WO2016017950A1 - Airborne micro-organism measurement apparatus and measurement method therefor - Google Patents

Airborne micro-organism measurement apparatus and measurement method therefor Download PDF

Info

Publication number
WO2016017950A1
WO2016017950A1 PCT/KR2015/006908 KR2015006908W WO2016017950A1 WO 2016017950 A1 WO2016017950 A1 WO 2016017950A1 KR 2015006908 W KR2015006908 W KR 2015006908W WO 2016017950 A1 WO2016017950 A1 WO 2016017950A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
unit
microbial
particles
light
Prior art date
Application number
PCT/KR2015/006908
Other languages
French (fr)
Korean (ko)
Inventor
박철우
이성화
Original Assignee
주식회사 엘지전자
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지전자 filed Critical 주식회사 엘지전자
Priority to CN201580040878.0A priority Critical patent/CN106662576B/en
Publication of WO2016017950A1 publication Critical patent/WO2016017950A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/52Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements

Definitions

  • the present invention relates to an airborne microbial measurement apparatus and a measuring method thereof.
  • the biological particles suspended in the sample gas are collected on a solid or liquid surface suitable for propagation, incubated in a suitable temperature and humidity environment for a certain period of time, and then collected in the colony water on the surface. And culture methods for obtaining and staining using a fluorescence microscope after staining.
  • ATP bioluminescence method uses the principle that ATP (adenosine triphosphate) and luciferin / luciferase react to make light, which is a series of ATP scavenging process, ATP extraction and emission measurement The process has been reduced to about 30 minutes, allowing for quick work.
  • FIG 9 shows a configuration of an electrostatic precipitator provided in a conventional particle sorting apparatus.
  • the conventional electrostatic precipitator 1 includes a charging line 3 (discharge electrode) disposed between two collecting plates 2 on both sides and the collecting plate 2 on both sides.
  • the charging line 3 When a high voltage is applied to the charging line 3, corona discharge is generated, and ions generated at this time are charged with predetermined particles in the gas.
  • the charged particles may be collected by being moved by an electric force to the collecting electrode, that is, the collecting plate 2.
  • the electrostatic precipitator 1 can be understood as a dust collector capable of collecting certain particles using an electrostatic principle.
  • the predetermined particles may include foreign matter such as dust, or airborne microorganisms.
  • the conventional airborne microbial measurement apparatus the electrostatic precipitator and a collecting rod for collecting the airborne microorganisms collected in the collecting plate.
  • the conventional airborne microbial measurement apparatus is configured to collect or sample the airborne microorganisms by manually contacting the collecting rod to the collecting plate when the airborne microorganisms are collected on the collecting plate by driving the electrostatic precipitator.
  • the collected suspended microorganisms are reacted with a reagent to emit light, and the emitted light is detected to measure the concentration of the microorganisms.
  • a collection rod must be separately prepared and the user must go through a process of collecting the airborne microorganisms collected on the collecting plate by using the collection rod. there was.
  • the present invention has been proposed to solve such a problem, and an object of the present invention is to provide an airborne microbial measurement apparatus and a method for measuring the airborne microorganisms present in the gas phase.
  • Airborne microbial measurement apparatus including an inlet for the inlet of air and a nozzle unit provided on one side of the inlet; A microbial particle flow path through which the microbial particles having passed through the internal flow path of the nozzle unit flow; A driving device for generating a flow of the microbial particles; A collecting device in communication with the microbial particle flow passage and including a filter unit for collecting the microbial particles; A luminescence measuring device for sensing an amount or intensity of light generated from the microbial particles collected in the filter unit; And a sterilization apparatus provided on one side of the filter part to sterilize the filter part.
  • a housing provided on one side of the collecting device, the housing for receiving the light emission measuring device and sterilization device is further included.
  • the suction unit is formed inside the housing, and guides the flow of the microbial particles to the filter unit by the driving of the drive device.
  • the light emission measuring device and the sterilizing device is characterized in that it is installed on both sides of the suction unit.
  • the collecting device may include a filter case accommodating the filter part and forming a filter hole communicating with the microbial particle flow path, wherein at least a portion of the filter part is exposed to the outside through the filter hole. do.
  • the filter case and the filter unit is characterized in that the rotatable.
  • the filter hole is characterized in that it can be arranged in a position corresponding to any one of the suction unit, the light receiving unit and the sterilizer.
  • the filter hole is characterized in that it can be arranged in a position corresponding to the suction unit, the sterilizer and the light receiving unit in order.
  • the filter hole may include a plurality of filter holes spaced apart from each other, and the spaced distances of the plurality of filter spaces correspond to spaced distances of the suction unit, the sterilizer, and the light receiving unit.
  • control unit for controlling the sterilization apparatus is further included, wherein the control unit is characterized in that before operating the microorganism particles are collected in the filter unit, by operating the sterilization unit to remove contaminants in the filter unit.
  • the apparatus may further include a controller configured to control the light emission measuring device, wherein the control unit first operates the light emission measuring device before the microorganism particles are collected in the filter unit, and the microorganism particles may be disposed in the filter unit. After being collected, the luminescence measuring device is operated for a second time.
  • the drive device also includes an air pump device.
  • the sterilizing apparatus includes an ultraviolet LED device or an ionizer.
  • the light emission measuring device the light receiving unit for collecting light
  • a reflection induction device that guides the light to the light receiving portion and induces total reflection or diffuse reflection of the light.
  • the reflection induction device includes a film part or a coating part.
  • the display unit for displaying the concentration of the microorganisms detected by the luminescence measuring device is further included.
  • the concentration of the microorganisms displayed on the display unit is high, it is characterized in that to transmit information about the concentration of the microorganisms to the household appliances for purifying the air.
  • a method of measuring suspended microorganisms includes: performing a first operation of a filter driving unit, placing a sterilizer in one region of a filter unit, and operating the sterilizer; Performing a second operation of the filter driver to position the light receiver in one region of the filter unit and performing a first operation of the light receiver; Performing a third operation of the filter driving unit to position the suction unit through which the microbial particles can flow in one region of the filter unit; The driving device is driven, and the microbial particles in the air are separated, and the separated microbial particles are collected by the suction unit to the filter unit.
  • the method may further include calculating a microbial emission amount by subtracting the detected first emission amount by performing the first operation of the light receiver from the second emission amount detected by performing the second operation of the light receiver.
  • the airborne microorganisms in the air to the virtual impactor (virtual impactor) structure without the user need to manually sample the suspended microorganisms collected on the collecting plate It can be separated automatically by the particle sorting process is easy and takes less time.
  • the reference light emission value can be taken into consideration,
  • the advantage is that the concentration can be calculated.
  • the filter unit can be located on one side of the suction unit, the light receiving unit or the sterilization apparatus disposed side by side inside the second housing, so that the sterilization of the filter unit and the concentration measurement of the microorganisms
  • the advantage is that it can be done continuously.
  • the luminescence measurement process may be easily performed.
  • the virtual impactor structure may effectively separate the main flow having small particles and the sub flow having large particles.
  • a fan as a driving part on the main flow side where the pressure loss is relatively small
  • a low flow pump as a driving part on the sub flow side where the pressure loss is relatively large
  • the display unit for displaying the information on the microbial concentration based on the amount of light emitted by the light emitting device is further provided, and when the microbial concentration is higher than the set concentration may be displayed on the display to warn, the user convenience is increased Can be.
  • FIG. 1 is a perspective view showing the configuration of a suspended microbial measurement apparatus according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along line II ′ of FIG. 1.
  • FIG. 3 is a cross-sectional view taken along line II-II 'of FIG. 1.
  • Figure 4 is a schematic diagram showing the internal configuration of the airborne microbial measurement apparatus according to an embodiment of the present invention.
  • FIG. 5 is a view schematically showing a configuration of a nozzle unit according to an embodiment of the present invention.
  • Figure 6 is a block diagram showing the configuration of a suspended microbial measurement apparatus according to an embodiment of the present invention.
  • FIG. 7 is a flow chart showing a measuring method of a suspended microbial measurement apparatus according to an embodiment of the present invention.
  • FIG. 8a to 8e is a schematic view showing the action of the airborne microbial measurement apparatus according to an embodiment of the present invention.
  • FIG. 9 is a view showing the configuration of the electrostatic precipitator provided in the conventional airborne microbial measurement apparatus.
  • FIG. 1 is a perspective view showing the configuration of a suspended microbial measurement apparatus according to an embodiment of the present invention
  • Figure 2 is a cross-sectional view taken along the line II 'of Figure 1
  • Figure 3 is a line II-II' of FIG. It is an incision section.
  • the airborne microbial measurement apparatus includes a base 20 and a plurality of devices installed above the base 20.
  • the plurality of devices include a particle sorting device 100 for sucking air to separate the airborne microorganisms and a collecting device 200 for collecting the airborne microorganisms separated from the particle sorting device 100.
  • the plurality of devices are provided on one side of the collecting device 200 and electrically connected to the light emission measuring device 300 and the light emission measuring device 300 for detecting the amount or intensity of light generated from the suspended microorganism.
  • the control device 400 is further included.
  • the light emission measuring apparatus 300 includes a light receiving unit 320 for collecting light.
  • the control device 400 includes a PCB 410 on which a plurality of circuit components are installed, and a display unit 420 installed on the PCB 410 to display information on the concentration of suspended microorganisms.
  • the particle sorting apparatus 100 includes a first housing 110 forming a predetermined inner space and an upper surface portion 112 coupled to an upper portion of the first housing 110.
  • a plurality of slits 121 are formed as “air inlets” through which air existing outside the particle sorting apparatus 100 is sucked.
  • the width of the slit 121 may be in the range of several millimeters (mm).
  • a plurality of slits 121 are formed on the upper surface part 112
  • the resistance force of air introduced through the slits 121 that is, the differential pressure inside and outside the slits 121 is small. Therefore, a sufficient flow rate of air introduced through the plurality of slits 121 may be secured.
  • a nozzle unit 120 through which air introduced through the slit 121 passes is provided inside the first housing 110. That is, the nozzle unit 120 may be installed in the inner space of the first housing 110. In addition, the nozzle unit 120 is spaced downward from the slit 121 and extends downward.
  • the nozzle unit 120 may be provided in plurality, corresponding to the number of the plurality of slits 121, may be spaced apart from each other. For example, as illustrated in FIG. 2, the plurality of nozzle units 120 may be spaced apart from each other in the horizontal direction.
  • the nozzle unit 120 includes an inner passage 125 through which floating microbial particles in the air introduced into the first housing 110 through the slit 121 flow.
  • the internal passage 125 forms an internal space of the nozzle unit 120.
  • the inner passage 125 defines an end portion of the nozzle unit 120 and has an inlet portion 125a through which floating microorganisms flow into the inner passage 125.
  • the inlet 125a is formed at the upper end of the inner passage 125.
  • Airborne microbial particles in the air introduced through the slit 121 flows through the internal passage 125 through the inlet portion 125a, and the air particles from which the airborne microbial particles are separated are separated from the internal passage 125.
  • the outer space flows and passes through the air particle passage 129.
  • the inner passage 125 defines the other end of the nozzle portion 120, and the outlet portion 125b for allowing the floating microbial particles flowing through the inner passage 125 to be discharged from the nozzle portion 120. Is formed. In one example, the outlet 125b is formed at the lower end of the internal passage 125.
  • the air particle passage 129 may be referred to as a first flow passage or a main flow passage, and the microbial particle passage 127 may be referred to as a second flow passage or a sub flow passage.
  • the lower end of the nozzle unit 120 is provided with a partition plate 126 that partitions the air particle passage 129 and the microbial particle passage 127.
  • the lower end portion of the nozzle portion 120 that is, the outlet portion 125b is coupled to the partition plate 126.
  • the outlet portion 125b may be formed in the partition plate 126.
  • One side of the first housing 110 is provided with a second housing 130 in which the light receiving unit 320 and the sterilizer 330 are installed.
  • the microbial particle flow path 127 extends from one side of the partition plate 126 toward the collecting device 200, and the inner space of the second housing 130 may extend at least a portion of the microbial particle flow path 127. Can be formed.
  • a filter case 210 in which the filter unit 220 is accommodated and a plurality of filter holes 215 formed in the filter case 210 are formed.
  • At least a portion of the filter case 210 is inserted into the second housing 130.
  • the second housing 130 may be disposed to surround the upper and lower portions of at least a portion of the filter case 210.
  • the filter case 210 may have an approximately semicircular cross section.
  • the plurality of filter holes 215 may be spaced apart from each other along the edge of the filter case 210 may be disposed in the circumferential direction. The distances between the plurality of filter holes 215 may be the same.
  • the filter unit 220 may be exposed to the outside through the plurality of filter holes 215.
  • the microbial particles flowing through the microbial particle flow path 127 may be collected in the filter unit 220 through any one of the filter holes 215 of the plurality of filter holes 215.
  • the filter unit 220 may be installed to be fixed to the inside of the filter case 210.
  • the filter case 210 may be rotatably provided.
  • the filter driver 250 includes a motor capable of forward or reverse rotation.
  • the motor may include a step motor.
  • a rotating shaft 255 extends from the filter driver 250 to the filter case 210.
  • the rotating shaft 255 is rotated, and the filter case 210 may be rotated clockwise or counterclockwise by the rotating shaft 255.
  • the filter unit 220 may be rotated together with the filter case 210.
  • one filter hole 215 communicates with the microbial particle flow path 127. Therefore, the microbial particles flowing through the microbial particle flow path 127 are collected in the filter unit 220 through the one filter hole 215.
  • one region of the filter unit 220 in which the microbial particles are collected may correspond to the region exposed to the microbial particle passage 127 by the one filter hole 215.
  • the filter case 210 and the filter unit 220 are rotated, another filter hole 215 communicates with the microbial particle flow path 127, and the one filter hole 215 is moved in position to measure the emission.
  • the light receiving unit 320 or the sterilizer 330 of the device may be located on one side.
  • the pump device 360 On one side of the collecting device 200, the pump device 360 as a "drive device” that is driven for the flow of microbial particles and the pump connection portion 350 extending from the second housing 130 to the pump device 360 ) Is provided.
  • the pump device 360 may include an air pump.
  • a suction part 310 communicating with the pump connection part 350 is included inside the second housing 130.
  • the suction part 310 is formed in the second housing 130, and the suction force of the pump device 360 may act.
  • the suction part 310 may be formed by cutting or penetrating at least a portion of the second housing 130.
  • the suction part 310 may be formed on one side of the filter case 210 and the upper side of the drawing.
  • the pump device 360 when the pump device 360 is driven, air flow in the microbial particle flow path 127 is generated, and the air flow passes through the filter part 220 through the suction part 310. In this process, the microbial particles may be collected in the filter unit 220. The air flow after the microbial particles are separated may flow to the pump device 360 via the pump connection unit 350.
  • the pump connection portion 350 includes a cyclone portion 351 having a reduced flow cross-sectional area from the second housing 130 toward the pump device 360.
  • the air flow may increase the flow rate while passing through the cyclone portion 351 and may be introduced into the pump device 360.
  • the pump device 360 may be understood as a device that is more advantageous than a fan to secure a predetermined suction flow rate even if a pressure loss occurs. Therefore, by generating the particle flow in the microbial particle flow path 127 using the pump device 360, even if a pressure loss occurs in the nozzle unit 120 or the filter unit 220, the suction efficiency can be improved. have.
  • the flow rate of the microbial particle flow path 127 is relatively small, a low flow rate pump may be applied to the air pump. Therefore, the phenomenon that the floating microorganism measuring device becomes large or heavy can be prevented.
  • the light emission measuring apparatus 300 includes a light receiving unit 320 for the microbial particles located at one side of the collecting device 200.
  • the light receiving unit 320 may be located inside the second housing 130. In addition, the light receiving unit 320 may be spaced apart from one side of the suction unit 310.
  • the light receiver 320 may include a relatively inexpensive LED and CCD camera.
  • the LED may be a blue LED.
  • the light emission measuring device 300 may be provided at one side of the light receiving unit 320 to provide a light receiving unit guide device for guiding light to the light receiving unit 320.
  • the light receiver guide device may include a reflection induction device for inducing total reflection or diffuse reflection of light.
  • the reflection induction apparatus includes a film portion or a coating portion having a reflection function.
  • the spaced distance between the suction part 310 and the light receiving part 320 may correspond to the distance between one filter hole among the plurality of filter holes 215 and another filter hole. Therefore, when the one filter hole is disposed at a position corresponding to the suction part 310, the other filter hole may be disposed at a position corresponding to the light receiving part 320.
  • the one filter hole is disposed at a position at which the flow force through the suction unit 310 can act, and the other filter hole has the light emission amount of the filter unit 220 exposed through the other filter hole.
  • the light receiver 320 may be disposed at a position that may act on the light receiver 320.
  • the filter case 210 When the filter case 210 is rotated after the microbial particles are collected in the filter unit 220 through one filter hole among the plurality of filter holes 215, the one filter hole faces the light receiving unit 320. Can be placed in.
  • the light receiver 320 may detect the amount or intensity of light generated from the microbial particles of the filter unit 220.
  • the airborne microbial measurement apparatus further includes a sterilization apparatus 330 for sterilizing contaminants present in the filter unit 220.
  • the sterilizer 330 may include an ultraviolet light emitting device or an ionizer.
  • the ultraviolet light emitting device includes an ultra violet-light emitting diode (LED).
  • the sterilizer 330 may be located inside the second housing 130.
  • the sterilizer 330 may be spaced apart from the other side of the suction part 310. That is, the light receiving part 320, that is, the light emission measuring device 300 and the sterilizing device 330 may be installed at both sides of the suction part 310.
  • the spaced distance between the suction unit 310 and the sterilization apparatus 330 may correspond to a distance between one filter hole and the other filter hole among the plurality of filter holes 215. Therefore, when the one filter hole is disposed at a position corresponding to the suction unit 310, the other filter hole may be disposed at a position corresponding to the sterilization apparatus 330.
  • the one filter ball is disposed at a position at which the flow force through the suction part 310 can act, and the other filter ball is disposed on the filter part 220 exposed through the other filter ball.
  • 330 may be placed in a position to act.
  • the suction part 310, the light receiving part 320, and the sterilizing device 330 may be spaced apart from each other to correspond to a shape in which the plurality of filter holes 215 are disposed.
  • the plurality of filter holes 215 are spaced apart along the circumference of the filter case 210, and the suction part 310, the light receiving part 320, and the sterilizer 330 are the plurality of filters.
  • the ball 215 may be disposed at a position corresponding to each filter hole 215.
  • the one filter hole 215 or the filter unit 220 from the dissolving agent supply device 370 for supplying a dissolution reagent to the filter unit 220 and the dissolving agent supply device 370 It further includes a supply passage 375 extending to.
  • the lysis reagent is understood as a soluble agent for lysing the cells (or cell walls) of the suspended microorganisms collected in the filter unit 220.
  • ATP is extracted.
  • a light emitting material may be applied to the filter unit 220.
  • the light emitting material is understood as a material for generating light by reacting with ATP (Adenosine Triphosphate, Adenosine Triphosphate) of the microbial particles extracted by the dissolution reagent.
  • the luminescent material includes luciferin and luciferase.
  • the luciferin is activated by ATP present in the lysed cells and is converted into active luciferin, and the active luciferin is oxidized by the action of luciferase, a light-emitting enzyme, to be oxidized luciferin, which emits light by converting chemical energy into light energy. .
  • a relatively small particle separated from the inlet side of the nozzle unit 120 for example, an air particle flow path 129 through which air particles flow is formed. Particles of the air particle flow path 129 is formed smaller than particles of the microbial particle flow path 127. However, the flow amount of the air particle flow path 129 may be greater than the flow amount of the microbial particle flow path 127.
  • the air particle flow path 129 is separated from the microbial particle flow path 127 by the partition plate 126 and extends toward the blowing fan 150.
  • the blowing fan 150 is a driving device for generating a flow of the air particle flow path 129, for example, may be accommodated in the fan housing 155.
  • the fan housing 155 is disposed under the first housing 110.
  • the blower fan 150 is understood as a device capable of ensuring a sufficient flow rate as compared to the air pump when the pressure loss is small. Therefore, since the blowing fan 150 is provided in a passage having a low pressure loss, such as the air particle passage 129, there is an effect that sufficient air particle flow (main flow) can be generated.
  • Figure 4 is a schematic diagram showing the internal configuration of the airborne microbial measurement apparatus according to an embodiment of the present invention
  • Figure 5 is a view schematically showing the configuration of the nozzle unit according to an embodiment of the present invention. 4 and 5, the operation of the airborne microbial measurement apparatus according to an embodiment of the present invention will be briefly described.
  • air (A in FIG. 5) existing outside the airborne microbial measurement apparatus 10 is formed into a plurality of slits 121 of the upper surface part 112. It is introduced into the first housing 110 through the.
  • the flow velocity may be increased by a narrow passage cross-sectional area.
  • Floating microbial particles having a relatively large amount of air particles passing through the plurality of slits 121 are introduced into the internal passage 125 through the inlet portion 125a of the nozzle unit 120 (FIG. 5C). .
  • the suspended microbial particles are discharged from the internal passage 125 through the outlet portion 125b, and then flow through the microbial particle passage 127.
  • air particles having relatively small particles in the air passing through the plurality of slits 121 do not flow to the inner passage 125 while the traveling direction is bent, and is along the outer space of the nozzle unit 120. It will flow (B of FIG. 5).
  • the air particles flow through the air particle passage 129 to pass through the blowing fan 150.
  • relatively large floating microbial particles are introduced into the internal passage 125 through the inlet portion 125a, and relatively small air particles are introduced into the slit (
  • the stream line may be bent through the spaced space between 121 and the inlet 125a.
  • Such a particle classification structure may be referred to as a virtual impactor structure.
  • the floating microbial particles and air particles may be easily classified by applying the virtual impactor structure.
  • the floating microbial particles flowing through the microbial particle flow path 127 flow to the collecting device 200, and pass through the filter unit 220 via one filter hole 215 of the suction part 310 and the filter case 210. Can be collected in one area of
  • the dissolution reagent is supplied to the filter unit 220 from the solvent supply device 370.
  • the microbial particles collected in the filter unit 220 may be dissolved by the dissolution reagent to extract ATP, and then react with the light emitting material applied to the filter unit 220.
  • the filter driving unit 250 is driven to rotate the filter case 210, whereby the one filter hole 215 is positioned to face the light receiving unit 320.
  • the light receiver 320 may detect an amount or intensity of light generated from the microbial particles collected by the filter unit 220.
  • the light may be generated during the reaction between the ATP and the light emitting material of the microbial particles.
  • one region of the filter part 220 in which the microbial particles are collected may be moved to face the light receiving part 320.
  • the filter case 210 and the filter unit 220 are rotatably provided, so that the microbial collection and light emission process can be automatically performed.
  • the sterilizer 330 may be operated to sterilize the filter unit 220 before the microbial particles are collected in the filter unit 220.
  • the light receiving unit 320 may be operated to detect the amount of light emitted from the filter unit 220 before the microbial particles are collected in the filter unit 220.
  • the light emission amount at this time may be referred to as "reference light emission amount" in that it provides reference information on the light emission amount when the microbial particles are collected later.
  • Figure 6 is a block diagram showing the configuration of a suspended microbial measurement apparatus according to an embodiment of the present invention.
  • the airborne microbial measurement apparatus 10 includes a pump device 360 for generating a floating microbial particle flow and a blowing fan 150 for generating an air particle flow.
  • the suspended microbial measuring device 10 a filter driving unit 250 for rotating the filter case 210 and the filter unit 220 and a dissolving agent supply device 370 for supplying a dissolution reagent to the filter unit 220 ) Is further included.
  • the airborne microbial measurement apparatus 10 includes a display unit 420 that displays information on the concentration of airborne microbial particles collected by the filter unit 220.
  • the display unit 420 may include a lighting device displayed in a different color according to the concentration value of the suspended microbial particles.
  • the lighting apparatus may include a first lighting unit displaying green when the concentration of the floating microbial particles is low, a second lighting unit displaying yellow when the concentration is about a medium value, and a third display unit displaying red when the concentration is high.
  • the lighting unit may be included.
  • the first to third lighting units may be configured as one lighting unit.
  • a timer for accumulating the elapsed time of the light receiving unit 320 for detecting the amount of light emitted from the microbial particles collected in the filter unit 220 and the collection process of the microbial particles and the dissolution reagent supply process 460 is included.
  • Information detected by the light receiving unit 320 or the timer 460 may be transmitted to the control unit 450, and the control unit 450 may include the pump device 360 and a blower fan based on the transferred information.
  • the control unit 450 may include the pump device 360 and a blower fan based on the transferred information.
  • the operation of the filter driver 250, the solvent supply device 370 and the display unit 420 may be controlled.
  • the airborne microbial measurement apparatus 10 further includes a sterilizer 330 for removing contaminants present in the filter unit 220.
  • a sterilizer 330 for removing contaminants present in the filter unit 220.
  • the airborne microbial measurement apparatus 10 further includes a memory unit 470 that stores information regarding the operation of the light emission measurement apparatus, that is, the light receiving unit 320.
  • the light receiver 320 may perform a first operation before the microbial particles are collected and a second operation after the microbial particles are collected.
  • the first operation is an operation for detecting the amount of light emitted by the light around the collecting device 200 and is understood as an operation for detecting the reference amount of light.
  • Information on the reference light emission amount according to the first operation may be stored in the memory unit 470.
  • the information about the reference light emission amount may be considered to calculate the light emission amount detected after the second operation.
  • the reference light emission amount may be referred to as a “first light emission amount” and the light emission amount detected after the second operation may be referred to as a “second light emission amount”.
  • the concentration value of the microorganisms collected in the filter part may be calculated based on a value obtained by subtracting the reference emission amount from the second emission amount.
  • FIG. 7 is a flow chart showing a measuring method of a floating microbial measuring apparatus according to an embodiment of the present invention
  • Figures 8a to 8e is a schematic diagram showing the action of the floating microbial measuring apparatus according to an embodiment of the present invention.
  • the semicircular filter case 210 extends from side to side and the suction unit 310 and the light receiving unit on one side of the filter case 210. It indicates that the position of the 320 and the sterilizer 330 is relatively displayed.
  • the filter driving unit 250 when the power of the floating microorganism measuring device 10 is turned on, the filter driving unit 250 performs a first operation.
  • the first operation of the filter driving unit 250 is an operation of rotating in a reverse direction by a first set angle to sterilize a filter hole 215a (see FIG. 8A) for opening a region of the filter unit 220 in which microorganisms are to be collected. It is understood as an operation for moving to one side of 300.
  • the filter hole 215a may be referred to as a "collection filter hole".
  • the reverse direction may correspond to a direction in which the filter case 210 moves to the left side with reference to FIG. 8A.
  • the first set angle is understood as an angle at which the filter case 210 can be rotated by a distance (separation distance) between one filter hole and another filter hole closest to the one filter hole.
  • Such "reverse first rotation of the set angle” may be referred to as “-1 rotation” (S12).
  • FIG. 8A shows a basic arrangement of the floating microbial measurement apparatus 10, that is, the state when the power of the floating microbial measurement apparatus 10 is turned on.
  • the suction unit 310 is located on one side of the collecting filter hole (215a) of the filter case 210, the sterilization device is located on one side of the other filter hole.
  • the light receiving unit 320 may be positioned outside the plurality of filter holes.
  • the filter case 210 When the first operation of the filter driver 250 is performed, the filter case 210 is rotated and disposed as shown in FIG. 8B, and one side of the collecting filter hole 215a of the filter case 210.
  • the sterilization apparatus 330 In the sterilization apparatus 330 is located. That is, the sterilizer 330 is disposed at a position capable of sterilizing one region of the filter unit 220 through the collection filter hole 215a (see FIG. 8B).
  • the sterilizer 330 may irradiate a light source toward one region of the filter unit 220 (S13).
  • the filter driver 250 After the sterilizer 330 is operated, the filter driver 250 performs a second operation.
  • the second operation of the filter driving unit 250 is an operation of rotating the collecting filter hole 215a to one side of the light receiving unit 320 as an operation of rotating the second predetermined angle in the forward direction.
  • the forward direction may correspond to a direction in which the filter case 210 moves to the right with reference to FIG. 8B.
  • the second set angle is understood as an angle through which the filter case 210 can be rotated by twice the separation distance.
  • This "second forward rotation of the set angle” may be referred to as “+2 rotation” (S14).
  • the filter case 210 is arranged as shown in FIG. 8C, and at one side of the collection filter hole 215a, the light receiving unit 320 is positioned. do. That is, the light receiving unit 320 is disposed at a position capable of detecting the amount of light emitted from one region of the filter unit 220 through the collecting filter hole 215a (see FIG. 8C).
  • the suction part 310 is positioned at one side of the other filter hole among the plurality of filter holes, and the sterilizer 330 may be positioned at one side of the other filter hole. This is due to the fact that each spaced distance of the suction unit 310, the light receiving unit 320, and the sterilizer 330 corresponds to the spaced distance of the plurality of filter holes.
  • the light receiving unit 320 that is, the light emission measuring device performs a first operation to detect the amount of light emitted from the filter unit 220.
  • the light emission amount detected by the first operation of the light receiver 320 is a light emission amount that can be basically sensed by the filter unit 220 before the microbial particles are collected, and is referred to as a "reference light emission amount (first light emission amount)" value.
  • the information about the reference emission amount may be stored in the memory unit 470 (S15).
  • the filter driver 250 After the first operation of the light receiver 320, the filter driver 250 performs a third operation.
  • the third operation of the filter driving part 250 is an operation of rotating the collecting filter hole 215a to one side of the suction part 310 as an operation of rotating the third set angle in the reverse direction.
  • the reverse direction may correspond to a direction in which the filter case 210 moves to the left side with reference to FIG. 8C.
  • the third set angle is understood as an angle at which the filter case 210 may be rotated by the separation distance.
  • This "reverse third rotation of the set angle” may be referred to as “-1 rotation” (S16).
  • the filter case 210 is arranged as shown in FIG. 8D, and the suction unit 310 is positioned at one side of the collection filter hole 215a. Done. That is, the suction part 310 is disposed at a position where the microbial particles can flow to one region of the filter part 220 through the suction part 310 and the collecting filter hole 215a.
  • the blower fan 150 and the pump device 360 operate to generate a main flow to the blower fan 150 and a subflow to the pump device 360.
  • external air of the floating microorganism measuring device 10 is introduced into the first housing 110 through the plurality of slits 121.
  • This collection process may be performed during the first set time.
  • the elapsed time is accumulated by the timer 460, and the controller 450 recognizes whether the first set time has elapsed (S18).
  • the dissolving agent supply device 370 operates to supply the dissolving reagent to the filter unit 220.
  • the lysis reagent is supplied to the filter unit 220 for a second set time, and the operation of the solvent supply device 370 is stopped when the second set time elapses.
  • the dissolution reagent dissolves the microbial particles collected in the filter unit 220 to extract ATP, and the extracted ATP reacts with the light emitting material applied to the filter unit 220 to emit a predetermined light (S19, S20).
  • the filter driver 250 performs a fourth operation.
  • the fourth operation of the filter driving unit 250 is an operation of rotating the collecting filter hole 215a to one side of the light receiving unit 320 as an operation of rotating the fourth set angle in the forward direction.
  • the forward direction may correspond to a direction in which the filter case 210 moves to the right with reference to FIG. 8D.
  • the fourth set angle is understood as an angle at which the filter case 210 can be rotated by the separation distance.
  • This "fourth set-angle rotation in the forward direction” may be referred to as “+1 rotation” (S21).
  • the filter case 210 is arranged as shown in FIG. 8E, and at one side of the collection filter hole 215a, the light receiving unit 320 is positioned. do. That is, the light receiving unit 320 is disposed at a position capable of detecting the amount of light emitted from one region of the filter unit 220 in which the microbial particles are collected through the collecting filter hole 215a (see FIG. 8E).
  • the light receiving unit 320 that is, the light emission measuring device performs a second operation to detect the amount of light emitted from the filter unit 220 or its intensity.
  • the amount of light emitted or its intensity may be proportional to the concentration of the microorganism. That is, when the amount of light emission or its intensity is large, the concentration of the microorganism is recognized as large in proportion thereto, and when the amount of light emission or its intensity is small, the concentration of the microorganism may be recognized as proportionally small.
  • the amount of emitted light detected by the second operation of the light receiving unit 320 is the amount of emitted light that can be detected by the filter unit 220 after the collection of the microbial particles, and the amount of emitted light reflecting the concentration of the microbial particles (second emission amount) It is understood as (S22).
  • the controller 450 may determine a light emission amount (microbial light emission amount) corresponding to the concentration of microorganisms collected by the filter unit 220 as a value obtained by subtracting the first light emission amount from the second light emission amount.
  • the controller 450 may display information on the concentration of microorganisms on the display unit 420 based on the amount of light emitted from the microorganisms. For example, depending on the concentration of the microorganism, the lighting unit of different colors may be activated in the display unit 420 (S23).
  • the collection and emission measurement steps of the microbial particles may be automatically and continuously performed, and thus the measurement process of the suspended microorganisms may be easily performed.
  • the user since information on the concentration of the microorganisms may be displayed on the display unit, the user may easily check the concentration of the floating microorganisms.
  • home appliances for air purification may be provided.
  • the home appliance may be driven when the concentration of the floating microorganisms displayed on the display unit is high, that is, when the pollution degree of the floating microorganisms is severe.
  • the household electrical appliance may include an air purifier, a ventilator or an air conditioner. That is, the airborne microbial measurement apparatus may transmit information about the concentration of microorganisms to the home appliances, to guide the operation of the home appliances.
  • the filter part can be sterilized before the microorganism particles are collected in the filter part, it is possible to prevent the microbial particle concentration from being incorrectly calculated by the contaminants in the filter part.
  • the concentration of the microbial particles may be accurately measured.
  • the filter unit in which the classified microorganism particles are collected can be sterilized, contamination of the filter unit can be prevented, and thus, in measuring the concentration of the microbial particles collected in the filter unit, Industrial applicability is remarkable as the effects of contaminants present can be reduced.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

The present invention relates to an airborne micro-organism measurement apparatus and a measurement method therefor. The airborne micro-organism measurement apparatus according to an embodiment of the present invention comprises: a particle sorting apparatus having an inflow portion for introducing air and a nozzle portion provided on one side of the inflow portion; a micro-organism particle flow path through which micro-organism particles that pass through an internal flow path of the nozzle portion in the air move; a driving apparatus for causing the micro-organism particles to move; a collection apparatus that is connected with the micro-organism particle flow path, and that has a filter portion in which the micro-organism particles are collected; a light-emission measurement apparatus for sensing the amount or the strength of light generated from the micro-organism particles collected in the filter portion; and a sterilisation apparatus provided on one side of the filter portion for sterilising the filter portion.

Description

부유미생물 측정장치 및 그 측정방법Airborne microbial measuring apparatus and measuring method
본 발명은 부유미생물 측정장치 및 그 측정방법에 관한 것이다.The present invention relates to an airborne microbial measurement apparatus and a measuring method thereof.
최근 조류 인플루엔자, 신종 인플루엔자 등이 이슈화되면서 공기감염 문제가 대두되고 있으며, 이에 따라 공기 중 부유 미생물 측정(airborne microbial measurement)이 보다 중요하게 다루어지고, 바이오센서 시장도 이에 맞추어 큰 폭으로 성장하고 있다.Recently, avian influenza, swine flu, etc. have been raised, the problem of air infection has emerged, and thus airborne microbial measurement is more important, and the biosensor market is growing rapidly accordingly.
기존에 공기 중 부유 미생물 측정하는 방법에는, 시료기체 중에 부유하고 있는 생물입자를 증식에 적합한 고체 또는 액체 표면에 포집하고 일정기간 적당 온습도 환경 하에서 배양한 후, 표면에 출현한 콜로니수에서 포집 미생물수를 구하는 배양법과, 염색 후 형광현미경을 이용하는 염색법 등이 있다.In the conventional method of measuring airborne microorganisms, the biological particles suspended in the sample gas are collected on a solid or liquid surface suitable for propagation, incubated in a suitable temperature and humidity environment for a certain period of time, and then collected in the colony water on the surface. And culture methods for obtaining and staining using a fluorescence microscope after staining.
근래에는 ATP(아데노신삼인산, adenosine triphosphate)와 루시페린(luciferin)/루시페라아제(luciferase)가 반응하여 빛을 내는 원리를 이용하는 ATP 생물 발광법에 의해, ATP 소거처리, ATP 추출, 발광량 측정까지 소요되는 일련의 과정을 30분 정도로 축소하여 신속한 작업이 가능하게 되었다.Recently, ATP bioluminescence method uses the principle that ATP (adenosine triphosphate) and luciferin / luciferase react to make light, which is a series of ATP scavenging process, ATP extraction and emission measurement The process has been reduced to about 30 minutes, allowing for quick work.
그러나, 상기와 같은 방법들에 의하면 기상 중에 존재하는 부유미생물을 실시간 측정할 수 없으며, 별도의 샘플링 과정과 전처리 등을 포함한 일련의 수작업이 요구되므로, 이러한 방법들을 이용하여서는 공기 중 부유미생물 자동 측정 시스템을 개발할 수가 없다는 한계가 있었다.However, the above methods cannot measure the airborne microorganisms present in the gas phase in real time, and a series of manual operations including separate sampling and pretreatment are required. Therefore, the airborne airborne microbial measurement system using these methods is used. There was a limit not to develop.
도 9는 종래의 입자분류장치에 제공되는 전기집진기의 구성을 보여준다.9 shows a configuration of an electrostatic precipitator provided in a conventional particle sorting apparatus.
도 9를 참조하면, 종래의 전기집진기(1)에는, 양측의 포집판(2) 및 상기 양측의 포집판(2) 사이에 배치되는 충전선(3, 방전 전극)이 포함된다.Referring to FIG. 9, the conventional electrostatic precipitator 1 includes a charging line 3 (discharge electrode) disposed between two collecting plates 2 on both sides and the collecting plate 2 on both sides.
상기 충전선(3)에 고전압을 인가하면 코로나 방전이 발생되며, 이 때 발생되는 이온이 가스 중의 소정 입자와 대전된다. 그리고, 대전된 입자는 집진극, 즉 상기 포집판(2)으로 전기력에 의하여 이동되어 포집될 수 있다.When a high voltage is applied to the charging line 3, corona discharge is generated, and ions generated at this time are charged with predetermined particles in the gas. In addition, the charged particles may be collected by being moved by an electric force to the collecting electrode, that is, the collecting plate 2.
따라서, 상기 전기집진기(1)는, 정전기적인 원리를 이용하여 소정의 입자를 포집할 수 있는 집진장치로서 이해될 수 있다. 상기 소정의 입자에는, 먼지와 같은 이물, 또는 부유미생물등이 포함될 수 있다.Thus, the electrostatic precipitator 1 can be understood as a dust collector capable of collecting certain particles using an electrostatic principle. The predetermined particles may include foreign matter such as dust, or airborne microorganisms.
한편, 종래의 부유미생물 측정장치에는, 상기한 전기집진기 및 상기 포집판에 포집된 부유미생물을 수집하기 위한 수집봉이 포함된다.On the other hand, the conventional airborne microbial measurement apparatus, the electrostatic precipitator and a collecting rod for collecting the airborne microorganisms collected in the collecting plate.
상기 종래의 부유미생물 측정장치는, 상기 전기집진기의 구동에 의하여 상기 포집판에 부유미생물이 포집되면, 사용자가 수동으로 상기 수집봉을 포집판에 접촉시켜 부유미생물을 수집 또는 샘플링하도록 구성된다. The conventional airborne microbial measurement apparatus is configured to collect or sample the airborne microorganisms by manually contacting the collecting rod to the collecting plate when the airborne microorganisms are collected on the collecting plate by driving the electrostatic precipitator.
그리고, 수집된 부유미생물을 시약에 반응시켜 발광이 이루어지도록 하고, 발광된 빛을 감지하여 미생물의 농도를 측정하도록 구성된다.Then, the collected suspended microorganisms are reacted with a reagent to emit light, and the emitted light is detected to measure the concentration of the microorganisms.
이와 같이, 종래의 부유미생물 측정장치의 경우, 수집봉을 별도로 마련하고 사용자가 수집봉을 이용하여 포집판에 포집된 부유미생물을 수집하여야 하는 과정을 거쳐야 하므로, 시간 및 비용이 많이 소모되는 문제점이 있었다.As described above, in the case of the conventional airborne microbial measurement apparatus, a collection rod must be separately prepared and the user must go through a process of collecting the airborne microorganisms collected on the collecting plate by using the collection rod. there was.
본 발명은 이러한 문제점을 해결하기 위하여 제안된 것으로서, 기상중에 존재하는 부유미생물을 신속하게 측정할 수 있는 부유미생물 측정장치 및 그 측정방법을 제공하는 것을 목적으로 한다.The present invention has been proposed to solve such a problem, and an object of the present invention is to provide an airborne microbial measurement apparatus and a method for measuring the airborne microorganisms present in the gas phase.
본 발명의 실시예에 따른 부유미생물 측정장치에는, 공기의 유입을 위한 유입부 및 상기 유입부의 일측에 제공되는 노즐부가 포함되는 입자 분류장치; 상기 공기 중 상기 노즐부의 내부유로를 통과한 미생물 입자가 유동하는 미생물 입자유로; 상기 미생물 입자의 유동을 발생시키는 구동장치; 상기 미생물 입자유로와 연통하며, 상기 미생물 입자가 포집되는 필터부를 구비하는 포집장치; 상기 필터부에 포집된 미생물 입자로부터 발생된 빛의 양 또는 세기를 감지하는 발광 측정장치; 및 상기 필터부의 일측에 제공되며, 상기 필터부를 살균하기 위한 살균장치가 포함된다.Airborne microbial measurement apparatus according to an embodiment of the present invention, the particle fractionation device including an inlet for the inlet of air and a nozzle unit provided on one side of the inlet; A microbial particle flow path through which the microbial particles having passed through the internal flow path of the nozzle unit flow; A driving device for generating a flow of the microbial particles; A collecting device in communication with the microbial particle flow passage and including a filter unit for collecting the microbial particles; A luminescence measuring device for sensing an amount or intensity of light generated from the microbial particles collected in the filter unit; And a sterilization apparatus provided on one side of the filter part to sterilize the filter part.
또한, 상기 포집장치의 일측에 제공되며, 상기 발광 측정장치 및 살균장치를 수용하는 하우징이 더 포함된다.In addition, a housing provided on one side of the collecting device, the housing for receiving the light emission measuring device and sterilization device is further included.
또한, 상기 하우징의 내부에 형성되며, 상기 구동장치의 구동에 의하여, 상기 미생물 입자의 유동을 상기 필터부로 가이드 하는 흡입부가 더 포함된다.In addition, the suction unit is formed inside the housing, and guides the flow of the microbial particles to the filter unit by the driving of the drive device.
또한, 상기 발광 측정장치 및 살균장치는 상기 흡입부의 양측에 설치되는 것을 특징으로 한다.In addition, the light emission measuring device and the sterilizing device is characterized in that it is installed on both sides of the suction unit.
또한, 상기 포집장치에는, 상기 필터부를 수용하며, 상기 미생물 입자유로와 연통될 수 있는 필터공이 형성되는 필터 케이스가 포함되며, 상기 필터부의 적어도 일부분은 상기 필터공을 통하여 외부에 노출되는 것을 특징으로 한다.The collecting device may include a filter case accommodating the filter part and forming a filter hole communicating with the microbial particle flow path, wherein at least a portion of the filter part is exposed to the outside through the filter hole. do.
또한, 상기 필터 케이스 및 필터부는 회전 가능한 것을 특징으로 한다.In addition, the filter case and the filter unit is characterized in that the rotatable.
또한, 상기 필터 케이스가 회전되는 과정에서, 상기 필터공은 상기 흡입부, 수광부 및 살균장치 중 어느 하나와 대응하는 위치에 배치될 수 있는 것을 특징으로 한다.In addition, in the process of rotating the filter case, the filter hole is characterized in that it can be arranged in a position corresponding to any one of the suction unit, the light receiving unit and the sterilizer.
또한, 상기 필터 케이스가 회전되는 과정에서, 상기 필터공은 상기 흡입부, 살균장치 및 수광부에 차례대로 대응하는 위치에 배치될 수 있는 것을 특징으로 한다.In addition, in the process of rotating the filter case, the filter hole is characterized in that it can be arranged in a position corresponding to the suction unit, the sterilizer and the light receiving unit in order.
또한, 상기 필터공에는, 서로 이격된 다수의 필터공이 포함되며, 상기 다수의 필터공간의 이격된 거리는, 상기 흡입부, 살균장치 및 수광부의 이격된 거리에 대응하는 것을 특징으로 한다.The filter hole may include a plurality of filter holes spaced apart from each other, and the spaced distances of the plurality of filter spaces correspond to spaced distances of the suction unit, the sterilizer, and the light receiving unit.
또한, 상기 살균장치를 제어하는 제어부가 더 포함되며, 상기 제어부는, 상기 필터부에 상기 미생물 입자가 포집되기 이전에, 상기 살균장치를 작동하여 상기 필터부의 오염물질을 제거하는 것을 특징으로 한다.In addition, a control unit for controlling the sterilization apparatus is further included, wherein the control unit is characterized in that before operating the microorganism particles are collected in the filter unit, by operating the sterilization unit to remove contaminants in the filter unit.
또한, 상기 발광 측정장치를 제어하는 제어부가 더 포함되며, 상기 제어부는, 상기 필터부에 상기 미생물 입자가 포집되기 이전에, 상기 발광 측정장치를 제 1 작동하고, 상기 필터부에 상기 미생물 입자가 포집된 이후에, 상기 발광 측정장치를 제 2 작동하는 것을 특징으로 한다.The apparatus may further include a controller configured to control the light emission measuring device, wherein the control unit first operates the light emission measuring device before the microorganism particles are collected in the filter unit, and the microorganism particles may be disposed in the filter unit. After being collected, the luminescence measuring device is operated for a second time.
또한, 상기 구동장치에는, 에어 펌프장치가 포함된다.The drive device also includes an air pump device.
또한, 상기 노즐부의 외측공간을 통과한 공기 입자가 유동하는 공기입자 유로; 및 상기 공기입자 유로에서의 유동을 발생시키는 송풍팬이 더 포함된다.In addition, the air particle passage through which air particles passed through the outer space of the nozzle unit flows; And a blowing fan for generating a flow in the air particle flow path.
또한, 상기 살균장치에는, 자외선 LED 장치 또는 이오나이저(ionizer)가 포함된다.In addition, the sterilizing apparatus includes an ultraviolet LED device or an ionizer.
또한, 상기 발광 측정장치에는, 빛을 수집하는 수광부; 및 상기 수광부로 빛을 가이드 하며, 빛의 전반사 또는 난반사를 유도하는 반사유도 장치가 포함되고, 상기 반사유도 장치에는, 필름부 또는 코팅부가 포함된다.In addition, the light emission measuring device, the light receiving unit for collecting light; And a reflection induction device that guides the light to the light receiving portion and induces total reflection or diffuse reflection of the light. The reflection induction device includes a film part or a coating part.
또한, 상기 발광 측정장치에서 감지된 미생물의 농도를 표시하는 디스플레이부가 더 포함된다.In addition, the display unit for displaying the concentration of the microorganisms detected by the luminescence measuring device is further included.
또한, 상기 디스플레이부를 표시된 미생물의 농도가 높을 경우, 공기를 정화하기 위한 가전제품에 미생물의 농도에 관한 정보를 전송하는 것을 특징으로 한다.In addition, when the concentration of the microorganisms displayed on the display unit is high, it is characterized in that to transmit information about the concentration of the microorganisms to the household appliances for purifying the air.
다른 측면에 따른 부유 미생물 측정방법에는, 필터 구동부의 제 1 작동을 수행하여, 살균장치를 필터부의 일 영역에 위치시키고, 상기 살균장치를 작동하는 단계; 상기 필터 구동부의 제 2 작동을 수행하여, 수광부를 상기 필터부의 일 영역에 위치시키고, 상기 수광부의 제 1 작동을 수행하는 단계; 상기 필터 구동부의 제 3 작동을 수행하여, 미생물 입자가 유동할 수 있는 흡입부를 상기 필터부의 일 영역에 위치시키는 단계; 구동장치가 구동하여, 공기 중 미생물 입자가 분리되고, 분리된 미생물 입자가 상기 흡입부를 통하여 상기 필터부에 포집되는 단계가 포함된다.According to another aspect of the present disclosure, a method of measuring suspended microorganisms includes: performing a first operation of a filter driving unit, placing a sterilizer in one region of a filter unit, and operating the sterilizer; Performing a second operation of the filter driver to position the light receiver in one region of the filter unit and performing a first operation of the light receiver; Performing a third operation of the filter driving unit to position the suction unit through which the microbial particles can flow in one region of the filter unit; The driving device is driven, and the microbial particles in the air are separated, and the separated microbial particles are collected by the suction unit to the filter unit.
또한, 상기 필터부에 포집된 미생물 입자가 용해되고, 용해된 미생물 입자와 발광물질이 작용하는 단계; 및 상기 수광부의 제 2 작동을 수행하여, 상기 용해된 미생물 입자와 발광물질의 작용에 의한 발광량이 감지되는 단계가 더 포함된다.In addition, dissolving the microbial particles collected in the filter unit, the dissolved microbial particles and the light emitting material acts; And performing a second operation of the light receiving unit to detect the amount of light emitted by the action of the dissolved microbial particles and the light emitting material.
또한, 상기 수광부의 제 2 작동을 수행하여 감지된 제 2 발광량으로부터, 상기 수광부의 제 1 작동을 수행하여 감지된 제 1 발광량을 감하여, 미생물 발광량을 계산하는 단계가 더 포함된다.The method may further include calculating a microbial emission amount by subtracting the detected first emission amount by performing the first operation of the light receiver from the second emission amount detected by performing the second operation of the light receiver.
본 발명의 실시예에 따른 부유미생물 측정장치 및 그 측정방법에 의하면, 사용자가 포집판에 포집된 부유 미생물을 수동으로 샘플링 하여야 할 필요가 없이, 공기 중 부유 미생물이 가상 임팩터(virtual impactor) 구조에 의하여 자동으로 분리될 수 있으므로 입자 분류과정이 용이하며 시간이 적게 소요되는 효과가 있다.According to the airborne microbial measurement apparatus and measuring method according to an embodiment of the present invention, the airborne microorganisms in the air to the virtual impactor (virtual impactor) structure without the user need to manually sample the suspended microorganisms collected on the collecting plate It can be separated automatically by the particle sorting process is easy and takes less time.
또한, 분류된 미생물 입자가 포집되는 필터부를 살균할 수 있으므로 필터부의 오염을 방지할 수 있고 이에 따라, 필터부에 포집된 미생물 입자의 농도를 측정함에 있어, 상기 필터부에 존재하는 오염물질의 영향을 줄일 수 있다는 장점이 있다.In addition, since it is possible to sterilize the filter unit in which the classified microorganism particles are collected, it is possible to prevent contamination of the filter unit. Accordingly, in measuring the concentration of the microorganism particles collected in the filter unit, the influence of the contaminants present in the filter unit There is an advantage that can be reduced.
또한, 필터부에 미생물 입자를 포집하기 이전에, 발광 측정장치를 작동하여 기준 발광량 값을 측정하고, 이후 포집된 미생물 입자의 발광량 값을 계산하는데 상기 기준 발광량 값을 고려할 수 있으므로, 정확한 미생물 입자의 농도를 계산할 수 있다는 장점이 있다.In addition, before collecting the microbial particles in the filter unit, by operating the emission measuring device to measure the reference light emission value, and then to calculate the light emission value of the collected microbial particles, the reference light emission value can be taken into consideration, The advantage is that the concentration can be calculated.
또한, 필터 구동부를 작동하여 필터부를 이동시킴으로써, 상기 필터부가 제 2 하우징의 내부에 나란하게 배치되어 있는 흡입부, 수광부 또는 살균장치의 일측에 위치될 수 있으므로, 필터부의 살균 및 미생물의 농도측정이 연속적으로 이루어질 수 있다는 장점이 있다.In addition, by operating the filter driving unit to move the filter unit, the filter unit can be located on one side of the suction unit, the light receiving unit or the sterilization apparatus disposed side by side inside the second housing, so that the sterilization of the filter unit and the concentration measurement of the microorganisms The advantage is that it can be done continuously.
그리고, 상기 포집장치 또는 필터부에 발광물질이 도포되고 미생물의 용해시약이 상기 포집장치 또는 필터부에 공급될 수 있으므로, 발광측정 과정이 용이하게 이루어질 수 있다는 효과가 있다.In addition, since the light emitting material is applied to the collecting device or the filter unit and the dissolution reagent of the microorganism may be supplied to the collecting device or the filter unit, the luminescence measurement process may be easily performed.
또한, 가상 임팩터 구조에 의하여 입자가 작은 메인 유동과, 입자가 상대적으로 큰 서브 유동이 효과적으로 분리될 수 있다. 그리고, 압력 손실이 상대적으로 작은 메인 유동측에는 구동부로서 팬을 이용하고, 압력 손실이 상대적으로 큰 서브 유동측에는 구동부로서 저유량 펌프를 이용함으로써, 부유미생물 측정장치가 커지거나 무거워지는 것을 방지할 수 있다는 효과가 있다.In addition, the virtual impactor structure may effectively separate the main flow having small particles and the sub flow having large particles. In addition, by using a fan as a driving part on the main flow side where the pressure loss is relatively small and using a low flow pump as a driving part on the sub flow side where the pressure loss is relatively large, it is possible to prevent the airborne microbial measuring apparatus from becoming large or heavy. It works.
또한, 발광장치에서 감지된 발광량에 기초하여 미생물 농도에 대한 정보를 표시하는 디스플레이부가 더 구비되고, 미생물 농도가 설정농도 이상인 경우 이를 경고하는 표시가 상기 디스플레이부에 나타날 수 있으므로, 사용자 편의성이 증대될 수 있다.In addition, the display unit for displaying the information on the microbial concentration based on the amount of light emitted by the light emitting device is further provided, and when the microbial concentration is higher than the set concentration may be displayed on the display to warn, the user convenience is increased Can be.
도 1은 본 발명의 실시예에 따른 부유 미생물 측정장치의 구성을 보여주는 사시도이다.1 is a perspective view showing the configuration of a suspended microbial measurement apparatus according to an embodiment of the present invention.
도 2는 도 1의 I-I'를 따라 절개한 단면도이다.FIG. 2 is a cross-sectional view taken along line II ′ of FIG. 1.
도 3은 도 1의 II-II'를 따라 절개한 단면도이다.3 is a cross-sectional view taken along line II-II 'of FIG. 1.
도 4는 본 발명의 실시예에 따른 부유 미생물 측정장치의 내부 구성을 보여주는 개략도이다.Figure 4 is a schematic diagram showing the internal configuration of the airborne microbial measurement apparatus according to an embodiment of the present invention.
도 5는 본 발명의 실시예에 따른 노즐부의 구성을 개략적으로 보여주는 도면이다.5 is a view schematically showing a configuration of a nozzle unit according to an embodiment of the present invention.
도 6은 본 발명의 실시예에 따른 부유 미생물 측정장치의 구성을 보여주는 블럭도이다.Figure 6 is a block diagram showing the configuration of a suspended microbial measurement apparatus according to an embodiment of the present invention.
도 7은 본 발명의 실시예에 따른 부유 미생물 측정장치의 측정방법을 보여주는 플로우 챠트이다.7 is a flow chart showing a measuring method of a suspended microbial measurement apparatus according to an embodiment of the present invention.
도 8a 내지 도 8e는 본 발명의 실시예에 따른 부유 미생물 측정장치의 작용을 보여주는 개략도이다.8a to 8e is a schematic view showing the action of the airborne microbial measurement apparatus according to an embodiment of the present invention.
도 9는 종래의 부유 미생물 측정장치에 제공되는 전기집진기의 구성을 보여주는 도면이다.9 is a view showing the configuration of the electrostatic precipitator provided in the conventional airborne microbial measurement apparatus.
이하에서는 도면을 참조하여, 본 발명의 구체적인 실시예를 설명한다. 다만, 본 발명의 사상은 제시되는 실시예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서 다른 실시예를 용이하게 제안할 수 있을 것이다. Hereinafter, with reference to the drawings will be described a specific embodiment of the present invention. However, the spirit of the present invention is not limited to the embodiments presented, and those skilled in the art who understand the spirit of the present invention can easily suggest other embodiments within the scope of the same idea.
도 1은 본 발명의 실시예에 따른 부유 미생물 측정장치의 구성을 보여주는 사시도이고, 도 2는 도 1의 I-I'를 따라 절개한 단면도이고, 도 3은 도 1의 II-II'를 따라 절개한 단면도이다.1 is a perspective view showing the configuration of a suspended microbial measurement apparatus according to an embodiment of the present invention, Figure 2 is a cross-sectional view taken along the line II 'of Figure 1, Figure 3 is a line II-II' of FIG. It is an incision section.
도 1 내지 도 3을 참조하면, 본 발명의 실시예에 따른 부유 미생물 측정장치에는, 베이스(20) 및 상기 베이스(20)의 상측에 설치되는 다수의 장치가 포함된다.1 to 3, the airborne microbial measurement apparatus according to the embodiment of the present invention includes a base 20 and a plurality of devices installed above the base 20.
상기 다수의 장치에는, 공기를 흡입하여 공기 중 부유 미생물을 분리하는 입자 분류장치(100) 및 상기 입자 분류장치(100)에서 분리된 부유 미생물이 포집되는 포집장치(200)가 포함된다.The plurality of devices include a particle sorting device 100 for sucking air to separate the airborne microorganisms and a collecting device 200 for collecting the airborne microorganisms separated from the particle sorting device 100.
그리고, 상기 다수의 장치에는, 상기 포집장치(200)의 일측에 제공되어 상기 부유 미생물로부터 발생되는 빛의 양 또는 세기를 감지하는 발광 측정장치(300) 및 상기 발광 측정장치(300)에 전기적으로 연결되는 제어장치(400)가 더 포함된다. 상기 발광 측정장치(300)에는, 빛을 수집하는 수광부(320)가 포함된다.In addition, the plurality of devices are provided on one side of the collecting device 200 and electrically connected to the light emission measuring device 300 and the light emission measuring device 300 for detecting the amount or intensity of light generated from the suspended microorganism. The control device 400 is further included. The light emission measuring apparatus 300 includes a light receiving unit 320 for collecting light.
상기 제어장치(400)에는, 다수의 회로부품이 설치되는 PCB(410) 및 상기 PCB(410)에 설치되어 부유 미생물의 농도에 관한 정보가 표시되는 디스플레이부(420)가 포함된다.The control device 400 includes a PCB 410 on which a plurality of circuit components are installed, and a display unit 420 installed on the PCB 410 to display information on the concentration of suspended microorganisms.
상세히, 상기 입자 분류장치(100)에는, 소정의 내부공간을 형성하는 제 1 하우징(110) 및 상기 제 1 하우징(110)의 상부에 결합되는 상면부(112)가 포함된다. 상기 상면부(112)에는, 상기 입자 분류장치(100)의 외부에 존재하는 공기가 흡입되는 "공기 유입부"로서의 다수의 슬릿(121)이 형성된다. In detail, the particle sorting apparatus 100 includes a first housing 110 forming a predetermined inner space and an upper surface portion 112 coupled to an upper portion of the first housing 110. In the upper surface portion 112, a plurality of slits 121 are formed as “air inlets” through which air existing outside the particle sorting apparatus 100 is sucked.
상기 슬릿(121)의 폭은 수 밀리미터(mm)의 범위 내에 있을 수 있다. 그리고, 상기 슬릿(121)이 상기 상면부(112)에 다수 개가 형성됨으로써, 상기 슬릿(121)을 통하여 유입되는 공기의 저항력, 즉 슬릿(121) 내외부의 차압(differential pressure)이 작게 형성된다. 따라서, 상기 다수의 슬릿(121)을 통하여 유입되는 공기의 충분한 유량을 확보할 수 있다.The width of the slit 121 may be in the range of several millimeters (mm). In addition, since a plurality of slits 121 are formed on the upper surface part 112, the resistance force of air introduced through the slits 121, that is, the differential pressure inside and outside the slits 121 is small. Therefore, a sufficient flow rate of air introduced through the plurality of slits 121 may be secured.
상기 제 1 하우징(110)의 내부에는, 상기 슬릿(121)을 통하여 유입된 공기가 통과하는 노즐부(120)가 제공된다. 즉, 상기 노즐부(120)는 상기 제 1 하우징(110)의 내부공간에 설치될 수 있다. 그리고, 상기 노즐부(120)는 상기 슬릿(121)의 하측으로 이격되어 하방으로 연장된다.Inside the first housing 110, a nozzle unit 120 through which air introduced through the slit 121 passes is provided. That is, the nozzle unit 120 may be installed in the inner space of the first housing 110. In addition, the nozzle unit 120 is spaced downward from the slit 121 and extends downward.
상기 노즐부(120)는 상기 다수의 슬릿(121)의 수에 대응하여, 다수 개로 구비될 수 있으며, 서로 이격되어 배치될 수 있다. 일례로, 도 2에 도시되는 바와 같이, 다수의 노즐부(120)는 가로 방향으로 서로 이격되어 배치될 수 있다.The nozzle unit 120 may be provided in plurality, corresponding to the number of the plurality of slits 121, may be spaced apart from each other. For example, as illustrated in FIG. 2, the plurality of nozzle units 120 may be spaced apart from each other in the horizontal direction.
상기 노즐부(120)에는, 상기 슬릿(121)을 통하여 상기 제 1 하우징(110)의 내부로 유입된 공기 중 부유 미생물 입자가 유동하는 내부유로(125)가 포함된다. 상기 내부유로(125)는 상기 노즐부(120)의 내부 공간을 형성한다.The nozzle unit 120 includes an inner passage 125 through which floating microbial particles in the air introduced into the first housing 110 through the slit 121 flow. The internal passage 125 forms an internal space of the nozzle unit 120.
상기 내부유로(125)에는, 상기 노즐부(120)의 일단부를 규정하며 상기 내부유로(125)로 부유 미생물이 유입되는 입구부(125a)가 형성된다. 일례로, 상기 입구부(125a)는 상기 내부유로(125)의 상단부에 형성된다. The inner passage 125 defines an end portion of the nozzle unit 120 and has an inlet portion 125a through which floating microorganisms flow into the inner passage 125. In one example, the inlet 125a is formed at the upper end of the inner passage 125.
상기 슬릿(121)을 통하여 유입된 공기 중 부유 미생물 입자는 상기 입구부(125a)를 통하여 상기 내부유로(125)를 유동하며, 상기 부유 미생물 입자가 분리된 공기 입자는 상기 내부유로(125)의 외측 공간을 유동하여, 공기입자 유로(129)를 통과한다.Airborne microbial particles in the air introduced through the slit 121 flows through the internal passage 125 through the inlet portion 125a, and the air particles from which the airborne microbial particles are separated are separated from the internal passage 125. The outer space flows and passes through the air particle passage 129.
그리고, 상기 내부유로(125)에는, 상기 노즐부(120)의 타단부를 규정하며 상기 내부유로(125)를 유동한 부유 미생물 입자가 상기 노즐부(120)로부터 배출되도록 하는 출구부(125b)가 형성된다. 일례로, 상기 출구부(125b)는 상기 내부유로(125)의 하단부에 형성된다.In addition, the inner passage 125 defines the other end of the nozzle portion 120, and the outlet portion 125b for allowing the floating microbial particles flowing through the inner passage 125 to be discharged from the nozzle portion 120. Is formed. In one example, the outlet 125b is formed at the lower end of the internal passage 125.
상기 출구부(125b)의 일측에는, 상기 출구부(125b)를 통하여 배출된 부유 미생물 입자가 유동하는 미생물 입자유로(127)가 형성된다. 상기 공기입자 유로(129)를 제 1 유로 또는 메인유동 유로라 이름할 수 있고, 상기 미생물 입자유로(127)를 제 2 유로 또는 서브유동 유로라 이름할 수 있다.On one side of the outlet portion 125b, a microbial particle flow path 127 through which the floating microbial particles discharged through the outlet portion 125b flows is formed. The air particle passage 129 may be referred to as a first flow passage or a main flow passage, and the microbial particle passage 127 may be referred to as a second flow passage or a sub flow passage.
상기 노즐부(120)의 하단부에는, 상기 공기입자 유로(129)와 미생물 입자유로(127)를 구획하는 구획판(126)이 제공된다. 상기 구획판(126)에는 상기 노즐부(120)의 하단부, 즉 출구부(125b)가 결합된다. 다시 말하면, 상기 출구부(125b)는 상기 구획판(126)의 내부에 형성될 수 있다.The lower end of the nozzle unit 120 is provided with a partition plate 126 that partitions the air particle passage 129 and the microbial particle passage 127. The lower end portion of the nozzle portion 120, that is, the outlet portion 125b is coupled to the partition plate 126. In other words, the outlet portion 125b may be formed in the partition plate 126.
상기 구획판(126)에 의하여, 상기 공기입자 유로(129)와 미생물 입자유로(127)는 분리되므로, 상기 공기입자 유로(129)의 입자와, 상기 미생물 입자유로(127)의 입자가 혼합되는 것을 방지할 수 있다.Since the air particle passage 129 and the microbial particle passage 127 are separated by the partition plate 126, particles of the air particle passage 129 and particles of the microbial particle passage 127 are mixed. Can be prevented.
상기 제 1 하우징(110)의 일측에는, 수광부(320) 및 살균장치(330)가 설치되는 제 2 하우징(130)이 제공된다. 상기 미생물 입자유로(127)는 상기 구획판(126)의 일측으로부터 상기 포집장치(200)를 향하여 연장되며, 상기 제 2 하우징(130)의 내부공간은 상기 미생물 입자유로(127)의 적어도 일부분을 형성할 수 있다.One side of the first housing 110 is provided with a second housing 130 in which the light receiving unit 320 and the sterilizer 330 are installed. The microbial particle flow path 127 extends from one side of the partition plate 126 toward the collecting device 200, and the inner space of the second housing 130 may extend at least a portion of the microbial particle flow path 127. Can be formed.
상기 포집장치(200)에는, 필터부(220)가 수용되는 필터 케이스(210) 및 상기 필터 케이스(210)에 형성되는 다수의 필터공(215)이 형성된다. In the collecting device 200, a filter case 210 in which the filter unit 220 is accommodated and a plurality of filter holes 215 formed in the filter case 210 are formed.
상기 필터 케이스(210)의 적어도 일부분은 상기 제 2 하우징(130)의 내부에 삽입된다. 일례로, 상기 제 2 하우징(130)은 상기 필터 케이스(210)의 적어도 일부분의 상부 및 하부를 둘러싸도록 배치될 수 있다.At least a portion of the filter case 210 is inserted into the second housing 130. In one example, the second housing 130 may be disposed to surround the upper and lower portions of at least a portion of the filter case 210.
상기 필터 케이스(210)는 대략 반원 형상의 단면을 가질 수 있다. 상기 다수의 필터공(215)은 상기 필터 케이스(210)의 가장자리를 따라 서로 이격되어 원주 방향으로 배치될 수 있다. 그리고, 상기 다수의 필터공(215)간에 이격된 거리는, 서로 동일하게 형성될 수 있다.The filter case 210 may have an approximately semicircular cross section. The plurality of filter holes 215 may be spaced apart from each other along the edge of the filter case 210 may be disposed in the circumferential direction. The distances between the plurality of filter holes 215 may be the same.
상기 필터부(220)는 상기 다수의 필터공(215)을 통하여, 외부에 노출될 수 있다. 그리고, 상기 미생물 입자유로(127)를 유동한 미생물 입자는 상기 다수의 필터공(215) 중 어느 하나의 필터공(215)을 통하여 상기 필터부(220)에 포집될 수 있다.The filter unit 220 may be exposed to the outside through the plurality of filter holes 215. The microbial particles flowing through the microbial particle flow path 127 may be collected in the filter unit 220 through any one of the filter holes 215 of the plurality of filter holes 215.
상기 필터부(220)는 상기 필터 케이스(210)의 내측에 고정되도록 설치될 수 있다. 그리고, 상기 필터 케이스(210)는 회전 가능하게 구비될 수 있다.The filter unit 220 may be installed to be fixed to the inside of the filter case 210. The filter case 210 may be rotatably provided.
상기 필터 케이스(210)의 일측에는, 상기 필터 케이스(210)에 회전력을 제공하는 필터 구동부(250, 도 4 참조)가 제공된다. 상기 필터 구동부(250)에는, 정방향 또는 역방향 회전이 가능한 모터가 포함된다. 일례로, 상기 모터에는, 스텝 모터가 포함될 수 있다. 상기 필터 구동부(250)로부터 상기 필터 케이스(210)로 회전축(255, 도 4 참조)이 연장된다. One side of the filter case 210 is provided with a filter driver 250 (see FIG. 4) for providing a rotational force to the filter case 210. The filter driver 250 includes a motor capable of forward or reverse rotation. For example, the motor may include a step motor. A rotating shaft 255 (see FIG. 4) extends from the filter driver 250 to the filter case 210.
상기 필터 구동부(250)가 구동되면 상기 회전축(255)이 회전되며, 상기 필터 케이스(210)는 상기 회전축(255)에 의하여 시계방향 또는 반시계 방향으로 회전될 수 있다. 그리고, 상기 필터부(220)는 상기 필터 케이스(210)와 함께 회전될 수 있다.When the filter driver 250 is driven, the rotating shaft 255 is rotated, and the filter case 210 may be rotated clockwise or counterclockwise by the rotating shaft 255. In addition, the filter unit 220 may be rotated together with the filter case 210.
상기 필터 케이스(210) 및 필터부(220)가 일 위치에 있을 때, 일 필터공(215)이 상기 미생물 입자유로(127)에 연통된다. 따라서, 상기 미생물 입자유로(127)를 유동한 미생물 입자는 상기 일 필터공(215)을 통하여 상기 필터부(220)에 포집된다. 이 때, 상기 미생물 입자가 포집되는 필터부(220)의 일 영역은 상기 일 필터공(215)에 의하여 상기 미생물 입자유로(127)에 노출된 영역에 대응될 수 있다.When the filter case 210 and the filter unit 220 are in one position, one filter hole 215 communicates with the microbial particle flow path 127. Therefore, the microbial particles flowing through the microbial particle flow path 127 are collected in the filter unit 220 through the one filter hole 215. In this case, one region of the filter unit 220 in which the microbial particles are collected may correspond to the region exposed to the microbial particle passage 127 by the one filter hole 215.
그리고, 상기 필터 케이스(210) 및 필터부(220)가 회전하면 타 필터공(215)이 상기 미생물 입자유로(127)에 연통되며, 상기 일 필터공(215)은 위치 이동하여, 상기 발광 측정장치의 수광부(320) 또는 살균장치(330)의 일측에 위치될 수 있다.When the filter case 210 and the filter unit 220 are rotated, another filter hole 215 communicates with the microbial particle flow path 127, and the one filter hole 215 is moved in position to measure the emission. The light receiving unit 320 or the sterilizer 330 of the device may be located on one side.
상기 포집장치(200)의 일측에는, 미생물 입자의 유동을 위하여 구동되는 "구동장치"로서의 펌프장치(360) 및 상기 제 2 하우징(130)으로부터 상기 펌프장치(360)로 연장되는 펌프 연결부(350)가 제공된다. 상기 펌프장치(360)에는, 에어 펌프가 포함될 수 있다. On one side of the collecting device 200, the pump device 360 as a "drive device" that is driven for the flow of microbial particles and the pump connection portion 350 extending from the second housing 130 to the pump device 360 ) Is provided. The pump device 360 may include an air pump.
상기 미생물 입자유로(127)의 입자들 중, 상기 필터부(220)에 포집된 미생물 입자를 제외한 나머지 입자, 일례로 공기 입자들은 상기 펌프 연결부(350)를 경유하여 상기 펌프장치(360)로 유동할 수 있다.Among the particles of the microbial particle flow path 127, the remaining particles except for the microbial particles collected in the filter unit 220, for example, air particles, flow through the pump connection unit 350 to the pump device 360. can do.
상기 제 2 하우징(130)의 내부에는, 상기 펌프 연결부(350)와 연통되는 흡입부(310)가 포함된다. 상기 흡입부(310)는, 상기 제 2 하우징(130)의 내부에 형성되며, 상기 펌프장치(360)의 흡입력이 작용할 수 있다. 일례로, 상기 흡입부(310)는 상기 제 2 하우징(130)의 적어도 일부분이 절개 또는 관통되어 형성될 수 있다. 그리고, 상기 흡입부(310)는 상기 필터 케이스(210)의 일측, 도면상 상측에 형성될 수 있다.Inside the second housing 130, a suction part 310 communicating with the pump connection part 350 is included. The suction part 310 is formed in the second housing 130, and the suction force of the pump device 360 may act. For example, the suction part 310 may be formed by cutting or penetrating at least a portion of the second housing 130. In addition, the suction part 310 may be formed on one side of the filter case 210 and the upper side of the drawing.
따라서, 상기 펌프장치(360)가 구동되면, 상기 미생물 입자유로(127)에서의 공기유동이 발생되며, 상기 공기유동은 상기 흡입부(310)를 거쳐 상기 필터부(220)를 통과하게 된다. 이 과정에서, 미생물 입자는 상기 필터부(220)에 포집될 수 있다. 상기 미생물 입자가 분리된 이후의 공기유동은 상기 펌프 연결부(350)를 거쳐 상기 펌프장치(360)로 유동할 수 있다.Accordingly, when the pump device 360 is driven, air flow in the microbial particle flow path 127 is generated, and the air flow passes through the filter part 220 through the suction part 310. In this process, the microbial particles may be collected in the filter unit 220. The air flow after the microbial particles are separated may flow to the pump device 360 via the pump connection unit 350.
상기 펌프 연결부(350)에는, 상기 제 2 하우징(130)으로부터 상기 펌프장치(360)를 향하여 유동 단면적이 감소되는 싸이클론부(351)가 포함된다. 공기 유동은 상기 싸이클론부(351)를 지나면서 유동속도가 증가되어, 상기 펌프장치(360)로 유입될 수 있다.The pump connection portion 350 includes a cyclone portion 351 having a reduced flow cross-sectional area from the second housing 130 toward the pump device 360. The air flow may increase the flow rate while passing through the cyclone portion 351 and may be introduced into the pump device 360.
상기 펌프장치(360)는 압력손실이 발생하더라도 소정의 흡입유량을 확보하는 데 팬(fan) 보다 유리한 장치로서 이해될 수 있다. 따라서, 상기 펌프장치(360)를 사용하여 상기 미생물 입자유로(127)에서의 입자 유동을 발생함으로써, 상기 노즐부(120) 또는 필터부(220)에서 압력손실이 발생하더라도 흡입 효율이 개선될 수 있다.The pump device 360 may be understood as a device that is more advantageous than a fan to secure a predetermined suction flow rate even if a pressure loss occurs. Therefore, by generating the particle flow in the microbial particle flow path 127 using the pump device 360, even if a pressure loss occurs in the nozzle unit 120 or the filter unit 220, the suction efficiency can be improved. have.
그리고, 상기 미생물 입자유로(127)의 유동량은 비교적 소량이므로 상기 에어 펌프에는 저유량 펌프가 적용될 수 있다. 따라서, 부유 미생물 측정장치가 커지거나 무거워지는 현상을 방지할 수 있다.In addition, since the flow rate of the microbial particle flow path 127 is relatively small, a low flow rate pump may be applied to the air pump. Therefore, the phenomenon that the floating microorganism measuring device becomes large or heavy can be prevented.
상기 발광 측정장치(300)에는, 상기 포집장치(200)의 일측에 위치되는 미생물 입자가 수광부(320)가 포함된다. The light emission measuring apparatus 300 includes a light receiving unit 320 for the microbial particles located at one side of the collecting device 200.
상세히, 상기 수광부(320)는 상기 제 2 하우징(130)의 내부에 위치될 수 있다. 그리고, 상기 수광부(320)는 상기 흡입부(310)의 일 측방에 이격되어 위치될 수 있다.In detail, the light receiving unit 320 may be located inside the second housing 130. In addition, the light receiving unit 320 may be spaced apart from one side of the suction unit 310.
상기 수광부(320)에는, 비교적 저렴한 LED 및 CCD 카메라가 포함될 수 있다. 일례로, 상기 LED는 청색 LED일 수 있다. 그리고, 상기 발광 측정장치(300)에는, 상기 수광부(320)의 일측에 제공되어, 빛을 상기 수광부(320)로 가이드 하는 수광부 가이드장치가 제공될 수 있다. 그리고, 상기 수광부 가이드장치에는, 빛의 전반사 또는 난반사를 유도하는 반사유도 장치가 포함될 수 있다. 일례로, 상기 반사유도장치에는, 반사기능을 가지는 필름부 또는 코팅부가 포함된다.The light receiver 320 may include a relatively inexpensive LED and CCD camera. In one example, the LED may be a blue LED. In addition, the light emission measuring device 300 may be provided at one side of the light receiving unit 320 to provide a light receiving unit guide device for guiding light to the light receiving unit 320. The light receiver guide device may include a reflection induction device for inducing total reflection or diffuse reflection of light. For example, the reflection induction apparatus includes a film portion or a coating portion having a reflection function.
상기 흡입부(310)와 상기 수광부(320)간의 이격된 거리는, 상기 다수의 필터공(215) 중 일 필터공과, 타 필터공 사이의 거리에 대응될 수 있다. 따라서, 상기 일 필터공이 상기 흡입부(310)와 대응하는 위치에 배치될 때, 상기 타 필터공은 상기 수광부(320)와 대응하는 위치에 배치될 수 있다. The spaced distance between the suction part 310 and the light receiving part 320 may correspond to the distance between one filter hole among the plurality of filter holes 215 and another filter hole. Therefore, when the one filter hole is disposed at a position corresponding to the suction part 310, the other filter hole may be disposed at a position corresponding to the light receiving part 320.
달리 말하면, 상기 일 필터공은, 상기 흡입부(310)를 통한 유동력이 작용할 수 있는 위치에 배치되고, 상기 타 필터공은 상기 타 필터공을 통하여 노출되는 필터부(220)의 발광량이 상기 수광부(320)에 작용할 수 있는 위치에 배치될 수 있다.In other words, the one filter hole is disposed at a position at which the flow force through the suction unit 310 can act, and the other filter hole has the light emission amount of the filter unit 220 exposed through the other filter hole. The light receiver 320 may be disposed at a position that may act on the light receiver 320.
상기 다수의 필터공(215) 중 일 필터공을 통하여 상기 필터부(220)에 미생물 입자가 포집된 후 필터 케이스(210)가 회전되면, 상기 일 필터공은 상기 수광부(320)에 대향하는 위치에 배치될 수 있다. 상기 수광부(320)는 상기 필터부(220)의 미생물 입자에서 발생되는 빛의 양 또는 세기를 감지할 수 있다.When the filter case 210 is rotated after the microbial particles are collected in the filter unit 220 through one filter hole among the plurality of filter holes 215, the one filter hole faces the light receiving unit 320. Can be placed in. The light receiver 320 may detect the amount or intensity of light generated from the microbial particles of the filter unit 220.
상기 부유 미생물 측정장치에는, 상기 필터부(220)에 존재하는 오염물질을 살균하기 위한 살균장치(330)가 더 포함된다. 상기 살균장치(330)에는, 자외선 발광장치 또는 이오나이저(ionizer)가 포함될 수 있다. 일례로, 상기 자외선 발광장치에는, 자외선 엘이디장치((Ultra Violet-Light Emitting Diode)가 포함된다.The airborne microbial measurement apparatus further includes a sterilization apparatus 330 for sterilizing contaminants present in the filter unit 220. The sterilizer 330 may include an ultraviolet light emitting device or an ionizer. For example, the ultraviolet light emitting device includes an ultra violet-light emitting diode (LED).
상세히, 상기 살균장치(330)는 상기 제 2 하우징(130)의 내부에 위치될 수 있다. 그리고, 상기 살균장치(330)는 상기 흡입부(310)의 타 측방에 이격되어 위치될 수 있다. 즉, 상기 수광부(320), 즉 발광 측정장치(300)와 상기 살균장치(330)는, 상기 흡입부(310)의 양측에 설치될 수 있다.In detail, the sterilizer 330 may be located inside the second housing 130. The sterilizer 330 may be spaced apart from the other side of the suction part 310. That is, the light receiving part 320, that is, the light emission measuring device 300 and the sterilizing device 330 may be installed at both sides of the suction part 310.
상기 흡입부(310)와 상기 살균장치(330)간의 이격된 거리는, 상기 다수의 필터공(215) 중 일 필터공과, 타 필터공 사이의 거리에 대응될 수 있다. 따라서, 상기 일 필터공이 상기 흡입부(310)와 대응하는 위치에 배치될 때, 상기 타 필터공은 상기 살균장치(330)와 대응하는 위치에 배치될 수 있다. The spaced distance between the suction unit 310 and the sterilization apparatus 330 may correspond to a distance between one filter hole and the other filter hole among the plurality of filter holes 215. Therefore, when the one filter hole is disposed at a position corresponding to the suction unit 310, the other filter hole may be disposed at a position corresponding to the sterilization apparatus 330.
달리 말하면, 상기 일 필터공은, 상기 흡입부(310)를 통한 유동력이 작용할 수 있는 위치에 배치되고, 상기 타 필터공은 상기 타 필터공을 통하여 노출되는 필터부(220)에 상기 살균장치(330)가 작용할 수 있는 위치에 배치될 수 있다.In other words, the one filter ball is disposed at a position at which the flow force through the suction part 310 can act, and the other filter ball is disposed on the filter part 220 exposed through the other filter ball. 330 may be placed in a position to act.
상기 흡입부(310)와, 수광부(320) 및 살균장치(330)는 서로 이격되어, 상기 다수의 필터공(215)이 배치된 형상에 대응하도록 배치될 수 있다. 일례로, 상기 다수의 필터공(215)은 상기 필터 케이스(210)의 원주를 따라 이격되어 배치되고, 상기 흡입부(310)와, 수광부(320) 및 살균장치(330)는 상기 다수의 필터공(215)의 각 필터공(215)에 대응하는 위치에 배치될 수 있다.The suction part 310, the light receiving part 320, and the sterilizing device 330 may be spaced apart from each other to correspond to a shape in which the plurality of filter holes 215 are disposed. For example, the plurality of filter holes 215 are spaced apart along the circumference of the filter case 210, and the suction part 310, the light receiving part 320, and the sterilizer 330 are the plurality of filters. The ball 215 may be disposed at a position corresponding to each filter hole 215.
상기 부유 미생물 측정장치(10)에는, 상기 필터부(220)에 용해 시약을 공급하는 용해제 공급장치(370) 및 상기 용해제 공급장치(370)로부터 상기 일 필터공(215) 또는 필터부(220)로 연장되는 공급유로(375)가 더 포함된다.In the suspended microbial measuring apparatus 10, the one filter hole 215 or the filter unit 220 from the dissolving agent supply device 370 for supplying a dissolution reagent to the filter unit 220 and the dissolving agent supply device 370 It further includes a supply passage 375 extending to.
상기 용해 시약(lysis reagent)은 상기 필터부(220)에 포집된 부유미생물의 세포(또는 세포벽)를 용해하기 위한 용해제로서 이해된다. 상기 부유미생물 입자의 세포는 상기 용해 시약과 반응하면, ATP가 추출된다.The lysis reagent is understood as a soluble agent for lysing the cells (or cell walls) of the suspended microorganisms collected in the filter unit 220. When the cells of the airborne microbial particles react with the lysis reagent, ATP is extracted.
그리고, 상기 필터부(220)에는, 발광물질이 도포될 수 있다. 상기 발광물질은 상기 용해 시약에 의하여 추출된 미생물 입자의 ATP(Adenosine Triphosphate, 아데노신삼인산)와 반응하여 빛을 발생시키기 위한 물질로서 이해된다.In addition, a light emitting material may be applied to the filter unit 220. The light emitting material is understood as a material for generating light by reacting with ATP (Adenosine Triphosphate, Adenosine Triphosphate) of the microbial particles extracted by the dissolution reagent.
상기 발광물질에는, 루시페린(luciferin) 및 루시페라아제(luciferase)가 포함된다. 상기 루시페린은 용해된 세포내에 존재하는 ATP에 의해 활성화되어 활성 루시페린으로 변화되고, 상기 활성 루시페린이 발광효소인 루시페라아제의 작용에 의하여 산화되어 산화 루시페린으로 되면서 화학 에너지를 빛 에너지로 전환시켜 빛을 발하게 된다. The luminescent material includes luciferin and luciferase. The luciferin is activated by ATP present in the lysed cells and is converted into active luciferin, and the active luciferin is oxidized by the action of luciferase, a light-emitting enzyme, to be oxidized luciferin, which emits light by converting chemical energy into light energy. .
상기 제 1 하우징(110)의 내부에는, 상기 노즐부(120)의 입구측에서 분리된 비교적 작은 입자, 일례로 공기 입자가 유동하는 공기입자 유로(129)가 형성된다. 상기 공기입자 유로(129)의 입자는, 상기 미생물 입자유로(127)의 입자보다 작게 형성된다. 다만, 상기 공기입자 유로(129)의 유동량은 상기 미생물 입자유로(127)의 유동량보다 많을 수 있다.In the interior of the first housing 110, a relatively small particle separated from the inlet side of the nozzle unit 120, for example, an air particle flow path 129 through which air particles flow is formed. Particles of the air particle flow path 129 is formed smaller than particles of the microbial particle flow path 127. However, the flow amount of the air particle flow path 129 may be greater than the flow amount of the microbial particle flow path 127.
상기 공기입자 유로(129)는 상기 구획판(126)에 의하여 상기 미생물 입자유로(127)로부터 분리되어, 송풍팬(150) 측으로 연장된다. The air particle flow path 129 is separated from the microbial particle flow path 127 by the partition plate 126 and extends toward the blowing fan 150.
상기 송풍팬(150)은 상기 공기입자 유로(129)의 유동을 발생시키기 위한 구동장치로서, 일례로 팬 하우징(155)의 내부에 수용될 수 있다. 상기 팬 하우징(155)은 상기 제 1 하우징(110)의 하부에 배치된다.The blowing fan 150 is a driving device for generating a flow of the air particle flow path 129, for example, may be accommodated in the fan housing 155. The fan housing 155 is disposed under the first housing 110.
그리고, 상기 송풍팬(150)은, 압력손실이 작을 경우 에어 펌프에 비하여 충분한 유량을 확보할 수 있는 장치로서 이해된다. 따라서, 상기 공기입자 유로(129)와 같이 압력손실이 낮은 유로에 송풍팬(150)이 제공됨으로써, 충분한 공기입자 유동(메인 유동)을 발생시킬 수 있다는 효과가 있다.In addition, the blower fan 150 is understood as a device capable of ensuring a sufficient flow rate as compared to the air pump when the pressure loss is small. Therefore, since the blowing fan 150 is provided in a passage having a low pressure loss, such as the air particle passage 129, there is an effect that sufficient air particle flow (main flow) can be generated.
도 4는 본 발명의 실시예에 따른 부유 미생물 측정장치의 내부 구성을 보여주는 개략도이고, 도 5는 본 발명의 실시예에 따른 노즐부의 구성을 개략적으로 보여주는 도면이다. 도 4 및 도 5를 참조하여, 본 발명의 실시예에 따른 부유 미생물 측정장치의 작용에 대하여 간단하게 설명한다. Figure 4 is a schematic diagram showing the internal configuration of the airborne microbial measurement apparatus according to an embodiment of the present invention, Figure 5 is a view schematically showing the configuration of the nozzle unit according to an embodiment of the present invention. 4 and 5, the operation of the airborne microbial measurement apparatus according to an embodiment of the present invention will be briefly described.
상기 펌프장치(360) 및 송풍팬(150)이 구동하면, 상기 부유 미생물 측정장치(10)의 외부에 존재하는 공기(도 5의 A)가 상기 상면부(112)의 다수의 슬릿(121)을 통하여 상기 제 1 하우징(110)의 내부로 유입된다.When the pump device 360 and the blower fan 150 are driven, air (A in FIG. 5) existing outside the airborne microbial measurement apparatus 10 is formed into a plurality of slits 121 of the upper surface part 112. It is introduced into the first housing 110 through the.
공기는 상기 다수의 슬릿(121)을 통과하는 과정에서, 좁은 유로 단면적에 의하여 유속이 증가될 수 있다. 상기 다수의 슬릿(121)을 통과한 공기 중 입자가 상대적으로 큰 부유 미생물 입자는 상기 노즐부(120)의 입구부(125a)를 통하여 상기 내부유로(125)에 유입된다(도 5의 C).As air passes through the plurality of slits 121, the flow velocity may be increased by a narrow passage cross-sectional area. Floating microbial particles having a relatively large amount of air particles passing through the plurality of slits 121 are introduced into the internal passage 125 through the inlet portion 125a of the nozzle unit 120 (FIG. 5C). .
그리고, 상기 부유 미생물 입자들은 상기 출구부(125b)를 통하여 상기 내부유로(125)에서 배출된 후, 상기 미생물 입자유로(127)를 유동하게 된다.In addition, the suspended microbial particles are discharged from the internal passage 125 through the outlet portion 125b, and then flow through the microbial particle passage 127.
반면에, 상기 다수의 슬릿(121)을 통과한 공기 중 입자가 상대적으로 작은 공기 입자들은 진행방향이 꺽이면서 상기 내부유로(125)로 유동하지 못하고, 상기 노즐부(120)의 외측 공간을 따라 유동하게 된다(도 5의 B).On the other hand, air particles having relatively small particles in the air passing through the plurality of slits 121 do not flow to the inner passage 125 while the traveling direction is bent, and is along the outer space of the nozzle unit 120. It will flow (B of FIG. 5).
그리고, 상기 공기 입자들은 상기 공기입자 유로(129)를 유동하여, 상기 송풍팬(150)을 통과하게 된다.In addition, the air particles flow through the air particle passage 129 to pass through the blowing fan 150.
정리하면, 좁은 단면적의 노즐을 통하여 공기가 유동하는 과정에서, 상대적으로 큰 부유 미생물 입자는 상기 입구부(125a)를 통하여 상기 내부유로(125)로 유입되며, 상대적으로 작은 공기 입자는 상기 슬릿(121)과 입구부(125a) 사이의 이격된 공간을 통하여 유동방향(stream line)이 꺽이도록 유동될 수 있다. In summary, in the process of flowing air through a nozzle having a narrow cross-sectional area, relatively large floating microbial particles are introduced into the internal passage 125 through the inlet portion 125a, and relatively small air particles are introduced into the slit ( The stream line may be bent through the spaced space between 121 and the inlet 125a.
이와 같은 입자 분류구조를 가상 임팩터(virtual impactor) 구조라 이름할 수 있으며, 본 실시예는 상기 가상 임팩터 구조를 적용하여 부유 미생물 입자와 공기 입자가 용이하게 분류될 수 있다.Such a particle classification structure may be referred to as a virtual impactor structure. In this embodiment, the floating microbial particles and air particles may be easily classified by applying the virtual impactor structure.
상기 미생물 입자유로(127)를 유동한 부유 미생물 입자는 상기 포집장치(200)로 유동하며, 상기 흡입부(310) 및 필터 케이스(210)의 일 필터공(215)을 경유하여 필터부(220)의 일 영역에 포집될 수 있다.The floating microbial particles flowing through the microbial particle flow path 127 flow to the collecting device 200, and pass through the filter unit 220 via one filter hole 215 of the suction part 310 and the filter case 210. Can be collected in one area of
이러한 포집과정이 설정시간 동안 이루어진 후, 상기 용해제 공급장치(370)로부터 용해 시약이 상기 필터부(220)로 공급된다. After this collection process is carried out for a set time, the dissolution reagent is supplied to the filter unit 220 from the solvent supply device 370.
상기 필터부(220)에 포집된 미생물 입자는 상기 용해 시약에 의하여 용해되어 ATP 추출된 후, 상기 필터부(220)에 도포된 발광물질과 반응할 수 있다. The microbial particles collected in the filter unit 220 may be dissolved by the dissolution reagent to extract ATP, and then react with the light emitting material applied to the filter unit 220.
그리고, 상기 필터 구동부(250)가 구동하여 상기 필터 케이스(210)가 회전하며, 이에 따라 상기 일 필터공(215)이 상기 수광부(320)를 향하도록 위치된다. 그리고, 상기 수광부(320)는 상기 필터부(220)에 포집된 미생물 입자로부터 발생되는 빛의 양 또는 세기를 감지할 수 있다. 여기서, 상기 빛은 상기 미생물 입자의 ATP와 발광물질이 반응하는 과정에서 발생될 수 있다.In addition, the filter driving unit 250 is driven to rotate the filter case 210, whereby the one filter hole 215 is positioned to face the light receiving unit 320. In addition, the light receiver 320 may detect an amount or intensity of light generated from the microbial particles collected by the filter unit 220. Here, the light may be generated during the reaction between the ATP and the light emitting material of the microbial particles.
이와 같이, 필터 구동부(250)의 구동에 의하여, 미생물 입자가 포집된 필터부(220)의 일 영역은 상기 수광부(320)를 향하도록 위치 이동될 수 있다. 결국, 필터 케이스(210) 및 필터부(220)가 회전 가능하게 제공되어, 미생물 포집 및 발광 과정이 자동적으로 이루어질 수 있다는 효과가 있다.As such, by driving the filter driver 250, one region of the filter part 220 in which the microbial particles are collected may be moved to face the light receiving part 320. As a result, the filter case 210 and the filter unit 220 are rotatably provided, so that the microbial collection and light emission process can be automatically performed.
한편, 상기 살균장치(330)는, 미생물 입자가 상기 필터부(220)에 포집되기 이전에, 상기 필터부(220)를 살균하기 위하여 작동될 수 있다. On the other hand, the sterilizer 330 may be operated to sterilize the filter unit 220 before the microbial particles are collected in the filter unit 220.
그리고, 상기 수광부(320)는 미생물 입자가 상기 필터부(220)에 포집되기 이전에, 상기 필터부(220)의 발광량을 감지하기 위하여 작동될 수 있다. 이 때의 발광량은 추후 미생물 입자가 포집되었을 때의 발광량에 대한, 기준정보를 제공하는 점에서, "기준 발광량"이라 이름할 수 있다.In addition, the light receiving unit 320 may be operated to detect the amount of light emitted from the filter unit 220 before the microbial particles are collected in the filter unit 220. The light emission amount at this time may be referred to as "reference light emission amount" in that it provides reference information on the light emission amount when the microbial particles are collected later.
도 6은 본 발명의 실시예에 따른 부유 미생물 측정장치의 구성을 보여주는 블럭도이다.Figure 6 is a block diagram showing the configuration of a suspended microbial measurement apparatus according to an embodiment of the present invention.
도 6을 참조하면, 본 발명의 실시예에 따른 부유 미생물 측정장치(10)에는, 부유 미생물입자 유동을 발생시키는 펌프장치(360) 및 공기입자 유동을 발생시키는 송풍팬(150)이 포함된다. Referring to FIG. 6, the airborne microbial measurement apparatus 10 according to an exemplary embodiment of the present invention includes a pump device 360 for generating a floating microbial particle flow and a blowing fan 150 for generating an air particle flow.
그리고, 상기 부유 미생물 측정장치(10)에는, 필터 케이스(210) 및 필터부(220)를 회전시키는 필터 구동부(250) 및 상기 필터부(220)로 용해 시약을 공급하기 위한 용해제 공급장치(370)가 더 포함된다.In addition, the suspended microbial measuring device 10, a filter driving unit 250 for rotating the filter case 210 and the filter unit 220 and a dissolving agent supply device 370 for supplying a dissolution reagent to the filter unit 220 ) Is further included.
상기 부유 미생물 측정장치(10)에는, 상기 필터부(220)에 포집된 부유 미생물 입자의 농도에 관한 정보가 표시되는 디스플레이부(420)가 포함된다. 상기 디스플레이부(420)에는, 상기 부유 미생물 입자의 농도값에 따라 다른 색상으로 표시되는 조명장치가 포함될 수 있다. The airborne microbial measurement apparatus 10 includes a display unit 420 that displays information on the concentration of airborne microbial particles collected by the filter unit 220. The display unit 420 may include a lighting device displayed in a different color according to the concentration value of the suspended microbial particles.
일례로, 상기 조명장치에는, 상기 부유 미생물 입자의 농도가 낮을 경우 녹색을 표시하는 제 1 조명부와, 농도가 중간값 정도일 경우 노란색을 표시하는 제 2 조명부 및 농도가 높을 경우 빨간색으로 표시하는 제 3 조명부가 포함될 수 있다. For example, the lighting apparatus may include a first lighting unit displaying green when the concentration of the floating microbial particles is low, a second lighting unit displaying yellow when the concentration is about a medium value, and a third display unit displaying red when the concentration is high. The lighting unit may be included.
다른 예로서, 상기 제 1 내지 3 조명부는 하나의 조명부로 구성될 수 있다.As another example, the first to third lighting units may be configured as one lighting unit.
상기 부유 미생물 측정장치(10)에는, 상기 필터부(220)에 포집된 미생물 입자의 발광량을 감지하는 수광부(320) 및 상기 미생물 입자의 포집과정과 상기 용해 시약 공급과정의 경과시간을 적산하는 타이머(460)가 포함된다.In the suspended microbial measurement apparatus 10, a timer for accumulating the elapsed time of the light receiving unit 320 for detecting the amount of light emitted from the microbial particles collected in the filter unit 220 and the collection process of the microbial particles and the dissolution reagent supply process 460 is included.
상기 수광부(320) 또는 타이머(460)에 의하여 감지된 정보는 제어부(450)로 전달될 수 있으며, 상기 제어부(450)는 상기 전달된 정보에 기초하여, 상기 펌프장치(360), 송풍팬(150), 필터 구동부(250), 용해제 공급장치(370) 및 디스플레이부(420)의 작동을 제어할 수 있다.Information detected by the light receiving unit 320 or the timer 460 may be transmitted to the control unit 450, and the control unit 450 may include the pump device 360 and a blower fan based on the transferred information. 150, the operation of the filter driver 250, the solvent supply device 370 and the display unit 420 may be controlled.
상기 부유 미생물 측정장치(10)에는, 상기 필터부(220)에 존재하는 오염물질을 제거하기 위한 살균장치(330)가 더 포함된다. 상기 살균장치(330)의 작동에 의하여 상기 필터부(220)에 존재하는 오염물질이 제거됨으로써, 상기 오염물질이 발광에 영향을 미치는 현상을 방지할 수 있다. 결국, 정확한 미생물 농도를 감지 및 계산할 수 있다.The airborne microbial measurement apparatus 10 further includes a sterilizer 330 for removing contaminants present in the filter unit 220. By removing the contaminants present in the filter unit 220 by the operation of the sterilizer 330, it is possible to prevent the phenomenon that the contaminants affect the light emission. As a result, accurate microbial concentration can be detected and calculated.
그리고, 상기 부유 미생물 측정장치(10)에는, 발광측정 장치, 즉 상기 수광부(320)의 작동에 관한 정보를 저장하는 메모리부(470)가 더 포함된다. 상세히, 상기 수광부(320)는 미생물 입자가 포집되기 이전의 제 1 작동 및 미생물 입자가 포집된 이후의 제 2 작동을 수행할 수 있다.In addition, the airborne microbial measurement apparatus 10 further includes a memory unit 470 that stores information regarding the operation of the light emission measurement apparatus, that is, the light receiving unit 320. In detail, the light receiver 320 may perform a first operation before the microbial particles are collected and a second operation after the microbial particles are collected.
상기 제 1 작동은, 포집장치(200) 주변의 빛에 의한 발광량을 감지하기 위한 작동으로서, 상기 기준 발광량을 감지하는 작동으로서 이해된다. 상기 제 1 작동에 의한 기준 발광량에 대한 정보는 상기 메모리부(470)에 저장될 수 있다.The first operation is an operation for detecting the amount of light emitted by the light around the collecting device 200 and is understood as an operation for detecting the reference amount of light. Information on the reference light emission amount according to the first operation may be stored in the memory unit 470.
그리고, 상기 기준 발광량에 대한 정보는, 상기 제 2 작동 이후 감지된 발광량을 계산하는 데 고려될 수 있다. 상기 기준 발광량을 "제 1 발광량", 상기 제 2 작동 이후 감지된 발광량을 "제 2 발광량"이라 이름할 수 있다. 일례로, 필터부에 포집된 미생물의 농도값은, 상기 제 2 발광량으로부터 상기 기준 발광량을 감한 값에 기초하여 계산될 수 있다.The information about the reference light emission amount may be considered to calculate the light emission amount detected after the second operation. The reference light emission amount may be referred to as a “first light emission amount” and the light emission amount detected after the second operation may be referred to as a “second light emission amount”. For example, the concentration value of the microorganisms collected in the filter part may be calculated based on a value obtained by subtracting the reference emission amount from the second emission amount.
도 7은 본 발명의 실시예에 따른 부유 미생물 측정장치의 측정방법을 보여주는 플로우 챠트이고, 도 8a 내지 도 8e는 본 발명의 실시예에 따른 부유 미생물 측정장치의 작용을 보여주는 개략도이다.7 is a flow chart showing a measuring method of a floating microbial measuring apparatus according to an embodiment of the present invention, Figures 8a to 8e is a schematic diagram showing the action of the floating microbial measuring apparatus according to an embodiment of the present invention.
도 8a 내지 도 8e에 도시된 각 도면은, 이해의 편의를 위하여, 반원 형상의 필터 케이스(210)를 좌우로 길게 연장하고, 상기 필터 케이스(210)의 일측에 상기 흡입부(310), 수광부(320) 및 살균장치(330)의 위치를 상대적으로 표시한 것을 나타낸다. 8A to 8E, for convenience of understanding, the semicircular filter case 210 extends from side to side and the suction unit 310 and the light receiving unit on one side of the filter case 210. It indicates that the position of the 320 and the sterilizer 330 is relatively displayed.
그리고, 도 8a로부터 8e에 이르는 모습은, 부유 미생물의 측정과정에서, 상기 필터 케이스(210)의 회전에 따라, 상기 포집 필터공(215a)의 위치가, 상기 흡입부(310), 수광부(320) 및 살균장치(330)에 대하여, 변화되는 모습을 보여준다.8A to 8E show that the collection filter hole 215a is positioned at the suction part 310 and the light receiving part 320 in accordance with the rotation of the filter case 210 in the measurement process of the floating microorganisms. ) And the sterilization apparatus 330 shows the changed state.
도 7을 참조하면, 상기 부유 미생물 측정장치(10)의 전원이 ON 되면, 상기 필터 구동부(250)는 제 1 작동을 수행한다. 상기 필터 구동부(250)의 제 1 작동은 역방향으로 제 1 설정각도만큼 회전하는 작동으로서, 미생물이 포집될 필터부(220)의 일 영역을 개방하는 필터공(215a, 도 8a 참조)을 살균장치(300)의 일측으로 이동시키는 작동으로서 이해된다. 상기 필터공(215a)을 "포집 필터공"이라 이름할 수 있다.Referring to FIG. 7, when the power of the floating microorganism measuring device 10 is turned on, the filter driving unit 250 performs a first operation. The first operation of the filter driving unit 250 is an operation of rotating in a reverse direction by a first set angle to sterilize a filter hole 215a (see FIG. 8A) for opening a region of the filter unit 220 in which microorganisms are to be collected. It is understood as an operation for moving to one side of 300. The filter hole 215a may be referred to as a "collection filter hole".
여기서, 상기 역방향은, 도 8a를 기준으로, 상기 필터 케이스(210)가 좌측으로 이동하는 방향에 대응될 수 있다.Here, the reverse direction may correspond to a direction in which the filter case 210 moves to the left side with reference to FIG. 8A.
그리고, 상기 제 1 설정각도는, 상기 필터 케이스(210)가 일 필터공과, 상기 일 필터공에 가장 인접한 타 필터공 사이의 거리(이격 거리)만큼 회전될 수 있는 각도로서 이해된다. 이러한 "역방향의 제 1 설정각도 회전"을 "-1 회전"이라 이름할 수 있다(S12).The first set angle is understood as an angle at which the filter case 210 can be rotated by a distance (separation distance) between one filter hole and another filter hole closest to the one filter hole. Such "reverse first rotation of the set angle" may be referred to as "-1 rotation" (S12).
도 8a는 상기 부유 미생물 측정장치(10)의 기본적인 배치모습, 즉 상기 부유 미생물 측정장치(10)의 전원이 ON될 당시의 모습을 보여준다. 이 때, 상기 흡입부(310)는 상기 필터 케이스(210)의 포집 필터공(215a)의 일측에 위치되며, 상기 살균장치는 다른 필터공의 일측에 위치된다. 그리고, 상기 수광부(320)는 상기 다수의 필터공의 외측에 위치될 수 있다.8A shows a basic arrangement of the floating microbial measurement apparatus 10, that is, the state when the power of the floating microbial measurement apparatus 10 is turned on. At this time, the suction unit 310 is located on one side of the collecting filter hole (215a) of the filter case 210, the sterilization device is located on one side of the other filter hole. In addition, the light receiving unit 320 may be positioned outside the plurality of filter holes.
그리고, 상기 필터 구동부(250)의 제 1 작동이 수행되면, 상기 필터 케이스(210)는 회전하여 도 8b에 도시된 바와 같이 배치되며, 상기 필터 케이스(210)의 포집 필터공(215a)의 일측에는, 상기 살균장치(330)가 위치하게 된다. 즉, 상기 살균장치(330)가, 상기 포집 필터공(215a)을 통하여, 필터부(220)의 일 영역을 살균할 수 있는 위치에 배치된다 (도 8b 참조). 상기 살균장치(330)는, 상기 필터부(220)의 일 영역을 향하여 광원을 조사할 수 있다(S13).When the first operation of the filter driver 250 is performed, the filter case 210 is rotated and disposed as shown in FIG. 8B, and one side of the collecting filter hole 215a of the filter case 210. In the sterilization apparatus 330 is located. That is, the sterilizer 330 is disposed at a position capable of sterilizing one region of the filter unit 220 through the collection filter hole 215a (see FIG. 8B). The sterilizer 330 may irradiate a light source toward one region of the filter unit 220 (S13).
상기 살균장치(330)의 작동후, 상기 필터 구동부(250)는 제 2 작동을 수행한다. 상기 필터 구동부(250)의 제 2 작동은 정방향으로 제 2 설정각도만큼 회전하는 작동으로서, 상기 포집 필터공(215a)을 수광부(320)의 일측으로 이동시키는 작동으로서 이해된다. After the sterilizer 330 is operated, the filter driver 250 performs a second operation. The second operation of the filter driving unit 250 is an operation of rotating the collecting filter hole 215a to one side of the light receiving unit 320 as an operation of rotating the second predetermined angle in the forward direction.
여기서, 상기 정방향은, 도 8b를 기준으로, 상기 필터 케이스(210)가 우측으로 이동하는 방향에 대응될 수 있다.Here, the forward direction may correspond to a direction in which the filter case 210 moves to the right with reference to FIG. 8B.
그리고, 상기 제 2 설정각도는 상기 필터 케이스(210)가 상기 이격 거리의 2배만큼만큼 회전될 수 있는 각도로서 이해된다. 이러한 "정방향의 제 2 설정각도 회전"을 "+2 회전"이라 이름할 수 있다(S14).In addition, the second set angle is understood as an angle through which the filter case 210 can be rotated by twice the separation distance. This "second forward rotation of the set angle" may be referred to as "+2 rotation" (S14).
상기 필터 구동부(250)의 제 2 작동이 수행되면, 상기 필터 케이스(210)는 도 8c에 도시된 바와 같이 배치되며, 상기 포집 필터공(215a)의 일측에는, 상기 수광부(320)가 위치하게 된다. 즉, 상기 수광부(320)가, 상기 포집 필터공(215a)을 통하여, 필터부(220)의 일 영역에서의 발광량을 감지할 수 있는 위치에 배치된다 (도 8c 참조). 그리고, 다수의 필터공 중 다른 필터공의 일측에는 흡입부(310)가 위치되며, 또 다른 필터공의 일측에는 살균장치(330)가 위치될 수 있다. 이는, 상기 흡입부(310), 수광부(320) 및 살균장치(330)의 각 이격된 거리가 상기 다수의 필터공의 이격된 거리에 대응하는 점에서, 기인한다.When the second operation of the filter driver 250 is performed, the filter case 210 is arranged as shown in FIG. 8C, and at one side of the collection filter hole 215a, the light receiving unit 320 is positioned. do. That is, the light receiving unit 320 is disposed at a position capable of detecting the amount of light emitted from one region of the filter unit 220 through the collecting filter hole 215a (see FIG. 8C). In addition, the suction part 310 is positioned at one side of the other filter hole among the plurality of filter holes, and the sterilizer 330 may be positioned at one side of the other filter hole. This is due to the fact that each spaced distance of the suction unit 310, the light receiving unit 320, and the sterilizer 330 corresponds to the spaced distance of the plurality of filter holes.
상기 수광부(320), 즉 발광 측정장치는 제 1 작동을 수행하여, 상기 필터부(220)에서의 발광량을 감지한다.The light receiving unit 320, that is, the light emission measuring device performs a first operation to detect the amount of light emitted from the filter unit 220.
상기 수광부(320)의 제 1 작동에 의하여 감지되는 발광량은, 미생물 입자가 포집되기 이전에, 상기 필터부(220)에서 기본적으로 감지될 수 있는 발광량으로서, "기준 발광량(제 1 발광량)" 값을 가진다. 그리고, 상기 기준 발광량에 관한 정보는 상기 메모리부(470)에 저장될 수 있다(S15).The light emission amount detected by the first operation of the light receiver 320 is a light emission amount that can be basically sensed by the filter unit 220 before the microbial particles are collected, and is referred to as a "reference light emission amount (first light emission amount)" value. Has In addition, the information about the reference emission amount may be stored in the memory unit 470 (S15).
상기 수광부(320)의 제 1 작동후, 상기 필터 구동부(250)는 제 3 작동을 수행한다. 상기 필터 구동부(250)의 제 3 작동은 역방향으로 제 3 설정각도만큼 회전하는 작동으로서, 상기 포집 필터공(215a)을 흡입부(310)의 일측으로 이동시키는 작동으로서 이해된다. After the first operation of the light receiver 320, the filter driver 250 performs a third operation. The third operation of the filter driving part 250 is an operation of rotating the collecting filter hole 215a to one side of the suction part 310 as an operation of rotating the third set angle in the reverse direction.
여기서, 상기 역방향은, 도 8c를 기준으로, 상기 필터 케이스(210)가 좌측으로 이동하는 방향에 대응될 수 있다.Here, the reverse direction may correspond to a direction in which the filter case 210 moves to the left side with reference to FIG. 8C.
그리고, 상기 제 3 설정각도는 상기 필터 케이스(210)가 상기 이격 거리만큼 회전될 수 있는 각도로서 이해된다. 이러한 "역방향의 제 3 설정각도 회전"을 "-1 회전"이라 이름할 수 있다(S16).In addition, the third set angle is understood as an angle at which the filter case 210 may be rotated by the separation distance. This "reverse third rotation of the set angle" may be referred to as "-1 rotation" (S16).
상기 필터 구동부(250)의 제 3 작동이 수행되면, 상기 필터 케이스(210)는 도 8d에 도시된 바와 같이 배치되며, 상기 포집 필터공(215a)의 일측에는, 상기 흡입부(310)가 위치하게 된다. 즉, 상기 흡입부(310)는, 미생물 입자가 상기 흡입부(310) 및 포집 필터공(215a)을 통하여 필터부(220)의 일 영역으로 유동할 수 있는 위치에 배치된다. When the third operation of the filter driving unit 250 is performed, the filter case 210 is arranged as shown in FIG. 8D, and the suction unit 310 is positioned at one side of the collection filter hole 215a. Done. That is, the suction part 310 is disposed at a position where the microbial particles can flow to one region of the filter part 220 through the suction part 310 and the collecting filter hole 215a.
그리고, 상기 송풍팬(150) 및 펌프장치(360)가 작동하여, 상기 송풍팬(150)으로의 메인 유동 및 상기 펌프장치(360)로의 서브 유동이 발생된다. 상기 송풍팬(150) 및 펌프장치(360)가 작동하면, 상기 부유 미생물 측정장치(10)의 외부 공기가 상기 다수의 슬릿(121)을 통하여 상기 제 1 하우징(110)으로 유입된다.The blower fan 150 and the pump device 360 operate to generate a main flow to the blower fan 150 and a subflow to the pump device 360. When the blowing fan 150 and the pump device 360 operate, external air of the floating microorganism measuring device 10 is introduced into the first housing 110 through the plurality of slits 121.
상기 제 1 하우징(110) 내부의 가상 임팩터 구조에 의하여, 공기 중 부유 미생물 입자와 공기입자는 분리되어 각각 미생물 입자유로(127) 및 공기입자 유로(129)를 유동하게 된다. 그리고, 도 8d에 도시된 바와 같이, 상기 미생물 입자유로(127)를 유동하는 입자들은 상기 흡입부(310) 및 포집 필터공(215a)을 통하여, 상기 필터부(220)에 포집된다(S17).By the virtual impactor structure inside the first housing 110, airborne microbial particles and air particles are separated to flow through the microbial particle flow path 127 and the air particle flow path 129, respectively. As shown in FIG. 8D, particles flowing through the microbial particle flow path 127 are collected in the filter unit 220 through the suction unit 310 and the collecting filter hole 215a (S17). .
이러한 포집과정은 제 1 설정시간 동안 이루어질 수 있다. 상기 타이머(460)에 의하여 경과시간이 적산되며, 상기 제어부(450)는 제 1 설정시간이 경과되었는지 여부를 인식한다(S18).This collection process may be performed during the first set time. The elapsed time is accumulated by the timer 460, and the controller 450 recognizes whether the first set time has elapsed (S18).
상기 제 1 설정시간이 경과되었으면, 상기 송풍팬(150) 및 펌프장치(360)의 구동은 중지된다. 그리고, 상기 용해제 공급장치(370)가 작동하여, 상기 필터부(220)에 용해 시약이 공급된다. 상기 용해 시약은 제 2 설정시간 동안 상기 필터부(220)에 공급되며, 상기 제 2 설정시간이 경과되면 상기 용해제 공급장치(370)의 작동은 중지된다.When the first set time has elapsed, driving of the blower fan 150 and the pump device 360 is stopped. In addition, the dissolving agent supply device 370 operates to supply the dissolving reagent to the filter unit 220. The lysis reagent is supplied to the filter unit 220 for a second set time, and the operation of the solvent supply device 370 is stopped when the second set time elapses.
상기 용해 시약은 상기 필터부(220)에 포집된 미생물 입자를 용해하여 ATP를 추출하며, 추출된 ATP는 상기 필터부(220)에 도포된 발광물질과 반응하여 소정의 빛을 발하게 된다(S19,S20).The dissolution reagent dissolves the microbial particles collected in the filter unit 220 to extract ATP, and the extracted ATP reacts with the light emitting material applied to the filter unit 220 to emit a predetermined light (S19, S20).
상기 필터 구동부(250)가 제 4 작동을 수행한다. 상기 필터 구동부(250)의 제 4 작동은 정방향으로 제 4 설정각도만큼 회전하는 작동으로서, 상기 포집 필터공(215a)을 상기 수광부(320)의 일측으로 이동시키는 작동으로서 이해된다. The filter driver 250 performs a fourth operation. The fourth operation of the filter driving unit 250 is an operation of rotating the collecting filter hole 215a to one side of the light receiving unit 320 as an operation of rotating the fourth set angle in the forward direction.
여기서, 상기 정방향은, 도 8d를 기준으로, 상기 필터 케이스(210)가 우측으로 이동하는 방향에 대응될 수 있다.Here, the forward direction may correspond to a direction in which the filter case 210 moves to the right with reference to FIG. 8D.
그리고, 상기 제 4 설정각도는 상기 필터 케이스(210)가 상기 이격 거리만큼 회전될 수 있는 각도로서 이해된다. 이러한 "정방향의 제 4 설정각도 회전"을 "+1 회전"이라 이름할 수 있다(S21).And, the fourth set angle is understood as an angle at which the filter case 210 can be rotated by the separation distance. This "fourth set-angle rotation in the forward direction" may be referred to as "+1 rotation" (S21).
상기 필터 구동부(250)의 제 4 작동이 수행되면, 상기 필터 케이스(210)는 도 8e에 도시된 바와 같이 배치되며, 상기 포집 필터공(215a)의 일측에는, 상기 수광부(320)가 위치하게 된다. 즉, 상기 수광부(320)가, 상기 포집 필터공(215a)을 통하여, 미생물 입자가 포집된 필터부(220)의 일 영역에서의 발광량을 감지할 수 있는 위치에 배치된다 (도 8e 참조). 상기 수광부(320), 즉 발광 측정장치는 제 2 작동을 수행하여, 상기 필터부(220)에서의 발광량 또는 그 세기를 감지한다.When the fourth operation of the filter driving unit 250 is performed, the filter case 210 is arranged as shown in FIG. 8E, and at one side of the collection filter hole 215a, the light receiving unit 320 is positioned. do. That is, the light receiving unit 320 is disposed at a position capable of detecting the amount of light emitted from one region of the filter unit 220 in which the microbial particles are collected through the collecting filter hole 215a (see FIG. 8E). The light receiving unit 320, that is, the light emission measuring device performs a second operation to detect the amount of light emitted from the filter unit 220 or its intensity.
상기 발광량 또는 그 세기는 미생물의 농도에 비례할 수 있다. 즉, 상기 발광량 또는 그 세기가 큰 경우, 상기 미생물의 농도는 이에 비례하여 큰 것으로 인식되며, 상기 발광량 또는 그 세기가 작은 경우, 상기 미생물의 농도는 이에 비례하여 작은 것으로 인식될 수 있다.The amount of light emitted or its intensity may be proportional to the concentration of the microorganism. That is, when the amount of light emission or its intensity is large, the concentration of the microorganism is recognized as large in proportion thereto, and when the amount of light emission or its intensity is small, the concentration of the microorganism may be recognized as proportionally small.
상기 수광부(320)의 제 2 작동에 의하여 감지되는 발광량은, 미생물 입자가 포집된 이후에, 상기 필터부(220)에서 감지될 수 있는 발광량으로서, 상기 미생물 입자의 농도가 반영된 발광량(제 2 발광량)으로서 이해된다(S22).The amount of emitted light detected by the second operation of the light receiving unit 320 is the amount of emitted light that can be detected by the filter unit 220 after the collection of the microbial particles, and the amount of emitted light reflecting the concentration of the microbial particles (second emission amount) It is understood as (S22).
상기 제어부(450)는, 상기 필터부(220)에 포집된 미생물의 농도에 대응하는 발광량(미생물 발광량)을 상기 제 2 발광량으로부터 상기 제 1 발광량을 뺀 값으로 결정할 수 있다. The controller 450 may determine a light emission amount (microbial light emission amount) corresponding to the concentration of microorganisms collected by the filter unit 220 as a value obtained by subtracting the first light emission amount from the second light emission amount.
상기 제어부(450)는 상기 미생물 발광량에 기초하여, 미생물의 농도에 관한 정보를 상기 디스플레이부(420)에 표시할 수 있다. 일례로, 미생물의 농도에 따라, 상기 디스플레이부(420)에는, 서로 다른 색상의 조명부가 활성화 될 수 있다(S23).The controller 450 may display information on the concentration of microorganisms on the display unit 420 based on the amount of light emitted from the microorganisms. For example, depending on the concentration of the microorganism, the lighting unit of different colors may be activated in the display unit 420 (S23).
이와 같이, 미생물 입자의 포집 및 발광 측정단계가 자동적으로, 그리고 연속적으로 이루어질 수 있으므로, 부유 미생물의 측정과정이 용이하게 이루어질 수 있다. 그리고, 미생물의 농도에 관한 정보가 디스플레이부에 표시될 수 있으므로, 사용자는 부유 미생물의 농도를 손쉽게 확인할 수 있다는 효과가 있다.As such, the collection and emission measurement steps of the microbial particles may be automatically and continuously performed, and thus the measurement process of the suspended microorganisms may be easily performed. In addition, since information on the concentration of the microorganisms may be displayed on the display unit, the user may easily check the concentration of the floating microorganisms.
한편, 상기 부유미생물 측정장치와 연동하는, 공기 정화를 위한 가전제품이 구비될 수 있다. 상기 가전제품은 상기 디스플레이부에 표시된 부유 미생물의 농도가 높을 경우, 즉 부유미생물의 오염정도가 심할 경우, 구동될 수 있다. 상기 가전제품에는, 공기 청정기, 환기장치 또는 공기 조화기가 포함될 수 있다. 즉, 상기 부유미생물 측정장치는 상기 가전제품에 미생물 농도에 관한 정보를 전송하여, 상기 가전제품의 작동을 가이드 할 수 있다.On the other hand, in conjunction with the airborne microbial measurement apparatus, home appliances for air purification may be provided. The home appliance may be driven when the concentration of the floating microorganisms displayed on the display unit is high, that is, when the pollution degree of the floating microorganisms is severe. The household electrical appliance may include an air purifier, a ventilator or an air conditioner. That is, the airborne microbial measurement apparatus may transmit information about the concentration of microorganisms to the home appliances, to guide the operation of the home appliances.
또한, 필터부에 미생물 입자를 포집하기 이전에, 상기 필터부를 살균할 수 있으므로, 필터부의 오염물질에 의하여 미생물 입자농도가 잘못 계산되는 것을 방지할 수 있다.In addition, since the filter part can be sterilized before the microorganism particles are collected in the filter part, it is possible to prevent the microbial particle concentration from being incorrectly calculated by the contaminants in the filter part.
그리고, 미생물 입자가 포집되기 이전의 필터부의 발광량을 감지하여 미생물입자 농도의 계산에 반영할 수 있으므로, 상기 미생물 입자의 농도 측정이 정확하게 이루어질 수 있다.In addition, since the amount of light emitted from the filter unit before the microbial particles are collected may be detected and reflected in the calculation of the microbial particle concentration, the concentration of the microbial particles may be accurately measured.
본 발명의 실시예에 의하면, 분류된 미생물 입자가 포집되는 필터부를 살균할 수 있으므로 필터부의 오염을 방지할 수 있고 이에 따라, 필터부에 포집된 미생물 입자의 농도를 측정함에 있어, 상기 필터부에 존재하는 오염물질의 영향을 줄일 수 있으므로, 산업상 이용가능성이 현저하다.According to an embodiment of the present invention, since the filter unit in which the classified microorganism particles are collected can be sterilized, contamination of the filter unit can be prevented, and thus, in measuring the concentration of the microbial particles collected in the filter unit, Industrial applicability is remarkable as the effects of contaminants present can be reduced.

Claims (20)

  1. 공기의 유입을 위한 유입부 및 상기 유입부의 일측에 제공되는 노즐부가 포함되는 입자 분류장치;A particle sorting apparatus including an inlet for inlet of air and a nozzle unit provided on one side of the inlet;
    상기 공기 중 상기 노즐부의 내부유로를 통과한 미생물 입자가 유동하는 미생물 입자유로;A microbial particle flow path through which the microbial particles having passed through the internal flow path of the nozzle unit flow;
    상기 미생물 입자의 유동을 발생시키는 구동장치;A driving device for generating a flow of the microbial particles;
    상기 미생물 입자유로와 연통하며, 상기 미생물 입자가 포집되는 필터부를 구비하는 포집장치;A collecting device in communication with the microbial particle flow passage and including a filter unit for collecting the microbial particles;
    상기 필터부에 포집된 미생물 입자로부터 발생된 빛의 양 또는 세기를 감지하는 발광 측정장치; 및A luminescence measuring device for sensing an amount or intensity of light generated from the microbial particles collected in the filter unit; And
    상기 필터부의 일측에 제공되며, 상기 필터부를 살균하기 위한 살균장치가 포함되는 부유미생물 측정장치.It is provided on one side of the filter portion, airborne microbial measurement apparatus including a sterilizer for sterilizing the filter portion.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 포집장치의 일측에 제공되며, 상기 발광 측정장치 및 살균장치를 수용하는 하우징이 더 포함되는 부유미생물 측정장치.It is provided on one side of the collecting device, the airborne microbial measurement apparatus further comprises a housing for receiving the light emission measuring device and sterilization device.
  3. 제 2 항에 있어서, The method of claim 2,
    상기 하우징의 내부에 형성되며,Is formed inside the housing,
    상기 구동장치의 구동에 의하여, 상기 미생물 입자의 유동을 상기 필터부로 가이드 하는 흡입부가 더 포함되는 부유미생물 측정장치.Airborne microbial measurement apparatus further comprises a suction unit for guiding the flow of the microbial particles to the filter unit by the drive of the drive device.
  4. 제 3 항에 있어서,The method of claim 3, wherein
    상기 발광 측정장치 및 살균장치는 상기 흡입부의 양측에 설치되는 것을 특징으로 하는 부유미생물 측정장치.The luminescence measuring apparatus and the sterilizing apparatus are installed on both sides of the suction unit.
  5. 제 3 항에 있어서,The method of claim 3, wherein
    상기 포집장치에는, In the collecting device,
    상기 필터부를 수용하며, 상기 미생물 입자유로와 연통될 수 있는 필터공이 형성되는 필터 케이스가 포함되며,It includes a filter case for receiving the filter unit, the filter case is formed to be in communication with the microbial particle flow path,
    상기 필터부의 적어도 일부분은 상기 필터공을 통하여 외부에 노출되는 것을 특징으로 하는 부유미생물 측정장치.At least a portion of the filter unit airborne microbial measurement apparatus, characterized in that exposed to the outside through the filter hole.
  6. 제 5 항에 있어서,The method of claim 5, wherein
    상기 필터 케이스 및 필터부는 회전 가능한 것을 특징으로 하는 부유미생물 측정장치.The filter case and the filter unit airborne microbial measurement apparatus characterized in that the rotatable.
  7. 제 6 항에 있어서,The method of claim 6,
    상기 필터 케이스가 회전되는 과정에서,In the process of rotating the filter case,
    상기 필터공은 상기 흡입부, 발광 측정장치 및 살균장치 중 어느 하나와 대응하는 위치에 배치될 수 있는 것을 특징으로 하는 부유미생물 측정장치.The filter ball may be disposed in a position corresponding to any one of the suction unit, the luminescence measuring device and the sterilizing device.
  8. 제 7 항에 있어서, The method of claim 7, wherein
    상기 필터 케이스가 회전되는 과정에서,In the process of rotating the filter case,
    상기 필터공은 상기 흡입부, 살균장치 및 발광 측정장치에 차례대로 대응하는 위치에 배치될 수 있는 것을 특징으로 하는 부유미생물 측정장치.The filter ball may be disposed in a position corresponding to the suction unit, the sterilization device and the light emission measuring device in order to float.
  9. 제 5 항에 있어서,The method of claim 5, wherein
    상기 필터공에는, 서로 이격된 다수의 필터공이 포함되며,The filter hole includes a plurality of filter holes spaced apart from each other,
    상기 다수의 필터공간의 이격된 거리는, 상기 흡입부, 살균장치 및 발광 측정장치의 이격된 거리에 대응하는 것을 특징으로 하는 부유미생물 측정장치.The spaced distance of the plurality of filter spaces, airborne microbial measurement apparatus, characterized in that corresponding to the spaced distance of the suction unit, the sterilization device and the light emission measuring device.
  10. 제 1 항에 있어서,The method of claim 1,
    상기 살균장치를 제어하는 제어부가 더 포함되며,A control unit for controlling the sterilization apparatus is further included,
    상기 제어부는,The control unit,
    상기 필터부에 상기 미생물 입자가 포집되기 이전에, 상기 살균장치를 작동하여 상기 필터부의 오염물질을 제거하는 것을 특징으로 하는 부유미생물 측정장치.Before the microorganism particles are collected in the filter unit, airborne microbial measurement apparatus characterized in that to operate the sterilization device to remove contaminants in the filter unit.
  11. 제 1 항에 있어서,The method of claim 1,
    상기 발광 측정장치를 제어하는 제어부가 더 포함되며,A control unit for controlling the light emission measuring device is further included.
    상기 제어부는,The control unit,
    상기 필터부에 상기 미생물 입자가 포집되기 이전에, 상기 발광 측정장치를 제 1 작동하고,Before the microorganism particles are collected in the filter unit, the luminescence measuring device is first operated,
    상기 필터부에 상기 미생물 입자가 포집된 이후에, 상기 발광 측정장치를 제 2 작동하는 것을 특징으로 하는 부유미생물 측정장치.After the microorganism particles are collected in the filter unit, the airborne microbial measurement apparatus, characterized in that for operating a second operation.
  12. 제 1 항에 있어서,The method of claim 1,
    상기 구동장치에는,The drive device,
    에어 펌프장치가 포함되는 부유미생물 측정장치.Airborne microbial measurement device that includes a pump.
  13. 제 1 항에 있어서,The method of claim 1,
    상기 노즐부의 외측공간을 통과한 공기 입자가 유동하는 공기입자 유로; 및An air particle flow path through which air particles passing through the outer space of the nozzle part flow; And
    상기 공기입자 유로에서의 유동을 발생시키는 송풍팬이 더 포함되는 부유미생물 측정장치.Airborne microbial measurement apparatus further comprises a blowing fan for generating a flow in the air particle passage.
  14. 제 1 항에 있어서,The method of claim 1,
    상기 살균장치에는,The sterilizer,
    자외선 LED 장치 또는 이오나이저(ionizer)가 포함되는 부유미생물 측정장치.Airborne microbial measurement apparatus including an ultraviolet LED device or an ionizer.
  15. 제 1 항에 있어서,The method of claim 1,
    상기 발광 측정장치에는,In the light emission measuring device,
    빛을 수집하는 수광부; 및A light receiving unit collecting light; And
    상기 수광부로 빛을 가이드 하며, 빛의 전반사 또는 난반사를 유도하는 반사유도 장치가 포함되고,It guides the light to the light-receiving unit, and includes a reflection induction device for inducing total reflection or diffuse reflection of light,
    상기 반사유도 장치에는,In the reflection induction apparatus,
    필름부 또는 코팅부가 포함되는 부유미생물 측정장치.Airborne microbial measurement apparatus including a film portion or a coating portion.
  16. 제 1 항에 있어서,The method of claim 1,
    상기 발광 측정장치에서 감지된 미생물의 농도를 표시하는 디스플레이부가 더 포함되는 부유미생물 측정장치.Airborne microbial measurement apparatus further comprises a display unit for displaying the concentration of the microorganisms detected by the luminescence measurement device.
  17. 제 16 항에 있어서,The method of claim 16,
    상기 디스플레이부를 표시된 미생물의 농도가 높을 경우, 공기를 정화하기 위한 가전제품에 미생물의 농도에 관한 정보를 전송하는 것을 특징으로 하는 부유미생물 측정장치.When the concentration of the microorganisms displayed on the display unit is high, airborne microbial measurement apparatus, characterized in that for transmitting information on the concentration of the microorganisms for home appliances for purifying air.
  18. 필터 구동부의 제 1 작동을 수행하여, 살균장치를 필터부의 일 영역에 위치시키고, 상기 살균장치를 작동하는 단계;Performing a first operation of the filter drive unit, placing the sterilizer in one region of the filter unit, and operating the sterilizer;
    상기 필터 구동부의 제 2 작동을 수행하여, 수광부를 상기 필터부의 일 영역에 위치시키고, 상기 수광부의 제 1 작동을 수행하는 단계;Performing a second operation of the filter driver to position the light receiver in one region of the filter unit and performing a first operation of the light receiver;
    상기 필터 구동부의 제 3 작동을 수행하여, 미생물 입자가 유동할 수 있는 흡입부를 상기 필터부의 일 영역에 위치시키는 단계; 및Performing a third operation of the filter driving unit to position the suction unit through which the microbial particles can flow in one region of the filter unit; And
    구동장치가 구동하여, 공기 중 미생물 입자가 분리되고, 분리된 미생물 입자가 상기 흡입부를 통하여 상기 필터부에 포집되는 단계가 포함되는 부유미생물 측정방법.The driving apparatus is driven, the microbial particles in the air is separated, the separated microbial particles are collected by the suction unit comprises a step of collecting the microorganisms in the filter unit.
  19. 제 18 항에 있어서,The method of claim 18,
    상기 필터부에 포집된 미생물 입자가 용해되고, 용해된 미생물 입자와 발광물질이 작용하는 단계; 및Dissolving the microbial particles collected in the filter unit, and acting on the dissolved microbial particles and the light emitting material; And
    상기 수광부의 제 2 작동을 수행하여, 상기 용해된 미생물 입자와 발광물질의 작용에 의한 발광량이 감지되는 단계가 더 포함되는 부유미생물 측정방법.And performing a second operation of the light receiving unit to detect the amount of light emitted by the action of the dissolved microbial particles and the light emitting material.
  20. 제 19 항에 있어서,The method of claim 19,
    상기 수광부의 제 2 작동을 수행하여 감지된 제 2 발광량으로부터, 상기 수광부의 제 1 작동을 수행하여 감지된 제 1 발광량을 감하여, 미생물 발광량을 계산하는 단계가 더 포함되는 부유미생물 측정방법.And calculating a microbial emission amount by subtracting the first emission amount detected by performing the first operation of the light receiver from the second emission amount detected by performing the second operation of the light receiver.
PCT/KR2015/006908 2014-07-28 2015-07-06 Airborne micro-organism measurement apparatus and measurement method therefor WO2016017950A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580040878.0A CN106662576B (en) 2014-07-28 2015-07-06 Plankton measuring device and its measurement method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140095700A KR102221557B1 (en) 2014-07-28 2014-07-28 Airborne microbial measurement apparatus and measurement method
KR10-2014-0095700 2014-07-28

Publications (1)

Publication Number Publication Date
WO2016017950A1 true WO2016017950A1 (en) 2016-02-04

Family

ID=55217787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/006908 WO2016017950A1 (en) 2014-07-28 2015-07-06 Airborne micro-organism measurement apparatus and measurement method therefor

Country Status (3)

Country Link
KR (1) KR102221557B1 (en)
CN (1) CN106662576B (en)
WO (1) WO2016017950A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111417853A (en) * 2018-04-06 2020-07-14 松下知识产权经营株式会社 Pathogen detection device and pathogen detection method
CN111855365A (en) * 2020-06-19 2020-10-30 东洋工业(广东)有限公司 Microorganism detection device
EP4311984A1 (en) * 2022-07-28 2024-01-31 Microjet Technology Co., Ltd. Method for detecting, locating and completely cleaning indoor microorganism

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102337848B1 (en) * 2017-04-13 2021-12-10 엘지전자 주식회사 Apparatus for measuring airborne microbial, measuring method using the same and air conditioning device having the same
US11391659B2 (en) 2018-05-18 2022-07-19 The Wave Talk, Inc. Optical detecting system
WO2019221557A1 (en) 2018-05-18 2019-11-21 주식회사 더웨이브톡 Optical detection system
KR102207043B1 (en) * 2019-05-17 2021-01-25 주식회사 더웨이브톡 Apparatus for detecting airborne mcicrobes
CN108998367A (en) * 2018-08-30 2018-12-14 上海海事大学 A kind of portable microbial aerosol sampling apparatus can be used for high-flux sequence
KR102528012B1 (en) * 2019-05-17 2023-05-03 주식회사 더웨이브톡 Apparatus for detecting airborne mcicrobes
US20220373436A1 (en) * 2020-02-04 2022-11-24 Steve Naumovski A system and method for detecting airborne pathogens
KR102421489B1 (en) * 2020-03-20 2022-07-15 주식회사 파이퀀트 Hazardous ingredient measurement device and hazardous ingredient analysis system using the same
KR102514890B1 (en) 2020-11-24 2023-03-29 한국과학기술연구원 Method and Apparatus for bio-aerosol analyzing
KR20230102642A (en) 2021-12-30 2023-07-07 경희대학교 산학협력단 Investigation of bacterial and fungal communities in indoor and outdoor air of classrooms by 16S rRNA gene and ITS region sequencing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7030403B2 (en) * 2001-12-06 2006-04-18 Biocontrol Systems, Inc. Sample collection and bioluminescent sample testing system
US7422868B2 (en) * 2004-07-02 2008-09-09 Promega Corporation Microbial ATP extraction and detection system
KR20090055734A (en) * 2007-11-29 2009-06-03 연세대학교 산학협력단 Microorganism meter apparatus
KR20120086384A (en) * 2011-01-26 2012-08-03 연세대학교 산학협력단 airborne microbial measurement apparatus and measurement method using the microorganism dissolution system and ATP-luminescence
KR20150101650A (en) * 2014-02-27 2015-09-04 엘지전자 주식회사 An air cleaning system and a method controlling the same
KR20150101649A (en) * 2014-02-27 2015-09-04 엘지전자 주식회사 Airborne microbial measurement apparatus and measurement method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03112495A (en) * 1989-09-28 1991-05-14 Japan Organo Co Ltd Detection of microorganism floating in air
FR2855831B1 (en) * 2003-06-04 2005-09-02 Bertin Technologies Sa DEVICE FOR COLLECTING PARTICLES AND MICROORGANISMS IN AMBIENT AIR
CN100519731C (en) * 2006-12-27 2009-07-29 清华大学深圳研究生院 Method and dedicated device for enriching air microorganism

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7030403B2 (en) * 2001-12-06 2006-04-18 Biocontrol Systems, Inc. Sample collection and bioluminescent sample testing system
US7422868B2 (en) * 2004-07-02 2008-09-09 Promega Corporation Microbial ATP extraction and detection system
KR20090055734A (en) * 2007-11-29 2009-06-03 연세대학교 산학협력단 Microorganism meter apparatus
KR20120086384A (en) * 2011-01-26 2012-08-03 연세대학교 산학협력단 airborne microbial measurement apparatus and measurement method using the microorganism dissolution system and ATP-luminescence
KR20150101650A (en) * 2014-02-27 2015-09-04 엘지전자 주식회사 An air cleaning system and a method controlling the same
KR20150101649A (en) * 2014-02-27 2015-09-04 엘지전자 주식회사 Airborne microbial measurement apparatus and measurement method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HWANG, JEONG HO: "Measurement Methods and Mitigation Techniques of Nano/bio Aerosol for Indoor Air Quality Improvement", JOURNAL OF THE KSME, vol. 52, no. 5, 2012, pages 46 - 50 *
PARK, JAE SEONG ET AL.: "Microfluidic Chip for Bio-particle Separation using Hydrodynamic Forces Induced by Mutd-onfice Microchannel", JOURNAL OF 2008 BIOENGINEERING FALL CONFERENCE, 2008, pages 273 - 274 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111417853A (en) * 2018-04-06 2020-07-14 松下知识产权经营株式会社 Pathogen detection device and pathogen detection method
CN111855365A (en) * 2020-06-19 2020-10-30 东洋工业(广东)有限公司 Microorganism detection device
EP4311984A1 (en) * 2022-07-28 2024-01-31 Microjet Technology Co., Ltd. Method for detecting, locating and completely cleaning indoor microorganism

Also Published As

Publication number Publication date
CN106662576A (en) 2017-05-10
CN106662576B (en) 2019-08-02
KR20160013646A (en) 2016-02-05
KR102221557B1 (en) 2021-03-02

Similar Documents

Publication Publication Date Title
WO2016017950A1 (en) Airborne micro-organism measurement apparatus and measurement method therefor
WO2015130001A1 (en) Air cleaning system and method of controlling the same
WO2015130000A1 (en) Airborne microbial measurement apparatus and method
WO2012102448A1 (en) Apparatus for measuring floating microorganisms in a gas phase in real time using a system for dissolving microorganisms and atp illumination, and method for detecting same<0}
EP1759776A1 (en) Static charge and dust removing device
WO2015130002A1 (en) Airborne microbial measurement apparatus and measurement method
Park et al. Real-time monitoring of bioaerosols via cell-lysis by air ion and ATP bioluminescence detection
WO2015129979A1 (en) Airborne microbial measurement apparatus and measurement method thereof
JP6323859B1 (en) Yin positive pressure work hood
WO2019103225A1 (en) Fume hood
WO2015088174A1 (en) Bio sensor and air purifier having same
WO2022098061A1 (en) System and method for evaluating aerosol removal performance
WO2022154254A1 (en) Molecular diagnostic apparatus using rotary-type cartridge
WO2022124753A1 (en) Adapter for mounting conductive pipette, sample tube opening/closing device, and automatic sample analysis system
WO2017171221A2 (en) Airborne matter measurement device, control method therefor, and air purifier including airborne matter measurement device
WO2016182218A1 (en) Device for measuring fine dust inside vehicle
WO2019207817A1 (en) Safety cabinet
WO2022181878A1 (en) Vacuum cleaner and control method thereof
WO2023204452A1 (en) Air conditioner and control method therefor
WO2023204322A1 (en) Display device
WO2020209442A1 (en) Harmful gas processing apparatus
WO2020042438A1 (en) Air regulating apparatus based on micro-electrolytic sterilization, control method, humidifier, and cooling fan
JP2010044039A (en) Measurement apparatus
KR20180072370A (en) Optical measuring device and air conditioning device including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15827703

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15827703

Country of ref document: EP

Kind code of ref document: A1