  • a plurality of tandem OLED (tandem OLED) organic layers and cathodes may be formed in the recess 9008 by vacuum evaporation through a shadow mask.
  • the cathode of the OLED may be a combination of commonly used LiF/Al, Mg/Ag, Li/Al, but the total thickness of the plurality of tandem OLEDs is required to be equivalent to the depth of the groove 9008.
  • the depth of the recess 9008 can accommodate 3-4 serial OLED devices.
  • a metal protective layer for example, 100 nm of metal aluminum, may be deposited on the upper portion of the cathode by a shadow mask having a slightly larger area than the OLED device; then 300 nm of metal tungsten is deposited by sputtering, after photolithography. A center electrode 9010 is obtained.
  • the charging switch 9011 can select a diode produced on a silicon wafer, and after the cutting and separating, the diode is directly adhered to the center electrode; then the surface is flattened by spin-on glass, and finally laid. Row electrode 9013.
  • the charging switch 9011 can also be directly formed on the surface of the above-mentioned center electrode. Taking a rectifying diode as the charging switch 9011 as an example, the diode can be directly formed on the surface of the above-mentioned center electrode by a standard semiconductor manufacturing process or the diode formed on the single crystal silicon wafer can be sliced and pasted in the middle. The corresponding part of the electrode surface, and then re-surface the surface.
  • the size (length, width) of the transparent electrode 9002 may be smaller than that of the column electrode 9003, but it is necessary to ensure that the transparent electrode 9002 is larger than the light exit window 9004 of the OLED to ensure sufficient overlap of the transparent electrode 9002 and the column electrode 9003. region.
  • the present invention is not limited thereto, and the order of laying the first insulating layer 9005 and the dielectric layer 9007 for applying the driving capacitor may be reversed, that is, the dielectric layer 9007 of the driving capacitor is first laid, and then the first insulating layer 9005 is laid.
  • a dielectric layer material 9007 for forming a driving capacitor of the driving capacitor is laid on the transparent substrate 9001 on which the light-emitting window 9004 of the OLED has been etched at a position corresponding to the transparent electrode 9002 on the column electrode 9003, and is engraved.
  • the groove 9008 of the organic layer 9009 accommodating the OLED is etched on the transparent substrate 9001 after the treatment corresponding to the light exit window 9004 of the OLED.
  • this structure is suitable for the structure using a tandem OLED.
  • the charging switch 9011 is laid first, and then the second insulating layer 9012 is laid.
  • the present invention is not limited thereto, and the order in which the charging switch 9011 and the second insulating layer 9012 are laid may be reversed, that is, the first application.
  • a second insulating layer 9012 is provided, and a recess for accommodating the charging switch 9011 is etched on the second insulating layer 9012, and then the charging switch 9011 prepared in advance is filled.
  • the second insulating layer 9012 is applied over the transparent substrate 9001 on which the center electrode 9010 has been applied, and a recess for accommodating the charging switch 9011 is etched at a position corresponding to the center electrode 9010, and then The above charging switch 9011 is provided in the above recess.
  • the positions of the row electrodes and the column electrodes may be interchanged.
  • a method of manufacturing a "parallel" capacitively driven OLED display can include:
  • the column electrodes 7003 are disposed corresponding to the electrodes 6001 in each of the arrays of the middle electrodes 6001, so that the column electrodes 7003 are spaced at intervals Parallelly laid while causing the above-mentioned column electrode 7003 to intersect the above-described row electrode 4002 from a plane;
  • the recess 7004 for accommodating the OLED device is etched at a portion substantially corresponding to the capacitor dielectric material 7001.
  • the recess 7004 for accommodating the OLED device is etched at a portion substantially corresponding to the capacitor dielectric material 7001.
  • An organic layer 7006 i.e., a body portion of the OLED device 7008 is deposited in the recess 7004, and a transparent electrode 7007 electrically connected to the column electrode 7003 is formed on the top of the carrier layer 7006, thereby forming the OLED device 7008.
  • the transparent electrode 7007 is slightly larger than the recess 7004 so as to ensure that the transparent electrode 7007 can be electrically connected to the column electrode 7003.
  • a method of manufacturing a "serial" capacitively driven OLED display can include:
  • the column electrode 8004 is disposed corresponding to the column electrode 6001 in each column of the array of the middle electrode 6001, so that the column electrode 8004 is spaced at a certain interval Laid in parallel while causing the above-described column electrode 8004 to intersect the row electrode 4002 from a plane;
  • each of the pixels has a plurality of the above-mentioned channels 8007, preferably Ground, two channels 8007 are disposed on opposite sides of each pixel;
  • An organic layer 8009 is deposited in the recess 8006 and a transparent electrode 8010 electrically connected to the additional electrode 8008 is formed on top of the organic layer 8009, thereby forming the OLED device 3003.
  • the transparent electrode 8010 is slightly larger than the recess 8006 to ensure that the transparent electrode 8010 can be electrically connected to the additional electrode 8008.
  • the method of manufacturing a capacitively driven OLED display of a "downlight" type "parallel" layout includes the following steps:
  • the capacitor dielectric material 9007 is disposed on the transparent substrate 9001 after etching the light-emitting window 9004, so that the capacitor dielectric material 9007 covers the column electrode 9003 and the gap between the column and the light-emitting window 9004;
  • a recess 9008 for accommodating the organic layer 9009 of the OLED device 9014 is etched around the position of the light exit window 9004 on the capacitor dielectric material 9007 corresponding to the position of the column electrode 9003;
  • a mesoelectrode 9010 is applied to the dielectric layer 9007 of the drive capacitor and the organic layer 9009.
  • the above-mentioned center electrode 9010 is a cathode of the above OLED device 9014;
  • the second insulating layer 9012 is provided between the middle electrodes 9010 and the charging switches 9011 of the respective pixels.
  • the upper surface of the charging switch 9011 is not covered by the second insulating layer 9012;
  • the row electrode 9013 is applied to the charging switch 9011 corresponding to the row in the array formed by the charging switch 9011.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Geometry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种电容驱动电致发光显示器,包括显示器基板、敷设在显示器基板上的行电极(3001)和列电极(3002),以及连接在行电极和列电极之间的发光像素,发光像素具有电致发光器件、驱动电容器(3004)和充电开关(3005),其中电致发光器件和驱动电容器并联后电连接到充电开关;行电极或列电极具有用于安装电致发光器件的出光窗口。同时,还提供一种电容驱动电致发光显示器的制造方法。

Description

一种电容驱动电致发光显示器及其制造方法 技术领域
本发明涉及一种用于电致发光显示器的驱动技术,尤其是涉及一种电容驱动电致发光显示器及其制造方法。
背景技术
目前,电致发光显示器,例如有机发光二极管(OLED)显示器,常用的驱动方式包括passive matrix(PM)驱动模式与active matrix(AM)驱动模式两种。采用PM驱动模式的OLED显示器(即PMOLED)采用完全外置的驱动电路对显示屏上的像素进行逐行电压扫描:即像素以行为单位被依次交替点亮。在结构上,PMOLED面板由一组横向布置的电极(行电极)和一组纵向布置的电极(列电极)组成;其中,有机发光材料层夹在行电极和列电极之间(见图1A)。在图1A中,PMOLED显示屏(1000)由基板(1001)、列电极(1002)、有机层(1003)、和行电极(1004)组成。在一般情况下,基板1001由透明材料组成。列电极1002通常为正极、由透明的金属氧化物如氧化铟锡(ITO)组成。有机层1003通常含多层功能不同的有机材料,例如空穴注入(HI)层、空穴传导(HT)层、电子阻挡(EB)层、发光(EM)层、空穴阻挡(HB)层、电子传导(ET)层、电子注入(EI)层、等。所用有机材料既可以是聚合物材料也可以是小分子有机材料。在串列式OLED(tandem OLED)中,在相邻器件之间还含有电荷分离层(charge separation layer)。行电极1004通常为电源负极、为同一行像素所共用。像素的亮度由列电极的电压V1,V2,V3……Vm所决定(参见图1A)。行电极1004通常是厚度约为150纳米的铝电极。
在本申请中,所用术语“有机发光二极管”或“OLED”的含义包括聚合物OLED、小分子OLED、和“串列式OLED”(tandem OLED);术语“行电极”特指为同一条电极上所有像素所共用的电极,其中,行电极可以是电源的负极或正极;当涉及列电极电压数值的大小时,其含义应理解为电压绝对值的大小。
图1B展示了PMOLED扫描脉冲电压的波形图。在这种驱动模式下,每一行的像素在每一个扫描周期内被点亮一次;点亮时间反比于行电极的总数。由于点亮时间短,因此要求像素在点亮状态下的瞬间亮度极高、以求达到较高的表观亮度。例如,假设显示屏总共有n行、扫描电压脉冲为理想的矩形波、扫描频率为z赫兹的话,那么扫描周期(τ)为τ=1/z秒;在每一扫描周期内每行像素被点亮的时间Δto约为
Δto=τ/n=1/(nz)秒(1)
Figure PCTCN2015000553-appb-000001
Figure PCTCN2015000553-appb-000002
Figure PCTCN2015000553-appb-000003
Figure PCTCN2015000553-appb-000004
相对应的位置刻蚀出用于容纳所述充电开关的第四凹槽的阵列;在所述第四凹槽中设置所述充电开关;在所述充电开关上设置所述中置电极;在设置了所述中置电极的所述显示器基板上敷设用于形成驱动电容器的材料;在所述用于形成驱动电容器的材料上与所述中置电极相对应地敷设行电极或列电极;在所述行电极或列电极上与所述中置电极相对应的位置刻蚀出光窗口,并在所述用于形成驱动电容器的材料上与所述中置电极相对应的位置刻蚀出第二凹槽;在所述第二凹槽中设置所述电致发光器件,使得所述电致发光器件电连接所述中置电极。
优选地,在所述显示器基板上敷设列电极或行电极;在已经敷设了所述列电极或行电极的所述显示器基板上敷设第一绝缘材料;在所述第一绝缘材料上与所述列电极或行电极相对应的位置刻蚀出用于容纳所述充电开关的第四凹槽阵列;在所述第四凹槽中设置所述充电开关;在所述充电开关上设置所述中置电极;在设置了所述中置电极的所述显示器基板上敷设用于形成驱动电容器的材料,并在与所述中置电极相对应的位置刻蚀出所述驱动电容器的阵列;对已经刻蚀出所述驱动电容器的阵列的所述显示器基板用第二绝缘材料进行平整化处理;在经所述第二绝缘材料平整化处理后的所述显示器基板上与所述中置电极相对应地敷设行电极或列电极;在所述行电极或列电极上与所述中置电极相对应的位置刻蚀出光窗口,并在所述第二绝缘材料上与所述中置电极相对应的位置刻蚀出第二凹槽;在所述第二凹槽中设置所述电致发光器件,使得所述电致发光器件电连接所述中置电极。
优选地,在所述显示器基板上敷设列电极或行电极;在所述列电极或行电极上的相应位置设置所述充电开关;对已经设置了所述充电开关的所述显示器基板用第一绝缘材料进行平整化处理;在所述充电开关上设置所述中置电极;在设置了所述中置电极的所述显示器基板上敷设用于形成驱动电容器的材料;在所述用于形成驱动电容器的材料上与所述中置电极相对应地敷设行电极或列电极;在所述行电极或列电极上与所述中置电极相对应的位置刻蚀出光窗口,并在所述用于形成驱动电容器的材料上与所述中置电极相对应的位置刻蚀出第二凹槽;在所述第二凹槽中设置所述电致发光器件,使得所述电致发光器件电连接所述中置电极。
优选地,在所述显示器基板上敷设列电极或行电极;在所述列电极或行电极上的相应位置设置所述充电开关;对已经设置了所述充电开关的所述显示器基板用第一绝缘材料进行平整化处理;在所述充电开关上设置所述中置电极;在设置了所述中置电极的所述显示器基板上敷设用于形成驱动电容器的材料,并刻蚀出所述驱动电容器的阵列;对已经刻蚀出所述驱动电容器的阵列的所述显示器基板用第二绝缘材料进行平整化处理;在经所述第二绝缘 材料平整化处理后的所述显示器基板上与所述中置电极相对应地敷设行电极或列电极;在所述行电极或列电极上与所述中置电极相对应的位置刻蚀出光窗口,并在所述第二绝缘材料上与所述中置电极相对应的位置刻蚀出第二凹槽;在所述第二凹槽中设置所述电致发光器件,使得所述电致发光器件电连接所述中置电极。
优选地,在所述显示器基板上刻蚀出容纳所述列电极或行电极的第三凹槽,然后在所述第三凹槽中填入电极材料,以形成所述列电极或行电极。
优选地,对由热塑性材料制成或表面含有一层热塑性材料的所述显示器基板进行加热处理,然后将所述列电极或行电极压入所述显示器基板的受热软化的表面。
优选地,在所述第二凹槽中沉积有机层,然后在所述有机层的顶部生成与所述出光窗口处的所述行电极或列电极部分电连接的透明电极,以形成所述电致发光器件,其中至少所述透明电极位于所述出光窗口中。
优选地,所述透明电极通过遮蔽掩模沉积在所述有机层的顶部和所述出光窗口处的所述行电极或列电极上。
优选地,所述充电开关直接在所述列电极或行电极上生成。
优选地,所述中置电极是通过在所述充电开关上进行金属镀膜获得。
本发明还进一步提供一种电容驱动电致发光显示器的制造方法,包括:在显示器基板上敷设列电极;在所述显示器基板上的相应位置设置充电开关;在所述显示器基板上的相应位置设置中置电极;在所述显示器基板上的相应位置设置驱动电容器;在所述显示器基板上的相应位置设置电致发光器件;在所述显示器基板上的相应位置设置附加电极;在显示器基板上敷设行电极;其中,所述电致发光器件和所述驱动电容器位于所述列电极或所述行电极的两侧,并且所述驱动电容器位于所述中置电极和所述列电极或所述行电极之间,所述附加电极电连接所述电致发光器件和所述中置电极,使得所述电致发光器件和所述驱动电容器并联地电连接。
优选地,在显示器基板上敷设列电极或行电极;在所述列电极或行电极上的相应位置设置充电开关;对已经设置了所述充电开关的所述显示器基板用第一绝缘材料进行平整化处理;在所述充电开关上设置中置电极;在设置了所述中置电极的所述显示器基板上敷设第二绝缘材料;在所述第二绝缘材料上与所述中置电极对应的位置刻蚀出容纳驱动电容器的第一凹槽;向所述第一凹槽中装入形成所述驱动电容器的材料;与所述中置电极相对应地敷设行电极或列电极;在所述行电极或列电极上敷设第三绝缘材料;在所述第三绝缘材料上与所述中置电极对应的位置刻蚀出容纳电致发光器件的第二凹槽和让附加电极通往所述中置电极 的通道;通过所述通道敷设所述附加电极;在所述第二凹槽中设置分别与所述附加电极和所述行电极或列电极电连接的所述电致发光器件。
优选地,在显示器基板上敷设列电极或行电极;在已经敷设了所述列电极或行电极的所述显示器基板上敷设第一绝缘材料;在所述第一绝缘材料上与所述列电极或行电极相对应的位置刻蚀出用于容纳所述充电开关的第四凹槽的阵列;在所述第四凹槽中设置所述充电开关;在所述充电开关上设置所述中置电极;在设置了所述中置电极的所述显示器基板上敷设第二绝缘材料;在所述第二绝缘材料上与所述中置电极对应的位置刻蚀出容纳驱动电容器的第一凹槽;向所述第一凹槽中装入形成所述驱动电容器的材料;与所述中置电极相对应地敷设行电极或列电极;在所述行电极或列电极上敷设第三绝缘材料;在所述第三绝缘材料上与所述中置电极对应的位置刻蚀出容纳电致发光器件的第二凹槽和让附加电极通往所述中置电极的通道;通过所述通道敷设所述附加电极;在所述第二凹槽中设置分别与所述附加电极和所述行电极或列电极电连接的所述电致发光器件。
优选地,在显示器基板上敷设列电极或行电极;在已经敷设了所述列电极或行电极的所述显示器基板上敷设第一绝缘材料;在所述第一绝缘材料上与所述列电极或行电极相对应的位置刻蚀出用于容纳所述充电开关的第四凹槽的阵列;在所述第四凹槽中设置所述充电开关;在所述充电开关上设置所述中置电极;在设置了所述中置电极的所述显示器基板上敷设用于形成驱动电容器的材料;在所述用于形成驱动电容器的材料上与所述中置电极相对应地敷设行电极或列电极;在所述行电极或列电极上敷设第三绝缘材料;在所述第三绝缘材料上与所述中置电极对应的位置刻蚀出容纳电致发光器件的第二凹槽和让附加电极通往所述中置电极的通道;通过所述通道敷设所述附加电极;在所述第二凹槽中设置分别与所述附加电极和所述行电极或列电极电连接的所述电致发光器件。
优选地,在显示器基板上敷设列电极或行电极;在已经敷设了所述列电极或行电极的所述显示器基板上敷设第一绝缘材料;在所述第一绝缘材料上与所述列电极或行电极相对应的位置刻蚀出用于容纳所述充电开关的第四凹槽的阵列;在所述第四凹槽中设置所述充电开关;在所述充电开关上设置所述中置电极;在设置了所述中置电极的所述显示器基板上敷设用于形成驱动电容器的材料,并刻蚀出所述驱动电容器的阵列;对已经刻蚀出所述驱动电容器的阵列的所述显示器基板用第二绝缘材料进行平整化处理;在经所述第二绝缘材料平整化处理后的所述显示器基板上与所述中置电极相对应地敷设行电极或列电极;在所述行电极或列电极上敷设第三绝缘材料;在所述第三绝缘材料上与所述中置电极对应的位置刻蚀出容纳电致发光器件的第二凹槽和让附加电极通往所述中置电极的通道;通过所述通道敷设所述 附加电极;在所述第二凹槽中设置分别与所述附加电极和所述行电极或列电极电连接的所述电致发光器件。
优选地,在显示器基板上敷设列电极或行电极;在所述列电极或行电极上的相应位置设置充电开关;对已经设置了所述充电开关的所述显示器基板用第一绝缘材料进行平整化处理;在所述充电开关上设置中置电极;在设置了所述中置电极的所述显示器基板上敷设用于形成驱动电容器的材料;在所述用于形成驱动电容器的材料上与所述中置电极相对应地敷设行电极或列电极;在所述行电极或列电极上敷设第三绝缘材料;在所述第三绝缘材料上与所述中置电极对应的位置刻蚀出容纳电致发光器件的第二凹槽和让附加电极通往所述中置电极的通道;通过所述通道敷设所述附加电极;在所述第二凹槽中设置分别与所述附加电极和所述行电极或列电极电连接的所述电致发光器件。
优选地,在显示器基板上敷设列电极或行电极;在所述列电极或行电极上的相应位置设置充电开关;对已经设置了所述充电开关的所述显示器基板用第一绝缘材料进行平整化处理;在所述充电开关上设置中置电极;在设置了所述中置电极的所述显示器基板上敷设用于形成驱动电容器的材料,并刻蚀出所述驱动电容器的阵列;对已经刻蚀出所述驱动电容器的图案阵列的所述显示器基板用第二绝缘材料进行平整化处理;在经所述第二绝缘材料平整化处理后的所述显示器基板上与所述中置电极相对应地敷设行电极或列电极;在所述行电极或列电极上敷设第三绝缘材料;在所述第三绝缘材料上与所述中置电极相对应的位置刻蚀出容纳电致发光器件的第二凹槽和让附加电极通往所述中置电极的通道;通过所述通道敷设所述附加电极;在所述第二凹槽中设置分别与所述附加电极和所述行电极或列电极电连接的所述电致发光器件。
优选地,在所述显示器基板上刻蚀出容纳所述列电极或行电极的第三凹槽,然后在所述第三凹槽中填入电极材料,以形成所述列电极或行电极。
优选地,对由热塑性材料制成或表面含有一层热塑性材料的所述显示器基板进行加热处理,然后将所述列电极或行电极压入所述显示器基板的受热软化的表面。
优选地,在所述第二凹槽中沉积有机层,然后在所述有机层的顶部生成与所述附加电极电连接的透明电极,以形成所述电致发光器件。
优选地,所述透明电极通过遮蔽掩模沉积在所述有机层的顶部和所述附加电极上。
优选地,所述充电开关直接在所述列电极或行电极上生成。
优选地,所述中置电极是通过在所述充电开关上进行金属镀膜获得。
本发明还进一步提供一种电容驱动电致发光显示器的制造方法,包括:在透明的显 示器基板上敷设列电极;直接在所述透明的显示器基板上设置电致发光器件;在所述透明的显示器基板上的相应位置设置驱动电容器;在所述透明的显示器基板上的相应位置设置充电开关;在所述透明的显示器基板上敷设行电极;其中,所述电致发光器件和所述驱动电容器并联后电连接到所述充电开关。
优选地,所述制造方法还包括:在所述透明的显示器基板上的相应位置设置中置电极;其中,所述电致发光器件和所述驱动电容器并列地电连接到所述中置电极一侧,所述中置电极的另一侧电连接到所述充电开关。
优选地,在所述透明的显示器基板上按预定阵列敷设透明电极;按照所述预定阵列在所述透明的显示器基板上敷设列电极或行电极;在所述列电极或行电极上对应于所述透明电极的位置刻蚀出光窗口;在已经刻蚀出所述出光窗口的所述列电极或行电极上敷设第一绝缘材料;在所述第一绝缘材料上与所述列电极或行电极对应的位置刻蚀出容纳所述驱动电容器的第一凹槽,其中所述第一凹槽中留有一定的第一绝缘材料;向所述第一凹槽中装入用于形成驱动电容器的材料;去除所述一定的第一绝缘材料,形成第二凹槽;在所述第二凹槽中设置有机层使其与所述透明电极一起形成所述电致发光器件;在所述电致发光器件和所述用于形成驱动电容器的材料上设置所述中置电极;在所述中置电极上设置所述充电开关;在设置了所述充电开关的所述透明的显示器基板上敷设第二绝缘材料,所述第二绝缘材料不覆盖所述充电开关;在与所述充电开关相应的位置敷设行电极或列电极。
优选地,在所述透明的显示器基板上按预定阵列敷设透明电极;按照所述预定阵列在所述透明的显示器基板上敷设列电极或行电极;在所述列电极或行电极上对应于所述透明电极的位置刻蚀出光窗口;在已经刻蚀出所述出光窗口的所述列电极或行电极上敷设用于形成驱动电容器的材料,并对应于所述预定阵列刻蚀出所述驱动电容器的阵列;对已经刻蚀出所述驱动电容器的阵列的所述透明的显示器基板用第一绝缘层材料进行平整化处理;在已经用所述第一绝缘层材料平整化处理后的所述透明的显示器基板上与所述透明电极相对应的位置刻蚀出第二凹槽;在所述第二凹槽中设置有机层使其与所述透明电极一起形成所述电致发光器件;在所述电致发光器件上设置面积大于所述电致发光器件的所述中置电极,使得所述中置电极覆盖所述电致发光器件和部分所述用于形成驱动电容器的材料;在已经敷设了所述中置电极的所述透明的显示器基板上敷设第二绝缘层材料;在敷设了所述第二绝缘层材料的所述透明的显示器基板上与所述中置电极相对应的位置刻蚀出容纳充电开关的第三凹槽;在所述第三凹槽中设置所述充电开关;在与所述充电开关相对应的位置敷设行电极或列电极。
优选地,在所述透明的显示器基板上按预定阵列敷设透明电极;按照所述预定阵列 在所述透明的显示器基板上敷设列电极或行电极;在所述列电极或行电极上对应于所述透明电极的位置刻蚀出光窗口;在已经刻蚀出所述出光窗口的所述列电极或行电极上敷设用于形成驱动电容器的材料;在所述用于形成驱动电容器的材料上与所述透明电极相对应的位置刻蚀出第二凹槽;在所述第二凹槽中设置有机层使其与所述透明电极一起形成所述电致发光器件;在所述电致发光器件上设置面积大于所述电致发光器件的所述中置电极,使得所述中置电极覆盖所述电致发光器件和部分所述用于形成驱动电容器的材料;在已经敷设了所述中置电极的所述透明的显示器基板上敷设第二绝缘层材料;在敷设了所述第二绝缘层材料的所述透明的显示器基板上与所述中置电极相对应的位置刻蚀出容纳充电开关的第三凹槽;在所述第三凹槽中设置所述充电开关;在与所述充电开关相对应的位置敷设行电极或列电极。
优选地,在所述透明的显示器基板上按预定阵列敷设透明电极;按照所述预定阵列在所述透明的显示器基板上敷设列电极或行电极;在所述列电极或行电极上对应于所述透明电极的位置刻蚀出光窗口;在已经刻蚀出所述出光窗口的所述列电极或行电极上敷设第一绝缘材料;在所述第一绝缘材料上与所述列电极或行电极对应的位置刻蚀出容纳所述驱动电容器的第一凹槽,其中所述第一凹槽中留有一定的第一绝缘材料;向所述第一凹槽中装入用于形成驱动电容器的材料;去除所述一定的第一绝缘材料,形成第二凹槽;在所述第二凹槽中设置有机层使其与所述透明电极一起形成所述电致发光器件;在所述电致发光器件和所述用于形成驱动电容器的材料上设置所述中置电极;在已经敷设了所述中置电极的所述透明的显示器基板上敷设第二绝缘层材料;在敷设了所述第二绝缘层材料的所述透明的显示器基板上与所述中置电极相对应的位置刻蚀出容纳充电开关的第三凹槽;在所述第三凹槽中设置所述充电开关;在与所述充电开关相对应的位置敷设行电极或列电极。
优选地,在所述透明的显示器基板上按预定阵列敷设透明电极;按照所述预定阵列在所述透明的显示器基板上敷设列电极或行电极;在所述列电极或行电极上对应于所述透明电极的位置刻蚀出光窗口;在已经刻蚀出所述出光窗口的所述列电极或行电极上敷设用于形成驱动电容器的材料,并刻蚀出所述驱动电容器的阵列;对已经刻蚀出所述驱动电容器的阵列的所述透明的显示器基板用第一绝缘层材料进行平整化处理;在已经用所述第一绝缘层材料平整化处理后的所述透明的显示器基板上与所述透明电极相对应的位置刻蚀出第二凹槽;在所述第二凹槽中设置有机层使其与所述透明电极一起形成所述电致发光器件;在所述电致发光器件上设置面积大于所述电致发光器件的所述中置电极,使得所述中置电极覆盖所述电致发光器件和部分所述用于形成驱动电容器的材料;在所述中置电极上设置所述充电开关;在设置了所述充电开关的所述透明的显示器基板上敷设第二绝缘材料,所述第二绝缘材料不 覆盖所述充电开关;在与所述充电开关相对应的位置敷设行电极或列电极。
优选地,在所述透明的显示器基板上按预定阵列敷设透明电极;按照所述预定阵列在所述透明的显示器基板上敷设列电极或行电极;在所述列电极或行电极上对应于所述透明电极的位置刻蚀出光窗口;在已经刻蚀出所述出光窗口的所述列电极或行电极上敷设用于形成驱动电容器的材料;在所述用于形成驱动电容器的材料上与所述透明电极相对应的位置刻蚀出第二凹槽;在所述第二凹槽中设置有机层使其与所述透明电极一起形成所述电致发光器件;在所述电致发光器件上设置面积大于所述电致发光器件的所述中置电极,使得所述中置电极覆盖所述电致发光器件和部分所述用于形成驱动电容器的材料;在所述中置电极上设置所述充电开关;在设置了所述充电开关的所述透明的显示器基板上敷设第二绝缘材料,所述第二绝缘材料不覆盖所述充电开关;在与所述充电开关相对应的位置敷设行电极或列电极。
优选地,在所述透明的显示器基板上通过镀膜的方法沉积纳米级的所述透明电极。
优选地,在所述出光窗口中沉积所述有机层,使得至少部分的所述有机层位于所述出光窗口中。
优选地,所述充电开关直接在所述中置电极上生成。
优选地,在所述电致发光器件上沉积一个比所述电致发光器件面积大的金属保护层,然后沉积一定厚度的金属,经光刻后得到所述中置电极。
优选地,所述第一凹槽的深度能够容纳多个串列的所述电致发光器件。
与传统的PMOLED和AMOLED相比,Cap-OLED具有以下优点:简化生产工艺,同时降低了生产成本;降低了OLED显示器的面板厚度;Cap-OLED的行、列电极具有很低的电阻,因而可以传输很大的电流而不会产生明显的热量;由于充电开关有效防止了电容器通过外电路(即行、列电极)放电,电能的利用率得到了大幅提高;由于驱动电容器大大延长了像素的点亮时间,像素的初始亮度要远低于一般PMOLED像素的瞬间亮度,因此Cap-OLED的使用寿命要远高于PMOLED;Cap-OLED可以用于高分辨、大尺寸显示屏。理论上Cap-OLED的电能利用率可以达到90%以上,不仅远高于PMOLED还明显高于AMOLED。目前AMOLED的电能利用率约为50%(TFT电路消耗了约50%的电能)。
附图说明
图1A为现有技术中的PMOLED结构示意图。
图1B为现有技术中的PMOLED扫描电压脉冲波形示意图。
图2A为现有技术中的AMOLED结构示意图。
图2B为现有技术中的AMOLED使用的TFT驱动线路图例子。
图3A为电容驱动OLED电路的结构示意图。
图3B为电容驱动OLED电路的另一结构示意图。
图3C为电容驱动OLED电路与PMOLED电路的“亮度-时间”变化关系曲线之对比图。
图3D为电容驱动OLED电路的“亮度-时间”变化关系曲线以及器件点亮时间延长量(Δt)之定义的图示说明。
图4为采用了“并列”式布局的电容驱动OLED显示器的结构示意图。
图5为将行电极“镶入”到基板里面的一个示例。
图6为设置了充电开关后的基板的一个示例。
图7为设置了中置电极后的基板的一个示例。
图8为组件4000的制造方法的一例。
图9为组件4000的制造方法的另一例。
图10为组件4000的制造方法的另一例。
图11为组件5000的制造方法的一例。
图12为“并列”式电容驱动OLED显示器的制造方法的一例。
图13A-13C为采用了“串列”式布局的电容驱动OLED显示器中单个像素的结构示意图。
图14为“串列”式电容驱动OLED显示器的制造方法一例。
图15为采用“下出光”型“并列”式布局的电容驱动OLED显示器中单个像素的结构示意图。
图16为“下出光”型“并列”式布局的电容驱动OLED显示器的制造方法一例。
图17为“并列”式电容驱动OLED显示器的制造方法的另一例。
图18为“串列”式电容驱动OLED显示器的制造方法另一例。
图19为“下出光”型“并列”式布局的电容驱动OLED显示器的制造方法另一例。
具体实施方式
本发明可以适用于所有电流驱动类型的电致发光显示器,例如有机发光二极管(OLED)显示器,有机发光三极管(OLET)显示器,和发光二极管(LED)显示器。
在本实施方式中,参照附图就电容驱动OLED(Cap-OLED)为例对电容驱动电致发光显示器进行说明。
电容驱动OLED采用类似于图1A所示的PMOLED的行、列电极布局,其中在每一 个行、列电极的交汇点放置一个像素。其外驱动电路也采用类似于PMOLED的逐行扫描方式。但与PMOLED不同的是在每一个像素中加入了一个电容驱动组件来延长像素的点亮时间。这个像素组件包括驱动电容器、充电开关和OLED器件,上述驱动电容器与上述OLED器件并联后再电连接上述充电开关。其中,电容驱动组件的一端与行电极相连、另一端与列电极相连;当充电开关有控制端时,其控制端通常电连接到行电极上。
图3A为电容驱动OLED电路的结构示意图。如图3A所示,电容驱动OLED电路包括行电极3001、列电极3002、OLED器件3003、驱动电容器3004和充电开关3005,其中上述驱动电容器3004与上述OLED器件3003并联,上述充电开关3005一端与并联后的上述驱动电容器3004和上述OLED器件3003的一端电连接,使得上述充电开关3005与并联后的上述驱动电容器3004和上述OLED器件3003串联,上述充电开关3005的另一端连接上述行电极3001,并联后的上述驱动电容器3004和上述OLED器件3003的另一端与上述列电极3002电连接。
图3B为电容驱动OLED电路的另一结构示意图。如图3B所示,电容驱动OLED电路同样包括行电极3001、列电极3002、OLED器件3003、驱动电容器3004和充电开关3005,其中上述驱动电容器3004与上述OLED器件3003并联,上述充电开关3005一端与并联后的上述驱动电容器3004和上述OLED器件3003一端电连接,使得上述充电开关3005与并联后的上述驱动电容器3004和上述OLED器件3003串联,上述充电开关3005的另一端电连接上述列电极3002,并联后的上述驱动电容器3004和上述OLED器件3003的另一端与上述行电极3001电连接。
应该理解,本文所用术语“驱动电容器”的含义包括:(a)单个电容器,和(b)由多个电容器并联组成的电容器组;“充电开关”的含义包括:(a)任何有单向导电能力的电子元件、如二极管,(b)由多个电子元件组成的电子开关,和(c)电子控制的微型机械开关。
电容驱动OLED电路的基本工作原理是:在扫描脉冲到来的瞬间上述充电开关3005接通,并在给上述驱动电容器3004充电的同时点亮上述OLED器件3003;当扫描脉冲过后上述充电开关3005自动断开,上述驱动电容器3004通过上述OLED器件3003放电让其继续保持在点亮状态,直到上述驱动电容器3004两端的电压低于上述OLED器件的最低点亮电压(Von)。可见,上面所述电容驱动OLED电路在功能上是一个“储能-延时”电路。
在上述电容驱动模式中,假如把上述行电极3001定为公共电极并设为零电位参考点的话,那么像素的表观亮度由上述驱动电容器3004的容量和上述列电极3002所加的扫描脉 冲电压峰值(即驱动电容器的充电电压)所决定。根据上述OLED器件3003的电光特性、可以适当调整上述驱动电容器3004的容量使像素在下一个扫描脉冲到来的前夕熄灭。这样由于点亮时间得到延长,上述OLED器件3003(像素)可以在较低的初始亮度下工作而获得较高的平均亮度,因而有效地延长了上述OLED器件3003的寿命和提高了上述OLED器件3003的电光转换效率。
以下通过与PMOLED的对比、对电容驱动OLED的工作原理作进一步说明。
在PM的驱动模式下,OLED器件在每一个扫描周期内的发光量(正比于表观亮度)由“亮度-时间”曲线下面包含的面积所决定——面积越大、发光量越大,因而表观亮度越大。对于一般PMOLED而言,在理想状态下(假设扫描脉冲为理想的矩形波、OLED的电光转换效率或量子产率为常数。下同)此面积L0等于扫描脉冲宽度Δto和器件的瞬间亮度BP之积(参见图3C)。即,
L0=Δt0Bp=Δt0K·Ip=K·Q0     (2)
其中IP为在亮度BP时流过OLED的电流;K为器件的电光转换效率;Δt0×IP=Q0为流过OLED的电量。
对于电容驱动OLED而言,其“亮度-时间”曲线下的面积由两部分(L0+LC)组成(参照图3C)。前一项与PMOLED同,而后一项LC的大小则正比于电容器通过OLED放电的电量QC,即
LC=∫B(t)dt=K∫I(t)dt=KQC=KC×ΔV=KC(VP-Von)   (3)
其中B(t)为电容器放电过程中OLED亮度随时间(t)的函数关系;I(t)为电容器放电过程中电流随时间变化的函数关系;C为电容器的电容量;Von为OLED的最低点亮电压;VP为扫描脉冲电压峰值(即电容器充电电压峰值)。为方便对比,在图3C中同时给出了一般PMOLED的“亮度-时间”变化关系曲线(如图3C中的上图)和电容驱动OLED的“亮度-时间”变化关系曲线(如图3C中的下图)。
由图3C和以上的分析可见,电容驱动的实际效果是让“亮度-时间”曲线下的面积(或表观亮度)在原来L0(相当于PMOLED像素的发光量)的基础上增加了LC的量。因此电容驱动的实际效果可以用表观亮度增加的倍数LC/L0来表示。从另一个角度看,假如把LC想象成为一个等面积、高度为BP、宽度为Δt(Δt=LC/BP)的矩形(参照图3D),那么电容驱动的实际效果等效于把原有PM驱动模式下的扫描脉冲宽度(Δt0)延长了Δt的量。换句话说电容驱动相对于PM驱动的优势也可以定量地用Δt与Δt0之比(Δt/Δt0=LC/L0)来表征:即Δt/Δt0的数值越大、电容驱动OLED相对于PMOLED的优势越为明显。
从(3)式和(2)式得:
Figure PCTCN2015000553-appb-000005
上式中的C取决于电容器的尺寸、所用材料、和电容器的构造。VP和IP是互为依赖的函数关系,由OLED器件的电气特性所决定。Von对于同一类器件是个常数(取决于OLED器件的电气特性)。Δt0与扫描频率z和行电极的总数n成反比关系(见(1)式)。因此在其他参数不变的情况下,Δt0随行电极数n增加而减小(Δt0∝1/n);因而Δt/Δt0将随n增加而增加(Δt/Δt0∝n)。由此可见电容驱动OLED相对于PMOLED的优势随着屏幕尺寸大小增加和分辨率升高(n增大)而显得更加明显。换句话说Cap-OLED正好弥补了PMOLED不能用于大屏的不足。
实施方式(一)
以下阐述电容驱动电致发光显示器面板的结构。
电容驱动电致发光显示器包括显示器基板、敷设在显示器基板上的行电极和列电极、以及发光像素阵列,其中发光像素包括电致发光器件、驱动电容器、和充电开关。上述行电极、列电极、电致发光器件、驱动电容器和充电开关在电路中的连接顺序为:行(或列)电极-充电开关-并联的驱动电容器和电致发光器件-列(或行)电极(参照图3A、3B)。发光像素的表观亮度由行电极和列电极之间所加的扫描电压控制。由于驱动电容器和充电开关的存在,像素的点亮时间明显长于像素在没有驱动电容器和充电开关时的点亮时间。
以上所述充电开关有二个功能:第一,在扫描脉冲到来的瞬间、开关接通,外电路通过行电极和列电极对驱动电容器进行充电、同时点亮像素;当扫描脉冲过后,开关马上自动断开、防止电容器通过外电路放电——电容器因而被强迫通过OLED器件放电。
充电开关可以由任何具有单向导电能力的器件充当,例如由一个或多个整流二极管充当,由一个或多个二、三极管组成的电子开关电路充当,或由一个电子控制微型机械开关充当。
其中,所述电致发光器件可以是任何把电流转变为光的器件,例如LED,OLED,和OLET,等。
下面以OLED为例阐述电容驱动OLED显示器(Cap-OLED)的具体结构及其制造方法。但是,当发光器件为非OLED的其他电致发光器件时,只要把对应于OLED器件的部分作相应修改、显示器的其他组成部分和电容驱动OLED显示器的类似。
图4为采用了“并列”式布局的电容驱动OLED显示器的结构示意图。如图4a-c所 示,电容驱动OLED显示器(Cap-OLED)7000包括:基板4001,行电极4002,充电开关5001(例如一个整流二极管),第一绝缘层(绝缘材料)5002,中置电极6001,驱动电容器的介电层7001(形成图3A和图3B中的驱动电容器3004),第二绝缘层(绝缘材料)7002,列电极7003,以及OLED器件7008。其中,上述充电开关5001对应于图3A和图3B中的充电开关3005,上述驱动电容器的介电层7001对应于图3A和图3B中的驱动电容器3004,上述OLED器件7008对应于图3A和图3B中的OLED器件3003。
图4a为上述电容驱动OLED显示器7000整体结构示意图。如图4a所示,在上述基板4001上按一定的间隔平行地设置有上述行电极4002和与上述行电极4002交叉的列电极7003。在上述行电极4002和上述列电极7003的交叉处设置有上述OLED器件7008。在上述行电极4002和上述列电极7003之间依次具有第一绝缘层5002和第二绝缘层7002。
图4b为图4a中的电容驱动OLED显示器7000按A-A线的截面示意图,图4c为图4a中的电容驱动OLED显示器7000按B-B线的截面示意图。如图4b和图4c所示,在上述基板4001上按一定的间隔平行地设置有上述行电极4002,上述行电极4002上与上述列电极交叉的相应位置设置有上述充电开关5001。在上述充电开关5001上设置有上述中置电极6001,并在上述中置电极6001上并列设置上述OLED器件7008和上述驱动电容器的介电层7001,使得在上述中置电极6001的作用下上述OLED器件7008和上述驱动电容器的介电层7001处于并联连接。其中,上述列电极7003在与上述行电极4002的交叉处的相应位置设置用于安放上述OLED器件7008的槽7004(参照图12),并且位于相邻的两个上述列电极7003与上述行电极4002的交叉处的上述充电开关5001、上述中置电极6001、上述驱动电容器的介电层7001和上述OLED器件7008之间分别由上述第一绝缘层5002和上述第二绝缘层7002隔开,并可以封装成由图3A或图3B所示的电路。
由于电容驱动OLED显示器的分辨率和尺寸大小都远远高于一般的PMOLED,可以预见其驱动电流也远远高于PMOLED。因此,对行、列电极导电能力的要求也相应高于PMOLED。其中,由于行电极是公共电极、需要同时给同一行的所有像素供电(假设沿用行扫描的方式),因此行电极的电流又要高于列电极。为了减少在行电极上的损耗,需要增加行电极的厚度以减少行电极的电阻。计算表明,假如沿用铝材作为行电极的话,取决于OLED器件的效率、屏幕的大小和分辨率高低,行电极的厚度可能在很大范围内(100-103微米)变动。因为这一厚度远远高于OLED器件的正常厚度(100-200纳米),必要时可以采用把行电极“镶入”到基板里面的方式以获得一个平整的表面、以便于后续步骤能顺利进行。
图5为将行电极“镶入”到基板里面的一个示例。如图5所示,在组件4000中,行 电极4002被“镶入”到基板4001里面,因而在组件4000的表面形成一个平整的平面。
图6为设置了充电开关后的基板的一个示例。如图6所示,在组件5000中,在上述组件4000上的相应的位置按阵列设置上述充电开关5001,其中相邻的两个上述充电开关5001之间填充有上述第一绝缘层5002。
图7为设置了中置电极后的基板的一个示例。如图7a所示,在组件6000中,在上述组件5000上的上述充电开关5001的相应的位置按阵列设置上述中置电极6001,其中上述中置电极6001的排列与上述充电开关5001的排列相一致。
图7b为图7a中的组件6000按A-A线的截面示意图。如图7b所示,上述基板4001设置有上述行电极4002,上述行电极4002的上表面与上述基板4001的上表面齐平。在上述行电极4002上设置上述充电开关5001,相邻的两个上述充电开关5001之间填充有上述第一绝缘层5002。优选地,上述充电开关5001的上表面与上述第一绝缘层5002的上表面齐平。在上述充电开关5001上设置上述中置电极6001。
如图4所示,在各中置电极6001上并列设置上述OLED器件7008和上述驱动电容器的介电层7001,在相邻的上述OLED器件7008和上述驱动电容器的介电层7001之间填充有上述第二绝缘层7002。优选地,上述驱动电容器的介电层7001的上表面与上述第二绝缘层7002的上表面齐平。在上述第二绝缘层7002、上述驱动电容器的介电层7001及上述OLED器件7008上设置上述列电极7003,其中上述OLED器件7008突出上述驱动电容器的介电层7001表面的部分位于上述列电极7003的上述槽7004中。
以下阐述电容驱动显示器的具体制造方法。
图8为组件4000的制造方法的一例。如图8所示,1)对基板4001进行处理,使得基板4001的表面平整;2)按一定的间隔平行地在具有平整表面的上述基板4001上刻蚀出容纳行电极的凹槽4003;3)然后在上述凹槽4003中填入构成行电极4002的电极材料优选地,上述电极材料为金属材料;4)对被填入上述电极材料的上述基板4001的表面进行平整化和抛光处理,获得组件4000。
图9为组件4000的制造方法的另一例。如图9所示,1)对基板4001进行处理,使得基板4001的表面平整;2)在具有平整表面的基板4001上进行金属镀膜4004;3)按一定的间隔平行地在上述金属镀膜4004上刻蚀出行电极4002;4)对已刻蚀出行电极4002的上述基板4001的表面进行平整化处理,优选地,用绝缘材料4005把上述行电极4002间的间隙填平,然后进行抛光处理以获得一个平整的表面,由此获得上述组件4000。
图10为组件4000的制造方法的另一例。对于由热塑性材料制成的基板4001或者表 面含有一层热塑性材料的基板4001,可采用如图10所示的方法来制造组件4000。具体地,1)对基板4001的表面进行加热处理,至少使得基板4001表面的热塑性材料受热软化至能够将行电极4002压入该表面的程度;2)将行电极4002按一定的间隔平行地压入到受热软化后的基板4001的表面;3)冷却已压入行电极4002的基板4001的表面;4)对冷却后的已压入上述行电极4002的上述基板4001的表面进行平整化处理,以获得一个平整的表面,由此获得上述组件4000。
在上述实施方式中,上述行电极4002的选材视生产流程中所涉及的温度和显示器面板对导电能力要求的不同而选用适当的金属材料,例如铜、铝、铁、镍、钨、铬、金、铂等金属材料,或者是它们的合金。必要时还可以使用多层不同金属的组合来满足一些特殊的要求。例如可以在容易被氧化的金属电极表面镀上一层金或铂来防止电极表面被氧化而影响其导电能力。
充电开关3005可以直接在上述组件4000的表面上生成或者把已经在别处完成的充电开关3005“移植”到组件4000表面。以使用整流二级管作为充电开关3005为例,二极管可以通过标准的半导体生产工艺直接在上述组件4000的行电极4002表面生成或者把在单晶硅圆晶片上制成的二极管分割切片后黏贴在行电极4002表面上相应的部位,然后再重新对表面进行平整化处理,以获得组件5000。
图11为组件5000的制造方法的一例。如图11所示,1)在上述组件4000的行电极4002上安装充电开关5001阵列;2)对已安装有上述充电开关5001阵列的上述组件4000进行平整化处理,优选地,用绝缘材料5002(第一绝缘层)填充上述充电开关5001之间的间隙,以进行平整化处理,然后进行抛光处理后得到上述组件5000(参如图6所示)。
在上述实施方式中,也可以先在上述组件4000的行电极4002上用绝缘材料敷设第一绝缘层5002,在所述第一绝缘层5002上与上述行电极4002相对应的位置刻蚀出用于容纳上述充电开关5001的凹槽的阵列,然后在上述凹槽中设置上述充电开关5001,形成具有上述充电开关5001阵列的上述组件5000。
然后,在上述组件5000的上述充电开关5001阵列上安装相应的中置电极6001阵列,使得上述充电开关5001的下端与上述行电极4002相连,其上端电连接到与上述OLED器件3003和驱动电容器3004电连接的中置电极6001(参见图4和图7)。
优选地,上述中置电极6001可以使用半导体工业中常用的物理气相沉积法(PVD)进行金属镀膜,然后用光刻法(photolithography)刻蚀出所需图案。当精度要求不是太高时,也可以使用其他印刷法,例如丝网印刷法或通过遮蔽掩模(shadow mask)进行真空蒸 镀(vacuum evaporation)得到。
优选地,上述中置电极6001的大小约等于像素的最大可用面积,其长、宽分别约等于或略大于行、列电极的宽度。图7展示了组件6000的3D效果图和像素位置的剖面图。
虽然在上述中置电极6001上方的驱动电容器3004和OLED器件3003在电路连接方式上是并联连接(参见图3A、3B),但在空间上可以采用“并列”(驱动电容器和OLED器件在同一个平面上)或“串列”(OLED器件位于驱动电容器上方)的布局。采用“并列”布局的优点是生产过程较为简单。其缺点是由于OLED器件和驱动电容器同在一个平面上,OLED器件的面积(即像素的有效发光面积)由于驱动电容器的存在而减小了。假设像素的最大可用面积为A(A约等于一条行电极和一条列电极之重叠区之面积),电容器的面积为AC,那么OLED的面积A0=A-AC<A(因为A=AC+A0)。因此相对于面积为A的OLED来说器件的发光量由于器件面积减小而相应减小。然而考虑到在Cap-OLED中OLED器件的透明电极可以做得很薄(详细的描述见后)因而器件的出光率相应得到提高、在一定程度上弥补了因为像素有效发光面积下降而导致的发光量减少。因此当OLED器件的电光转换效率和亮度都比较高时,可以采用“并列”式结构。
图12为“并列”式电容驱动OLED显示器的制造方法的一例。如图12所示,“并列”式电容驱动OLED显示器的制造方法主要包含以下步骤:
1)获取上述组件6000(组件6000的获取步骤如上所述,在此不再重复描述);
2)在所获得的上述组件6000上敷设第二绝缘层7002;
3)在上述第二绝缘层7002上与上述中置电极6001对应的位置刻蚀出容纳电容器介电材料7001(即用于形成驱动电容器的介电层)的“回”字形凹槽7005;其中,“回”字中央柱状的第二绝缘层7002部分为给OLED器件7008预留的空间,其将在后面的步骤中被去除;
4)在上述“回”字形凹槽7005中填入上述电容器介电材料7001;
5)敷设列电极7003,优选地,与上述中置电极6001阵列中的每一列中置电极6001相对应地敷设上述列电极7003,使得上述列电极7003按一定间隔平行地被敷设,同时使得上述列电极7003与上述行电极4002从平面来看相交;
6)刻蚀容纳OLED器件的凹槽7004,优选地,在“回”字中央柱状的第二绝缘层7002部分相对应的部分刻蚀容纳OLED器件的凹槽7004,通过刻蚀容纳OLED器件的凹槽7004将“回”字中央柱状的第二绝缘层7002部分完全去除;
7)在上述凹槽7004内沉积有机层7006(即OLED器件7008的主体部分),和在有机层7006的顶部生成与上述列电极7003电连接的透明电极7007,从而形成OLED器件7008。 其中,透明电极7007要比凹槽7004稍大,以便保证透明电极7007能电连接到列电极7003上。
在上述实施方式中,上述电容器介电材料7001和第二绝缘层7002的生成可以根据材料的不同选用适当生产工艺。例如,对于陶瓷材料可以使用溅射(sputtering)、物理气相沉积(PVD)、化学气相沉积(CVD)、原子层沉积(ALD)等工艺;对于聚合物类材料,则可以使用旋涂(spin coating)、括刀涂布(Doctor Blade Coating)、喷涂(Spray Coating)等方法。需要指出的是,上面生成上述电容器介电材料7001和第二绝缘层7002的顺序也可以颠倒过来:即先在上述中置电极6001上生成电容器的介电层7001,然后再敷设第二绝缘层7002对表面进行平整化处理。具体实施方法包括(但不限于)例如先用等离子增强型化学气相沉积(PECVD)或ALD等方法把电介质7001沉积在组件6000的表面,然后再用光刻法刻蚀出所需驱动电容图案阵列;最后再用旋涂玻璃(spin-on glass)材料作为7002层进行平整化处理。
在上述实施方式中,在上述敷设列电极7003的步骤中可以先用溅射镀膜法进行金属镀膜,然后通过光刻法刻蚀出列电极线。
在上述实施方式中,上述刻蚀容纳OLED器件的凹槽7004的步骤还可进一步地分为两步:首先,在列电极7003上对应于OLED器件7008的部位刻蚀出通往介电/绝缘层的窗口或OLED器件7008在上述列电极7003上的出光口(即凹槽7004的上半部),然后再通过这个窗口去除下面剩余的7002部分。
在上述实施方式中,可以先在上述敷设列电极7003的步骤中用溅射镀膜法进行金属镀膜,然后进行刻蚀容纳OLED器件的凹槽7004的步骤,然后再通过光刻法刻蚀出列电极线。
在上述实施方式中,电容驱动OLED显示器的制造方法的最后一道生产工序为生成OLED器件7008,其中包括沉积有机层7006、生成透明电极7007和封装。由于这些工序与传统OLED显示器生产工序相同,在这里不加以细述。需要指出的是,本实施方式中有机层7006一般含多层功能各不相同的有机材料;OLED器件7008顶部的透明电极7007可采用任何透明导电材料,例如碳纳米管、碳烯、金属氧化物透明电极,也可以使用很薄的金属膜,例如1-5纳米厚的金、银、铜、铝、镁、锂或者是它们的组合。
在上述实施方式中,由于在电容驱动OLED显示器中每个像素都有其独立的透明电极7007,通过每个透明电极7007的电流为单个像素所需的电流、通常很小(在微安培数量级)。因此,电容驱动OLED显示器中的透明电极7007可以允许有比较大的电阻。因此,透 明电极7007的厚度可以远远小于传统OLED透明电极的100-200纳米。如果透明电极7007使用铝、银、或金等低电阻材料的话,所需厚度可以不超过一纳米。因此,本发明的透明电极7007的透光率要比一般AMOLED或PMOLED的透明电极要高。另外,出光率还可以通过对器件的几何型状进行优化和使用光学效应等方法进一步得到提高。所以,由于面积减小而导致的发光量下降可以部分地由出光效率的提高而得到补偿。
此外,由于在AMOLED中部分面积被TFT驱动线路所占用、其有效发光面积一般只有面板面积的50%-70%。在上述实施方式中,在综合考虑所有上述因素的效应后,在“并列”式电容驱动OLED显示器中,OLED器件7008的面积A0可以选在A/4到A/2之间。
在上述实施方式中,虽然在图4和图12中驱动电容器的介电层7001与OLED器件7008之间采用的是“回”字型布局,即OLED器件7008居中、驱动电容器的介电层7001在外包围着OLED器件7008。但本发明并不限于此,驱动电容器的介电层7001与OLED器件7008之间也可以采用“日”字型布局(驱动电容器的介电层7001与OLED器件7008一左一右设置)或“目”字型布局(OLED器件7008居中,驱动电容器的介电层7001分为一左一右两部分并分别布置在OLED器件7008的两边)。
在上述实施方式中,上述OLED器件7008的有机层7006的厚度与上述电容器介电材料7001的厚度基本上相同。
在上述实施方式中,电容驱动OLED显示器的分辨率和尺寸大小都远远高于一般的PMOLED,因此其驱动电流也远远高于PMOLED。因此,对行、列电极导电能力的要求也相应高于PMOLED。其中,由于行电极是公共电极、需要同时给同一行的所有像素供电(假设沿用行扫描的方式),因此行电极的电流又要高于列电极。为了减少在行电极上的损耗,需要增加电极的厚度以减少电极的电阻。假如沿用铝材作为行电极的话,取决于OLED器件的效率、屏幕的大小和分辨率高低,行电极的厚度可能在很大范围内(100-103微米)变动,而这一厚度远远高于OLED器件的正常厚度(100-200纳米),因此可以采用把行电极“镶入”到基板里面以获得一个平整的表面的方式来解决这个问题。
实施例:
在基板4001上用溅射镀膜法(sputtering)沉积行电极金属膜4004,然后在上述行电极金属膜4004上旋涂光阻材料(photoresist)。经过烘干、曝光、显影、和腐蚀等步骤刻蚀出行电极4002(参见图9)。这些步骤在本实施例中简称光刻法。然后,再用刮刀涂布法(Doctor Blade Coating)涂布一层旋涂玻璃材料(spin-on glass)(即绝缘材料4005)。用反应性离子腐蚀法 (RIE)把落在行电极4002表面的旋涂玻璃材料去除后得到组件4000。
用等离子增强型化学气相沉积法(PECVD)或原子层沉积法(ALD)等方法在组件4000上依次沉积一层N-型半导体、一层P-型半导体、和一层金属保护层(例如50-100纳米的铬)。然后,通过光刻法把除充电开关5001所在位置以外的金属保护层和半导体材料去除、从而得到附着在行电极4002上的二极管(即充电开关5001,参见图11)阵列(在图11中,充电开关5001顶部的铬保护层没有标出)。随后再旋涂(或用刮刀涂布法)敷设一层旋涂玻璃材料(即第一绝缘层5002)、以填平二极管5001之间的空隙。最后,用RIE除去附在二极管5001保护层顶部的旋涂玻璃材料5002、得到组件5000。
在组件5000上用溅射镀膜法镀上一层高功函金属,例如100-200纳米的钨、镍、铬、金或其合金,然后用光刻法腐蚀出中置电极6001阵列(参见图7,组件6000)。
在组件6000上用PECVD法沉积200纳米二氧化硅(SiO2)(即第二绝缘层7002)。然后用光刻法在二氧化硅层7002对应于中置电极6001的部位刻蚀出容纳驱动电容介电层的“回”字形凹槽7005,即在“回”字形凹槽7005的中央留下的二氧化硅层7002材料是预留给OLED器件7008的有机层7006区域,对应于“回”字中央的“小口”部位。在并列式电容驱动OLED显示器中二氧化硅层7002的厚度与有机层7006的厚度应该大致相当。
接着用丝网印刷法或刮刀涂布法在“回”字形凹槽7005内填入浆状BaTiO3材料(即驱动电容的电介质7001)。稍加烘干后对表面进行抛光处理,随后烘干。
用溅射镀膜法沉积列电极金属膜(例如100纳米的铬),再通过光刻法生成列电极7003;随后再重复一次光刻步骤在列电极7003上对应于有机层7006的部位(也就是驱动电容中央对应于“回”字形“小口”的部位)刻蚀出OLED器件7008的出光窗口(即凹槽7004的上半部,参见图12);接着把下半部的SiO2部分通过化学方法去除,得到组件7000。
最后一步生成OLED器件7008的过程除了顶部的透明电极7007外、其他步骤与一般的“上出光”型OLED显示器完全相同。例如,对于小分子材料的话可以通过遮蔽掩模(shadow mask)用真空蒸镀法把有机材料沉积在为其预留的凹槽7004内;聚合物材料则可使用喷墨打印法。
OLED器件顶部的透明电极可通过另一个遮蔽掩模沉积在有机层7006表面和列电极7003的局部。OLED器件7008的透明电极7007的选材可根据所用OLED材料的性质而定。OLED器件7008的常用的阴极组合例如LiF/Al,Mg/Ag,Li/Al只要把厚度降低到足以透明,例如小于10纳米、小于5纳米、或1-2纳米,都可以在这里使用。
实施方式(二)
当需要增大OLED器件和驱动电容器的面积时、可以采用“串列”式结构,即OLED器件位于驱动电容器之上方。组件6000的获取和结构与实施方式(一)中的相同,在此不再重复描述。
图13A-13C为采用了“串列”式布局的电容驱动OLED显示器中单个像素的结构示意图。图13A所示的单个像素的结构是在生成OLED器件之前的立体结构图(组件8000),图13B所示的单个像素的结构是在生成OLED器件之后的沿行电极中线方向的剖面结构图(器件8100),图13C所示的单个像素的结构是在生成OLED器件之后的沿列电极中线方向的剖面结构图(器件8100)。
如图13A-13C所示,电容驱动OLED显示器包括:基板4001,行电极4002,充电开关5001(例如一个整流二极管),第一绝缘层5002,中置电极6001,驱动电容器的介电层8003(形成图3A和图3B中的驱动电容器3004),第二绝缘层8001,列电极8004,第三绝缘层(绝缘材料)8005,附加电极8008,有机层8009,以及透明电极8010(有机层8009和透明电极8010构成对应于图3A和图3B中的OLED器件3003)。
其中,上述行电极4002按一定的间隔平行地被设置在上述基板4001上,并且上述行电极4002“镶入”到上述基板4001里面,使得上述行电极4002上表面与上述基板4001的上表面齐平以获得一个平整的表面。在上述行电极4002上按一定的阵列设置上述充电开关5001,并且在上述充电开关5001之间填充有绝缘材料构成第一绝缘层5002(参照图6)。在上述充电开关5001上设置有上述中置电极6001,形成上述中置电极6001的阵列(参照图7),并分别在上述中置电极6001上设置上述驱动电容器的介电层8003,相邻的上述中置电极6001和相邻的上述驱动电容器的介电层8003之间均由第二绝缘层8001隔开。列电极8004按照上述驱动电容器的介电层8003所形成的阵列中与上述行电极4002的交叉列的位置被设置在上述驱动电容器的介电层8003上。在上述列电极8004上与上述驱动电容器的介电层8003相反一面并于其相对应的位置分别设置有由有机层8009和透明电极8010构成的OLED器件,其中各列电极8004之间和各OLED器件之间由第三绝缘层8005进行隔离。上述透明电极8010通过附加电极8008与上述中置电极6001电连接。
图14为“串列”式电容驱动OLED显示器的制造方法一例。如图14所示,“串列”式电容驱动OLED显示器的制造方法包含以下步骤:
1)  获取上述组件6000(组件6000的获取步骤如上所述,在此不再重复描述);
2)  在所获得的上述组件6000上敷设第二绝缘层8001;
3)  在上述第二绝缘层8001上与上述中置电极6001对应的位置刻蚀出容纳电容器介电材料8003(即用于形成驱动电容器的介电层)的凹槽8002;
4)  在上述凹槽8002中填入电容器介电材料8003;
5)  敷设列电极8004,优选地,与上述中置电极6001阵列中的每一列中置电极6001相对应地敷设上述列电极8004,使得上述列电极8004按一定间隔平行地被敷设,同时使得上述列电极8004与上述行电极4002从平面来看相交;
6)  敷设第三绝缘层8005,优选地,上述第三绝缘层8005覆盖组件设置有上述列电极8004一面的全部;
7)  在上述第三绝缘层8005上刻蚀出容纳OLED器件3003的凹槽8006和让附加电极8008通往上述中置电极6001的通道8007,其中每一个像素周围有多个上述通道8007,优选地,在每一个像素相对两侧设置两条上述通道8007;
8)  通过上述通道8007敷设与上述通道8007的数量相对应的附加电极8008;
9)  在上述凹槽8006内沉积有机层8009和在上述有机层8009的顶部生成与上述附加电极8008电连接的透明电极8010,从而形成OLED器件3003。其中,上述透明电极8010要比凹槽8006稍大,以便保证透明电极8010能电连接到上述附加电极8008上。
在上面的步骤中,步骤1)至步骤4)中生成驱动电容器,其生产过程与“并列”式类似。步骤5)至步骤9)生成OLED器件3003。由于OLED器件3003位于上述列电极8004上方,上述有机层8009顶部的上述透明电极8010需要通过一个附加电极8008电连接到上述驱动电容器(电容器介电材料8003)低部的中置电极6001上。因此,在步骤6)敷设第三绝缘层8005后,需要在刻蚀容纳上述有机层8009的凹槽8006(步骤7))的同时刻蚀出通往中置电极6001的通道8007。步骤9)与一般OLED的生产过程相同,在这不再细述。另外,其他的相关处理与实施方式(一)相同。
在上述实施方式中,上述电容器介电材料8003和第二绝缘层8001的生成可以根据材料的不同选用适当生产工艺。例如,对于陶瓷材料可以使用溅射(sputtering)、物理气相沉积(PVD)、化学气相沉积(CVD)、原子层沉积(ALD)等工艺;对于聚合物类材料,则可以使用旋涂(spin coating)、括刀涂布(Doctor Blade Coating)、喷涂(Spray Coating)等方法。需要指出的是,上面生成上述电容器介电材料8003和第二绝缘层8001的顺序也可以颠倒过来:即先在上述中置电极6001上生成电容器的介电层8003,然后再敷设第二绝缘层8001对表面进行平整化处理。具体实施方法包括(但不限于)例如先用等离子增强型化学气相沉积(PECVD)或ALD等方法把电介质8003沉积在组件6000的表面,然后再用光刻 法刻蚀出所需驱动电容图案阵列;最后再用旋涂玻璃(spin-on glass)材料作为8003层进行平整化处理。
实施方式(三)
虽然在以上的实施方式中使用“上出光型”的结构(显示器的正面为基板之上方),电容驱动电致发光显示器也可以采用“下出光”型(显示器正面为基板下方)的结构方式。
图15为采用“下出光”型“并列”式布局的电容驱动OLED显示器中单个像素的结构示意图。
在“下出光”型“并列”式布局的电容驱动OLED显示器中,各个像素按预定的阵列被设置。
如图15所示,电容驱动OLED显示器9000包括透明基板9001,列电极9003,第一绝缘层(绝缘材料)9005,驱动电容器的介电层9007(形成图3A和图3B中的驱动电容器3004),中置电极9010,充电开关9011(例如一个整流二极管),第二绝缘层(绝缘材料)9012,行电极9013,以及OLED器件9014(对应于图3A和图3B中的OLED器件3003)。其中,在上述基板9001上按一定的间隔平行地设置有上述列电极9003和与上述列电极9003交叉的列电极9013。在上述行电极9013和上述列电极9003的交叉处设置有上述OLED器件9014。
具体而言,如图15所示,上述OLED器件9014具有透明电极9002和OLED的有机层9009,其中透明电极9002可以直接设置在上述透明基板9001上,以及上述OLED器件9014在上述透明基板9001上按预定的阵列设置。上述OLED器件9014具有透明电极9002的一端嵌入到上述列电极9003中,使得上述列电极9003与上述OLED器件9014电连接。在上述列电极9003之上的上述OLED器件9014的OLED的有机层9009周围设置有上述驱动电容器的介电层9007。在上述列电极9003之间以及各像素的上述OLED器件9014之间和各像素的上述驱动电容器的介电层9007之间均设置有上述第一绝缘层9005。在上述驱动电容器的介电层9007和上述有机层9009上设置有上述中置电极9010,在上述中置电极9010之上设置上述充电开关9011。在上述充电开关9011之上设置上述行电极9013。其中,在各像素的上述中置电极9010之间和各像素的上述充电开关9011之间均设置有上述第二绝缘层9012。
上述电容驱动OLED显示器9000的各像素上的各部件可以被封装成如图3A或图3B所示的电路。
以下阐述采用“下出光”型“并列”式布局的电容驱动OLED显示器的具体制造方 法。
图16为“下出光”型“并列”式布局的电容驱动OLED显示器的制造方法一例。如图16所示,“下出光”型“并列”式布局的电容驱动OLED显示器的制造方法包含以下步骤:
1)在上述透明基板9001上按预定阵列敷设上述透明电极9002;
2)对应于上述透明电极9002在上述透明基板9001上的阵列中的列敷设上述列电极9003,并在上述列电极9003上对应于上述透明电极9002的位置刻蚀出OLED的出光窗口9004;
3)在刻蚀出上述出光窗口9004后的透明基板9001上敷设第一绝缘层9005,使得上述第一绝缘层9005覆盖上述列电极9003及其之间的空隙以及上述出光窗口9004;
4)在上述第一绝缘层9005上对应于上述列电极9003的位置围绕上述出光窗口9004的位置刻蚀出容纳上述驱动电容器的介电层9007的凹槽9006。其中,上述凹槽9006的大小与上述中置电极9010的尺寸相对应。优选地,上述凹槽9006和上述出光窗口9004均被上述中置电极9010所覆盖;
5)在上述凹槽9006中填入上述驱动电容器的介电材料9007,使得上述驱动电容器的介电材料9007位于上述列电极9003并与上述列电极9003接触;
6)通过除去残留在上述出光窗口9004的位置上的上述第一绝缘层9005,刻蚀出容纳OLED的有机层9009的凹槽9008;
7)在上述凹槽9008内沉积OLED的有机层9009,使得上述有机层9009沉积在上述透明电极9002上,以形成上述OLED器件9014;
8)在上述驱动电容器的介电层9007和上述有机层9009敷设中置电极9010。上述中置电极9010为上述OLED器件9014的阴极;
9)在上述中置电极9010上敷设充电开关9011;
10)在敷设上述充电开关9011后的上述透明基板9001上敷设上述第二绝缘层9012,在各像素的上述中置电极9010之间和各像素的上述充电开关9011之间均设置有上述第二绝缘层9012。其中,上述充电开关9011的上表面没有被上述第二绝缘层9012所覆盖;
11)对应于上述充电开关9011所形成的阵列中的行,在上述充电开关9011上敷设上述行电极9013。
在上述实施方式中,可以在透明基板9001上用溅射镀膜法(sputtering)沉积20纳米ITO(透明电极9002)和100纳米金属钨,然后通过两步光刻法分别刻蚀出列电极线 9003和OLED的出光窗口9004。
在上述实施方式中,可以通过遮蔽掩模(shadow mask)用真空蒸镀法在凹槽9008内生成多个串列的OLED(tandem OLED)的有机层和阴极。其中,OLED的阴极可以选用常用的LiF/Al,Mg/Ag,Li/Al组合,但要求上述多个串列的OLED的总厚度应该与凹槽9008的深度相当。优选地,凹槽9008的深度可以容纳3-4个串列的OLED器件。
在上述实施方式中,可以用一个比OLED器件面积稍大的遮蔽掩模在阴极上部沉积一个金属保护层,例如100纳米的金属铝;然后用溅射法沉积300纳米的金属钨,光刻后得到中置电极9010。
在上述实施方式中,充电开关9011可以选用在硅园晶片上生产的二极管,经过切割分离后把二极管直接黏贴在中置电极上;然后再用旋涂玻璃对表面进行平整化处理,最后敷设行电极9013。充电开关9011也可以直接在上述中置电极的表面上生成。以使用整流二级管作为充电开关9011为例,二极管可以通过标准的半导体生产工艺直接在上述中置电极表面生成或者把在单晶硅圆晶片上制成的二极管分割切片后黏贴在中置电极表面上相应的部位,然后再重新对表面进行平整化处理。
在上述实施方式中,透明电极9002的大小(长、宽)可以比列电极9003小,但必须保证透明电极9002比OLED的出光窗口9004大、以保证透明电极9002和列电极9003有足够的重叠区域。
在上述实施方式中,记载了先敷设第一绝缘层9005,然后再敷设驱动电容器的介电层9007。但本发明并不限于此,敷设第一绝缘层9005和敷设驱动电容器的介电层9007的顺序也可以颠倒过来,即先敷设驱动电容器的介电层9007,然后再敷设第一绝缘层9005。具体地,在已经在上述列电极9003上对应于上述透明电极9002的位置刻蚀出OLED的出光窗口9004的透明基板9001上敷设用于形成驱动电容器的驱动电容器的介电层材料9007,并刻蚀出所述驱动电容器的图案阵列,然后用第一绝缘层材料9005对已经刻蚀出所述驱动电容器的图案阵列的透明基板9001进行平整化处理,然后在已经用第一绝缘层材料9005平整化处理后的透明基板9001上与上述OLED的出光窗口9004相对应的位置刻蚀出容纳OLED的有机层9009的凹槽9008。
在上述实施方式中,由于凹槽9008的深度预计要比一般OLED有机层的厚度大,此结构适合于使用串列OLED(tandem OLED)的结构。
在上述实施方式中,记载了先敷设充电开关9011,然后敷设第二绝缘层9012。但本发明并不限于此,敷设充电开关9011和第二绝缘层9012的顺序也可以颠倒过来,即先敷 设第二绝缘层9012、并在第二绝缘层9012上刻蚀出容纳充电开关9011的凹槽,然后再填入预先做好的充电开关9011。具体地,在已经敷设了上述中置电极9010的透明基板9001上敷设上述第二绝缘层9012,并在与上述中置电极9010相对应的位置刻蚀出容纳充电开关9011的凹槽,然后在上述凹槽中设置上述充电开关9011。
另外,上述实施方式的其他相关处理与实施方式(一)相同。
使用“下出光”型结构的一个优点是可以省去了OLED封装这一道工序。因为在从第8步开始的每一步都已经具备了封装OLED器件的功能。只要工艺选择合理,完成后的器件9000只需要涂布行电极的保护层即可。
在上述实施方式(一)~(三)中,上述行电极和上述列电极的位置可以互换。
应理解以上说明书中所描述的具体实施方式和实施例仅用于说明本发明而不用于限制本发明的范围。在阅读了本发明之后,本领域技术人员对本发明的各种等同形式的修改均落于本申请所附权利要求所限定的范围。
例如,在上述实施方式(一)中,上述第二绝缘层7002和电容器介电材料7001为同一种材料,从而简化制造的步骤,进一步降低生产成本。由此,如图17所示,“并列”式电容驱动OLED显示器的制造方法可以包括:
1)获取上述组件6000(组件6000的获取步骤如上所述,在此不再重复描述);
2)在所获得的上述组件6000上敷设电容器介电材料7001;
3)在上述电容器介电材料7001上敷设列电极7003,优选地,与上述中置电极6001阵列中的每一列中置电极6001相对应地敷设上述列电极7003,使得上述列电极7003按一定间隔平行地被敷设,同时使得上述列电极7003与上述行电极4002从平面来看相交;
4)刻蚀容纳OLED器件的凹槽7004,优选地,在对应上述电容器介电材料7001基本上位于中间部分刻蚀容纳OLED器件的凹槽7004,所刻蚀出的容纳OLED器件的凹槽7004贯穿上述列电极7003和上述电容器介电材料7001;
5)在上述凹槽7004内沉积有机层7006(即OLED器件7008的主体部分),和在机层7006的顶部生成与上述列电极7003电连接的透明电极7007,从而形成OLED器件7008。其中,透明电极7007要比凹槽7004稍大,以便保证透明电极7007能电连接到列电极7003上。
在上述实施方式(二)中,上述第二绝缘层8001和电容器介电材料8003为同一种材料,从而简化制造的步骤,进一步降低生产成本。由此,如图18所示,“串列”式电容驱动OLED显示器的制造方法可以包括:
1)获取上述组件6000(组件6000的获取步骤如上所述,在此不再重复描述);
2)在所获得的上述组件6000上敷设电容器介电材料8003;
3)在上述电容器介电材料8003上敷设列电极8004,优选地,与上述中置电极6001阵列中的每一列中置电极6001相对应地敷设上述列电极8004,使得上述列电极8004按一定间隔平行地被敷设,同时使得上述列电极8004与上述行电极4002从平面来看相交;
4)敷设第三绝缘层8005,优选地,上述第三绝缘层8005覆盖组件设置有上述列电极8004一面的全部;
5)在上述第三绝缘层8005上刻蚀出容纳OLED器件3003的凹槽8006和让附加电极8008通往上述中置电极6001的通道8007,其中每一个像素周围有多个上述通道8007,优选地,在每一个像素相对两侧设置两条上述通道8007;
6)通过上述通道8007敷设与上述通道8007的数量相对应的附加电极8008;
7)在上述凹槽8006内沉积有机层8009和在上述有机层8009的顶部生成与上述附加电极8008电连接的透明电极8010,从而形成OLED器件3003。其中,上述透明电极8010要比凹槽8006稍大,以便保证透明电极8010能电连接到上述附加电极8008上。
在上述实施方式(三)中,上述第一绝缘层9005和电容器介电材料9007为同一种材料,从而简化制造的步骤,进一步降低生产成本。由此,如图19所示,“下出光”型“并列”式布局的电容驱动OLED显示器的制造方法包含以下步骤:
1)在上述透明基板9001上按预定阵列敷设上述透明电极9002;
2)对应于上述透明电极9002在上述透明基板9001上的阵列中的列敷设上述列电极9003,并在上述列电极9003上对应于上述透明电极9002的位置刻蚀出OLED的出光窗口9004;
3)在刻蚀出上述出光窗口9004后的透明基板9001上敷设电容器介电材料9007,使得上述电容器介电材料9007覆盖上述列电极9003及其之间的空隙以及上述出光窗口9004;
4)在上述电容器介电材料9007上对应于上述列电极9003的位置围绕上述出光窗口9004的位置刻蚀出容纳OLED器件9014的有机层9009的凹槽9008;
5)在上述凹槽9008内沉积OLED的有机层9009,使得上述有机层9009沉积在上述透明电极9002上,以形成上述OLED器件9014;
6)在上述驱动电容器的介电层9007和上述有机层9009敷设中置电极9010。上述中置电极9010为上述OLED器件9014的阴极;
7)在上述中置电极9010上敷设充电开关9011;
8)在敷设上述充电开关9011后的上述透明基板9001上敷设上述第二绝缘层9012,在各像 素的上述中置电极9010之间和各像素的上述充电开关9011之间均设置有上述第二绝缘层9012。其中,上述充电开关9011的上表面没有被上述第二绝缘层9012所覆盖;
9)对应于上述充电开关9011所形成的阵列中的行,在上述充电开关9011上敷设上述行电极9013。

Claims (63)

  1. 一种电容驱动电致发光显示器,包括显示器基板、敷设在所述显示器基板上的行电极和列电极,以及电连接在所述行电极和所述列电极之间的发光像素,其特征在于:
    所述发光像素具有电致发光器件、驱动电容器和充电开关,其中所述电致发光器件和所述驱动电容器并联后电连接到所述充电开关;
    所述行电极或所述列电极具有用于安装电致发光器件的出光窗口。
  2. 根据权利要求1所述的电容驱动电致发光显示器,其特征在于:所述发光像素还具有中置电极,其中所述电致发光器件和所述驱动电容器并列地电连接到所述中置电极一侧,所述中置电极的另一侧电连接到所述充电开关。
  3. 根据权利要求1所述的电容驱动电致发光显示器,其特征在于:所述行电极或所述列电极被镶入所述显示器基板中。
  4. 根据权利要求1所述的电容驱动电致发光显示器,其特征在于:所述发光像素还具有第一绝缘层和第二绝缘层,其中所述第一绝缘层将相邻的所述充电开关绝缘隔开,所述第二绝缘层分别将相邻的所述电致发光器件、所述驱动电容器、以及所述中置电极绝缘隔开。
  5. 根据权利要求1所述的电容驱动电致发光显示器,其特征在于:所述显示器基板是透明的,所述电致发光器件通过所述出光窗口被设置在所述显示器基板上。
  6. 根据权利要求5所述的电容驱动电致发光显示器,其特征在于:所述发光像素还具有第一绝缘层和第二绝缘层,其中所述第一绝缘层分别将相邻的所述行电极或所述列电极、以及所述驱动电容器绝缘隔开,所述第二绝缘层将相邻的所述充电开关、以及所述中置电极绝缘隔开。
  7. 根据权利要求4或6所述的电容驱动电致发光显示器,其特征在于:所述第二绝缘层的材料与所述驱动电容器的材料相同。
  8. 根据权利要求1~4任意一项所述的电容驱动电致发光显示器,其特征在于:所述电致发光器件具有透明电极和有机层,其中至少所述透明电极位于所述出光窗口中,并与所述行电极或所述列电极电连接。
  9. 根据权利要求8所述的电容驱动电致发光显示器,其特征在于:所述透明电极通过遮蔽掩模沉积在所述有机层的表面和所述出光窗口处的所述行电极或所述列电极上。
  10. 根据权利要求5~6任意一项所述的电容驱动电致发光显示器,其特征在于:所述电致发光器件具有透明电极和有机层,其中所述透明电极和所述有机层的一部分位于所述出光窗口中,并与所述行电极或所述列电极电连接。
  11. 根据权利要求10所述的电容驱动电致发光显示器,其特征在于:所述透明电极通过沉 积被镀在所述出光窗口处的所述显示器基板。
  12. 根据权利要求1~4任意一项所述的电容驱动电致发光显示器,其特征在于:所述充电开关直接在所述行电极或所述列电极上生成。
  13. 根据权利要求12所述的电容驱动电致发光显示器,其特征在于:所述充电开关为二极管。
  14. 根据权利要求1~4任意一项所述的电容驱动电致发光显示器,其特征在于:所述中置电极是通过在所述充电开关上进行金属镀膜得到。
  15. 一种电容驱动电致发光显示器,包括显示器基板、敷设在所述显示器基板上的行电极和列电极,以及电连接在所述行电极和所述列电极之间的发光像素,其特征在于:
    所述发光像素具有电致发光器件、驱动电容器、充电开关、中置电极和附加电极,其中所述驱动电容器的一端电连接到所述中置电极一侧,另一端电连接所述行电极或所述列电极一侧,所述电致发光器件的一端电连接所述行电极或所述列电极的另一侧,另一端通过所述附加电极电连接到所述中置电极上,以及所述中置电极的另一侧电连接到所述充电开关。
  16. 根据权利要求15所述的电容驱动电致发光显示器,其特征在于:所述行电极或所述列电极被镶入所述显示器基板中。
  17. 根据权利要求15所述的电容驱动电致发光显示器,其特征在于:所述发光像素还具有第一绝缘层、第二绝缘层和第三绝缘层,其中所述第一绝缘层将相邻的所述充电开关绝缘隔开,所述第二绝缘层分别将相邻的所述驱动电容器以及所述中置电极绝缘隔开,所述第三绝缘层分别将相邻的所述行电极或所述列电极、以及所述电致发光器件绝缘隔开。
  18. 根据权利要求17所述的电容驱动电致发光显示器,其特征在于:所述第二绝缘层的材料与所述驱动电容器的材料相同。
  19. 根据权利要求15~18任意一项所述的电容驱动电致发光显示器,其特征在于:所述电致发光器件具有透明电极和有机层,其中所述透明电极电连接所述附加电极。
  20. 根据权利要求19所述的电容驱动电致发光显示器,其特征在于:所述透明电极通过遮蔽掩模沉积在所述有机层的表面和所述附加电极的相应部分。
  21. 根据权利要求15~18任意一项所述的电容驱动电致发光显示器,其特征在于:所述充电开关直接在所述行电极或所述列电极上生成。
  22. 根据权利要求21所述的电容驱动电致发光显示器,其特征在于:所述充电开关为二极管。
  23. 根据权利要求15~18任意一项所述的电容驱动电致发光显示器,其特征在于:所述中 置电极是通过在所述充电开关上进行金属镀膜获得。
  24. 一种电容驱动电致发光显示器的制造方法,包括:
    在显示器基板上敷设列电极;
    在所述显示器基板上的相应位置设置充电开关;
    在所述显示器基板上的相应位置设置驱动电容器;
    在所述显示器基板上的相应位置设置电致发光器件;
    在显示器基板上敷设行电极;
    其中,所述电致发光器件和所述驱动电容器并联后电连接到所述中置电极一侧,所述中置电极的另一侧电连接到所述充电开关。
  25. 根据权利要求24所述的制造方法,还包括:在所述显示器基板上的相应位置设置中置电极。
  26. 根据权利要求25所述的制造方法,其特征在于:
    在所述显示器基板上敷设列电极或行电极;
    在所述列电极或行电极上的相应位置设置所述充电开关;
    对已经设置了所述充电开关的所述显示器基板用第一绝缘材料进行平整化处理;
    在所述充电开关上设置所述中置电极;
    在设置了所述中置电极的所述显示器基板上敷设第二绝缘材料;
    在所述第二绝缘材料上与所述中置电极对应的位置刻蚀出容纳所述驱动电容器的第一凹槽,其中所述第一凹槽中留有一定的第二绝缘材料;
    向所述第一凹槽中装入形成所述驱动电容器的材料;
    与所述中置电极相对应地敷设行电极或列电极;
    在所述行电极或列电极上与所述一定的第二绝缘材料相对应的位置刻蚀出光窗口,并去除所述一定的第二绝缘材料,形成第二凹槽;
    在所述第二凹槽中设置所述电致发光器件,使得所述电致发光器件电连接所述中置电极。
  27. 根据权利要求25所述的制造方法,其特征在于:
    在所述显示器基板上敷设列电极或行电极;
    在已经敷设了所述列电极或行电极的所述显示器基板上敷设第一绝缘材料;
    在所述第一绝缘材料上与所述列电极或行电极相对应的位置刻蚀出用于容纳所述充电开关的第四凹槽的阵列;
    在所述第四凹槽中设置所述充电开关;
    在所述充电开关上设置所述中置电极;
    在设置了所述中置电极的所述显示器基板上敷设第二绝缘材料;
    在所述第二绝缘材料上与所述中置电极对应的位置刻蚀出容纳所述驱动电容器的第一凹槽,其中所述第一凹槽中留有一定的第二绝缘材料;
    向所述第一凹槽中装入形成所述驱动电容器的材料;
    与所述中置电极相对应地敷设行电极或列电极;
    在所述行电极或列电极上与所述一定的第二绝缘材料相对应的位置刻蚀出光窗口,并去除所述一定的第二绝缘材料,形成第二凹槽;
    在所述第二凹槽中设置所述电致发光器件,使得所述电致发光器件电连接所述中置电极。
  28. 根据权利要求25所述的制造方法,其特征在于:
    在所述显示器基板上敷设列电极或行电极;
    在已经敷设了所述列电极或行电极的所述显示器基板上敷设第一绝缘材料;
    在所述第一绝缘材料上与所述列电极或行电极相对应的位置刻蚀出用于容纳所述充电开关的第四凹槽的阵列;
    在所述第四凹槽中设置所述充电开关;
    在所述充电开关上设置所述中置电极;
    在设置了所述中置电极的所述显示器基板上敷设用于形成驱动电容器的材料;
    在所述用于形成驱动电容器的材料上与所述中置电极相对应地敷设行电极或列电极;
    在所述行电极或列电极上与所述中置电极相对应的位置刻蚀出光窗口,并在所述用于形成驱动电容器的材料上与所述中置电极相对应的位置刻蚀出第二凹槽;
    在所述第二凹槽中设置所述电致发光器件,使得所述电致发光器件电连接所述中置电极。
  29. 根据权利要求25所述的制造方法,其特征在于:
    在所述显示器基板上敷设列电极或行电极;
    在已经敷设了所述列电极或行电极的所述显示器基板上敷设第一绝缘材料;
    在所述第一绝缘材料上与所述列电极或行电极相对应的位置刻蚀出用于容纳所述充电开关的第四凹槽阵列;
    在所述第四凹槽中设置所述充电开关;
    在所述充电开关上设置所述中置电极;
    在设置了所述中置电极的所述显示器基板上敷设用于形成驱动电容器的材料,并在与所述中置电极相对应的位置刻蚀出所述驱动电容器的阵列;
    对已经刻蚀出所述驱动电容器的阵列的所述显示器基板用第二绝缘材料进行平整化处理;
    在经所述第二绝缘材料平整化处理后的所述显示器基板上与所述中置电极相对应地敷设行电极或列电极;
    在所述行电极或列电极上与所述中置电极相对应的位置刻蚀出光窗口,并在所述第二绝缘材料上与所述中置电极相对应的位置刻蚀出第二凹槽;
    在所述第二凹槽中设置所述电致发光器件,使得所述电致发光器件电连接所述中置电极。
  30. 根据权利要求25所述的制造方法,其特征在于:
    在所述显示器基板上敷设列电极或行电极;
    在所述列电极或行电极上的相应位置设置所述充电开关;
    对已经设置了所述充电开关的所述显示器基板用第一绝缘材料进行平整化处理;
    在所述充电开关上设置所述中置电极;
    在设置了所述中置电极的所述显示器基板上敷设用于形成驱动电容器的材料;
    在所述用于形成驱动电容器的材料上与所述中置电极相对应地敷设行电极或列电极;
    在所述行电极或列电极上与所述中置电极相对应的位置刻蚀出光窗口,并在所述用于形成驱动电容器的材料上与所述中置电极相对应的位置刻蚀出第二凹槽;
    在所述第二凹槽中设置所述电致发光器件,使得所述电致发光器件电连接所述中置电极。
  31. 根据权利要求25所述的制造方法,其特征在于:
    在所述显示器基板上敷设列电极或行电极;
    在所述列电极或行电极上的相应位置设置所述充电开关;
    对已经设置了所述充电开关的所述显示器基板用第一绝缘材料进行平整化处理;
    在所述充电开关上设置所述中置电极;
    在设置了所述中置电极的所述显示器基板上敷设用于形成驱动电容器的材料,并刻蚀出所述驱动电容器的阵列;
    对已经刻蚀出所述驱动电容器的阵列的所述显示器基板用第二绝缘材料进行平整化处理;
    在经所述第二绝缘材料平整化处理后的所述显示器基板上与所述中置电极相对应地敷设行电极或列电极;
    在所述行电极或列电极上与所述中置电极相对应的位置刻蚀出光窗口,并在所述第二绝缘材料上与所述中置电极相对应的位置刻蚀出第二凹槽;
    在所述第二凹槽中设置所述电致发光器件,使得所述电致发光器件电连接所述中置电极。
  32. 根据权利要求24~31任意一项所述的制造方法,其特征在于:
    在所述显示器基板上刻蚀出容纳所述列电极或行电极的第三凹槽,然后在所述第三凹槽中填入电极材料,以形成所述列电极或行电极。
  33. 根据权利要求24~31任意一项所述的制造方法,其特征在于:
    对由热塑性材料制成或表面含有一层热塑性材料的所述显示器基板进行加热处理,然后将所述列电极或行电极压入所述显示器基板的受热软化的表面。
  34. 根据权利要求24~31任意一项所述的制造方法,其特征在于:在所述第二凹槽中沉积有机层,然后在所述有机层的顶部生成与所述出光窗口处的所述行电极或列电极部分电连接的透明电极,以形成所述电致发光器件,其中至少所述透明电极位于所述出光窗口中。
  35. 根据权利要求34所述的制造方法,其特征在于:所述透明电极通过遮蔽掩模沉积在所述有机层的顶部和所述出光窗口处的所述行电极或列电极上。
  36. 根据权利要求24~31任意一项所述的制造方法,其特征在于:所述充电开关直接在所述列电极或行电极上生成。
  37. 根据权利要求25~31任意一项所述的制造方法,其特征在于:所述中置电极是通过在所述充电开关上进行金属镀膜获得。
  38. 一种电容驱动电致发光显示器的制造方法,包括:
    在显示器基板上敷设列电极;
    在所述显示器基板上的相应位置设置充电开关;
    在所述显示器基板上的相应位置设置中置电极;
    在所述显示器基板上的相应位置设置驱动电容器;
    在所述显示器基板上的相应位置设置电致发光器件;
    在所述显示器基板上的相应位置设置附加电极;
    在显示器基板上敷设行电极;
    其中,所述电致发光器件和所述驱动电容器位于所述列电极或所述行电极的两侧,并且所述驱动电容器位于所述中置电极和所述列电极或所述行电极之间,所述附加电极电连接所述电致发光器件和所述中置电极,使得所述电致发光器件和所述驱动电容器并联地电连接。
  39. 根据权利要求38所述的制造方法,其特征在于:
    在显示器基板上敷设列电极或行电极;
    在所述列电极或行电极上的相应位置设置充电开关;
    对已经设置了所述充电开关的所述显示器基板用第一绝缘材料进行平整化处理;
    在所述充电开关上设置中置电极;
    在设置了所述中置电极的所述显示器基板上敷设第二绝缘材料;
    在所述第二绝缘材料上与所述中置电极对应的位置刻蚀出容纳驱动电容器的第一凹槽;
    向所述第一凹槽中装入形成所述驱动电容器的材料;
    与所述中置电极相对应地敷设行电极或列电极;
    在所述行电极或列电极上敷设第三绝缘材料;
    在所述第三绝缘材料上与所述中置电极对应的位置刻蚀出容纳电致发光器件的第二凹槽和让附加电极通往所述中置电极的通道;
    通过所述通道敷设所述附加电极;
    在所述第二凹槽中设置分别与所述附加电极和所述行电极或列电极电连接的所述电致发光器件。
  40. 根据权利要求38所述的制造方法,其特征在于:
    在显示器基板上敷设列电极或行电极;
    在已经敷设了所述列电极或行电极的所述显示器基板上敷设第一绝缘材料;
    在所述第一绝缘材料上与所述列电极或行电极相对应的位置刻蚀出用于容纳所述充电开关的第四凹槽的阵列;
    在所述第四凹槽中设置所述充电开关;
    在所述充电开关上设置所述中置电极;
    在设置了所述中置电极的所述显示器基板上敷设第二绝缘材料;
    在所述第二绝缘材料上与所述中置电极对应的位置刻蚀出容纳驱动电容器的第一凹槽;
    向所述第一凹槽中装入形成所述驱动电容器的材料;
    与所述中置电极相对应地敷设行电极或列电极;
    在所述行电极或列电极上敷设第三绝缘材料;
    在所述第三绝缘材料上与所述中置电极对应的位置刻蚀出容纳电致发光器件的第二凹槽和让附加电极通往所述中置电极的通道;
    通过所述通道敷设所述附加电极;
    在所述第二凹槽中设置分别与所述附加电极和所述行电极或列电极电连接的所述电致发光器件。
  41. 根据权利要求38所述的制造方法,其特征在于:
    在显示器基板上敷设列电极或行电极;
    在已经敷设了所述列电极或行电极的所述显示器基板上敷设第一绝缘材料;
    在所述第一绝缘材料上与所述列电极或行电极相对应的位置刻蚀出用于容纳所述充电开关的第四凹槽的阵列;
    在所述第四凹槽中设置所述充电开关;
    在所述充电开关上设置所述中置电极;
    在设置了所述中置电极的所述显示器基板上敷设用于形成驱动电容器的材料;
    在所述用于形成驱动电容器的材料上与所述中置电极相对应地敷设行电极或列电极;
    在所述行电极或列电极上敷设第三绝缘材料;
    在所述第三绝缘材料上与所述中置电极对应的位置刻蚀出容纳电致发光器件的第二凹槽和让附加电极通往所述中置电极的通道;
    通过所述通道敷设所述附加电极;
    在所述第二凹槽中设置分别与所述附加电极和所述行电极或列电极电连接的所述电致发光器件。
  42. 根据权利要求38所述的制造方法,其特征在于:
    在显示器基板上敷设列电极或行电极;
    在已经敷设了所述列电极或行电极的所述显示器基板上敷设第一绝缘材料;
    在所述第一绝缘材料上与所述列电极或行电极相对应的位置刻蚀出用于容纳所述充电开关的第四凹槽的阵列;
    在所述第四凹槽中设置所述充电开关;
    在所述充电开关上设置所述中置电极;
    在设置了所述中置电极的所述显示器基板上敷设用于形成驱动电容器的材料,并刻蚀出所述驱动电容器的阵列;
    对已经刻蚀出所述驱动电容器的阵列的所述显示器基板用第二绝缘材料进行平整化处理;
    在经所述第二绝缘材料平整化处理后的所述显示器基板上与所述中置电极相对应地敷设行电极或列电极;
    在所述行电极或列电极上敷设第三绝缘材料;
    在所述第三绝缘材料上与所述中置电极对应的位置刻蚀出容纳电致发光器件的第二凹槽和让附加电极通往所述中置电极的通道;
    通过所述通道敷设所述附加电极;
    在所述第二凹槽中设置分别与所述附加电极和所述行电极或列电极电连接的所述电致发光器件。
  43. 根据权利要求38所述的制造方法,其特征在于:
    在显示器基板上敷设列电极或行电极;
    在所述列电极或行电极上的相应位置设置充电开关;
    对已经设置了所述充电开关的所述显示器基板用第一绝缘材料进行平整化处理;
    在所述充电开关上设置中置电极;
    在设置了所述中置电极的所述显示器基板上敷设用于形成驱动电容器的材料;
    在所述用于形成驱动电容器的材料上与所述中置电极相对应地敷设行电极或列电极;
    在所述行电极或列电极上敷设第三绝缘材料;
    在所述第三绝缘材料上与所述中置电极对应的位置刻蚀出容纳电致发光器件的第二凹槽和让附加电极通往所述中置电极的通道;
    通过所述通道敷设所述附加电极;
    在所述第二凹槽中设置分别与所述附加电极和所述行电极或列电极电连接的所述电致发光器件。
  44. 根据权利要求38所述的制造方法,其特征在于:
    在显示器基板上敷设列电极或行电极;
    在所述列电极或行电极上的相应位置设置充电开关;
    对已经设置了所述充电开关的所述显示器基板用第一绝缘材料进行平整化处理;
    在所述充电开关上设置中置电极;
    在设置了所述中置电极的所述显示器基板上敷设用于形成驱动电容器的材料,并刻蚀出所述驱动电容器的阵列;
    对已经刻蚀出所述驱动电容器的图案阵列的所述显示器基板用第二绝缘材料进行平整化处理;
    在经所述第二绝缘材料平整化处理后的所述显示器基板上与所述中置电极相对应地敷设行电极或列电极;
    在所述行电极或列电极上敷设第三绝缘材料;
    在所述第三绝缘材料上与所述中置电极相对应的位置刻蚀出容纳电致发光器件的第二凹槽和让附加电极通往所述中置电极的通道;
    通过所述通道敷设所述附加电极;
    在所述第二凹槽中设置分别与所述附加电极和所述行电极或列电极电连接的所述电致发光器件。
  45. 根据权利要求38所述的制造方法,其特征在于:
    在所述显示器基板上刻蚀出容纳所述列电极或行电极的第三凹槽,然后在所述第三凹槽中填入电极材料,以形成所述列电极或行电极。
  46. 根据权利要求38所述的制造方法,其特征在于:
    对由热塑性材料制成或表面含有一层热塑性材料的所述显示器基板进行加热处理,然后将所述列电极或行电极压入所述显示器基板的受热软化的表面。
  47. 根据权利要求38~46任意一项所述的制造方法,其特征在于:在所述第二凹槽中沉积有机层,然后在所述有机层的顶部生成与所述附加电极电连接的透明电极,以形成所述电致发光器件。
  48. 根据权利要求47所述的制造方法,其特征在于:所述透明电极通过遮蔽掩模沉积在所述有机层的顶部和所述附加电极上。
  49. 根据权利要求38~46任意一项所述的制造方法,其特征在于:所述充电开关直接在所述列电极或行电极上生成。
  50. 根据权利要求38~46任意一项所述的制造方法,其特征在于:所述中置电极是通过在所述充电开关上进行金属镀膜获得。
  51. 一种电容驱动电致发光显示器的制造方法,包括:
    在透明的显示器基板上敷设列电极;
    直接在所述透明的显示器基板上设置电致发光器件;
    在所述透明的显示器基板上的相应位置设置驱动电容器;
    在所述透明的显示器基板上的相应位置设置充电开关;
    在所述透明的显示器基板上敷设行电极;
    其中,所述电致发光器件和所述驱动电容器并联后电连接到所述充电开关。
  52. 根据权利要求51所述的制造方法,还包括:在所述透明的显示器基板上的相应位置设置中置电极;
    其中,所述电致发光器件和所述驱动电容器并列地电连接到所述中置电极一侧,所述中置电极的另一侧电连接到所述充电开关。
  53. 根据权利要求52所述的制造方法,其特征在于:
    在所述透明的显示器基板上按预定阵列敷设透明电极;
    按照所述预定阵列在所述透明的显示器基板上敷设列电极或行电极;
    在所述列电极或行电极上对应于所述透明电极的位置刻蚀出光窗口;
    在已经刻蚀出所述出光窗口的所述列电极或行电极上敷设第一绝缘材料;
    在所述第一绝缘材料上与所述列电极或行电极对应的位置刻蚀出容纳所述驱动电容器的第一凹槽,其中所述第一凹槽中留有一定的第一绝缘材料;
    向所述第一凹槽中装入用于形成驱动电容器的材料;
    去除所述一定的第一绝缘材料,形成第二凹槽;
    在所述第二凹槽中设置有机层使其与所述透明电极一起形成所述电致发光器件;
    在所述电致发光器件和所述用于形成驱动电容器的材料上设置所述中置电极;
    在所述中置电极上设置所述充电开关;
    在设置了所述充电开关的所述透明的显示器基板上敷设第二绝缘材料,所述第二绝缘材料不覆盖所述充电开关;
    在与所述充电开关相应的位置敷设行电极或列电极。
  54. 根据权利要求52所述的制造方法,其特征在于:
    在所述透明的显示器基板上按预定阵列敷设透明电极;
    按照所述预定阵列在所述透明的显示器基板上敷设列电极或行电极;
    在所述列电极或行电极上对应于所述透明电极的位置刻蚀出光窗口;
    在已经刻蚀出所述出光窗口的所述列电极或行电极上敷设用于形成驱动电容器的材料,并对应于所述预定阵列刻蚀出所述驱动电容器的阵列;
    对已经刻蚀出所述驱动电容器的阵列的所述透明的显示器基板用第一绝缘层材料进行平整化处理;
    在已经用所述第一绝缘层材料平整化处理后的所述透明的显示器基板上与所述透明电极相对应的位置刻蚀出第二凹槽;
    在所述第二凹槽中设置有机层使其与所述透明电极一起形成所述电致发光器件;
    在所述电致发光器件上设置面积大于所述电致发光器件的所述中置电极,使得所述中置电极覆盖所述电致发光器件和部分所述用于形成驱动电容器的材料;
    在已经敷设了所述中置电极的所述透明的显示器基板上敷设第二绝缘层材料;
    在敷设了所述第二绝缘层材料的所述透明的显示器基板上与所述中置电极相对应的位置刻蚀出容纳充电开关的第三凹槽;
    在所述第三凹槽中设置所述充电开关;
    在与所述充电开关相对应的位置敷设行电极或列电极。
  55. 根据权利要求52所述的制造方法,其特征在于:
    在所述透明的显示器基板上按预定阵列敷设透明电极;
    按照所述预定阵列在所述透明的显示器基板上敷设列电极或行电极;
    在所述列电极或行电极上对应于所述透明电极的位置刻蚀出光窗口;
    在已经刻蚀出所述出光窗口的所述列电极或行电极上敷设用于形成驱动电容器的材料;
    在所述用于形成驱动电容器的材料上与所述透明电极相对应的位置刻蚀出第二凹槽;
    在所述第二凹槽中设置有机层使其与所述透明电极一起形成所述电致发光器件;
    在所述电致发光器件上设置面积大于所述电致发光器件的所述中置电极,使得所述中置电极覆盖所述电致发光器件和部分所述用于形成驱动电容器的材料;
    在已经敷设了所述中置电极的所述透明的显示器基板上敷设第二绝缘层材料;
    在敷设了所述第二绝缘层材料的所述透明的显示器基板上与所述中置电极相对应的位置刻蚀出容纳充电开关的第三凹槽;
    在所述第三凹槽中设置所述充电开关;
    在与所述充电开关相对应的位置敷设行电极或列电极。
  56. 根据权利要求52所述的制造方法,其特征在于:
    在所述透明的显示器基板上按预定阵列敷设透明电极;
    按照所述预定阵列在所述透明的显示器基板上敷设列电极或行电极;
    在所述列电极或行电极上对应于所述透明电极的位置刻蚀出光窗口;
    在已经刻蚀出所述出光窗口的所述列电极或行电极上敷设第一绝缘材料;
    在所述第一绝缘材料上与所述列电极或行电极对应的位置刻蚀出容纳所述驱动电容器的第一凹槽,其中所述第一凹槽中留有一定的第一绝缘材料;
    向所述第一凹槽中装入用于形成驱动电容器的材料;
    去除所述一定的第一绝缘材料,形成第二凹槽;
    在所述第二凹槽中设置有机层使其与所述透明电极一起形成所述电致发光器件;
    在所述电致发光器件和所述用于形成驱动电容器的材料上设置所述中置电极;
    在已经敷设了所述中置电极的所述透明的显示器基板上敷设第二绝缘层材料;
    在敷设了所述第二绝缘层材料的所述透明的显示器基板上与所述中置电极相对应的位置刻蚀出容纳充电开关的第三凹槽;
    在所述第三凹槽中设置所述充电开关;
    在与所述充电开关相对应的位置敷设行电极或列电极。
  57. 根据权利要求52所述的制造方法,其特征在于:
    在所述透明的显示器基板上按预定阵列敷设透明电极;
    按照所述预定阵列在所述透明的显示器基板上敷设列电极或行电极;
    在所述列电极或行电极上对应于所述透明电极的位置刻蚀出光窗口;
    在已经刻蚀出所述出光窗口的所述列电极或行电极上敷设用于形成驱动电容器的材料,并刻蚀出所述驱动电容器的阵列;
    对已经刻蚀出所述驱动电容器的阵列的所述透明的显示器基板用第一绝缘层材料进行平整化处理;
    在已经用所述第一绝缘层材料平整化处理后的所述透明的显示器基板上与所述透明电极相对应的位置刻蚀出第二凹槽;
    在所述第二凹槽中设置有机层使其与所述透明电极一起形成所述电致发光器件;
    在所述电致发光器件上设置面积大于所述电致发光器件的所述中置电极,使得所述中置电极覆盖所述电致发光器件和部分所述用于形成驱动电容器的材料;
    在所述中置电极上设置所述充电开关;
    在设置了所述充电开关的所述透明的显示器基板上敷设第二绝缘材料,所述第二绝缘材料不覆盖所述充电开关;
    在与所述充电开关相对应的位置敷设行电极或列电极。
  58. 根据权利要求52所述的制造方法,其特征在于:
    在所述透明的显示器基板上按预定阵列敷设透明电极;
    按照所述预定阵列在所述透明的显示器基板上敷设列电极或行电极;
    在所述列电极或行电极上对应于所述透明电极的位置刻蚀出光窗口;
    在已经刻蚀出所述出光窗口的所述列电极或行电极上敷设用于形成驱动电容器的材料;
    在所述用于形成驱动电容器的材料上与所述透明电极相对应的位置刻蚀出第二凹槽;
    在所述第二凹槽中设置有机层使其与所述透明电极一起形成所述电致发光器件;
    在所述电致发光器件上设置面积大于所述电致发光器件的所述中置电极,使得所述中置电极覆盖所述电致发光器件和部分所述用于形成驱动电容器的材料;
    在所述中置电极上设置所述充电开关;
    在设置了所述充电开关的所述透明的显示器基板上敷设第二绝缘材料,所述第二绝缘材料不覆盖所述充电开关;
    在与所述充电开关相对应的位置敷设行电极或列电极。
  59. 根据权利要求51~58任意一项所述的制造方法,其特征在于:
    在所述透明的显示器基板上通过镀膜的方法沉积纳米级的所述透明电极。
  60. 根据权利要求51~58任意一项所述的制造方法,其特征在于:
    在所述出光窗口中沉积所述有机层,使得至少部分的所述有机层位于所述出光窗口中。
  61. 根据权利要求52~58任意一项所述的制造方法,其特征在于:所述充电开关直接在所述中置电极上生成。
  62. 根据权利要求52~58任意一项所述的制造方法,其特征在于:在所述电致发光器件上沉积一个比所述电致发光器件面积大的金属保护层,然后沉积一定厚度的金属,经光刻后得到所述中置电极。
  63. 根据权利要求52~58任意一项所述的制造方法,其特征在于:所述第一凹槽的深度能够容纳多个串列的所述电致发光器件。
PCT/CN2015/000553 2014-08-04 2015-08-03 一种电容驱动电致发光显示器及其制造方法 WO2016019699A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/501,708 US10186564B2 (en) 2014-08-04 2015-08-03 Capacitor-driven electroluminescent display and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410379127.9 2014-08-04
CN201410379127.9A CN104103674B (zh) 2014-08-04 2014-08-04 一种电容驱动电致发光显示器及其制造方法

Publications (1)

Publication Number Publication Date
WO2016019699A1 true WO2016019699A1 (zh) 2016-02-11

Family

ID=51671665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/000553 WO2016019699A1 (zh) 2014-08-04 2015-08-03 一种电容驱动电致发光显示器及其制造方法

Country Status (3)

Country Link
US (1) US10186564B2 (zh)
CN (1) CN104103674B (zh)
WO (1) WO2016019699A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019022500A1 (ko) * 2017-07-28 2019-01-31 주식회사 엘지화학 투명 발광소자 디스플레이
WO2023015834A1 (zh) * 2021-08-12 2023-02-16 惠科股份有限公司 阵列基板及显示面板、显示装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104103674B (zh) * 2014-08-04 2017-04-12 石益坚 一种电容驱动电致发光显示器及其制造方法
JP6793999B2 (ja) 2017-09-26 2020-12-02 エルジー・ケム・リミテッド 透明発光素子ディスプレイ
US11094869B2 (en) * 2018-01-15 2021-08-17 Lg Chem, Ltd. Transparent light emitting device display
US11798501B2 (en) * 2020-08-25 2023-10-24 Google Llc Power monitoring for correcting ambient temperature measurement by electronic devices
CN112151697B (zh) * 2020-09-28 2023-06-06 京东方科技集团股份有限公司 制作显示背板的方法、显示背板和显示装置
CN113409721B (zh) * 2021-04-21 2022-08-12 福州大学 一种发光器件电场驱动调制装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6307324B1 (en) * 1997-03-27 2001-10-23 Sanyo Electric Co., Ltd. Display apparatus using electroluminescence elements
CN1658716A (zh) * 2004-02-16 2005-08-24 东元激光科技股份有限公司 有机发光显示面板的制造方法及结构
US20070001936A1 (en) * 2003-08-19 2007-01-04 Fuji Electric Holdings Co., Ltd. Display device and method of forming and driving the same
CN104103674A (zh) * 2014-08-04 2014-10-15 石益坚 一种电容驱动电致发光显示器及其制造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5949076A (ja) * 1982-09-13 1984-03-21 Fujitsu Ltd 固体撮像装置
FR2674661B1 (fr) * 1991-03-26 1993-05-14 Thomson Csf Structure de commande matricielle pour ecran de visualisation.
US6593687B1 (en) * 1999-07-20 2003-07-15 Sri International Cavity-emission electroluminescent device and method for forming the device
KR100399787B1 (ko) * 2001-05-04 2003-09-29 삼성에스디아이 주식회사 기판과 이 기판의 제조방법 및 이 기판을 가지는 플라즈마표시장치
JP2002353392A (ja) * 2001-05-29 2002-12-06 Mitsubishi Electric Corp 半導体装置
US7079092B2 (en) * 2003-04-25 2006-07-18 Barco Nv Organic light-emitting diode (OLED) pre-charge circuit for use in a common anode large-screen display
US8477121B2 (en) * 2006-04-19 2013-07-02 Ignis Innovation, Inc. Stable driving scheme for active matrix displays
CN101115354B (zh) * 2006-07-25 2010-11-17 相互股份有限公司 模造电路板及其制造方法
JP4905420B2 (ja) * 2008-07-29 2012-03-28 ソニー株式会社 表示装置、表示装置の駆動方法及び製造方法、並びに電子機器
WO2013025577A1 (en) * 2011-08-12 2013-02-21 Sri International Passive matrix organic light emitting diodes
US20140204067A1 (en) * 2013-01-21 2014-07-24 Apple Inc. Pixel Circuits and Driving Schemes for Active Matrix Organic Light Emitting Diodes
CN103531721B (zh) * 2013-11-05 2015-04-22 京东方科技集团股份有限公司 叠层有机发光二极管器件和显示装置
CN103945644B (zh) * 2014-05-13 2016-08-31 邢台市海纳电子科技有限责任公司 齐平线路板及其制作方法
KR102272230B1 (ko) * 2014-10-29 2021-07-05 삼성디스플레이 주식회사 음의 전원 전압을 보상하기 위한 디스플레이 패널, 이를 포함하는 디스플레이 모듈 및 모바일 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6307324B1 (en) * 1997-03-27 2001-10-23 Sanyo Electric Co., Ltd. Display apparatus using electroluminescence elements
US20070001936A1 (en) * 2003-08-19 2007-01-04 Fuji Electric Holdings Co., Ltd. Display device and method of forming and driving the same
CN1658716A (zh) * 2004-02-16 2005-08-24 东元激光科技股份有限公司 有机发光显示面板的制造方法及结构
CN104103674A (zh) * 2014-08-04 2014-10-15 石益坚 一种电容驱动电致发光显示器及其制造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019022500A1 (ko) * 2017-07-28 2019-01-31 주식회사 엘지화학 투명 발광소자 디스플레이
KR20190013564A (ko) * 2017-07-28 2019-02-11 주식회사 엘지화학 투명 발광소자 디스플레이
KR102149083B1 (ko) * 2017-07-28 2020-08-27 주식회사 엘지화학 투명 발광소자 디스플레이
US10964869B2 (en) 2017-07-28 2021-03-30 Lg Chem, Ltd. Transparent light emitting element display
WO2023015834A1 (zh) * 2021-08-12 2023-02-16 惠科股份有限公司 阵列基板及显示面板、显示装置

Also Published As

Publication number Publication date
CN104103674B (zh) 2017-04-12
US10186564B2 (en) 2019-01-22
CN104103674A (zh) 2014-10-15
US20170229531A1 (en) 2017-08-10

Similar Documents

Publication Publication Date Title
WO2016019699A1 (zh) 一种电容驱动电致发光显示器及其制造方法
CN203242671U (zh) 具有改善的发光质量的有机发光装置
US8053260B2 (en) Large-area lighting systems and methods of making the same
TWI280545B (en) Display and array substrate
JP5520288B2 (ja) 有機発光ダイオード、および照明装置
CN103219469B (zh) 发光组件
CN101222022A (zh) 有机发光元件
WO2015101258A1 (zh) 一种透明 oled 器件及采用其的显示装置
CN103996694A (zh) 一种oled显示器及其制备方法
CN109004093B (zh) Oled面板及其制造方法、电子设备
CN105742311A (zh) 一种显示装置及其制备方法
CN104851906A (zh) 显示基板及其制作方法和驱动方法以及显示装置
CN102376895B (zh) Oled照明基板及其制造方法
EP2030482B1 (en) Organic light emitting device and method for manufacturing the same
CN104752617A (zh) 一种被动式有机电致发光器件及其制备方法
US9674921B2 (en) Method for operating an organic light-emitting component and lighting device for implementing the method
CN110429185B (zh) 电致发光器件及其制作方法和应用
CN109616505A (zh) Oled显示装置及其制作方法
CN203787435U (zh) 一种oled显示器
US10505011B2 (en) Apparatus and method of fabricating lighting apparatus using organic light emitting device
CN103151367A (zh) 有机发光二极管显示装置及其制造方法
KR101477076B1 (ko) 발광 유기 컴포넌트, 다수의 발광 유기 컴포넌트들을 갖는 배열 및 전극 구조
KR20140002953A (ko) 발광장치 및 그 제어방법
JPH10214684A (ja) 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンスアレイ
KR20040103059A (ko) 유기 전계 발광 표시 패널 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15830455

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30/06/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15830455

Country of ref document: EP

Kind code of ref document: A1